• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2008-2009 Katholieke Universiteit Leuven
3  * Copyright 2010      INRIA Saclay
4  * Copyright 2012      Ecole Normale Superieure
5  *
6  * Use of this software is governed by the MIT license
7  *
8  * Written by Sven Verdoolaege, K.U.Leuven, Departement
9  * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
10  * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
11  * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
12  * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
13  */
14 
15 #include <isl_ctx_private.h>
16 #include <isl_map_private.h>
17 #include <isl_seq.h>
18 #include <isl/set.h>
19 #include <isl/lp.h>
20 #include <isl/map.h>
21 #include "isl_equalities.h"
22 #include "isl_sample.h"
23 #include "isl_tab.h"
24 #include <isl_mat_private.h>
25 #include <isl_vec_private.h>
26 
27 #include <bset_to_bmap.c>
28 #include <bset_from_bmap.c>
29 #include <set_to_map.c>
30 #include <set_from_map.c>
31 
isl_basic_map_implicit_equalities(__isl_take isl_basic_map * bmap)32 __isl_give isl_basic_map *isl_basic_map_implicit_equalities(
33 	__isl_take isl_basic_map *bmap)
34 {
35 	struct isl_tab *tab;
36 
37 	if (!bmap)
38 		return bmap;
39 
40 	bmap = isl_basic_map_gauss(bmap, NULL);
41 	if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
42 		return bmap;
43 	if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NO_IMPLICIT))
44 		return bmap;
45 	if (bmap->n_ineq <= 1)
46 		return bmap;
47 
48 	tab = isl_tab_from_basic_map(bmap, 0);
49 	if (isl_tab_detect_implicit_equalities(tab) < 0)
50 		goto error;
51 	bmap = isl_basic_map_update_from_tab(bmap, tab);
52 	isl_tab_free(tab);
53 	bmap = isl_basic_map_gauss(bmap, NULL);
54 	ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT);
55 	return bmap;
56 error:
57 	isl_tab_free(tab);
58 	isl_basic_map_free(bmap);
59 	return NULL;
60 }
61 
isl_basic_set_implicit_equalities(__isl_take isl_basic_set * bset)62 __isl_give isl_basic_set *isl_basic_set_implicit_equalities(
63 	__isl_take isl_basic_set *bset)
64 {
65 	return bset_from_bmap(
66 		isl_basic_map_implicit_equalities(bset_to_bmap(bset)));
67 }
68 
69 /* Make eq[row][col] of both bmaps equal so we can add the row
70  * add the column to the common matrix.
71  * Note that because of the echelon form, the columns of row row
72  * after column col are zero.
73  */
set_common_multiple(struct isl_basic_set * bset1,struct isl_basic_set * bset2,unsigned row,unsigned col)74 static void set_common_multiple(
75 	struct isl_basic_set *bset1, struct isl_basic_set *bset2,
76 	unsigned row, unsigned col)
77 {
78 	isl_int m, c;
79 
80 	if (isl_int_eq(bset1->eq[row][col], bset2->eq[row][col]))
81 		return;
82 
83 	isl_int_init(c);
84 	isl_int_init(m);
85 	isl_int_lcm(m, bset1->eq[row][col], bset2->eq[row][col]);
86 	isl_int_divexact(c, m, bset1->eq[row][col]);
87 	isl_seq_scale(bset1->eq[row], bset1->eq[row], c, col+1);
88 	isl_int_divexact(c, m, bset2->eq[row][col]);
89 	isl_seq_scale(bset2->eq[row], bset2->eq[row], c, col+1);
90 	isl_int_clear(c);
91 	isl_int_clear(m);
92 }
93 
94 /* Delete a given equality, moving all the following equalities one up.
95  */
delete_row(__isl_keep isl_basic_set * bset,unsigned row)96 static void delete_row(__isl_keep isl_basic_set *bset, unsigned row)
97 {
98 	isl_int *t;
99 	int r;
100 
101 	t = bset->eq[row];
102 	bset->n_eq--;
103 	for (r = row; r < bset->n_eq; ++r)
104 		bset->eq[r] = bset->eq[r+1];
105 	bset->eq[bset->n_eq] = t;
106 }
107 
108 /* Make first row entries in column col of bset1 identical to
109  * those of bset2, using the fact that entry bset1->eq[row][col]=a
110  * is non-zero.  Initially, these elements of bset1 are all zero.
111  * For each row i < row, we set
112  *		A[i] = a * A[i] + B[i][col] * A[row]
113  *		B[i] = a * B[i]
114  * so that
115  *		A[i][col] = B[i][col] = a * old(B[i][col])
116  */
construct_column(__isl_keep isl_basic_set * bset1,__isl_keep isl_basic_set * bset2,unsigned row,unsigned col)117 static isl_stat construct_column(
118 	__isl_keep isl_basic_set *bset1, __isl_keep isl_basic_set *bset2,
119 	unsigned row, unsigned col)
120 {
121 	int r;
122 	isl_int a;
123 	isl_int b;
124 	isl_size total;
125 
126 	total = isl_basic_set_dim(bset1, isl_dim_set);
127 	if (total < 0)
128 		return isl_stat_error;
129 
130 	isl_int_init(a);
131 	isl_int_init(b);
132 	for (r = 0; r < row; ++r) {
133 		if (isl_int_is_zero(bset2->eq[r][col]))
134 			continue;
135 		isl_int_gcd(b, bset2->eq[r][col], bset1->eq[row][col]);
136 		isl_int_divexact(a, bset1->eq[row][col], b);
137 		isl_int_divexact(b, bset2->eq[r][col], b);
138 		isl_seq_combine(bset1->eq[r], a, bset1->eq[r],
139 					      b, bset1->eq[row], 1 + total);
140 		isl_seq_scale(bset2->eq[r], bset2->eq[r], a, 1 + total);
141 	}
142 	isl_int_clear(a);
143 	isl_int_clear(b);
144 	delete_row(bset1, row);
145 
146 	return isl_stat_ok;
147 }
148 
149 /* Make first row entries in column col of bset1 identical to
150  * those of bset2, using only these entries of the two matrices.
151  * Let t be the last row with different entries.
