1 /* 2 * Copyright (C) 2017 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #ifndef INCLUDE_PERFETTO_EXT_TRACING_CORE_SHARED_MEMORY_ABI_H_ 18 #define INCLUDE_PERFETTO_EXT_TRACING_CORE_SHARED_MEMORY_ABI_H_ 19 20 #include <stddef.h> 21 #include <stdint.h> 22 23 #include <array> 24 #include <atomic> 25 #include <bitset> 26 #include <thread> 27 #include <type_traits> 28 #include <utility> 29 30 #include "perfetto/base/logging.h" 31 #include "perfetto/protozero/proto_utils.h" 32 33 namespace perfetto { 34 35 // This file defines the binary interface of the memory buffers shared between 36 // Producer and Service. This is a long-term stable ABI and has to be backwards 37 // compatible to deal with mismatching Producer and Service versions. 38 // 39 // Overview 40 // -------- 41 // SMB := "Shared Memory Buffer". 42 // In the most typical case of a multi-process architecture (i.e. Producer and 43 // Service are hosted by different processes), a Producer means almost always 44 // a "client process producing data" (almost: in some cases a process might host 45 // > 1 Producer, if it links two libraries, independent of each other, that both 46 // use Perfetto tracing). 47 // The Service has one SMB for each Producer. 48 // A producer has one or (typically) more data sources. They all share the same 49 // SMB. 50 // The SMB is a staging area to decouple data sources living in the Producer 51 // and allow them to do non-blocking async writes. 52 // The SMB is *not* the ultimate logging buffer seen by the Consumer. That one 53 // is larger (~MBs) and not shared with Producers. 54 // Each SMB is small, typically few KB. Its size is configurable by the producer 55 // within a max limit of ~MB (see kMaxShmSize in tracing_service_impl.cc). 56 // The SMB is partitioned into fixed-size Page(s). The size of the Pages are 57 // determined by each Producer at connection time and cannot be changed. 58 // Hence, different producers can have SMB(s) that have a different Page size 59 // from each other, but the page size will be constant throughout all the 60 // lifetime of the SMB. 61 // Page(s) are partitioned by the Producer into variable size Chunk(s): 62 // 63 // +------------+ +--------------------------+ 64 // | Producer 1 | <-> | SMB 1 [~32K - 1MB] | 65 // +------------+ +--------+--------+--------+ 66 // | Page | Page | Page | 67 // +--------+--------+--------+ 68 // | Chunk | | Chunk | 69 // +--------+ Chunk +--------+ <----+ 70 // | Chunk | | Chunk | | 71 // +--------+--------+--------+ +---------------------+ 72 // | Service | 73 // +------------+ +--------------------------+ +---------------------+ 74 // | Producer 2 | <-> | SMB 2 [~32K - 1MB] | /| large ring buffers | 75 // +------------+ +--------+--------+--------+ <--+ | (100K - several MB) | 76 // | Page | Page | Page | +---------------------+ 77 // +--------+--------+--------+ 78 // | Chunk | | Chunk | 79 // +--------+ Chunk +--------+ 80 // | Chunk | | Chunk | 81 // +--------+--------+--------+ 82 // 83 // * Sizes of both SMB and ring buffers are purely indicative and decided at 84 // configuration time by the Producer (for SMB sizes) and the Consumer (for the 85 // final ring buffer size). 86 87 // Page 88 // ---- 89 // A page is a portion of the shared memory buffer and defines the granularity 90 // of the interaction between the Producer and tracing Service. When scanning 91 // the shared memory buffer to determine if something should be moved to the 92 // central logging buffers, the Service most of the times looks at and moves 93 // whole pages. Similarly, the Producer sends an IPC to invite the Service to 94 // drain the shared memory buffer only when a whole page is filled. 95 // Having fixed the total SMB size (hence the total memory overhead), the page 96 // size is a triangular tradeoff between: 97 // 1) IPC traffic: smaller pages -> more IPCs. 98 // 2) Producer lock freedom: larger pages -> larger chunks -> data sources can 99 // write more data without needing to swap chunks and synchronize. 