1 #include <isl_ctx_private.h>
2 #include <isl/val.h>
3 #include <isl_constraint_private.h>
4 #include <isl/set.h>
5 #include <isl_polynomial_private.h>
6 #include <isl_morph.h>
7 #include <isl_range.h>
8
9 struct range_data {
10 struct isl_bound *bound;
11 int *signs;
12 int sign;
13 int test_monotonicity;
14 int monotonicity;
15 int tight;
16 isl_qpolynomial *poly;
17 isl_pw_qpolynomial_fold *pwf;
18 isl_pw_qpolynomial_fold *pwf_tight;
19 };
20
21 static isl_stat propagate_on_domain(__isl_take isl_basic_set *bset,
22 __isl_take isl_qpolynomial *poly, struct range_data *data);
23
24 /* Check whether the polynomial "poly" has sign "sign" over "bset",
25 * i.e., if sign == 1, check that the lower bound on the polynomial
26 * is non-negative and if sign == -1, check that the upper bound on
27 * the polynomial is non-positive.
28 */
has_sign(__isl_keep isl_basic_set * bset,__isl_keep isl_qpolynomial * poly,int sign,int * signs)29 static isl_bool has_sign(__isl_keep isl_basic_set *bset,
30 __isl_keep isl_qpolynomial *poly, int sign, int *signs)
31 {
32 struct range_data data_m;
33 isl_size nparam;
34 isl_space *space;
35 isl_val *opt;
36 isl_bool r;
37 enum isl_fold type;
38
39 nparam = isl_basic_set_dim(bset, isl_dim_param);
40 if (nparam < 0)
41 return isl_bool_error;
42
43 bset = isl_basic_set_copy(bset);
44 poly = isl_qpolynomial_copy(poly);
45
46 bset = isl_basic_set_move_dims(bset, isl_dim_set, 0,
47 isl_dim_param, 0, nparam);
48 poly = isl_qpolynomial_move_dims(poly, isl_dim_in, 0,
49 isl_dim_param, 0, nparam);
50
51 space = isl_qpolynomial_get_space(poly);
52 space = isl_space_params(space);
53 space = isl_space_from_domain(space);
54 space = isl_space_add_dims(space, isl_dim_out, 1);
55
56 data_m.test_monotonicity = 0;
57 data_m.signs = signs;
58 data_m.sign = -sign;
59 type = data_m.sign < 0 ? isl_fold_min : isl_fold_max;
60 data_m.pwf = isl_pw_qpolynomial_fold_zero(space, type);
61 data_m.tight = 0;
62 data_m.pwf_tight = NULL;
63
64 if (propagate_on_domain(bset, poly, &data_m) < 0)
65 goto error;
66
67 if (sign > 0)
68 opt = isl_pw_qpolynomial_fold_min(data_m.pwf);
69 else
70 opt = isl_pw_qpolynomial_fold_max(data_m.pwf);
71
72 if (!opt)
73 r = isl_bool_error;
74 else if (isl_val_is_nan(opt) ||
75 isl_val_is_infty(opt) ||
76 isl_val_is_neginfty(opt))
77 r = isl_bool_false;
78 else
79 r = isl_bool_ok(sign * isl_val_sgn(opt) >= 0);
80
81 isl_val_free(opt);
82
83 return r;
84 error:
85 isl_pw_qpolynomial_fold_free(data_m.pwf);
86 return isl_bool_error;
87 }
88
89 /* Return 1 if poly is monotonically increasing in the last set variable,
90 * -1 if poly is monotonically decreasing in the last set variable,
91 * 0 if no conclusion,
92 * -2 on error.
