1 /*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2013 Ecole Normale Superieure
4 * Copyright 2014 INRIA Rocquencourt
5 * Copyright 2016 Sven Verdoolaege
6 *
7 * Use of this software is governed by the MIT license
8 *
9 * Written by Sven Verdoolaege, K.U.Leuven, Departement
10 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
11 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
12 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
13 * B.P. 105 - 78153 Le Chesnay, France
14 */
15
16 #include <isl_ctx_private.h>
17 #include <isl_mat_private.h>
18 #include <isl_vec_private.h>
19 #include "isl_map_private.h"
20 #include "isl_tab.h"
21 #include <isl_seq.h>
22 #include <isl_config.h>
23
24 #include <bset_to_bmap.c>
25 #include <bset_from_bmap.c>
26
27 /*
28 * The implementation of tableaus in this file was inspired by Section 8
29 * of David Detlefs, Greg Nelson and James B. Saxe, "Simplify: a theorem
30 * prover for program checking".
31 */
32
isl_tab_alloc(struct isl_ctx * ctx,unsigned n_row,unsigned n_var,unsigned M)33 struct isl_tab *isl_tab_alloc(struct isl_ctx *ctx,
34 unsigned n_row, unsigned n_var, unsigned M)
35 {
36 int i;
37 struct isl_tab *tab;
38 unsigned off = 2 + M;
39
40 tab = isl_calloc_type(ctx, struct isl_tab);
41 if (!tab)
42 return NULL;
43 tab->mat = isl_mat_alloc(ctx, n_row, off + n_var);
44 if (!tab->mat)
45 goto error;
46 tab->var = isl_alloc_array(ctx, struct isl_tab_var, n_var);
47 if (n_var && !tab->var)
48 goto error;
49 tab->con = isl_alloc_array(ctx, struct isl_tab_var, n_row);
50 if (n_row && !tab->con)
51 goto error;
52 tab->col_var = isl_alloc_array(ctx, int, n_var);
53 if (n_var && !tab->col_var)
54 goto error;
55 tab->row_var = isl_alloc_array(ctx, int, n_row);
56 if (n_row && !tab->row_var)
57 goto error;
58 for (i = 0; i < n_var; ++i) {
59 tab->var[i].index = i;
60 tab->var[i].is_row = 0;
61 tab->var[i].is_nonneg = 0;
62 tab->var[i].is_zero = 0;
63 tab->var[i].is_redundant = 0;
64 tab->var[i].frozen = 0;
65 tab->var[i].negated = 0;
66 tab->col_var[i] = i;
67 }
68 tab->n_row = 0;
69 tab->n_con = 0;
70 tab->n_eq = 0;
71 tab->max_con = n_row;
72 tab->n_col = n_var;
73 tab->n_var = n_var;
74 tab->max_var = n_var;
75 tab->n_param = 0;
76 tab->n_div = 0;
77 tab->n_dead = 0;
78 tab->n_redundant = 0;
79 tab->strict_redundant = 0;
80 tab->need_undo = 0;
81 tab->rational = 0;
82 tab->empty = 0;
83 tab->in_undo = 0;
84 tab->M = M;
85 tab->cone = 0;
86 tab->bottom.type = isl_tab_undo_bottom;
87 tab->bottom.next = NULL;
88 tab->top = &tab->bottom;
89
90 tab->n_zero = 0;
91 tab->n_unbounded = 0;
92 tab->basis = NULL;
93
94 return tab;
95 error:
96 isl_tab_free(tab);
97 return NULL;
98 }
99
isl_tab_get_ctx(struct isl_tab * tab)100 isl_ctx *isl_tab_get_ctx(struct isl_tab *tab)
101 {
102 return tab ? isl_mat_get_ctx(tab->mat) : NULL;
103 }
104
isl_tab_extend_cons(struct isl_tab * tab,unsigned n_new)105 int isl_tab_extend_cons(struct isl_tab *tab, unsigned n_new)
106 {
107 unsigned off;
108
109 if (!tab)
110 return -1;
111
112 off = 2 + tab->M;
113
114 if (tab->max_con < tab->n_con + n_new) {
115 struct isl_tab_var *con;
116
117 con = isl_realloc_array(tab->mat->ctx, tab->con,
118 struct isl_tab_var, tab->max_con + n_new);
119 if (!con)
120 return -1;
121 tab->con = con;
122 tab->max_con += n_new;
123 }
124 if (tab->mat->n_row < tab->n_row + n_new) {
125 int *row_var;
126
127 tab->mat = isl_mat_extend(tab->mat,
128 tab->n_row + n_new, off + tab->n_col);
129 if (!tab->mat)
130 return -1;
131 row_var = isl_realloc_array(tab->mat->ctx, tab->row_var,
132 int, tab->mat->n_row);
133 if (!row_var)
134 return -1;
135 tab->row_var = row_var;
136 if (tab->row_sign) {
137 enum isl_tab_row_sign *s;
138 s = isl_realloc_array(tab->mat->ctx, tab->row_sign,
139 enum isl_tab_row_sign, tab->mat->n_row);
140 if (!s)
141 return -1;
142 tab->row_sign = s;
143 }
144 }
145 return 0;
146 }
147
148 /* Make room for at least n_new extra variables.
149 * Return -1 if anything went wrong.
150 */
isl_tab_extend_vars(struct isl_tab * tab,unsigned n_new)151 int isl_tab_extend_vars(struct isl_tab *tab, unsigned n_new)
152 {
153 struct isl_tab_var *var;
154 unsigned off = 2 + tab->M;
155
156 if (tab->max_var < tab->n_var + n_new) {
157 var = isl_realloc_array(tab->mat->ctx, tab->var,
158 struct isl_tab_var, tab->n_var + n_new);
159 if (!var)
160 return -1;
161 tab->var = var;
162 tab->max_var = tab->n_var + n_new;
163 }
164
165 if (tab->mat->n_col < off + tab->n_col + n_new) {
166 int *p;
167
168 tab->mat = isl_mat_extend(tab->mat,
169 tab->mat->n_row, off + tab->n_col + n_new);
170 if (!tab->mat)
171 return -1;
172 p = isl_realloc_array(tab->mat->ctx, tab->col_var,
173 int, tab->n_col + n_new);
174 if (!p)
175 return -1;
176 tab->col_var = p;
177 }
178
179 return 0;
180 }
181
free_undo_record(struct isl_tab_undo * undo)182 static void free_undo_record(struct isl_tab_undo *undo)
183 {
184 switch (undo->type) {
185 case isl_tab_undo_saved_basis:
186 free(undo->u.col_var);
187 break;
188 default:;
189 }
190 free(undo);
191 }
192
free_undo(struct isl_tab * tab)193 static void free_undo(struct isl_tab *tab)
194 {
195 struct isl_tab_undo *undo, *next;
196
197 for (undo = tab->top; undo && undo != &tab->bottom; undo = next) {
198 next = undo->next;
199 free_undo_record(undo);
200 }
201 tab->top = undo;
202 }
203
isl_tab_free(struct isl_tab * tab)204 void isl_tab_free(struct isl_tab *tab)
205 {
206 if (!tab)
207 return;
208 free_undo(tab);
209 isl_mat_free(tab->mat);
210 isl_vec_free(tab->dual);
211 isl_basic_map_free(tab->bmap);
212 free(tab->var);
213 free(tab->con);
214 free(tab->row_var);
215 free(tab->col_var);
216 free(tab->row_sign);
217 isl_mat_free(tab->samples);
218 free(tab->sample_index);
219 isl_mat_free(tab->basis);
220 free(tab);
221 }
222
isl_tab_dup(struct isl_tab * tab)223 struct isl_tab *isl_tab_dup(struct isl_tab *tab)
224 {
225 int i;
226 struct isl_tab *dup;
227 unsigned off;
228
229 if (!tab)
230 return NULL;
231
232 off = 2 + tab->M;
233 dup = isl_calloc_type(tab->mat->ctx, struct isl_tab);
234 if (!dup)
235 return NULL;
236 dup->mat = isl_mat_dup(tab->mat);
237 if (!dup->mat)
238 goto error;
239 dup->var = isl_alloc_array(tab->mat->ctx, struct isl_tab_var, tab->max_var);
240 if (tab->max_var && !dup->var)
241 goto error;
242 for (i = 0; i < tab->n_var; ++i)
243 dup->var[i] = tab->var[i];
244 dup->con = isl_alloc_array(tab->mat->ctx, struct isl_tab_var, tab->max_con);
245 if (tab->max_con && !dup->con)
246 goto error;
247 for (i = 0; i < tab->n_con; ++i)
248 dup->con[i] = tab->con[i];
249 dup->col_var = isl_alloc_array(tab->mat->ctx, int, tab->mat->n_col - off);
250 if ((tab->mat->n_col - off) && !dup->col_var)
251 goto error;
252 for (i = 0; i < tab->n_col; ++i)
253 dup->col_var[i] = tab->col_var[i];
254 dup->row_var = isl_alloc_array(tab->mat->ctx, int, tab->mat->n_row);
255 if (tab->mat->n_row && !dup->row_var)
256 goto error;
257 for (i = 0; i < tab->n_row; ++i)
258 dup->row_var[i] = tab->row_var[i];
259 if (tab->row_sign) {
260 dup->row_sign = isl_alloc_array(tab->mat->ctx, enum isl_tab_row_sign,
261 tab->mat->n_row);
262 if (tab->mat->n_row && !dup->row_sign)
263 goto error;
264 for (i = 0; i < tab->n_row; ++i)
265 dup->row_sign[i] = tab->row_sign[i];
266 }
267 if (tab->samples) {
268 dup->samples = isl_mat_dup(tab->samples);
269 if (!dup->samples)
270 goto error;
271 dup->sample_index = isl_alloc_array(tab->mat->ctx, int,
272 tab->samples->n_row);
273 if (tab->samples->n_row && !dup->sample_index)
274 goto error;
275 dup->n_sample = tab->n_sample;
276 dup->n_outside = tab->n_outside;
277 }
278 dup->n_row = tab->n_row;
279 dup->n_con = tab->n_con;
280 dup->n_eq = tab->n_eq;
281 dup->max_con = tab->max_con;
282 dup->n_col = tab->n_col;
283 dup->n_var = tab->n_var;
284 dup->max_var = tab->max_var;
285 dup->n_param = tab->n_param;
286 dup->n_div = tab->n_div;
287 dup->n_dead = tab->n_dead;
288 dup->n_redundant = tab->n_redundant;
289 dup->rational = tab->rational;
290 dup->empty = tab->empty;
291 dup->strict_redundant = 0;
292 dup->need_undo = 0;
293 dup->in_undo = 0;
294 dup->M = tab->M;
295 dup->cone = tab->cone;
296 dup->bottom.type = isl_tab_undo_bottom;
297 dup->bottom.next = NULL;
298 dup->top = &dup->bottom;
299
300 dup->n_zero = tab->n_zero;
301 dup->n_unbounded = tab->n_unbounded;
302 dup->basis = isl_mat_dup(tab->basis);
303
304 return dup;
305 error:
306 isl_tab_free(dup);
307 return NULL;
308 }
309
310 /* Construct the coefficient matrix of the product tableau
311 * of two tableaus.
312 * mat{1,2} is the coefficient matrix of tableau {1,2}
313 * row{1,2} is the number of rows in tableau {1,2}
314 * col{1,2} is the number of columns in tableau {1,2}
315 * off is the offset to the coefficient column (skipping the
316 * denominator, the constant term and the big parameter if any)
317 * r{1,2} is the number of redundant rows in tableau {1,2}
318 * d{1,2} is the number of dead columns in tableau {1,2}
319 *
320 * The order of the rows and columns in the result is as explained
321 * in isl_tab_product.
322 */
tab_mat_product(__isl_keep isl_mat * mat1,__isl_keep isl_mat * mat2,unsigned row1,unsigned row2,unsigned col1,unsigned col2,unsigned off,unsigned r1,unsigned r2,unsigned d1,unsigned d2)323 static __isl_give isl_mat *tab_mat_product(__isl_keep isl_mat *mat1,
324 __isl_keep isl_mat *mat2, unsigned row1, unsigned row2,
325 unsigned col1, unsigned col2,
326 unsigned off, unsigned r1, unsigned r2, unsigned d1, unsigned d2)
327 {
328 int i;
329 struct isl_mat *prod;
330 unsigned n;
331
332 prod = isl_mat_alloc(mat1->ctx, mat1->n_row + mat2->n_row,
333 off + col1 + col2);
334 if (!prod)
335 return NULL;
336
337 n = 0;
338 for (i = 0; i < r1; ++i) {
339 isl_seq_cpy(prod->row[n + i], mat1->row[i], off + d1);
340 isl_seq_clr(prod->row[n + i] + off + d1, d2);
341 isl_seq_cpy(prod->row[n + i] + off + d1 + d2,
342 mat1->row[i] + off + d1, col1 - d1);
343 isl_seq_clr(prod->row[n + i] + off + col1 + d1, col2 - d2);
344 }
345
346 n += r1;
347 for (i = 0; i < r2; ++i) {
348 isl_seq_cpy(prod->row[n + i], mat2->row[i], off);
349 isl_seq_clr(prod->row[n + i] + off, d1);
350 isl_seq_cpy(prod->row[n + i] + off + d1,
351 mat2->row[i] + off, d2);
352 isl_seq_clr(prod->row[n + i] + off + d1 + d2, col1 - d1);
353 isl_seq_cpy(prod->row[n + i] + off + col1 + d1,
354 mat2->row[i] + off + d2, col2 - d2);
355 }
356
357 n += r2;
358 for (i = 0; i < row1 - r1; ++i) {
359 isl_seq_cpy(prod->row[n + i], mat1->row[r1 + i], off + d1);
360 isl_seq_clr(prod->row[n + i] + off + d1, d2);
361 isl_seq_cpy(prod->row[n + i] + off + d1 + d2,
362 mat1->row[r1 + i] + off + d1, col1 - d1);
363 isl_seq_clr(prod->row[n + i] + off + col1 + d1, col2 - d2);
364 }
365
366 n += row1 - r1;
367 for (i = 0; i < row2 - r2; ++i) {
368 isl_seq_cpy(prod->row[n + i], mat2->row[r2 + i], off);
369 isl_seq_clr(prod->row[n + i] + off, d1);
370 isl_seq_cpy(prod->row[n + i] + off + d1,
371 mat2->row[r2 + i] + off, d2);
372 isl_seq_clr(prod->row[n + i] + off + d1 + d2, col1 - d1);
373 isl_seq_cpy(prod->row[n + i] + off + col1 + d1,
374 mat2->row[r2 + i] + off + d2, col2 - d2);
375 }
376
377 return prod;
378 }
379
380 /* Update the row or column index of a variable that corresponds
381 * to a variable in the first input tableau.
382 */
update_index1(struct isl_tab_var * var,unsigned r1,unsigned r2,unsigned d1,unsigned d2)383 static void update_index1(struct isl_tab_var *var,
384 unsigned r1, unsigned r2, unsigned d1, unsigned d2)
385 {
386 if (var->index == -1)
387 return;
388 if (var->is_row && var->index >= r1)
389 var->index += r2;
390 if (!var->is_row && var->index >= d1)
391 var->index += d2;
392 }
393
394 /* Update the row or column index of a variable that corresponds
395 * to a variable in the second input tableau.
396 */
update_index2(struct isl_tab_var * var,unsigned row1,unsigned col1,unsigned r1,unsigned r2,unsigned d1,unsigned d2)397 static void update_index2(struct isl_tab_var *var,
398 unsigned row1, unsigned col1,
399 unsigned r1, unsigned r2, unsigned d1, unsigned d2)
400 {
401 if (var->index == -1)
402 return;
403 if (var->is_row) {
404 if (var->index < r2)
405 var->index += r1;
406 else
407 var->index += row1;
408 } else {
409 if (var->index < d2)
410 var->index += d1;
411 else
412 var->index += col1;
413 }
414 }
415
416 /* Create a tableau that represents the Cartesian product of the sets
417 * represented by tableaus tab1 and tab2.
418 * The order of the rows in the product is
419 * - redundant rows of tab1
420 * - redundant rows of tab2
421 * - non-redundant rows of tab1
422 * - non-redundant rows of tab2
423 * The order of the columns is
424 * - denominator
425 * - constant term
426 * - coefficient of big parameter, if any
427 * - dead columns of tab1
428 * - dead columns of tab2
429 * - live columns of tab1
430 * - live columns of tab2
431 * The order of the variables and the constraints is a concatenation
432 * of order in the two input tableaus.
433 */
isl_tab_product(struct isl_tab * tab1,struct isl_tab * tab2)434 struct isl_tab *isl_tab_product(struct isl_tab *tab1, struct isl_tab *tab2)
435 {
436 int i;
437 struct isl_tab *prod;
438 unsigned off;
439 unsigned r1, r2, d1, d2;
440
441 if (!tab1 || !tab2)
442 return NULL;
443
444 isl_assert(tab1->mat->ctx, tab1->M == tab2->M, return NULL);
445 isl_assert(tab1->mat->ctx, tab1->rational == tab2->rational, return NULL);
446 isl_assert(tab1->mat->ctx, tab1->cone == tab2->cone, return NULL);
447 isl_assert(tab1->mat->ctx, !tab1->row_sign, return NULL);
448 isl_assert(tab1->mat->ctx, !tab2->row_sign, return NULL);
449 isl_assert(tab1->mat->ctx, tab1->n_param == 0, return NULL);
450 isl_assert(tab1->mat->ctx, tab2->n_param == 0, return NULL);
451 isl_assert(tab1->mat->ctx, tab1->n_div == 0, return NULL);
452 isl_assert(tab1->mat->ctx, tab2->n_div == 0, return NULL);
453
454 off = 2 + tab1->M;
455 r1 = tab1->n_redundant;
456 r2 = tab2->n_redundant;
457 d1 = tab1->n_dead;
458 d2 = tab2->n_dead;
459 prod = isl_calloc_type(tab1->mat->ctx, struct isl_tab);
460 if (!prod)
461 return NULL;
462 prod->mat = tab_mat_product(tab1->mat, tab2->mat,
463 tab1->n_row, tab2->n_row,
464 tab1->n_col, tab2->n_col, off, r1, r2, d1, d2);
465 if (!prod->mat)
466 goto error;
467 prod->var = isl_alloc_array(tab1->mat->ctx, struct isl_tab_var,
468 tab1->max_var + tab2->max_var);
469 if ((tab1->max_var + tab2->max_var) && !prod->var)
470 goto error;
471 for (i = 0; i < tab1->n_var; ++i) {
472 prod->var[i] = tab1->var[i];
473 update_index1(&prod->var[i], r1, r2, d1, d2);
474 }
475 for (i = 0; i < tab2->n_var; ++i) {
476 prod->var[tab1->n_var + i] = tab2->var[i];
477 update_index2(&prod->var[tab1->n_var + i],
478 tab1->n_row, tab1->n_col,
479 r1, r2, d1, d2);
480 }
481 prod->con = isl_alloc_array(tab1->mat->ctx, struct isl_tab_var,
482 tab1->max_con + tab2->max_con);
483 if ((tab1->max_con + tab2->max_con) && !prod->con)
484 goto error;
485 for (i = 0; i < tab1->n_con; ++i) {
486 prod->con[i] = tab1->con[i];
487 update_index1(&prod->con[i], r1, r2, d1, d2);
488 }
489 for (i = 0; i < tab2->n_con; ++i) {
490 prod->con[tab1->n_con + i] = tab2->con[i];
491 update_index2(&prod->con[tab1->n_con + i],
492 tab1->n_row, tab1->n_col,
493 r1, r2, d1, d2);
494 }
495 prod->col_var = isl_alloc_array(tab1->mat->ctx, int,
496 tab1->n_col + tab2->n_col);
497 if ((tab1->n_col + tab2->n_col) && !prod->col_var)
498 goto error;
499 for (i = 0; i < tab1->n_col; ++i) {
500 int pos = i < d1 ? i : i + d2;
501 prod->col_var[pos] = tab1->col_var[i];
502 }
503 for (i = 0; i < tab2->n_col; ++i) {
504 int pos = i < d2 ? d1 + i : tab1->n_col + i;
505 int t = tab2->col_var[i];
506 if (t >= 0)
507 t += tab1->n_var;
508 else
509 t -= tab1->n_con;
510 prod->col_var[pos] = t;
511 }
512 prod->row_var = isl_alloc_array(tab1->mat->ctx, int,
513 tab1->mat->n_row + tab2->mat->n_row);
514 if ((tab1->mat->n_row + tab2->mat->n_row) && !prod->row_var)
515 goto error;
516 for (i = 0; i < tab1->n_row; ++i) {
517 int pos = i < r1 ? i : i + r2;
518 prod->row_var[pos] = tab1->row_var[i];
519 }
520 for (i = 0; i < tab2->n_row; ++i) {
521 int pos = i < r2 ? r1 + i : tab1->n_row + i;
522 int t = tab2->row_var[i];
523 if (t >= 0)
524 t += tab1->n_var;
525 else
526 t -= tab1->n_con;
527 prod->row_var[pos] = t;
528 }
529 prod->samples = NULL;
530 prod->sample_index = NULL;
531 prod->n_row = tab1->n_row + tab2->n_row;
532 prod->n_con = tab1->n_con + tab2->n_con;
533 prod->n_eq = 0;
534 prod->max_con = tab1->max_con + tab2->max_con;
535 prod->n_col = tab1->n_col + tab2->n_col;
536 prod->n_var = tab1->n_var + tab2->n_var;
537 prod->max_var = tab1->max_var + tab2->max_var;
538 prod->n_param = 0;
539 prod->n_div = 0;
540 prod->n_dead = tab1->n_dead + tab2->n_dead;
541 prod->n_redundant = tab1->n_redundant + tab2->n_redundant;
542 prod->rational = tab1->rational;
543 prod->empty = tab1->empty || tab2->empty;
544 prod->strict_redundant = tab1->strict_redundant || tab2->strict_redundant;
545 prod->need_undo = 0;
546 prod->in_undo = 0;
547 prod->M = tab1->M;
548 prod->cone = tab1->cone;
549 prod->bottom.type = isl_tab_undo_bottom;
550 prod->bottom.next = NULL;
551 prod->top = &prod->bottom;
552
553 prod->n_zero = 0;
554 prod->n_unbounded = 0;
555 prod->basis = NULL;
556
557 return prod;
558 error:
559 isl_tab_free(prod);
560 return NULL;
561 }
562
var_from_index(struct isl_tab * tab,int i)563 static struct isl_tab_var *var_from_index(struct isl_tab *tab, int i)
564 {
565 if (i >= 0)
566 return &tab->var[i];
567 else
568 return &tab->con[~i];
569 }
570
isl_tab_var_from_row(struct isl_tab * tab,int i)571 struct isl_tab_var *isl_tab_var_from_row(struct isl_tab *tab, int i)
572 {
573 return var_from_index(tab, tab->row_var[i]);
574 }
575
var_from_col(struct isl_tab * tab,int i)576 static struct isl_tab_var *var_from_col(struct isl_tab *tab, int i)
577 {
578 return var_from_index(tab, tab->col_var[i]);
579 }
580
581 /* Check if there are any upper bounds on column variable "var",
582 * i.e., non-negative rows where var appears with a negative coefficient.