100 // 3) Risk of write-starving the SMB: larger pages -> higher chance that the 101 // Service won't manage to drain them and the SMB remains full. 102 // The page size, on the other side, has no implications on wasted memory due to 103 // fragmentations (see Chunk below). 104 // The size of the page is chosen by the Service at connection time and stays 105 // fixed throughout all the lifetime of the Producer. Different producers (i.e. 106 // ~ different client processes) can use different page sizes. 107 // The page size must be an integer multiple of 4k (this is to allow VM page 108 // stealing optimizations) and obviously has to be an integer divisor of the 109 // total SMB size. 110 111 // Chunk 112 // ----- 113 // A chunk is a portion of a Page which is written and handled by a Producer. 114 // A chunk contains a linear sequence of TracePacket(s) (the root proto). 115 // A chunk cannot be written concurrently by two data sources. Protobufs must be 116 // encoded as contiguous byte streams and cannot be interleaved. Therefore, on 117 // the Producer side, a chunk is almost always owned exclusively by one thread 118 // (% extremely peculiar slow-path cases). 119 // Chunks are essentially single-writer single-thread lock-free arenas. Locking 120 // happens only when a Chunk is full and a new one needs to be acquired. 121 // Locking happens only within the scope of a Producer process. There is no 122 // inter-process locking. The Producer cannot lock the Service and viceversa. 123 // In the worst case, any of the two can starve the SMB, by marking all chunks 124 // as either being read or written. But that has the only side effect of 125 // losing the trace data. 126 // The Producer can decide to partition each page into a number of limited 127 // configurations (e.g., 1 page == 1 chunk, 1 page == 2 chunks and so on). 128 129 // TracePacket 130 // ----------- 131 // Is the atom of tracing. Putting aside pages and chunks a trace is merely a 132 // sequence of TracePacket(s). TracePacket is the root protobuf message. 133 // A TracePacket can span across several chunks (hence even across several 134 // pages). A TracePacket can therefore be >> chunk size, >> page size and even 135 // >> SMB size. The Chunk header carries metadata to deal with the TracePacket 136 // splitting case. 137 138 // Use only explicitly-sized types below. DO NOT use size_t or any architecture 139 // dependent size (e.g. size_t) in the struct fields. This buffer will be read 140 // and written by processes that have a different bitness in the same OS. 141 // Instead it's fine to assume little-endianess. Big-endian is a dream we are 142 // not currently pursuing. 143 144 class SharedMemoryABI { 145 public: 146 static constexpr size_t kMinPageSize = 4 * 1024; 147 148 // This is due to Chunk::size being 16 bits. 149 static constexpr size_t kMaxPageSize = 64 * 1024; 150 151 // "14" is the max number that can be encoded in a 32 bit atomic word using 152 // 2 state bits per Chunk and leaving 4 bits for the page layout. 153 // See PageLayout below. 154 static constexpr size_t kMaxChunksPerPage = 14; 155 156 // Each TracePacket in the Chunk is prefixed by a 4 bytes redundant VarInt 157 // (see proto_utils.h) stating its size. 158 static constexpr size_t kPacketHeaderSize = 4; 159 160 // TraceWriter specifies this invalid packet/fragment size to signal to the 161 // service that a packet should be discarded, because the TraceWriter couldn't 162 // write its remaining fragments (e.g. because the SMB was exhausted). 163 static constexpr size_t kPacketSizeDropPacket = 164 protozero::proto_utils::kMaxMessageLength; 165 166 // Chunk states and transitions: 167 // kChunkFree <----------------+ 168 // | (Producer) | 169 // V | 170 // kChunkBeingWritten | 171 // | (Producer) | 172 // V | 173 // kChunkComplete | 174 // | (Service) | 175 // V | 176 // kChunkBeingRead | 177 // | (Service) | 178 // +------------------------+ 179 enum ChunkState : uint32_t { 180 // The Chunk is free. The Service shall never touch it, the Producer can 181 // acquire it and transition it into kChunkBeingWritten. 