• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2008-2009 Katholieke Universiteit Leuven
3  * Copyright 2010      INRIA Saclay
4  *
5  * Use of this software is governed by the MIT license
6  *
7  * Written by Sven Verdoolaege, K.U.Leuven, Departement
8  * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
9  * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
10  * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
11  */
12 
13 #include <isl_mat_private.h>
14 #include <isl_vec_private.h>
15 #include <isl_seq.h>
16 #include "isl_map_private.h"
17 #include "isl_equalities.h"
18 #include <isl_val_private.h>
19 
20 /* Given a set of modulo constraints
21  *
22  *		c + A y = 0 mod d
23  *
24  * this function computes a particular solution y_0
25  *
26  * The input is given as a matrix B = [ c A ] and a vector d.
27  *
28  * The output is matrix containing the solution y_0 or
29  * a zero-column matrix if the constraints admit no integer solution.
30  *
31  * The given set of constrains is equivalent to
32  *
33  *		c + A y = -D x
34  *
35  * with D = diag d and x a fresh set of variables.
36  * Reducing both c and A modulo d does not change the
37  * value of y in the solution and may lead to smaller coefficients.
38  * Let M = [ D A ] and [ H 0 ] = M U, the Hermite normal form of M.
39  * Then
40  *		  [ x ]
41  *		M [ y ] = - c
42  * and so
43  *		               [ x ]
44  *		[ H 0 ] U^{-1} [ y ] = - c
45  * Let
46  *		[ A ]          [ x ]
47  *		[ B ] = U^{-1} [ y ]
48  * then
49  *		H A + 0 B = -c
50  *
51  * so B may be chosen arbitrarily, e.g., B = 0, and then
52  *
53  *		       [ x ] = [ -c ]
54  *		U^{-1} [ y ] = [  0 ]
55  * or
56  *		[ x ]     [ -c ]
57  *		[ y ] = U [  0 ]
58  * specifically,
59  *
60  *		y = U_{2,1} (-c)
61  *
62  * If any of the coordinates of this y are non-integer
63  * then the constraints admit no integer solution and
64  * a zero-column matrix is returned.
65  */
particular_solution(__isl_keep isl_mat * B,__isl_keep isl_vec * d)66 static __isl_give isl_mat *particular_solution(__isl_keep isl_mat *B,
67 	__isl_keep isl_vec *d)
68 {
69 	int i, j;
70 	struct isl_mat *M = NULL;
71 	struct isl_mat *C = NULL;
72 	struct isl_mat *U = NULL;
73 	struct isl_mat *H = NULL;
74 	struct isl_mat *cst = NULL;
75 	struct isl_mat *T = NULL;
76 
77 	M = isl_mat_alloc(B->ctx, B->n_row, B->n_row + B->n_col - 1);
78 	C = isl_mat_alloc(B->ctx, 1 + B->n_row, 1);
79 	if (!M || !C)
80 		goto error;
81 	isl_int_set_si(C->row[0][0], 1);
82 	for (i = 0; i < B->n_row; ++i) {
83 		isl_seq_clr(M->row[i], B->n_row);
84 		isl_int_set(M->row[i][i], d->block.data[i]);
85 		isl_int_neg(C->row[1 + i][0], B->row[i][0]);
86 		isl_int_fdiv_r(C->row[1+i][0], C->row[1+i][0], M->row[i][i]);
87 		for (j = 0; j < B->n_col - 1; ++j)
88 			isl_int_fdiv_r(M->row[i][B->n_row + j],
89 					B->row[i][1 + j], M->row[i][i]);
90 	}
91 	M = isl_mat_left_hermite(M, 0, &U, NULL);
92 	if (!M || !U)
93 		goto error;
94 	H = isl_mat_sub_alloc(M, 0, B->n_row, 0, B->n_row);
95 	H = isl_mat_lin_to_aff(H);
96 	C = isl_mat_inverse_product(H, C);
97 	if (!C)
98 		goto error;
99 	for (i = 0; i < B->n_row; ++i) {
100 		if (!isl_int_is_divisible_by(C->row[1+i][0], C->row[0][0]))
101 			break;
102 		isl_int_divexact(C->row[1+i][0], C->row[1+i][0], C->row[0][0]);
103 	}
104 	if (i < B->n_row)
105 		cst = isl_mat_alloc(B->ctx, B->n_row, 0);
106 	else
107 		cst = isl_mat_sub_alloc(C, 1, B->n_row, 0, 1);
108 	T = isl_mat_sub_alloc(U, B->n_row, B->n_col - 1, 0, B->n_row);
109 	cst = isl_mat_product(T, cst);
110 	isl_mat_free(M);
111 	isl_mat_free(C);
112 	isl_mat_free(U);
113 	return cst;
114 error:
115 	isl_mat_free(M);
116 	isl_mat_free(C);
117 	isl_mat_free(U);
118 	return NULL;
119 }
120 
121 /* Compute and return the matrix
122  *
123  *		U_1^{-1} diag(d_1, 1, ..., 1)
124  *
125  * with U_1 the unimodular completion of the first (and only) row of B.