583 * Return 1 if there are no such bounds.
584 */
max_is_manifestly_unbounded(struct isl_tab * tab,struct isl_tab_var * var)585 static int max_is_manifestly_unbounded(struct isl_tab *tab,
586 struct isl_tab_var *var)
587 {
588 int i;
589 unsigned off = 2 + tab->M;
590
591 if (var->is_row)
592 return 0;
593 for (i = tab->n_redundant; i < tab->n_row; ++i) {
594 if (!isl_int_is_neg(tab->mat->row[i][off + var->index]))
595 continue;
596 if (isl_tab_var_from_row(tab, i)->is_nonneg)
597 return 0;
598 }
599 return 1;
600 }
601
602 /* Check if there are any lower bounds on column variable "var",
603 * i.e., non-negative rows where var appears with a positive coefficient.
604 * Return 1 if there are no such bounds.
605 */
min_is_manifestly_unbounded(struct isl_tab * tab,struct isl_tab_var * var)606 static int min_is_manifestly_unbounded(struct isl_tab *tab,
607 struct isl_tab_var *var)
608 {
609 int i;
610 unsigned off = 2 + tab->M;
611
612 if (var->is_row)
613 return 0;
614 for (i = tab->n_redundant; i < tab->n_row; ++i) {
615 if (!isl_int_is_pos(tab->mat->row[i][off + var->index]))
616 continue;
617 if (isl_tab_var_from_row(tab, i)->is_nonneg)
618 return 0;
619 }
620 return 1;
621 }
622
row_cmp(struct isl_tab * tab,int r1,int r2,int c,isl_int * t)623 static int row_cmp(struct isl_tab *tab, int r1, int r2, int c, isl_int *t)
624 {
625 unsigned off = 2 + tab->M;
626
627 if (tab->M) {
628 int s;
629 isl_int_mul(*t, tab->mat->row[r1][2], tab->mat->row[r2][off+c]);
630 isl_int_submul(*t, tab->mat->row[r2][2], tab->mat->row[r1][off+c]);
631 s = isl_int_sgn(*t);
632 if (s)
633 return s;
634 }
635 isl_int_mul(*t, tab->mat->row[r1][1], tab->mat->row[r2][off + c]);
636 isl_int_submul(*t, tab->mat->row[r2][1], tab->mat->row[r1][off + c]);
637 return isl_int_sgn(*t);
638 }
639
640 /* Given the index of a column "c", return the index of a row
641 * that can be used to pivot the column in, with either an increase
642 * (sgn > 0) or a decrease (sgn < 0) of the corresponding variable.
643 * If "var" is not NULL, then the row returned will be different from
644 * the one associated with "var".
645 *
646 * Each row in the tableau is of the form
647 *
648 * x_r = a_r0 + \sum_i a_ri x_i
649 *
650 * Only rows with x_r >= 0 and with the sign of a_ri opposite to "sgn"
651 * impose any limit on the increase or decrease in the value of x_c
652 * and this bound is equal to a_r0 / |a_rc|. We are therefore looking
653 * for the row with the smallest (most stringent) such bound.
654 * Note that the common denominator of each row drops out of the fraction.
655 * To check if row j has a smaller bound than row r, i.e.,
656 * a_j0 / |a_jc| < a_r0 / |a_rc| or a_j0 |a_rc| < a_r0 |a_jc|,
657 * we check if -sign(a_jc) (a_j0 a_rc - a_r0 a_jc) < 0,
658 * where -sign(a_jc) is equal to "sgn".
659 */
pivot_row(struct isl_tab * tab,struct isl_tab_var * var,int sgn,int c)660 static int pivot_row(struct isl_tab *tab,
661 struct isl_tab_var *var, int sgn, int c)
662 {
663 int j, r, tsgn;
664 isl_int t;
665 unsigned off = 2 + tab->M;
666
667 isl_int_init(t);
668 r = -1;
669 for (j = tab->n_redundant; j < tab->n_row; ++j) {
670 if (var && j == var->index)
671 continue;
672 if (!isl_tab_var_from_row(tab, j)->is_nonneg)
673 continue;
674 if (sgn * isl_int_sgn(tab->mat->row[j][off + c]) >= 0)
675 continue;
676 if (r < 0) {
677 r = j;
678 continue;
679 }
680 tsgn = sgn * row_cmp(tab, r, j, c, &t);
681 if (tsgn < 0 || (tsgn == 0 &&
682 tab->row_var[j] < tab->row_var[r]))
683 r = j;
684 }
685 isl_int_clear(t);
686 return r;
687 }
688
689 /* Find a pivot (row and col) that will increase (sgn > 0) or decrease
690 * (sgn < 0) the value of row variable var.
691 * If not NULL, then skip_var is a row variable that should be ignored
692 * while looking for a pivot row. It is usually equal to var.
693 *
694 * As the given row in the tableau is of the form
695 *
696 * x_r = a_r0 + \sum_i a_ri x_i
697 *
698 * we need to find a column such that the sign of a_ri is equal to "sgn"
699 * (such that an increase in x_i will have the desired effect) or a
700 * column with a variable that may attain negative values.
701 * If a_ri is positive, then we need to move x_i in the same direction
702 * to obtain the desired effect. Otherwise, x_i has to move in the
703 * opposite direction.
704 */
find_pivot(struct isl_tab * tab,struct isl_tab_var * var,struct isl_tab_var * skip_var,int sgn,int * row,int * col)705 static void find_pivot(struct isl_tab *tab,
706 struct isl_tab_var *var, struct isl_tab_var *skip_var,
707 int sgn, int *row, int *col)
708 {
709 int j, r, c;
710 isl_int *tr;
711
712 *row = *col = -1;
713
714 isl_assert(tab->mat->ctx, var->is_row, return);
715 tr = tab->mat->row[var->index] + 2 + tab->M;
716
717 c = -1;
718 for (j = tab->n_dead; j < tab->n_col; ++j) {
719 if (isl_int_is_zero(tr[j]))
720 continue;
721 if (isl_int_sgn(tr[j]) != sgn &&
722 var_from_col(tab, j)->is_nonneg)
723 continue;
724 if (c < 0 || tab->col_var[j] < tab->col_var[c])
725 c = j;
726 }
727 if (c < 0)
728 return;
729
730 sgn *= isl_int_sgn(tr[c]);
731 r = pivot_row(tab, skip_var, sgn, c);
732 *row = r < 0 ? var->index : r;
733 *col = c;
734 }
735
736 /* Return 1 if row "row" represents an obviously redundant inequality.
737 * This means
738 * - it represents an inequality or a variable
739 * - that is the sum of a non-negative sample value and a positive
740 * combination of zero or more non-negative constraints.
741 */
isl_tab_row_is_redundant(struct isl_tab * tab,int row)742 int isl_tab_row_is_redundant(struct isl_tab *tab, int row)
743 {
744 int i;
745 unsigned off = 2 + tab->M;
746
747 if (tab->row_var[row] < 0 && !isl_tab_var_from_row(tab, row)->is_nonneg)
748 return 0;
749
750 if (isl_int_is_neg(tab->mat->row[row][1]))
751 return 0;
752 if (tab->strict_redundant && isl_int_is_zero(tab->mat->row[row][1]))
753 return 0;
754 if (tab->M && isl_int_is_neg(tab->mat->row[row][2]))
755 return 0;
756
757 for (i = tab->n_dead; i < tab->n_col; ++i) {
758 if (isl_int_is_zero(tab->mat->row[row][off + i]))
759 continue;
760 if (tab->col_var[i] >= 0)
761 return 0;
762 if (isl_int_is_neg(tab->mat->row[row][off + i]))
763 return 0;
764 if (!var_from_col(tab, i)->is_nonneg)
765 return 0;
766 }
767 return 1;
768 }
769
swap_rows(struct isl_tab * tab,int row1,int row2)770 static void swap_rows(struct isl_tab *tab, int row1, int row2)
771 {
772 int t;
773 enum isl_tab_row_sign s;
774
775 t = tab->row_var[row1];
776 tab->row_var[row1] = tab->row_var[row2];
777 tab->row_var[row2] = t;
778 isl_tab_var_from_row(tab, row1)->index = row1;
779 isl_tab_var_from_row(tab, row2)->index = row2;
780 tab->mat = isl_mat_swap_rows(tab->mat, row1, row2);
781
782 if (!tab->row_sign)
783 return;
784 s = tab->row_sign[row1];
785 tab->row_sign[row1] = tab->row_sign[row2];
786 tab->row_sign[row2] = s;
787 }
788
789 static isl_stat push_union(struct isl_tab *tab,
790 enum isl_tab_undo_type type, union isl_tab_undo_val u) WARN_UNUSED;
791
792 /* Push record "u" onto the undo stack of "tab", provided "tab"
793 * keeps track of undo information.
794 *
795 * If the record cannot be pushed, then mark the undo stack as invalid
796 * such that a later rollback attempt will not try to undo earlier
797 * records without having been able to undo the current record.
798 */
push_union(struct isl_tab * tab,enum isl_tab_undo_type type,union isl_tab_undo_val u)799 static isl_stat push_union(struct isl_tab *tab,
800 enum isl_tab_undo_type type, union isl_tab_undo_val u)
801 {
802 struct isl_tab_undo *undo;
803
804 if (!tab)
805 return isl_stat_error;
806 if (!tab->need_undo)
807 return isl_stat_ok;
808
809 undo = isl_alloc_type(tab->mat->ctx, struct isl_tab_undo);
810 if (!undo)
811 goto error;
812 undo->type = type;
813 undo->u = u;
814 undo->next = tab->top;
815 tab->top = undo;
816
817 return isl_stat_ok;
818 error:
819 free_undo(tab);
820 tab->top = NULL;
821 return isl_stat_error;
822 }
823
isl_tab_push_var(struct isl_tab * tab,enum isl_tab_undo_type type,struct isl_tab_var * var)824 isl_stat isl_tab_push_var(struct isl_tab *tab,
825 enum isl_tab_undo_type type, struct isl_tab_var *var)
826 {
827 union isl_tab_undo_val u;
828 if (var->is_row)
829 u.var_index = tab->row_var[var->index];
830 else
831 u.var_index = tab->col_var[var->index];
832 return push_union(tab, type, u);
833 }
834
isl_tab_push(struct isl_tab * tab,enum isl_tab_undo_type type)835 isl_stat isl_tab_push(struct isl_tab *tab, enum isl_tab_undo_type type)
836 {
837 union isl_tab_undo_val u = { 0 };
838 return push_union(tab, type, u);
839 }
840
841 /* Push a record on the undo stack describing the current basic
842 * variables, so that the this state can be restored during rollback.
843 */
isl_tab_push_basis(struct isl_tab * tab)844 isl_stat isl_tab_push_basis(struct isl_tab *tab)
845 {
846 int i;
847 union isl_tab_undo_val u;
848
849 u.col_var = isl_alloc_array(tab->mat->ctx, int, tab->n_col);
850 if (tab->n_col && !u.col_var)
851 return isl_stat_error;
852 for (i = 0; i < tab->n_col; ++i)
853 u.col_var[i] = tab->col_var[i];
854 return push_union(tab, isl_tab_undo_saved_basis, u);
855 }
856
isl_tab_push_callback(struct isl_tab * tab,struct isl_tab_callback * callback)857 isl_stat isl_tab_push_callback(struct isl_tab *tab,
858 struct isl_tab_callback *callback)
859 {
860 union isl_tab_undo_val u;
861 u.callback = callback;
862 return push_union(tab, isl_tab_undo_callback, u);
863 }
864
isl_tab_init_samples(struct isl_tab * tab)865 struct isl_tab *isl_tab_init_samples(struct isl_tab *tab)
866 {
867 if (!tab)
868 return NULL;
869
870 tab->n_sample = 0;
871 tab->n_outside = 0;
872 tab->samples = isl_mat_alloc(tab->mat->ctx, 1, 1 + tab->n_var);
873 if (!tab->samples)
874 goto error;
875 tab->sample_index = isl_alloc_array(tab->mat->ctx, int, 1);
876 if (!tab->sample_index)
877 goto error;
878 return tab;
879 error:
880 isl_tab_free(tab);
881 return NULL;
882 }
883
isl_tab_add_sample(struct isl_tab * tab,__isl_take isl_vec * sample)884 int isl_tab_add_sample(struct isl_tab *tab, __isl_take isl_vec *sample)
885 {
886 if (!tab || !sample)
887 goto error;
888
889 if (tab->n_sample + 1 > tab->samples->n_row) {
890 int *t = isl_realloc_array(tab->mat->ctx,
891 tab->sample_index, int, tab->n_sample + 1);
892 if (!t)
893 goto error;
894 tab->sample_index = t;
895 }
896
897 tab->samples = isl_mat_extend(tab->samples,
898 tab->n_sample + 1, tab->samples->n_col);
899 if (!tab->samples)
900 goto error;
901
902 isl_seq_cpy(tab->samples->row[tab->n_sample], sample->el, sample->size);
903 isl_vec_free(sample);
904 tab->sample_index[tab->n_sample] = tab->n_sample;
905 tab->n_sample++;
906
907 return 0;
908 error:
909 isl_vec_free(sample);
910 return -1;
911 }
912
isl_tab_drop_sample(struct isl_tab * tab,int s)913 struct isl_tab *isl_tab_drop_sample(struct isl_tab *tab, int s)
914 {
915 if (s != tab->n_outside) {
916 int t = tab->sample_index[tab->n_outside];
917 tab->sample_index[tab->n_outside] = tab->sample_index[s];
918 tab->sample_index[s] = t;
919 isl_mat_swap_rows(tab->samples, tab->n_outside, s);
920 }
921 tab->n_outside++;
922 if (isl_tab_push(tab, isl_tab_undo_drop_sample) < 0) {
923 isl_tab_free(tab);
924 return NULL;
925 }
926
927 return tab;
928 }
929
930 /* Record the current number of samples so that we can remove newer
931 * samples during a rollback.
932 */
isl_tab_save_samples(struct isl_tab * tab)933 isl_stat isl_tab_save_samples(struct isl_tab *tab)
934 {
935 union isl_tab_undo_val u;
936
937 if (!tab)
938 return isl_stat_error;
939
940 u.n = tab->n_sample;
941 return push_union(tab, isl_tab_undo_saved_samples, u);
942 }
943
944 /* Mark row with index "row" as being redundant.
945 * If we may need to undo the operation or if the row represents
946 * a variable of the original problem, the row is kept,
947 * but no longer considered when looking for a pivot row.
948 * Otherwise, the row is simply removed.
949 *
950 * The row may be interchanged with some other row. If it
951 * is interchanged with a later row, return 1. Otherwise return 0.
952 * If the rows are checked in order in the calling function,
953 * then a return value of 1 means that the row with the given
954 * row number may now contain a different row that hasn't been checked yet.
955 */
isl_tab_mark_redundant(struct isl_tab * tab,int row)956 int isl_tab_mark_redundant(struct isl_tab *tab, int row)
957 {
958 struct isl_tab_var *var = isl_tab_var_from_row(tab, row);
959 var->is_redundant = 1;
960 isl_assert(tab->mat->ctx, row >= tab->n_redundant, return -1);
961 if (tab->preserve || tab->need_undo || tab->row_var[row] >= 0) {
962 if (tab->row_var[row] >= 0 && !var->is_nonneg) {
963 var->is_nonneg = 1;
964 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, var) < 0)
965 return -1;
966 }
967 if (row != tab->n_redundant)
968 swap_rows(tab, row, tab->n_redundant);
969 tab->n_redundant++;
970 return isl_tab_push_var(tab, isl_tab_undo_redundant, var);
971 } else {
972 if (row != tab->n_row - 1)
973 swap_rows(tab, row, tab->n_row - 1);
974 isl_tab_var_from_row(tab, tab->n_row - 1)->index = -1;
975 tab->n_row--;
976 return 1;
977 }
978 }
979
980 /* Mark "tab" as a rational tableau.
981 * If it wasn't marked as a rational tableau already and if we may
982 * need to undo changes, then arrange for the marking to be undone
983 * during the undo.
984 */
isl_tab_mark_rational(struct isl_tab * tab)985 int isl_tab_mark_rational(struct isl_tab *tab)
986 {
987 if (!tab)
988 return -1;
989 if (!tab->rational && tab->need_undo)
990 if (isl_tab_push(tab, isl_tab_undo_rational) < 0)
991 return -1;
992 tab->rational = 1;
993 return 0;
994 }
995
isl_tab_mark_empty(struct isl_tab * tab)996 isl_stat isl_tab_mark_empty(struct isl_tab *tab)
997 {
998 if (!tab)
999 return isl_stat_error;
1000 if (!tab->empty && tab->need_undo)
1001 if (isl_tab_push(tab, isl_tab_undo_empty) < 0)
1002 return isl_stat_error;
1003 tab->empty = 1;
1004 return isl_stat_ok;
1005 }
1006
isl_tab_freeze_constraint(struct isl_tab * tab,int con)1007 int isl_tab_freeze_constraint(struct isl_tab *tab, int con)
1008 {
1009 struct isl_tab_var *var;
1010
1011 if (!tab)
1012 return -1;
1013
1014 var = &tab->con[con];
1015 if (var->frozen)
1016 return 0;
1017 if (var->index < 0)
1018 return 0;
1019 var->frozen = 1;
1020
1021 if (tab->need_undo)
1022 return isl_tab_push_var(tab, isl_tab_undo_freeze, var);
1023
1024 return 0;
1025 }
1026
1027 /* Update the rows signs after a pivot of "row" and "col", with "row_sgn"
1028 * the original sign of the pivot element.
1029 * We only keep track of row signs during PILP solving and in this case
1030 * we only pivot a row with negative sign (meaning the value is always
1031 * non-positive) using a positive pivot element.
1032 *
1033 * For each row j, the new value of the parametric constant is equal to
1034 *
1035 * a_j0 - a_jc a_r0/a_rc
1036 *
1037 * where a_j0 is the original parametric constant, a_rc is the pivot element,
1038 * a_r0 is the parametric constant of the pivot row and a_jc is the
1039 * pivot column entry of the row j.
1040 * Since a_r0 is non-positive and a_rc is positive, the sign of row j
1041 * remains the same if a_jc has the same sign as the row j or if
1042 * a_jc is zero. In all other cases, we reset the sign to "unknown".
1043 */
update_row_sign(struct isl_tab * tab,int row,int col,int row_sgn)1044 static void update_row_sign(struct isl_tab *tab, int row, int col, int row_sgn)
1045 {
1046 int i;
1047 struct isl_mat *mat = tab->mat;
1048 unsigned off = 2 + tab->M;
1049
1050 if (!tab->row_sign)
1051 return;
1052
1053 if (tab->row_sign[row] == 0)
1054 return;
1055 isl_assert(mat->ctx, row_sgn > 0, return);
1056 isl_assert(mat->ctx, tab->row_sign[row] == isl_tab_row_neg, return);
1057 tab->row_sign[row] = isl_tab_row_pos;
1058 for (i = 0; i < tab->n_row; ++i) {
1059 int s;
1060 if (i == row)
1061 continue;
1062 s = isl_int_sgn(mat->row[i][off + col]);
1063 if (!s)
1064 continue;
1065 if (!tab->row_sign[i])
1066 continue;
1067 if (s < 0 && tab->row_sign[i] == isl_tab_row_neg)
1068 continue;
1069 if (s > 0 && tab->row_sign[i] == isl_tab_row_pos)
1070 continue;
1071 tab->row_sign[i] = isl_tab_row_unknown;
1072 }
1073 }
1074
1075 /* Given a row number "row" and a column number "col", pivot the tableau
1076 * such that the associated variables are interchanged.
