• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2008-2009 Katholieke Universiteit Leuven
3  * Copyright 2013      Ecole Normale Superieure
4  * Copyright 2014      INRIA Rocquencourt
5  * Copyright 2016      Sven Verdoolaege
6  *
7  * Use of this software is governed by the MIT license
8  *
9  * Written by Sven Verdoolaege, K.U.Leuven, Departement
10  * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
11  * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
12  * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
13  * B.P. 105 - 78153 Le Chesnay, France
14  */
15 
16 #include <isl_ctx_private.h>
17 #include <isl_mat_private.h>
18 #include <isl_vec_private.h>
19 #include "isl_map_private.h"
20 #include "isl_tab.h"
21 #include <isl_seq.h>
22 #include <isl_config.h>
23 
24 #include <bset_to_bmap.c>
25 #include <bset_from_bmap.c>
26 
27 /*
28  * The implementation of tableaus in this file was inspired by Section 8
29  * of David Detlefs, Greg Nelson and James B. Saxe, "Simplify: a theorem
30  * prover for program checking".
31  */
32 
isl_tab_alloc(struct isl_ctx * ctx,unsigned n_row,unsigned n_var,unsigned M)33 struct isl_tab *isl_tab_alloc(struct isl_ctx *ctx,
34 	unsigned n_row, unsigned n_var, unsigned M)
35 {
36 	int i;
37 	struct isl_tab *tab;
38 	unsigned off = 2 + M;
39 
40 	tab = isl_calloc_type(ctx, struct isl_tab);
41 	if (!tab)
42 		return NULL;
43 	tab->mat = isl_mat_alloc(ctx, n_row, off + n_var);
44 	if (!tab->mat)
45 		goto error;
46 	tab->var = isl_alloc_array(ctx, struct isl_tab_var, n_var);
47 	if (n_var && !tab->var)
48 		goto error;
49 	tab->con = isl_alloc_array(ctx, struct isl_tab_var, n_row);
50 	if (n_row && !tab->con)
51 		goto error;
52 	tab->col_var = isl_alloc_array(ctx, int, n_var);
53 	if (n_var && !tab->col_var)
54 		goto error;
55 	tab->row_var = isl_alloc_array(ctx, int, n_row);
56 	if (n_row && !tab->row_var)
57 		goto error;
58 	for (i = 0; i < n_var; ++i) {
59 		tab->var[i].index = i;
60 		tab->var[i].is_row = 0;
61 		tab->var[i].is_nonneg = 0;
62 		tab->var[i].is_zero = 0;
63 		tab->var[i].is_redundant = 0;
64 		tab->var[i].frozen = 0;
65 		tab->var[i].negated = 0;
66 		tab->col_var[i] = i;
67 	}
68 	tab->n_row = 0;
69 	tab->n_con = 0;
70 	tab->n_eq = 0;
71 	tab->max_con = n_row;
72 	tab->n_col = n_var;
73 	tab->n_var = n_var;
74 	tab->max_var = n_var;
75 	tab->n_param = 0;
76 	tab->n_div = 0;
77 	tab->n_dead = 0;
78 	tab->n_redundant = 0;
79 	tab->strict_redundant = 0;
80 	tab->need_undo = 0;
81 	tab->rational = 0;
82 	tab->empty = 0;
83 	tab->in_undo = 0;
84 	tab->M = M;
85 	tab->cone = 0;
86 	tab->bottom.type = isl_tab_undo_bottom;
87 	tab->bottom.next = NULL;
88 	tab->top = &tab->bottom;
89 
90 	tab->n_zero = 0;
91 	tab->n_unbounded = 0;
92 	tab->basis = NULL;
93 
94 	return tab;
95 error:
96 	isl_tab_free(tab);
97 	return NULL;
98 }
99 
isl_tab_get_ctx(struct isl_tab * tab)100 isl_ctx *isl_tab_get_ctx(struct isl_tab *tab)
101 {
102 	return tab ? isl_mat_get_ctx(tab->mat) : NULL;
103 }
104 
isl_tab_extend_cons(struct isl_tab * tab,unsigned n_new)105 int isl_tab_extend_cons(struct isl_tab *tab, unsigned n_new)
106 {
107 	unsigned off;
108 
109 	if (!tab)
110 		return -1;
111 
112 	off = 2 + tab->M;
113 
114 	if (tab->max_con < tab->n_con + n_new) {
115 		struct isl_tab_var *con;
116 
117 		con = isl_realloc_array(tab->mat->ctx, tab->con,
118 				    struct isl_tab_var, tab->max_con + n_new);
119 		if (!con)
120 			return -1;
121 		tab->con = con;
122 		tab->max_con += n_new;
123 	}
124 	if (tab->mat->n_row < tab->n_row + n_new) {
125 		int *row_var;
126 
127 		tab->mat = isl_mat_extend(tab->mat,
128 					tab->n_row + n_new, off + tab->n_col);
129 		if (!tab->mat)
130 			return -1;
131 		row_var = isl_realloc_array(tab->mat->ctx, tab->row_var,
132 					    int, tab->mat->n_row);
133 		if (!row_var)
134 			return -1;
135 		tab->row_var = row_var;
136 		if (tab->row_sign) {
137 			enum isl_tab_row_sign *s;
138 			s = isl_realloc_array(tab->mat->ctx, tab->row_sign,
139 					enum isl_tab_row_sign, tab->mat->n_row);
140 			if (!s)
141 				return -1;
142 			tab->row_sign = s;
143 		}
144 	}
145 	return 0;
146 }
147 
148 /* Make room for at least n_new extra variables.
149  * Return -1 if anything went wrong.
150  */
isl_tab_extend_vars(struct isl_tab * tab,unsigned n_new)151 int isl_tab_extend_vars(struct isl_tab *tab, unsigned n_new)
152 {
153 	struct isl_tab_var *var;
154 	unsigned off = 2 + tab->M;
155 
156 	if (tab->max_var < tab->n_var + n_new) {
157 		var = isl_realloc_array(tab->mat->ctx, tab->var,
158 				    struct isl_tab_var, tab->n_var + n_new);
159 		if (!var)
160 			return -1;
161 		tab->var = var;
162 		tab->max_var = tab->n_var + n_new;
163 	}
164 
165 	if (tab->mat->n_col < off + tab->n_col + n_new) {
166 		int *p;
167 
168 		tab->mat = isl_mat_extend(tab->mat,
169 				    tab->mat->n_row, off + tab->n_col + n_new);
170 		if (!tab->mat)
171 			return -1;
172 		p = isl_realloc_array(tab->mat->ctx, tab->col_var,
173 					    int, tab->n_col + n_new);
174 		if (!p)
175 			return -1;
176 		tab->col_var = p;
177 	}
178 
179 	return 0;
180 }
181 
free_undo_record(struct isl_tab_undo * undo)182 static void free_undo_record(struct isl_tab_undo *undo)
183 {
184 	switch (undo->type) {
185 	case isl_tab_undo_saved_basis:
186 		free(undo->u.col_var);
187 		break;
188 	default:;
189 	}
190 	free(undo);
191 }
192 
free_undo(struct isl_tab * tab)193 static void free_undo(struct isl_tab *tab)
194 {
195 	struct isl_tab_undo *undo, *next;
196 
197 	for (undo = tab->top; undo && undo != &tab->bottom; undo = next) {
198 		next = undo->next;
199 		free_undo_record(undo);
200 	}
201 	tab->top = undo;
202 }
203 
isl_tab_free(struct isl_tab * tab)204 void isl_tab_free(struct isl_tab *tab)
205 {
206 	if (!tab)
207 		return;
208 	free_undo(tab);
209 	isl_mat_free(tab->mat);
210 	isl_vec_free(tab->dual);
211 	isl_basic_map_free(tab->bmap);
212 	free(tab->var);
213 	free(tab->con);
214 	free(tab->row_var);
215 	free(tab->col_var);
216 	free(tab->row_sign);
217 	isl_mat_free(tab->samples);
218 	free(tab->sample_index);
219 	isl_mat_free(tab->basis);
220 	free(tab);
221 }
222 
isl_tab_dup(struct isl_tab * tab)223 struct isl_tab *isl_tab_dup(struct isl_tab *tab)
224 {
225 	int i;
226 	struct isl_tab *dup;
227 	unsigned off;
228 
229 	if (!tab)
230 		return NULL;
231 
232 	off = 2 + tab->M;
233 	dup = isl_calloc_type(tab->mat->ctx, struct isl_tab);
234 	if (!dup)
235 		return NULL;
236 	dup->mat = isl_mat_dup(tab->mat);
237 	if (!dup->mat)
238 		goto error;
239 	dup->var = isl_alloc_array(tab->mat->ctx, struct isl_tab_var, tab->max_var);
240 	if (tab->max_var && !dup->var)
241 		goto error;
242 	for (i = 0; i < tab->n_var; ++i)
243 		dup->var[i] = tab->var[i];
244 	dup->con = isl_alloc_array(tab->mat->ctx, struct isl_tab_var, tab->max_con);
245 	if (tab->max_con && !dup->con)
246 		goto error;
247 	for (i = 0; i < tab->n_con; ++i)
248 		dup->con[i] = tab->con[i];
249 	dup->col_var = isl_alloc_array(tab->mat->ctx, int, tab->mat->n_col - off);
250 	if ((tab->mat->n_col - off) && !dup->col_var)
251 		goto error;
252 	for (i = 0; i < tab->n_col; ++i)
253 		dup->col_var[i] = tab->col_var[i];
254 	dup->row_var = isl_alloc_array(tab->mat->ctx, int, tab->mat->n_row);
255 	if (tab->mat->n_row && !dup->row_var)
256 		goto error;
257 	for (i = 0; i < tab->n_row; ++i)
258 		dup->row_var[i] = tab->row_var[i];
259 	if (tab->row_sign) {
260 		dup->row_sign = isl_alloc_array(tab->mat->ctx, enum isl_tab_row_sign,
261 						tab->mat->n_row);
262 		if (tab->mat->n_row && !dup->row_sign)
263 			goto error;
264 		for (i = 0; i < tab->n_row; ++i)
265 			dup->row_sign[i] = tab->row_sign[i];
266 	}
267 	if (tab->samples) {
268 		dup->samples = isl_mat_dup(tab->samples);
269 		if (!dup->samples)
270 			goto error;
271 		dup->sample_index = isl_alloc_array(tab->mat->ctx, int,
272 							tab->samples->n_row);
273 		if (tab->samples->n_row && !dup->sample_index)
274 			goto error;
275 		dup->n_sample = tab->n_sample;
276 		dup->n_outside = tab->n_outside;
277 	}
278 	dup->n_row = tab->n_row;
279 	dup->n_con = tab->n_con;
280 	dup->n_eq = tab->n_eq;
281 	dup->max_con = tab->max_con;
282 	dup->n_col = tab->n_col;
283 	dup->n_var = tab->n_var;
284 	dup->max_var = tab->max_var;
285 	dup->n_param = tab->n_param;
286 	dup->n_div = tab->n_div;
287 	dup->n_dead = tab->n_dead;
288 	dup->n_redundant = tab->n_redundant;
289 	dup->rational = tab->rational;
290 	dup->empty = tab->empty;
291 	dup->strict_redundant = 0;
292 	dup->need_undo = 0;
293 	dup->in_undo = 0;
294 	dup->M = tab->M;
295 	dup->cone = tab->cone;
296 	dup->bottom.type = isl_tab_undo_bottom;
297 	dup->bottom.next = NULL;
298 	dup->top = &dup->bottom;
299 
300 	dup->n_zero = tab->n_zero;
301 	dup->n_unbounded = tab->n_unbounded;
302 	dup->basis = isl_mat_dup(tab->basis);
303 
304 	return dup;
305 error:
306 	isl_tab_free(dup);
307 	return NULL;
308 }
309 
310 /* Construct the coefficient matrix of the product tableau
311  * of two tableaus.
312  * mat{1,2} is the coefficient matrix of tableau {1,2}
313  * row{1,2} is the number of rows in tableau {1,2}
314  * col{1,2} is the number of columns in tableau {1,2}
315  * off is the offset to the coefficient column (skipping the
316  *	denominator, the constant term and the big parameter if any)
317  * r{1,2} is the number of redundant rows in tableau {1,2}
318  * d{1,2} is the number of dead columns in tableau {1,2}
319  *
320  * The order of the rows and columns in the result is as explained
321  * in isl_tab_product.
322  */
tab_mat_product(__isl_keep isl_mat * mat1,__isl_keep isl_mat * mat2,unsigned row1,unsigned row2,unsigned col1,unsigned col2,unsigned off,unsigned r1,unsigned r2,unsigned d1,unsigned d2)323 static __isl_give isl_mat *tab_mat_product(__isl_keep isl_mat *mat1,
324 	__isl_keep isl_mat *mat2, unsigned row1, unsigned row2,
325 	unsigned col1, unsigned col2,
326 	unsigned off, unsigned r1, unsigned r2, unsigned d1, unsigned d2)
327 {
328 	int i;
329 	struct isl_mat *prod;
330 	unsigned n;
331 
332 	prod = isl_mat_alloc(mat1->ctx, mat1->n_row + mat2->n_row,
333 					off + col1 + col2);
334 	if (!prod)
335 		return NULL;
336 
337 	n = 0;
338 	for (i = 0; i < r1; ++i) {
339 		isl_seq_cpy(prod->row[n + i], mat1->row[i], off + d1);
340 		isl_seq_clr(prod->row[n + i] + off + d1, d2);
341 		isl_seq_cpy(prod->row[n + i] + off + d1 + d2,
342 				mat1->row[i] + off + d1, col1 - d1);
343 		isl_seq_clr(prod->row[n + i] + off + col1 + d1, col2 - d2);
344 	}
345 
346 	n += r1;
347 	for (i = 0; i < r2; ++i) {
348 		isl_seq_cpy(prod->row[n + i], mat2->row[i], off);
349 		isl_seq_clr(prod->row[n + i] + off, d1);
350 		isl_seq_cpy(prod->row[n + i] + off + d1,
351 			    mat2->row[i] + off, d2);
352 		isl_seq_clr(prod->row[n + i] + off + d1 + d2, col1 - d1);
353 		isl_seq_cpy(prod->row[n + i] + off + col1 + d1,
354 			    mat2->row[i] + off + d2, col2 - d2);
355 	}
356 
357 	n += r2;
358 	for (i = 0; i < row1 - r1; ++i) {
359 		isl_seq_cpy(prod->row[n + i], mat1->row[r1 + i], off + d1);
360 		isl_seq_clr(prod->row[n + i] + off + d1, d2);
361 		isl_seq_cpy(prod->row[n + i] + off + d1 + d2,
362 				mat1->row[r1 + i] + off + d1, col1 - d1);
363 		isl_seq_clr(prod->row[n + i] + off + col1 + d1, col2 - d2);
364 	}
365 
366 	n += row1 - r1;
367 	for (i = 0; i < row2 - r2; ++i) {
368 		isl_seq_cpy(prod->row[n + i], mat2->row[r2 + i], off);
369 		isl_seq_clr(prod->row[n + i] + off, d1);
370 		isl_seq_cpy(prod->row[n + i] + off + d1,
371 			    mat2->row[r2 + i] + off, d2);
372 		isl_seq_clr(prod->row[n + i] + off + d1 + d2, col1 - d1);
373 		isl_seq_cpy(prod->row[n + i] + off + col1 + d1,
374 			    mat2->row[r2 + i] + off + d2, col2 - d2);
375 	}
376 
377 	return prod;
378 }
379 
380 /* Update the row or column index of a variable that corresponds
381  * to a variable in the first input tableau.
382  */
update_index1(struct isl_tab_var * var,unsigned r1,unsigned r2,unsigned d1,unsigned d2)383 static void update_index1(struct isl_tab_var *var,
384 	unsigned r1, unsigned r2, unsigned d1, unsigned d2)
385 {
386 	if (var->index == -1)
387 		return;
388 	if (var->is_row && var->index >= r1)
389 		var->index += r2;
390 	if (!var->is_row && var->index >= d1)
391 		var->index += d2;
392 }
393 
394 /* Update the row or column index of a variable that corresponds
395  * to a variable in the second input tableau.
396  */
update_index2(struct isl_tab_var * var,unsigned row1,unsigned col1,unsigned r1,unsigned r2,unsigned d1,unsigned d2)397 static void update_index2(struct isl_tab_var *var,
398 	unsigned row1, unsigned col1,
399 	unsigned r1, unsigned r2, unsigned d1, unsigned d2)
400 {
401 	if (var->index == -1)
402 		return;
403 	if (var->is_row) {
404 		if (var->index < r2)
405 			var->index += r1;
406 		else
407 			var->index += row1;
408 	} else {
409 		if (var->index < d2)
410 			var->index += d1;
411 		else
412 			var->index += col1;
413 	}
414 }
415 
416 /* Create a tableau that represents the Cartesian product of the sets
417  * represented by tableaus tab1 and tab2.
418  * The order of the rows in the product is
419  *	- redundant rows of tab1
420  *	- redundant rows of tab2
421  *	- non-redundant rows of tab1
422  *	- non-redundant rows of tab2
423  * The order of the columns is
424  *	- denominator
425  *	- constant term
426  *	- coefficient of big parameter, if any
427  *	- dead columns of tab1
428  *	- dead columns of tab2
429  *	- live columns of tab1
430  *	- live columns of tab2
431  * The order of the variables and the constraints is a concatenation
432  * of order in the two input tableaus.
433  */
isl_tab_product(struct isl_tab * tab1,struct isl_tab * tab2)434 struct isl_tab *isl_tab_product(struct isl_tab *tab1, struct isl_tab *tab2)
435 {
436 	int i;
437 	struct isl_tab *prod;
438 	unsigned off;
439 	unsigned r1, r2, d1, d2;
440 
441 	if (!tab1 || !tab2)
442 		return NULL;
443 
444 	isl_assert(tab1->mat->ctx, tab1->M == tab2->M, return NULL);
445 	isl_assert(tab1->mat->ctx, tab1->rational == tab2->rational, return NULL);
446 	isl_assert(tab1->mat->ctx, tab1->cone == tab2->cone, return NULL);
447 	isl_assert(tab1->mat->ctx, !tab1->row_sign, return NULL);
448 	isl_assert(tab1->mat->ctx, !tab2->row_sign, return NULL);
449 	isl_assert(tab1->mat->ctx, tab1->n_param == 0, return NULL);
450 	isl_assert(tab1->mat->ctx, tab2->n_param == 0, return NULL);
451 	isl_assert(tab1->mat->ctx, tab1->n_div == 0, return NULL);
452 	isl_assert(tab1->mat->ctx, tab2->n_div == 0, return NULL);
453 
454 	off = 2 + tab1->M;
455 	r1 = tab1->n_redundant;
456 	r2 = tab2->n_redundant;
457 	d1 = tab1->n_dead;
458 	d2 = tab2->n_dead;
459 	prod = isl_calloc_type(tab1->mat->ctx, struct isl_tab);
460 	if (!prod)
461 		return NULL;
462 	prod->mat = tab_mat_product(tab1->mat, tab2->mat,
463 				tab1->n_row, tab2->n_row,
464 				tab1->n_col, tab2->n_col, off, r1, r2, d1, d2);
465 	if (!prod->mat)
466 		goto error;
467 	prod->var = isl_alloc_array(tab1->mat->ctx, struct isl_tab_var,
468 					tab1->max_var + tab2->max_var);
469 	if ((tab1->max_var + tab2->max_var) && !prod->var)
470 		goto error;
471 	for (i = 0; i < tab1->n_var; ++i) {
472 		prod->var[i] = tab1->var[i];
473 		update_index1(&prod->var[i], r1, r2, d1, d2);
474 	}
475 	for (i = 0; i < tab2->n_var; ++i) {
476 		prod->var[tab1->n_var + i] = tab2->var[i];
477 		update_index2(&prod->var[tab1->n_var + i],
478 				tab1->n_row, tab1->n_col,
479 				r1, r2, d1, d2);
480 	}
481 	prod->con = isl_alloc_array(tab1->mat->ctx, struct isl_tab_var,
482 					tab1->max_con +  tab2->max_con);
483 	if ((tab1->max_con + tab2->max_con) && !prod->con)
484 		goto error;
485 	for (i = 0; i < tab1->n_con; ++i) {
486 		prod->con[i] = tab1->con[i];
487 		update_index1(&prod->con[i], r1, r2, d1, d2);
488 	}
489 	for (i = 0; i < tab2->n_con; ++i) {
490 		prod->con[tab1->n_con + i] = tab2->con[i];
491 		update_index2(&prod->con[tab1->n_con + i],
492 				tab1->n_row, tab1->n_col,
493 				r1, r2, d1, d2);
494 	}
495 	prod->col_var = isl_alloc_array(tab1->mat->ctx, int,
496 					tab1->n_col + tab2->n_col);
497 	if ((tab1->n_col + tab2->n_col) && !prod->col_var)
498 		goto error;
499 	for (i = 0; i < tab1->n_col; ++i) {
500 		int pos = i < d1 ? i : i + d2;
501 		prod->col_var[pos] = tab1->col_var[i];
502 	}
503 	for (i = 0; i < tab2->n_col; ++i) {
504 		int pos = i < d2 ? d1 + i : tab1->n_col + i;
505 		int t = tab2->col_var[i];
506 		if (t >= 0)
507 			t += tab1->n_var;
508 		else
509 			t -= tab1->n_con;
510 		prod->col_var[pos] = t;
511 	}
512 	prod->row_var = isl_alloc_array(tab1->mat->ctx, int,
513 					tab1->mat->n_row + tab2->mat->n_row);
514 	if ((tab1->mat->n_row + tab2->mat->n_row) && !prod->row_var)
515 		goto error;
516 	for (i = 0; i < tab1->n_row; ++i) {
517 		int pos = i < r1 ? i : i + r2;
518 		prod->row_var[pos] = tab1->row_var[i];
519 	}
520 	for (i = 0; i < tab2->n_row; ++i) {
521 		int pos = i < r2 ? r1 + i : tab1->n_row + i;
522 		int t = tab2->row_var[i];
523 		if (t >= 0)
524 			t += tab1->n_var;
525 		else
526 			t -= tab1->n_con;
527 		prod->row_var[pos] = t;
528 	}
529 	prod->samples = NULL;
530 	prod->sample_index = NULL;
531 	prod->n_row = tab1->n_row + tab2->n_row;
532 	prod->n_con = tab1->n_con + tab2->n_con;
533 	prod->n_eq = 0;
534 	prod->max_con = tab1->max_con + tab2->max_con;
535 	prod->n_col = tab1->n_col + tab2->n_col;
536 	prod->n_var = tab1->n_var + tab2->n_var;
537 	prod->max_var = tab1->max_var + tab2->max_var;
538 	prod->n_param = 0;
539 	prod->n_div = 0;
540 	prod->n_dead = tab1->n_dead + tab2->n_dead;
541 	prod->n_redundant = tab1->n_redundant + tab2->n_redundant;
542 	prod->rational = tab1->rational;
543 	prod->empty = tab1->empty || tab2->empty;
544 	prod->strict_redundant = tab1->strict_redundant || tab2->strict_redundant;
545 	prod->need_undo = 0;
546 	prod->in_undo = 0;
547 	prod->M = tab1->M;
548 	prod->cone = tab1->cone;
549 	prod->bottom.type = isl_tab_undo_bottom;
550 	prod->bottom.next = NULL;
551 	prod->top = &prod->bottom;
552 
553 	prod->n_zero = 0;
554 	prod->n_unbounded = 0;
555 	prod->basis = NULL;
556 
557 	return prod;
558 error:
559 	isl_tab_free(prod);
560 	return NULL;
561 }
562 
var_from_index(struct isl_tab * tab,int i)563 static struct isl_tab_var *var_from_index(struct isl_tab *tab, int i)
564 {
565 	if (i >= 0)
566 		return &tab->var[i];
567 	else
568 		return &tab->con[~i];
569 }
570 
isl_tab_var_from_row(struct isl_tab * tab,int i)571 struct isl_tab_var *isl_tab_var_from_row(struct isl_tab *tab, int i)
572 {
573 	return var_from_index(tab, tab->row_var[i]);
574 }
575 
var_from_col(struct isl_tab * tab,int i)576 static struct isl_tab_var *var_from_col(struct isl_tab *tab, int i)
577 {
578 	return var_from_index(tab, tab->col_var[i]);
579 }
580 
581 /* Check if there are any upper bounds on column variable "var",
582  * i.e., non-negative rows where var appears with a negative coefficient.