126  * The columns of this matrix generate the lattice that satisfies
127  * the single (linear) modulo constraint.
128  */
parameter_compression_1(__isl_keep isl_mat * B,__isl_keep isl_vec * d)129 static __isl_take isl_mat *parameter_compression_1(__isl_keep isl_mat *B,
130 	__isl_keep isl_vec *d)
131 {
132 	struct isl_mat *U;
133 
134 	U = isl_mat_alloc(B->ctx, B->n_col - 1, B->n_col - 1);
135 	if (!U)
136 		return NULL;
137 	isl_seq_cpy(U->row[0], B->row[0] + 1, B->n_col - 1);
138 	U = isl_mat_unimodular_complete(U, 1);
139 	U = isl_mat_right_inverse(U);
140 	if (!U)
141 		return NULL;
142 	isl_mat_col_mul(U, 0, d->block.data[0], 0);
143 	U = isl_mat_lin_to_aff(U);
144 	return U;
145 }
146 
147 /* Compute a common lattice of solutions to the linear modulo
148  * constraints specified by B and d.
149  * See also the documentation of isl_mat_parameter_compression.
150  * We put the matrix
151  *
152  *		A = [ L_1^{-T} L_2^{-T} ... L_k^{-T} ]
153  *
154  * on a common denominator.  This denominator D is the lcm of modulos d.
155  * Since L_i = U_i^{-1} diag(d_i, 1, ... 1), we have
156  * L_i^{-T} = U_i^T diag(d_i, 1, ... 1)^{-T} = U_i^T diag(1/d_i, 1, ..., 1).
157  * Putting this on the common denominator, we have
158  * D * L_i^{-T} = U_i^T diag(D/d_i, D, ..., D).
159  */
parameter_compression_multi(__isl_keep isl_mat * B,__isl_keep isl_vec * d)160 static __isl_give isl_mat *parameter_compression_multi(__isl_keep isl_mat *B,
161 	__isl_keep isl_vec *d)
162 {
163 	int i, j, k;
164 	isl_int D;
165 	struct isl_mat *A = NULL, *U = NULL;
166 	struct isl_mat *T;
167 	unsigned size;
168 
169 	isl_int_init(D);
170 
171 	isl_vec_lcm(d, &D);
172 
173 	size = B->n_col - 1;
174 	A = isl_mat_alloc(B->ctx, size, B->n_row * size);
175 	U = isl_mat_alloc(B->ctx, size, size);
176 	if (!U || !A)
177 		goto error;
178 	for (i = 0; i < B->n_row; ++i) {
179 		isl_seq_cpy(U->row[0], B->row[i] + 1, size);
180 		U = isl_mat_unimodular_complete(U, 1);
181 		if (!U)
182 			goto error;
183 		isl_int_divexact(D, D, d->block.data[i]);
184 		for (k = 0; k < U->n_col; ++k)
185 			isl_int_mul(A->row[k][i*size+0], D, U->row[0][k]);
186 		isl_int_mul(D, D, d->block.data[i]);
187 		for (j = 1; j < U->n_row; ++j)
188 			for (k = 0; k < U->n_col; ++k)
189 				isl_int_mul(A->row[k][i*size+j],
190 						D, U->row[j][k]);
191 	}
192 	A = isl_mat_left_hermite(A, 0, NULL, NULL);
193 	T = isl_mat_sub_alloc(A, 0, A->n_row, 0, A->n_row);
194 	T = isl_mat_lin_to_aff(T);
195 	if (!T)
196 		goto error;
197 	isl_int_set(T->row[0][0], D);
198 	T = isl_mat_right_inverse(T);
199 	if (!T)
200 		goto error;
201 	isl_assert(T->ctx, isl_int_is_one(T->row[0][0]), goto error);
202 	T = isl_mat_transpose(T);
203 	isl_mat_free(A);
204 	isl_mat_free(U);
205 
206 	isl_int_clear(D);
207 	return T;
208 error:
209 	isl_mat_free(A);
210 	isl_mat_free(U);
211 	isl_int_clear(D);
212 	return NULL;
213 }
214 
215 /* Given a set of modulo constraints
216  *
217  *		c + A y = 0 mod d
218  *
219  * this function returns an affine transformation T,
220  *
221  *		y = T y'
222  *
223  * that bijectively maps the integer vectors y' to integer
224  * vectors y that satisfy the modulo constraints.
225  *
226  * This function is inspired by Section 2.5.3
227  * of B. Meister, "Stating and Manipulating Periodicity in the Polytope
228  * Model.  Applications to Program Analysis and Optimization".