152  * For each row i < t, we set
153  *	A[i] = (A[t][col]-B[t][col]) * A[i] + (B[i][col]-A[i][col) * A[t]
154  *	B[i] = (A[t][col]-B[t][col]) * B[i] + (B[i][col]-A[i][col) * B[t]
155  * so that
156  *	A[i][col] = B[i][col] = old(A[t][col]*B[i][col]-A[i][col]*B[t][col])
157  */
transform_column(__isl_keep isl_basic_set * bset1,__isl_keep isl_basic_set * bset2,unsigned row,unsigned col)158 static isl_bool transform_column(
159 	__isl_keep isl_basic_set *bset1, __isl_keep isl_basic_set *bset2,
160 	unsigned row, unsigned col)
161 {
162 	int i, t;
163 	isl_int a, b, g;
164 	isl_size total;
165 
166 	for (t = row-1; t >= 0; --t)
167 		if (isl_int_ne(bset1->eq[t][col], bset2->eq[t][col]))
168 			break;
169 	if (t < 0)
170 		return isl_bool_false;
171 
172 	total = isl_basic_set_dim(bset1, isl_dim_set);
173 	if (total < 0)
174 		return isl_bool_error;
175 	isl_int_init(a);
176 	isl_int_init(b);
177 	isl_int_init(g);
178 	isl_int_sub(b, bset1->eq[t][col], bset2->eq[t][col]);
179 	for (i = 0; i < t; ++i) {
180 		isl_int_sub(a, bset2->eq[i][col], bset1->eq[i][col]);
181 		isl_int_gcd(g, a, b);
182 		isl_int_divexact(a, a, g);
183 		isl_int_divexact(g, b, g);
184 		isl_seq_combine(bset1->eq[i], g, bset1->eq[i], a, bset1->eq[t],
185 				1 + total);
186 		isl_seq_combine(bset2->eq[i], g, bset2->eq[i], a, bset2->eq[t],
187 				1 + total);
188 	}
189 	isl_int_clear(a);
190 	isl_int_clear(b);
191 	isl_int_clear(g);
192 	delete_row(bset1, t);
193 	delete_row(bset2, t);
194 	return isl_bool_true;
195 }
196 
197 /* The implementation is based on Section 5.2 of Michael Karr,
198  * "Affine Relationships Among Variables of a Program",
199  * except that the echelon form we use starts from the last column
200  * and that we are dealing with integer coefficients.
201  */
affine_hull(__isl_take isl_basic_set * bset1,__isl_take isl_basic_set * bset2)202 static __isl_give isl_basic_set *affine_hull(
203 	__isl_take isl_basic_set *bset1, __isl_take isl_basic_set *bset2)
204 {
205 	isl_size dim;
206 	unsigned total;
207 	int col;
208 	int row;
209 
210 	dim = isl_basic_set_dim(bset1, isl_dim_set);
211 	if (dim < 0 || !bset2)
212 		goto error;
213 
214 	total = 1 + dim;
215 
216 	row = 0;
217 	for (col = total-1; col >= 0; --col) {
218 		int is_zero1 = row >= bset1->n_eq ||
219 			isl_int_is_zero(bset1->eq[row][col]);
220 		int is_zero2 = row >= bset2->n_eq ||
221 			isl_int_is_zero(bset2->eq[row][col]);
222 		if (!is_zero1 && !is_zero2) {
223 			set_common_multiple(bset1, bset2, row, col);
224 			++row;
225 		} else if (!is_zero1 && is_zero2) {
226 			if (construct_column(bset1, bset2, row, col) < 0)
227 				goto error;
228 		} else if (is_zero1 && !is_zero2) {
229 			if (construct_column(bset2, bset1, row, col) < 0)
230 				goto error;
231 		} else {
232 			isl_bool transform;
233 
234 			transform = transform_column(bset1, bset2, row, col);
235 			if (transform < 0)
236 				goto error;
237 			if (transform)
238 				--row;
239 		}
240 	}
241 	isl_assert(bset1->ctx, row == bset1->n_eq, goto error);
242 	isl_basic_set_free(bset2);
243 	bset1 = isl_basic_set_normalize_constraints(bset1);
244 	return bset1;
245 error:
246 	isl_basic_set_free(bset1);
247 	isl_basic_set_free(bset2);
248 	return NULL;
249 }
250 
251 /* Find an integer point in the set represented by "tab"
252  * that lies outside of the equality "eq" e(x) = 0.
253  * If "up" is true, look for a point satisfying e(x) - 1 >= 0.
254  * Otherwise, look for a point satisfying -e(x) - 1 >= 0 (i.e., e(x) <= -1).
255  * The point, if found, is returned.
256  * If no point can be found, a zero-length vector is returned.
257  *
258  * Before solving an ILP problem, we first check if simply
259  * adding the normal of the constraint to one of the known
260  * integer points in the basic set represented by "tab"
261  * yields another point inside the basic set.
262  *
263  * The caller of this function ensures that the tableau is bounded or
264  * that tab->basis and tab->n_unbounded have been set appropriately.
265  */
outside_point(struct isl_tab * tab,isl_int * eq,int up)266 static __isl_give isl_vec *outside_point(struct isl_tab *tab, isl_int *eq,
267 	int up)
268 {
269 	struct isl_ctx *ctx;
270 	struct isl_vec *sample = NULL;
271 	struct isl_tab_undo *snap;
272 	unsigned dim;
273 
274 	if (!tab)
275 		return NULL;
276 	ctx = tab->mat->ctx;
277 
278 	dim = tab->n_var;
279 	sample = isl_vec_alloc(ctx, 1 + dim);
280 	if (!sample)
281 		return NULL;
282 	isl_int_set_si(sample->el[0], 1);
283 	isl_seq_combine(sample->el + 1,
284 		ctx->one, tab->bmap->sample->el + 1,
285 		up ? ctx->one : ctx->negone, eq + 1, dim);
286 	if (isl_basic_map_contains(tab->bmap, sample))
287 		return sample;
288 	isl_vec_free(sample);
289 	sample = NULL;
290 
291 	snap = isl_tab_snap(tab);
292 
293 	if (!up)
294 		isl_seq_neg(eq, eq, 1 + dim);
295 	isl_int_sub_ui(eq[0], eq[0], 1);
296 
297 	if (isl_tab_extend_cons(tab, 1) < 0)
298 		goto error;
299 	if (isl_tab_add_ineq(tab, eq) < 0)
300 		goto error;
301 
302 	sample = isl_tab_sample(tab);
303 
304 	isl_int_add_ui(eq[0], eq[0], 1);
305 	if (!up)
306 		isl_seq_neg(eq, eq, 1 + dim);
307 
308 	if (sample && isl_tab_rollback(tab, snap) < 0)
309 		goto error;
310 
311 	return sample;
312 error:
313 	isl_vec_free(sample);
314 	return NULL;
315 }
316 
isl_basic_set_recession_cone(__isl_take isl_basic_set * bset)317 __isl_give isl_basic_set *isl_basic_set_recession_cone(
318 	__isl_take isl_basic_set *bset)
319 {
320 	int i;
321 	isl_bool empty;
322 
323 	empty = isl_basic_set_plain_is_empty(bset);
324 	if (empty < 0)
325 		return isl_basic_set_free(bset);
326 	if (empty)
327 		return bset;
328 
329 	bset = isl_basic_set_cow(bset);
330 	if (isl_basic_set_check_no_locals(bset) < 0)
331 		return isl_basic_set_free(bset);
332 
333 	for (i = 0; i < bset->n_eq; ++i)
334 		isl_int_set_si(bset->eq[i][0], 0);
335 
336 	for (i = 0; i < bset->n_ineq; ++i)
337 		isl_int_set_si(bset->ineq[i][0], 0);
338 
339 	ISL_F_CLR(bset, ISL_BASIC_SET_NO_IMPLICIT);
340 	return isl_basic_set_implicit_equalities(bset);
341 }
342 
343 /* Move "sample" to a point that is one up (or down) from the original
344  * point in dimension "pos".