583  * Return 1 if there are no such bounds.
584  */
max_is_manifestly_unbounded(struct isl_tab * tab,struct isl_tab_var * var)585 static int max_is_manifestly_unbounded(struct isl_tab *tab,
586 	struct isl_tab_var *var)
587 {
588 	int i;
589 	unsigned off = 2 + tab->M;
590 
591 	if (var->is_row)
592 		return 0;
593 	for (i = tab->n_redundant; i < tab->n_row; ++i) {
594 		if (!isl_int_is_neg(tab->mat->row[i][off + var->index]))
595 			continue;
596 		if (isl_tab_var_from_row(tab, i)->is_nonneg)
597 			return 0;
598 	}
599 	return 1;
600 }
601 
602 /* Check if there are any lower bounds on column variable "var",
603  * i.e., non-negative rows where var appears with a positive coefficient.
604  * Return 1 if there are no such bounds.
605  */
min_is_manifestly_unbounded(struct isl_tab * tab,struct isl_tab_var * var)606 static int min_is_manifestly_unbounded(struct isl_tab *tab,
607 	struct isl_tab_var *var)
608 {
609 	int i;
610 	unsigned off = 2 + tab->M;
611 
612 	if (var->is_row)
613 		return 0;
614 	for (i = tab->n_redundant; i < tab->n_row; ++i) {
615 		if (!isl_int_is_pos(tab->mat->row[i][off + var->index]))
616 			continue;
617 		if (isl_tab_var_from_row(tab, i)->is_nonneg)
618 			return 0;
619 	}
620 	return 1;
621 }
622 
row_cmp(struct isl_tab * tab,int r1,int r2,int c,isl_int * t)623 static int row_cmp(struct isl_tab *tab, int r1, int r2, int c, isl_int *t)
624 {
625 	unsigned off = 2 + tab->M;
626 
627 	if (tab->M) {
628 		int s;
629 		isl_int_mul(*t, tab->mat->row[r1][2], tab->mat->row[r2][off+c]);
630 		isl_int_submul(*t, tab->mat->row[r2][2], tab->mat->row[r1][off+c]);
631 		s = isl_int_sgn(*t);
632 		if (s)
633 			return s;
634 	}
635 	isl_int_mul(*t, tab->mat->row[r1][1], tab->mat->row[r2][off + c]);
636 	isl_int_submul(*t, tab->mat->row[r2][1], tab->mat->row[r1][off + c]);
637 	return isl_int_sgn(*t);
638 }
639 
640 /* Given the index of a column "c", return the index of a row
641  * that can be used to pivot the column in, with either an increase
642  * (sgn > 0) or a decrease (sgn < 0) of the corresponding variable.
643  * If "var" is not NULL, then the row returned will be different from
644  * the one associated with "var".
645  *
646  * Each row in the tableau is of the form
647  *
648  *	x_r = a_r0 + \sum_i a_ri x_i
649  *
650  * Only rows with x_r >= 0 and with the sign of a_ri opposite to "sgn"
651  * impose any limit on the increase or decrease in the value of x_c
652  * and this bound is equal to a_r0 / |a_rc|.  We are therefore looking
653  * for the row with the smallest (most stringent) such bound.
654  * Note that the common denominator of each row drops out of the fraction.
655  * To check if row j has a smaller bound than row r, i.e.,
656  * a_j0 / |a_jc| < a_r0 / |a_rc| or a_j0 |a_rc| < a_r0 |a_jc|,
657  * we check if -sign(a_jc) (a_j0 a_rc - a_r0 a_jc) < 0,
658  * where -sign(a_jc) is equal to "sgn".
659  */
pivot_row(struct isl_tab * tab,struct isl_tab_var * var,int sgn,int c)660 static int pivot_row(struct isl_tab *tab,
661 	struct isl_tab_var *var, int sgn, int c)
662 {
663 	int j, r, tsgn;
664 	isl_int t;
665 	unsigned off = 2 + tab->M;
666 
667 	isl_int_init(t);
668 	r = -1;
669 	for (j = tab->n_redundant; j < tab->n_row; ++j) {
670 		if (var && j == var->index)
671 			continue;
672 		if (!isl_tab_var_from_row(tab, j)->is_nonneg)
673 			continue;
674 		if (sgn * isl_int_sgn(tab->mat->row[j][off + c]) >= 0)
675 			continue;
676 		if (r < 0) {
677 			r = j;
678 			continue;
679 		}
680 		tsgn = sgn * row_cmp(tab, r, j, c, &t);
681 		if (tsgn < 0 || (tsgn == 0 &&
682 					    tab->row_var[j] < tab->row_var[r]))
683 			r = j;
684 	}
685 	isl_int_clear(t);
686 	return r;
687 }
688 
689 /* Find a pivot (row and col) that will increase (sgn > 0) or decrease
690  * (sgn < 0) the value of row variable var.
691  * If not NULL, then skip_var is a row variable that should be ignored
692  * while looking for a pivot row.  It is usually equal to var.
693  *
694  * As the given row in the tableau is of the form
695  *
696  *	x_r = a_r0 + \sum_i a_ri x_i
697  *
698  * we need to find a column such that the sign of a_ri is equal to "sgn"
699  * (such that an increase in x_i will have the desired effect) or a
700  * column with a variable that may attain negative values.
701  * If a_ri is positive, then we need to move x_i in the same direction
702  * to obtain the desired effect.  Otherwise, x_i has to move in the
703  * opposite direction.
704  */
find_pivot(struct isl_tab * tab,struct isl_tab_var * var,struct isl_tab_var * skip_var,int sgn,int * row,int * col)705 static void find_pivot(struct isl_tab *tab,
706 	struct isl_tab_var *var, struct isl_tab_var *skip_var,
707 	int sgn, int *row, int *col)
708 {
709 	int j, r, c;
710 	isl_int *tr;
711 
712 	*row = *col = -1;
713 
714 	isl_assert(tab->mat->ctx, var->is_row, return);
715 	tr = tab->mat->row[var->index] + 2 + tab->M;
716 
717 	c = -1;
718 	for (j = tab->n_dead; j < tab->n_col; ++j) {
719 		if (isl_int_is_zero(tr[j]))
720 			continue;
721 		if (isl_int_sgn(tr[j]) != sgn &&
722 		    var_from_col(tab, j)->is_nonneg)
723 			continue;
724 		if (c < 0 || tab->col_var[j] < tab->col_var[c])
725 			c = j;
726 	}
727 	if (c < 0)
728 		return;
729 
730 	sgn *= isl_int_sgn(tr[c]);
731 	r = pivot_row(tab, skip_var, sgn, c);
732 	*row = r < 0 ? var->index : r;
733 	*col = c;
734 }
735 
736 /* Return 1 if row "row" represents an obviously redundant inequality.
737  * This means
738  *	- it represents an inequality or a variable
739  *	- that is the sum of a non-negative sample value and a positive
740  *	  combination of zero or more non-negative constraints.
741  */
isl_tab_row_is_redundant(struct isl_tab * tab,int row)742 int isl_tab_row_is_redundant(struct isl_tab *tab, int row)
743 {
744 	int i;
745 	unsigned off = 2 + tab->M;
746 
747 	if (tab->row_var[row] < 0 && !isl_tab_var_from_row(tab, row)->is_nonneg)
748 		return 0;
749 
750 	if (isl_int_is_neg(tab->mat->row[row][1]))
751 		return 0;
752 	if (tab->strict_redundant && isl_int_is_zero(tab->mat->row[row][1]))
753 		return 0;
754 	if (tab->M && isl_int_is_neg(tab->mat->row[row][2]))
755 		return 0;
756 
757 	for (i = tab->n_dead; i < tab->n_col; ++i) {
758 		if (isl_int_is_zero(tab->mat->row[row][off + i]))
759 			continue;
760 		if (tab->col_var[i] >= 0)
761 			return 0;
762 		if (isl_int_is_neg(tab->mat->row[row][off + i]))
763 			return 0;
764 		if (!var_from_col(tab, i)->is_nonneg)
765 			return 0;
766 	}
767 	return 1;
768 }
769 
swap_rows(struct isl_tab * tab,int row1,int row2)770 static void swap_rows(struct isl_tab *tab, int row1, int row2)
771 {
772 	int t;
773 	enum isl_tab_row_sign s;
774 
775 	t = tab->row_var[row1];
776 	tab->row_var[row1] = tab->row_var[row2];
777 	tab->row_var[row2] = t;
778 	isl_tab_var_from_row(tab, row1)->index = row1;
779 	isl_tab_var_from_row(tab, row2)->index = row2;
780 	tab->mat = isl_mat_swap_rows(tab->mat, row1, row2);
781 
782 	if (!tab->row_sign)
783 		return;
784 	s = tab->row_sign[row1];
785 	tab->row_sign[row1] = tab->row_sign[row2];
786 	tab->row_sign[row2] = s;
787 }
788 
789 static isl_stat push_union(struct isl_tab *tab,
790 	enum isl_tab_undo_type type, union isl_tab_undo_val u) WARN_UNUSED;
791 
792 /* Push record "u" onto the undo stack of "tab", provided "tab"
793  * keeps track of undo information.
794  *
795  * If the record cannot be pushed, then mark the undo stack as invalid
796  * such that a later rollback attempt will not try to undo earlier
797  * records without having been able to undo the current record.
798  */
push_union(struct isl_tab * tab,enum isl_tab_undo_type type,union isl_tab_undo_val u)799 static isl_stat push_union(struct isl_tab *tab,
800 	enum isl_tab_undo_type type, union isl_tab_undo_val u)
801 {
802 	struct isl_tab_undo *undo;
803 
804 	if (!tab)
805 		return isl_stat_error;
806 	if (!tab->need_undo)
807 		return isl_stat_ok;
808 
809 	undo = isl_alloc_type(tab->mat->ctx, struct isl_tab_undo);
810 	if (!undo)
811 		goto error;
812 	undo->type = type;
813 	undo->u = u;
814 	undo->next = tab->top;
815 	tab->top = undo;
816 
817 	return isl_stat_ok;
818 error:
819 	free_undo(tab);
820 	tab->top = NULL;
821 	return isl_stat_error;
822 }
823 
isl_tab_push_var(struct isl_tab * tab,enum isl_tab_undo_type type,struct isl_tab_var * var)824 isl_stat isl_tab_push_var(struct isl_tab *tab,
825 	enum isl_tab_undo_type type, struct isl_tab_var *var)
826 {
827 	union isl_tab_undo_val u;
828 	if (var->is_row)
829 		u.var_index = tab->row_var[var->index];
830 	else
831 		u.var_index = tab->col_var[var->index];
832 	return push_union(tab, type, u);
833 }
834 
isl_tab_push(struct isl_tab * tab,enum isl_tab_undo_type type)835 isl_stat isl_tab_push(struct isl_tab *tab, enum isl_tab_undo_type type)
836 {
837 	union isl_tab_undo_val u = { 0 };
838 	return push_union(tab, type, u);
839 }
840 
841 /* Push a record on the undo stack describing the current basic
842  * variables, so that the this state can be restored during rollback.
843  */
isl_tab_push_basis(struct isl_tab * tab)844 isl_stat isl_tab_push_basis(struct isl_tab *tab)
845 {
846 	int i;
847 	union isl_tab_undo_val u;
848 
849 	u.col_var = isl_alloc_array(tab->mat->ctx, int, tab->n_col);
850 	if (tab->n_col && !u.col_var)
851 		return isl_stat_error;
852 	for (i = 0; i < tab->n_col; ++i)
853 		u.col_var[i] = tab->col_var[i];
854 	return push_union(tab, isl_tab_undo_saved_basis, u);
855 }
856 
isl_tab_push_callback(struct isl_tab * tab,struct isl_tab_callback * callback)857 isl_stat isl_tab_push_callback(struct isl_tab *tab,
858 	struct isl_tab_callback *callback)
859 {
860 	union isl_tab_undo_val u;
861 	u.callback = callback;
862 	return push_union(tab, isl_tab_undo_callback, u);
863 }
864 
isl_tab_init_samples(struct isl_tab * tab)865 struct isl_tab *isl_tab_init_samples(struct isl_tab *tab)
866 {
867 	if (!tab)
868 		return NULL;
869 
870 	tab->n_sample = 0;
871 	tab->n_outside = 0;
872 	tab->samples = isl_mat_alloc(tab->mat->ctx, 1, 1 + tab->n_var);
873 	if (!tab->samples)
874 		goto error;
875 	tab->sample_index = isl_alloc_array(tab->mat->ctx, int, 1);
876 	if (!tab->sample_index)
877 		goto error;
878 	return tab;
879 error:
880 	isl_tab_free(tab);
881 	return NULL;
882 }
883 
isl_tab_add_sample(struct isl_tab * tab,__isl_take isl_vec * sample)884 int isl_tab_add_sample(struct isl_tab *tab, __isl_take isl_vec *sample)
885 {
886 	if (!tab || !sample)
887 		goto error;
888 
889 	if (tab->n_sample + 1 > tab->samples->n_row) {
890 		int *t = isl_realloc_array(tab->mat->ctx,
891 			    tab->sample_index, int, tab->n_sample + 1);
892 		if (!t)
893 			goto error;
894 		tab->sample_index = t;
895 	}
896 
897 	tab->samples = isl_mat_extend(tab->samples,
898 				tab->n_sample + 1, tab->samples->n_col);
899 	if (!tab->samples)
900 		goto error;
901 
902 	isl_seq_cpy(tab->samples->row[tab->n_sample], sample->el, sample->size);
903 	isl_vec_free(sample);
904 	tab->sample_index[tab->n_sample] = tab->n_sample;
905 	tab->n_sample++;
906 
907 	return 0;
908 error:
909 	isl_vec_free(sample);
910 	return -1;
911 }
912 
isl_tab_drop_sample(struct isl_tab * tab,int s)913 struct isl_tab *isl_tab_drop_sample(struct isl_tab *tab, int s)
914 {
915 	if (s != tab->n_outside) {
916 		int t = tab->sample_index[tab->n_outside];
917 		tab->sample_index[tab->n_outside] = tab->sample_index[s];
918 		tab->sample_index[s] = t;
919 		isl_mat_swap_rows(tab->samples, tab->n_outside, s);
920 	}
921 	tab->n_outside++;
922 	if (isl_tab_push(tab, isl_tab_undo_drop_sample) < 0) {
923 		isl_tab_free(tab);
924 		return NULL;
925 	}
926 
927 	return tab;
928 }
929 
930 /* Record the current number of samples so that we can remove newer
931  * samples during a rollback.
932  */
isl_tab_save_samples(struct isl_tab * tab)933 isl_stat isl_tab_save_samples(struct isl_tab *tab)
934 {
935 	union isl_tab_undo_val u;
936 
937 	if (!tab)
938 		return isl_stat_error;
939 
940 	u.n = tab->n_sample;
941 	return push_union(tab, isl_tab_undo_saved_samples, u);
942 }
943 
944 /* Mark row with index "row" as being redundant.
945  * If we may need to undo the operation or if the row represents
946  * a variable of the original problem, the row is kept,
947  * but no longer considered when looking for a pivot row.
948  * Otherwise, the row is simply removed.
949  *
950  * The row may be interchanged with some other row.  If it
951  * is interchanged with a later row, return 1.  Otherwise return 0.
952  * If the rows are checked in order in the calling function,
953  * then a return value of 1 means that the row with the given
954  * row number may now contain a different row that hasn't been checked yet.
955  */
isl_tab_mark_redundant(struct isl_tab * tab,int row)956 int isl_tab_mark_redundant(struct isl_tab *tab, int row)
957 {
958 	struct isl_tab_var *var = isl_tab_var_from_row(tab, row);
959 	var->is_redundant = 1;
960 	isl_assert(tab->mat->ctx, row >= tab->n_redundant, return -1);
961 	if (tab->preserve || tab->need_undo || tab->row_var[row] >= 0) {
962 		if (tab->row_var[row] >= 0 && !var->is_nonneg) {
963 			var->is_nonneg = 1;
964 			if (isl_tab_push_var(tab, isl_tab_undo_nonneg, var) < 0)
965 				return -1;
966 		}
967 		if (row != tab->n_redundant)
968 			swap_rows(tab, row, tab->n_redundant);
969 		tab->n_redundant++;
970 		return isl_tab_push_var(tab, isl_tab_undo_redundant, var);
971 	} else {
972 		if (row != tab->n_row - 1)
973 			swap_rows(tab, row, tab->n_row - 1);
974 		isl_tab_var_from_row(tab, tab->n_row - 1)->index = -1;
975 		tab->n_row--;
976 		return 1;
977 	}
978 }
979 
980 /* Mark "tab" as a rational tableau.
981  * If it wasn't marked as a rational tableau already and if we may
982  * need to undo changes, then arrange for the marking to be undone
983  * during the undo.
984  */
isl_tab_mark_rational(struct isl_tab * tab)985 int isl_tab_mark_rational(struct isl_tab *tab)
986 {
987 	if (!tab)
988 		return -1;
989 	if (!tab->rational && tab->need_undo)
990 		if (isl_tab_push(tab, isl_tab_undo_rational) < 0)
991 			return -1;
992 	tab->rational = 1;
993 	return 0;
994 }
995 
isl_tab_mark_empty(struct isl_tab * tab)996 isl_stat isl_tab_mark_empty(struct isl_tab *tab)
997 {
998 	if (!tab)
999 		return isl_stat_error;
1000 	if (!tab->empty && tab->need_undo)
1001 		if (isl_tab_push(tab, isl_tab_undo_empty) < 0)
1002 			return isl_stat_error;
1003 	tab->empty = 1;
1004 	return isl_stat_ok;
1005 }
1006 
isl_tab_freeze_constraint(struct isl_tab * tab,int con)1007 int isl_tab_freeze_constraint(struct isl_tab *tab, int con)
1008 {
1009 	struct isl_tab_var *var;
1010 
1011 	if (!tab)
1012 		return -1;
1013 
1014 	var = &tab->con[con];
1015 	if (var->frozen)
1016 		return 0;
1017 	if (var->index < 0)
1018 		return 0;
1019 	var->frozen = 1;
1020 
1021 	if (tab->need_undo)
1022 		return isl_tab_push_var(tab, isl_tab_undo_freeze, var);
1023 
1024 	return 0;
1025 }
1026 
1027 /* Update the rows signs after a pivot of "row" and "col", with "row_sgn"
1028  * the original sign of the pivot element.
1029  * We only keep track of row signs during PILP solving and in this case
1030  * we only pivot a row with negative sign (meaning the value is always
1031  * non-positive) using a positive pivot element.
1032  *
1033  * For each row j, the new value of the parametric constant is equal to
1034  *
1035  *	a_j0 - a_jc a_r0/a_rc
1036  *
1037  * where a_j0 is the original parametric constant, a_rc is the pivot element,
1038  * a_r0 is the parametric constant of the pivot row and a_jc is the
1039  * pivot column entry of the row j.
1040  * Since a_r0 is non-positive and a_rc is positive, the sign of row j
1041  * remains the same if a_jc has the same sign as the row j or if
1042  * a_jc is zero.  In all other cases, we reset the sign to "unknown".
1043  */
update_row_sign(struct isl_tab * tab,int row,int col,int row_sgn)1044 static void update_row_sign(struct isl_tab *tab, int row, int col, int row_sgn)
1045 {
1046 	int i;
1047 	struct isl_mat *mat = tab->mat;
1048 	unsigned off = 2 + tab->M;
1049 
1050 	if (!tab->row_sign)
1051 		return;
1052 
1053 	if (tab->row_sign[row] == 0)
1054 		return;
1055 	isl_assert(mat->ctx, row_sgn > 0, return);
1056 	isl_assert(mat->ctx, tab->row_sign[row] == isl_tab_row_neg, return);
1057 	tab->row_sign[row] = isl_tab_row_pos;
1058 	for (i = 0; i < tab->n_row; ++i) {
1059 		int s;
1060 		if (i == row)
1061 			continue;
1062 		s = isl_int_sgn(mat->row[i][off + col]);
1063 		if (!s)
1064 			continue;
1065 		if (!tab->row_sign[i])
1066 			continue;
1067 		if (s < 0 && tab->row_sign[i] == isl_tab_row_neg)
1068 			continue;
1069 		if (s > 0 && tab->row_sign[i] == isl_tab_row_pos)
1070 			continue;
1071 		tab->row_sign[i] = isl_tab_row_unknown;
1072 	}
1073 }
1074 
1075 /* Given a row number "row" and a column number "col", pivot the tableau
1076  * such that the associated variables are interchanged.