229  * However, the implementation only follows the algorithm of that
230  * section for computing a particular solution and not for computing
231  * a general homogeneous solution.  The latter is incomplete and
232  * may remove some valid solutions.
233  * Instead, we use an adaptation of the algorithm in Section 7 of
234  * B. Meister, S. Verdoolaege, "Polynomial Approximations in the Polytope
235  * Model: Bringing the Power of Quasi-Polynomials to the Masses".
236  *
237  * The input is given as a matrix B = [ c A ] and a vector d.
238  * Each element of the vector d corresponds to a row in B.
239  * The output is a lower triangular matrix.
240  * If no integer vector y satisfies the given constraints then
241  * a matrix with zero columns is returned.
242  *
243  * We first compute a particular solution y_0 to the given set of
244  * modulo constraints in particular_solution.  If no such solution
245  * exists, then we return a zero-columned transformation matrix.
246  * Otherwise, we compute the generic solution to
247  *
248  *		A y = 0 mod d
249  *
250  * That is we want to compute G such that
251  *
252  *		y = G y''
253  *
254  * with y'' integer, describes the set of solutions.
255  *
256  * We first remove the common factors of each row.
257  * In particular if gcd(A_i,d_i) != 1, then we divide the whole
258  * row i (including d_i) by this common factor.  If afterwards gcd(A_i) != 1,
259  * then we divide this row of A by the common factor, unless gcd(A_i) = 0.
260  * In the later case, we simply drop the row (in both A and d).
261  *
262  * If there are no rows left in A, then G is the identity matrix. Otherwise,
263  * for each row i, we now determine the lattice of integer vectors
264  * that satisfies this row.  Let U_i be the unimodular extension of the
265  * row A_i.  This unimodular extension exists because gcd(A_i) = 1.
266  * The first component of
267  *
268  *		y' = U_i y
269  *
270  * needs to be a multiple of d_i.  Let y' = diag(d_i, 1, ..., 1) y''.
271  * Then,
272  *
273  *		y = U_i^{-1} diag(d_i, 1, ..., 1) y''
274  *
275  * for arbitrary integer vectors y''.  That is, y belongs to the lattice
276  * generated by the columns of L_i = U_i^{-1} diag(d_i, 1, ..., 1).
277  * If there is only one row, then G = L_1.
278  *
279  * If there is more than one row left, we need to compute the intersection
280  * of the lattices.  That is, we need to compute an L such that
281  *
282  *		L = L_i L_i'	for all i
283  *
284  * with L_i' some integer matrices.  Let A be constructed as follows
285  *
286  *		A = [ L_1^{-T} L_2^{-T} ... L_k^{-T} ]
287  *
288  * and computed the Hermite Normal Form of A = [ H 0 ] U
289  * Then,
290  *
291  *		L_i^{-T} = H U_{1,i}
292  *
293  * or
294  *
295  *		H^{-T} = L_i U_{1,i}^T
296  *
297  * In other words G = L = H^{-T}.
298  * To ensure that G is lower triangular, we compute and use its Hermite
299  * normal form.
300  *
301  * The affine transformation matrix returned is then
302  *
303  *		[  1   0  ]
304  *		[ y_0  G  ]
305  *
306  * as any y = y_0 + G y' with y' integer is a solution to the original
307  * modulo constraints.
308  */
isl_mat_parameter_compression(__isl_take isl_mat * B,__isl_take isl_vec * d)309 __isl_give isl_mat *isl_mat_parameter_compression(__isl_take isl_mat *B,
310 	__isl_take isl_vec *d)
311 {
312 	int i;
313 	struct isl_mat *cst = NULL;
314 	struct isl_mat *T = NULL;
315 	isl_int D;
316 
317 	if (!B || !d)
318 		goto error;
319 	isl_assert(B->ctx, B->n_row == d->size, goto error);
320 	cst = particular_solution(B, d);
321 	if (!cst)
322 		goto error;
323 	if (cst->n_col == 0) {
324 		T = isl_mat_alloc(B->ctx, B->n_col, 0);
325 		isl_mat_free(cst);
326 		isl_mat_free(B);
327 		isl_vec_free(d);
328 		return T;
329 	}
330 	isl_int_init(D);
331 	/* Replace a*g*row = 0 mod g*m by row = 0 mod m */
332 	for (i = 0; i < B->n_row; ++i) {
333 		isl_seq_gcd(B->row[i] + 1, B->n_col - 1, &D);