1077 * The given row in the tableau expresses
1078 *
1079 * x_r = a_r0 + \sum_i a_ri x_i
1080 *
1081 * or
1082 *
1083 * x_c = 1/a_rc x_r - a_r0/a_rc + sum_{i \ne r} -a_ri/a_rc
1084 *
1085 * Substituting this equality into the other rows
1086 *
1087 * x_j = a_j0 + \sum_i a_ji x_i
1088 *
1089 * with a_jc \ne 0, we obtain
1090 *
1091 * x_j = a_jc/a_rc x_r + a_j0 - a_jc a_r0/a_rc + sum a_ji - a_jc a_ri/a_rc
1092 *
1093 * The tableau
1094 *
1095 * n_rc/d_r n_ri/d_r
1096 * n_jc/d_j n_ji/d_j
1097 *
1098 * where i is any other column and j is any other row,
1099 * is therefore transformed into
1100 *
1101 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1102 * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
1103 *
1104 * The transformation is performed along the following steps
1105 *
1106 * d_r/n_rc n_ri/n_rc
1107 * n_jc/d_j n_ji/d_j
1108 *
1109 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1110 * n_jc/d_j n_ji/d_j
1111 *
1112 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1113 * n_jc/(|n_rc| d_j) n_ji/(|n_rc| d_j)
1114 *
1115 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1116 * n_jc/(|n_rc| d_j) (n_ji |n_rc|)/(|n_rc| d_j)
1117 *
1118 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1119 * n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
1120 *
1121 * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc|
1122 * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
1123 *
1124 */
isl_tab_pivot(struct isl_tab * tab,int row,int col)1125 int isl_tab_pivot(struct isl_tab *tab, int row, int col)
1126 {
1127 int i, j;
1128 int sgn;
1129 int t;
1130 isl_ctx *ctx;
1131 struct isl_mat *mat = tab->mat;
1132 struct isl_tab_var *var;
1133 unsigned off = 2 + tab->M;
1134
1135 ctx = isl_tab_get_ctx(tab);
1136 if (isl_ctx_next_operation(ctx) < 0)
1137 return -1;
1138
1139 isl_int_swap(mat->row[row][0], mat->row[row][off + col]);
1140 sgn = isl_int_sgn(mat->row[row][0]);
1141 if (sgn < 0) {
1142 isl_int_neg(mat->row[row][0], mat->row[row][0]);
1143 isl_int_neg(mat->row[row][off + col], mat->row[row][off + col]);
1144 } else
1145 for (j = 0; j < off - 1 + tab->n_col; ++j) {
1146 if (j == off - 1 + col)
1147 continue;
1148 isl_int_neg(mat->row[row][1 + j], mat->row[row][1 + j]);
1149 }
1150 if (!isl_int_is_one(mat->row[row][0]))
1151 isl_seq_normalize(mat->ctx, mat->row[row], off + tab->n_col);
1152 for (i = 0; i < tab->n_row; ++i) {
1153 if (i == row)
1154 continue;
1155 if (isl_int_is_zero(mat->row[i][off + col]))
1156 continue;
1157 isl_int_mul(mat->row[i][0], mat->row[i][0], mat->row[row][0]);
1158 for (j = 0; j < off - 1 + tab->n_col; ++j) {
1159 if (j == off - 1 + col)
1160 continue;
1161 isl_int_mul(mat->row[i][1 + j],
1162 mat->row[i][1 + j], mat->row[row][0]);
1163 isl_int_addmul(mat->row[i][1 + j],
1164 mat->row[i][off + col], mat->row[row][1 + j]);
1165 }
1166 isl_int_mul(mat->row[i][off + col],
1167 mat->row[i][off + col], mat->row[row][off + col]);
1168 if (!isl_int_is_one(mat->row[i][0]))
1169 isl_seq_normalize(mat->ctx, mat->row[i], off + tab->n_col);
1170 }
1171 t = tab->row_var[row];
1172 tab->row_var[row] = tab->col_var[col];
1173 tab->col_var[col] = t;
1174 var = isl_tab_var_from_row(tab, row);
1175 var->is_row = 1;
1176 var->index = row;
1177 var = var_from_col(tab, col);
1178 var->is_row = 0;
1179 var->index = col;
1180 update_row_sign(tab, row, col, sgn);
1181 if (tab->in_undo)
1182 return 0;
1183 for (i = tab->n_redundant; i < tab->n_row; ++i) {
1184 if (isl_int_is_zero(mat->row[i][off + col]))
1185 continue;
1186 if (!isl_tab_var_from_row(tab, i)->frozen &&
1187 isl_tab_row_is_redundant(tab, i)) {
1188 int redo = isl_tab_mark_redundant(tab, i);
1189 if (redo < 0)
1190 return -1;
1191 if (redo)
1192 --i;
1193 }
1194 }
1195 return 0;
1196 }
1197
1198 /* If "var" represents a column variable, then pivot is up (sgn > 0)
1199 * or down (sgn < 0) to a row. The variable is assumed not to be
1200 * unbounded in the specified direction.
1201 * If sgn = 0, then the variable is unbounded in both directions,
1202 * and we pivot with any row we can find.
1203 */
1204 static int to_row(struct isl_tab *tab, struct isl_tab_var *var, int sign) WARN_UNUSED;
to_row(struct isl_tab * tab,struct isl_tab_var * var,int sign)1205 static int to_row(struct isl_tab *tab, struct isl_tab_var *var, int sign)
1206 {
1207 int r;
1208 unsigned off = 2 + tab->M;
1209
1210 if (var->is_row)
1211 return 0;
1212
1213 if (sign == 0) {
1214 for (r = tab->n_redundant; r < tab->n_row; ++r)
1215 if (!isl_int_is_zero(tab->mat->row[r][off+var->index]))
1216 break;
1217 isl_assert(tab->mat->ctx, r < tab->n_row, return -1);
1218 } else {
1219 r = pivot_row(tab, NULL, sign, var->index);
1220 isl_assert(tab->mat->ctx, r >= 0, return -1);
1221 }
1222
1223 return isl_tab_pivot(tab, r, var->index);
1224 }
1225
1226 /* Check whether all variables that are marked as non-negative
1227 * also have a non-negative sample value. This function is not
1228 * called from the current code but is useful during debugging.
1229 */
1230 static void check_table(struct isl_tab *tab) __attribute__ ((unused));
check_table(struct isl_tab * tab)1231 static void check_table(struct isl_tab *tab)
1232 {
1233 int i;
1234
1235 if (tab->empty)
1236 return;
1237 for (i = tab->n_redundant; i < tab->n_row; ++i) {
1238 struct isl_tab_var *var;
1239 var = isl_tab_var_from_row(tab, i);
1240 if (!var->is_nonneg)
1241 continue;
1242 if (tab->M) {
1243 isl_assert(tab->mat->ctx,
1244 !isl_int_is_neg(tab->mat->row[i][2]), abort());
1245 if (isl_int_is_pos(tab->mat->row[i][2]))
1246 continue;
1247 }
1248 isl_assert(tab->mat->ctx, !isl_int_is_neg(tab->mat->row[i][1]),
1249 abort());
1250 }
1251 }
1252
1253 /* Return the sign of the maximal value of "var".
1254 * If the sign is not negative, then on return from this function,
1255 * the sample value will also be non-negative.
1256 *
1257 * If "var" is manifestly unbounded wrt positive values, we are done.
1258 * Otherwise, we pivot the variable up to a row if needed
1259 * Then we continue pivoting down until either
1260 * - no more down pivots can be performed
1261 * - the sample value is positive
1262 * - the variable is pivoted into a manifestly unbounded column
1263 */
sign_of_max(struct isl_tab * tab,struct isl_tab_var * var)1264 static int sign_of_max(struct isl_tab *tab, struct isl_tab_var *var)
1265 {
1266 int row, col;
1267
1268 if (max_is_manifestly_unbounded(tab, var))
1269 return 1;
1270 if (to_row(tab, var, 1) < 0)
1271 return -2;
1272 while (!isl_int_is_pos(tab->mat->row[var->index][1])) {
1273 find_pivot(tab, var, var, 1, &row, &col);
1274 if (row == -1)
1275 return isl_int_sgn(tab->mat->row[var->index][1]);
1276 if (isl_tab_pivot(tab, row, col) < 0)
1277 return -2;
1278 if (!var->is_row) /* manifestly unbounded */
1279 return 1;
1280 }
1281 return 1;
1282 }
1283
isl_tab_sign_of_max(struct isl_tab * tab,int con)1284 int isl_tab_sign_of_max(struct isl_tab *tab, int con)
1285 {
1286 struct isl_tab_var *var;
1287
1288 if (!tab)
1289 return -2;
1290
1291 var = &tab->con[con];
1292 isl_assert(tab->mat->ctx, !var->is_redundant, return -2);
1293 isl_assert(tab->mat->ctx, !var->is_zero, return -2);
1294
1295 return sign_of_max(tab, var);
1296 }
1297
row_is_neg(struct isl_tab * tab,int row)1298 static int row_is_neg(struct isl_tab *tab, int row)
1299 {
1300 if (!tab->M)
1301 return isl_int_is_neg(tab->mat->row[row][1]);
1302 if (isl_int_is_pos(tab->mat->row[row][2]))
1303 return 0;
1304 if (isl_int_is_neg(tab->mat->row[row][2]))
1305 return 1;
1306 return isl_int_is_neg(tab->mat->row[row][1]);
1307 }
1308
row_sgn(struct isl_tab * tab,int row)1309 static int row_sgn(struct isl_tab *tab, int row)
1310 {
1311 if (!tab->M)
1312 return isl_int_sgn(tab->mat->row[row][1]);
1313 if (!isl_int_is_zero(tab->mat->row[row][2]))
1314 return isl_int_sgn(tab->mat->row[row][2]);
1315 else
1316 return isl_int_sgn(tab->mat->row[row][1]);
1317 }
1318
1319 /* Perform pivots until the row variable "var" has a non-negative
1320 * sample value or until no more upward pivots can be performed.
1321 * Return the sign of the sample value after the pivots have been
1322 * performed.
1323 */
restore_row(struct isl_tab * tab,struct isl_tab_var * var)1324 static int restore_row(struct isl_tab *tab, struct isl_tab_var *var)
1325 {
1326 int row, col;
1327
1328 while (row_is_neg(tab, var->index)) {
1329 find_pivot(tab, var, var, 1, &row, &col);
1330 if (row == -1)
1331 break;
1332 if (isl_tab_pivot(tab, row, col) < 0)
1333 return -2;
1334 if (!var->is_row) /* manifestly unbounded */
1335 return 1;
1336 }
1337 return row_sgn(tab, var->index);
1338 }
1339
1340 /* Perform pivots until we are sure that the row variable "var"
1341 * can attain non-negative values. After return from this
1342 * function, "var" is still a row variable, but its sample
1343 * value may not be non-negative, even if the function returns 1.
1344 */
at_least_zero(struct isl_tab * tab,struct isl_tab_var * var)1345 static int at_least_zero(struct isl_tab *tab, struct isl_tab_var *var)
1346 {
1347 int row, col;
1348
1349 while (isl_int_is_neg(tab->mat->row[var->index][1])) {
1350 find_pivot(tab, var, var, 1, &row, &col);
1351 if (row == -1)
1352 break;
1353 if (row == var->index) /* manifestly unbounded */
1354 return 1;
1355 if (isl_tab_pivot(tab, row, col) < 0)
1356 return -1;
1357 }
1358 return !isl_int_is_neg(tab->mat->row[var->index][1]);
1359 }
1360
1361 /* Return a negative value if "var" can attain negative values.
1362 * Return a non-negative value otherwise.
1363 *
1364 * If "var" is manifestly unbounded wrt negative values, we are done.
1365 * Otherwise, if var is in a column, we can pivot it down to a row.
1366 * Then we continue pivoting down until either
1367 * - the pivot would result in a manifestly unbounded column
1368 * => we don't perform the pivot, but simply return -1
1369 * - no more down pivots can be performed
1370 * - the sample value is negative
1371 * If the sample value becomes negative and the variable is supposed
1372 * to be nonnegative, then we undo the last pivot.
1373 * However, if the last pivot has made the pivoting variable
1374 * obviously redundant, then it may have moved to another row.
1375 * In that case we look for upward pivots until we reach a non-negative
1376 * value again.
1377 */
sign_of_min(struct isl_tab * tab,struct isl_tab_var * var)1378 static int sign_of_min(struct isl_tab *tab, struct isl_tab_var *var)
1379 {
1380 int row, col;
1381 struct isl_tab_var *pivot_var = NULL;
1382
1383 if (min_is_manifestly_unbounded(tab, var))
1384 return -1;
1385 if (!var->is_row) {
1386 col = var->index;
1387 row = pivot_row(tab, NULL, -1, col);
1388 pivot_var = var_from_col(tab, col);
1389 if (isl_tab_pivot(tab, row, col) < 0)
1390 return -2;
1391 if (var->is_redundant)
1392 return 0;
1393 if (isl_int_is_neg(tab->mat->row[var->index][1])) {
1394 if (var->is_nonneg) {
1395 if (!pivot_var->is_redundant &&
1396 pivot_var->index == row) {
1397 if (isl_tab_pivot(tab, row, col) < 0)
1398 return -2;
1399 } else
1400 if (restore_row(tab, var) < -1)
1401 return -2;
1402 }
1403 return -1;
1404 }
1405 }
1406 if (var->is_redundant)
1407 return 0;
1408 while (!isl_int_is_neg(tab->mat->row[var->index][1])) {
1409 find_pivot(tab, var, var, -1, &row, &col);
1410 if (row == var->index)
1411 return -1;
1412 if (row == -1)
1413 return isl_int_sgn(tab->mat->row[var->index][1]);
1414 pivot_var = var_from_col(tab, col);
1415 if (isl_tab_pivot(tab, row, col) < 0)
1416 return -2;
1417 if (var->is_redundant)
1418 return 0;
1419 }
1420 if (pivot_var && var->is_nonneg) {
1421 /* pivot back to non-negative value */
1422 if (!pivot_var->is_redundant && pivot_var->index == row) {
1423 if (isl_tab_pivot(tab, row, col) < 0)
1424 return -2;
1425 } else
1426 if (restore_row(tab, var) < -1)
1427 return -2;
1428 }
1429 return -1;
1430 }
1431
row_at_most_neg_one(struct isl_tab * tab,int row)1432 static int row_at_most_neg_one(struct isl_tab *tab, int row)
1433 {
1434 if (tab->M) {
1435 if (isl_int_is_pos(tab->mat->row[row][2]))
1436 return 0;
1437 if (isl_int_is_neg(tab->mat->row[row][2]))
1438 return 1;
1439 }
1440 return isl_int_is_neg(tab->mat->row[row][1]) &&
1441 isl_int_abs_ge(tab->mat->row[row][1],
1442 tab->mat->row[row][0]);
1443 }
1444
1445 /* Return 1 if "var" can attain values <= -1.
1446 * Return 0 otherwise.
1447 *
1448 * If the variable "var" is supposed to be non-negative (is_nonneg is set),
1449 * then the sample value of "var" is assumed to be non-negative when the
1450 * the function is called. If 1 is returned then the constraint
1451 * is not redundant and the sample value is made non-negative again before
1452 * the function returns.
1453 */
isl_tab_min_at_most_neg_one(struct isl_tab * tab,struct isl_tab_var * var)1454 int isl_tab_min_at_most_neg_one(struct isl_tab *tab, struct isl_tab_var *var)
1455 {
1456 int row, col;
1457 struct isl_tab_var *pivot_var;
1458
1459 if (min_is_manifestly_unbounded(tab, var))
1460 return 1;
1461 if (!var->is_row) {
1462 col = var->index;
1463 row = pivot_row(tab, NULL, -1, col);
1464 pivot_var = var_from_col(tab, col);
1465 if (isl_tab_pivot(tab, row, col) < 0)
1466 return -1;
1467 if (var->is_redundant)
1468 return 0;
1469 if (row_at_most_neg_one(tab, var->index)) {
1470 if (var->is_nonneg) {
1471 if (!pivot_var->is_redundant &&
1472 pivot_var->index == row) {
1473 if (isl_tab_pivot(tab, row, col) < 0)
1474 return -1;
1475 } else
1476 if (restore_row(tab, var) < -1)
1477 return -1;
1478 }
1479 return 1;
1480 }
1481 }
1482 if (var->is_redundant)
1483 return 0;
1484 do {
1485 find_pivot(tab, var, var, -1, &row, &col);
1486 if (row == var->index) {
1487 if (var->is_nonneg && restore_row(tab, var) < -1)
1488 return -1;
1489 return 1;
1490 }
1491 if (row == -1)
1492 return 0;
1493 pivot_var = var_from_col(tab, col);
1494 if (isl_tab_pivot(tab, row, col) < 0)
1495 return -1;
1496 if (var->is_redundant)
1497 return 0;
1498 } while (!row_at_most_neg_one(tab, var->index));
1499 if (var->is_nonneg) {
1500 /* pivot back to non-negative value */
1501 if (!pivot_var->is_redundant && pivot_var->index == row)
1502 if (isl_tab_pivot(tab, row, col) < 0)
1503 return -1;
1504 if (restore_row(tab, var) < -1)
1505 return -1;
1506 }
1507 return 1;
1508 }
1509
1510 /* Return 1 if "var" can attain values >= 1.
1511 * Return 0 otherwise.
1512 */
at_least_one(struct isl_tab * tab,struct isl_tab_var * var)1513 static int at_least_one(struct isl_tab *tab, struct isl_tab_var *var)
1514 {
1515 int row, col;
1516 isl_int *r;
1517
1518 if (max_is_manifestly_unbounded(tab, var))
1519 return 1;
1520 if (to_row(tab, var, 1) < 0)
1521 return -1;
1522 r = tab->mat->row[var->index];
1523 while (isl_int_lt(r[1], r[0])) {
1524 find_pivot(tab, var, var, 1, &row, &col);
1525 if (row == -1)
1526 return isl_int_ge(r[1], r[0]);
1527 if (row == var->index) /* manifestly unbounded */
1528 return 1;
1529 if (isl_tab_pivot(tab, row, col) < 0)
1530 return -1;
1531 }
1532 return 1;
1533 }
1534
swap_cols(struct isl_tab * tab,int col1,int col2)1535 static void swap_cols(struct isl_tab *tab, int col1, int col2)
1536 {
1537 int t;
1538 unsigned off = 2 + tab->M;
1539 t = tab->col_var[col1];
1540 tab->col_var[col1] = tab->col_var[col2];
1541 tab->col_var[col2] = t;
1542 var_from_col(tab, col1)->index = col1;
1543 var_from_col(tab, col2)->index = col2;
1544 tab->mat = isl_mat_swap_cols(tab->mat, off + col1, off + col2);
1545 }
1546
1547 /* Mark column with index "col" as representing a zero variable.
1548 * If we may need to undo the operation the column is kept,
1549 * but no longer considered.
1550 * Otherwise, the column is simply removed.
1551 *
1552 * The column may be interchanged with some other column. If it
1553 * is interchanged with a later column, return 1. Otherwise return 0.
1554 * If the columns are checked in order in the calling function,
1555 * then a return value of 1 means that the column with the given
1556 * column number may now contain a different column that
1557 * hasn't been checked yet.
1558 */
isl_tab_kill_col(struct isl_tab * tab,int col)1559 int isl_tab_kill_col(struct isl_tab *tab, int col)
1560 {
1561 var_from_col(tab, col)->is_zero = 1;
1562 if (tab->need_undo) {
1563 if (isl_tab_push_var(tab, isl_tab_undo_zero,
1564 var_from_col(tab, col)) < 0)
1565 return -1;
1566 if (col != tab->n_dead)
1567 swap_cols(tab, col, tab->n_dead);
1568 tab->n_dead++;
1569 return 0;
1570 } else {
1571 if (col != tab->n_col - 1)
1572 swap_cols(tab, col, tab->n_col - 1);
1573 var_from_col(tab, tab->n_col - 1)->index = -1;
1574 tab->n_col--;
1575 return 1;
1576 }
1577 }
1578
row_is_manifestly_non_integral(struct isl_tab * tab,int row)1579 static int row_is_manifestly_non_integral(struct isl_tab *tab, int row)
1580 {
1581 unsigned off = 2 + tab->M;
1582
1583 if (tab->M && !isl_int_eq(tab->mat->row[row][2],
1584 tab->mat->row[row][0]))
1585 return 0;
1586 if (isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
1587 tab->n_col - tab->n_dead) != -1)
1588 return 0;
1589
1590 return !isl_int_is_divisible_by(tab->mat->row[row][1],
1591 tab->mat->row[row][0]);
1592 }
1593
1594 /* For integer tableaus, check if any of the coordinates are stuck
1595 * at a non-integral value.