182 kChunkFree = 0, 183 184 // The Chunk is being used by the Producer and is not complete yet. 185 // The Service shall never touch kChunkBeingWritten pages. 186 kChunkBeingWritten = 1, 187 188 // The Service is moving the page into its non-shared ring buffer. The 189 // Producer shall never touch kChunkBeingRead pages. 190 kChunkBeingRead = 2, 191 192 // The Producer is done writing the page and won't touch it again. The 193 // Service can now move it to its non-shared ring buffer. 194 // kAllChunksComplete relies on this being == 3. 195 kChunkComplete = 3, 196 }; 197 static constexpr const char* kChunkStateStr[] = {"Free", "BeingWritten", 198 "BeingRead", "Complete"}; 199 200 enum PageLayout : uint32_t { 201 // The page is fully free and has not been partitioned yet. 202 kPageNotPartitioned = 0, 203 204 // TODO(primiano): Aligning a chunk @ 16 bytes could allow to use faster 205 // intrinsics based on quad-word moves. Do the math and check what is the 206 // fragmentation loss. 207 208 // align4(X) := the largest integer N s.t. (N % 4) == 0 && N <= X. 209 // 8 == sizeof(PageHeader). 210 kPageDiv1 = 1, // Only one chunk of size: PAGE_SIZE - 8. 211 kPageDiv2 = 2, // Two chunks of size: align4((PAGE_SIZE - 8) / 2). 212 kPageDiv4 = 3, // Four chunks of size: align4((PAGE_SIZE - 8) / 4). 213 kPageDiv7 = 4, // Seven chunks of size: align4((PAGE_SIZE - 8) / 7). 214 kPageDiv14 = 5, // Fourteen chunks of size: align4((PAGE_SIZE - 8) / 14). 215 216 // The rationale for 7 and 14 above is to maximize the page usage for the 217 // likely case of |page_size| == 4096: 218 // (((4096 - 8) / 14) % 4) == 0, while (((4096 - 8) / 16 % 4)) == 3. So 219 // Div16 would waste 3 * 16 = 48 bytes per page for chunk alignment gaps. 220 221 kPageDivReserved1 = 6, 222 kPageDivReserved2 = 7, 223 kNumPageLayouts = 8, 224 }; 225 226 // Keep this consistent with the PageLayout enum above. 227 static constexpr uint32_t kNumChunksForLayout[] = {0, 1, 2, 4, 7, 14, 0, 0}; 228 229 // Layout of a Page. 230 // +===================================================+ 231 // | Page header [8 bytes] | 232 // | Tells how many chunks there are, how big they are | 233 // | and their state (free, read, write, complete). | 234 // +===================================================+ 235 // +***************************************************+ 236 // | Chunk #0 header [8 bytes] | 237 // | Tells how many packets there are and whether the | 238 // | whether the 1st and last ones are fragmented. | 239 // | Also has a chunk id to reassemble fragments. | 240 // +***************************************************+ 241 // +---------------------------------------------------+ 242 // | Packet #0 size [varint, up to 4 bytes] | 243 // + - - - - - - - - - - - - - - - - - - - - - - - - - + 244 // | Packet #0 payload | 245 // | A TracePacket protobuf message | 246 // +---------------------------------------------------+ 247 // ... 248 // + . . . . . . . . . . . . . . . . . . . . . . . . . + 249 // | Optional padding to maintain aligment | 250 // + . . . . . . . . . . . . . . . . . . . . . . . . . + 251 // +---------------------------------------------------+ 252 // | Packet #N size [varint, up to 4 bytes] | 253 // + - - - - - - - - - - - - - - - - - - - - - - - - - + 254 // | Packet #N payload | 255 // | A TracePacket protobuf message | 256 // +---------------------------------------------------+ 257 // ... 258 // +***************************************************+ 259 // | Chunk #M header [8 bytes] | 260 // ... 261 262 // Alignment applies to start offset only. The Chunk size is *not* aligned. 263 static constexpr uint32_t kChunkAlignment = 4; 264 static constexpr uint32_t kChunkShift = 2; 265 static constexpr uint32_t kChunkMask = 0x3; 266 static constexpr uint32_t kLayoutMask = 0x70000000; 267 static constexpr uint32_t kLayoutShift = 28; 268 static constexpr uint32_t kAllChunksMask = 0x0FFFFFFF; 269 270 // This assumes that kChunkComplete == 3. 