93 *
94 * We simply check the sign of p(x+1)-p(x)
95 */
monotonicity(__isl_keep isl_basic_set * bset,__isl_keep isl_qpolynomial * poly,struct range_data * data)96 static int monotonicity(__isl_keep isl_basic_set *bset,
97 __isl_keep isl_qpolynomial *poly, struct range_data *data)
98 {
99 isl_ctx *ctx;
100 isl_space *space;
101 isl_qpolynomial *sub = NULL;
102 isl_qpolynomial *diff = NULL;
103 int result = 0;
104 isl_bool s;
105 isl_size nvar;
106
107 nvar = isl_basic_set_dim(bset, isl_dim_set);
108 if (nvar < 0)
109 return -2;
110
111 ctx = isl_qpolynomial_get_ctx(poly);
112 space = isl_qpolynomial_get_domain_space(poly);
113
114 sub = isl_qpolynomial_var_on_domain(isl_space_copy(space),
115 isl_dim_set, nvar - 1);
116 sub = isl_qpolynomial_add(sub,
117 isl_qpolynomial_rat_cst_on_domain(space, ctx->one, ctx->one));
118
119 diff = isl_qpolynomial_substitute(isl_qpolynomial_copy(poly),
120 isl_dim_in, nvar - 1, 1, &sub);
121 diff = isl_qpolynomial_sub(diff, isl_qpolynomial_copy(poly));
122
123 s = has_sign(bset, diff, 1, data->signs);
124 if (s < 0)
125 goto error;
126 if (s)
127 result = 1;
128 else {
129 s = has_sign(bset, diff, -1, data->signs);
130 if (s < 0)
131 goto error;
132 if (s)
133 result = -1;
134 }
135
136 isl_qpolynomial_free(diff);
137 isl_qpolynomial_free(sub);
138
139 return result;
140 error:
141 isl_qpolynomial_free(diff);
142 isl_qpolynomial_free(sub);
143 return -2;
144 }
145
146 /* Return a positive ("sign" > 0) or negative ("sign" < 0) infinite polynomial
147 * with domain space "space".
148 */
signed_infty(__isl_take isl_space * space,int sign)149 static __isl_give isl_qpolynomial *signed_infty(__isl_take isl_space *space,
150 int sign)
151 {
152 if (sign > 0)
153 return isl_qpolynomial_infty_on_domain(space);
154 else
155 return isl_qpolynomial_neginfty_on_domain(space);
156 }
157
bound2poly(__isl_take isl_constraint * bound,__isl_take isl_space * space,unsigned pos,int sign)158 static __isl_give isl_qpolynomial *bound2poly(__isl_take isl_constraint *bound,
159 __isl_take isl_space *space, unsigned pos, int sign)
160 {
161 if (!bound)
162 return signed_infty(space, sign);
163 isl_space_free(space);
164 return isl_qpolynomial_from_constraint(bound, isl_dim_set, pos);
165 }
166
bound_is_integer(__isl_keep isl_constraint * bound,unsigned pos)167 static int bound_is_integer(__isl_keep isl_constraint *bound, unsigned pos)
168 {
169 isl_int c;
170 int is_int;
171
172 if (!bound)
173 return 1;
174
175 isl_int_init(c);
176 isl_constraint_get_coefficient(bound, isl_dim_set, pos, &c);
177 is_int = isl_int_is_one(c) || isl_int_is_negone(c);
178 isl_int_clear(c);
179
180 return is_int;
181 }
182
183 struct isl_fixed_sign_data {
184 int *signs;
185 int sign;
186 isl_qpolynomial *poly;
187 };
188
189 /* Add term "term" to data->poly if it has sign data->sign.
190 * The sign is determined based on the signs of the parameters
191 * and variables in data->signs. The integer divisions, if
192 * any, are assumed to be non-negative.
193 */
collect_fixed_sign_terms(__isl_take isl_term * term,void * user)194 static isl_stat collect_fixed_sign_terms(__isl_take isl_term *term, void *user)
195 {
196 struct isl_fixed_sign_data *data = (struct isl_fixed_sign_data *)user;
197 isl_int n;
198 int i;
199 int sign;
200 isl_size nparam;
201 isl_size nvar;
202 isl_size exp;
203
204 nparam = isl_term_dim(term, isl_dim_param);
205 nvar = isl_term_dim(term, isl_dim_set);
206 if (nparam < 0 || nvar < 0)
207 return isl_stat_error;
208
209 isl_int_init(n);
210 isl_term_get_num(term, &n);
211 sign = isl_int_sgn(n);
212 isl_int_clear(n);
213
214 for (i = 0; i < nparam; ++i) {
215 if (data->signs[i] > 0)
216 continue;
217 exp = isl_term_get_exp(term, isl_dim_param, i);
218 if (exp < 0)
219 return isl_stat_error;
220 if (exp % 2)
221 sign = -sign;
222 }
223 for (i = 0; i < nvar; ++i) {
224 if (data->signs[nparam + i] > 0)
225 continue;
226 exp = isl_term_get_exp(term, isl_dim_set, i);
227 if (exp < 0)
228 return isl_stat_error;
229 if (exp % 2)
230 sign = -sign;
231 }
232
233 if (sign == data->sign) {
234 isl_qpolynomial *t = isl_qpolynomial_from_term(term);
235
236 data->poly = isl_qpolynomial_add(data->poly, t);
237 } else
238 isl_term_free(term);
239
240 return isl_stat_ok;
241 }
242
243 /* Construct and return a polynomial that consists of the terms
244 * in "poly" that have sign "sign". The integer divisions, if
245 * any, are assumed to be non-negative.