1077  * The given row in the tableau expresses
1078  *
1079  *	x_r = a_r0 + \sum_i a_ri x_i
1080  *
1081  * or
1082  *
1083  *	x_c = 1/a_rc x_r - a_r0/a_rc + sum_{i \ne r} -a_ri/a_rc
1084  *
1085  * Substituting this equality into the other rows
1086  *
1087  *	x_j = a_j0 + \sum_i a_ji x_i
1088  *
1089  * with a_jc \ne 0, we obtain
1090  *
1091  *	x_j = a_jc/a_rc x_r + a_j0 - a_jc a_r0/a_rc + sum a_ji - a_jc a_ri/a_rc
1092  *
1093  * The tableau
1094  *
1095  *	n_rc/d_r		n_ri/d_r
1096  *	n_jc/d_j		n_ji/d_j
1097  *
1098  * where i is any other column and j is any other row,
1099  * is therefore transformed into
1100  *
1101  * s(n_rc)d_r/|n_rc|		-s(n_rc)n_ri/|n_rc|
1102  * s(n_rc)d_r n_jc/(|n_rc| d_j)	(n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
1103  *
1104  * The transformation is performed along the following steps
1105  *
1106  *	d_r/n_rc		n_ri/n_rc
1107  *	n_jc/d_j		n_ji/d_j
1108  *
1109  *	s(n_rc)d_r/|n_rc|	-s(n_rc)n_ri/|n_rc|
1110  *	n_jc/d_j		n_ji/d_j
1111  *
1112  *	s(n_rc)d_r/|n_rc|	-s(n_rc)n_ri/|n_rc|
1113  *	n_jc/(|n_rc| d_j)	n_ji/(|n_rc| d_j)
1114  *
1115  *	s(n_rc)d_r/|n_rc|	-s(n_rc)n_ri/|n_rc|
1116  *	n_jc/(|n_rc| d_j)	(n_ji |n_rc|)/(|n_rc| d_j)
1117  *
1118  *	s(n_rc)d_r/|n_rc|	-s(n_rc)n_ri/|n_rc|
1119  *	n_jc/(|n_rc| d_j)	(n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
1120  *
1121  * s(n_rc)d_r/|n_rc|		-s(n_rc)n_ri/|n_rc|
1122  * s(n_rc)d_r n_jc/(|n_rc| d_j)	(n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j)
1123  *
1124  */
isl_tab_pivot(struct isl_tab * tab,int row,int col)1125 int isl_tab_pivot(struct isl_tab *tab, int row, int col)
1126 {
1127 	int i, j;
1128 	int sgn;
1129 	int t;
1130 	isl_ctx *ctx;
1131 	struct isl_mat *mat = tab->mat;
1132 	struct isl_tab_var *var;
1133 	unsigned off = 2 + tab->M;
1134 
1135 	ctx = isl_tab_get_ctx(tab);
1136 	if (isl_ctx_next_operation(ctx) < 0)
1137 		return -1;
1138 
1139 	isl_int_swap(mat->row[row][0], mat->row[row][off + col]);
1140 	sgn = isl_int_sgn(mat->row[row][0]);
1141 	if (sgn < 0) {
1142 		isl_int_neg(mat->row[row][0], mat->row[row][0]);
1143 		isl_int_neg(mat->row[row][off + col], mat->row[row][off + col]);
1144 	} else
1145 		for (j = 0; j < off - 1 + tab->n_col; ++j) {
1146 			if (j == off - 1 + col)
1147 				continue;
1148 			isl_int_neg(mat->row[row][1 + j], mat->row[row][1 + j]);
1149 		}
1150 	if (!isl_int_is_one(mat->row[row][0]))
1151 		isl_seq_normalize(mat->ctx, mat->row[row], off + tab->n_col);
1152 	for (i = 0; i < tab->n_row; ++i) {
1153 		if (i == row)
1154 			continue;
1155 		if (isl_int_is_zero(mat->row[i][off + col]))
1156 			continue;
1157 		isl_int_mul(mat->row[i][0], mat->row[i][0], mat->row[row][0]);
1158 		for (j = 0; j < off - 1 + tab->n_col; ++j) {
1159 			if (j == off - 1 + col)
1160 				continue;
1161 			isl_int_mul(mat->row[i][1 + j],
1162 				    mat->row[i][1 + j], mat->row[row][0]);
1163 			isl_int_addmul(mat->row[i][1 + j],
1164 				    mat->row[i][off + col], mat->row[row][1 + j]);
1165 		}
1166 		isl_int_mul(mat->row[i][off + col],
1167 			    mat->row[i][off + col], mat->row[row][off + col]);
1168 		if (!isl_int_is_one(mat->row[i][0]))
1169 			isl_seq_normalize(mat->ctx, mat->row[i], off + tab->n_col);
1170 	}
1171 	t = tab->row_var[row];
1172 	tab->row_var[row] = tab->col_var[col];
1173 	tab->col_var[col] = t;
1174 	var = isl_tab_var_from_row(tab, row);
1175 	var->is_row = 1;
1176 	var->index = row;
1177 	var = var_from_col(tab, col);
1178 	var->is_row = 0;
1179 	var->index = col;
1180 	update_row_sign(tab, row, col, sgn);
1181 	if (tab->in_undo)
1182 		return 0;
1183 	for (i = tab->n_redundant; i < tab->n_row; ++i) {
1184 		if (isl_int_is_zero(mat->row[i][off + col]))
1185 			continue;
1186 		if (!isl_tab_var_from_row(tab, i)->frozen &&
1187 		    isl_tab_row_is_redundant(tab, i)) {
1188 			int redo = isl_tab_mark_redundant(tab, i);
1189 			if (redo < 0)
1190 				return -1;
1191 			if (redo)
1192 				--i;
1193 		}
1194 	}
1195 	return 0;
1196 }
1197 
1198 /* If "var" represents a column variable, then pivot is up (sgn > 0)
1199  * or down (sgn < 0) to a row.  The variable is assumed not to be
1200  * unbounded in the specified direction.
1201  * If sgn = 0, then the variable is unbounded in both directions,
1202  * and we pivot with any row we can find.
1203  */
1204 static int to_row(struct isl_tab *tab, struct isl_tab_var *var, int sign) WARN_UNUSED;
to_row(struct isl_tab * tab,struct isl_tab_var * var,int sign)1205 static int to_row(struct isl_tab *tab, struct isl_tab_var *var, int sign)
1206 {
1207 	int r;
1208 	unsigned off = 2 + tab->M;
1209 
1210 	if (var->is_row)
1211 		return 0;
1212 
1213 	if (sign == 0) {
1214 		for (r = tab->n_redundant; r < tab->n_row; ++r)
1215 			if (!isl_int_is_zero(tab->mat->row[r][off+var->index]))
1216 				break;
1217 		isl_assert(tab->mat->ctx, r < tab->n_row, return -1);
1218 	} else {
1219 		r = pivot_row(tab, NULL, sign, var->index);
1220 		isl_assert(tab->mat->ctx, r >= 0, return -1);
1221 	}
1222 
1223 	return isl_tab_pivot(tab, r, var->index);
1224 }
1225 
1226 /* Check whether all variables that are marked as non-negative
1227  * also have a non-negative sample value.  This function is not
1228  * called from the current code but is useful during debugging.
1229  */
1230 static void check_table(struct isl_tab *tab) __attribute__ ((unused));
check_table(struct isl_tab * tab)1231 static void check_table(struct isl_tab *tab)
1232 {
1233 	int i;
1234 
1235 	if (tab->empty)
1236 		return;
1237 	for (i = tab->n_redundant; i < tab->n_row; ++i) {
1238 		struct isl_tab_var *var;
1239 		var = isl_tab_var_from_row(tab, i);
1240 		if (!var->is_nonneg)
1241 			continue;
1242 		if (tab->M) {
1243 			isl_assert(tab->mat->ctx,
1244 				!isl_int_is_neg(tab->mat->row[i][2]), abort());
1245 			if (isl_int_is_pos(tab->mat->row[i][2]))
1246 				continue;
1247 		}
1248 		isl_assert(tab->mat->ctx, !isl_int_is_neg(tab->mat->row[i][1]),
1249 				abort());
1250 	}
1251 }
1252 
1253 /* Return the sign of the maximal value of "var".
1254  * If the sign is not negative, then on return from this function,
1255  * the sample value will also be non-negative.
1256  *
1257  * If "var" is manifestly unbounded wrt positive values, we are done.
1258  * Otherwise, we pivot the variable up to a row if needed
1259  * Then we continue pivoting down until either
1260  *	- no more down pivots can be performed
1261  *	- the sample value is positive
1262  *	- the variable is pivoted into a manifestly unbounded column
1263  */
sign_of_max(struct isl_tab * tab,struct isl_tab_var * var)1264 static int sign_of_max(struct isl_tab *tab, struct isl_tab_var *var)
1265 {
1266 	int row, col;
1267 
1268 	if (max_is_manifestly_unbounded(tab, var))
1269 		return 1;
1270 	if (to_row(tab, var, 1) < 0)
1271 		return -2;
1272 	while (!isl_int_is_pos(tab->mat->row[var->index][1])) {
1273 		find_pivot(tab, var, var, 1, &row, &col);
1274 		if (row == -1)
1275 			return isl_int_sgn(tab->mat->row[var->index][1]);
1276 		if (isl_tab_pivot(tab, row, col) < 0)
1277 			return -2;
1278 		if (!var->is_row) /* manifestly unbounded */
1279 			return 1;
1280 	}
1281 	return 1;
1282 }
1283 
isl_tab_sign_of_max(struct isl_tab * tab,int con)1284 int isl_tab_sign_of_max(struct isl_tab *tab, int con)
1285 {
1286 	struct isl_tab_var *var;
1287 
1288 	if (!tab)
1289 		return -2;
1290 
1291 	var = &tab->con[con];
1292 	isl_assert(tab->mat->ctx, !var->is_redundant, return -2);
1293 	isl_assert(tab->mat->ctx, !var->is_zero, return -2);
1294 
1295 	return sign_of_max(tab, var);
1296 }
1297 
row_is_neg(struct isl_tab * tab,int row)1298 static int row_is_neg(struct isl_tab *tab, int row)
1299 {
1300 	if (!tab->M)
1301 		return isl_int_is_neg(tab->mat->row[row][1]);
1302 	if (isl_int_is_pos(tab->mat->row[row][2]))
1303 		return 0;
1304 	if (isl_int_is_neg(tab->mat->row[row][2]))
1305 		return 1;
1306 	return isl_int_is_neg(tab->mat->row[row][1]);
1307 }
1308 
row_sgn(struct isl_tab * tab,int row)1309 static int row_sgn(struct isl_tab *tab, int row)
1310 {
1311 	if (!tab->M)
1312 		return isl_int_sgn(tab->mat->row[row][1]);
1313 	if (!isl_int_is_zero(tab->mat->row[row][2]))
1314 		return isl_int_sgn(tab->mat->row[row][2]);
1315 	else
1316 		return isl_int_sgn(tab->mat->row[row][1]);
1317 }
1318 
1319 /* Perform pivots until the row variable "var" has a non-negative
1320  * sample value or until no more upward pivots can be performed.
1321  * Return the sign of the sample value after the pivots have been
1322  * performed.
1323  */
restore_row(struct isl_tab * tab,struct isl_tab_var * var)1324 static int restore_row(struct isl_tab *tab, struct isl_tab_var *var)
1325 {
1326 	int row, col;
1327 
1328 	while (row_is_neg(tab, var->index)) {
1329 		find_pivot(tab, var, var, 1, &row, &col);
1330 		if (row == -1)
1331 			break;
1332 		if (isl_tab_pivot(tab, row, col) < 0)
1333 			return -2;
1334 		if (!var->is_row) /* manifestly unbounded */
1335 			return 1;
1336 	}
1337 	return row_sgn(tab, var->index);
1338 }
1339 
1340 /* Perform pivots until we are sure that the row variable "var"
1341  * can attain non-negative values.  After return from this
1342  * function, "var" is still a row variable, but its sample
1343  * value may not be non-negative, even if the function returns 1.
1344  */
at_least_zero(struct isl_tab * tab,struct isl_tab_var * var)1345 static int at_least_zero(struct isl_tab *tab, struct isl_tab_var *var)
1346 {
1347 	int row, col;
1348 
1349 	while (isl_int_is_neg(tab->mat->row[var->index][1])) {
1350 		find_pivot(tab, var, var, 1, &row, &col);
1351 		if (row == -1)
1352 			break;
1353 		if (row == var->index) /* manifestly unbounded */
1354 			return 1;
1355 		if (isl_tab_pivot(tab, row, col) < 0)
1356 			return -1;
1357 	}
1358 	return !isl_int_is_neg(tab->mat->row[var->index][1]);
1359 }
1360 
1361 /* Return a negative value if "var" can attain negative values.
1362  * Return a non-negative value otherwise.
1363  *
1364  * If "var" is manifestly unbounded wrt negative values, we are done.
1365  * Otherwise, if var is in a column, we can pivot it down to a row.
1366  * Then we continue pivoting down until either
1367  *	- the pivot would result in a manifestly unbounded column
1368  *	  => we don't perform the pivot, but simply return -1
1369  *	- no more down pivots can be performed
1370  *	- the sample value is negative
1371  * If the sample value becomes negative and the variable is supposed
1372  * to be nonnegative, then we undo the last pivot.
1373  * However, if the last pivot has made the pivoting variable
1374  * obviously redundant, then it may have moved to another row.
1375  * In that case we look for upward pivots until we reach a non-negative
1376  * value again.
1377  */
sign_of_min(struct isl_tab * tab,struct isl_tab_var * var)1378 static int sign_of_min(struct isl_tab *tab, struct isl_tab_var *var)
1379 {
1380 	int row, col;
1381 	struct isl_tab_var *pivot_var = NULL;
1382 
1383 	if (min_is_manifestly_unbounded(tab, var))
1384 		return -1;
1385 	if (!var->is_row) {
1386 		col = var->index;
1387 		row = pivot_row(tab, NULL, -1, col);
1388 		pivot_var = var_from_col(tab, col);
1389 		if (isl_tab_pivot(tab, row, col) < 0)
1390 			return -2;
1391 		if (var->is_redundant)
1392 			return 0;
1393 		if (isl_int_is_neg(tab->mat->row[var->index][1])) {
1394 			if (var->is_nonneg) {
1395 				if (!pivot_var->is_redundant &&
1396 				    pivot_var->index == row) {
1397 					if (isl_tab_pivot(tab, row, col) < 0)
1398 						return -2;
1399 				} else
1400 					if (restore_row(tab, var) < -1)
1401 						return -2;
1402 			}
1403 			return -1;
1404 		}
1405 	}
1406 	if (var->is_redundant)
1407 		return 0;
1408 	while (!isl_int_is_neg(tab->mat->row[var->index][1])) {
1409 		find_pivot(tab, var, var, -1, &row, &col);
1410 		if (row == var->index)
1411 			return -1;
1412 		if (row == -1)
1413 			return isl_int_sgn(tab->mat->row[var->index][1]);
1414 		pivot_var = var_from_col(tab, col);
1415 		if (isl_tab_pivot(tab, row, col) < 0)
1416 			return -2;
1417 		if (var->is_redundant)
1418 			return 0;
1419 	}
1420 	if (pivot_var && var->is_nonneg) {
1421 		/* pivot back to non-negative value */
1422 		if (!pivot_var->is_redundant && pivot_var->index == row) {
1423 			if (isl_tab_pivot(tab, row, col) < 0)
1424 				return -2;
1425 		} else
1426 			if (restore_row(tab, var) < -1)
1427 				return -2;
1428 	}
1429 	return -1;
1430 }
1431 
row_at_most_neg_one(struct isl_tab * tab,int row)1432 static int row_at_most_neg_one(struct isl_tab *tab, int row)
1433 {
1434 	if (tab->M) {
1435 		if (isl_int_is_pos(tab->mat->row[row][2]))
1436 			return 0;
1437 		if (isl_int_is_neg(tab->mat->row[row][2]))
1438 			return 1;
1439 	}
1440 	return isl_int_is_neg(tab->mat->row[row][1]) &&
1441 	       isl_int_abs_ge(tab->mat->row[row][1],
1442 			      tab->mat->row[row][0]);
1443 }
1444 
1445 /* Return 1 if "var" can attain values <= -1.
1446  * Return 0 otherwise.
1447  *
1448  * If the variable "var" is supposed to be non-negative (is_nonneg is set),
1449  * then the sample value of "var" is assumed to be non-negative when the
1450  * the function is called.  If 1 is returned then the constraint
1451  * is not redundant and the sample value is made non-negative again before
1452  * the function returns.
1453  */
isl_tab_min_at_most_neg_one(struct isl_tab * tab,struct isl_tab_var * var)1454 int isl_tab_min_at_most_neg_one(struct isl_tab *tab, struct isl_tab_var *var)
1455 {
1456 	int row, col;
1457 	struct isl_tab_var *pivot_var;
1458 
1459 	if (min_is_manifestly_unbounded(tab, var))
1460 		return 1;
1461 	if (!var->is_row) {
1462 		col = var->index;
1463 		row = pivot_row(tab, NULL, -1, col);
1464 		pivot_var = var_from_col(tab, col);
1465 		if (isl_tab_pivot(tab, row, col) < 0)
1466 			return -1;
1467 		if (var->is_redundant)
1468 			return 0;
1469 		if (row_at_most_neg_one(tab, var->index)) {
1470 			if (var->is_nonneg) {
1471 				if (!pivot_var->is_redundant &&
1472 				    pivot_var->index == row) {
1473 					if (isl_tab_pivot(tab, row, col) < 0)
1474 						return -1;
1475 				} else
1476 					if (restore_row(tab, var) < -1)
1477 						return -1;
1478 			}
1479 			return 1;
1480 		}
1481 	}
1482 	if (var->is_redundant)
1483 		return 0;
1484 	do {
1485 		find_pivot(tab, var, var, -1, &row, &col);
1486 		if (row == var->index) {
1487 			if (var->is_nonneg && restore_row(tab, var) < -1)
1488 				return -1;
1489 			return 1;
1490 		}
1491 		if (row == -1)
1492 			return 0;
1493 		pivot_var = var_from_col(tab, col);
1494 		if (isl_tab_pivot(tab, row, col) < 0)
1495 			return -1;
1496 		if (var->is_redundant)
1497 			return 0;
1498 	} while (!row_at_most_neg_one(tab, var->index));
1499 	if (var->is_nonneg) {
1500 		/* pivot back to non-negative value */
1501 		if (!pivot_var->is_redundant && pivot_var->index == row)
1502 			if (isl_tab_pivot(tab, row, col) < 0)
1503 				return -1;
1504 		if (restore_row(tab, var) < -1)
1505 			return -1;
1506 	}
1507 	return 1;
1508 }
1509 
1510 /* Return 1 if "var" can attain values >= 1.
1511  * Return 0 otherwise.
1512  */
at_least_one(struct isl_tab * tab,struct isl_tab_var * var)1513 static int at_least_one(struct isl_tab *tab, struct isl_tab_var *var)
1514 {
1515 	int row, col;
1516 	isl_int *r;
1517 
1518 	if (max_is_manifestly_unbounded(tab, var))
1519 		return 1;
1520 	if (to_row(tab, var, 1) < 0)
1521 		return -1;
1522 	r = tab->mat->row[var->index];
1523 	while (isl_int_lt(r[1], r[0])) {
1524 		find_pivot(tab, var, var, 1, &row, &col);
1525 		if (row == -1)
1526 			return isl_int_ge(r[1], r[0]);
1527 		if (row == var->index) /* manifestly unbounded */
1528 			return 1;
1529 		if (isl_tab_pivot(tab, row, col) < 0)
1530 			return -1;
1531 	}
1532 	return 1;
1533 }
1534 
swap_cols(struct isl_tab * tab,int col1,int col2)1535 static void swap_cols(struct isl_tab *tab, int col1, int col2)
1536 {
1537 	int t;
1538 	unsigned off = 2 + tab->M;
1539 	t = tab->col_var[col1];
1540 	tab->col_var[col1] = tab->col_var[col2];
1541 	tab->col_var[col2] = t;
1542 	var_from_col(tab, col1)->index = col1;
1543 	var_from_col(tab, col2)->index = col2;
1544 	tab->mat = isl_mat_swap_cols(tab->mat, off + col1, off + col2);
1545 }
1546 
1547 /* Mark column with index "col" as representing a zero variable.
1548  * If we may need to undo the operation the column is kept,
1549  * but no longer considered.
1550  * Otherwise, the column is simply removed.
1551  *
1552  * The column may be interchanged with some other column.  If it
1553  * is interchanged with a later column, return 1.  Otherwise return 0.
1554  * If the columns are checked in order in the calling function,
1555  * then a return value of 1 means that the column with the given
1556  * column number may now contain a different column that
1557  * hasn't been checked yet.
1558  */
isl_tab_kill_col(struct isl_tab * tab,int col)1559 int isl_tab_kill_col(struct isl_tab *tab, int col)
1560 {
1561 	var_from_col(tab, col)->is_zero = 1;
1562 	if (tab->need_undo) {
1563 		if (isl_tab_push_var(tab, isl_tab_undo_zero,
1564 					    var_from_col(tab, col)) < 0)
1565 			return -1;
1566 		if (col != tab->n_dead)
1567 			swap_cols(tab, col, tab->n_dead);
1568 		tab->n_dead++;
1569 		return 0;
1570 	} else {
1571 		if (col != tab->n_col - 1)
1572 			swap_cols(tab, col, tab->n_col - 1);
1573 		var_from_col(tab, tab->n_col - 1)->index = -1;
1574 		tab->n_col--;
1575 		return 1;
1576 	}
1577 }
1578 
row_is_manifestly_non_integral(struct isl_tab * tab,int row)1579 static int row_is_manifestly_non_integral(struct isl_tab *tab, int row)
1580 {
1581 	unsigned off = 2 + tab->M;
1582 
1583 	if (tab->M && !isl_int_eq(tab->mat->row[row][2],
1584 				  tab->mat->row[row][0]))
1585 		return 0;
1586 	if (isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
1587 				    tab->n_col - tab->n_dead) != -1)
1588 		return 0;
1589 
1590 	return !isl_int_is_divisible_by(tab->mat->row[row][1],
1591 					tab->mat->row[row][0]);
1592 }
1593 
1594 /* For integer tableaus, check if any of the coordinates are stuck
1595  * at a non-integral value.