1596 */
tab_is_manifestly_empty(struct isl_tab * tab)1597 static int tab_is_manifestly_empty(struct isl_tab *tab)
1598 {
1599 int i;
1600
1601 if (tab->empty)
1602 return 1;
1603 if (tab->rational)
1604 return 0;
1605
1606 for (i = 0; i < tab->n_var; ++i) {
1607 if (!tab->var[i].is_row)
1608 continue;
1609 if (row_is_manifestly_non_integral(tab, tab->var[i].index))
1610 return 1;
1611 }
1612
1613 return 0;
1614 }
1615
1616 /* Row variable "var" is non-negative and cannot attain any values
1617 * larger than zero. This means that the coefficients of the unrestricted
1618 * column variables are zero and that the coefficients of the non-negative
1619 * column variables are zero or negative.
1620 * Each of the non-negative variables with a negative coefficient can
1621 * then also be written as the negative sum of non-negative variables
1622 * and must therefore also be zero.
1623 *
1624 * If "temp_var" is set, then "var" is a temporary variable that
1625 * will be removed after this function returns and for which
1626 * no information is recorded on the undo stack.
1627 * Do not add any undo records involving this variable in this case
1628 * since the variable will have been removed before any future undo
1629 * operations. Also avoid marking the variable as redundant,
1630 * since that either adds an undo record or needlessly removes the row
1631 * (the caller will take care of removing the row).
1632 */
1633 static isl_stat close_row(struct isl_tab *tab, struct isl_tab_var *var,
1634 int temp_var) WARN_UNUSED;
close_row(struct isl_tab * tab,struct isl_tab_var * var,int temp_var)1635 static isl_stat close_row(struct isl_tab *tab, struct isl_tab_var *var,
1636 int temp_var)
1637 {
1638 int j;
1639 struct isl_mat *mat = tab->mat;
1640 unsigned off = 2 + tab->M;
1641
1642 if (!var->is_nonneg)
1643 isl_die(isl_tab_get_ctx(tab), isl_error_internal,
1644 "expecting non-negative variable",
1645 return isl_stat_error);
1646 var->is_zero = 1;
1647 if (!temp_var && tab->need_undo)
1648 if (isl_tab_push_var(tab, isl_tab_undo_zero, var) < 0)
1649 return isl_stat_error;
1650 for (j = tab->n_dead; j < tab->n_col; ++j) {
1651 int recheck;
1652 if (isl_int_is_zero(mat->row[var->index][off + j]))
1653 continue;
1654 if (isl_int_is_pos(mat->row[var->index][off + j]))
1655 isl_die(isl_tab_get_ctx(tab), isl_error_internal,
1656 "row cannot have positive coefficients",
1657 return isl_stat_error);
1658 recheck = isl_tab_kill_col(tab, j);
1659 if (recheck < 0)
1660 return isl_stat_error;
1661 if (recheck)
1662 --j;
1663 }
1664 if (!temp_var && isl_tab_mark_redundant(tab, var->index) < 0)
1665 return isl_stat_error;
1666 if (tab_is_manifestly_empty(tab) && isl_tab_mark_empty(tab) < 0)
1667 return isl_stat_error;
1668 return isl_stat_ok;
1669 }
1670
1671 /* Add a constraint to the tableau and allocate a row for it.
1672 * Return the index into the constraint array "con".
1673 *
1674 * This function assumes that at least one more row and at least
1675 * one more element in the constraint array are available in the tableau.
1676 */
isl_tab_allocate_con(struct isl_tab * tab)1677 int isl_tab_allocate_con(struct isl_tab *tab)
1678 {
1679 int r;
1680
1681 isl_assert(tab->mat->ctx, tab->n_row < tab->mat->n_row, return -1);
1682 isl_assert(tab->mat->ctx, tab->n_con < tab->max_con, return -1);
1683
1684 r = tab->n_con;
1685 tab->con[r].index = tab->n_row;
1686 tab->con[r].is_row = 1;
1687 tab->con[r].is_nonneg = 0;
1688 tab->con[r].is_zero = 0;
1689 tab->con[r].is_redundant = 0;
1690 tab->con[r].frozen = 0;
1691 tab->con[r].negated = 0;
1692 tab->row_var[tab->n_row] = ~r;
1693
1694 tab->n_row++;
1695 tab->n_con++;
1696 if (isl_tab_push_var(tab, isl_tab_undo_allocate, &tab->con[r]) < 0)
1697 return -1;
1698
1699 return r;
1700 }
1701
1702 /* Move the entries in tab->var up one position, starting at "first",
1703 * creating room for an extra entry at position "first".
1704 * Since some of the entries of tab->row_var and tab->col_var contain
1705 * indices into this array, they have to be updated accordingly.
1706 */
var_insert_entry(struct isl_tab * tab,int first)1707 static int var_insert_entry(struct isl_tab *tab, int first)
1708 {
1709 int i;
1710
1711 if (tab->n_var >= tab->max_var)
1712 isl_die(isl_tab_get_ctx(tab), isl_error_internal,
1713 "not enough room for new variable", return -1);
1714 if (first > tab->n_var)
1715 isl_die(isl_tab_get_ctx(tab), isl_error_internal,
1716 "invalid initial position", return -1);
1717
1718 for (i = tab->n_var - 1; i >= first; --i) {
1719 tab->var[i + 1] = tab->var[i];
1720 if (tab->var[i + 1].is_row)
1721 tab->row_var[tab->var[i + 1].index]++;
1722 else
1723 tab->col_var[tab->var[i + 1].index]++;
1724 }
1725
1726 tab->n_var++;
1727
1728 return 0;
1729 }
1730
1731 /* Drop the entry at position "first" in tab->var, moving all
1732 * subsequent entries down.
1733 * Since some of the entries of tab->row_var and tab->col_var contain
1734 * indices into this array, they have to be updated accordingly.
1735 */
var_drop_entry(struct isl_tab * tab,int first)1736 static int var_drop_entry(struct isl_tab *tab, int first)
1737 {
1738 int i;
1739
1740 if (first >= tab->n_var)
1741 isl_die(isl_tab_get_ctx(tab), isl_error_internal,
1742 "invalid initial position", return -1);
1743
1744 tab->n_var--;
1745
1746 for (i = first; i < tab->n_var; ++i) {
1747 tab->var[i] = tab->var[i + 1];
1748 if (tab->var[i + 1].is_row)
1749 tab->row_var[tab->var[i].index]--;
1750 else
1751 tab->col_var[tab->var[i].index]--;
1752 }
1753
1754 return 0;
1755 }
1756
1757 /* Add a variable to the tableau at position "r" and allocate a column for it.
1758 * Return the index into the variable array "var", i.e., "r",
1759 * or -1 on error.
1760 */
isl_tab_insert_var(struct isl_tab * tab,int r)1761 int isl_tab_insert_var(struct isl_tab *tab, int r)
1762 {
1763 int i;
1764 unsigned off = 2 + tab->M;
1765
1766 isl_assert(tab->mat->ctx, tab->n_col < tab->mat->n_col, return -1);
1767
1768 if (var_insert_entry(tab, r) < 0)
1769 return -1;
1770
1771 tab->var[r].index = tab->n_col;
1772 tab->var[r].is_row = 0;
1773 tab->var[r].is_nonneg = 0;
1774 tab->var[r].is_zero = 0;
1775 tab->var[r].is_redundant = 0;
1776 tab->var[r].frozen = 0;
1777 tab->var[r].negated = 0;
1778 tab->col_var[tab->n_col] = r;
1779
1780 for (i = 0; i < tab->n_row; ++i)
1781 isl_int_set_si(tab->mat->row[i][off + tab->n_col], 0);
1782
1783 tab->n_col++;
1784 if (isl_tab_push_var(tab, isl_tab_undo_allocate, &tab->var[r]) < 0)
1785 return -1;
1786
1787 return r;
1788 }
1789
1790 /* Add a variable to the tableau and allocate a column for it.
1791 * Return the index into the variable array "var".
1792 */
isl_tab_allocate_var(struct isl_tab * tab)1793 int isl_tab_allocate_var(struct isl_tab *tab)
1794 {
1795 if (!tab)
1796 return -1;
1797
1798 return isl_tab_insert_var(tab, tab->n_var);
1799 }
1800
1801 /* Add a row to the tableau. The row is given as an affine combination
1802 * of the original variables and needs to be expressed in terms of the
1803 * column variables.
1804 *
1805 * This function assumes that at least one more row and at least
1806 * one more element in the constraint array are available in the tableau.
1807 *
1808 * We add each term in turn.
1809 * If r = n/d_r is the current sum and we need to add k x, then
1810 * if x is a column variable, we increase the numerator of
1811 * this column by k d_r
1812 * if x = f/d_x is a row variable, then the new representation of r is
1813 *
1814 * n k f d_x/g n + d_r/g k f m/d_r n + m/d_g k f
1815 * --- + --- = ------------------- = -------------------
1816 * d_r d_r d_r d_x/g m
1817 *
1818 * with g the gcd of d_r and d_x and m the lcm of d_r and d_x.
1819 *
1820 * If tab->M is set, then, internally, each variable x is represented
1821 * as x' - M. We then also need no subtract k d_r from the coefficient of M.
1822 */
isl_tab_add_row(struct isl_tab * tab,isl_int * line)1823 int isl_tab_add_row(struct isl_tab *tab, isl_int *line)
1824 {
1825 int i;
1826 int r;
1827 isl_int *row;
1828 isl_int a, b;
1829 unsigned off = 2 + tab->M;
1830
1831 r = isl_tab_allocate_con(tab);
1832 if (r < 0)
1833 return -1;
1834
1835 isl_int_init(a);
1836 isl_int_init(b);
1837 row = tab->mat->row[tab->con[r].index];
1838 isl_int_set_si(row[0], 1);
1839 isl_int_set(row[1], line[0]);
1840 isl_seq_clr(row + 2, tab->M + tab->n_col);
1841 for (i = 0; i < tab->n_var; ++i) {
1842 if (tab->var[i].is_zero)
1843 continue;
1844 if (tab->var[i].is_row) {
1845 isl_int_lcm(a,
1846 row[0], tab->mat->row[tab->var[i].index][0]);
1847 isl_int_swap(a, row[0]);
1848 isl_int_divexact(a, row[0], a);
1849 isl_int_divexact(b,
1850 row[0], tab->mat->row[tab->var[i].index][0]);
1851 isl_int_mul(b, b, line[1 + i]);
1852 isl_seq_combine(row + 1, a, row + 1,
1853 b, tab->mat->row[tab->var[i].index] + 1,
1854 1 + tab->M + tab->n_col);
1855 } else
1856 isl_int_addmul(row[off + tab->var[i].index],
1857 line[1 + i], row[0]);
1858 if (tab->M && i >= tab->n_param && i < tab->n_var - tab->n_div)
1859 isl_int_submul(row[2], line[1 + i], row[0]);
1860 }
1861 isl_seq_normalize(tab->mat->ctx, row, off + tab->n_col);
1862 isl_int_clear(a);
1863 isl_int_clear(b);
1864
1865 if (tab->row_sign)
1866 tab->row_sign[tab->con[r].index] = isl_tab_row_unknown;
1867
1868 return r;
1869 }
1870
drop_row(struct isl_tab * tab,int row)1871 static isl_stat drop_row(struct isl_tab *tab, int row)
1872 {
1873 isl_assert(tab->mat->ctx, ~tab->row_var[row] == tab->n_con - 1,
1874 return isl_stat_error);
1875 if (row != tab->n_row - 1)
1876 swap_rows(tab, row, tab->n_row - 1);
1877 tab->n_row--;
1878 tab->n_con--;
1879 return isl_stat_ok;
1880 }
1881
1882 /* Drop the variable in column "col" along with the column.
1883 * The column is removed first because it may need to be moved
1884 * into the last position and this process requires
1885 * the contents of the col_var array in a state
1886 * before the removal of the variable.
1887 */
drop_col(struct isl_tab * tab,int col)1888 static isl_stat drop_col(struct isl_tab *tab, int col)
1889 {
1890 int var;
1891
1892 var = tab->col_var[col];
1893 if (col != tab->n_col - 1)
1894 swap_cols(tab, col, tab->n_col - 1);
1895 tab->n_col--;
1896 if (var_drop_entry(tab, var) < 0)
1897 return isl_stat_error;
1898 return isl_stat_ok;
1899 }
1900
1901 /* Add inequality "ineq" and check if it conflicts with the
1902 * previously added constraints or if it is obviously redundant.
1903 *
1904 * This function assumes that at least one more row and at least
1905 * one more element in the constraint array are available in the tableau.
1906 */
isl_tab_add_ineq(struct isl_tab * tab,isl_int * ineq)1907 isl_stat isl_tab_add_ineq(struct isl_tab *tab, isl_int *ineq)
1908 {
1909 int r;
1910 int sgn;
1911 isl_int cst;
1912
1913 if (!tab)
1914 return isl_stat_error;
1915 if (tab->bmap) {
1916 struct isl_basic_map *bmap = tab->bmap;
1917
1918 isl_assert(tab->mat->ctx, tab->n_eq == bmap->n_eq,
1919 return isl_stat_error);
1920 isl_assert(tab->mat->ctx,
1921 tab->n_con == bmap->n_eq + bmap->n_ineq,
1922 return isl_stat_error);
1923 tab->bmap = isl_basic_map_add_ineq(tab->bmap, ineq);
1924 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1925 return isl_stat_error;
1926 if (!tab->bmap)
1927 return isl_stat_error;
1928 }
1929 if (tab->cone) {
1930 isl_int_init(cst);
1931 isl_int_set_si(cst, 0);
1932 isl_int_swap(ineq[0], cst);
1933 }
1934 r = isl_tab_add_row(tab, ineq);
1935 if (tab->cone) {
1936 isl_int_swap(ineq[0], cst);
1937 isl_int_clear(cst);
1938 }
1939 if (r < 0)
1940 return isl_stat_error;
1941 tab->con[r].is_nonneg = 1;
1942 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1943 return isl_stat_error;
1944 if (isl_tab_row_is_redundant(tab, tab->con[r].index)) {
1945 if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
1946 return isl_stat_error;
1947 return isl_stat_ok;
1948 }
1949
1950 sgn = restore_row(tab, &tab->con[r]);
1951 if (sgn < -1)
1952 return isl_stat_error;
1953 if (sgn < 0)
1954 return isl_tab_mark_empty(tab);
1955 if (tab->con[r].is_row && isl_tab_row_is_redundant(tab, tab->con[r].index))
1956 if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
1957 return isl_stat_error;
1958 return isl_stat_ok;
1959 }
1960
1961 /* Pivot a non-negative variable down until it reaches the value zero
1962 * and then pivot the variable into a column position.
1963 */
1964 static int to_col(struct isl_tab *tab, struct isl_tab_var *var) WARN_UNUSED;
to_col(struct isl_tab * tab,struct isl_tab_var * var)1965 static int to_col(struct isl_tab *tab, struct isl_tab_var *var)
1966 {
1967 int i;
1968 int row, col;
1969 unsigned off = 2 + tab->M;
1970
1971 if (!var->is_row)
1972 return 0;
1973
1974 while (isl_int_is_pos(tab->mat->row[var->index][1])) {
1975 find_pivot(tab, var, NULL, -1, &row, &col);
1976 isl_assert(tab->mat->ctx, row != -1, return -1);
1977 if (isl_tab_pivot(tab, row, col) < 0)
1978 return -1;
1979 if (!var->is_row)
1980 return 0;
1981 }
1982
1983 for (i = tab->n_dead; i < tab->n_col; ++i)
1984 if (!isl_int_is_zero(tab->mat->row[var->index][off + i]))
1985 break;
1986
1987 isl_assert(tab->mat->ctx, i < tab->n_col, return -1);
1988 if (isl_tab_pivot(tab, var->index, i) < 0)
1989 return -1;
1990
1991 return 0;
1992 }
1993
1994 /* We assume Gaussian elimination has been performed on the equalities.
1995 * The equalities can therefore never conflict.
1996 * Adding the equalities is currently only really useful for a later call
1997 * to isl_tab_ineq_type.
1998 *
1999 * This function assumes that at least one more row and at least
2000 * one more element in the constraint array are available in the tableau.
2001 */
add_eq(struct isl_tab * tab,isl_int * eq)2002 static struct isl_tab *add_eq(struct isl_tab *tab, isl_int *eq)
2003 {
2004 int i;
2005 int r;
2006
2007 if (!tab)
2008 return NULL;
2009 r = isl_tab_add_row(tab, eq);
2010 if (r < 0)
2011 goto error;
2012
2013 r = tab->con[r].index;
2014 i = isl_seq_first_non_zero(tab->mat->row[r] + 2 + tab->M + tab->n_dead,
2015 tab->n_col - tab->n_dead);
2016 isl_assert(tab->mat->ctx, i >= 0, goto error);
2017 i += tab->n_dead;
2018 if (isl_tab_pivot(tab, r, i) < 0)
2019 goto error;
2020 if (isl_tab_kill_col(tab, i) < 0)
2021 goto error;
2022 tab->n_eq++;
2023
2024 return tab;
2025 error:
2026 isl_tab_free(tab);
2027 return NULL;
2028 }
2029
2030 /* Does the sample value of row "row" of "tab" involve the big parameter,
2031 * if any?
2032 */
row_is_big(struct isl_tab * tab,int row)2033 static int row_is_big(struct isl_tab *tab, int row)
2034 {
2035 return tab->M && !isl_int_is_zero(tab->mat->row[row][2]);
2036 }
2037
row_is_manifestly_zero(struct isl_tab * tab,int row)2038 static int row_is_manifestly_zero(struct isl_tab *tab, int row)
2039 {
2040 unsigned off = 2 + tab->M;
2041
2042 if (!isl_int_is_zero(tab->mat->row[row][1]))
2043 return 0;
2044 if (row_is_big(tab, row))
2045 return 0;
2046 return isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
2047 tab->n_col - tab->n_dead) == -1;
2048 }
2049
2050 /* Add an equality that is known to be valid for the given tableau.
2051 *
2052 * This function assumes that at least one more row and at least
2053 * one more element in the constraint array are available in the tableau.
2054 */
isl_tab_add_valid_eq(struct isl_tab * tab,isl_int * eq)2055 int isl_tab_add_valid_eq(struct isl_tab *tab, isl_int *eq)
2056 {
2057 struct isl_tab_var *var;
2058 int r;
2059
2060 if (!tab)
2061 return -1;
2062 r = isl_tab_add_row(tab, eq);
2063 if (r < 0)
2064 return -1;
2065
2066 var = &tab->con[r];
2067 r = var->index;
2068 if (row_is_manifestly_zero(tab, r)) {
2069 var->is_zero = 1;
2070 if (isl_tab_mark_redundant(tab, r) < 0)
2071 return -1;
2072 return 0;
2073 }
2074
2075 if (isl_int_is_neg(tab->mat->row[r][1])) {
2076 isl_seq_neg(tab->mat->row[r] + 1, tab->mat->row[r] + 1,
2077 1 + tab->n_col);
2078 var->negated = 1;
2079 }
2080 var->is_nonneg = 1;
2081 if (to_col(tab, var) < 0)
2082 return -1;
2083 var->is_nonneg = 0;
2084 if (isl_tab_kill_col(tab, var->index) < 0)
2085 return -1;
2086
2087 return 0;
2088 }
2089
2090 /* Add a zero row to "tab" and return the corresponding index
2091 * in the constraint array.
2092 *
2093 * This function assumes that at least one more row and at least
2094 * one more element in the constraint array are available in the tableau.
2095 */
add_zero_row(struct isl_tab * tab)2096 static int add_zero_row(struct isl_tab *tab)
2097 {
2098 int r;
2099 isl_int *row;
2100
2101 r = isl_tab_allocate_con(tab);
2102 if (r < 0)
2103 return -1;
2104
2105 row = tab->mat->row[tab->con[r].index];
2106 isl_seq_clr(row + 1, 1 + tab->M + tab->n_col);
2107 isl_int_set_si(row[0], 1);
2108
2109 return r;
2110 }
2111
2112 /* Add equality "eq" and check if it conflicts with the
2113 * previously added constraints or if it is obviously redundant.
2114 *
2115 * This function assumes that at least one more row and at least
2116 * one more element in the constraint array are available in the tableau.
2117 * If tab->bmap is set, then two rows are needed instead of one.