345  */
adjacent_point(__isl_keep isl_vec * sample,int pos,int up)346 static void adjacent_point(__isl_keep isl_vec *sample, int pos, int up)
347 {
348 	if (up)
349 		isl_int_add_ui(sample->el[1 + pos], sample->el[1 + pos], 1);
350 	else
351 		isl_int_sub_ui(sample->el[1 + pos], sample->el[1 + pos], 1);
352 }
353 
354 /* Check if any points that are adjacent to "sample" also belong to "bset".
355  * If so, add them to "hull" and return the updated hull.
356  *
357  * Before checking whether and adjacent point belongs to "bset", we first
358  * check whether it already belongs to "hull" as this test is typically
359  * much cheaper.
360  */
add_adjacent_points(__isl_take isl_basic_set * hull,__isl_take isl_vec * sample,__isl_keep isl_basic_set * bset)361 static __isl_give isl_basic_set *add_adjacent_points(
362 	__isl_take isl_basic_set *hull, __isl_take isl_vec *sample,
363 	__isl_keep isl_basic_set *bset)
364 {
365 	int i, up;
366 	isl_size dim;
367 
368 	dim = isl_basic_set_dim(hull, isl_dim_set);
369 	if (!sample || dim < 0)
370 		goto error;
371 
372 	for (i = 0; i < dim; ++i) {
373 		for (up = 0; up <= 1; ++up) {
374 			int contains;
375 			isl_basic_set *point;
376 
377 			adjacent_point(sample, i, up);
378 			contains = isl_basic_set_contains(hull, sample);
379 			if (contains < 0)
380 				goto error;
381 			if (contains) {
382 				adjacent_point(sample, i, !up);
383 				continue;
384 			}
385 			contains = isl_basic_set_contains(bset, sample);
386 			if (contains < 0)
387 				goto error;
388 			if (contains) {
389 				point = isl_basic_set_from_vec(
390 							isl_vec_copy(sample));
391 				hull = affine_hull(hull, point);
392 			}
393 			adjacent_point(sample, i, !up);
394 			if (contains)
395 				break;
396 		}
397 	}
398 
399 	isl_vec_free(sample);
400 
401 	return hull;
402 error:
403 	isl_vec_free(sample);
404 	isl_basic_set_free(hull);
405 	return NULL;
406 }
407 
408 /* Extend an initial (under-)approximation of the affine hull of basic
409  * set represented by the tableau "tab"
410  * by looking for points that do not satisfy one of the equalities
411  * in the current approximation and adding them to that approximation
412  * until no such points can be found any more.
413  *
414  * The caller of this function ensures that "tab" is bounded or
415  * that tab->basis and tab->n_unbounded have been set appropriately.
416  *
417  * "bset" may be either NULL or the basic set represented by "tab".
418  * If "bset" is not NULL, we check for any point we find if any
419  * of its adjacent points also belong to "bset".
420  */
extend_affine_hull(struct isl_tab * tab,__isl_take isl_basic_set * hull,__isl_keep isl_basic_set * bset)421 static __isl_give isl_basic_set *extend_affine_hull(struct isl_tab *tab,
422 	__isl_take isl_basic_set *hull, __isl_keep isl_basic_set *bset)
423 {
424 	int i, j;
425 	unsigned dim;
426 
427 	if (!tab || !hull)
428 		goto error;
429 
430 	dim = tab->n_var;
431 
432 	if (isl_tab_extend_cons(tab, 2 * dim + 1) < 0)
433 		goto error;
434 
435 	for (i = 0; i < dim; ++i) {
436 		struct isl_vec *sample;
437 		struct isl_basic_set *point;
438 		for (j = 0; j < hull->n_eq; ++j) {
439 			sample = outside_point(tab, hull->eq[j], 1);
440 			if (!sample)
441 				goto error;
442 			if (sample->size > 0)
443 				break;
444 			isl_vec_free(sample);
445 			sample = outside_point(tab, hull->eq[j], 0);
446 			if (!sample)
447 				goto error;
448 			if (sample->size > 0)
449 				break;
450 			isl_vec_free(sample);
451 
452 			if (isl_tab_add_eq(tab, hull->eq[j]) < 0)
453 				goto error;
454 		}
455 		if (j == hull->n_eq)
456 			break;
457 		if (tab->samples &&
458 		    isl_tab_add_sample(tab, isl_vec_copy(sample)) < 0)
459 			hull = isl_basic_set_free(hull);
460 		if (bset)
461 			hull = add_adjacent_points(hull, isl_vec_copy(sample),
462 						    bset);
463 		point = isl_basic_set_from_vec(sample);
464 		hull = affine_hull(hull, point);
465 		if (!hull)
466 			return NULL;
467 	}
468 
469 	return hull;
470 error:
471 	isl_basic_set_free(hull);
472 	return NULL;
473 }
474 
475 /* Construct an initial underapproximation of the hull of "bset"
476  * from "sample" and any of its adjacent points that also belong to "bset".