334 		if (isl_int_is_one(D))
335 			continue;
336 		if (isl_int_is_zero(D)) {
337 			B = isl_mat_drop_rows(B, i, 1);
338 			d = isl_vec_cow(d);
339 			if (!B || !d)
340 				goto error2;
341 			isl_seq_cpy(d->block.data+i, d->block.data+i+1,
342 							d->size - (i+1));
343 			d->size--;
344 			i--;
345 			continue;
346 		}
347 		B = isl_mat_cow(B);
348 		if (!B)
349 			goto error2;
350 		isl_seq_scale_down(B->row[i] + 1, B->row[i] + 1, D, B->n_col-1);
351 		isl_int_gcd(D, D, d->block.data[i]);
352 		d = isl_vec_cow(d);
353 		if (!d)
354 			goto error2;
355 		isl_int_divexact(d->block.data[i], d->block.data[i], D);
356 	}
357 	isl_int_clear(D);
358 	if (B->n_row == 0)
359 		T = isl_mat_identity(B->ctx, B->n_col);
360 	else if (B->n_row == 1)
361 		T = parameter_compression_1(B, d);
362 	else
363 		T = parameter_compression_multi(B, d);
364 	T = isl_mat_left_hermite(T, 0, NULL, NULL);
365 	if (!T)
366 		goto error;
367 	isl_mat_sub_copy(T->ctx, T->row + 1, cst->row, cst->n_row, 0, 0, 1);
368 	isl_mat_free(cst);
369 	isl_mat_free(B);
370 	isl_vec_free(d);
371 	return T;
372 error2:
373 	isl_int_clear(D);
374 error:
375 	isl_mat_free(cst);
376 	isl_mat_free(B);
377 	isl_vec_free(d);
378 	return NULL;
379 }
380 
381 /* Given a set of equalities
382  *
383  *		B(y) + A x = 0						(*)
384  *
385  * compute and return an affine transformation T,
386  *
387  *		y = T y'
388  *
389  * that bijectively maps the integer vectors y' to integer
390  * vectors y that satisfy the modulo constraints for some value of x.
391  *
392  * Let [H 0] be the Hermite Normal Form of A, i.e.,
393  *
394  *		A = [H 0] Q
395  *
396  * Then y is a solution of (*) iff
397  *
398  *		H^-1 B(y) (= - [I 0] Q x)
399  *
400  * is an integer vector.  Let d be the common denominator of H^-1.
401  * We impose
402  *
403  *		d H^-1 B(y) = 0 mod d
404  *
405  * and compute the solution using isl_mat_parameter_compression.
406  */
isl_mat_parameter_compression_ext(__isl_take isl_mat * B,__isl_take isl_mat * A)407 __isl_give isl_mat *isl_mat_parameter_compression_ext(__isl_take isl_mat *B,
408 	__isl_take isl_mat *A)
409 {
410 	isl_ctx *ctx;
411 	isl_vec *d;
412 	int n_row, n_col;
413 
414 	if (!A)
415 		return isl_mat_free(B);
416 
417 	ctx = isl_mat_get_ctx(A);
418 	n_row = A->n_row;
419 	n_col = A->n_col;
420 	A = isl_mat_left_hermite(A, 0, NULL, NULL);
421 	A = isl_mat_drop_cols(A, n_row, n_col - n_row);
422 	A = isl_mat_lin_to_aff(A);
423 	A = isl_mat_right_inverse(A);
424 	d = isl_vec_alloc(ctx, n_row);
425 	if (A)
426 		d = isl_vec_set(d, A->row[0][0]);
427 	A = isl_mat_drop_rows(A, 0, 1);
428 	A = isl_mat_drop_cols(A, 0, 1);
429 	B = isl_mat_product(A, B);
430 
431 	return isl_mat_parameter_compression(B, d);
432 }
433 
434 /* Return a compression matrix that indicates that there are no solutions
435  * to the original constraints.  In particular, return a zero-column
436  * matrix with 1 + dim rows.  If "T2" is not NULL, then assign *T2
437  * the inverse of this matrix.  *T2 may already have been assigned
438  * matrix, so free it first.
439  * "free1", "free2" and "free3" are temporary matrices that are
440  * not useful when an empty compression is returned.  They are
441  * simply freed.
442  */
empty_compression(isl_ctx * ctx,unsigned dim,__isl_give isl_mat ** T2,__isl_take isl_mat * free1,__isl_take isl_mat * free2,__isl_take isl_mat * free3)443 static __isl_give isl_mat *empty_compression(isl_ctx *ctx, unsigned dim,
444 	__isl_give isl_mat **T2, __isl_take isl_mat *free1,
445 	__isl_take isl_mat *free2, __isl_take isl_mat *free3)
446 {
447 	isl_mat_free(free1);
448 	isl_mat_free(free2);
449 	isl_mat_free(free3);
450 	if (T2) {
451 		isl_mat_free(*T2);
452 		*T2 = isl_mat_alloc(ctx, 0, 1 + dim);
453 	}
454 	return isl_mat_alloc(ctx, 1 + dim, 0);
455 }
456 
457 /* Given a matrix that maps a (possibly) parametric domain to
458  * a parametric domain, add in rows that map the "nparam" parameters onto
459  * themselves.