2118 */
isl_tab_add_eq(struct isl_tab * tab,isl_int * eq)2119 isl_stat isl_tab_add_eq(struct isl_tab *tab, isl_int *eq)
2120 {
2121 struct isl_tab_undo *snap = NULL;
2122 struct isl_tab_var *var;
2123 int r;
2124 int row;
2125 int sgn;
2126 isl_int cst;
2127
2128 if (!tab)
2129 return isl_stat_error;
2130 isl_assert(tab->mat->ctx, !tab->M, return isl_stat_error);
2131
2132 if (tab->need_undo)
2133 snap = isl_tab_snap(tab);
2134
2135 if (tab->cone) {
2136 isl_int_init(cst);
2137 isl_int_set_si(cst, 0);
2138 isl_int_swap(eq[0], cst);
2139 }
2140 r = isl_tab_add_row(tab, eq);
2141 if (tab->cone) {
2142 isl_int_swap(eq[0], cst);
2143 isl_int_clear(cst);
2144 }
2145 if (r < 0)
2146 return isl_stat_error;
2147
2148 var = &tab->con[r];
2149 row = var->index;
2150 if (row_is_manifestly_zero(tab, row)) {
2151 if (snap)
2152 return isl_tab_rollback(tab, snap);
2153 return drop_row(tab, row);
2154 }
2155
2156 if (tab->bmap) {
2157 tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq);
2158 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
2159 return isl_stat_error;
2160 isl_seq_neg(eq, eq, 1 + tab->n_var);
2161 tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq);
2162 isl_seq_neg(eq, eq, 1 + tab->n_var);
2163 if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
2164 return isl_stat_error;
2165 if (!tab->bmap)
2166 return isl_stat_error;
2167 if (add_zero_row(tab) < 0)
2168 return isl_stat_error;
2169 }
2170
2171 sgn = isl_int_sgn(tab->mat->row[row][1]);
2172
2173 if (sgn > 0) {
2174 isl_seq_neg(tab->mat->row[row] + 1, tab->mat->row[row] + 1,
2175 1 + tab->n_col);
2176 var->negated = 1;
2177 sgn = -1;
2178 }
2179
2180 if (sgn < 0) {
2181 sgn = sign_of_max(tab, var);
2182 if (sgn < -1)
2183 return isl_stat_error;
2184 if (sgn < 0) {
2185 if (isl_tab_mark_empty(tab) < 0)
2186 return isl_stat_error;
2187 return isl_stat_ok;
2188 }
2189 }
2190
2191 var->is_nonneg = 1;
2192 if (to_col(tab, var) < 0)
2193 return isl_stat_error;
2194 var->is_nonneg = 0;
2195 if (isl_tab_kill_col(tab, var->index) < 0)
2196 return isl_stat_error;
2197
2198 return isl_stat_ok;
2199 }
2200
2201 /* Construct and return an inequality that expresses an upper bound
2202 * on the given div.
2203 * In particular, if the div is given by
2204 *
2205 * d = floor(e/m)
2206 *
2207 * then the inequality expresses
2208 *
2209 * m d <= e
2210 */
ineq_for_div(__isl_keep isl_basic_map * bmap,unsigned div)2211 static __isl_give isl_vec *ineq_for_div(__isl_keep isl_basic_map *bmap,
2212 unsigned div)
2213 {
2214 isl_size total;
2215 unsigned div_pos;
2216 struct isl_vec *ineq;
2217
2218 total = isl_basic_map_dim(bmap, isl_dim_all);
2219 if (total < 0)
2220 return NULL;
2221
2222 div_pos = 1 + total - bmap->n_div + div;
2223
2224 ineq = isl_vec_alloc(bmap->ctx, 1 + total);
2225 if (!ineq)
2226 return NULL;
2227
2228 isl_seq_cpy(ineq->el, bmap->div[div] + 1, 1 + total);
2229 isl_int_neg(ineq->el[div_pos], bmap->div[div][0]);
2230 return ineq;
2231 }
2232
2233 /* For a div d = floor(f/m), add the constraints
2234 *
2235 * f - m d >= 0
2236 * -(f-(m-1)) + m d >= 0
2237 *
2238 * Note that the second constraint is the negation of
2239 *
2240 * f - m d >= m
2241 *
2242 * If add_ineq is not NULL, then this function is used
2243 * instead of isl_tab_add_ineq to effectively add the inequalities.
2244 *
2245 * This function assumes that at least two more rows and at least
2246 * two more elements in the constraint array are available in the tableau.
2247 */
add_div_constraints(struct isl_tab * tab,unsigned div,isl_stat (* add_ineq)(void * user,isl_int *),void * user)2248 static isl_stat add_div_constraints(struct isl_tab *tab, unsigned div,
2249 isl_stat (*add_ineq)(void *user, isl_int *), void *user)
2250 {
2251 isl_size total;
2252 unsigned div_pos;
2253 struct isl_vec *ineq;
2254
2255 total = isl_basic_map_dim(tab->bmap, isl_dim_all);
2256 if (total < 0)
2257 return isl_stat_error;
2258 div_pos = 1 + total - tab->bmap->n_div + div;
2259
2260 ineq = ineq_for_div(tab->bmap, div);
2261 if (!ineq)
2262 goto error;
2263
2264 if (add_ineq) {
2265 if (add_ineq(user, ineq->el) < 0)
2266 goto error;
2267 } else {
2268 if (isl_tab_add_ineq(tab, ineq->el) < 0)
2269 goto error;
2270 }
2271
2272 isl_seq_neg(ineq->el, tab->bmap->div[div] + 1, 1 + total);
2273 isl_int_set(ineq->el[div_pos], tab->bmap->div[div][0]);
2274 isl_int_add(ineq->el[0], ineq->el[0], ineq->el[div_pos]);
2275 isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
2276
2277 if (add_ineq) {
2278 if (add_ineq(user, ineq->el) < 0)
2279 goto error;
2280 } else {
2281 if (isl_tab_add_ineq(tab, ineq->el) < 0)
2282 goto error;
2283 }
2284
2285 isl_vec_free(ineq);
2286
2287 return isl_stat_ok;
2288 error:
2289 isl_vec_free(ineq);
2290 return isl_stat_error;
2291 }
2292
2293 /* Check whether the div described by "div" is obviously non-negative.
2294 * If we are using a big parameter, then we will encode the div
2295 * as div' = M + div, which is always non-negative.
2296 * Otherwise, we check whether div is a non-negative affine combination
2297 * of non-negative variables.
2298 */
div_is_nonneg(struct isl_tab * tab,__isl_keep isl_vec * div)2299 static int div_is_nonneg(struct isl_tab *tab, __isl_keep isl_vec *div)
2300 {
2301 int i;
2302
2303 if (tab->M)
2304 return 1;
2305
2306 if (isl_int_is_neg(div->el[1]))
2307 return 0;
2308
2309 for (i = 0; i < tab->n_var; ++i) {
2310 if (isl_int_is_neg(div->el[2 + i]))
2311 return 0;
2312 if (isl_int_is_zero(div->el[2 + i]))
2313 continue;
2314 if (!tab->var[i].is_nonneg)
2315 return 0;
2316 }
2317
2318 return 1;
2319 }
2320
2321 /* Insert an extra div, prescribed by "div", to the tableau and
2322 * the associated bmap (which is assumed to be non-NULL).
2323 * The extra integer division is inserted at (tableau) position "pos".
2324 * Return "pos" or -1 if an error occurred.
2325 *
2326 * If add_ineq is not NULL, then this function is used instead
2327 * of isl_tab_add_ineq to add the div constraints.
2328 * This complication is needed because the code in isl_tab_pip
2329 * wants to perform some extra processing when an inequality
2330 * is added to the tableau.
2331 */
isl_tab_insert_div(struct isl_tab * tab,int pos,__isl_keep isl_vec * div,isl_stat (* add_ineq)(void * user,isl_int *),void * user)2332 int isl_tab_insert_div(struct isl_tab *tab, int pos, __isl_keep isl_vec *div,
2333 isl_stat (*add_ineq)(void *user, isl_int *), void *user)
2334 {
2335 int r;
2336 int nonneg;
2337 isl_size n_div;
2338 int o_div;
2339
2340 if (!tab || !div)
2341 return -1;
2342
2343 if (div->size != 1 + 1 + tab->n_var)
2344 isl_die(isl_tab_get_ctx(tab), isl_error_invalid,
2345 "unexpected size", return -1);
2346
2347 n_div = isl_basic_map_dim(tab->bmap, isl_dim_div);
2348 if (n_div < 0)
2349 return -1;
2350 o_div = tab->n_var - n_div;
2351 if (pos < o_div || pos > tab->n_var)
2352 isl_die(isl_tab_get_ctx(tab), isl_error_invalid,
2353 "invalid position", return -1);
2354
2355 nonneg = div_is_nonneg(tab, div);
2356
2357 if (isl_tab_extend_cons(tab, 3) < 0)
2358 return -1;
2359 if (isl_tab_extend_vars(tab, 1) < 0)
2360 return -1;
2361 r = isl_tab_insert_var(tab, pos);
2362 if (r < 0)
2363 return -1;
2364
2365 if (nonneg)
2366 tab->var[r].is_nonneg = 1;
2367
2368 tab->bmap = isl_basic_map_insert_div(tab->bmap, pos - o_div, div);
2369 if (!tab->bmap)
2370 return -1;
2371 if (isl_tab_push_var(tab, isl_tab_undo_bmap_div, &tab->var[r]) < 0)
2372 return -1;
2373
2374 if (add_div_constraints(tab, pos - o_div, add_ineq, user) < 0)
2375 return -1;
2376
2377 return r;
2378 }
2379
2380 /* Add an extra div, prescribed by "div", to the tableau and
2381 * the associated bmap (which is assumed to be non-NULL).
2382 */
isl_tab_add_div(struct isl_tab * tab,__isl_keep isl_vec * div)2383 int isl_tab_add_div(struct isl_tab *tab, __isl_keep isl_vec *div)
2384 {
2385 if (!tab)
2386 return -1;
2387 return isl_tab_insert_div(tab, tab->n_var, div, NULL, NULL);
2388 }
2389
2390 /* If "track" is set, then we want to keep track of all constraints in tab
2391 * in its bmap field. This field is initialized from a copy of "bmap",
2392 * so we need to make sure that all constraints in "bmap" also appear
2393 * in the constructed tab.
2394 */
isl_tab_from_basic_map(__isl_keep isl_basic_map * bmap,int track)2395 __isl_give struct isl_tab *isl_tab_from_basic_map(
2396 __isl_keep isl_basic_map *bmap, int track)
2397 {
2398 int i;
2399 struct isl_tab *tab;
2400 isl_size total;
2401
2402 total = isl_basic_map_dim(bmap, isl_dim_all);
2403 if (total < 0)
2404 return NULL;
2405 tab = isl_tab_alloc(bmap->ctx, total + bmap->n_ineq + 1, total, 0);
2406 if (!tab)
2407 return NULL;
2408 tab->preserve = track;
2409 tab->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
2410 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) {
2411 if (isl_tab_mark_empty(tab) < 0)
2412 goto error;
2413 goto done;
2414 }
2415 for (i = 0; i < bmap->n_eq; ++i) {
2416 tab = add_eq(tab, bmap->eq[i]);
2417 if (!tab)
2418 return tab;
2419 }
2420 for (i = 0; i < bmap->n_ineq; ++i) {
2421 if (isl_tab_add_ineq(tab, bmap->ineq[i]) < 0)
2422 goto error;
2423 if (tab->empty)
2424 goto done;
2425 }
2426 done:
2427 if (track && isl_tab_track_bmap(tab, isl_basic_map_copy(bmap)) < 0)
2428 goto error;
2429 return tab;
2430 error:
2431 isl_tab_free(tab);
2432 return NULL;
2433 }
2434
isl_tab_from_basic_set(__isl_keep isl_basic_set * bset,int track)2435 __isl_give struct isl_tab *isl_tab_from_basic_set(
2436 __isl_keep isl_basic_set *bset, int track)
2437 {
2438 return isl_tab_from_basic_map(bset, track);
2439 }
2440
2441 /* Construct a tableau corresponding to the recession cone of "bset".
2442 */
isl_tab_from_recession_cone(__isl_keep isl_basic_set * bset,int parametric)2443 struct isl_tab *isl_tab_from_recession_cone(__isl_keep isl_basic_set *bset,
2444 int parametric)
2445 {
2446 isl_int cst;
2447 int i;
2448 struct isl_tab *tab;
2449 isl_size offset = 0;
2450 isl_size total;
2451
2452 total = isl_basic_set_dim(bset, isl_dim_all);
2453 if (parametric)
2454 offset = isl_basic_set_dim(bset, isl_dim_param);
2455 if (total < 0 || offset < 0)
2456 return NULL;
2457 tab = isl_tab_alloc(bset->ctx, bset->n_eq + bset->n_ineq,
2458 total - offset, 0);
2459 if (!tab)
2460 return NULL;
2461 tab->rational = ISL_F_ISSET(bset, ISL_BASIC_SET_RATIONAL);
2462 tab->cone = 1;
2463
2464 isl_int_init(cst);
2465 isl_int_set_si(cst, 0);
2466 for (i = 0; i < bset->n_eq; ++i) {
2467 isl_int_swap(bset->eq[i][offset], cst);
2468 if (offset > 0) {
2469 if (isl_tab_add_eq(tab, bset->eq[i] + offset) < 0)
2470 goto error;
2471 } else
2472 tab = add_eq(tab, bset->eq[i]);
2473 isl_int_swap(bset->eq[i][offset], cst);
2474 if (!tab)
2475 goto done;
2476 }
2477 for (i = 0; i < bset->n_ineq; ++i) {
2478 int r;
2479 isl_int_swap(bset->ineq[i][offset], cst);
2480 r = isl_tab_add_row(tab, bset->ineq[i] + offset);
2481 isl_int_swap(bset->ineq[i][offset], cst);
2482 if (r < 0)
2483 goto error;
2484 tab->con[r].is_nonneg = 1;
2485 if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
2486 goto error;
2487 }
2488 done:
2489 isl_int_clear(cst);
2490 return tab;
2491 error:
2492 isl_int_clear(cst);
2493 isl_tab_free(tab);
2494 return NULL;
2495 }
2496
2497 /* Assuming "tab" is the tableau of a cone, check if the cone is
2498 * bounded, i.e., if it is empty or only contains the origin.
2499 */
isl_tab_cone_is_bounded(struct isl_tab * tab)2500 isl_bool isl_tab_cone_is_bounded(struct isl_tab *tab)
2501 {
2502 int i;
2503
2504 if (!tab)
2505 return isl_bool_error;
2506 if (tab->empty)
2507 return isl_bool_true;
2508 if (tab->n_dead == tab->n_col)
2509 return isl_bool_true;
2510
2511 for (;;) {
2512 for (i = tab->n_redundant; i < tab->n_row; ++i) {
2513 struct isl_tab_var *var;
2514 int sgn;
2515 var = isl_tab_var_from_row(tab, i);
2516 if (!var->is_nonneg)
2517 continue;
2518 sgn = sign_of_max(tab, var);
2519 if (sgn < -1)
2520 return isl_bool_error;
2521 if (sgn != 0)
2522 return isl_bool_false;
2523 if (close_row(tab, var, 0) < 0)
2524 return isl_bool_error;
2525 break;
2526 }
2527 if (tab->n_dead == tab->n_col)
2528 return isl_bool_true;
2529 if (i == tab->n_row)
2530 return isl_bool_false;
2531 }
2532 }
2533
isl_tab_sample_is_integer(struct isl_tab * tab)2534 int isl_tab_sample_is_integer(struct isl_tab *tab)
2535 {
2536 int i;
2537
2538 if (!tab)
2539 return -1;
2540
2541 for (i = 0; i < tab->n_var; ++i) {
2542 int row;
2543 if (!tab->var[i].is_row)
2544 continue;
2545 row = tab->var[i].index;
2546 if (!isl_int_is_divisible_by(tab->mat->row[row][1],
2547 tab->mat->row[row][0]))
2548 return 0;
2549 }
2550 return 1;
2551 }
2552
extract_integer_sample(struct isl_tab * tab)2553 static struct isl_vec *extract_integer_sample(struct isl_tab *tab)
2554 {
2555 int i;
2556 struct isl_vec *vec;
2557
2558 vec = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
2559 if (!vec)
2560 return NULL;
2561
2562 isl_int_set_si(vec->block.data[0], 1);
2563 for (i = 0; i < tab->n_var; ++i) {
2564 if (!tab->var[i].is_row)
2565 isl_int_set_si(vec->block.data[1 + i], 0);
2566 else {
2567 int row = tab->var[i].index;
2568 isl_int_divexact(vec->block.data[1 + i],
2569 tab->mat->row[row][1], tab->mat->row[row][0]);
2570 }
2571 }
2572
2573 return vec;
2574 }
2575
isl_tab_get_sample_value(struct isl_tab * tab)2576 __isl_give isl_vec *isl_tab_get_sample_value(struct isl_tab *tab)
2577 {
2578 int i;
2579 struct isl_vec *vec;
2580 isl_int m;
2581
2582 if (!tab)
2583 return NULL;
2584
2585 vec = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
2586 if (!vec)
2587 return NULL;
2588
2589 isl_int_init(m);
2590
2591 isl_int_set_si(vec->block.data[0], 1);
2592 for (i = 0; i < tab->n_var; ++i) {
2593 int row;
2594 if (!tab->var[i].is_row) {
2595 isl_int_set_si(vec->block.data[1 + i], 0);
2596 continue;
2597 }
2598 row = tab->var[i].index;
2599 isl_int_gcd(m, vec->block.data[0], tab->mat->row[row][0]);
2600 isl_int_divexact(m, tab->mat->row[row][0], m);
2601 isl_seq_scale(vec->block.data, vec->block.data, m, 1 + i);
2602 isl_int_divexact(m, vec->block.data[0], tab->mat->row[row][0]);
2603 isl_int_mul(vec->block.data[1 + i], m, tab->mat->row[row][1]);
2604 }
2605 vec = isl_vec_normalize(vec);
2606
2607 isl_int_clear(m);
2608 return vec;
2609 }
2610
2611 /* Store the sample value of "var" of "tab" rounded up (if sgn > 0)
2612 * or down (if sgn < 0) to the nearest integer in *v.
2613 */
get_rounded_sample_value(struct isl_tab * tab,struct isl_tab_var * var,int sgn,isl_int * v)2614 static void get_rounded_sample_value(struct isl_tab *tab,
2615 struct isl_tab_var *var, int sgn, isl_int *v)
2616 {
2617 if (!var->is_row)
2618 isl_int_set_si(*v, 0);
2619 else if (sgn > 0)
2620 isl_int_cdiv_q(*v, tab->mat->row[var->index][1],
2621 tab->mat->row[var->index][0]);
2622 else
2623 isl_int_fdiv_q(*v, tab->mat->row[var->index][1],
2624 tab->mat->row[var->index][0]);
2625 }
2626
2627 /* Update "bmap" based on the results of the tableau "tab".
2628 * In particular, implicit equalities are made explicit, redundant constraints
2629 * are removed and if the sample value happens to be integer, it is stored
2630 * in "bmap" (unless "bmap" already had an integer sample).
2631 *
2632 * The tableau is assumed to have been created from "bmap" using
2633 * isl_tab_from_basic_map.
2634 */
isl_basic_map_update_from_tab(__isl_take isl_basic_map * bmap,struct isl_tab * tab)2635 __isl_give isl_basic_map *isl_basic_map_update_from_tab(
2636 __isl_take isl_basic_map *bmap, struct isl_tab *tab)
2637 {
2638 int i;
2639 unsigned n_eq;
2640
2641 if (!bmap)
2642 return NULL;
2643 if (!tab)
2644 return bmap;
2645
2646 n_eq = tab->n_eq;
2647 if (tab->empty)
2648 bmap = isl_basic_map_set_to_empty(bmap);
2649 else
2650 for (i = bmap->n_ineq - 1; i >= 0; --i) {
2651 if (isl_tab_is_equality(tab, n_eq + i))
2652 isl_basic_map_inequality_to_equality(bmap, i);
2653 else if (isl_tab_is_redundant(tab, n_eq + i))
2654 isl_basic_map_drop_inequality(bmap, i);
2655 }
2656 if (bmap->n_eq != n_eq)
2657 bmap = isl_basic_map_gauss(bmap, NULL);
2658 if (!tab->rational &&
2659 bmap && !bmap->sample && isl_tab_sample_is_integer(tab))
2660 bmap->sample = extract_integer_sample(tab);
2661 return bmap;
2662 }
2663
isl_basic_set_update_from_tab(__isl_take isl_basic_set * bset,struct isl_tab * tab)2664 __isl_give isl_basic_set *isl_basic_set_update_from_tab(
2665 __isl_take isl_basic_set *bset, struct isl_tab *tab)
2666 {
2667 return bset_from_bmap(isl_basic_map_update_from_tab(bset_to_bmap(bset),
2668 tab));
2669 }
2670
2671 /* Drop the last constraint added to "tab" in position "r".
2672 * The constraint is expected to have remained in a row.
2673 */
drop_last_con_in_row(struct isl_tab * tab,int r)2674 static isl_stat drop_last_con_in_row(struct isl_tab *tab, int r)
2675 {
2676 if (!tab->con[r].is_row)
2677 isl_die(isl_tab_get_ctx(tab), isl_error_internal,
2678 "row unexpectedly moved to column",
2679 return isl_stat_error);
2680 if (r + 1 != tab->n_con)
2681 isl_die(isl_tab_get_ctx(tab), isl_error_internal,
2682 "additional constraints added", return isl_stat_error);
2683 if (drop_row(tab, tab->con[r].index) < 0)
2684 return isl_stat_error;
2685
2686 return isl_stat_ok;
2687 }
2688
2689 /* Given a non-negative variable "var", temporarily add a new non-negative
2690 * variable that is the opposite of "var", ensuring that "var" can only attain
2691 * the value zero. The new variable is removed again before this function
2692 * returns. However, the effect of forcing "var" to be zero remains.