477  */
initialize_hull(__isl_keep isl_basic_set * bset,__isl_take isl_vec * sample)478 static __isl_give isl_basic_set *initialize_hull(__isl_keep isl_basic_set *bset,
479 	__isl_take isl_vec *sample)
480 {
481 	isl_basic_set *hull;
482 
483 	hull = isl_basic_set_from_vec(isl_vec_copy(sample));
484 	hull = add_adjacent_points(hull, sample, bset);
485 
486 	return hull;
487 }
488 
489 /* Look for all equalities satisfied by the integer points in bset,
490  * which is assumed to be bounded.
491  *
492  * The equalities are obtained by successively looking for
493  * a point that is affinely independent of the points found so far.
494  * In particular, for each equality satisfied by the points so far,
495  * we check if there is any point on a hyperplane parallel to the
496  * corresponding hyperplane shifted by at least one (in either direction).
497  */
uset_affine_hull_bounded(__isl_take isl_basic_set * bset)498 static __isl_give isl_basic_set *uset_affine_hull_bounded(
499 	__isl_take isl_basic_set *bset)
500 {
501 	struct isl_vec *sample = NULL;
502 	struct isl_basic_set *hull;
503 	struct isl_tab *tab = NULL;
504 	isl_size dim;
505 
506 	if (isl_basic_set_plain_is_empty(bset))
507 		return bset;
508 
509 	dim = isl_basic_set_dim(bset, isl_dim_set);
510 	if (dim < 0)
511 		return isl_basic_set_free(bset);
512 
513 	if (bset->sample && bset->sample->size == 1 + dim) {
514 		int contains = isl_basic_set_contains(bset, bset->sample);
515 		if (contains < 0)
516 			goto error;
517 		if (contains) {
518 			if (dim == 0)
519 				return bset;
520 			sample = isl_vec_copy(bset->sample);
521 		} else {
522 			isl_vec_free(bset->sample);
523 			bset->sample = NULL;
524 		}
525 	}
526 
527 	tab = isl_tab_from_basic_set(bset, 1);
528 	if (!tab)
529 		goto error;
530 	if (tab->empty) {
531 		isl_tab_free(tab);
532 		isl_vec_free(sample);
533 		return isl_basic_set_set_to_empty(bset);
534 	}
535 
536 	if (!sample) {
537 		struct isl_tab_undo *snap;
538 		snap = isl_tab_snap(tab);
539 		sample = isl_tab_sample(tab);
540 		if (isl_tab_rollback(tab, snap) < 0)
541 			goto error;
542 		isl_vec_free(tab->bmap->sample);
543 		tab->bmap->sample = isl_vec_copy(sample);
544 	}
545 
546 	if (!sample)
547 		goto error;
548 	if (sample->size == 0) {
549 		isl_tab_free(tab);
550 		isl_vec_free(sample);
551 		return isl_basic_set_set_to_empty(bset);
552 	}
553 
554 	hull = initialize_hull(bset, sample);
555 
556 	hull = extend_affine_hull(tab, hull, bset);
557 	isl_basic_set_free(bset);
558 	isl_tab_free(tab);
559 
560 	return hull;
561 error:
562 	isl_vec_free(sample);
563 	isl_tab_free(tab);
564 	isl_basic_set_free(bset);
565 	return NULL;
566 }
567 
568 /* Given an unbounded tableau and an integer point satisfying the tableau,
569  * construct an initial affine hull containing the recession cone
570  * shifted to the given point.
571  *
572  * The unbounded directions are taken from the last rows of the basis,
573  * which is assumed to have been initialized appropriately.
574  */
initial_hull(struct isl_tab * tab,__isl_take isl_vec * vec)575 static __isl_give isl_basic_set *initial_hull(struct isl_tab *tab,
576 	__isl_take isl_vec *vec)
577 {
578 	int i;
579 	int k;
580 	struct isl_basic_set *bset = NULL;
581 	struct isl_ctx *ctx;
582 	isl_size dim;
583 
584 	if (!vec || !tab)
585 		return NULL;
586 	ctx = vec->ctx;
587 	isl_assert(ctx, vec->size != 0, goto error);
588 
589 	bset = isl_basic_set_alloc(ctx, 0, vec->size - 1, 0, vec->size - 1, 0);
590 	dim = isl_basic_set_dim(bset, isl_dim_set);
591 	if (dim < 0)
592 		goto error;
593 	dim -= tab->n_unbounded;
594 	for (i = 0; i < dim; ++i) {
595 		k = isl_basic_set_alloc_equality(bset);
596 		if (k < 0)
597 			goto error;
598 		isl_seq_cpy(bset->eq[k] + 1, tab->basis->row[1 + i] + 1,
599 			    vec->size - 1);
600 		isl_seq_inner_product(bset->eq[k] + 1, vec->el +1,
601 				      vec->size - 1, &bset->eq[k][0]);
602 		isl_int_neg(bset->eq[k][0], bset->eq[k][0]);
603 	}
604 	bset->sample = vec;
605 	bset = isl_basic_set_gauss(bset, NULL);
606 
607 	return bset;
608 error:
609 	isl_basic_set_free(bset);
610 	isl_vec_free(vec);
611 	return NULL;
612 }
613 
614 /* Given a tableau of a set and a tableau of the corresponding
615  * recession cone, detect and add all equalities to the tableau.
616  * If the tableau is bounded, then we can simply keep the
617  * tableau in its state after the return from extend_affine_hull.
618  * However, if the tableau is unbounded, then
619  * isl_tab_set_initial_basis_with_cone will add some additional
620  * constraints to the tableau that have to be removed again.
621  * In this case, we therefore rollback to the state before
622  * any constraints were added and then add the equalities back in.