460  */
insert_parameter_rows(__isl_take isl_mat * mat,unsigned nparam)461 static __isl_give isl_mat *insert_parameter_rows(__isl_take isl_mat *mat,
462 	unsigned nparam)
463 {
464 	int i;
465 
466 	if (nparam == 0)
467 		return mat;
468 	if (!mat)
469 		return NULL;
470 
471 	mat = isl_mat_insert_rows(mat, 1, nparam);
472 	if (!mat)
473 		return NULL;
474 
475 	for (i = 0; i < nparam; ++i) {
476 		isl_seq_clr(mat->row[1 + i], mat->n_col);
477 		isl_int_set(mat->row[1 + i][1 + i], mat->row[0][0]);
478 	}
479 
480 	return mat;
481 }
482 
483 /* Given a set of equalities
484  *
485  *		-C(y) + M x = 0
486  *
487  * this function computes a unimodular transformation from a lower-dimensional
488  * space to the original space that bijectively maps the integer points x'
489  * in the lower-dimensional space to the integer points x in the original
490  * space that satisfy the equalities.
491  *
492  * The input is given as a matrix B = [ -C M ] and the output is a
493  * matrix that maps [1 x'] to [1 x].
494  * The number of equality constraints in B is assumed to be smaller than
495  * or equal to the number of variables x.
496  * "first" is the position of the first x variable.
497  * The preceding variables are considered to be y-variables.
498  * If T2 is not NULL, then *T2 is set to a matrix mapping [1 x] to [1 x'].
499  *
500  * First compute the (left) Hermite normal form of M,
501  *
502  *		M [U1 U2] = M U = H = [H1 0]
503  * or
504  *		              M = H Q = [H1 0] [Q1]
505  *                                             [Q2]
506  *
507  * with U, Q unimodular, Q = U^{-1} (and H lower triangular).
508  * Define the transformed variables as
509  *
510  *		x = [U1 U2] [ x1' ] = [U1 U2] [Q1] x
511  *		            [ x2' ]           [Q2]
512  *
513  * The equalities then become
514  *
515  *		-C(y) + H1 x1' = 0   or   x1' = H1^{-1} C(y) = C'(y)
516  *
517  * If the denominator of the constant term does not divide the
518  * the common denominator of the coefficients of y, then every
519  * integer point is mapped to a non-integer point and then the original set
520  * has no integer solutions (since the x' are a unimodular transformation
521  * of the x).  In this case, a zero-column matrix is returned.
522  * Otherwise, the transformation is given by
523  *
524  *		x = U1 H1^{-1} C(y) + U2 x2'
525  *
526  * The inverse transformation is simply
527  *
528  *		x2' = Q2 x
529  */
isl_mat_final_variable_compression(__isl_take isl_mat * B,int first,__isl_give isl_mat ** T2)530 __isl_give isl_mat *isl_mat_final_variable_compression(__isl_take isl_mat *B,
531 	int first, __isl_give isl_mat **T2)
532 {
533 	int i, n;
534 	isl_ctx *ctx;
535 	isl_mat *H = NULL, *C, *H1, *U = NULL, *U1, *U2;
536 	unsigned dim;
537 
538 	if (T2)
539 		*T2 = NULL;
540 	if (!B)
541 		goto error;
542 
543 	ctx = isl_mat_get_ctx(B);
544 	dim = B->n_col - 1;
545 	n = dim - first;
546 	if (n < B->n_row)
547 		isl_die(ctx, isl_error_invalid, "too many equality constraints",
548 			goto error);
549 	H = isl_mat_sub_alloc(B, 0, B->n_row, 1 + first, n);
550 	H = isl_mat_left_hermite(H, 0, &U, T2);
551 	if (!H || !U || (T2 && !*T2))
552 		goto error;
553 	if (T2) {
554 		*T2 = isl_mat_drop_rows(*T2, 0, B->n_row);
555 		*T2 = isl_mat_diagonal(isl_mat_identity(ctx, 1 + first), *T2);
556 		if (!*T2)
557 			goto error;
558 	}
559 	C = isl_mat_alloc(ctx, 1 + B->n_row, 1 + first);
560 	if (!C)
561 		goto error;
562 	isl_int_set_si(C->row[0][0], 1);