1596  */
tab_is_manifestly_empty(struct isl_tab * tab)1597 static int tab_is_manifestly_empty(struct isl_tab *tab)
1598 {
1599 	int i;
1600 
1601 	if (tab->empty)
1602 		return 1;
1603 	if (tab->rational)
1604 		return 0;
1605 
1606 	for (i = 0; i < tab->n_var; ++i) {
1607 		if (!tab->var[i].is_row)
1608 			continue;
1609 		if (row_is_manifestly_non_integral(tab, tab->var[i].index))
1610 			return 1;
1611 	}
1612 
1613 	return 0;
1614 }
1615 
1616 /* Row variable "var" is non-negative and cannot attain any values
1617  * larger than zero.  This means that the coefficients of the unrestricted
1618  * column variables are zero and that the coefficients of the non-negative
1619  * column variables are zero or negative.
1620  * Each of the non-negative variables with a negative coefficient can
1621  * then also be written as the negative sum of non-negative variables
1622  * and must therefore also be zero.
1623  *
1624  * If "temp_var" is set, then "var" is a temporary variable that
1625  * will be removed after this function returns and for which
1626  * no information is recorded on the undo stack.
1627  * Do not add any undo records involving this variable in this case
1628  * since the variable will have been removed before any future undo
1629  * operations.  Also avoid marking the variable as redundant,
1630  * since that either adds an undo record or needlessly removes the row
1631  * (the caller will take care of removing the row).
1632  */
1633 static isl_stat close_row(struct isl_tab *tab, struct isl_tab_var *var,
1634 	int temp_var) WARN_UNUSED;
close_row(struct isl_tab * tab,struct isl_tab_var * var,int temp_var)1635 static isl_stat close_row(struct isl_tab *tab, struct isl_tab_var *var,
1636 	int temp_var)
1637 {
1638 	int j;
1639 	struct isl_mat *mat = tab->mat;
1640 	unsigned off = 2 + tab->M;
1641 
1642 	if (!var->is_nonneg)
1643 		isl_die(isl_tab_get_ctx(tab), isl_error_internal,
1644 			"expecting non-negative variable",
1645 			return isl_stat_error);
1646 	var->is_zero = 1;
1647 	if (!temp_var && tab->need_undo)
1648 		if (isl_tab_push_var(tab, isl_tab_undo_zero, var) < 0)
1649 			return isl_stat_error;
1650 	for (j = tab->n_dead; j < tab->n_col; ++j) {
1651 		int recheck;
1652 		if (isl_int_is_zero(mat->row[var->index][off + j]))
1653 			continue;
1654 		if (isl_int_is_pos(mat->row[var->index][off + j]))
1655 			isl_die(isl_tab_get_ctx(tab), isl_error_internal,
1656 				"row cannot have positive coefficients",
1657 				return isl_stat_error);
1658 		recheck = isl_tab_kill_col(tab, j);
1659 		if (recheck < 0)
1660 			return isl_stat_error;
1661 		if (recheck)
1662 			--j;
1663 	}
1664 	if (!temp_var && isl_tab_mark_redundant(tab, var->index) < 0)
1665 		return isl_stat_error;
1666 	if (tab_is_manifestly_empty(tab) && isl_tab_mark_empty(tab) < 0)
1667 		return isl_stat_error;
1668 	return isl_stat_ok;
1669 }
1670 
1671 /* Add a constraint to the tableau and allocate a row for it.
1672  * Return the index into the constraint array "con".
1673  *
1674  * This function assumes that at least one more row and at least
1675  * one more element in the constraint array are available in the tableau.
1676  */
isl_tab_allocate_con(struct isl_tab * tab)1677 int isl_tab_allocate_con(struct isl_tab *tab)
1678 {
1679 	int r;
1680 
1681 	isl_assert(tab->mat->ctx, tab->n_row < tab->mat->n_row, return -1);
1682 	isl_assert(tab->mat->ctx, tab->n_con < tab->max_con, return -1);
1683 
1684 	r = tab->n_con;
1685 	tab->con[r].index = tab->n_row;
1686 	tab->con[r].is_row = 1;
1687 	tab->con[r].is_nonneg = 0;
1688 	tab->con[r].is_zero = 0;
1689 	tab->con[r].is_redundant = 0;
1690 	tab->con[r].frozen = 0;
1691 	tab->con[r].negated = 0;
1692 	tab->row_var[tab->n_row] = ~r;
1693 
1694 	tab->n_row++;
1695 	tab->n_con++;
1696 	if (isl_tab_push_var(tab, isl_tab_undo_allocate, &tab->con[r]) < 0)
1697 		return -1;
1698 
1699 	return r;
1700 }
1701 
1702 /* Move the entries in tab->var up one position, starting at "first",
1703  * creating room for an extra entry at position "first".
1704  * Since some of the entries of tab->row_var and tab->col_var contain
1705  * indices into this array, they have to be updated accordingly.
1706  */
var_insert_entry(struct isl_tab * tab,int first)1707 static int var_insert_entry(struct isl_tab *tab, int first)
1708 {
1709 	int i;
1710 
1711 	if (tab->n_var >= tab->max_var)
1712 		isl_die(isl_tab_get_ctx(tab), isl_error_internal,
1713 			"not enough room for new variable", return -1);
1714 	if (first > tab->n_var)
1715 		isl_die(isl_tab_get_ctx(tab), isl_error_internal,
1716 			"invalid initial position", return -1);
1717 
1718 	for (i = tab->n_var - 1; i >= first; --i) {
1719 		tab->var[i + 1] = tab->var[i];
1720 		if (tab->var[i + 1].is_row)
1721 			tab->row_var[tab->var[i + 1].index]++;
1722 		else
1723 			tab->col_var[tab->var[i + 1].index]++;
1724 	}
1725 
1726 	tab->n_var++;
1727 
1728 	return 0;
1729 }
1730 
1731 /* Drop the entry at position "first" in tab->var, moving all
1732  * subsequent entries down.
1733  * Since some of the entries of tab->row_var and tab->col_var contain
1734  * indices into this array, they have to be updated accordingly.
1735  */
var_drop_entry(struct isl_tab * tab,int first)1736 static int var_drop_entry(struct isl_tab *tab, int first)
1737 {
1738 	int i;
1739 
1740 	if (first >= tab->n_var)
1741 		isl_die(isl_tab_get_ctx(tab), isl_error_internal,
1742 			"invalid initial position", return -1);
1743 
1744 	tab->n_var--;
1745 
1746 	for (i = first; i < tab->n_var; ++i) {
1747 		tab->var[i] = tab->var[i + 1];
1748 		if (tab->var[i + 1].is_row)
1749 			tab->row_var[tab->var[i].index]--;
1750 		else
1751 			tab->col_var[tab->var[i].index]--;
1752 	}
1753 
1754 	return 0;
1755 }
1756 
1757 /* Add a variable to the tableau at position "r" and allocate a column for it.
1758  * Return the index into the variable array "var", i.e., "r",
1759  * or -1 on error.
1760  */
isl_tab_insert_var(struct isl_tab * tab,int r)1761 int isl_tab_insert_var(struct isl_tab *tab, int r)
1762 {
1763 	int i;
1764 	unsigned off = 2 + tab->M;
1765 
1766 	isl_assert(tab->mat->ctx, tab->n_col < tab->mat->n_col, return -1);
1767 
1768 	if (var_insert_entry(tab, r) < 0)
1769 		return -1;
1770 
1771 	tab->var[r].index = tab->n_col;
1772 	tab->var[r].is_row = 0;
1773 	tab->var[r].is_nonneg = 0;
1774 	tab->var[r].is_zero = 0;
1775 	tab->var[r].is_redundant = 0;
1776 	tab->var[r].frozen = 0;
1777 	tab->var[r].negated = 0;
1778 	tab->col_var[tab->n_col] = r;
1779 
1780 	for (i = 0; i < tab->n_row; ++i)
1781 		isl_int_set_si(tab->mat->row[i][off + tab->n_col], 0);
1782 
1783 	tab->n_col++;
1784 	if (isl_tab_push_var(tab, isl_tab_undo_allocate, &tab->var[r]) < 0)
1785 		return -1;
1786 
1787 	return r;
1788 }
1789 
1790 /* Add a variable to the tableau and allocate a column for it.
1791  * Return the index into the variable array "var".
1792  */
isl_tab_allocate_var(struct isl_tab * tab)1793 int isl_tab_allocate_var(struct isl_tab *tab)
1794 {
1795 	if (!tab)
1796 		return -1;
1797 
1798 	return isl_tab_insert_var(tab, tab->n_var);
1799 }
1800 
1801 /* Add a row to the tableau.  The row is given as an affine combination
1802  * of the original variables and needs to be expressed in terms of the
1803  * column variables.
1804  *
1805  * This function assumes that at least one more row and at least
1806  * one more element in the constraint array are available in the tableau.
1807  *
1808  * We add each term in turn.
1809  * If r = n/d_r is the current sum and we need to add k x, then
1810  * 	if x is a column variable, we increase the numerator of
1811  *		this column by k d_r
1812  *	if x = f/d_x is a row variable, then the new representation of r is
1813  *
1814  *		 n    k f   d_x/g n + d_r/g k f   m/d_r n + m/d_g k f
1815  *		--- + --- = ------------------- = -------------------
1816  *		d_r   d_r        d_r d_x/g                m
1817  *
1818  *	with g the gcd of d_r and d_x and m the lcm of d_r and d_x.
1819  *
1820  * If tab->M is set, then, internally, each variable x is represented
1821  * as x' - M.  We then also need no subtract k d_r from the coefficient of M.
1822  */
isl_tab_add_row(struct isl_tab * tab,isl_int * line)1823 int isl_tab_add_row(struct isl_tab *tab, isl_int *line)
1824 {
1825 	int i;
1826 	int r;
1827 	isl_int *row;
1828 	isl_int a, b;
1829 	unsigned off = 2 + tab->M;
1830 
1831 	r = isl_tab_allocate_con(tab);
1832 	if (r < 0)
1833 		return -1;
1834 
1835 	isl_int_init(a);
1836 	isl_int_init(b);
1837 	row = tab->mat->row[tab->con[r].index];
1838 	isl_int_set_si(row[0], 1);
1839 	isl_int_set(row[1], line[0]);
1840 	isl_seq_clr(row + 2, tab->M + tab->n_col);
1841 	for (i = 0; i < tab->n_var; ++i) {
1842 		if (tab->var[i].is_zero)
1843 			continue;
1844 		if (tab->var[i].is_row) {
1845 			isl_int_lcm(a,
1846 				row[0], tab->mat->row[tab->var[i].index][0]);
1847 			isl_int_swap(a, row[0]);
1848 			isl_int_divexact(a, row[0], a);
1849 			isl_int_divexact(b,
1850 				row[0], tab->mat->row[tab->var[i].index][0]);
1851 			isl_int_mul(b, b, line[1 + i]);
1852 			isl_seq_combine(row + 1, a, row + 1,
1853 			    b, tab->mat->row[tab->var[i].index] + 1,
1854 			    1 + tab->M + tab->n_col);
1855 		} else
1856 			isl_int_addmul(row[off + tab->var[i].index],
1857 							line[1 + i], row[0]);
1858 		if (tab->M && i >= tab->n_param && i < tab->n_var - tab->n_div)
1859 			isl_int_submul(row[2], line[1 + i], row[0]);
1860 	}
1861 	isl_seq_normalize(tab->mat->ctx, row, off + tab->n_col);
1862 	isl_int_clear(a);
1863 	isl_int_clear(b);
1864 
1865 	if (tab->row_sign)
1866 		tab->row_sign[tab->con[r].index] = isl_tab_row_unknown;
1867 
1868 	return r;
1869 }
1870 
drop_row(struct isl_tab * tab,int row)1871 static isl_stat drop_row(struct isl_tab *tab, int row)
1872 {
1873 	isl_assert(tab->mat->ctx, ~tab->row_var[row] == tab->n_con - 1,
1874 		return isl_stat_error);
1875 	if (row != tab->n_row - 1)
1876 		swap_rows(tab, row, tab->n_row - 1);
1877 	tab->n_row--;
1878 	tab->n_con--;
1879 	return isl_stat_ok;
1880 }
1881 
1882 /* Drop the variable in column "col" along with the column.
1883  * The column is removed first because it may need to be moved
1884  * into the last position and this process requires
1885  * the contents of the col_var array in a state
1886  * before the removal of the variable.
1887  */
drop_col(struct isl_tab * tab,int col)1888 static isl_stat drop_col(struct isl_tab *tab, int col)
1889 {
1890 	int var;
1891 
1892 	var = tab->col_var[col];
1893 	if (col != tab->n_col - 1)
1894 		swap_cols(tab, col, tab->n_col - 1);
1895 	tab->n_col--;
1896 	if (var_drop_entry(tab, var) < 0)
1897 		return isl_stat_error;
1898 	return isl_stat_ok;
1899 }
1900 
1901 /* Add inequality "ineq" and check if it conflicts with the
1902  * previously added constraints or if it is obviously redundant.
1903  *
1904  * This function assumes that at least one more row and at least
1905  * one more element in the constraint array are available in the tableau.
1906  */
isl_tab_add_ineq(struct isl_tab * tab,isl_int * ineq)1907 isl_stat isl_tab_add_ineq(struct isl_tab *tab, isl_int *ineq)
1908 {
1909 	int r;
1910 	int sgn;
1911 	isl_int cst;
1912 
1913 	if (!tab)
1914 		return isl_stat_error;
1915 	if (tab->bmap) {
1916 		struct isl_basic_map *bmap = tab->bmap;
1917 
1918 		isl_assert(tab->mat->ctx, tab->n_eq == bmap->n_eq,
1919 			return isl_stat_error);
1920 		isl_assert(tab->mat->ctx,
1921 			    tab->n_con == bmap->n_eq + bmap->n_ineq,
1922 			    return isl_stat_error);
1923 		tab->bmap = isl_basic_map_add_ineq(tab->bmap, ineq);
1924 		if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
1925 			return isl_stat_error;
1926 		if (!tab->bmap)
1927 			return isl_stat_error;
1928 	}
1929 	if (tab->cone) {
1930 		isl_int_init(cst);
1931 		isl_int_set_si(cst, 0);
1932 		isl_int_swap(ineq[0], cst);
1933 	}
1934 	r = isl_tab_add_row(tab, ineq);
1935 	if (tab->cone) {
1936 		isl_int_swap(ineq[0], cst);
1937 		isl_int_clear(cst);
1938 	}
1939 	if (r < 0)
1940 		return isl_stat_error;
1941 	tab->con[r].is_nonneg = 1;
1942 	if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
1943 		return isl_stat_error;
1944 	if (isl_tab_row_is_redundant(tab, tab->con[r].index)) {
1945 		if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
1946 			return isl_stat_error;
1947 		return isl_stat_ok;
1948 	}
1949 
1950 	sgn = restore_row(tab, &tab->con[r]);
1951 	if (sgn < -1)
1952 		return isl_stat_error;
1953 	if (sgn < 0)
1954 		return isl_tab_mark_empty(tab);
1955 	if (tab->con[r].is_row && isl_tab_row_is_redundant(tab, tab->con[r].index))
1956 		if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0)
1957 			return isl_stat_error;
1958 	return isl_stat_ok;
1959 }
1960 
1961 /* Pivot a non-negative variable down until it reaches the value zero
1962  * and then pivot the variable into a column position.
1963  */
1964 static int to_col(struct isl_tab *tab, struct isl_tab_var *var) WARN_UNUSED;
to_col(struct isl_tab * tab,struct isl_tab_var * var)1965 static int to_col(struct isl_tab *tab, struct isl_tab_var *var)
1966 {
1967 	int i;
1968 	int row, col;
1969 	unsigned off = 2 + tab->M;
1970 
1971 	if (!var->is_row)
1972 		return 0;
1973 
1974 	while (isl_int_is_pos(tab->mat->row[var->index][1])) {
1975 		find_pivot(tab, var, NULL, -1, &row, &col);
1976 		isl_assert(tab->mat->ctx, row != -1, return -1);
1977 		if (isl_tab_pivot(tab, row, col) < 0)
1978 			return -1;
1979 		if (!var->is_row)
1980 			return 0;
1981 	}
1982 
1983 	for (i = tab->n_dead; i < tab->n_col; ++i)
1984 		if (!isl_int_is_zero(tab->mat->row[var->index][off + i]))
1985 			break;
1986 
1987 	isl_assert(tab->mat->ctx, i < tab->n_col, return -1);
1988 	if (isl_tab_pivot(tab, var->index, i) < 0)
1989 		return -1;
1990 
1991 	return 0;
1992 }
1993 
1994 /* We assume Gaussian elimination has been performed on the equalities.
1995  * The equalities can therefore never conflict.
1996  * Adding the equalities is currently only really useful for a later call
1997  * to isl_tab_ineq_type.
1998  *
1999  * This function assumes that at least one more row and at least
2000  * one more element in the constraint array are available in the tableau.
2001  */
add_eq(struct isl_tab * tab,isl_int * eq)2002 static struct isl_tab *add_eq(struct isl_tab *tab, isl_int *eq)
2003 {
2004 	int i;
2005 	int r;
2006 
2007 	if (!tab)
2008 		return NULL;
2009 	r = isl_tab_add_row(tab, eq);
2010 	if (r < 0)
2011 		goto error;
2012 
2013 	r = tab->con[r].index;
2014 	i = isl_seq_first_non_zero(tab->mat->row[r] + 2 + tab->M + tab->n_dead,
2015 					tab->n_col - tab->n_dead);
2016 	isl_assert(tab->mat->ctx, i >= 0, goto error);
2017 	i += tab->n_dead;
2018 	if (isl_tab_pivot(tab, r, i) < 0)
2019 		goto error;
2020 	if (isl_tab_kill_col(tab, i) < 0)
2021 		goto error;
2022 	tab->n_eq++;
2023 
2024 	return tab;
2025 error:
2026 	isl_tab_free(tab);
2027 	return NULL;
2028 }
2029 
2030 /* Does the sample value of row "row" of "tab" involve the big parameter,
2031  * if any?
2032  */
row_is_big(struct isl_tab * tab,int row)2033 static int row_is_big(struct isl_tab *tab, int row)
2034 {
2035 	return tab->M && !isl_int_is_zero(tab->mat->row[row][2]);
2036 }
2037 
row_is_manifestly_zero(struct isl_tab * tab,int row)2038 static int row_is_manifestly_zero(struct isl_tab *tab, int row)
2039 {
2040 	unsigned off = 2 + tab->M;
2041 
2042 	if (!isl_int_is_zero(tab->mat->row[row][1]))
2043 		return 0;
2044 	if (row_is_big(tab, row))
2045 		return 0;
2046 	return isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
2047 					tab->n_col - tab->n_dead) == -1;
2048 }
2049 
2050 /* Add an equality that is known to be valid for the given tableau.
2051  *
2052  * This function assumes that at least one more row and at least
2053  * one more element in the constraint array are available in the tableau.
2054  */
isl_tab_add_valid_eq(struct isl_tab * tab,isl_int * eq)2055 int isl_tab_add_valid_eq(struct isl_tab *tab, isl_int *eq)
2056 {
2057 	struct isl_tab_var *var;
2058 	int r;
2059 
2060 	if (!tab)
2061 		return -1;
2062 	r = isl_tab_add_row(tab, eq);
2063 	if (r < 0)
2064 		return -1;
2065 
2066 	var = &tab->con[r];
2067 	r = var->index;
2068 	if (row_is_manifestly_zero(tab, r)) {
2069 		var->is_zero = 1;
2070 		if (isl_tab_mark_redundant(tab, r) < 0)
2071 			return -1;
2072 		return 0;
2073 	}
2074 
2075 	if (isl_int_is_neg(tab->mat->row[r][1])) {
2076 		isl_seq_neg(tab->mat->row[r] + 1, tab->mat->row[r] + 1,
2077 			    1 + tab->n_col);
2078 		var->negated = 1;
2079 	}
2080 	var->is_nonneg = 1;
2081 	if (to_col(tab, var) < 0)
2082 		return -1;
2083 	var->is_nonneg = 0;
2084 	if (isl_tab_kill_col(tab, var->index) < 0)
2085 		return -1;
2086 
2087 	return 0;
2088 }
2089 
2090 /* Add a zero row to "tab" and return the corresponding index
2091  * in the constraint array.
2092  *
2093  * This function assumes that at least one more row and at least
2094  * one more element in the constraint array are available in the tableau.
2095  */
add_zero_row(struct isl_tab * tab)2096 static int add_zero_row(struct isl_tab *tab)
2097 {
2098 	int r;
2099 	isl_int *row;
2100 
2101 	r = isl_tab_allocate_con(tab);
2102 	if (r < 0)
2103 		return -1;
2104 
2105 	row = tab->mat->row[tab->con[r].index];
2106 	isl_seq_clr(row + 1, 1 + tab->M + tab->n_col);
2107 	isl_int_set_si(row[0], 1);
2108 
2109 	return r;
2110 }
2111 
2112 /* Add equality "eq" and check if it conflicts with the
2113  * previously added constraints or if it is obviously redundant.
2114  *
2115  * This function assumes that at least one more row and at least
2116  * one more element in the constraint array are available in the tableau.
2117  * If tab->bmap is set, then two rows are needed instead of one.