246 */
isl_qpolynomial_terms_of_sign(__isl_keep isl_qpolynomial * poly,int * signs,int sign)247 __isl_give isl_qpolynomial *isl_qpolynomial_terms_of_sign(
248 __isl_keep isl_qpolynomial *poly, int *signs, int sign)
249 {
250 isl_space *space;
251 struct isl_fixed_sign_data data = { signs, sign };
252
253 space = isl_qpolynomial_get_domain_space(poly);
254 data.poly = isl_qpolynomial_zero_on_domain(space);
255
256 if (isl_qpolynomial_foreach_term(poly, collect_fixed_sign_terms, &data) < 0)
257 goto error;
258
259 return data.poly;
260 error:
261 isl_qpolynomial_free(data.poly);
262 return NULL;
263 }
264
265 /* Helper function to add a guarded polynomial to either pwf_tight or pwf,
266 * depending on whether the result has been determined to be tight.
267 */
add_guarded_poly(__isl_take isl_basic_set * bset,__isl_take isl_qpolynomial * poly,struct range_data * data)268 static isl_stat add_guarded_poly(__isl_take isl_basic_set *bset,
269 __isl_take isl_qpolynomial *poly, struct range_data *data)
270 {
271 enum isl_fold type = data->sign < 0 ? isl_fold_min : isl_fold_max;
272 isl_set *set;
273 isl_qpolynomial_fold *fold;
274 isl_pw_qpolynomial_fold *pwf;
275
276 bset = isl_basic_set_params(bset);
277 poly = isl_qpolynomial_project_domain_on_params(poly);
278
279 fold = isl_qpolynomial_fold_alloc(type, poly);
280 set = isl_set_from_basic_set(bset);
281 pwf = isl_pw_qpolynomial_fold_alloc(type, set, fold);
282 if (data->tight)
283 data->pwf_tight = isl_pw_qpolynomial_fold_fold(
284 data->pwf_tight, pwf);
285 else
286 data->pwf = isl_pw_qpolynomial_fold_fold(data->pwf, pwf);
287
288 return isl_stat_ok;
289 }
290
291 /* Plug in "sub" for the variable at position "pos" in "poly".
292 *
293 * If "sub" is an infinite polynomial and if the variable actually
294 * appears in "poly", then calling isl_qpolynomial_substitute
295 * to perform the substitution may result in a NaN result.
296 * In such cases, return positive or negative infinity instead,
297 * depending on whether an upper bound or a lower bound is being computed,
298 * and mark the result as not being tight.
299 */
plug_in_at_pos(__isl_take isl_qpolynomial * poly,int pos,__isl_take isl_qpolynomial * sub,struct range_data * data)300 static __isl_give isl_qpolynomial *plug_in_at_pos(
301 __isl_take isl_qpolynomial *poly, int pos,
302 __isl_take isl_qpolynomial *sub, struct range_data *data)
303 {
304 isl_bool involves, infty;
305
306 involves = isl_qpolynomial_involves_dims(poly, isl_dim_in, pos, 1);
307 if (involves < 0)
308 goto error;
309 if (!involves) {
310 isl_qpolynomial_free(sub);
311 return poly;
312 }
313
314 infty = isl_qpolynomial_is_infty(sub);
315 if (infty >= 0 && !infty)
316 infty = isl_qpolynomial_is_neginfty(sub);
317 if (infty < 0)
318 goto error;
319 if (infty) {
320 isl_space *space = isl_qpolynomial_get_domain_space(poly);
321 data->tight = 0;
322 isl_qpolynomial_free(poly);
323 isl_qpolynomial_free(sub);
324 return signed_infty(space, data->sign);
325 }
326
327 poly = isl_qpolynomial_substitute(poly, isl_dim_in, pos, 1, &sub);
328 isl_qpolynomial_free(sub);
329
330 return poly;
331 error:
332 isl_qpolynomial_free(poly);
333 isl_qpolynomial_free(sub);
334 return NULL;
335 }
336
337 /* Given a lower and upper bound on the final variable and constraints
338 * on the remaining variables where these bounds are active,
339 * eliminate the variable from data->poly based on these bounds.
340 * If the polynomial has been determined to be monotonic
341 * in the variable, then simply plug in the appropriate bound.
342 * If the current polynomial is tight and if this bound is integer,
343 * then the result is still tight. In all other cases, the results
344 * may not be tight.