563 	isl_seq_clr(C->row[0] + 1, first);
564 	isl_mat_sub_neg(ctx, C->row + 1, B->row, B->n_row, 0, 0, 1 + first);
565 	H1 = isl_mat_sub_alloc(H, 0, H->n_row, 0, H->n_row);
566 	H1 = isl_mat_lin_to_aff(H1);
567 	C = isl_mat_inverse_product(H1, C);
568 	if (!C)
569 		goto error;
570 	isl_mat_free(H);
571 	if (!isl_int_is_one(C->row[0][0])) {
572 		isl_int g;
573 
574 		isl_int_init(g);
575 		for (i = 0; i < B->n_row; ++i) {
576 			isl_seq_gcd(C->row[1 + i] + 1, first, &g);
577 			isl_int_gcd(g, g, C->row[0][0]);
578 			if (!isl_int_is_divisible_by(C->row[1 + i][0], g))
579 				break;
580 		}
581 		isl_int_clear(g);
582 
583 		if (i < B->n_row)
584 			return empty_compression(ctx, dim, T2, B, C, U);
585 		C = isl_mat_normalize(C);
586 	}
587 	U1 = isl_mat_sub_alloc(U, 0, U->n_row, 0, B->n_row);
588 	U1 = isl_mat_lin_to_aff(U1);
589 	U2 = isl_mat_sub_alloc(U, 0, U->n_row, B->n_row, U->n_row - B->n_row);
590 	U2 = isl_mat_lin_to_aff(U2);
591 	isl_mat_free(U);
592 	C = isl_mat_product(U1, C);
593 	C = isl_mat_aff_direct_sum(C, U2);
594 	C = insert_parameter_rows(C, first);
595 
596 	isl_mat_free(B);
597 
598 	return C;
599 error:
600 	isl_mat_free(B);
601 	isl_mat_free(H);
602 	isl_mat_free(U);
603 	if (T2) {
604 		isl_mat_free(*T2);
605 		*T2 = NULL;
606 	}
607 	return NULL;
608 }
609 
610 /* Given a set of equalities
611  *
612  *		M x - c = 0
613  *
614  * this function computes a unimodular transformation from a lower-dimensional
615  * space to the original space that bijectively maps the integer points x'
616  * in the lower-dimensional space to the integer points x in the original
617  * space that satisfy the equalities.
618  *
619  * The input is given as a matrix B = [ -c M ] and the output is a
620  * matrix that maps [1 x'] to [1 x].
621  * The number of equality constraints in B is assumed to be smaller than
622  * or equal to the number of variables x.
623  * If T2 is not NULL, then *T2 is set to a matrix mapping [1 x] to [1 x'].
624  */
isl_mat_variable_compression(__isl_take isl_mat * B,__isl_give isl_mat ** T2)625 __isl_give isl_mat *isl_mat_variable_compression(__isl_take isl_mat *B,
626 	__isl_give isl_mat **T2)
627 {
628 	return isl_mat_final_variable_compression(B, 0, T2);
629 }
630 
631 /* Return "bset" and set *T and *T2 to the identity transformation
632  * on "bset" (provided T and T2 are not NULL).
633  */
return_with_identity(__isl_take isl_basic_set * bset,__isl_give isl_mat ** T,__isl_give isl_mat ** T2)634 static __isl_give isl_basic_set *return_with_identity(
635 	__isl_take isl_basic_set *bset, __isl_give isl_mat **T,
636 	__isl_give isl_mat **T2)
637 {
638 	isl_size dim;
639 	isl_mat *id;
640 
641 	dim = isl_basic_set_dim(bset, isl_dim_set);
642 	if (dim < 0)
643 		return isl_basic_set_free(bset);
644 	if (!T && !T2)
645 		return bset;
646 
647 	id = isl_mat_identity(isl_basic_map_get_ctx(bset), 1 + dim);
648 	if (T)
649 		*T = isl_mat_copy(id);
650 	if (T2)
651 		*T2 = isl_mat_copy(id);
652 	isl_mat_free(id);
653 
654 	return bset;
655 }
656 
657 /* Use the n equalities of bset to unimodularly transform the
658  * variables x such that n transformed variables x1' have a constant value
659  * and rewrite the constraints of bset in terms of the remaining
660  * transformed variables x2'.  The matrix pointed to by T maps
661  * the new variables x2' back to the original variables x, while T2
662  * maps the original variables to the new variables.