623  */
isl_tab_detect_equalities(struct isl_tab * tab,struct isl_tab * tab_cone)624 struct isl_tab *isl_tab_detect_equalities(struct isl_tab *tab,
625 	struct isl_tab *tab_cone)
626 {
627 	int j;
628 	struct isl_vec *sample;
629 	struct isl_basic_set *hull = NULL;
630 	struct isl_tab_undo *snap;
631 
632 	if (!tab || !tab_cone)
633 		goto error;
634 
635 	snap = isl_tab_snap(tab);
636 
637 	isl_mat_free(tab->basis);
638 	tab->basis = NULL;
639 
640 	isl_assert(tab->mat->ctx, tab->bmap, goto error);
641 	isl_assert(tab->mat->ctx, tab->samples, goto error);
642 	isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, goto error);
643 	isl_assert(tab->mat->ctx, tab->n_sample > tab->n_outside, goto error);
644 
645 	if (isl_tab_set_initial_basis_with_cone(tab, tab_cone) < 0)
646 		goto error;
647 
648 	sample = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
649 	if (!sample)
650 		goto error;
651 
652 	isl_seq_cpy(sample->el, tab->samples->row[tab->n_outside], sample->size);
653 
654 	isl_vec_free(tab->bmap->sample);
655 	tab->bmap->sample = isl_vec_copy(sample);
656 
657 	if (tab->n_unbounded == 0)
658 		hull = isl_basic_set_from_vec(isl_vec_copy(sample));
659 	else
660 		hull = initial_hull(tab, isl_vec_copy(sample));
661 
662 	for (j = tab->n_outside + 1; j < tab->n_sample; ++j) {
663 		isl_seq_cpy(sample->el, tab->samples->row[j], sample->size);
664 		hull = affine_hull(hull,
665 				isl_basic_set_from_vec(isl_vec_copy(sample)));
666 	}
667 
668 	isl_vec_free(sample);
669 
670 	hull = extend_affine_hull(tab, hull, NULL);
671 	if (!hull)
672 		goto error;
673 
674 	if (tab->n_unbounded == 0) {
675 		isl_basic_set_free(hull);
676 		return tab;
677 	}
678 
679 	if (isl_tab_rollback(tab, snap) < 0)
680 		goto error;
681 
682 	if (hull->n_eq > tab->n_zero) {
683 		for (j = 0; j < hull->n_eq; ++j) {
684 			isl_seq_normalize(tab->mat->ctx, hull->eq[j], 1 + tab->n_var);
685 			if (isl_tab_add_eq(tab, hull->eq[j]) < 0)
686 				goto error;
687 		}
688 	}
689 
690 	isl_basic_set_free(hull);
691 
692 	return tab;
693 error:
694 	isl_basic_set_free(hull);
695 	isl_tab_free(tab);
696 	return NULL;
697 }
698 
699 /* Compute the affine hull of "bset", where "cone" is the recession cone
700  * of "bset".
701  *
702  * We first compute a unimodular transformation that puts the unbounded
703  * directions in the last dimensions.  In particular, we take a transformation
704  * that maps all equalities to equalities (in HNF) on the first dimensions.
705  * Let x be the original dimensions and y the transformed, with y_1 bounded
706  * and y_2 unbounded.
707  *
708  *	       [ y_1 ]			[ y_1 ]   [ Q_1 ]
709  *	x = U  [ y_2 ]			[ y_2 ] = [ Q_2 ] x
710  *
711  * Let's call the input basic set S.  We compute S' = preimage(S, U)
712  * and drop the final dimensions including any constraints involving them.
713  * This results in set S''.
714  * Then we compute the affine hull A'' of S''.
715  * Let F y_1 >= g be the constraint system of A''.  In the transformed
716  * space the y_2 are unbounded, so we can add them back without any constraints,
717  * resulting in
718  *
719  *		        [ y_1 ]
720  *		[ F 0 ] [ y_2 ] >= g
721  * or
722  *		        [ Q_1 ]
723  *		[ F 0 ] [ Q_2 ] x >= g
724  * or
725  *		F Q_1 x >= g
726  *
727  * The affine hull in the original space is then obtained as
728  * A = preimage(A'', Q_1).
729  */
affine_hull_with_cone(__isl_take isl_basic_set * bset,__isl_take isl_basic_set * cone)730 static __isl_give isl_basic_set *affine_hull_with_cone(
731 	__isl_take isl_basic_set *bset, __isl_take isl_basic_set *cone)
732 {
733 	isl_size total;
734 	unsigned cone_dim;
735 	struct isl_basic_set *hull;
736 	struct isl_mat *M, *U, *Q;
737 
738 	total = isl_basic_set_dim(cone, isl_dim_all);
739 	if (!bset || total < 0)
740 		goto error;
741 
742 	cone_dim = total - cone->n_eq;
743 
744 	M = isl_mat_sub_alloc6(bset->ctx, cone->eq, 0, cone->n_eq, 1, total);
745 	M = isl_mat_left_hermite(M, 0, &U, &Q);
746 	if (!M)
747 		goto error;
748 	isl_mat_free(M);
749 
750 	U = isl_mat_lin_to_aff(U);
751 	bset = isl_basic_set_preimage(bset, isl_mat_copy(U));
752 
753 	bset = isl_basic_set_drop_constraints_involving(bset, total - cone_dim,
754 							cone_dim);
755 	bset = isl_basic_set_drop_dims(bset, total - cone_dim, cone_dim);
756 
757 	Q = isl_mat_lin_to_aff(Q);
758 	Q = isl_mat_drop_rows(Q, 1 + total - cone_dim, cone_dim);
759 
760 	if (bset && bset->sample && bset->sample->size == 1 + total)
761 		bset->sample = isl_mat_vec_product(isl_mat_copy(Q), bset->sample);
762 
763 	hull = uset_affine_hull_bounded(bset);
764 
765 	if (!hull) {
766 		isl_mat_free(Q);
767 		isl_mat_free(U);
768 	} else {
769 		struct isl_vec *sample = isl_vec_copy(hull->sample);
770 		U = isl_mat_drop_cols(U, 1 + total - cone_dim, cone_dim);
771 		if (sample && sample->size > 0)
772 			sample = isl_mat_vec_product(U, sample);
773 		else
774 			isl_mat_free(U);
775 		hull = isl_basic_set_preimage(hull, Q);
776 		if (hull) {
777 			isl_vec_free(hull->sample);
778 			hull->sample = sample;
779 		} else
780 			isl_vec_free(sample);
781 	}
782 
783 	isl_basic_set_free(cone);
784 
785 	return hull;
786 error:
787 	isl_basic_set_free(bset);
788 	isl_basic_set_free(cone);
789 	return NULL;
790 }
791 
792 /* Look for all equalities satisfied by the integer points in bset,
793  * which is assumed not to have any explicit equalities.
794  *
795  * The equalities are obtained by successively looking for
796  * a point that is affinely independent of the points found so far.
797  * In particular, for each equality satisfied by the points so far,
798  * we check if there is any point on a hyperplane parallel to the
799  * corresponding hyperplane shifted by at least one (in either direction).
800  *
801  * Before looking for any outside points, we first compute the recession
802  * cone.  The directions of this recession cone will always be part
803  * of the affine hull, so there is no need for looking for any points
804  * in these directions.