345 * Otherwise, plug in the largest bound (in absolute value) in
346 * the positive terms (if an upper bound is wanted) or the negative terms
347 * (if a lower bounded is wanted) and the other bound in the other terms.
348 *
349 * If all variables have been eliminated, then record the result.
350 * Ohterwise, recurse on the next variable.
351 */
propagate_on_bound_pair(__isl_take isl_constraint * lower,__isl_take isl_constraint * upper,__isl_take isl_basic_set * bset,void * user)352 static isl_stat propagate_on_bound_pair(__isl_take isl_constraint *lower,
353 __isl_take isl_constraint *upper, __isl_take isl_basic_set *bset,
354 void *user)
355 {
356 struct range_data *data = (struct range_data *)user;
357 int save_tight = data->tight;
358 isl_qpolynomial *poly;
359 isl_stat r;
360 isl_size nvar, nparam;
361
362 nvar = isl_basic_set_dim(bset, isl_dim_set);
363 nparam = isl_basic_set_dim(bset, isl_dim_param);
364 if (nvar < 0 || nparam < 0)
365 goto error;
366
367 if (data->monotonicity) {
368 isl_qpolynomial *sub;
369 isl_space *space = isl_qpolynomial_get_domain_space(data->poly);
370 if (data->monotonicity * data->sign > 0) {
371 if (data->tight)
372 data->tight = bound_is_integer(upper, nvar);
373 sub = bound2poly(upper, space, nvar, 1);
374 isl_constraint_free(lower);
375 } else {
376 if (data->tight)
377 data->tight = bound_is_integer(lower, nvar);
378 sub = bound2poly(lower, space, nvar, -1);
379 isl_constraint_free(upper);
380 }
381 poly = isl_qpolynomial_copy(data->poly);
382 poly = plug_in_at_pos(poly, nvar, sub, data);
383 poly = isl_qpolynomial_drop_dims(poly, isl_dim_in, nvar, 1);
384 } else {
385 isl_qpolynomial *l, *u;
386 isl_qpolynomial *pos, *neg;
387 isl_space *space = isl_qpolynomial_get_domain_space(data->poly);
388 int sign = data->sign * data->signs[nparam + nvar];
389
390 data->tight = 0;
391
392 u = bound2poly(upper, isl_space_copy(space), nvar, 1);
393 l = bound2poly(lower, space, nvar, -1);
394
395 pos = isl_qpolynomial_terms_of_sign(data->poly, data->signs, sign);
396 neg = isl_qpolynomial_terms_of_sign(data->poly, data->signs, -sign);
397
398 pos = plug_in_at_pos(pos, nvar, u, data);
399 neg = plug_in_at_pos(neg, nvar, l, data);
400
401 poly = isl_qpolynomial_add(pos, neg);
402 poly = isl_qpolynomial_drop_dims(poly, isl_dim_in, nvar, 1);
403 }
404
405 if (nvar == 0)
406 r = add_guarded_poly(bset, poly, data);
407 else
408 r = propagate_on_domain(bset, poly, data);
409
410 data->tight = save_tight;
411
412 return r;
413 error:
414 isl_constraint_free(lower);
415 isl_constraint_free(upper);
416 isl_basic_set_free(bset);
417 return isl_stat_error;
418 }
419
420 /* Recursively perform range propagation on the polynomial "poly"
421 * defined over the basic set "bset" and collect the results in "data".