663  */
compress_variables(__isl_take isl_basic_set * bset,__isl_give isl_mat ** T,__isl_give isl_mat ** T2)664 static __isl_give isl_basic_set *compress_variables(
665 	__isl_take isl_basic_set *bset,
666 	__isl_give isl_mat **T, __isl_give isl_mat **T2)
667 {
668 	struct isl_mat *B, *TC;
669 	isl_size dim;
670 
671 	if (T)
672 		*T = NULL;
673 	if (T2)
674 		*T2 = NULL;
675 	if (isl_basic_set_check_no_params(bset) < 0 ||
676 	    isl_basic_set_check_no_locals(bset) < 0)
677 		return isl_basic_set_free(bset);
678 	dim = isl_basic_set_dim(bset, isl_dim_set);
679 	if (dim < 0)
680 		return isl_basic_set_free(bset);
681 	isl_assert(bset->ctx, bset->n_eq <= dim, goto error);
682 	if (bset->n_eq == 0)
683 		return return_with_identity(bset, T, T2);
684 
685 	B = isl_mat_sub_alloc6(bset->ctx, bset->eq, 0, bset->n_eq, 0, 1 + dim);
686 	TC = isl_mat_variable_compression(B, T2);
687 	if (!TC)
688 		goto error;
689 	if (TC->n_col == 0) {
690 		isl_mat_free(TC);
691 		if (T2) {
692 			isl_mat_free(*T2);
693 			*T2 = NULL;
694 		}
695 		bset = isl_basic_set_set_to_empty(bset);
696 		return return_with_identity(bset, T, T2);
697 	}
698 
699 	bset = isl_basic_set_preimage(bset, T ? isl_mat_copy(TC) : TC);
700 	if (T)
701 		*T = TC;
702 	return bset;
703 error:
704 	isl_basic_set_free(bset);
705 	return NULL;
706 }
707 
isl_basic_set_remove_equalities(__isl_take isl_basic_set * bset,__isl_give isl_mat ** T,__isl_give isl_mat ** T2)708 __isl_give isl_basic_set *isl_basic_set_remove_equalities(
709 	__isl_take isl_basic_set *bset, __isl_give isl_mat **T,
710 	__isl_give isl_mat **T2)
711 {
712 	if (T)
713 		*T = NULL;
714 	if (T2)
715 		*T2 = NULL;
716 	if (isl_basic_set_check_no_params(bset) < 0)
717 		return isl_basic_set_free(bset);
718 	bset = isl_basic_set_gauss(bset, NULL);
719 	if (ISL_F_ISSET(bset, ISL_BASIC_SET_EMPTY))
720 		return return_with_identity(bset, T, T2);
721 	bset = compress_variables(bset, T, T2);
722 	return bset;
723 }
724 
725 /* Check if dimension dim belongs to a residue class
726  *		i_dim \equiv r mod m
727  * with m != 1 and if so return m in *modulo and r in *residue.
728  * As a special case, when i_dim has a fixed value v, then
729  * *modulo is set to 0 and *residue to v.
730  *
731  * If i_dim does not belong to such a residue class, then *modulo
732  * is set to 1 and *residue is set to 0.
733  */
isl_basic_set_dim_residue_class(__isl_keep isl_basic_set * bset,int pos,isl_int * modulo,isl_int * residue)734 isl_stat isl_basic_set_dim_residue_class(__isl_keep isl_basic_set *bset,
735 	int pos, isl_int *modulo, isl_int *residue)
736 {
737 	isl_bool fixed;
738 	struct isl_ctx *ctx;
739 	struct isl_mat *H = NULL, *U = NULL, *C, *H1, *U1;
740 	isl_size total;
741 	isl_size nparam;
742 
743 	if (!bset || !modulo || !residue)
744 		return isl_stat_error;
745 
746 	fixed = isl_basic_set_plain_dim_is_fixed(bset, pos, residue);
747 	if (fixed < 0)
748 		return isl_stat_error;
749 	if (fixed) {
750 		isl_int_set_si(*modulo, 0);
751 		return isl_stat_ok;
752 	}
753 
754 	ctx = isl_basic_set_get_ctx(bset);
755 	total = isl_basic_set_dim(bset, isl_dim_all);
756 	nparam = isl_basic_set_dim(bset, isl_dim_param);
757 	if (total < 0 || nparam < 0)
758 		return isl_stat_error;
759 	H = isl_mat_sub_alloc6(ctx, bset->eq, 0, bset->n_eq, 1, total);
760 	H = isl_mat_left_hermite(H, 0, &U, NULL);
761 	if (!H)
762 		return isl_stat_error;
763 
764 	isl_seq_gcd(U->row[nparam + pos]+bset->n_eq,
765 			total-bset->n_eq, modulo);
766 	if (isl_int_is_zero(*modulo))
767 		isl_int_set_si(*modulo, 1);
768 	if (isl_int_is_one(*modulo)) {
769 		isl_int_set_si(*residue, 0);
770 		isl_mat_free(H);
771 		isl_mat_free(U);
772 		return isl_stat_ok;
773 	}
774 
775 	C = isl_mat_alloc(ctx, 1 + bset->n_eq, 1);
776 	if (!C)
777 		goto error;
778 	isl_int_set_si(C->row[0][0], 1);
779 	isl_mat_sub_neg(ctx, C->row + 1, bset->eq, bset->n_eq, 0, 0, 1);
780 	H1 = isl_mat_sub_alloc(H, 0, H->n_row, 0, H->n_row);
781 	H1 = isl_mat_lin_to_aff(H1);
782 	C = isl_mat_inverse_product(H1, C);
783 	isl_mat_free(H);
784 	U1 = isl_mat_sub_alloc(U, nparam+pos, 1, 0, bset->n_eq);
785 	U1 = isl_mat_lin_to_aff(U1);
786 	isl_mat_free(U);
787 	C = isl_mat_product(U1, C);
788 	if (!C)
789 		return isl_stat_error;
790 	if (!isl_int_is_divisible_by(C->row[1][0], C->row[0][0])) {
791 		bset = isl_basic_set_copy(bset);
792 		bset = isl_basic_set_set_to_empty(bset);
793 		isl_basic_set_free(bset);
794 		isl_int_set_si(*modulo, 1);
795 		isl_int_set_si(*residue, 0);
796 		return isl_stat_ok;
797 	}
798 	isl_int_divexact(*residue, C->row[1][0], C->row[0][0]);
799 	isl_int_fdiv_r(*residue, *residue, *modulo);
800 	isl_mat_free(C);
801 	return isl_stat_ok;
802 error:
803 	isl_mat_free(H);
804 	isl_mat_free(U);
805 	return isl_stat_error;
806 }
807 
808 /* Check if dimension dim belongs to a residue class
809  *		i_dim \equiv r mod m
810  * with m != 1 and if so return m in *modulo and r in *residue.