805  * In particular, if the recession cone is full-dimensional, then
806  * the affine hull is simply the whole universe.
807  */
uset_affine_hull(__isl_take isl_basic_set * bset)808 static __isl_give isl_basic_set *uset_affine_hull(
809 	__isl_take isl_basic_set *bset)
810 {
811 	struct isl_basic_set *cone;
812 	isl_size total;
813 
814 	if (isl_basic_set_plain_is_empty(bset))
815 		return bset;
816 
817 	cone = isl_basic_set_recession_cone(isl_basic_set_copy(bset));
818 	if (!cone)
819 		goto error;
820 	if (cone->n_eq == 0) {
821 		isl_space *space;
822 		space = isl_basic_set_get_space(bset);
823 		isl_basic_set_free(cone);
824 		isl_basic_set_free(bset);
825 		return isl_basic_set_universe(space);
826 	}
827 
828 	total = isl_basic_set_dim(cone, isl_dim_all);
829 	if (total < 0)
830 		bset = isl_basic_set_free(bset);
831 	if (cone->n_eq < total)
832 		return affine_hull_with_cone(bset, cone);
833 
834 	isl_basic_set_free(cone);
835 	return uset_affine_hull_bounded(bset);
836 error:
837 	isl_basic_set_free(bset);
838 	return NULL;
839 }
840 
841 /* Look for all equalities satisfied by the integer points in bmap
842  * that are independent of the equalities already explicitly available
843  * in bmap.
844  *
845  * We first remove all equalities already explicitly available,
846  * then look for additional equalities in the reduced space
847  * and then transform the result to the original space.
848  * The original equalities are _not_ added to this set.  This is
849  * the responsibility of the calling function.
850  * The resulting basic set has all meaning about the dimensions removed.
851  * In particular, dimensions that correspond to existential variables
852  * in bmap and that are found to be fixed are not removed.
853  */
equalities_in_underlying_set(__isl_take isl_basic_map * bmap)854 static __isl_give isl_basic_set *equalities_in_underlying_set(
855 	__isl_take isl_basic_map *bmap)
856 {
857 	struct isl_mat *T1 = NULL;
858 	struct isl_mat *T2 = NULL;
859 	struct isl_basic_set *bset = NULL;
860 	struct isl_basic_set *hull = NULL;
861 
862 	bset = isl_basic_map_underlying_set(bmap);
863 	if (!bset)
864 		return NULL;
865 	if (bset->n_eq)
866 		bset = isl_basic_set_remove_equalities(bset, &T1, &T2);
867 	if (!bset)
868 		goto error;
869 
870 	hull = uset_affine_hull(bset);
871 	if (!T2)
872 		return hull;
873 
874 	if (!hull) {
875 		isl_mat_free(T1);
876 		isl_mat_free(T2);
877 	} else {
878 		struct isl_vec *sample = isl_vec_copy(hull->sample);
879 		if (sample && sample->size > 0)
880 			sample = isl_mat_vec_product(T1, sample);
881 		else
882 			isl_mat_free(T1);
883 		hull = isl_basic_set_preimage(hull, T2);
884 		if (hull) {
885 			isl_vec_free(hull->sample);
886 			hull->sample = sample;
887 		} else
888 			isl_vec_free(sample);
889 	}
890 
891 	return hull;
892 error:
893 	isl_mat_free(T1);
894 	isl_mat_free(T2);
895 	isl_basic_set_free(bset);
896 	isl_basic_set_free(hull);
897 	return NULL;
898 }
899 
900 /* Detect and make explicit all equalities satisfied by the (integer)
901  * points in bmap.
902  */
isl_basic_map_detect_equalities(__isl_take isl_basic_map * bmap)903 __isl_give isl_basic_map *isl_basic_map_detect_equalities(
904 	__isl_take isl_basic_map *bmap)
905 {
906 	int i, j;
907 	isl_size total;
908 	struct isl_basic_set *hull = NULL;
909 
910 	if (!bmap)
911 		return NULL;
912 	if (bmap->n_ineq == 0)
913 		return bmap;
914 	if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
915 		return bmap;
916 	if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_ALL_EQUALITIES))
917 		return bmap;
918 	if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
919 		return isl_basic_map_implicit_equalities(bmap);
920 
921 	hull = equalities_in_underlying_set(isl_basic_map_copy(bmap));
922 	if (!hull)
923 		goto error;
924 	if (ISL_F_ISSET(hull, ISL_BASIC_SET_EMPTY)) {
925 		isl_basic_set_free(hull);
926 		return isl_basic_map_set_to_empty(bmap);
927 	}
928 	bmap = isl_basic_map_extend(bmap, 0, hull->n_eq, 0);
929 	total = isl_basic_set_dim(hull, isl_dim_all);
930 	if (total < 0)
931 		goto error;
932 	for (i = 0; i < hull->n_eq; ++i) {
933 		j = isl_basic_map_alloc_equality(bmap);
934 		if (j < 0)
935 			goto error;
936 		isl_seq_cpy(bmap->eq[j], hull->eq[i], 1 + total);
937 	}
938 	isl_vec_free(bmap->sample);
939 	bmap->sample = isl_vec_copy(hull->sample);
940 	isl_basic_set_free(hull);
941 	ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT | ISL_BASIC_MAP_ALL_EQUALITIES);
942 	bmap = isl_basic_map_simplify(bmap);
943 	return isl_basic_map_finalize(bmap);
944 error:
945 	isl_basic_set_free(hull);
946 	isl_basic_map_free(bmap);
947 	return NULL;
948 }
949 
isl_basic_set_detect_equalities(__isl_take isl_basic_set * bset)950 __isl_give isl_basic_set *isl_basic_set_detect_equalities(
951 						__isl_take isl_basic_set *bset)
952 {
953 	return bset_from_bmap(
954 		isl_basic_map_detect_equalities(bset_to_bmap(bset)));
955 }
956 
isl_map_detect_equalities(__isl_take isl_map * map)957 __isl_give isl_map *isl_map_detect_equalities(__isl_take isl_map *map)
958 {
959 	return isl_map_inline_foreach_basic_map(map,
960 					    &isl_basic_map_detect_equalities);
961 }
962 
isl_set_detect_equalities(__isl_take isl_set * set)963 __isl_give isl_set *isl_set_detect_equalities(__isl_take isl_set *set)
964 {
965 	return set_from_map(isl_map_detect_equalities(set_to_map(set)));
966 }
967 
968 /* Return the superset of "bmap" described by the equalities
969  * satisfied by "bmap" that are already known.