2118  */
isl_tab_add_eq(struct isl_tab * tab,isl_int * eq)2119 isl_stat isl_tab_add_eq(struct isl_tab *tab, isl_int *eq)
2120 {
2121 	struct isl_tab_undo *snap = NULL;
2122 	struct isl_tab_var *var;
2123 	int r;
2124 	int row;
2125 	int sgn;
2126 	isl_int cst;
2127 
2128 	if (!tab)
2129 		return isl_stat_error;
2130 	isl_assert(tab->mat->ctx, !tab->M, return isl_stat_error);
2131 
2132 	if (tab->need_undo)
2133 		snap = isl_tab_snap(tab);
2134 
2135 	if (tab->cone) {
2136 		isl_int_init(cst);
2137 		isl_int_set_si(cst, 0);
2138 		isl_int_swap(eq[0], cst);
2139 	}
2140 	r = isl_tab_add_row(tab, eq);
2141 	if (tab->cone) {
2142 		isl_int_swap(eq[0], cst);
2143 		isl_int_clear(cst);
2144 	}
2145 	if (r < 0)
2146 		return isl_stat_error;
2147 
2148 	var = &tab->con[r];
2149 	row = var->index;
2150 	if (row_is_manifestly_zero(tab, row)) {
2151 		if (snap)
2152 			return isl_tab_rollback(tab, snap);
2153 		return drop_row(tab, row);
2154 	}
2155 
2156 	if (tab->bmap) {
2157 		tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq);
2158 		if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
2159 			return isl_stat_error;
2160 		isl_seq_neg(eq, eq, 1 + tab->n_var);
2161 		tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq);
2162 		isl_seq_neg(eq, eq, 1 + tab->n_var);
2163 		if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0)
2164 			return isl_stat_error;
2165 		if (!tab->bmap)
2166 			return isl_stat_error;
2167 		if (add_zero_row(tab) < 0)
2168 			return isl_stat_error;
2169 	}
2170 
2171 	sgn = isl_int_sgn(tab->mat->row[row][1]);
2172 
2173 	if (sgn > 0) {
2174 		isl_seq_neg(tab->mat->row[row] + 1, tab->mat->row[row] + 1,
2175 			    1 + tab->n_col);
2176 		var->negated = 1;
2177 		sgn = -1;
2178 	}
2179 
2180 	if (sgn < 0) {
2181 		sgn = sign_of_max(tab, var);
2182 		if (sgn < -1)
2183 			return isl_stat_error;
2184 		if (sgn < 0) {
2185 			if (isl_tab_mark_empty(tab) < 0)
2186 				return isl_stat_error;
2187 			return isl_stat_ok;
2188 		}
2189 	}
2190 
2191 	var->is_nonneg = 1;
2192 	if (to_col(tab, var) < 0)
2193 		return isl_stat_error;
2194 	var->is_nonneg = 0;
2195 	if (isl_tab_kill_col(tab, var->index) < 0)
2196 		return isl_stat_error;
2197 
2198 	return isl_stat_ok;
2199 }
2200 
2201 /* Construct and return an inequality that expresses an upper bound
2202  * on the given div.
2203  * In particular, if the div is given by
2204  *
2205  *	d = floor(e/m)
2206  *
2207  * then the inequality expresses
2208  *
2209  *	m d <= e
2210  */
ineq_for_div(__isl_keep isl_basic_map * bmap,unsigned div)2211 static __isl_give isl_vec *ineq_for_div(__isl_keep isl_basic_map *bmap,
2212 	unsigned div)
2213 {
2214 	isl_size total;
2215 	unsigned div_pos;
2216 	struct isl_vec *ineq;
2217 
2218 	total = isl_basic_map_dim(bmap, isl_dim_all);
2219 	if (total < 0)
2220 		return NULL;
2221 
2222 	div_pos = 1 + total - bmap->n_div + div;
2223 
2224 	ineq = isl_vec_alloc(bmap->ctx, 1 + total);
2225 	if (!ineq)
2226 		return NULL;
2227 
2228 	isl_seq_cpy(ineq->el, bmap->div[div] + 1, 1 + total);
2229 	isl_int_neg(ineq->el[div_pos], bmap->div[div][0]);
2230 	return ineq;
2231 }
2232 
2233 /* For a div d = floor(f/m), add the constraints
2234  *
2235  *		f - m d >= 0
2236  *		-(f-(m-1)) + m d >= 0
2237  *
2238  * Note that the second constraint is the negation of
2239  *
2240  *		f - m d >= m
2241  *
2242  * If add_ineq is not NULL, then this function is used
2243  * instead of isl_tab_add_ineq to effectively add the inequalities.
2244  *
2245  * This function assumes that at least two more rows and at least
2246  * two more elements in the constraint array are available in the tableau.
2247  */
add_div_constraints(struct isl_tab * tab,unsigned div,isl_stat (* add_ineq)(void * user,isl_int *),void * user)2248 static isl_stat add_div_constraints(struct isl_tab *tab, unsigned div,
2249 	isl_stat (*add_ineq)(void *user, isl_int *), void *user)
2250 {
2251 	isl_size total;
2252 	unsigned div_pos;
2253 	struct isl_vec *ineq;
2254 
2255 	total = isl_basic_map_dim(tab->bmap, isl_dim_all);
2256 	if (total < 0)
2257 		return isl_stat_error;
2258 	div_pos = 1 + total - tab->bmap->n_div + div;
2259 
2260 	ineq = ineq_for_div(tab->bmap, div);
2261 	if (!ineq)
2262 		goto error;
2263 
2264 	if (add_ineq) {
2265 		if (add_ineq(user, ineq->el) < 0)
2266 			goto error;
2267 	} else {
2268 		if (isl_tab_add_ineq(tab, ineq->el) < 0)
2269 			goto error;
2270 	}
2271 
2272 	isl_seq_neg(ineq->el, tab->bmap->div[div] + 1, 1 + total);
2273 	isl_int_set(ineq->el[div_pos], tab->bmap->div[div][0]);
2274 	isl_int_add(ineq->el[0], ineq->el[0], ineq->el[div_pos]);
2275 	isl_int_sub_ui(ineq->el[0], ineq->el[0], 1);
2276 
2277 	if (add_ineq) {
2278 		if (add_ineq(user, ineq->el) < 0)
2279 			goto error;
2280 	} else {
2281 		if (isl_tab_add_ineq(tab, ineq->el) < 0)
2282 			goto error;
2283 	}
2284 
2285 	isl_vec_free(ineq);
2286 
2287 	return isl_stat_ok;
2288 error:
2289 	isl_vec_free(ineq);
2290 	return isl_stat_error;
2291 }
2292 
2293 /* Check whether the div described by "div" is obviously non-negative.
2294  * If we are using a big parameter, then we will encode the div
2295  * as div' = M + div, which is always non-negative.
2296  * Otherwise, we check whether div is a non-negative affine combination
2297  * of non-negative variables.
2298  */
div_is_nonneg(struct isl_tab * tab,__isl_keep isl_vec * div)2299 static int div_is_nonneg(struct isl_tab *tab, __isl_keep isl_vec *div)
2300 {
2301 	int i;
2302 
2303 	if (tab->M)
2304 		return 1;
2305 
2306 	if (isl_int_is_neg(div->el[1]))
2307 		return 0;
2308 
2309 	for (i = 0; i < tab->n_var; ++i) {
2310 		if (isl_int_is_neg(div->el[2 + i]))
2311 			return 0;
2312 		if (isl_int_is_zero(div->el[2 + i]))
2313 			continue;
2314 		if (!tab->var[i].is_nonneg)
2315 			return 0;
2316 	}
2317 
2318 	return 1;
2319 }
2320 
2321 /* Insert an extra div, prescribed by "div", to the tableau and
2322  * the associated bmap (which is assumed to be non-NULL).
2323  * The extra integer division is inserted at (tableau) position "pos".
2324  * Return "pos" or -1 if an error occurred.
2325  *
2326  * If add_ineq is not NULL, then this function is used instead
2327  * of isl_tab_add_ineq to add the div constraints.
2328  * This complication is needed because the code in isl_tab_pip
2329  * wants to perform some extra processing when an inequality
2330  * is added to the tableau.
2331  */
isl_tab_insert_div(struct isl_tab * tab,int pos,__isl_keep isl_vec * div,isl_stat (* add_ineq)(void * user,isl_int *),void * user)2332 int isl_tab_insert_div(struct isl_tab *tab, int pos, __isl_keep isl_vec *div,
2333 	isl_stat (*add_ineq)(void *user, isl_int *), void *user)
2334 {
2335 	int r;
2336 	int nonneg;
2337 	isl_size n_div;
2338 	int o_div;
2339 
2340 	if (!tab || !div)
2341 		return -1;
2342 
2343 	if (div->size != 1 + 1 + tab->n_var)
2344 		isl_die(isl_tab_get_ctx(tab), isl_error_invalid,
2345 			"unexpected size", return -1);
2346 
2347 	n_div = isl_basic_map_dim(tab->bmap, isl_dim_div);
2348 	if (n_div < 0)
2349 		return -1;
2350 	o_div = tab->n_var - n_div;
2351 	if (pos < o_div || pos > tab->n_var)
2352 		isl_die(isl_tab_get_ctx(tab), isl_error_invalid,
2353 			"invalid position", return -1);
2354 
2355 	nonneg = div_is_nonneg(tab, div);
2356 
2357 	if (isl_tab_extend_cons(tab, 3) < 0)
2358 		return -1;
2359 	if (isl_tab_extend_vars(tab, 1) < 0)
2360 		return -1;
2361 	r = isl_tab_insert_var(tab, pos);
2362 	if (r < 0)
2363 		return -1;
2364 
2365 	if (nonneg)
2366 		tab->var[r].is_nonneg = 1;
2367 
2368 	tab->bmap = isl_basic_map_insert_div(tab->bmap, pos - o_div, div);
2369 	if (!tab->bmap)
2370 		return -1;
2371 	if (isl_tab_push_var(tab, isl_tab_undo_bmap_div, &tab->var[r]) < 0)
2372 		return -1;
2373 
2374 	if (add_div_constraints(tab, pos - o_div, add_ineq, user) < 0)
2375 		return -1;
2376 
2377 	return r;
2378 }
2379 
2380 /* Add an extra div, prescribed by "div", to the tableau and
2381  * the associated bmap (which is assumed to be non-NULL).
2382  */
isl_tab_add_div(struct isl_tab * tab,__isl_keep isl_vec * div)2383 int isl_tab_add_div(struct isl_tab *tab, __isl_keep isl_vec *div)
2384 {
2385 	if (!tab)
2386 		return -1;
2387 	return isl_tab_insert_div(tab, tab->n_var, div, NULL, NULL);
2388 }
2389 
2390 /* If "track" is set, then we want to keep track of all constraints in tab
2391  * in its bmap field.  This field is initialized from a copy of "bmap",
2392  * so we need to make sure that all constraints in "bmap" also appear
2393  * in the constructed tab.
2394  */
isl_tab_from_basic_map(__isl_keep isl_basic_map * bmap,int track)2395 __isl_give struct isl_tab *isl_tab_from_basic_map(
2396 	__isl_keep isl_basic_map *bmap, int track)
2397 {
2398 	int i;
2399 	struct isl_tab *tab;
2400 	isl_size total;
2401 
2402 	total = isl_basic_map_dim(bmap, isl_dim_all);
2403 	if (total < 0)
2404 		return NULL;
2405 	tab = isl_tab_alloc(bmap->ctx, total + bmap->n_ineq + 1, total, 0);
2406 	if (!tab)
2407 		return NULL;
2408 	tab->preserve = track;
2409 	tab->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL);
2410 	if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) {
2411 		if (isl_tab_mark_empty(tab) < 0)
2412 			goto error;
2413 		goto done;
2414 	}
2415 	for (i = 0; i < bmap->n_eq; ++i) {
2416 		tab = add_eq(tab, bmap->eq[i]);
2417 		if (!tab)
2418 			return tab;
2419 	}
2420 	for (i = 0; i < bmap->n_ineq; ++i) {
2421 		if (isl_tab_add_ineq(tab, bmap->ineq[i]) < 0)
2422 			goto error;
2423 		if (tab->empty)
2424 			goto done;
2425 	}
2426 done:
2427 	if (track && isl_tab_track_bmap(tab, isl_basic_map_copy(bmap)) < 0)
2428 		goto error;
2429 	return tab;
2430 error:
2431 	isl_tab_free(tab);
2432 	return NULL;
2433 }
2434 
isl_tab_from_basic_set(__isl_keep isl_basic_set * bset,int track)2435 __isl_give struct isl_tab *isl_tab_from_basic_set(
2436 	__isl_keep isl_basic_set *bset, int track)
2437 {
2438 	return isl_tab_from_basic_map(bset, track);
2439 }
2440 
2441 /* Construct a tableau corresponding to the recession cone of "bset".
2442  */
isl_tab_from_recession_cone(__isl_keep isl_basic_set * bset,int parametric)2443 struct isl_tab *isl_tab_from_recession_cone(__isl_keep isl_basic_set *bset,
2444 	int parametric)
2445 {
2446 	isl_int cst;
2447 	int i;
2448 	struct isl_tab *tab;
2449 	isl_size offset = 0;
2450 	isl_size total;
2451 
2452 	total = isl_basic_set_dim(bset, isl_dim_all);
2453 	if (parametric)
2454 		offset = isl_basic_set_dim(bset, isl_dim_param);
2455 	if (total < 0 || offset < 0)
2456 		return NULL;
2457 	tab = isl_tab_alloc(bset->ctx, bset->n_eq + bset->n_ineq,
2458 				total - offset, 0);
2459 	if (!tab)
2460 		return NULL;
2461 	tab->rational = ISL_F_ISSET(bset, ISL_BASIC_SET_RATIONAL);
2462 	tab->cone = 1;
2463 
2464 	isl_int_init(cst);
2465 	isl_int_set_si(cst, 0);
2466 	for (i = 0; i < bset->n_eq; ++i) {
2467 		isl_int_swap(bset->eq[i][offset], cst);
2468 		if (offset > 0) {
2469 			if (isl_tab_add_eq(tab, bset->eq[i] + offset) < 0)
2470 				goto error;
2471 		} else
2472 			tab = add_eq(tab, bset->eq[i]);
2473 		isl_int_swap(bset->eq[i][offset], cst);
2474 		if (!tab)
2475 			goto done;
2476 	}
2477 	for (i = 0; i < bset->n_ineq; ++i) {
2478 		int r;
2479 		isl_int_swap(bset->ineq[i][offset], cst);
2480 		r = isl_tab_add_row(tab, bset->ineq[i] + offset);
2481 		isl_int_swap(bset->ineq[i][offset], cst);
2482 		if (r < 0)
2483 			goto error;
2484 		tab->con[r].is_nonneg = 1;
2485 		if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0)
2486 			goto error;
2487 	}
2488 done:
2489 	isl_int_clear(cst);
2490 	return tab;
2491 error:
2492 	isl_int_clear(cst);
2493 	isl_tab_free(tab);
2494 	return NULL;
2495 }
2496 
2497 /* Assuming "tab" is the tableau of a cone, check if the cone is
2498  * bounded, i.e., if it is empty or only contains the origin.
2499  */
isl_tab_cone_is_bounded(struct isl_tab * tab)2500 isl_bool isl_tab_cone_is_bounded(struct isl_tab *tab)
2501 {
2502 	int i;
2503 
2504 	if (!tab)
2505 		return isl_bool_error;
2506 	if (tab->empty)
2507 		return isl_bool_true;
2508 	if (tab->n_dead == tab->n_col)
2509 		return isl_bool_true;
2510 
2511 	for (;;) {
2512 		for (i = tab->n_redundant; i < tab->n_row; ++i) {
2513 			struct isl_tab_var *var;
2514 			int sgn;
2515 			var = isl_tab_var_from_row(tab, i);
2516 			if (!var->is_nonneg)
2517 				continue;
2518 			sgn = sign_of_max(tab, var);
2519 			if (sgn < -1)
2520 				return isl_bool_error;
2521 			if (sgn != 0)
2522 				return isl_bool_false;
2523 			if (close_row(tab, var, 0) < 0)
2524 				return isl_bool_error;
2525 			break;
2526 		}
2527 		if (tab->n_dead == tab->n_col)
2528 			return isl_bool_true;
2529 		if (i == tab->n_row)
2530 			return isl_bool_false;
2531 	}
2532 }
2533 
isl_tab_sample_is_integer(struct isl_tab * tab)2534 int isl_tab_sample_is_integer(struct isl_tab *tab)
2535 {
2536 	int i;
2537 
2538 	if (!tab)
2539 		return -1;
2540 
2541 	for (i = 0; i < tab->n_var; ++i) {
2542 		int row;
2543 		if (!tab->var[i].is_row)
2544 			continue;
2545 		row = tab->var[i].index;
2546 		if (!isl_int_is_divisible_by(tab->mat->row[row][1],
2547 						tab->mat->row[row][0]))
2548 			return 0;
2549 	}
2550 	return 1;
2551 }
2552 
extract_integer_sample(struct isl_tab * tab)2553 static struct isl_vec *extract_integer_sample(struct isl_tab *tab)
2554 {
2555 	int i;
2556 	struct isl_vec *vec;
2557 
2558 	vec = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
2559 	if (!vec)
2560 		return NULL;
2561 
2562 	isl_int_set_si(vec->block.data[0], 1);
2563 	for (i = 0; i < tab->n_var; ++i) {
2564 		if (!tab->var[i].is_row)
2565 			isl_int_set_si(vec->block.data[1 + i], 0);
2566 		else {
2567 			int row = tab->var[i].index;
2568 			isl_int_divexact(vec->block.data[1 + i],
2569 				tab->mat->row[row][1], tab->mat->row[row][0]);
2570 		}
2571 	}
2572 
2573 	return vec;
2574 }
2575 
isl_tab_get_sample_value(struct isl_tab * tab)2576 __isl_give isl_vec *isl_tab_get_sample_value(struct isl_tab *tab)
2577 {
2578 	int i;
2579 	struct isl_vec *vec;
2580 	isl_int m;
2581 
2582 	if (!tab)
2583 		return NULL;
2584 
2585 	vec = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
2586 	if (!vec)
2587 		return NULL;
2588 
2589 	isl_int_init(m);
2590 
2591 	isl_int_set_si(vec->block.data[0], 1);
2592 	for (i = 0; i < tab->n_var; ++i) {
2593 		int row;
2594 		if (!tab->var[i].is_row) {
2595 			isl_int_set_si(vec->block.data[1 + i], 0);
2596 			continue;
2597 		}
2598 		row = tab->var[i].index;
2599 		isl_int_gcd(m, vec->block.data[0], tab->mat->row[row][0]);
2600 		isl_int_divexact(m, tab->mat->row[row][0], m);
2601 		isl_seq_scale(vec->block.data, vec->block.data, m, 1 + i);
2602 		isl_int_divexact(m, vec->block.data[0], tab->mat->row[row][0]);
2603 		isl_int_mul(vec->block.data[1 + i], m, tab->mat->row[row][1]);
2604 	}
2605 	vec = isl_vec_normalize(vec);
2606 
2607 	isl_int_clear(m);
2608 	return vec;
2609 }
2610 
2611 /* Store the sample value of "var" of "tab" rounded up (if sgn > 0)
2612  * or down (if sgn < 0) to the nearest integer in *v.
2613  */
get_rounded_sample_value(struct isl_tab * tab,struct isl_tab_var * var,int sgn,isl_int * v)2614 static void get_rounded_sample_value(struct isl_tab *tab,
2615 	struct isl_tab_var *var, int sgn, isl_int *v)
2616 {
2617 	if (!var->is_row)
2618 		isl_int_set_si(*v, 0);
2619 	else if (sgn > 0)
2620 		isl_int_cdiv_q(*v, tab->mat->row[var->index][1],
2621 				   tab->mat->row[var->index][0]);
2622 	else
2623 		isl_int_fdiv_q(*v, tab->mat->row[var->index][1],
2624 				   tab->mat->row[var->index][0]);
2625 }
2626 
2627 /* Update "bmap" based on the results of the tableau "tab".
2628  * In particular, implicit equalities are made explicit, redundant constraints
2629  * are removed and if the sample value happens to be integer, it is stored
2630  * in "bmap" (unless "bmap" already had an integer sample).
2631  *
2632  * The tableau is assumed to have been created from "bmap" using
2633  * isl_tab_from_basic_map.
2634  */
isl_basic_map_update_from_tab(__isl_take isl_basic_map * bmap,struct isl_tab * tab)2635 __isl_give isl_basic_map *isl_basic_map_update_from_tab(
2636 	__isl_take isl_basic_map *bmap, struct isl_tab *tab)
2637 {
2638 	int i;
2639 	unsigned n_eq;
2640 
2641 	if (!bmap)
2642 		return NULL;
2643 	if (!tab)
2644 		return bmap;
2645 
2646 	n_eq = tab->n_eq;
2647 	if (tab->empty)
2648 		bmap = isl_basic_map_set_to_empty(bmap);
2649 	else
2650 		for (i = bmap->n_ineq - 1; i >= 0; --i) {
2651 			if (isl_tab_is_equality(tab, n_eq + i))
2652 				isl_basic_map_inequality_to_equality(bmap, i);
2653 			else if (isl_tab_is_redundant(tab, n_eq + i))
2654 				isl_basic_map_drop_inequality(bmap, i);
2655 		}
2656 	if (bmap->n_eq != n_eq)
2657 		bmap = isl_basic_map_gauss(bmap, NULL);
2658 	if (!tab->rational &&
2659 	    bmap && !bmap->sample && isl_tab_sample_is_integer(tab))
2660 		bmap->sample = extract_integer_sample(tab);
2661 	return bmap;
2662 }
2663 
isl_basic_set_update_from_tab(__isl_take isl_basic_set * bset,struct isl_tab * tab)2664 __isl_give isl_basic_set *isl_basic_set_update_from_tab(
2665 	__isl_take isl_basic_set *bset, struct isl_tab *tab)
2666 {
2667 	return bset_from_bmap(isl_basic_map_update_from_tab(bset_to_bmap(bset),
2668 								tab));
2669 }
2670 
2671 /* Drop the last constraint added to "tab" in position "r".
2672  * The constraint is expected to have remained in a row.