811  * As a special case, when i_dim has a fixed value v, then
812  * *modulo is set to 0 and *residue to v.
813  *
814  * If i_dim does not belong to such a residue class, then *modulo
815  * is set to 1 and *residue is set to 0.
816  */
isl_set_dim_residue_class(__isl_keep isl_set * set,int pos,isl_int * modulo,isl_int * residue)817 isl_stat isl_set_dim_residue_class(__isl_keep isl_set *set,
818 	int pos, isl_int *modulo, isl_int *residue)
819 {
820 	isl_int m;
821 	isl_int r;
822 	int i;
823 
824 	if (!set || !modulo || !residue)
825 		return isl_stat_error;
826 
827 	if (set->n == 0) {
828 		isl_int_set_si(*modulo, 0);
829 		isl_int_set_si(*residue, 0);
830 		return isl_stat_ok;
831 	}
832 
833 	if (isl_basic_set_dim_residue_class(set->p[0], pos, modulo, residue)<0)
834 		return isl_stat_error;
835 
836 	if (set->n == 1)
837 		return isl_stat_ok;
838 
839 	if (isl_int_is_one(*modulo))
840 		return isl_stat_ok;
841 
842 	isl_int_init(m);
843 	isl_int_init(r);
844 
845 	for (i = 1; i < set->n; ++i) {
846 		if (isl_basic_set_dim_residue_class(set->p[i], pos, &m, &r) < 0)
847 			goto error;
848 		isl_int_gcd(*modulo, *modulo, m);
849 		isl_int_sub(m, *residue, r);
850 		isl_int_gcd(*modulo, *modulo, m);
851 		if (!isl_int_is_zero(*modulo))
852 			isl_int_fdiv_r(*residue, *residue, *modulo);
853 		if (isl_int_is_one(*modulo))
854 			break;
855 	}
856 
857 	isl_int_clear(m);
858 	isl_int_clear(r);
859 
860 	return isl_stat_ok;
861 error:
862 	isl_int_clear(m);
863 	isl_int_clear(r);
864 	return isl_stat_error;
865 }
866 
867 /* Check if dimension "dim" belongs to a residue class
868  *		i_dim \equiv r mod m
869  * with m != 1 and if so return m in *modulo and r in *residue.
870  * As a special case, when i_dim has a fixed value v, then
871  * *modulo is set to 0 and *residue to v.
872  *
873  * If i_dim does not belong to such a residue class, then *modulo
874  * is set to 1 and *residue is set to 0.
875  */
isl_set_dim_residue_class_val(__isl_keep isl_set * set,int pos,__isl_give isl_val ** modulo,__isl_give isl_val ** residue)876 isl_stat isl_set_dim_residue_class_val(__isl_keep isl_set *set,
877 	int pos, __isl_give isl_val **modulo, __isl_give isl_val **residue)
878 {
879 	*modulo = NULL;
880 	*residue = NULL;
881 	if (!set)
882 		return isl_stat_error;
883 	*modulo = isl_val_alloc(isl_set_get_ctx(set));
884 	*residue = isl_val_alloc(isl_set_get_ctx(set));
885 	if (!*modulo || !*residue)
886 		goto error;
887 	if (isl_set_dim_residue_class(set, pos,
888 					&(*modulo)->n, &(*residue)->n) < 0)
889 		goto error;
890 	isl_int_set_si((*modulo)->d, 1);
891 	isl_int_set_si((*residue)->d, 1);
892 	return isl_stat_ok;
893 error:
894 	isl_val_free(*modulo);
895 	isl_val_free(*residue);
896 	return isl_stat_error;
897 }
898