970  */
isl_basic_map_plain_affine_hull(__isl_take isl_basic_map * bmap)971 __isl_give isl_basic_map *isl_basic_map_plain_affine_hull(
972 	__isl_take isl_basic_map *bmap)
973 {
974 	bmap = isl_basic_map_cow(bmap);
975 	if (bmap)
976 		isl_basic_map_free_inequality(bmap, bmap->n_ineq);
977 	bmap = isl_basic_map_finalize(bmap);
978 	return bmap;
979 }
980 
981 /* Return the superset of "bset" described by the equalities
982  * satisfied by "bset" that are already known.
983  */
isl_basic_set_plain_affine_hull(__isl_take isl_basic_set * bset)984 __isl_give isl_basic_set *isl_basic_set_plain_affine_hull(
985 	__isl_take isl_basic_set *bset)
986 {
987 	return isl_basic_map_plain_affine_hull(bset);
988 }
989 
990 /* After computing the rational affine hull (by detecting the implicit
991  * equalities), we compute the additional equalities satisfied by
992  * the integer points (if any) and add the original equalities back in.
993  */
isl_basic_map_affine_hull(__isl_take isl_basic_map * bmap)994 __isl_give isl_basic_map *isl_basic_map_affine_hull(
995 	__isl_take isl_basic_map *bmap)
996 {
997 	bmap = isl_basic_map_detect_equalities(bmap);
998 	bmap = isl_basic_map_plain_affine_hull(bmap);
999 	return bmap;
1000 }
1001 
isl_basic_set_affine_hull(__isl_take isl_basic_set * bset)1002 __isl_give isl_basic_set *isl_basic_set_affine_hull(
1003 	__isl_take isl_basic_set *bset)
1004 {
1005 	return bset_from_bmap(isl_basic_map_affine_hull(bset_to_bmap(bset)));
1006 }
1007 
1008 /* Given a rational affine matrix "M", add stride constraints to "bmap"
1009  * that ensure that
1010  *
1011  *		M(x)
1012  *
1013  * is an integer vector.  The variables x include all the variables
1014  * of "bmap" except the unknown divs.
1015  *
1016  * If d is the common denominator of M, then we need to impose that
1017  *
1018  *		d M(x) = 0 	mod d
1019  *
1020  * or
1021  *
1022  *		exists alpha : d M(x) = d alpha
1023  *
1024  * This function is similar to add_strides in isl_morph.c
1025  */
add_strides(__isl_take isl_basic_map * bmap,__isl_keep isl_mat * M,int n_known)1026 static __isl_give isl_basic_map *add_strides(__isl_take isl_basic_map *bmap,
1027 	__isl_keep isl_mat *M, int n_known)
1028 {
1029 	int i, div, k;
1030 	isl_int gcd;
1031 
1032 	if (isl_int_is_one(M->row[0][0]))
1033 		return bmap;
1034 
1035 	bmap = isl_basic_map_extend(bmap, M->n_row - 1, M->n_row - 1, 0);
1036 
1037 	isl_int_init(gcd);
1038 	for (i = 1; i < M->n_row; ++i) {
1039 		isl_seq_gcd(M->row[i], M->n_col, &gcd);
1040 		if (isl_int_is_divisible_by(gcd, M->row[0][0]))
1041 			continue;
1042 		div = isl_basic_map_alloc_div(bmap);
1043 		if (div < 0)
1044 			goto error;
1045 		isl_int_set_si(bmap->div[div][0], 0);
1046 		k = isl_basic_map_alloc_equality(bmap);
1047 		if (k < 0)
1048 			goto error;
1049 		isl_seq_cpy(bmap->eq[k], M->row[i], M->n_col);
1050 		isl_seq_clr(bmap->eq[k] + M->n_col, bmap->n_div - n_known);
1051 		isl_int_set(bmap->eq[k][M->n_col - n_known + div],
1052 			    M->row[0][0]);
1053 	}
1054 	isl_int_clear(gcd);
1055 
1056 	return bmap;
1057 error:
1058 	isl_int_clear(gcd);
1059 	isl_basic_map_free(bmap);
1060 	return NULL;
1061 }
1062 
1063 /* If there are any equalities that involve (multiple) unknown divs,
1064  * then extract the stride information encoded by those equalities
1065  * and make it explicitly available in "bmap".
1066  *
1067  * We first sort the divs so that the unknown divs appear last and
1068  * then we count how many equalities involve these divs.
1069  *
1070  * Let these equalities be of the form
1071  *
1072  *		A(x) + B y = 0
1073  *
1074  * where y represents the unknown divs and x the remaining variables.
1075  * Let [H 0] be the Hermite Normal Form of B, i.e.,
1076  *
1077  *		B = [H 0] Q
1078  *
1079  * Then x is a solution of the equalities iff
1080  *
1081  *		H^-1 A(x) (= - [I 0] Q y)
1082  *
1083  * is an integer vector.  Let d be the common denominator of H^-1.
1084  * We impose
1085  *
1086  *		d H^-1 A(x) = d alpha
1087  *
1088  * in add_strides, with alpha fresh existentially quantified variables.