271 static constexpr uint32_t kAllChunksComplete = 0x0FFFFFFF; 272 static constexpr uint32_t kAllChunksFree = 0; 273 static constexpr size_t kInvalidPageIdx = static_cast<size_t>(-1); 274 275 // There is one page header per page, at the beginning of the page. 276 struct PageHeader { 277 // |layout| bits: 278 // [31] [30:28] [27:26] ... [1:0] 279 // | | | | | 280 // | | | | +---------- ChunkState[0] 281 // | | | +--------------- ChunkState[12..1] 282 // | | +--------------------- ChunkState[13] 283 // | +----------------------------- PageLayout (0 == page fully free) 284 // +------------------------------------ Reserved for future use 285 std::atomic<uint32_t> layout; 286 287 // If we'll ever going to use this in the future it might come handy 288 // reviving the kPageBeingPartitioned logic (look in git log, it was there 289 // at some point in the past). 290 uint32_t reserved; 291 }; 292 293 // There is one Chunk header per chunk (hence PageLayout per page) at the 294 // beginning of each chunk. 295 struct ChunkHeader { 296 enum Flags : uint8_t { 297 // If set, the first TracePacket in the chunk is partial and continues 298 // from |chunk_id| - 1 (within the same |writer_id|). 299 kFirstPacketContinuesFromPrevChunk = 1 << 0, 300 301 // If set, the last TracePacket in the chunk is partial and continues on 302 // |chunk_id| + 1 (within the same |writer_id|). 303 kLastPacketContinuesOnNextChunk = 1 << 1, 304 305 // If set, the last (fragmented) TracePacket in the chunk has holes (even 306 // if the chunk is marked as kChunkComplete) that need to be patched 307 // out-of-band before the chunk can be read. 308 kChunkNeedsPatching = 1 << 2, 309 }; 310 311 struct Packets { 312 // Number of valid TracePacket protobuf messages contained in the chunk. 313 // Each TracePacket is prefixed by its own size. This field is 314 // monotonically updated by the Producer with release store semantic when 315 // the packet at position |count| is started. This last packet may not be 316 // considered complete until |count| is incremented for the subsequent 317 // packet or the chunk is completed. 318 uint16_t count : 10; 319 static constexpr size_t kMaxCount = (1 << 10) - 1; 320 321 // See Flags above. 322 uint16_t flags : 6; 323 }; 324 325 // A monotonic counter of the chunk within the scoped of a |writer_id|. 326 // The tuple (ProducerID, WriterID, ChunkID) allows to figure out if two 327 // chunks are contiguous (and hence a trace packets spanning across them can 328 // be glued) or we had some holes due to the ring buffer wrapping. 329 // This is set only when transitioning from kChunkFree to kChunkBeingWritten 330 // and remains unchanged throughout the remaining lifetime of the chunk. 331 std::atomic<uint32_t> chunk_id; 332 333 // ID of the writer, unique within the producer. 334 // Like |chunk_id|, this is set only when transitioning from kChunkFree to 335 // kChunkBeingWritten. 336 std::atomic<uint16_t> writer_id; 337 338 // There is no ProducerID here. The service figures that out from the IPC 339 // channel, which is unspoofable. 340 341 // Updated with release-store semantics. 342 std::atomic<Packets> packets; 343 }; 344 345 class Chunk { 346 public: 347 Chunk(); // Constructs an invalid chunk. 348 349 // Chunk is move-only, to document the scope of the Acquire/Release 350 // TryLock operations below. 351 Chunk(const Chunk&) = delete; 352 Chunk operator=(const Chunk&) = delete; 353 Chunk(Chunk&&) noexcept; 354 Chunk& operator=(Chunk&&); 355 begin()356 uint8_t* begin() const { return begin_; } end()357 uint8_t* end() const { return begin_ + size_; } 358 359 // Size, including Chunk header. size()360 size_t size() const { return size_; } 361 362 // Begin of the first packet (or packet fragment). payload_begin()363 uint8_t* payload_begin() const { return begin_ + sizeof(ChunkHeader); } payload_size()364 size_t payload_size() const { 365 PERFETTO_DCHECK(size_ >= sizeof(ChunkHeader)); 366 return size_ - sizeof(ChunkHeader); 367 } 368 is_valid()369 bool is_valid() const { return begin_ && size_; } 370 371 // Index of the chunk within the page [0..13] (13 comes from kPageDiv14). chunk_idx()372 uint8_t