2673  */
drop_last_con_in_row(struct isl_tab * tab,int r)2674 static isl_stat drop_last_con_in_row(struct isl_tab *tab, int r)
2675 {
2676 	if (!tab->con[r].is_row)
2677 		isl_die(isl_tab_get_ctx(tab), isl_error_internal,
2678 			"row unexpectedly moved to column",
2679 			return isl_stat_error);
2680 	if (r + 1 != tab->n_con)
2681 		isl_die(isl_tab_get_ctx(tab), isl_error_internal,
2682 			"additional constraints added", return isl_stat_error);
2683 	if (drop_row(tab, tab->con[r].index) < 0)
2684 		return isl_stat_error;
2685 
2686 	return isl_stat_ok;
2687 }
2688 
2689 /* Given a non-negative variable "var", temporarily add a new non-negative
2690  * variable that is the opposite of "var", ensuring that "var" can only attain
2691  * the value zero.  The new variable is removed again before this function
2692  * returns.  However, the effect of forcing "var" to be zero remains.
2693  * If var = n/d is a row variable, then the new variable = -n/d.
2694  * If var is a column variables, then the new variable = -var.
2695  * If the new variable cannot attain non-negative values, then
2696  * the resulting tableau is empty.
2697  * Otherwise, we know the value will be zero and we close the row.
2698  */
cut_to_hyperplane(struct isl_tab * tab,struct isl_tab_var * var)2699 static isl_stat cut_to_hyperplane(struct isl_tab *tab, struct isl_tab_var *var)
2700 {
2701 	unsigned r;
2702 	isl_int *row;
2703 	int sgn;
2704 	unsigned off = 2 + tab->M;
2705 
2706 	if (var->is_zero)
2707 		return isl_stat_ok;
2708 	if (var->is_redundant || !var->is_nonneg)
2709 		isl_die(isl_tab_get_ctx(tab), isl_error_invalid,
2710 			"expecting non-redundant non-negative variable",
2711 			return isl_stat_error);
2712 
2713 	if (isl_tab_extend_cons(tab, 1) < 0)
2714 		return isl_stat_error;
2715 
2716 	r = tab->n_con;
2717 	tab->con[r].index = tab->n_row;
2718 	tab->con[r].is_row = 1;
2719 	tab->con[r].is_nonneg = 0;
2720 	tab->con[r].is_zero = 0;
2721 	tab->con[r].is_redundant = 0;
2722 	tab->con[r].frozen = 0;
2723 	tab->con[r].negated = 0;
2724 	tab->row_var[tab->n_row] = ~r;
2725 	row = tab->mat->row[tab->n_row];
2726 
2727 	if (var->is_row) {
2728 		isl_int_set(row[0], tab->mat->row[var->index][0]);
2729 		isl_seq_neg(row + 1,
2730 			    tab->mat->row[var->index] + 1, 1 + tab->n_col);
2731 	} else {
2732 		isl_int_set_si(row[0], 1);
2733 		isl_seq_clr(row + 1, 1 + tab->n_col);
2734 		isl_int_set_si(row[off + var->index], -1);
2735 	}
2736 
2737 	tab->n_row++;
2738 	tab->n_con++;
2739 
2740 	sgn = sign_of_max(tab, &tab->con[r]);
2741 	if (sgn < -1)
2742 		return isl_stat_error;
2743 	if (sgn < 0) {
2744 		if (drop_last_con_in_row(tab, r) < 0)
2745 			return isl_stat_error;
2746 		if (isl_tab_mark_empty(tab) < 0)
2747 			return isl_stat_error;
2748 		return isl_stat_ok;
2749 	}
2750 	tab->con[r].is_nonneg = 1;
2751 	/* sgn == 0 */
2752 	if (close_row(tab, &tab->con[r], 1) < 0)
2753 		return isl_stat_error;
2754 	if (drop_last_con_in_row(tab, r) < 0)
2755 		return isl_stat_error;
2756 
2757 	return isl_stat_ok;
2758 }
2759 
2760 /* Check that "con" is a valid constraint position for "tab".
2761  */
isl_tab_check_con(struct isl_tab * tab,int con)2762 static isl_stat isl_tab_check_con(struct isl_tab *tab, int con)
2763 {
2764 	if (!tab)
2765 		return isl_stat_error;
2766 	if (con < 0 || con >= tab->n_con)
2767 		isl_die(isl_tab_get_ctx(tab), isl_error_invalid,
2768 			"position out of bounds", return isl_stat_error);
2769 	return isl_stat_ok;
2770 }
2771 
2772 /* Given a tableau "tab" and an inequality constraint "con" of the tableau,
2773  * relax the inequality by one.  That is, the inequality r >= 0 is replaced
2774  * by r' = r + 1 >= 0.
2775  * If r is a row variable, we simply increase the constant term by one
2776  * (taking into account the denominator).
2777  * If r is a column variable, then we need to modify each row that
2778  * refers to r = r' - 1 by substituting this equality, effectively
2779  * subtracting the coefficient of the column from the constant.
2780  * We should only do this if the minimum is manifestly unbounded,
2781  * however.  Otherwise, we may end up with negative sample values
2782  * for non-negative variables.
2783  * So, if r is a column variable with a minimum that is not
2784  * manifestly unbounded, then we need to move it to a row.
2785  * However, the sample value of this row may be negative,
2786  * even after the relaxation, so we need to restore it.
2787  * We therefore prefer to pivot a column up to a row, if possible.
2788  */
isl_tab_relax(struct isl_tab * tab,int con)2789 int isl_tab_relax(struct isl_tab *tab, int con)
2790 {
2791 	struct isl_tab_var *var;
2792 
2793 	if (!tab)
2794 		return -1;
2795 
2796 	var = &tab->con[con];
2797 
2798 	if (var->is_row && (var->index < 0 || var->index < tab->n_redundant))
2799 		isl_die(tab->mat->ctx, isl_error_invalid,
2800 			"cannot relax redundant constraint", return -1);
2801 	if (!var->is_row && (var->index < 0 || var->index < tab->n_dead))
2802 		isl_die(tab->mat->ctx, isl_error_invalid,
2803 			"cannot relax dead constraint", return -1);
2804 
2805 	if (!var->is_row && !max_is_manifestly_unbounded(tab, var))
2806 		if (to_row(tab, var, 1) < 0)
2807 			return -1;
2808 	if (!var->is_row && !min_is_manifestly_unbounded(tab, var))
2809 		if (to_row(tab, var, -1) < 0)
2810 			return -1;
2811 
2812 	if (var->is_row) {
2813 		isl_int_add(tab->mat->row[var->index][1],
2814 		    tab->mat->row[var->index][1], tab->mat->row[var->index][0]);
2815 		if (restore_row(tab, var) < 0)
2816 			return -1;
2817 	} else {
2818 		int i;
2819 		unsigned off = 2 + tab->M;
2820 
2821 		for (i = 0; i < tab->n_row; ++i) {
2822 			if (isl_int_is_zero(tab->mat->row[i][off + var->index]))
2823 				continue;
2824 			isl_int_sub(tab->mat->row[i][1], tab->mat->row[i][1],
2825 			    tab->mat->row[i][off + var->index]);
2826 		}
2827 
2828 	}
2829 
2830 	if (isl_tab_push_var(tab, isl_tab_undo_relax, var) < 0)
2831 		return -1;
2832 
2833 	return 0;
2834 }
2835 
2836 /* Replace the variable v at position "pos" in the tableau "tab"
2837  * by v' = v + shift.
2838  *
2839  * If the variable is in a column, then we first check if we can
2840  * simply plug in v = v' - shift.  The effect on a row with
2841  * coefficient f/d for variable v is that the constant term c/d
2842  * is replaced by (c - f * shift)/d.  If shift is positive and
2843  * f is negative for each row that needs to remain non-negative,
2844  * then this is clearly safe.  In other words, if the minimum of v
2845  * is manifestly unbounded, then we can keep v in a column position.
2846  * Otherwise, we can pivot it down to a row.
2847  * Similarly, if shift is negative, we need to check if the maximum
2848  * of is manifestly unbounded.
2849  *
2850  * If the variable is in a row (from the start or after pivoting),
2851  * then the constant term c/d is replaced by (c + d * shift)/d.
2852  */
isl_tab_shift_var(struct isl_tab * tab,int pos,isl_int shift)2853 int isl_tab_shift_var(struct isl_tab *tab, int pos, isl_int shift)
2854 {
2855 	struct isl_tab_var *var;
2856 
2857 	if (!tab)
2858 		return -1;
2859 	if (isl_int_is_zero(shift))
2860 		return 0;
2861 
2862 	var = &tab->var[pos];
2863 	if (!var->is_row) {
2864 		if (isl_int_is_neg(shift)) {
2865 			if (!max_is_manifestly_unbounded(tab, var))
2866 				if (to_row(tab, var, 1) < 0)
2867 					return -1;
2868 		} else {
2869 			if (!min_is_manifestly_unbounded(tab, var))
2870 				if (to_row(tab, var, -1) < 0)
2871 					return -1;
2872 		}
2873 	}
2874 
2875 	if (var->is_row) {
2876 		isl_int_addmul(tab->mat->row[var->index][1],
2877 				shift, tab->mat->row[var->index][0]);
2878 	} else {
2879 		int i;
2880 		unsigned off = 2 + tab->M;
2881 
2882 		for (i = 0; i < tab->n_row; ++i) {
2883 			if (isl_int_is_zero(tab->mat->row[i][off + var->index]))
2884 				continue;
2885 			isl_int_submul(tab->mat->row[i][1],
2886 				    shift, tab->mat->row[i][off + var->index]);
2887 		}
2888 
2889 	}
2890 
2891 	return 0;
2892 }
2893 
2894 /* Remove the sign constraint from constraint "con".
2895  *
2896  * If the constraint variable was originally marked non-negative,
2897  * then we make sure we mark it non-negative again during rollback.
2898  */
isl_tab_unrestrict(struct isl_tab * tab,int con)2899 int isl_tab_unrestrict(struct isl_tab *tab, int con)
2900 {
2901 	struct isl_tab_var *var;
2902 
2903 	if (!tab)
2904 		return -1;
2905 
2906 	var = &tab->con[con];
2907 	if (!var->is_nonneg)
2908 		return 0;
2909 
2910 	var->is_nonneg = 0;
2911 	if (isl_tab_push_var(tab, isl_tab_undo_unrestrict, var) < 0)
2912 		return -1;
2913 
2914 	return 0;
2915 }
2916 
isl_tab_select_facet(struct isl_tab * tab,int con)2917 int isl_tab_select_facet(struct isl_tab *tab, int con)
2918 {
2919 	if (!tab)
2920 		return -1;
2921 
2922 	return cut_to_hyperplane(tab, &tab->con[con]);
2923 }
2924 
may_be_equality(struct isl_tab * tab,int row)2925 static int may_be_equality(struct isl_tab *tab, int row)
2926 {
2927 	return tab->rational ? isl_int_is_zero(tab->mat->row[row][1])
2928 			     : isl_int_lt(tab->mat->row[row][1],
2929 					    tab->mat->row[row][0]);
2930 }
2931 
2932 /* Return an isl_tab_var that has been marked or NULL if no such
2933  * variable can be found.
2934  * The marked field has only been set for variables that
2935  * appear in non-redundant rows or non-dead columns.
2936  *
2937  * Pick the last constraint variable that is marked and
2938  * that appears in either a non-redundant row or a non-dead columns.
2939  * Since the returned variable is tested for being a redundant constraint or
2940  * an implicit equality, there is no need to return any tab variable that
2941  * corresponds to a variable.
2942  */
select_marked(struct isl_tab * tab)2943 static struct isl_tab_var *select_marked(struct isl_tab *tab)
2944 {
2945 	int i;
2946 	struct isl_tab_var *var;
2947 
2948 	for (i = tab->n_con - 1; i >= 0; --i) {
2949 		var = &tab->con[i];
2950 		if (var->index < 0)
2951 			continue;
2952 		if (var->is_row && var->index < tab->n_redundant)
2953 			continue;
2954 		if (!var->is_row && var->index < tab->n_dead)
2955 			continue;
2956 		if (var->marked)
2957 			return var;
2958 	}
2959 
2960 	return NULL;
2961 }
2962 
2963 /* Check for (near) equalities among the constraints.
2964  * A constraint is an equality if it is non-negative and if
2965  * its maximal value is either
2966  *	- zero (in case of rational tableaus), or
2967  *	- strictly less than 1 (in case of integer tableaus)
2968  *
2969  * We first mark all non-redundant and non-dead variables that
2970  * are not frozen and not obviously not an equality.
2971  * Then we iterate over all marked variables if they can attain
2972  * any values larger than zero or at least one.
2973  * If the maximal value is zero, we mark any column variables
2974  * that appear in the row as being zero and mark the row as being redundant.
2975  * Otherwise, if the maximal value is strictly less than one (and the
2976  * tableau is integer), then we restrict the value to being zero
2977  * by adding an opposite non-negative variable.
2978  * The order in which the variables are considered is not important.
2979  */
isl_tab_detect_implicit_equalities(struct isl_tab * tab)2980 int isl_tab_detect_implicit_equalities(struct isl_tab *tab)
2981 {
2982 	int i;
2983 	unsigned n_marked;
2984 
2985 	if (!tab)
2986 		return -1;
2987 	if (tab->empty)
2988 		return 0;
2989 	if (tab->n_dead == tab->n_col)
2990 		return 0;
2991 
2992 	n_marked = 0;
2993 	for (i = tab->n_redundant; i < tab->n_row; ++i) {
2994 		struct isl_tab_var *var = isl_tab_var_from_row(tab, i);
2995 		var->marked = !var->frozen && var->is_nonneg &&
2996 			may_be_equality(tab, i);
2997 		if (var->marked)
2998 			n_marked++;
2999 	}
3000 	for (i = tab->n_dead; i < tab->n_col; ++i) {
3001 		struct isl_tab_var *var = var_from_col(tab, i);
3002 		var->marked = !var->frozen && var->is_nonneg;
3003 		if (var->marked)
3004 			n_marked++;
3005 	}
3006 	while (n_marked) {
3007 		struct isl_tab_var *var;
3008 		int sgn;
3009 		var = select_marked(tab);
3010 		if (!var)
3011 			break;
3012 		var->marked = 0;
3013 		n_marked--;
3014 		sgn = sign_of_max(tab, var);
3015 		if (sgn < 0)
3016 			return -1;
3017 		if (sgn == 0) {
3018 			if (close_row(tab, var, 0) < 0)
3019 				return -1;
3020 		} else if (!tab->rational && !at_least_one(tab, var)) {
3021 			if (cut_to_hyperplane(tab, var) < 0)
3022 				return -1;
3023 			return isl_tab_detect_implicit_equalities(tab);
3024 		}
3025 		for (i = tab->n_redundant; i < tab->n_row; ++i) {
3026 			var = isl_tab_var_from_row(tab, i);
3027 			if (!var->marked)
3028 				continue;
3029 			if (may_be_equality(tab, i))
3030 				continue;
3031 			var->marked = 0;
3032 			n_marked--;
3033 		}
3034 	}
3035 
3036 	return 0;
3037 }
3038 
3039 /* Update the element of row_var or col_var that corresponds to
3040  * constraint tab->con[i] to a move from position "old" to position "i".
3041  */
update_con_after_move(struct isl_tab * tab,int i,int old)3042 static int update_con_after_move(struct isl_tab *tab, int i, int old)
3043 {
3044 	int *p;
3045 	int index;
3046 
3047 	index = tab->con[i].index;
3048 	if (index == -1)
3049 		return 0;
3050 	p = tab->con[i].is_row ? tab->row_var : tab->col_var;
3051 	if (p[index] != ~old)
3052 		isl_die(tab->mat->ctx, isl_error_internal,
3053 			"broken internal state", return -1);
3054 	p[index] = ~i;
3055 
3056 	return 0;
3057 }
3058 
3059 /* Interchange constraints "con1" and "con2" in "tab".
3060  * In particular, interchange the contents of these entries in tab->con.
3061  * Since tab->col_var and tab->row_var point back into this array,
3062  * they need to be updated accordingly.
3063  */
isl_tab_swap_constraints(struct isl_tab * tab,int con1,int con2)3064 isl_stat isl_tab_swap_constraints(struct isl_tab *tab, int con1, int con2)
3065 {
3066 	struct isl_tab_var var;
3067 
3068 	if (isl_tab_check_con(tab, con1) < 0 ||
3069 	    isl_tab_check_con(tab, con2) < 0)
3070 		return isl_stat_error;
3071 
3072 	var = tab->con[con1];
3073 	tab->con[con1] = tab->con[con2];
3074 	if (update_con_after_move(tab, con1, con2) < 0)
3075 		return isl_stat_error;
3076 	tab->con[con2] = var;
3077 	if (update_con_after_move(tab, con2, con1) < 0)
3078 		return isl_stat_error;
3079 
3080 	return isl_stat_ok;
3081 }
3082 
3083 /* Rotate the "n" constraints starting at "first" to the right,
3084  * putting the last constraint in the position of the first constraint.
3085  */
rotate_constraints(struct isl_tab * tab,int first,int n)3086 static int rotate_constraints(struct isl_tab *tab, int first, int n)
3087 {
3088 	int i, last;
3089 	struct isl_tab_var var;
3090 
3091 	if (n <= 1)
3092 		return 0;
3093 
3094 	last = first + n - 1;
3095 	var = tab->con[last];
3096 	for (i = last; i > first; --i) {
3097 		tab->con[i] = tab->con[i - 1];
3098 		if (update_con_after_move(tab, i, i - 1) < 0)
3099 			return -1;
3100 	}
3101 	tab->con[first] = var;
3102 	if (update_con_after_move(tab, first, last) < 0)
3103 		return -1;
3104 
3105 	return 0;
3106 }
3107 
3108 /* Drop the "n" entries starting at position "first" in tab->con, moving all
3109  * subsequent entries down.
3110  * Since some of the entries of tab->row_var and tab->col_var contain
3111  * indices into this array, they have to be updated accordingly.
3112  */
con_drop_entries(struct isl_tab * tab,unsigned first,unsigned n)3113 static isl_stat con_drop_entries(struct isl_tab *tab,
3114 	unsigned first, unsigned n)
3115 {
3116 	int i;
3117 
3118 	if (first + n > tab->n_con || first + n < first)
3119 		isl_die(isl_tab_get_ctx(tab), isl_error_internal,
3120 			"invalid range", return isl_stat_error);
3121 
3122 	tab->n_con -= n;
3123 
3124 	for (i = first; i < tab->n_con; ++i) {
3125 		tab->con[i] = tab->con[i + n];
3126 		if (update_con_after_move(tab, i, i + n) < 0)
3127 			return isl_stat_error;
3128 	}
3129 
3130 	return isl_stat_ok;
3131 }
3132 
3133 /* isl_basic_map_gauss5 callback that gets called when
3134  * two (equality) constraints "a" and "b" get interchanged
3135  * in the basic map.  Perform the same interchange in "tab".
3136  */
swap_eq(unsigned a,unsigned b,void * user)3137 static isl_stat swap_eq(unsigned a, unsigned b, void *user)
3138 {
3139 	struct isl_tab *tab = user;
3140 
3141 	return isl_tab_swap_constraints(tab, a, b);
3142 }
3143 
3144 /* isl_basic_map_gauss5 callback that gets called when
3145  * the final "n" equality constraints get removed.
3146  * As a special case, if "n" is equal to the total number
3147  * of equality constraints, then this means the basic map
3148  * turned out to be empty.
3149  * Drop the same number of equality constraints from "tab" or
3150  * mark it empty in the special case.
3151  */
drop_eq(unsigned n,void * user)3152 static isl_stat drop_eq(unsigned n, void *user)
3153 {
3154 	struct isl_tab *tab = user;
3155 
3156 	if (tab->n_eq == n)
3157 		return isl_tab_mark_empty(tab);
3158 
3159 	tab->n_eq -= n;
3160 	return con_drop_entries(tab, tab->n_eq, n);
3161 }
3162 
3163 /* If "bmap" has more than a single reference, then call
3164  * isl_basic_map_gauss on it, updating "tab" accordingly.
3165  */
gauss_if_shared(__isl_take isl_basic_map * bmap,struct isl_tab * tab)3166 static __isl_give isl_basic_map *gauss_if_shared(__isl_take isl_basic_map *bmap,
3167 	struct isl_tab *tab)
3168 {
3169 	isl_bool single;
3170 
3171 	single = isl_basic_map_has_single_reference(bmap);
3172 	if (single < 0)
3173 		return isl_basic_map_free(bmap);
3174 	if (single)
3175 		return bmap;
3176 	return isl_basic_map_gauss5(bmap, NULL, &swap_eq, &drop_eq, tab);
3177 }
3178 
3179 /* Make the equalities that are implicit in "bmap" but that have been
3180  * detected in the corresponding "tab" explicit in "bmap" and update
3181  * "tab" to reflect the new order of the constraints.
3182  *
3183  * In particular, if inequality i is an implicit equality then
3184  * isl_basic_map_inequality_to_equality will move the inequality
3185  * in front of the other equality and it will move the last inequality
3186  * in the position of inequality i.
3187  * In the tableau, the inequalities of "bmap" are stored after the equalities
3188  * and so the original order
3189  *
3190  *		E E E E E A A A I B B B B L
3191  *
3192  * is changed into
3193  *
3194  *		I E E E E E A A A L B B B B
3195  *
3196  * where I is the implicit equality, the E are equalities,
3197  * the A inequalities before I, the B inequalities after I and
3198  * L the last inequality.
3199  * We therefore need to rotate to the right two sets of constraints,
3200  * those up to and including I and those after I.
3201  *
3202  * If "tab" contains any constraints that are not in "bmap" then they
3203  * appear after those in "bmap" and they should be left untouched.
3204  *
3205  * Note that this function only calls isl_basic_map_gauss
3206  * (in case some equality constraints got detected)
3207  * if "bmap" has more than one reference.
3208  * If it only has a single reference, then it is left in a temporary state,
3209  * because the caller may require this state.
3210  * Calling isl_basic_map_gauss is then the responsibility of the caller.