2693 * If var = n/d is a row variable, then the new variable = -n/d.
2694 * If var is a column variables, then the new variable = -var.
2695 * If the new variable cannot attain non-negative values, then
2696 * the resulting tableau is empty.
2697 * Otherwise, we know the value will be zero and we close the row.
2698 */
cut_to_hyperplane(struct isl_tab * tab,struct isl_tab_var * var)2699 static isl_stat cut_to_hyperplane(struct isl_tab *tab, struct isl_tab_var *var)
2700 {
2701 unsigned r;
2702 isl_int *row;
2703 int sgn;
2704 unsigned off = 2 + tab->M;
2705
2706 if (var->is_zero)
2707 return isl_stat_ok;
2708 if (var->is_redundant || !var->is_nonneg)
2709 isl_die(isl_tab_get_ctx(tab), isl_error_invalid,
2710 "expecting non-redundant non-negative variable",
2711 return isl_stat_error);
2712
2713 if (isl_tab_extend_cons(tab, 1) < 0)
2714 return isl_stat_error;
2715
2716 r = tab->n_con;
2717 tab->con[r].index = tab->n_row;
2718 tab->con[r].is_row = 1;
2719 tab->con[r].is_nonneg = 0;
2720 tab->con[r].is_zero = 0;
2721 tab->con[r].is_redundant = 0;
2722 tab->con[r].frozen = 0;
2723 tab->con[r].negated = 0;
2724 tab->row_var[tab->n_row] = ~r;
2725 row = tab->mat->row[tab->n_row];
2726
2727 if (var->is_row) {
2728 isl_int_set(row[0], tab->mat->row[var->index][0]);
2729 isl_seq_neg(row + 1,
2730 tab->mat->row[var->index] + 1, 1 + tab->n_col);
2731 } else {
2732 isl_int_set_si(row[0], 1);
2733 isl_seq_clr(row + 1, 1 + tab->n_col);
2734 isl_int_set_si(row[off + var->index], -1);
2735 }
2736
2737 tab->n_row++;
2738 tab->n_con++;
2739
2740 sgn = sign_of_max(tab, &tab->con[r]);
2741 if (sgn < -1)
2742 return isl_stat_error;
2743 if (sgn < 0) {
2744 if (drop_last_con_in_row(tab, r) < 0)
2745 return isl_stat_error;
2746 if (isl_tab_mark_empty(tab) < 0)
2747 return isl_stat_error;
2748 return isl_stat_ok;
2749 }
2750 tab->con[r].is_nonneg = 1;
2751 /* sgn == 0 */
2752 if (close_row(tab, &tab->con[r], 1) < 0)
2753 return isl_stat_error;
2754 if (drop_last_con_in_row(tab, r) < 0)
2755 return isl_stat_error;
2756
2757 return isl_stat_ok;
2758 }
2759
2760 /* Check that "con" is a valid constraint position for "tab".
2761 */
isl_tab_check_con(struct isl_tab * tab,int con)2762 static isl_stat isl_tab_check_con(struct isl_tab *tab, int con)
2763 {
2764 if (!tab)
2765 return isl_stat_error;
2766 if (con < 0 || con >= tab->n_con)
2767 isl_die(isl_tab_get_ctx(tab), isl_error_invalid,
2768 "position out of bounds", return isl_stat_error);
2769 return isl_stat_ok;
2770 }
2771
2772 /* Given a tableau "tab" and an inequality constraint "con" of the tableau,
2773 * relax the inequality by one. That is, the inequality r >= 0 is replaced
2774 * by r' = r + 1 >= 0.
2775 * If r is a row variable, we simply increase the constant term by one
2776 * (taking into account the denominator).
2777 * If r is a column variable, then we need to modify each row that
2778 * refers to r = r' - 1 by substituting this equality, effectively
2779 * subtracting the coefficient of the column from the constant.
2780 * We should only do this if the minimum is manifestly unbounded,
2781 * however. Otherwise, we may end up with negative sample values
2782 * for non-negative variables.
2783 * So, if r is a column variable with a minimum that is not
2784 * manifestly unbounded, then we need to move it to a row.
2785 * However, the sample value of this row may be negative,
2786 * even after the relaxation, so we need to restore it.
2787 * We therefore prefer to pivot a column up to a row, if possible.
2788 */
isl_tab_relax(struct isl_tab * tab,int con)2789 int isl_tab_relax(struct isl_tab *tab, int con)
2790 {
2791 struct isl_tab_var *var;
2792
2793 if (!tab)
2794 return -1;
2795
2796 var = &tab->con[con];
2797
2798 if (var->is_row && (var->index < 0 || var->index < tab->n_redundant))
2799 isl_die(tab->mat->ctx, isl_error_invalid,
2800 "cannot relax redundant constraint", return -1);
2801 if (!var->is_row && (var->index < 0 || var->index < tab->n_dead))
2802 isl_die(tab->mat->ctx, isl_error_invalid,
2803 "cannot relax dead constraint", return -1);
2804
2805 if (!var->is_row && !max_is_manifestly_unbounded(tab, var))
2806 if (to_row(tab, var, 1) < 0)
2807 return -1;
2808 if (!var->is_row && !min_is_manifestly_unbounded(tab, var))
2809 if (to_row(tab, var, -1) < 0)
2810 return -1;
2811
2812 if (var->is_row) {
2813 isl_int_add(tab->mat->row[var->index][1],
2814 tab->mat->row[var->index][1], tab->mat->row[var->index][0]);
2815 if (restore_row(tab, var) < 0)
2816 return -1;
2817 } else {
2818 int i;
2819 unsigned off = 2 + tab->M;
2820
2821 for (i = 0; i < tab->n_row; ++i) {
2822 if (isl_int_is_zero(tab->mat->row[i][off + var->index]))
2823 continue;
2824 isl_int_sub(tab->mat->row[i][1], tab->mat->row[i][1],
2825 tab->mat->row[i][off + var->index]);
2826 }
2827
2828 }
2829
2830 if (isl_tab_push_var(tab, isl_tab_undo_relax, var) < 0)
2831 return -1;
2832
2833 return 0;
2834 }
2835
2836 /* Replace the variable v at position "pos" in the tableau "tab"
2837 * by v' = v + shift.
2838 *
2839 * If the variable is in a column, then we first check if we can
2840 * simply plug in v = v' - shift. The effect on a row with
2841 * coefficient f/d for variable v is that the constant term c/d
2842 * is replaced by (c - f * shift)/d. If shift is positive and
2843 * f is negative for each row that needs to remain non-negative,
2844 * then this is clearly safe. In other words, if the minimum of v
2845 * is manifestly unbounded, then we can keep v in a column position.
2846 * Otherwise, we can pivot it down to a row.
2847 * Similarly, if shift is negative, we need to check if the maximum
2848 * of is manifestly unbounded.
2849 *
2850 * If the variable is in a row (from the start or after pivoting),
2851 * then the constant term c/d is replaced by (c + d * shift)/d.
2852 */
isl_tab_shift_var(struct isl_tab * tab,int pos,isl_int shift)2853 int isl_tab_shift_var(struct isl_tab *tab, int pos, isl_int shift)
2854 {
2855 struct isl_tab_var *var;
2856
2857 if (!tab)
2858 return -1;
2859 if (isl_int_is_zero(shift))
2860 return 0;
2861
2862 var = &tab->var[pos];
2863 if (!var->is_row) {
2864 if (isl_int_is_neg(shift)) {
2865 if (!max_is_manifestly_unbounded(tab, var))
2866 if (to_row(tab, var, 1) < 0)
2867 return -1;
2868 } else {
2869 if (!min_is_manifestly_unbounded(tab, var))
2870 if (to_row(tab, var, -1) < 0)
2871 return -1;
2872 }
2873 }
2874
2875 if (var->is_row) {
2876 isl_int_addmul(tab->mat->row[var->index][1],
2877 shift, tab->mat->row[var->index][0]);
2878 } else {
2879 int i;
2880 unsigned off = 2 + tab->M;
2881
2882 for (i = 0; i < tab->n_row; ++i) {
2883 if (isl_int_is_zero(tab->mat->row[i][off + var->index]))
2884 continue;
2885 isl_int_submul(tab->mat->row[i][1],
2886 shift, tab->mat->row[i][off + var->index]);
2887 }
2888
2889 }
2890
2891 return 0;
2892 }
2893
2894 /* Remove the sign constraint from constraint "con".
2895 *
2896 * If the constraint variable was originally marked non-negative,
2897 * then we make sure we mark it non-negative again during rollback.
2898 */
isl_tab_unrestrict(struct isl_tab * tab,int con)2899 int isl_tab_unrestrict(struct isl_tab *tab, int con)
2900 {
2901 struct isl_tab_var *var;
2902
2903 if (!tab)
2904 return -1;
2905
2906 var = &tab->con[con];
2907 if (!var->is_nonneg)
2908 return 0;
2909
2910 var->is_nonneg = 0;
2911 if (isl_tab_push_var(tab, isl_tab_undo_unrestrict, var) < 0)
2912 return -1;
2913
2914 return 0;
2915 }
2916
isl_tab_select_facet(struct isl_tab * tab,int con)2917 int isl_tab_select_facet(struct isl_tab *tab, int con)
2918 {
2919 if (!tab)
2920 return -1;
2921
2922 return cut_to_hyperplane(tab, &tab->con[con]);
2923 }
2924
may_be_equality(struct isl_tab * tab,int row)2925 static int may_be_equality(struct isl_tab *tab, int row)
2926 {
2927 return tab->rational ? isl_int_is_zero(tab->mat->row[row][1])
2928 : isl_int_lt(tab->mat->row[row][1],
2929 tab->mat->row[row][0]);
2930 }
2931
2932 /* Return an isl_tab_var that has been marked or NULL if no such
2933 * variable can be found.
2934 * The marked field has only been set for variables that
2935 * appear in non-redundant rows or non-dead columns.
2936 *
2937 * Pick the last constraint variable that is marked and
2938 * that appears in either a non-redundant row or a non-dead columns.
2939 * Since the returned variable is tested for being a redundant constraint or
2940 * an implicit equality, there is no need to return any tab variable that
2941 * corresponds to a variable.
2942 */
select_marked(struct isl_tab * tab)2943 static struct isl_tab_var *select_marked(struct isl_tab *tab)
2944 {
2945 int i;
2946 struct isl_tab_var *var;
2947
2948 for (i = tab->n_con - 1; i >= 0; --i) {
2949 var = &tab->con[i];
2950 if (var->index < 0)
2951 continue;
2952 if (var->is_row && var->index < tab->n_redundant)
2953 continue;
2954 if (!var->is_row && var->index < tab->n_dead)
2955 continue;
2956 if (var->marked)
2957 return var;
2958 }
2959
2960 return NULL;
2961 }
2962
2963 /* Check for (near) equalities among the constraints.
2964 * A constraint is an equality if it is non-negative and if
2965 * its maximal value is either
2966 * - zero (in case of rational tableaus), or
2967 * - strictly less than 1 (in case of integer tableaus)
2968 *
2969 * We first mark all non-redundant and non-dead variables that
2970 * are not frozen and not obviously not an equality.
2971 * Then we iterate over all marked variables if they can attain
2972 * any values larger than zero or at least one.
2973 * If the maximal value is zero, we mark any column variables
2974 * that appear in the row as being zero and mark the row as being redundant.
2975 * Otherwise, if the maximal value is strictly less than one (and the
2976 * tableau is integer), then we restrict the value to being zero
2977 * by adding an opposite non-negative variable.
2978 * The order in which the variables are considered is not important.
2979 */
isl_tab_detect_implicit_equalities(struct isl_tab * tab)2980 int isl_tab_detect_implicit_equalities(struct isl_tab *tab)
2981 {
2982 int i;
2983 unsigned n_marked;
2984
2985 if (!tab)
2986 return -1;
2987 if (tab->empty)
2988 return 0;
2989 if (tab->n_dead == tab->n_col)
2990 return 0;
2991
2992 n_marked = 0;
2993 for (i = tab->n_redundant; i < tab->n_row; ++i) {
2994 struct isl_tab_var *var = isl_tab_var_from_row(tab, i);
2995 var->marked = !var->frozen && var->is_nonneg &&
2996 may_be_equality(tab, i);
2997 if (var->marked)
2998 n_marked++;
2999 }
3000 for (i = tab->n_dead; i < tab->n_col; ++i) {
3001 struct isl_tab_var *var = var_from_col(tab, i);
3002 var->marked = !var->frozen && var->is_nonneg;
3003 if (var->marked)
3004 n_marked++;
3005 }
3006 while (n_marked) {
3007 struct isl_tab_var *var;
3008 int sgn;
3009 var = select_marked(tab);
3010 if (!var)
3011 break;
3012 var->marked = 0;
3013 n_marked--;
3014 sgn = sign_of_max(tab, var);
3015 if (sgn < 0)
3016 return -1;
3017 if (sgn == 0) {
3018 if (close_row(tab, var, 0) < 0)
3019 return -1;
3020 } else if (!tab->rational && !at_least_one(tab, var)) {
3021 if (cut_to_hyperplane(tab, var) < 0)
3022 return -1;
3023 return isl_tab_detect_implicit_equalities(tab);
3024 }
3025 for (i = tab->n_redundant; i < tab->n_row; ++i) {
3026 var = isl_tab_var_from_row(tab, i);
3027 if (!var->marked)
3028 continue;
3029 if (may_be_equality(tab, i))
3030 continue;
3031 var->marked = 0;
3032 n_marked--;
3033 }
3034 }
3035
3036 return 0;
3037 }
3038
3039 /* Update the element of row_var or col_var that corresponds to
3040 * constraint tab->con[i] to a move from position "old" to position "i".
3041 */
update_con_after_move(struct isl_tab * tab,int i,int old)3042 static int update_con_after_move(struct isl_tab *tab, int i, int old)
3043 {
3044 int *p;
3045 int index;
3046
3047 index = tab->con[i].index;
3048 if (index == -1)
3049 return 0;
3050 p = tab->con[i].is_row ? tab->row_var : tab->col_var;
3051 if (p[index] != ~old)
3052 isl_die(tab->mat->ctx, isl_error_internal,
3053 "broken internal state", return -1);
3054 p[index] = ~i;
3055
3056 return 0;
3057 }
3058
3059 /* Interchange constraints "con1" and "con2" in "tab".
3060 * In particular, interchange the contents of these entries in tab->con.
3061 * Since tab->col_var and tab->row_var point back into this array,
3062 * they need to be updated accordingly.
3063 */
isl_tab_swap_constraints(struct isl_tab * tab,int con1,int con2)3064 isl_stat isl_tab_swap_constraints(struct isl_tab *tab, int con1, int con2)
3065 {
3066 struct isl_tab_var var;
3067
3068 if (isl_tab_check_con(tab, con1) < 0 ||
3069 isl_tab_check_con(tab, con2) < 0)
3070 return isl_stat_error;
3071
3072 var = tab->con[con1];
3073 tab->con[con1] = tab->con[con2];
3074 if (update_con_after_move(tab, con1, con2) < 0)
3075 return isl_stat_error;
3076 tab->con[con2] = var;
3077 if (update_con_after_move(tab, con2, con1) < 0)
3078 return isl_stat_error;
3079
3080 return isl_stat_ok;
3081 }
3082
3083 /* Rotate the "n" constraints starting at "first" to the right,
3084 * putting the last constraint in the position of the first constraint.
3085 */
rotate_constraints(struct isl_tab * tab,int first,int n)3086 static int rotate_constraints(struct isl_tab *tab, int first, int n)
3087 {
3088 int i, last;
3089 struct isl_tab_var var;
3090
3091 if (n <= 1)
3092 return 0;
3093
3094 last = first + n - 1;
3095 var = tab->con[last];
3096 for (i = last; i > first; --i) {
3097 tab->con[i] = tab->con[i - 1];
3098 if (update_con_after_move(tab, i, i - 1) < 0)
3099 return -1;
3100 }
3101 tab->con[first] = var;
3102 if (update_con_after_move(tab, first, last) < 0)
3103 return -1;
3104
3105 return 0;
3106 }
3107
3108 /* Drop the "n" entries starting at position "first" in tab->con, moving all
3109 * subsequent entries down.
3110 * Since some of the entries of tab->row_var and tab->col_var contain
3111 * indices into this array, they have to be updated accordingly.
3112 */
con_drop_entries(struct isl_tab * tab,unsigned first,unsigned n)3113 static isl_stat con_drop_entries(struct isl_tab *tab,
3114 unsigned first, unsigned n)
3115 {
3116 int i;
3117
3118 if (first + n > tab->n_con || first + n < first)
3119 isl_die(isl_tab_get_ctx(tab), isl_error_internal,
3120 "invalid range", return isl_stat_error);
3121
3122 tab->n_con -= n;
3123
3124 for (i = first; i < tab->n_con; ++i) {
3125 tab->con[i] = tab->con[i + n];
3126 if (update_con_after_move(tab, i, i + n) < 0)
3127 return isl_stat_error;
3128 }
3129
3130 return isl_stat_ok;
3131 }
3132
3133 /* isl_basic_map_gauss5 callback that gets called when
3134 * two (equality) constraints "a" and "b" get interchanged
3135 * in the basic map. Perform the same interchange in "tab".
3136 */
swap_eq(unsigned a,unsigned b,void * user)3137 static isl_stat swap_eq(unsigned a, unsigned b, void *user)
3138 {
3139 struct isl_tab *tab = user;
3140
3141 return isl_tab_swap_constraints(tab, a, b);
3142 }
3143
3144 /* isl_basic_map_gauss5 callback that gets called when
3145 * the final "n" equality constraints get removed.
3146 * As a special case, if "n" is equal to the total number
3147 * of equality constraints, then this means the basic map
3148 * turned out to be empty.
3149 * Drop the same number of equality constraints from "tab" or
3150 * mark it empty in the special case.
3151 */
drop_eq(unsigned n,void * user)3152 static isl_stat drop_eq(unsigned n, void *user)
3153 {
3154 struct isl_tab *tab = user;
3155
3156 if (tab->n_eq == n)
3157 return isl_tab_mark_empty(tab);
3158
3159 tab->n_eq -= n;
3160 return con_drop_entries(tab, tab->n_eq, n);
3161 }
3162
3163 /* If "bmap" has more than a single reference, then call
3164 * isl_basic_map_gauss on it, updating "tab" accordingly.
3165 */
gauss_if_shared(__isl_take isl_basic_map * bmap,struct isl_tab * tab)3166 static __isl_give isl_basic_map *gauss_if_shared(__isl_take isl_basic_map *bmap,
3167 struct isl_tab *tab)
3168 {
3169 isl_bool single;
3170
3171 single = isl_basic_map_has_single_reference(bmap);
3172 if (single < 0)
3173 return isl_basic_map_free(bmap);
3174 if (single)
3175 return bmap;
3176 return isl_basic_map_gauss5(bmap, NULL, &swap_eq, &drop_eq, tab);
3177 }
3178
3179 /* Make the equalities that are implicit in "bmap" but that have been
3180 * detected in the corresponding "tab" explicit in "bmap" and update
3181 * "tab" to reflect the new order of the constraints.
3182 *
3183 * In particular, if inequality i is an implicit equality then
3184 * isl_basic_map_inequality_to_equality will move the inequality
3185 * in front of the other equality and it will move the last inequality
3186 * in the position of inequality i.
3187 * In the tableau, the inequalities of "bmap" are stored after the equalities
3188 * and so the original order
3189 *
3190 * E E E E E A A A I B B B B L
3191 *
3192 * is changed into
3193 *
3194 * I E E E E E A A A L B B B B
3195 *
3196 * where I is the implicit equality, the E are equalities,
3197 * the A inequalities before I, the B inequalities after I and
3198 * L the last inequality.
3199 * We therefore need to rotate to the right two sets of constraints,
3200 * those up to and including I and those after I.
3201 *
3202 * If "tab" contains any constraints that are not in "bmap" then they
3203 * appear after those in "bmap" and they should be left untouched.
3204 *
3205 * Note that this function only calls isl_basic_map_gauss
3206 * (in case some equality constraints got detected)
3207 * if "bmap" has more than one reference.
3208 * If it only has a single reference, then it is left in a temporary state,
3209 * because the caller may require this state.
3210 * Calling isl_basic_map_gauss is then the responsibility of the caller.