422 */
propagate_on_domain(__isl_take isl_basic_set * bset,__isl_take isl_qpolynomial * poly,struct range_data * data)423 static isl_stat propagate_on_domain(__isl_take isl_basic_set *bset,
424 __isl_take isl_qpolynomial *poly, struct range_data *data)
425 {
426 isl_bool is_cst;
427 isl_ctx *ctx;
428 isl_qpolynomial *save_poly = data->poly;
429 int save_monotonicity = data->monotonicity;
430 isl_size d;
431
432 d = isl_basic_set_dim(bset, isl_dim_set);
433 is_cst = isl_qpolynomial_is_cst(poly, NULL, NULL);
434 if (d < 0 || is_cst < 0)
435 goto error;
436
437 ctx = isl_basic_set_get_ctx(bset);
438 isl_assert(ctx, d >= 1, goto error);
439
440 if (is_cst) {
441 bset = isl_basic_set_project_out(bset, isl_dim_set, 0, d);
442 poly = isl_qpolynomial_drop_dims(poly, isl_dim_in, 0, d);
443 return add_guarded_poly(bset, poly, data);
444 }
445
446 if (data->test_monotonicity)
447 data->monotonicity = monotonicity(bset, poly, data);
448 else
449 data->monotonicity = 0;
450 if (data->monotonicity < -1)
451 goto error;
452
453 data->poly = poly;
454 if (isl_basic_set_foreach_bound_pair(bset, isl_dim_set, d - 1,
455 &propagate_on_bound_pair, data) < 0)
456 goto error;
457
458 isl_basic_set_free(bset);
459 isl_qpolynomial_free(poly);
460 data->monotonicity = save_monotonicity;
461 data->poly = save_poly;
462
463 return isl_stat_ok;
464 error:
465 isl_basic_set_free(bset);
466 isl_qpolynomial_free(poly);
467 data->monotonicity = save_monotonicity;
468 data->poly = save_poly;
469 return isl_stat_error;
470 }
471
basic_guarded_poly_bound(__isl_take isl_basic_set * bset,void * user)472 static isl_stat basic_guarded_poly_bound(__isl_take isl_basic_set *bset,
473 void *user)
474 {
475 struct range_data *data = (struct range_data *)user;
476 isl_ctx *ctx;
477 isl_size nparam = isl_basic_set_dim(bset, isl_dim_param);
478 isl_size dim = isl_basic_set_dim(bset, isl_dim_set);
479 isl_size total = isl_basic_set_dim(bset, isl_dim_all);
480 isl_stat r;
481
482 data->signs = NULL;
483
484 if (nparam < 0 || dim < 0 || total < 0)
485 goto error;
486
487 ctx = isl_basic_set_get_ctx(bset);
488 data->signs = isl_alloc_array(ctx, int, total);
489
490 if (isl_basic_set_dims_get_sign(bset, isl_dim_set, 0, dim,
491 data->signs + nparam) < 0)
492 goto error;
493 if (isl_basic_set_dims_get_sign(bset, isl_dim_param, 0, nparam,
494 data->signs) < 0)
495 goto error;
496
497 r = propagate_on_domain(bset, isl_qpolynomial_copy(data->poly), data);
498
499 free(data->signs);
500
501 return r;
502 error:
503 free(data->signs);
504 isl_basic_set_free(bset);
505 return isl_stat_error;
506 }
507
qpolynomial_bound_on_domain_range(__isl_take isl_basic_set * bset,__isl_take isl_qpolynomial * poly,struct range_data * data)508 static isl_stat qpolynomial_bound_on_domain_range(
509 __isl_take isl_basic_set *bset, __isl_take isl_qpolynomial *poly,
510 struct range_data *data)
511 {
512 isl_size nparam = isl_basic_set_dim(bset, isl_dim_param);
513 isl_size nvar = isl_basic_set_dim(bset, isl_dim_set);
514 isl_set *set = NULL;
515
516 if (nparam < 0 || nvar < 0)
517 goto error;
518
519 if (nvar == 0)
520 return add_guarded_poly(bset, poly, data);
521
522 set = isl_set_from_basic_set(bset);
523 set = isl_set_split_dims(set, isl_dim_param, 0, nparam);
524 set = isl_set_split_dims(set, isl_dim_set, 0, nvar);
525
526 data->poly = poly;
527
528 data->test_monotonicity = 1;
529 if (isl_set_foreach_basic_set(set, &basic_guarded_poly_bound, data) < 0)
530 goto error;
531
532 isl_set_free(set);
533 isl_qpolynomial_free(poly);
534
535 return isl_stat_ok;
536 error:
537 isl_set_free(set);
538 isl_qpolynomial_free(poly);
539 return isl_stat_error;
540 }
541
isl_qpolynomial_bound_on_domain_range(__isl_take isl_basic_set * bset,__isl_take isl_qpolynomial * poly,struct isl_bound * bound)542 isl_stat isl_qpolynomial_bound_on_domain_range(__isl_take isl_basic_set *bset,
543 __isl_take isl_qpolynomial *poly, struct isl_bound *bound)
544 {
545 struct range_data data;
546 isl_stat r;
547
548 data.pwf = bound->pwf;
549 data.pwf_tight = bound->pwf_tight;
550 data.tight = bound->check_tight;
551 if (bound->type == isl_fold_min)
552 data.sign = -1;
553 else
554 data.sign = 1;
555
556 r = qpolynomial_bound_on_domain_range(bset, poly, &data);
557
558 bound->pwf = data.pwf;
559 bound->pwf_tight = data.pwf_tight;
560
561 return r;
562 }
563