3211  */
isl_tab_make_equalities_explicit(struct isl_tab * tab,__isl_take isl_basic_map * bmap)3212 __isl_give isl_basic_map *isl_tab_make_equalities_explicit(struct isl_tab *tab,
3213 	__isl_take isl_basic_map *bmap)
3214 {
3215 	int i;
3216 	unsigned n_eq;
3217 
3218 	if (!tab || !bmap)
3219 		return isl_basic_map_free(bmap);
3220 	if (tab->empty)
3221 		return bmap;
3222 
3223 	n_eq = tab->n_eq;
3224 	for (i = bmap->n_ineq - 1; i >= 0; --i) {
3225 		if (!isl_tab_is_equality(tab, bmap->n_eq + i))
3226 			continue;
3227 		isl_basic_map_inequality_to_equality(bmap, i);
3228 		if (rotate_constraints(tab, 0, tab->n_eq + i + 1) < 0)
3229 			return isl_basic_map_free(bmap);
3230 		if (rotate_constraints(tab, tab->n_eq + i + 1,
3231 					bmap->n_ineq - i) < 0)
3232 			return isl_basic_map_free(bmap);
3233 		tab->n_eq++;
3234 	}
3235 
3236 	if (n_eq != tab->n_eq)
3237 		bmap = gauss_if_shared(bmap, tab);
3238 
3239 	return bmap;
3240 }
3241 
con_is_redundant(struct isl_tab * tab,struct isl_tab_var * var)3242 static int con_is_redundant(struct isl_tab *tab, struct isl_tab_var *var)
3243 {
3244 	if (!tab)
3245 		return -1;
3246 	if (tab->rational) {
3247 		int sgn = sign_of_min(tab, var);
3248 		if (sgn < -1)
3249 			return -1;
3250 		return sgn >= 0;
3251 	} else {
3252 		int irred = isl_tab_min_at_most_neg_one(tab, var);
3253 		if (irred < 0)
3254 			return -1;
3255 		return !irred;
3256 	}
3257 }
3258 
3259 /* Check for (near) redundant constraints.
3260  * A constraint is redundant if it is non-negative and if
3261  * its minimal value (temporarily ignoring the non-negativity) is either
3262  *	- zero (in case of rational tableaus), or
3263  *	- strictly larger than -1 (in case of integer tableaus)
3264  *
3265  * We first mark all non-redundant and non-dead variables that
3266  * are not frozen and not obviously negatively unbounded.
3267  * Then we iterate over all marked variables if they can attain
3268  * any values smaller than zero or at most negative one.
3269  * If not, we mark the row as being redundant (assuming it hasn't
3270  * been detected as being obviously redundant in the mean time).
3271  */
isl_tab_detect_redundant(struct isl_tab * tab)3272 int isl_tab_detect_redundant(struct isl_tab *tab)
3273 {
3274 	int i;
3275 	unsigned n_marked;
3276 
3277 	if (!tab)
3278 		return -1;
3279 	if (tab->empty)
3280 		return 0;
3281 	if (tab->n_redundant == tab->n_row)
3282 		return 0;
3283 
3284 	n_marked = 0;
3285 	for (i = tab->n_redundant; i < tab->n_row; ++i) {
3286 		struct isl_tab_var *var = isl_tab_var_from_row(tab, i);
3287 		var->marked = !var->frozen && var->is_nonneg;
3288 		if (var->marked)
3289 			n_marked++;
3290 	}
3291 	for (i = tab->n_dead; i < tab->n_col; ++i) {
3292 		struct isl_tab_var *var = var_from_col(tab, i);
3293 		var->marked = !var->frozen && var->is_nonneg &&
3294 			!min_is_manifestly_unbounded(tab, var);
3295 		if (var->marked)
3296 			n_marked++;
3297 	}
3298 	while (n_marked) {
3299 		struct isl_tab_var *var;
3300 		int red;
3301 		var = select_marked(tab);
3302 		if (!var)
3303 			break;
3304 		var->marked = 0;
3305 		n_marked--;
3306 		red = con_is_redundant(tab, var);
3307 		if (red < 0)
3308 			return -1;
3309 		if (red && !var->is_redundant)
3310 			if (isl_tab_mark_redundant(tab, var->index) < 0)
3311 				return -1;
3312 		for (i = tab->n_dead; i < tab->n_col; ++i) {
3313 			var = var_from_col(tab, i);
3314 			if (!var->marked)
3315 				continue;
3316 			if (!min_is_manifestly_unbounded(tab, var))
3317 				continue;
3318 			var->marked = 0;
3319 			n_marked--;
3320 		}
3321 	}
3322 
3323 	return 0;
3324 }
3325 
isl_tab_is_equality(struct isl_tab * tab,int con)3326 int isl_tab_is_equality(struct isl_tab *tab, int con)
3327 {
3328 	int row;
3329 	unsigned off;
3330 
3331 	if (!tab)
3332 		return -1;
3333 	if (tab->con[con].is_zero)
3334 		return 1;
3335 	if (tab->con[con].is_redundant)
3336 		return 0;
3337 	if (!tab->con[con].is_row)
3338 		return tab->con[con].index < tab->n_dead;
3339 
3340 	row = tab->con[con].index;
3341 
3342 	off = 2 + tab->M;
3343 	return isl_int_is_zero(tab->mat->row[row][1]) &&
3344 		!row_is_big(tab, row) &&
3345 		isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
3346 					tab->n_col - tab->n_dead) == -1;
3347 }
3348 
3349 /* Return the minimal value of the affine expression "f" with denominator
3350  * "denom" in *opt, *opt_denom, assuming the tableau is not empty and
3351  * the expression cannot attain arbitrarily small values.
3352  * If opt_denom is NULL, then *opt is rounded up to the nearest integer.
3353  * The return value reflects the nature of the result (empty, unbounded,
3354  * minimal value returned in *opt).
3355  *
3356  * This function assumes that at least one more row and at least
3357  * one more element in the constraint array are available in the tableau.
3358  */
isl_tab_min(struct isl_tab * tab,isl_int * f,isl_int denom,isl_int * opt,isl_int * opt_denom,unsigned flags)3359 enum isl_lp_result isl_tab_min(struct isl_tab *tab,
3360 	isl_int *f, isl_int denom, isl_int *opt, isl_int *opt_denom,
3361 	unsigned flags)
3362 {
3363 	int r;
3364 	enum isl_lp_result res = isl_lp_ok;
3365 	struct isl_tab_var *var;
3366 	struct isl_tab_undo *snap;
3367 
3368 	if (!tab)
3369 		return isl_lp_error;
3370 
3371 	if (tab->empty)
3372 		return isl_lp_empty;
3373 
3374 	snap = isl_tab_snap(tab);
3375 	r = isl_tab_add_row(tab, f);
3376 	if (r < 0)
3377 		return isl_lp_error;
3378 	var = &tab->con[r];
3379 	for (;;) {
3380 		int row, col;
3381 		find_pivot(tab, var, var, -1, &row, &col);
3382 		if (row == var->index) {
3383 			res = isl_lp_unbounded;
3384 			break;
3385 		}
3386 		if (row == -1)
3387 			break;
3388 		if (isl_tab_pivot(tab, row, col) < 0)
3389 			return isl_lp_error;
3390 	}
3391 	isl_int_mul(tab->mat->row[var->index][0],
3392 		    tab->mat->row[var->index][0], denom);
3393 	if (ISL_FL_ISSET(flags, ISL_TAB_SAVE_DUAL)) {
3394 		int i;
3395 
3396 		isl_vec_free(tab->dual);
3397 		tab->dual = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_con);
3398 		if (!tab->dual)
3399 			return isl_lp_error;
3400 		isl_int_set(tab->dual->el[0], tab->mat->row[var->index][0]);
3401 		for (i = 0; i < tab->n_con; ++i) {
3402 			int pos;
3403 			if (tab->con[i].is_row) {
3404 				isl_int_set_si(tab->dual->el[1 + i], 0);
3405 				continue;
3406 			}
3407 			pos = 2 + tab->M + tab->con[i].index;
3408 			if (tab->con[i].negated)
3409 				isl_int_neg(tab->dual->el[1 + i],
3410 					    tab->mat->row[var->index][pos]);
3411 			else
3412 				isl_int_set(tab->dual->el[1 + i],
3413 					    tab->mat->row[var->index][pos]);
3414 		}
3415 	}
3416 	if (opt && res == isl_lp_ok) {
3417 		if (opt_denom) {
3418 			isl_int_set(*opt, tab->mat->row[var->index][1]);
3419 			isl_int_set(*opt_denom, tab->mat->row[var->index][0]);
3420 		} else
3421 			get_rounded_sample_value(tab, var, 1, opt);
3422 	}
3423 	if (isl_tab_rollback(tab, snap) < 0)
3424 		return isl_lp_error;
3425 	return res;
3426 }
3427 
3428 /* Is the constraint at position "con" marked as being redundant?
3429  * If it is marked as representing an equality, then it is not
3430  * considered to be redundant.
3431  * Note that isl_tab_mark_redundant marks both the isl_tab_var as
3432  * redundant and moves the corresponding row into the first
3433  * tab->n_redundant positions (or removes the row, assigning it index -1),
3434  * so the final test is actually redundant itself.
3435  */
isl_tab_is_redundant(struct isl_tab * tab,int con)3436 int isl_tab_is_redundant(struct isl_tab *tab, int con)
3437 {
3438 	if (isl_tab_check_con(tab, con) < 0)
3439 		return -1;
3440 	if (tab->con[con].is_zero)
3441 		return 0;
3442 	if (tab->con[con].is_redundant)
3443 		return 1;
3444 	return tab->con[con].is_row && tab->con[con].index < tab->n_redundant;
3445 }
3446 
3447 /* Is variable "var" of "tab" fixed to a constant value by its row
3448  * in the tableau?
3449  * If so and if "value" is not NULL, then store this constant value
3450  * in "value".
3451  *
3452  * That is, is it a row variable that only has non-zero coefficients
3453  * for dead columns?
3454  */
is_constant(struct isl_tab * tab,struct isl_tab_var * var,isl_int * value)3455 static isl_bool is_constant(struct isl_tab *tab, struct isl_tab_var *var,
3456 	isl_int *value)
3457 {
3458 	unsigned off = 2 + tab->M;
3459 	isl_mat *mat = tab->mat;
3460 	int n;
3461 	int row;
3462 	int pos;
3463 
3464 	if (!var->is_row)
3465 		return isl_bool_false;
3466 	row = var->index;
3467 	if (row_is_big(tab, row))
3468 		return isl_bool_false;
3469 	n = tab->n_col - tab->n_dead;
3470 	pos = isl_seq_first_non_zero(mat->row[row] + off + tab->n_dead, n);
3471 	if (pos != -1)
3472 		return isl_bool_false;
3473 	if (value)
3474 		isl_int_divexact(*value, mat->row[row][1], mat->row[row][0]);
3475 	return isl_bool_true;
3476 }
3477 
3478 /* Has the variable "var' of "tab" reached a value that is greater than
3479  * or equal (if sgn > 0) or smaller than or equal (if sgn < 0) to "target"?
3480  * "tmp" has been initialized by the caller and can be used
3481  * to perform local computations.
3482  *
3483  * If the sample value involves the big parameter, then any value
3484  * is reached.
3485  * Otherwise check if n/d >= t, i.e., n >= d * t (if sgn > 0)
3486  * or n/d <= t, i.e., n <= d * t (if sgn < 0).
3487  */
reached(struct isl_tab * tab,struct isl_tab_var * var,int sgn,isl_int target,isl_int * tmp)3488 static int reached(struct isl_tab *tab, struct isl_tab_var *var, int sgn,
3489 	isl_int target, isl_int *tmp)
3490 {
3491 	if (row_is_big(tab, var->index))
3492 		return 1;
3493 	isl_int_mul(*tmp, tab->mat->row[var->index][0], target);
3494 	if (sgn > 0)
3495 		return isl_int_ge(tab->mat->row[var->index][1], *tmp);
3496 	else
3497 		return isl_int_le(tab->mat->row[var->index][1], *tmp);
3498 }
3499 
3500 /* Can variable "var" of "tab" attain the value "target" by
3501  * pivoting up (if sgn > 0) or down (if sgn < 0)?
3502  * If not, then pivot up [down] to the greatest [smallest]
3503  * rational value.
3504  * "tmp" has been initialized by the caller and can be used
3505  * to perform local computations.
3506  *
3507  * If the variable is manifestly unbounded in the desired direction,
3508  * then it can attain any value.
3509  * Otherwise, it can be moved to a row.
3510  * Continue pivoting until the target is reached.
3511  * If no more pivoting can be performed, the maximal [minimal]
3512  * rational value has been reached and the target cannot be reached.
3513  * If the variable would be pivoted into a manifestly unbounded column,
3514  * then the target can be reached.
3515  */
var_reaches(struct isl_tab * tab,struct isl_tab_var * var,int sgn,isl_int target,isl_int * tmp)3516 static isl_bool var_reaches(struct isl_tab *tab, struct isl_tab_var *var,
3517 	int sgn, isl_int target, isl_int *tmp)
3518 {
3519 	int row, col;
3520 
3521 	if (sgn < 0 && min_is_manifestly_unbounded(tab, var))
3522 		return isl_bool_true;
3523 	if (sgn > 0 && max_is_manifestly_unbounded(tab, var))
3524 		return isl_bool_true;
3525 	if (to_row(tab, var, sgn) < 0)
3526 		return isl_bool_error;
3527 	while (!reached(tab, var, sgn, target, tmp)) {
3528 		find_pivot(tab, var, var, sgn, &row, &col);
3529 		if (row == -1)
3530 			return isl_bool_false;
3531 		if (row == var->index)
3532 			return isl_bool_true;
3533 		if (isl_tab_pivot(tab, row, col) < 0)
3534 			return isl_bool_error;
3535 	}
3536 
3537 	return isl_bool_true;
3538 }
3539 
3540 /* Check if variable "var" of "tab" can only attain a single (integer)
3541  * value, and, if so, add an equality constraint to fix the variable
3542  * to this single value and store the result in "target".
3543  * "target" and "tmp" have been initialized by the caller.
3544  *
3545  * Given the current sample value, round it down and check
3546  * whether it is possible to attain a strictly smaller integer value.
3547  * If so, the variable is not restricted to a single integer value.
3548  * Otherwise, the search stops at the smallest rational value.
3549  * Round up this value and check whether it is possible to attain
3550  * a strictly greater integer value.
3551  * If so, the variable is not restricted to a single integer value.
3552  * Otherwise, the search stops at the greatest rational value.
3553  * If rounding down this value yields a value that is different
3554  * from rounding up the smallest rational value, then the variable
3555  * cannot attain any integer value.  Mark the tableau empty.
3556  * Otherwise, add an equality constraint that fixes the variable
3557  * to the single integer value found.
3558  */
detect_constant_with_tmp(struct isl_tab * tab,struct isl_tab_var * var,isl_int * target,isl_int * tmp)3559 static isl_bool detect_constant_with_tmp(struct isl_tab *tab,
3560 	struct isl_tab_var *var, isl_int *target, isl_int *tmp)
3561 {
3562 	isl_bool reached;
3563 	isl_vec *eq;
3564 	int pos;
3565 	isl_stat r;
3566 
3567 	get_rounded_sample_value(tab, var, -1, target);
3568 	isl_int_sub_ui(*target, *target, 1);
3569 	reached = var_reaches(tab, var, -1, *target, tmp);
3570 	if (reached < 0 || reached)
3571 		return isl_bool_not(reached);
3572 	get_rounded_sample_value(tab, var, 1, target);
3573 	isl_int_add_ui(*target, *target, 1);
3574 	reached = var_reaches(tab, var, 1, *target, tmp);
3575 	if (reached < 0 || reached)
3576 		return isl_bool_not(reached);
3577 	get_rounded_sample_value(tab, var, -1, tmp);
3578 	isl_int_sub_ui(*target, *target, 1);
3579 	if (isl_int_ne(*target, *tmp)) {
3580 		if (isl_tab_mark_empty(tab) < 0)
3581 			return isl_bool_error;
3582 		return isl_bool_false;
3583 	}
3584 
3585 	if (isl_tab_extend_cons(tab, 1) < 0)
3586 		return isl_bool_error;
3587 	eq = isl_vec_alloc(isl_tab_get_ctx(tab), 1 + tab->n_var);
3588 	if (!eq)
3589 		return isl_bool_error;
3590 	pos = var - tab->var;
3591 	isl_seq_clr(eq->el + 1, tab->n_var);
3592 	isl_int_set_si(eq->el[1 + pos], -1);
3593 	isl_int_set(eq->el[0], *target);
3594 	r = isl_tab_add_eq(tab, eq->el);
3595 	isl_vec_free(eq);
3596 
3597 	return r < 0 ? isl_bool_error : isl_bool_true;
3598 }
3599 
3600 /* Check if variable "var" of "tab" can only attain a single (integer)
3601  * value, and, if so, add an equality constraint to fix the variable
3602  * to this single value and store the result in "value" (if "value"
3603  * is not NULL).
3604  *
3605  * If the current sample value involves the big parameter,
3606  * then the variable cannot have a fixed integer value.
3607  * If the variable is already fixed to a single value by its row, then
3608  * there is no need to add another equality constraint.
3609  *
3610  * Otherwise, allocate some temporary variables and continue
3611  * with detect_constant_with_tmp.
3612  */
get_constant(struct isl_tab * tab,struct isl_tab_var * var,isl_int * value)3613 static isl_bool get_constant(struct isl_tab *tab, struct isl_tab_var *var,
3614 	isl_int *value)
3615 {
3616 	isl_int target, tmp;
3617 	isl_bool is_cst;
3618 
3619 	if (var->is_row && row_is_big(tab, var->index))
3620 		return isl_bool_false;
3621 	is_cst = is_constant(tab, var, value);
3622 	if (is_cst < 0 || is_cst)
3623 		return is_cst;
3624 
3625 	if (!value)
3626 		isl_int_init(target);
3627 	isl_int_init(tmp);
3628 
3629 	is_cst = detect_constant_with_tmp(tab, var,
3630 					    value ? value : &target, &tmp);
3631 
3632 	isl_int_clear(tmp);
3633 	if (!value)
3634 		isl_int_clear(target);
3635 
3636 	return is_cst;
3637 }
3638 
3639 /* Check if variable "var" of "tab" can only attain a single (integer)
3640  * value, and, if so, add an equality constraint to fix the variable
3641  * to this single value and store the result in "value" (if "value"
3642  * is not NULL).
3643  *
3644  * For rational tableaus, nothing needs to be done.
3645  */
isl_tab_is_constant(struct isl_tab * tab,int var,isl_int * value)3646 isl_bool isl_tab_is_constant(struct isl_tab *tab, int var, isl_int *value)
3647 {
3648 	if (!tab)
3649 		return isl_bool_error;
3650 	if (var < 0 || var >= tab->n_var)
3651 		isl_die(isl_tab_get_ctx(tab), isl_error_invalid,
3652 			"position out of bounds", return isl_bool_error);
3653 	if (tab->rational)
3654 		return isl_bool_false;
3655 
3656 	return get_constant(tab, &tab->var[var], value);
3657 }
3658 
3659 /* Check if any of the variables of "tab" can only attain a single (integer)
3660  * value, and, if so, add equality constraints to fix those variables
3661  * to these single values.
3662  *
3663  * For rational tableaus, nothing needs to be done.
3664  */
isl_tab_detect_constants(struct isl_tab * tab)3665 isl_stat isl_tab_detect_constants(struct isl_tab *tab)
3666 {
3667 	int i;
3668 
3669 	if (!tab)
3670 		return isl_stat_error;
3671 	if (tab->rational)
3672 		return isl_stat_ok;
3673 
3674 	for (i = 0; i < tab->n_var; ++i) {
3675 		if (get_constant(tab, &tab->var[i], NULL) < 0)
3676 			return isl_stat_error;
3677 	}
3678 
3679 	return isl_stat_ok;
3680 }
3681 
3682 /* Take a snapshot of the tableau that can be restored by a call to
3683  * isl_tab_rollback.
3684  */
isl_tab_snap(struct isl_tab * tab)3685 struct isl_tab_undo *isl_tab_snap(struct isl_tab *tab)
3686 {
3687 	if (!tab)
3688 		return NULL;
3689 	tab->need_undo = 1;
3690 	return tab->top;
3691 }
3692 
3693 /* Does "tab" need to keep track of undo information?
3694  * That is, was a snapshot taken that may need to be restored?
3695  */
isl_tab_need_undo(struct isl_tab * tab)3696 isl_bool isl_tab_need_undo(struct isl_tab *tab)
3697 {
3698 	if (!tab)
3699 		return isl_bool_error;
3700 
3701 	return isl_bool_ok(tab->need_undo);
3702 }
3703 
3704 /* Remove all tracking of undo information from "tab", invalidating
3705  * any snapshots that may have been taken of the tableau.
3706  * Since all snapshots have been invalidated, there is also
3707  * no need to start keeping track of undo information again.
3708  */
isl_tab_clear_undo(struct isl_tab * tab)3709 void isl_tab_clear_undo(struct isl_tab *tab)
3710 {
3711 	if (!tab)
3712 		return;
3713 
3714 	free_undo(tab);
3715 	tab->need_undo = 0;
3716 }
3717 
3718 /* Undo the operation performed by isl_tab_relax.
3719  */
3720 static isl_stat unrelax(struct isl_tab *tab, struct isl_tab_var *var)
3721 	WARN_UNUSED;
unrelax(struct isl_tab * tab,struct isl_tab_var * var)3722 static isl_stat unrelax(struct isl_tab *tab, struct isl_tab_var *var)
3723 {
3724 	unsigned off = 2 + tab->M;
3725 
3726 	if (!var->is_row && !max_is_manifestly_unbounded(tab, var))
3727 		if (to_row(tab, var, 1) < 0)
3728 			return isl_stat_error;
3729 
3730 	if (var->is_row) {
3731 		isl_int_sub(tab->mat->row[var->index][1],
3732 		    tab->mat->row[var->index][1], tab->mat->row[var->index][0]);
3733 		if (var->is_nonneg) {
3734 			int sgn = restore_row(tab, var);
3735 			isl_assert(tab->mat->ctx, sgn >= 0,
3736 				return isl_stat_error);
3737 		}
3738 	} else {
3739 		int i;
3740 
3741 		for (i = 0; i < tab->n_row; ++i) {
3742 			if (isl_int_is_zero(tab->mat->row[i][off + var->index]))
3743 				continue;
3744 			isl_int_add(tab->mat->row[i][1], tab->mat->row[i][1],
3745 			    tab->mat->row[i][off + var->index]);
3746 		}
3747 
3748 	}
3749 
3750 	return isl_stat_ok;
3751 }
3752 
3753 /* Undo the operation performed by isl_tab_unrestrict.