3211 */
isl_tab_make_equalities_explicit(struct isl_tab * tab,__isl_take isl_basic_map * bmap)3212 __isl_give isl_basic_map *isl_tab_make_equalities_explicit(struct isl_tab *tab,
3213 __isl_take isl_basic_map *bmap)
3214 {
3215 int i;
3216 unsigned n_eq;
3217
3218 if (!tab || !bmap)
3219 return isl_basic_map_free(bmap);
3220 if (tab->empty)
3221 return bmap;
3222
3223 n_eq = tab->n_eq;
3224 for (i = bmap->n_ineq - 1; i >= 0; --i) {
3225 if (!isl_tab_is_equality(tab, bmap->n_eq + i))
3226 continue;
3227 isl_basic_map_inequality_to_equality(bmap, i);
3228 if (rotate_constraints(tab, 0, tab->n_eq + i + 1) < 0)
3229 return isl_basic_map_free(bmap);
3230 if (rotate_constraints(tab, tab->n_eq + i + 1,
3231 bmap->n_ineq - i) < 0)
3232 return isl_basic_map_free(bmap);
3233 tab->n_eq++;
3234 }
3235
3236 if (n_eq != tab->n_eq)
3237 bmap = gauss_if_shared(bmap, tab);
3238
3239 return bmap;
3240 }
3241
con_is_redundant(struct isl_tab * tab,struct isl_tab_var * var)3242 static int con_is_redundant(struct isl_tab *tab, struct isl_tab_var *var)
3243 {
3244 if (!tab)
3245 return -1;
3246 if (tab->rational) {
3247 int sgn = sign_of_min(tab, var);
3248 if (sgn < -1)
3249 return -1;
3250 return sgn >= 0;
3251 } else {
3252 int irred = isl_tab_min_at_most_neg_one(tab, var);
3253 if (irred < 0)
3254 return -1;
3255 return !irred;
3256 }
3257 }
3258
3259 /* Check for (near) redundant constraints.
3260 * A constraint is redundant if it is non-negative and if
3261 * its minimal value (temporarily ignoring the non-negativity) is either
3262 * - zero (in case of rational tableaus), or
3263 * - strictly larger than -1 (in case of integer tableaus)
3264 *
3265 * We first mark all non-redundant and non-dead variables that
3266 * are not frozen and not obviously negatively unbounded.
3267 * Then we iterate over all marked variables if they can attain
3268 * any values smaller than zero or at most negative one.
3269 * If not, we mark the row as being redundant (assuming it hasn't
3270 * been detected as being obviously redundant in the mean time).
3271 */
isl_tab_detect_redundant(struct isl_tab * tab)3272 int isl_tab_detect_redundant(struct isl_tab *tab)
3273 {
3274 int i;
3275 unsigned n_marked;
3276
3277 if (!tab)
3278 return -1;
3279 if (tab->empty)
3280 return 0;
3281 if (tab->n_redundant == tab->n_row)
3282 return 0;
3283
3284 n_marked = 0;
3285 for (i = tab->n_redundant; i < tab->n_row; ++i) {
3286 struct isl_tab_var *var = isl_tab_var_from_row(tab, i);
3287 var->marked = !var->frozen && var->is_nonneg;
3288 if (var->marked)
3289 n_marked++;
3290 }
3291 for (i = tab->n_dead; i < tab->n_col; ++i) {
3292 struct isl_tab_var *var = var_from_col(tab, i);
3293 var->marked = !var->frozen && var->is_nonneg &&
3294 !min_is_manifestly_unbounded(tab, var);
3295 if (var->marked)
3296 n_marked++;
3297 }
3298 while (n_marked) {
3299 struct isl_tab_var *var;
3300 int red;
3301 var = select_marked(tab);
3302 if (!var)
3303 break;
3304 var->marked = 0;
3305 n_marked--;
3306 red = con_is_redundant(tab, var);
3307 if (red < 0)
3308 return -1;
3309 if (red && !var->is_redundant)
3310 if (isl_tab_mark_redundant(tab, var->index) < 0)
3311 return -1;
3312 for (i = tab->n_dead; i < tab->n_col; ++i) {
3313 var = var_from_col(tab, i);
3314 if (!var->marked)
3315 continue;
3316 if (!min_is_manifestly_unbounded(tab, var))
3317 continue;
3318 var->marked = 0;
3319 n_marked--;
3320 }
3321 }
3322
3323 return 0;
3324 }
3325
isl_tab_is_equality(struct isl_tab * tab,int con)3326 int isl_tab_is_equality(struct isl_tab *tab, int con)
3327 {
3328 int row;
3329 unsigned off;
3330
3331 if (!tab)
3332 return -1;
3333 if (tab->con[con].is_zero)
3334 return 1;
3335 if (tab->con[con].is_redundant)
3336 return 0;
3337 if (!tab->con[con].is_row)
3338 return tab->con[con].index < tab->n_dead;
3339
3340 row = tab->con[con].index;
3341
3342 off = 2 + tab->M;
3343 return isl_int_is_zero(tab->mat->row[row][1]) &&
3344 !row_is_big(tab, row) &&
3345 isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
3346 tab->n_col - tab->n_dead) == -1;
3347 }
3348
3349 /* Return the minimal value of the affine expression "f" with denominator
3350 * "denom" in *opt, *opt_denom, assuming the tableau is not empty and
3351 * the expression cannot attain arbitrarily small values.
3352 * If opt_denom is NULL, then *opt is rounded up to the nearest integer.
3353 * The return value reflects the nature of the result (empty, unbounded,
3354 * minimal value returned in *opt).
3355 *
3356 * This function assumes that at least one more row and at least
3357 * one more element in the constraint array are available in the tableau.
3358 */
isl_tab_min(struct isl_tab * tab,isl_int * f,isl_int denom,isl_int * opt,isl_int * opt_denom,unsigned flags)3359 enum isl_lp_result isl_tab_min(struct isl_tab *tab,
3360 isl_int *f, isl_int denom, isl_int *opt, isl_int *opt_denom,
3361 unsigned flags)
3362 {
3363 int r;
3364 enum isl_lp_result res = isl_lp_ok;
3365 struct isl_tab_var *var;
3366 struct isl_tab_undo *snap;
3367
3368 if (!tab)
3369 return isl_lp_error;
3370
3371 if (tab->empty)
3372 return isl_lp_empty;
3373
3374 snap = isl_tab_snap(tab);
3375 r = isl_tab_add_row(tab, f);
3376 if (r < 0)
3377 return isl_lp_error;
3378 var = &tab->con[r];
3379 for (;;) {
3380 int row, col;
3381 find_pivot(tab, var, var, -1, &row, &col);
3382 if (row == var->index) {
3383 res = isl_lp_unbounded;
3384 break;
3385 }
3386 if (row == -1)
3387 break;
3388 if (isl_tab_pivot(tab, row, col) < 0)
3389 return isl_lp_error;
3390 }
3391 isl_int_mul(tab->mat->row[var->index][0],
3392 tab->mat->row[var->index][0], denom);
3393 if (ISL_FL_ISSET(flags, ISL_TAB_SAVE_DUAL)) {
3394 int i;
3395
3396 isl_vec_free(tab->dual);
3397 tab->dual = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_con);
3398 if (!tab->dual)
3399 return isl_lp_error;
3400 isl_int_set(tab->dual->el[0], tab->mat->row[var->index][0]);
3401 for (i = 0; i < tab->n_con; ++i) {
3402 int pos;
3403 if (tab->con[i].is_row) {
3404 isl_int_set_si(tab->dual->el[1 + i], 0);
3405 continue;
3406 }
3407 pos = 2 + tab->M + tab->con[i].index;
3408 if (tab->con[i].negated)
3409 isl_int_neg(tab->dual->el[1 + i],
3410 tab->mat->row[var->index][pos]);
3411 else
3412 isl_int_set(tab->dual->el[1 + i],
3413 tab->mat->row[var->index][pos]);
3414 }
3415 }
3416 if (opt && res == isl_lp_ok) {
3417 if (opt_denom) {
3418 isl_int_set(*opt, tab->mat->row[var->index][1]);
3419 isl_int_set(*opt_denom, tab->mat->row[var->index][0]);
3420 } else
3421 get_rounded_sample_value(tab, var, 1, opt);
3422 }
3423 if (isl_tab_rollback(tab, snap) < 0)
3424 return isl_lp_error;
3425 return res;
3426 }
3427
3428 /* Is the constraint at position "con" marked as being redundant?
3429 * If it is marked as representing an equality, then it is not
3430 * considered to be redundant.
3431 * Note that isl_tab_mark_redundant marks both the isl_tab_var as
3432 * redundant and moves the corresponding row into the first
3433 * tab->n_redundant positions (or removes the row, assigning it index -1),
3434 * so the final test is actually redundant itself.
3435 */
isl_tab_is_redundant(struct isl_tab * tab,int con)3436 int isl_tab_is_redundant(struct isl_tab *tab, int con)
3437 {
3438 if (isl_tab_check_con(tab, con) < 0)
3439 return -1;
3440 if (tab->con[con].is_zero)
3441 return 0;
3442 if (tab->con[con].is_redundant)
3443 return 1;
3444 return tab->con[con].is_row && tab->con[con].index < tab->n_redundant;
3445 }
3446
3447 /* Is variable "var" of "tab" fixed to a constant value by its row
3448 * in the tableau?
3449 * If so and if "value" is not NULL, then store this constant value
3450 * in "value".
3451 *
3452 * That is, is it a row variable that only has non-zero coefficients
3453 * for dead columns?
3454 */
is_constant(struct isl_tab * tab,struct isl_tab_var * var,isl_int * value)3455 static isl_bool is_constant(struct isl_tab *tab, struct isl_tab_var *var,
3456 isl_int *value)
3457 {
3458 unsigned off = 2 + tab->M;
3459 isl_mat *mat = tab->mat;
3460 int n;
3461 int row;
3462 int pos;
3463
3464 if (!var->is_row)
3465 return isl_bool_false;
3466 row = var->index;
3467 if (row_is_big(tab, row))
3468 return isl_bool_false;
3469 n = tab->n_col - tab->n_dead;
3470 pos = isl_seq_first_non_zero(mat->row[row] + off + tab->n_dead, n);
3471 if (pos != -1)
3472 return isl_bool_false;
3473 if (value)
3474 isl_int_divexact(*value, mat->row[row][1], mat->row[row][0]);
3475 return isl_bool_true;
3476 }
3477
3478 /* Has the variable "var' of "tab" reached a value that is greater than
3479 * or equal (if sgn > 0) or smaller than or equal (if sgn < 0) to "target"?
3480 * "tmp" has been initialized by the caller and can be used
3481 * to perform local computations.
3482 *
3483 * If the sample value involves the big parameter, then any value
3484 * is reached.
3485 * Otherwise check if n/d >= t, i.e., n >= d * t (if sgn > 0)
3486 * or n/d <= t, i.e., n <= d * t (if sgn < 0).
3487 */
reached(struct isl_tab * tab,struct isl_tab_var * var,int sgn,isl_int target,isl_int * tmp)3488 static int reached(struct isl_tab *tab, struct isl_tab_var *var, int sgn,
3489 isl_int target, isl_int *tmp)
3490 {
3491 if (row_is_big(tab, var->index))
3492 return 1;
3493 isl_int_mul(*tmp, tab->mat->row[var->index][0], target);
3494 if (sgn > 0)
3495 return isl_int_ge(tab->mat->row[var->index][1], *tmp);
3496 else
3497 return isl_int_le(tab->mat->row[var->index][1], *tmp);
3498 }
3499
3500 /* Can variable "var" of "tab" attain the value "target" by
3501 * pivoting up (if sgn > 0) or down (if sgn < 0)?
3502 * If not, then pivot up [down] to the greatest [smallest]
3503 * rational value.
3504 * "tmp" has been initialized by the caller and can be used
3505 * to perform local computations.
3506 *
3507 * If the variable is manifestly unbounded in the desired direction,
3508 * then it can attain any value.
3509 * Otherwise, it can be moved to a row.
3510 * Continue pivoting until the target is reached.
3511 * If no more pivoting can be performed, the maximal [minimal]
3512 * rational value has been reached and the target cannot be reached.
3513 * If the variable would be pivoted into a manifestly unbounded column,
3514 * then the target can be reached.
3515 */
var_reaches(struct isl_tab * tab,struct isl_tab_var * var,int sgn,isl_int target,isl_int * tmp)3516 static isl_bool var_reaches(struct isl_tab *tab, struct isl_tab_var *var,
3517 int sgn, isl_int target, isl_int *tmp)
3518 {
3519 int row, col;
3520
3521 if (sgn < 0 && min_is_manifestly_unbounded(tab, var))
3522 return isl_bool_true;
3523 if (sgn > 0 && max_is_manifestly_unbounded(tab, var))
3524 return isl_bool_true;
3525 if (to_row(tab, var, sgn) < 0)
3526 return isl_bool_error;
3527 while (!reached(tab, var, sgn, target, tmp)) {
3528 find_pivot(tab, var, var, sgn, &row, &col);
3529 if (row == -1)
3530 return isl_bool_false;
3531 if (row == var->index)
3532 return isl_bool_true;
3533 if (isl_tab_pivot(tab, row, col) < 0)
3534 return isl_bool_error;
3535 }
3536
3537 return isl_bool_true;
3538 }
3539
3540 /* Check if variable "var" of "tab" can only attain a single (integer)
3541 * value, and, if so, add an equality constraint to fix the variable
3542 * to this single value and store the result in "target".
3543 * "target" and "tmp" have been initialized by the caller.
3544 *
3545 * Given the current sample value, round it down and check
3546 * whether it is possible to attain a strictly smaller integer value.
3547 * If so, the variable is not restricted to a single integer value.
3548 * Otherwise, the search stops at the smallest rational value.
3549 * Round up this value and check whether it is possible to attain
3550 * a strictly greater integer value.
3551 * If so, the variable is not restricted to a single integer value.
3552 * Otherwise, the search stops at the greatest rational value.
3553 * If rounding down this value yields a value that is different
3554 * from rounding up the smallest rational value, then the variable
3555 * cannot attain any integer value. Mark the tableau empty.
3556 * Otherwise, add an equality constraint that fixes the variable
3557 * to the single integer value found.
3558 */
detect_constant_with_tmp(struct isl_tab * tab,struct isl_tab_var * var,isl_int * target,isl_int * tmp)3559 static isl_bool detect_constant_with_tmp(struct isl_tab *tab,
3560 struct isl_tab_var *var, isl_int *target, isl_int *tmp)
3561 {
3562 isl_bool reached;
3563 isl_vec *eq;
3564 int pos;
3565 isl_stat r;
3566
3567 get_rounded_sample_value(tab, var, -1, target);
3568 isl_int_sub_ui(*target, *target, 1);
3569 reached = var_reaches(tab, var, -1, *target, tmp);
3570 if (reached < 0 || reached)
3571 return isl_bool_not(reached);
3572 get_rounded_sample_value(tab, var, 1, target);
3573 isl_int_add_ui(*target, *target, 1);
3574 reached = var_reaches(tab, var, 1, *target, tmp);
3575 if (reached < 0 || reached)
3576 return isl_bool_not(reached);
3577 get_rounded_sample_value(tab, var, -1, tmp);
3578 isl_int_sub_ui(*target, *target, 1);
3579 if (isl_int_ne(*target, *tmp)) {
3580 if (isl_tab_mark_empty(tab) < 0)
3581 return isl_bool_error;
3582 return isl_bool_false;
3583 }
3584
3585 if (isl_tab_extend_cons(tab, 1) < 0)
3586 return isl_bool_error;
3587 eq = isl_vec_alloc(isl_tab_get_ctx(tab), 1 + tab->n_var);
3588 if (!eq)
3589 return isl_bool_error;
3590 pos = var - tab->var;
3591 isl_seq_clr(eq->el + 1, tab->n_var);
3592 isl_int_set_si(eq->el[1 + pos], -1);
3593 isl_int_set(eq->el[0], *target);
3594 r = isl_tab_add_eq(tab, eq->el);
3595 isl_vec_free(eq);
3596
3597 return r < 0 ? isl_bool_error : isl_bool_true;
3598 }
3599
3600 /* Check if variable "var" of "tab" can only attain a single (integer)
3601 * value, and, if so, add an equality constraint to fix the variable
3602 * to this single value and store the result in "value" (if "value"
3603 * is not NULL).
3604 *
3605 * If the current sample value involves the big parameter,
3606 * then the variable cannot have a fixed integer value.
3607 * If the variable is already fixed to a single value by its row, then
3608 * there is no need to add another equality constraint.
3609 *
3610 * Otherwise, allocate some temporary variables and continue
3611 * with detect_constant_with_tmp.
3612 */
get_constant(struct isl_tab * tab,struct isl_tab_var * var,isl_int * value)3613 static isl_bool get_constant(struct isl_tab *tab, struct isl_tab_var *var,
3614 isl_int *value)
3615 {
3616 isl_int target, tmp;
3617 isl_bool is_cst;
3618
3619 if (var->is_row && row_is_big(tab, var->index))
3620 return isl_bool_false;
3621 is_cst = is_constant(tab, var, value);
3622 if (is_cst < 0 || is_cst)
3623 return is_cst;
3624
3625 if (!value)
3626 isl_int_init(target);
3627 isl_int_init(tmp);
3628
3629 is_cst = detect_constant_with_tmp(tab, var,
3630 value ? value : &target, &tmp);
3631
3632 isl_int_clear(tmp);
3633 if (!value)
3634 isl_int_clear(target);
3635
3636 return is_cst;
3637 }
3638
3639 /* Check if variable "var" of "tab" can only attain a single (integer)
3640 * value, and, if so, add an equality constraint to fix the variable
3641 * to this single value and store the result in "value" (if "value"
3642 * is not NULL).
3643 *
3644 * For rational tableaus, nothing needs to be done.
3645 */
isl_tab_is_constant(struct isl_tab * tab,int var,isl_int * value)3646 isl_bool isl_tab_is_constant(struct isl_tab *tab, int var, isl_int *value)
3647 {
3648 if (!tab)
3649 return isl_bool_error;
3650 if (var < 0 || var >= tab->n_var)
3651 isl_die(isl_tab_get_ctx(tab), isl_error_invalid,
3652 "position out of bounds", return isl_bool_error);
3653 if (tab->rational)
3654 return isl_bool_false;
3655
3656 return get_constant(tab, &tab->var[var], value);
3657 }
3658
3659 /* Check if any of the variables of "tab" can only attain a single (integer)
3660 * value, and, if so, add equality constraints to fix those variables
3661 * to these single values.
3662 *
3663 * For rational tableaus, nothing needs to be done.
3664 */
isl_tab_detect_constants(struct isl_tab * tab)3665 isl_stat isl_tab_detect_constants(struct isl_tab *tab)
3666 {
3667 int i;
3668
3669 if (!tab)
3670 return isl_stat_error;
3671 if (tab->rational)
3672 return isl_stat_ok;
3673
3674 for (i = 0; i < tab->n_var; ++i) {
3675 if (get_constant(tab, &tab->var[i], NULL) < 0)
3676 return isl_stat_error;
3677 }
3678
3679 return isl_stat_ok;
3680 }
3681
3682 /* Take a snapshot of the tableau that can be restored by a call to
3683 * isl_tab_rollback.
3684 */
isl_tab_snap(struct isl_tab * tab)3685 struct isl_tab_undo *isl_tab_snap(struct isl_tab *tab)
3686 {
3687 if (!tab)
3688 return NULL;
3689 tab->need_undo = 1;
3690 return tab->top;
3691 }
3692
3693 /* Does "tab" need to keep track of undo information?
3694 * That is, was a snapshot taken that may need to be restored?
3695 */
isl_tab_need_undo(struct isl_tab * tab)3696 isl_bool isl_tab_need_undo(struct isl_tab *tab)
3697 {
3698 if (!tab)
3699 return isl_bool_error;
3700
3701 return isl_bool_ok(tab->need_undo);
3702 }
3703
3704 /* Remove all tracking of undo information from "tab", invalidating
3705 * any snapshots that may have been taken of the tableau.
3706 * Since all snapshots have been invalidated, there is also
3707 * no need to start keeping track of undo information again.
3708 */
isl_tab_clear_undo(struct isl_tab * tab)3709 void isl_tab_clear_undo(struct isl_tab *tab)
3710 {
3711 if (!tab)
3712 return;
3713
3714 free_undo(tab);
3715 tab->need_undo = 0;
3716 }
3717
3718 /* Undo the operation performed by isl_tab_relax.
3719 */
3720 static isl_stat unrelax(struct isl_tab *tab, struct isl_tab_var *var)
3721 WARN_UNUSED;
unrelax(struct isl_tab * tab,struct isl_tab_var * var)3722 static isl_stat unrelax(struct isl_tab *tab, struct isl_tab_var *var)
3723 {
3724 unsigned off = 2 + tab->M;
3725
3726 if (!var->is_row && !max_is_manifestly_unbounded(tab, var))
3727 if (to_row(tab, var, 1) < 0)
3728 return isl_stat_error;
3729
3730 if (var->is_row) {
3731 isl_int_sub(tab->mat->row[var->index][1],
3732 tab->mat->row[var->index][1], tab->mat->row[var->index][0]);
3733 if (var->is_nonneg) {
3734 int sgn = restore_row(tab, var);
3735 isl_assert(tab->mat->ctx, sgn >= 0,
3736 return isl_stat_error);
3737 }
3738 } else {
3739 int i;
3740
3741 for (i = 0; i < tab->n_row; ++i) {
3742 if (isl_int_is_zero(tab->mat->row[i][off + var->index]))
3743 continue;
3744 isl_int_add(tab->mat->row[i][1], tab->mat->row[i][1],
3745 tab->mat->row[i][off + var->index]);
3746 }
3747
3748 }
3749
3750 return isl_stat_ok;
3751 }
3752
3753 /* Undo the operation performed by isl_tab_unrestrict.