1089  */
isl_basic_map_make_strides_explicit(__isl_take isl_basic_map * bmap)1090 static __isl_give isl_basic_map *isl_basic_map_make_strides_explicit(
1091 	__isl_take isl_basic_map *bmap)
1092 {
1093 	isl_bool known;
1094 	int n_known;
1095 	int n, n_col;
1096 	isl_size v_div;
1097 	isl_ctx *ctx;
1098 	isl_mat *A, *B, *M;
1099 
1100 	known = isl_basic_map_divs_known(bmap);
1101 	if (known < 0)
1102 		return isl_basic_map_free(bmap);
1103 	if (known)
1104 		return bmap;
1105 	bmap = isl_basic_map_sort_divs(bmap);
1106 	bmap = isl_basic_map_gauss(bmap, NULL);
1107 	if (!bmap)
1108 		return NULL;
1109 
1110 	for (n_known = 0; n_known < bmap->n_div; ++n_known)
1111 		if (isl_int_is_zero(bmap->div[n_known][0]))
1112 			break;
1113 	v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
1114 	if (v_div < 0)
1115 		return isl_basic_map_free(bmap);
1116 	for (n = 0; n < bmap->n_eq; ++n)
1117 		if (isl_seq_first_non_zero(bmap->eq[n] + 1 + v_div + n_known,
1118 					    bmap->n_div - n_known) == -1)
1119 			break;
1120 	if (n == 0)
1121 		return bmap;
1122 	ctx = isl_basic_map_get_ctx(bmap);
1123 	B = isl_mat_sub_alloc6(ctx, bmap->eq, 0, n, 0, 1 + v_div + n_known);
1124 	n_col = bmap->n_div - n_known;
1125 	A = isl_mat_sub_alloc6(ctx, bmap->eq, 0, n, 1 + v_div + n_known, n_col);
1126 	A = isl_mat_left_hermite(A, 0, NULL, NULL);
1127 	A = isl_mat_drop_cols(A, n, n_col - n);
1128 	A = isl_mat_lin_to_aff(A);
1129 	A = isl_mat_right_inverse(A);
1130 	B = isl_mat_insert_zero_rows(B, 0, 1);
1131 	B = isl_mat_set_element_si(B, 0, 0, 1);
1132 	M = isl_mat_product(A, B);
1133 	if (!M)
1134 		return isl_basic_map_free(bmap);
1135 	bmap = add_strides(bmap, M, n_known);
1136 	bmap = isl_basic_map_gauss(bmap, NULL);
1137 	isl_mat_free(M);
1138 
1139 	return bmap;
1140 }
1141 
1142 /* Compute the affine hull of each basic map in "map" separately
1143  * and make all stride information explicit so that we can remove
1144  * all unknown divs without losing this information.
1145  * The result is also guaranteed to be gaussed.
1146  *
1147  * In simple cases where a div is determined by an equality,
1148  * calling isl_basic_map_gauss is enough to make the stride information
1149  * explicit, as it will derive an explicit representation for the div
1150  * from the equality.  If, however, the stride information
1151  * is encoded through multiple unknown divs then we need to make
1152  * some extra effort in isl_basic_map_make_strides_explicit.
1153  */
isl_map_local_affine_hull(__isl_take isl_map * map)1154 static __isl_give isl_map *isl_map_local_affine_hull(__isl_take isl_map *map)
1155 {
1156 	int i;
1157 
1158 	map = isl_map_cow(map);
1159 	if (!map)
1160 		return NULL;
1161 
1162 	for (i = 0; i < map->n; ++i) {
1163 		map->p[i] = isl_basic_map_affine_hull(map->p[i]);
1164 		map->p[i] = isl_basic_map_gauss(map->p[i], NULL);
1165 		map->p[i] = isl_basic_map_make_strides_explicit(map->p[i]);
1166 		if (!map->p[i])
1167 			return isl_map_free(map);
1168 	}
1169 
1170 	return map;
1171 }
1172 
isl_set_local_affine_hull(__isl_take isl_set * set)1173 static __isl_give isl_set *isl_set_local_affine_hull(__isl_take isl_set *set)
1174 {
1175 	return isl_map_local_affine_hull(set);
1176 }
1177 
1178 /* Return an empty basic map living in the same space as "map".
1179  */
replace_map_by_empty_basic_map(__isl_take isl_map * map)1180 static __isl_give isl_basic_map *replace_map_by_empty_basic_map(
1181 	__isl_take isl_map *map)
1182 {
1183 	isl_space *space;
1184 
1185 	space = isl_map_get_space(map);
1186 	isl_map_free(map);
1187 	return isl_basic_map_empty(space);
1188 }
1189 
1190 /* Compute the affine hull of "map".
1191  *
1192  * We first compute the affine hull of each basic map separately.
1193  * Then we align the divs and recompute the affine hulls of the basic
1194  * maps since some of them may now have extra divs.
1195  * In order to avoid performing parametric integer programming to
1196  * compute explicit expressions for the divs, possible leading to
1197  * an explosion in the number of basic maps, we first drop all unknown
1198  * divs before aligning the divs.  Note that isl_map_local_affine_hull tries
1199  * to make sure that all stride information is explicitly available
1200  * in terms of known divs.  This involves calling isl_basic_set_gauss,
1201  * which is also needed because affine_hull assumes its input has been gaussed,
1202  * while isl_map_affine_hull may be called on input that has not been gaussed,
1203  * in particular from initial_facet_constraint.
1204  * Similarly, align_divs may reorder some divs so that we need to
1205  * gauss the result again.
1206  * Finally, we combine the individual affine hulls into a single
1207  * affine hull.
1208  */
isl_map_affine_hull(__isl_take isl_map * map)1209 __isl_give isl_basic_map *isl_map_affine_hull(__isl_take isl_map *map)
1210 {
1211 	struct isl_basic_map *model = NULL;
1212 	struct isl_basic_map *hull = NULL;
1213 	struct isl_set *set;
1214 	isl_basic_set *bset;
1215 
1216 	map = isl_map_detect_equalities(map);
1217 	map = isl_map_local_affine_hull(map);
1218 	map = isl_map_remove_empty_parts(map);
1219 	map = isl_map_remove_unknown_divs(map);
1220 	map = isl_map_align_divs_internal(map);
1221 
1222 	if (!map)
1223 		return NULL;
1224 
1225 	if (map->n == 0)
1226 		return replace_map_by_empty_basic_map(map);
1227 
1228 	model = isl_basic_map_copy(map->p[0]);
1229 	set = isl_map_underlying_set(map);
1230 	set = isl_set_cow(set);
1231 	set = isl_set_local_affine_hull(set);
1232 	if (!set)
1233 		goto error;
1234 
1235 	while (set->n > 1)
1236 		set->p[0] = affine_hull(set->p[0], set->p[--set->n]);
1237 
1238 	bset = isl_basic_set_copy(set->p[0]);
1239 	hull = isl_basic_map_overlying_set(bset, model);
1240 	isl_set_free(set);
1241 	hull = isl_basic_map_simplify(hull);
1242 	return isl_basic_map_finalize(hull);
1243 error:
1244 	isl_basic_map_free(model);
1245 	isl_set_free(set);
1246 	return NULL;
1247 }
1248 
isl_set_affine_hull(__isl_take isl_set * set)1249 __isl_give isl_basic_set *isl_set_affine_hull(__isl_take isl_set *set)
1250 {
1251 	return bset_from_bmap(isl_map_affine_hull(set_to_map(set)));
1252 }
1253