3754  *
3755  * In particular, mark the variable as being non-negative and make
3756  * sure the sample value respects this constraint.
3757  */
ununrestrict(struct isl_tab * tab,struct isl_tab_var * var)3758 static isl_stat ununrestrict(struct isl_tab *tab, struct isl_tab_var *var)
3759 {
3760 	var->is_nonneg = 1;
3761 
3762 	if (var->is_row && restore_row(tab, var) < -1)
3763 		return isl_stat_error;
3764 
3765 	return isl_stat_ok;
3766 }
3767 
3768 /* Unmark the last redundant row in "tab" as being redundant.
3769  * This undoes part of the modifications performed by isl_tab_mark_redundant.
3770  * In particular, remove the redundant mark and make
3771  * sure the sample value respects the constraint again.
3772  * A variable that is marked non-negative by isl_tab_mark_redundant
3773  * is covered by a separate undo record.
3774  */
restore_last_redundant(struct isl_tab * tab)3775 static isl_stat restore_last_redundant(struct isl_tab *tab)
3776 {
3777 	struct isl_tab_var *var;
3778 
3779 	if (tab->n_redundant < 1)
3780 		isl_die(isl_tab_get_ctx(tab), isl_error_internal,
3781 			"no redundant rows", return isl_stat_error);
3782 
3783 	var = isl_tab_var_from_row(tab, tab->n_redundant - 1);
3784 	var->is_redundant = 0;
3785 	tab->n_redundant--;
3786 	restore_row(tab, var);
3787 
3788 	return isl_stat_ok;
3789 }
3790 
3791 static isl_stat perform_undo_var(struct isl_tab *tab, struct isl_tab_undo *undo)
3792 	WARN_UNUSED;
perform_undo_var(struct isl_tab * tab,struct isl_tab_undo * undo)3793 static isl_stat perform_undo_var(struct isl_tab *tab, struct isl_tab_undo *undo)
3794 {
3795 	struct isl_tab_var *var = var_from_index(tab, undo->u.var_index);
3796 	switch (undo->type) {
3797 	case isl_tab_undo_nonneg:
3798 		var->is_nonneg = 0;
3799 		break;
3800 	case isl_tab_undo_redundant:
3801 		if (!var->is_row || var->index != tab->n_redundant - 1)
3802 			isl_die(isl_tab_get_ctx(tab), isl_error_internal,
3803 				"not undoing last redundant row",
3804 				return isl_stat_error);
3805 		return restore_last_redundant(tab);
3806 	case isl_tab_undo_freeze:
3807 		var->frozen = 0;
3808 		break;
3809 	case isl_tab_undo_zero:
3810 		var->is_zero = 0;
3811 		if (!var->is_row)
3812 			tab->n_dead--;
3813 		break;
3814 	case isl_tab_undo_allocate:
3815 		if (undo->u.var_index >= 0) {
3816 			isl_assert(tab->mat->ctx, !var->is_row,
3817 				return isl_stat_error);
3818 			return drop_col(tab, var->index);
3819 		}
3820 		if (!var->is_row) {
3821 			if (!max_is_manifestly_unbounded(tab, var)) {
3822 				if (to_row(tab, var, 1) < 0)
3823 					return isl_stat_error;
3824 			} else if (!min_is_manifestly_unbounded(tab, var)) {
3825 				if (to_row(tab, var, -1) < 0)
3826 					return isl_stat_error;
3827 			} else
3828 				if (to_row(tab, var, 0) < 0)
3829 					return isl_stat_error;
3830 		}
3831 		return drop_row(tab, var->index);
3832 	case isl_tab_undo_relax:
3833 		return unrelax(tab, var);
3834 	case isl_tab_undo_unrestrict:
3835 		return ununrestrict(tab, var);
3836 	default:
3837 		isl_die(tab->mat->ctx, isl_error_internal,
3838 			"perform_undo_var called on invalid undo record",
3839 			return isl_stat_error);
3840 	}
3841 
3842 	return isl_stat_ok;
3843 }
3844 
3845 /* Restore all rows that have been marked redundant by isl_tab_mark_redundant
3846  * and that have been preserved in the tableau.
3847  * Note that isl_tab_mark_redundant may also have marked some variables
3848  * as being non-negative before marking them redundant.  These need
3849  * to be removed as well as otherwise some constraints could end up
3850  * getting marked redundant with respect to the variable.
3851  */
isl_tab_restore_redundant(struct isl_tab * tab)3852 isl_stat isl_tab_restore_redundant(struct isl_tab *tab)
3853 {
3854 	if (!tab)
3855 		return isl_stat_error;
3856 
3857 	if (tab->need_undo)
3858 		isl_die(isl_tab_get_ctx(tab), isl_error_invalid,
3859 			"manually restoring redundant constraints "
3860 			"interferes with undo history",
3861 			return isl_stat_error);
3862 
3863 	while (tab->n_redundant > 0) {
3864 		if (tab->row_var[tab->n_redundant - 1] >= 0) {
3865 			struct isl_tab_var *var;
3866 
3867 			var = isl_tab_var_from_row(tab, tab->n_redundant - 1);
3868 			var->is_nonneg = 0;
3869 		}
3870 		restore_last_redundant(tab);
3871 	}
3872 	return isl_stat_ok;
3873 }
3874 
3875 /* Undo the addition of an integer division to the basic map representation
3876  * of "tab" in position "pos".
3877  */
drop_bmap_div(struct isl_tab * tab,int pos)3878 static isl_stat drop_bmap_div(struct isl_tab *tab, int pos)
3879 {
3880 	int off;
3881 	isl_size n_div;
3882 
3883 	n_div = isl_basic_map_dim(tab->bmap, isl_dim_div);
3884 	if (n_div < 0)
3885 		return isl_stat_error;
3886 	off = tab->n_var - n_div;
3887 	if (isl_basic_map_drop_div(tab->bmap, pos - off) < 0)
3888 		return isl_stat_error;
3889 	if (tab->samples) {
3890 		tab->samples = isl_mat_drop_cols(tab->samples, 1 + pos, 1);
3891 		if (!tab->samples)
3892 			return isl_stat_error;
3893 	}
3894 
3895 	return isl_stat_ok;
3896 }
3897 
3898 /* Restore the tableau to the state where the basic variables
3899  * are those in "col_var".
3900  * We first construct a list of variables that are currently in
3901  * the basis, but shouldn't.  Then we iterate over all variables
3902  * that should be in the basis and for each one that is currently
3903  * not in the basis, we exchange it with one of the elements of the
3904  * list constructed before.
3905  * We can always find an appropriate variable to pivot with because
3906  * the current basis is mapped to the old basis by a non-singular
3907  * matrix and so we can never end up with a zero row.
3908  */
restore_basis(struct isl_tab * tab,int * col_var)3909 static int restore_basis(struct isl_tab *tab, int *col_var)
3910 {
3911 	int i, j;
3912 	int n_extra = 0;
3913 	int *extra = NULL;	/* current columns that contain bad stuff */
3914 	unsigned off = 2 + tab->M;
3915 
3916 	extra = isl_alloc_array(tab->mat->ctx, int, tab->n_col);
3917 	if (tab->n_col && !extra)
3918 		goto error;
3919 	for (i = 0; i < tab->n_col; ++i) {
3920 		for (j = 0; j < tab->n_col; ++j)
3921 			if (tab->col_var[i] == col_var[j])
3922 				break;
3923 		if (j < tab->n_col)
3924 			continue;
3925 		extra[n_extra++] = i;
3926 	}
3927 	for (i = 0; i < tab->n_col && n_extra > 0; ++i) {
3928 		struct isl_tab_var *var;
3929 		int row;
3930 
3931 		for (j = 0; j < tab->n_col; ++j)
3932 			if (col_var[i] == tab->col_var[j])
3933 				break;
3934 		if (j < tab->n_col)
3935 			continue;
3936 		var = var_from_index(tab, col_var[i]);
3937 		row = var->index;
3938 		for (j = 0; j < n_extra; ++j)
3939 			if (!isl_int_is_zero(tab->mat->row[row][off+extra[j]]))
3940 				break;
3941 		isl_assert(tab->mat->ctx, j < n_extra, goto error);
3942 		if (isl_tab_pivot(tab, row, extra[j]) < 0)
3943 			goto error;
3944 		extra[j] = extra[--n_extra];
3945 	}
3946 
3947 	free(extra);
3948 	return 0;
3949 error:
3950 	free(extra);
3951 	return -1;
3952 }
3953 
3954 /* Remove all samples with index n or greater, i.e., those samples
3955  * that were added since we saved this number of samples in
3956  * isl_tab_save_samples.
3957  */
drop_samples_since(struct isl_tab * tab,int n)3958 static void drop_samples_since(struct isl_tab *tab, int n)
3959 {
3960 	int i;
3961 
3962 	for (i = tab->n_sample - 1; i >= 0 && tab->n_sample > n; --i) {
3963 		if (tab->sample_index[i] < n)
3964 			continue;
3965 
3966 		if (i != tab->n_sample - 1) {
3967 			int t = tab->sample_index[tab->n_sample-1];
3968 			tab->sample_index[tab->n_sample-1] = tab->sample_index[i];
3969 			tab->sample_index[i] = t;
3970 			isl_mat_swap_rows(tab->samples, tab->n_sample-1, i);
3971 		}
3972 		tab->n_sample--;
3973 	}
3974 }
3975 
3976 static isl_stat perform_undo(struct isl_tab *tab, struct isl_tab_undo *undo)
3977 	WARN_UNUSED;
perform_undo(struct isl_tab * tab,struct isl_tab_undo * undo)3978 static isl_stat perform_undo(struct isl_tab *tab, struct isl_tab_undo *undo)
3979 {
3980 	switch (undo->type) {
3981 	case isl_tab_undo_rational:
3982 		tab->rational = 0;
3983 		break;
3984 	case isl_tab_undo_empty:
3985 		tab->empty = 0;
3986 		break;
3987 	case isl_tab_undo_nonneg:
3988 	case isl_tab_undo_redundant:
3989 	case isl_tab_undo_freeze:
3990 	case isl_tab_undo_zero:
3991 	case isl_tab_undo_allocate:
3992 	case isl_tab_undo_relax:
3993 	case isl_tab_undo_unrestrict:
3994 		return perform_undo_var(tab, undo);
3995 	case isl_tab_undo_bmap_eq:
3996 		tab->bmap = isl_basic_map_free_equality(tab->bmap, 1);
3997 		return tab->bmap ? isl_stat_ok : isl_stat_error;
3998 	case isl_tab_undo_bmap_ineq:
3999 		tab->bmap = isl_basic_map_free_inequality(tab->bmap, 1);
4000 		return tab->bmap ? isl_stat_ok : isl_stat_error;
4001 	case isl_tab_undo_bmap_div:
4002 		return drop_bmap_div(tab, undo->u.var_index);
4003 	case isl_tab_undo_saved_basis:
4004 		if (restore_basis(tab, undo->u.col_var) < 0)
4005 			return isl_stat_error;
4006 		break;
4007 	case isl_tab_undo_drop_sample:
4008 		tab->n_outside--;
4009 		break;
4010 	case isl_tab_undo_saved_samples:
4011 		drop_samples_since(tab, undo->u.n);
4012 		break;
4013 	case isl_tab_undo_callback:
4014 		return undo->u.callback->run(undo->u.callback);
4015 	default:
4016 		isl_assert(tab->mat->ctx, 0, return isl_stat_error);
4017 	}
4018 	return isl_stat_ok;
4019 }
4020 
4021 /* Return the tableau to the state it was in when the snapshot "snap"
4022  * was taken.
4023  */
isl_tab_rollback(struct isl_tab * tab,struct isl_tab_undo * snap)4024 isl_stat isl_tab_rollback(struct isl_tab *tab, struct isl_tab_undo *snap)
4025 {
4026 	struct isl_tab_undo *undo, *next;
4027 
4028 	if (!tab)
4029 		return isl_stat_error;
4030 
4031 	tab->in_undo = 1;
4032 	for (undo = tab->top; undo && undo != &tab->bottom; undo = next) {
4033 		next = undo->next;
4034 		if (undo == snap)
4035 			break;
4036 		if (perform_undo(tab, undo) < 0) {
4037 			tab->top = undo;
4038 			free_undo(tab);
4039 			tab->in_undo = 0;
4040 			return isl_stat_error;
4041 		}
4042 		free_undo_record(undo);
4043 	}
4044 	tab->in_undo = 0;
4045 	tab->top = undo;
4046 	if (!undo)
4047 		return isl_stat_error;
4048 	return isl_stat_ok;
4049 }
4050 
4051 /* The given row "row" represents an inequality violated by all
4052  * points in the tableau.  Check for some special cases of such
4053  * separating constraints.
4054  * In particular, if the row has been reduced to the constant -1,
4055  * then we know the inequality is adjacent (but opposite) to
4056  * an equality in the tableau.
4057  * If the row has been reduced to r = c*(-1 -r'), with r' an inequality
4058  * of the tableau and c a positive constant, then the inequality
4059  * is adjacent (but opposite) to the inequality r'.
4060  */
separation_type(struct isl_tab * tab,unsigned row)4061 static enum isl_ineq_type separation_type(struct isl_tab *tab, unsigned row)
4062 {
4063 	int pos;
4064 	unsigned off = 2 + tab->M;
4065 
4066 	if (tab->rational)
4067 		return isl_ineq_separate;
4068 
4069 	if (!isl_int_is_one(tab->mat->row[row][0]))
4070 		return isl_ineq_separate;
4071 
4072 	pos = isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead,
4073 					tab->n_col - tab->n_dead);
4074 	if (pos == -1) {
4075 		if (isl_int_is_negone(tab->mat->row[row][1]))
4076 			return isl_ineq_adj_eq;
4077 		else
4078 			return isl_ineq_separate;
4079 	}
4080 
4081 	if (!isl_int_eq(tab->mat->row[row][1],
4082 			tab->mat->row[row][off + tab->n_dead + pos]))
4083 		return isl_ineq_separate;
4084 
4085 	pos = isl_seq_first_non_zero(
4086 			tab->mat->row[row] + off + tab->n_dead + pos + 1,
4087 			tab->n_col - tab->n_dead - pos - 1);
4088 
4089 	return pos == -1 ? isl_ineq_adj_ineq : isl_ineq_separate;
4090 }
4091 
4092 /* Check the effect of inequality "ineq" on the tableau "tab".
4093  * The result may be
4094  *	isl_ineq_redundant:	satisfied by all points in the tableau
4095  *	isl_ineq_separate:	satisfied by no point in the tableau
4096  *	isl_ineq_cut:		satisfied by some by not all points
4097  *	isl_ineq_adj_eq:	adjacent to an equality
4098  *	isl_ineq_adj_ineq:	adjacent to an inequality.
4099  */
isl_tab_ineq_type(struct isl_tab * tab,isl_int * ineq)4100 enum isl_ineq_type isl_tab_ineq_type(struct isl_tab *tab, isl_int *ineq)
4101 {
4102 	enum isl_ineq_type type = isl_ineq_error;
4103 	struct isl_tab_undo *snap = NULL;
4104 	int con;
4105 	int row;
4106 
4107 	if (!tab)
4108 		return isl_ineq_error;
4109 
4110 	if (isl_tab_extend_cons(tab, 1) < 0)
4111 		return isl_ineq_error;
4112 
4113 	snap = isl_tab_snap(tab);
4114 
4115 	con = isl_tab_add_row(tab, ineq);
4116 	if (con < 0)
4117 		goto error;
4118 
4119 	row = tab->con[con].index;
4120 	if (isl_tab_row_is_redundant(tab, row))
4121 		type = isl_ineq_redundant;
4122 	else if (isl_int_is_neg(tab->mat->row[row][1]) &&
4123 		 (tab->rational ||
4124 		    isl_int_abs_ge(tab->mat->row[row][1],
4125 				   tab->mat->row[row][0]))) {
4126 		int nonneg = at_least_zero(tab, &tab->con[con]);
4127 		if (nonneg < 0)
4128 			goto error;
4129 		if (nonneg)
4130 			type = isl_ineq_cut;
4131 		else
4132 			type = separation_type(tab, row);
4133 	} else {
4134 		int red = con_is_redundant(tab, &tab->con[con]);
4135 		if (red < 0)
4136 			goto error;
4137 		if (!red)
4138 			type = isl_ineq_cut;
4139 		else
4140 			type = isl_ineq_redundant;
4141 	}
4142 
4143 	if (isl_tab_rollback(tab, snap))
4144 		return isl_ineq_error;
4145 	return type;
4146 error:
4147 	return isl_ineq_error;
4148 }
4149 
isl_tab_track_bmap(struct isl_tab * tab,__isl_take isl_basic_map * bmap)4150 isl_stat isl_tab_track_bmap(struct isl_tab *tab, __isl_take isl_basic_map *bmap)
4151 {
4152 	bmap = isl_basic_map_cow(bmap);
4153 	if (!tab || !bmap)
4154 		goto error;
4155 
4156 	if (tab->empty) {
4157 		bmap = isl_basic_map_set_to_empty(bmap);
4158 		if (!bmap)
4159 			goto error;
4160 		tab->bmap = bmap;
4161 		return isl_stat_ok;
4162 	}
4163 
4164 	isl_assert(tab->mat->ctx, tab->n_eq == bmap->n_eq, goto error);
4165 	isl_assert(tab->mat->ctx,
4166 		    tab->n_con == bmap->n_eq + bmap->n_ineq, goto error);
4167 
4168 	tab->bmap = bmap;
4169 
4170 	return isl_stat_ok;
4171 error:
4172 	isl_basic_map_free(bmap);
4173 	return isl_stat_error;
4174 }
4175 
isl_tab_track_bset(struct isl_tab * tab,__isl_take isl_basic_set * bset)4176 isl_stat isl_tab_track_bset(struct isl_tab *tab, __isl_take isl_basic_set *bset)
4177 {
4178 	return isl_tab_track_bmap(tab, bset_to_bmap(bset));
4179 }
4180 
isl_tab_peek_bset(struct isl_tab * tab)4181 __isl_keep isl_basic_set *isl_tab_peek_bset(struct isl_tab *tab)
4182 {
4183 	if (!tab)
4184 		return NULL;
4185 
4186 	return bset_from_bmap(tab->bmap);
4187 }
4188 
isl_tab_print_internal(__isl_keep struct isl_tab * tab,FILE * out,int indent)4189 static void isl_tab_print_internal(__isl_keep struct isl_tab *tab,
4190 	FILE *out, int indent)
4191 {
4192 	unsigned r, c;
4193 	int i;
4194 
4195 	if (!tab) {
4196 		fprintf(out, "%*snull tab\n", indent, "");
4197 		return;
4198 	}
4199 	fprintf(out, "%*sn_redundant: %d, n_dead: %d", indent, "",
4200 		tab->n_redundant, tab->n_dead);
4201 	if (tab->rational)
4202 		fprintf(out, ", rational");
4203 	if (tab->empty)
4204 		fprintf(out, ", empty");
4205 	fprintf(out, "\n");
4206 	fprintf(out, "%*s[", indent, "");
4207 	for (i = 0; i < tab->n_var; ++i) {
4208 		if (i)
4209 			fprintf(out, (i == tab->n_param ||
4210 				      i == tab->n_var - tab->n_div) ? "; "
4211 								    : ", ");
4212 		fprintf(out, "%c%d%s", tab->var[i].is_row ? 'r' : 'c',
4213 					tab->var[i].index,
4214 					tab->var[i].is_zero ? " [=0]" :
4215 					tab->var[i].is_redundant ? " [R]" : "");
4216 	}
4217 	fprintf(out, "]\n");
4218 	fprintf(out, "%*s[", indent, "");
4219 	for (i = 0; i < tab->n_con; ++i) {
4220 		if (i)
4221 			fprintf(out, ", ");
4222 		fprintf(out, "%c%d%s", tab->con[i].is_row ? 'r' : 'c',
4223 					tab->con[i].index,
4224 					tab->con[i].is_zero ? " [=0]" :
4225 					tab->con[i].is_redundant ? " [R]" : "");
4226 	}
4227 	fprintf(out, "]\n");
4228 	fprintf(out, "%*s[", indent, "");
4229 	for (i = 0; i < tab->n_row; ++i) {
4230 		const char *sign = "";
4231 		if (i)
4232 			fprintf(out, ", ");
4233 		if (tab->row_sign) {
4234 			if (tab->row_sign[i] == isl_tab_row_unknown)
4235 				sign = "?";
4236 			else if (tab->row_sign[i] == isl_tab_row_neg)
4237 				sign = "-";
4238 			else if (tab->row_sign[i] == isl_tab_row_pos)
4239 				sign = "+";
4240 			else
4241 				sign = "+-";
4242 		}
4243 		fprintf(out, "r%d: %d%s%s", i, tab->row_var[i],
4244 		    isl_tab_var_from_row(tab, i)->is_nonneg ? " [>=0]" : "", sign);
4245 	}
4246 	fprintf(out, "]\n");
4247 	fprintf(out, "%*s[", indent, "");
4248 	for (i = 0; i < tab->n_col; ++i) {
4249 		if (i)
4250 			fprintf(out, ", ");
4251 		fprintf(out, "c%d: %d%s", i, tab->col_var[i],
4252 		    var_from_col(tab, i)->is_nonneg ? " [>=0]" : "");
4253 	}
4254 	fprintf(out, "]\n");
4255 	r = tab->mat->n_row;
4256 	tab->mat->n_row = tab->n_row;
4257 	c = tab->mat->n_col;
4258 	tab->mat->n_col = 2 + tab->M + tab->n_col;
4259 	isl_mat_print_internal(tab->mat, out, indent);
4260 	tab->mat->n_row = r;
4261 	tab->mat->n_col = c;
4262 	if (tab->bmap)
4263 		isl_basic_map_print_internal(tab->bmap, out, indent);
4264 }
4265 
isl_tab_dump(__isl_keep struct isl_tab * tab)4266 void isl_tab_dump(__isl_keep struct isl_tab *tab)
4267 {
4268 	isl_tab_print_internal(tab, stderr, 0);
4269 }
4270