3754 *
3755 * In particular, mark the variable as being non-negative and make
3756 * sure the sample value respects this constraint.
3757 */
ununrestrict(struct isl_tab * tab,struct isl_tab_var * var)3758 static isl_stat ununrestrict(struct isl_tab *tab, struct isl_tab_var *var)
3759 {
3760 var->is_nonneg = 1;
3761
3762 if (var->is_row && restore_row(tab, var) < -1)
3763 return isl_stat_error;
3764
3765 return isl_stat_ok;
3766 }
3767
3768 /* Unmark the last redundant row in "tab" as being redundant.
3769 * This undoes part of the modifications performed by isl_tab_mark_redundant.
3770 * In particular, remove the redundant mark and make
3771 * sure the sample value respects the constraint again.
3772 * A variable that is marked non-negative by isl_tab_mark_redundant
3773 * is covered by a separate undo record.
3774 */
restore_last_redundant(struct isl_tab * tab)3775 static isl_stat restore_last_redundant(struct isl_tab *tab)
3776 {
3777 struct isl_tab_var *var;
3778
3779 if (tab->n_redundant < 1)
3780 isl_die(isl_tab_get_ctx(tab), isl_error_internal,
3781 "no redundant rows", return isl_stat_error);
3782
3783 var = isl_tab_var_from_row(tab, tab->n_redundant - 1);
3784 var->is_redundant = 0;
3785 tab->n_redundant--;
3786 restore_row(tab, var);
3787
3788 return isl_stat_ok;
3789 }
3790
3791 static isl_stat perform_undo_var(struct isl_tab *tab, struct isl_tab_undo *undo)
3792 WARN_UNUSED;
perform_undo_var(struct isl_tab * tab,struct isl_tab_undo * undo)3793 static isl_stat perform_undo_var(struct isl_tab *tab, struct isl_tab_undo *undo)
3794 {
3795 struct isl_tab_var *var = var_from_index(tab, undo->u.var_index);
3796 switch (undo->type) {
3797 case isl_tab_undo_nonneg:
3798 var->is_nonneg = 0;
3799 break;
3800 case isl_tab_undo_redundant:
3801 if (!var->is_row || var->index != tab->n_redundant - 1)
3802 isl_die(isl_tab_get_ctx(tab), isl_error_internal,
3803 "not undoing last redundant row",
3804 return isl_stat_error);
3805 return restore_last_redundant(tab);
3806 case isl_tab_undo_freeze:
3807 var->frozen = 0;
3808 break;
3809 case isl_tab_undo_zero:
3810 var->is_zero = 0;
3811 if (!var->is_row)
3812 tab->n_dead--;
3813 break;
3814 case isl_tab_undo_allocate:
3815 if (undo->u.var_index >= 0) {
3816 isl_assert(tab->mat->ctx, !var->is_row,
3817 return isl_stat_error);
3818 return drop_col(tab, var->index);
3819 }
3820 if (!var->is_row) {
3821 if (!max_is_manifestly_unbounded(tab, var)) {
3822 if (to_row(tab, var, 1) < 0)
3823 return isl_stat_error;
3824 } else if (!min_is_manifestly_unbounded(tab, var)) {
3825 if (to_row(tab, var, -1) < 0)
3826 return isl_stat_error;
3827 } else
3828 if (to_row(tab, var, 0) < 0)
3829 return isl_stat_error;
3830 }
3831 return drop_row(tab, var->index);
3832 case isl_tab_undo_relax:
3833 return unrelax(tab, var);
3834 case isl_tab_undo_unrestrict:
3835 return ununrestrict(tab, var);
3836 default:
3837 isl_die(tab->mat->ctx, isl_error_internal,
3838 "perform_undo_var called on invalid undo record",
3839 return isl_stat_error);
3840 }
3841
3842 return isl_stat_ok;
3843 }
3844
3845 /* Restore all rows that have been marked redundant by isl_tab_mark_redundant
3846 * and that have been preserved in the tableau.
3847 * Note that isl_tab_mark_redundant may also have marked some variables
3848 * as being non-negative before marking them redundant. These need
3849 * to be removed as well as otherwise some constraints could end up
3850 * getting marked redundant with respect to the variable.
3851 */
isl_tab_restore_redundant(struct isl_tab * tab)3852 isl_stat isl_tab_restore_redundant(struct isl_tab *tab)
3853 {
3854 if (!tab)
3855 return isl_stat_error;
3856
3857 if (tab->need_undo)
3858 isl_die(isl_tab_get_ctx(tab), isl_error_invalid,
3859 "manually restoring redundant constraints "
3860 "interferes with undo history",
3861 return isl_stat_error);
3862
3863 while (tab->n_redundant > 0) {
3864 if (tab->row_var[tab->n_redundant - 1] >= 0) {
3865 struct isl_tab_var *var;
3866
3867 var = isl_tab_var_from_row(tab, tab->n_redundant - 1);
3868 var->is_nonneg = 0;
3869 }
3870 restore_last_redundant(tab);
3871 }
3872 return isl_stat_ok;
3873 }
3874
3875 /* Undo the addition of an integer division to the basic map representation
3876 * of "tab" in position "pos".
3877 */
drop_bmap_div(struct isl_tab * tab,int pos)3878 static isl_stat drop_bmap_div(struct isl_tab *tab, int pos)
3879 {
3880 int off;
3881 isl_size n_div;
3882
3883 n_div = isl_basic_map_dim(tab->bmap, isl_dim_div);
3884 if (n_div < 0)
3885 return isl_stat_error;
3886 off = tab->n_var - n_div;
3887 if (isl_basic_map_drop_div(tab->bmap, pos - off) < 0)
3888 return isl_stat_error;
3889 if (tab->samples) {
3890 tab->samples = isl_mat_drop_cols(tab->samples, 1 + pos, 1);
3891 if (!tab->samples)
3892 return isl_stat_error;
3893 }
3894
3895 return isl_stat_ok;
3896 }
3897
3898 /* Restore the tableau to the state where the basic variables
3899 * are those in "col_var".
3900 * We first construct a list of variables that are currently in
3901 * the basis, but shouldn't. Then we iterate over all variables
3902 * that should be in the basis and for each one that is currently
3903 * not in the basis, we exchange it with one of the elements of the
3904 * list constructed before.
3905 * We can always find an appropriate variable to pivot with because
3906 * the current basis is mapped to the old basis by a non-singular
3907 * matrix and so we can never end up with a zero row.
3908 */
restore_basis(struct isl_tab * tab,int * col_var)3909 static int restore_basis(struct isl_tab *tab, int *col_var)
3910 {
3911 int i, j;
3912 int n_extra = 0;
3913 int *extra = NULL; /* current columns that contain bad stuff */
3914 unsigned off = 2 + tab->M;
3915
3916 extra = isl_alloc_array(tab->mat->ctx, int, tab->n_col);
3917 if (tab->n_col && !extra)
3918 goto error;
3919 for (i = 0; i < tab->n_col; ++i) {
3920 for (j = 0; j < tab->n_col; ++j)
3921 if (tab->col_var[i] == col_var[j])
3922 break;
3923 if (j < tab->n_col)
3924 continue;
3925 extra[n_extra++] = i;
3926 }
3927 for (i = 0; i < tab->n_col && n_extra > 0; ++i) {
3928 struct isl_tab_var *var;
3929 int row;
3930
3931 for (j = 0; j < tab->n_col; ++j)
3932 if (col_var[i] == tab->col_var[j])
3933 break;
3934 if (j < tab->n_col)
3935 continue;
3936 var = var_from_index(tab, col_var[i]);
3937 row = var->index;
3938 for (j = 0; j < n_extra; ++j)
3939 if (!isl_int_is_zero(tab->mat->row[row][off+extra[j]]))
3940 break;
3941 isl_assert(tab->mat->ctx, j < n_extra, goto error);
3942 if (isl_tab_pivot(tab, row, extra[j]) < 0)
3943 goto error;
3944 extra[j] = extra[--n_extra];
3945 }
3946
3947 free(extra);
3948 return 0;
3949 error:
3950 free(extra);
3951 return -1;
3952 }
3953
3954 /* Remove all samples with index n or greater, i.e., those samples
3955 * that were added since we saved this number of samples in
3956 * isl_tab_save_samples.
3957 */
drop_samples_since(struct isl_tab * tab,int n)3958 static void drop_samples_since(struct isl_tab *tab, int n)
3959 {
3960 int i;
3961
3962 for (i = tab->n_sample - 1; i >= 0 && tab->n_sample > n; --i) {
3963 if (tab->sample_index[i] < n)
3964 continue;
3965
3966 if (i != tab->n_sample - 1) {
3967 int t = tab->sample_index[tab->n_sample-1];
3968 tab->sample_index[tab->n_sample-1] = tab->sample_index[i];
3969 tab->sample_index[i] = t;
3970 isl_mat_swap_rows(tab->samples, tab->n_sample-1, i);
3971 }
3972 tab->n_sample--;
3973 }
3974 }
3975
3976 static isl_stat perform_undo(struct isl_tab *tab, struct isl_tab_undo *undo)
3977 WARN_UNUSED;
perform_undo(struct isl_tab * tab,struct isl_tab_undo * undo)3978 static isl_stat perform_undo(struct isl_tab *tab, struct isl_tab_undo *undo)
3979 {
3980 switch (undo->type) {
3981 case isl_tab_undo_rational:
3982 tab->rational = 0;
3983 break;
3984 case isl_tab_undo_empty:
3985 tab->empty = 0;
3986 break;
3987 case isl_tab_undo_nonneg:
3988 case isl_tab_undo_redundant:
3989 case isl_tab_undo_freeze:
3990 case isl_tab_undo_zero:
3991 case isl_tab_undo_allocate:
3992 case isl_tab_undo_relax:
3993 case isl_tab_undo_unrestrict:
3994 return perform_undo_var(tab, undo);
3995 case isl_tab_undo_bmap_eq:
3996 tab->bmap = isl_basic_map_free_equality(tab->bmap, 1);
3997 return tab->bmap ? isl_stat_ok : isl_stat_error;
3998 case isl_tab_undo_bmap_ineq:
3999 tab->bmap = isl_basic_map_free_inequality(tab->bmap, 1);
4000 return tab->bmap ? isl_stat_ok : isl_stat_error;
4001 case isl_tab_undo_bmap_div:
4002 return drop_bmap_div(tab, undo->u.var_index);
4003 case isl_tab_undo_saved_basis:
4004 if (restore_basis(tab, undo->u.col_var) < 0)
4005 return isl_stat_error;
4006 break;
4007 case isl_tab_undo_drop_sample:
4008 tab->n_outside--;
4009 break;
4010 case isl_tab_undo_saved_samples:
4011 drop_samples_since(tab, undo->u.n);
4012 break;
4013 case isl_tab_undo_callback:
4014 return undo->u.callback->run(undo->u.callback);
4015 default:
4016 isl_assert(tab->mat->ctx, 0, return isl_stat_error);
4017 }
4018 return isl_stat_ok;
4019 }
4020
4021 /* Return the tableau to the state it was in when the snapshot "snap"
4022 * was taken.
4023 */
isl_tab_rollback(struct isl_tab * tab,struct isl_tab_undo * snap)4024 isl_stat isl_tab_rollback(struct isl_tab *tab, struct isl_tab_undo *snap)
4025 {
4026 struct isl_tab_undo *undo, *next;
4027
4028 if (!tab)
4029 return isl_stat_error;
4030
4031 tab->in_undo = 1;
4032 for (undo = tab->top; undo && undo != &tab->bottom; undo = next) {
4033 next = undo->next;
4034 if (undo == snap)
4035 break;
4036 if (perform_undo(tab, undo) < 0) {
4037 tab->top = undo;
4038 free_undo(tab);
4039 tab->in_undo = 0;
4040 return isl_stat_error;
4041 }
4042 free_undo_record(undo);
4043 }
4044 tab->in_undo = 0;
4045 tab->top = undo;
4046 if (!undo)
4047 return isl_stat_error;
4048 return isl_stat_ok;
4049 }
4050
4051 /* The given row "row" represents an inequality violated by all
4052 * points in the tableau. Check for some special cases of such
4053 * separating constraints.
4054 * In particular, if the row has been reduced to the constant -1,
4055 * then we know the inequality is adjacent (but opposite) to
4056 * an equality in the tableau.
4057 * If the row has been reduced to r = c*(-1 -r'), with r' an inequality
4058 * of the tableau and c a positive constant, then the inequality
4059 * is adjacent (but opposite) to the inequality r'.
4060 */
separation_type(struct isl_tab * tab,unsigned row)4061 static enum isl_ineq_type separation_type(struct isl_tab *tab, unsigned row)
4062 {
4063 int pos;
4064 unsigned off = 2 + tab->M;
4065
4066 if (tab->rational)
4067 return isl_ineq_separate;
4068
4069 if (!isl_int_is_one(tab->mat->row[row][0]))
4070 return isl_ineq_separate;
4071
4072 pos = isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
4073 tab->n_col - tab->n_dead);
4074 if (pos == -1) {
4075 if (isl_int_is_negone(tab->mat->row[row][1]))
4076 return isl_ineq_adj_eq;
4077 else
4078 return isl_ineq_separate;
4079 }
4080
4081 if (!isl_int_eq(tab->mat->row[row][1],
4082 tab->mat->row[row][off + tab->n_dead + pos]))
4083 return isl_ineq_separate;
4084
4085 pos = isl_seq_first_non_zero(
4086 tab->mat->row[row] + off + tab->n_dead + pos + 1,
4087 tab->n_col - tab->n_dead - pos - 1);
4088
4089 return pos == -1 ? isl_ineq_adj_ineq : isl_ineq_separate;
4090 }
4091
4092 /* Check the effect of inequality "ineq" on the tableau "tab".
4093 * The result may be
4094 * isl_ineq_redundant: satisfied by all points in the tableau
4095 * isl_ineq_separate: satisfied by no point in the tableau
4096 * isl_ineq_cut: satisfied by some by not all points
4097 * isl_ineq_adj_eq: adjacent to an equality
4098 * isl_ineq_adj_ineq: adjacent to an inequality.
4099 */
isl_tab_ineq_type(struct isl_tab * tab,isl_int * ineq)4100 enum isl_ineq_type isl_tab_ineq_type(struct isl_tab *tab, isl_int *ineq)
4101 {
4102 enum isl_ineq_type type = isl_ineq_error;
4103 struct isl_tab_undo *snap = NULL;
4104 int con;
4105 int row;
4106
4107 if (!tab)
4108 return isl_ineq_error;
4109
4110 if (isl_tab_extend_cons(tab, 1) < 0)
4111 return isl_ineq_error;
4112
4113 snap = isl_tab_snap(tab);
4114
4115 con = isl_tab_add_row(tab, ineq);
4116 if (con < 0)
4117 goto error;
4118
4119 row = tab->con[con].index;
4120 if (isl_tab_row_is_redundant(tab, row))
4121 type = isl_ineq_redundant;
4122 else if (isl_int_is_neg(tab->mat->row[row][1]) &&
4123 (tab->rational ||
4124 isl_int_abs_ge(tab->mat->row[row][1],
4125 tab->mat->row[row][0]))) {
4126 int nonneg = at_least_zero(tab, &tab->con[con]);
4127 if (nonneg < 0)
4128 goto error;
4129 if (nonneg)
4130 type = isl_ineq_cut;
4131 else
4132 type = separation_type(tab, row);
4133 } else {
4134 int red = con_is_redundant(tab, &tab->con[con]);
4135 if (red < 0)
4136 goto error;
4137 if (!red)
4138 type = isl_ineq_cut;
4139 else
4140 type = isl_ineq_redundant;
4141 }
4142
4143 if (isl_tab_rollback(tab, snap))
4144 return isl_ineq_error;
4145 return type;
4146 error:
4147 return isl_ineq_error;
4148 }
4149
isl_tab_track_bmap(struct isl_tab * tab,__isl_take isl_basic_map * bmap)4150 isl_stat isl_tab_track_bmap(struct isl_tab *tab, __isl_take isl_basic_map *bmap)
4151 {
4152 bmap = isl_basic_map_cow(bmap);
4153 if (!tab || !bmap)
4154 goto error;
4155
4156 if (tab->empty) {
4157 bmap = isl_basic_map_set_to_empty(bmap);
4158 if (!bmap)
4159 goto error;
4160 tab->bmap = bmap;
4161 return isl_stat_ok;
4162 }
4163
4164 isl_assert(tab->mat->ctx, tab->n_eq == bmap->n_eq, goto error);
4165 isl_assert(tab->mat->ctx,
4166 tab->n_con == bmap->n_eq + bmap->n_ineq, goto error);
4167
4168 tab->bmap = bmap;
4169
4170 return isl_stat_ok;
4171 error:
4172 isl_basic_map_free(bmap);
4173 return isl_stat_error;
4174 }
4175
isl_tab_track_bset(struct isl_tab * tab,__isl_take isl_basic_set * bset)4176 isl_stat isl_tab_track_bset(struct isl_tab *tab, __isl_take isl_basic_set *bset)
4177 {
4178 return isl_tab_track_bmap(tab, bset_to_bmap(bset));
4179 }
4180
isl_tab_peek_bset(struct isl_tab * tab)4181 __isl_keep isl_basic_set *isl_tab_peek_bset(struct isl_tab *tab)
4182 {
4183 if (!tab)
4184 return NULL;
4185
4186 return bset_from_bmap(tab->bmap);
4187 }
4188
isl_tab_print_internal(__isl_keep struct isl_tab * tab,FILE * out,int indent)4189 static void isl_tab_print_internal(__isl_keep struct isl_tab *tab,
4190 FILE *out, int indent)
4191 {
4192 unsigned r, c;
4193 int i;
4194
4195 if (!tab) {
4196 fprintf(out, "%*snull tab\n", indent, "");
4197 return;
4198 }
4199 fprintf(out, "%*sn_redundant: %d, n_dead: %d", indent, "",
4200 tab->n_redundant, tab->n_dead);
4201 if (tab->rational)
4202 fprintf(out, ", rational");
4203 if (tab->empty)
4204 fprintf(out, ", empty");
4205 fprintf(out, "\n");
4206 fprintf(out, "%*s[", indent, "");
4207 for (i = 0; i < tab->n_var; ++i) {
4208 if (i)
4209 fprintf(out, (i == tab->n_param ||
4210 i == tab->n_var - tab->n_div) ? "; "
4211 : ", ");
4212 fprintf(out, "%c%d%s", tab->var[i].is_row ? 'r' : 'c',
4213 tab->var[i].index,
4214 tab->var[i].is_zero ? " [=0]" :
4215 tab->var[i].is_redundant ? " [R]" : "");
4216 }
4217 fprintf(out, "]\n");
4218 fprintf(out, "%*s[", indent, "");
4219 for (i = 0; i < tab->n_con; ++i) {
4220 if (i)
4221 fprintf(out, ", ");
4222 fprintf(out, "%c%d%s", tab->con[i].is_row ? 'r' : 'c',
4223 tab->con[i].index,
4224 tab->con[i].is_zero ? " [=0]" :
4225 tab->con[i].is_redundant ? " [R]" : "");
4226 }
4227 fprintf(out, "]\n");
4228 fprintf(out, "%*s[", indent, "");
4229 for (i = 0; i < tab->n_row; ++i) {
4230 const char *sign = "";
4231 if (i)
4232 fprintf(out, ", ");
4233 if (tab->row_sign) {
4234 if (tab->row_sign[i] == isl_tab_row_unknown)
4235 sign = "?";
4236 else if (tab->row_sign[i] == isl_tab_row_neg)
4237 sign = "-";
4238 else if (tab->row_sign[i] == isl_tab_row_pos)
4239 sign = "+";
4240 else
4241 sign = "+-";
4242 }
4243 fprintf(out, "r%d: %d%s%s", i, tab->row_var[i],
4244 isl_tab_var_from_row(tab, i)->is_nonneg ? " [>=0]" : "", sign);
4245 }
4246 fprintf(out, "]\n");
4247 fprintf(out, "%*s[", indent, "");
4248 for (i = 0; i < tab->n_col; ++i) {
4249 if (i)
4250 fprintf(out, ", ");
4251 fprintf(out, "c%d: %d%s", i, tab->col_var[i],
4252 var_from_col(tab, i)->is_nonneg ? " [>=0]" : "");
4253 }
4254 fprintf(out, "]\n");
4255 r = tab->mat->n_row;
4256 tab->mat->n_row = tab->n_row;
4257 c = tab->mat->n_col;
4258 tab->mat->n_col = 2 + tab->M + tab->n_col;
4259 isl_mat_print_internal(tab->mat, out, indent);
4260 tab->mat->n_row = r;
4261 tab->mat->n_col = c;
4262 if (tab->bmap)
4263 isl_basic_map_print_internal(tab->bmap, out, indent);
4264 }
4265
isl_tab_dump(__isl_keep struct isl_tab * tab)4266 void isl_tab_dump(__isl_keep struct isl_tab *tab)
4267 {
4268 isl_tab_print_internal(tab, stderr, 0);
4269 }
4270