chunk_idx() const { return chunk_idx_; } 373 header()374 ChunkHeader* header() { return reinterpret_cast<ChunkHeader*>(begin_); } 375 writer_id()376 uint16_t writer_id() { 377 return header()->writer_id.load(std::memory_order_relaxed); 378 } 379 380 // Returns the count of packets and the flags with acquire-load semantics. GetPacketCountAndFlags()381 std::pair<uint16_t, uint8_t> GetPacketCountAndFlags() { 382 auto packets = header()->packets.load(std::memory_order_acquire); 383 const uint16_t packets_count = packets.count; 384 const uint8_t packets_flags = packets.flags; 385 return std::make_pair(packets_count, packets_flags); 386 } 387 388 // Increases |packets.count| with release semantics (note, however, that the 389 // packet count is incremented *before* starting writing a packet). Returns 390 // the new packet count. The increment is atomic but NOT race-free (i.e. no 391 // CAS). Only the Producer is supposed to perform this increment, and it's 392 // supposed to do that in a thread-safe way (holding a lock). A Chunk cannot 393 // be shared by multiple Producer threads without locking. The packet count 394 // is cleared by TryAcquireChunk(), when passing the new header for the 395 // chunk. IncrementPacketCount()396 uint16_t IncrementPacketCount() { 397 ChunkHeader* chunk_header = header(); 398 auto packets = chunk_header->packets.load(std::memory_order_relaxed); 399 packets.count++; 400 chunk_header->packets.store(packets, std::memory_order_release); 401 return packets.count; 402 } 403 404 // Increases |packets.count| to the given |packet_count|, but only if 405 // |packet_count| is larger than the current value of |packets.count|. 406 // Returns the new packet count. Same atomicity guarantees as 407 // IncrementPacketCount(). IncreasePacketCountTo(uint16_t packet_count)408 uint16_t IncreasePacketCountTo(uint16_t packet_count) { 409 ChunkHeader* chunk_header = header(); 410 auto packets = chunk_header->packets.load(std::memory_order_relaxed); 411 if (packets.count < packet_count) 412 packets.count = packet_count; 413 chunk_header->packets.store(packets, std::memory_order_release); 414 return packets.count; 415 } 416 417 // Flags are cleared by TryAcquireChunk(), by passing the new header for 418 // the chunk, or through ClearNeedsPatchingFlag. SetFlag(ChunkHeader::Flags flag)419 void SetFlag(ChunkHeader::Flags flag) { 420 ChunkHeader* chunk_header = header(); 421 auto packets = chunk_header->packets.load(std::memory_order_relaxed); 422 packets.flags |= flag; 423 chunk_header->packets.store(packets, std::memory_order_release); 424 } 425 426 // This flag can only be cleared by the producer while it is still holding 427 // on to the chunk - i.e. while the chunk is still in state 428 // ChunkState::kChunkBeingWritten and hasn't been transitioned to 429 // ChunkState::kChunkComplete. This is ok, because the service is oblivious 430 // to the needs patching flag before the chunk is released as complete. ClearNeedsPatchingFlag()431 void ClearNeedsPatchingFlag() { 432 ChunkHeader* chunk_header = header(); 433 auto packets = chunk_header->packets.load(std::memory_order_relaxed); 434 packets.flags &= ~ChunkHeader::kChunkNeedsPatching; 435 chunk_header->packets.store(packets, std::memory_order_release); 436 } 437 438 private: 439 friend class SharedMemoryABI; 440 Chunk(uint8_t* begin, uint16_t size, uint8_t chunk_idx); 441 442 // Don't add extra fields, keep the move operator fast. 443 uint8_t* begin_ = nullptr; 444 uint16_t size_ = 0; 445 uint8_t chunk_idx_ = 0; 446 }; 447 448 // Construct an instance from an existing shared memory buffer. 449 SharedMemoryABI(uint8_t* start, size_t size, size_t page_size); 450 SharedMemoryABI(); 451 452 void Initialize(uint8_t* start, size_t size, size_t page_size); 453 start()454 uint8_t* start() const { return start_; } end()455 uint8_t* end() const { return start_ + size_; } size()456 size_t size() const { return size_; } page_size()457 size_t page_size() const { return page_size_; } num_pages()458 size_t num_pages() const { return num_pages_; } is_valid()459 bool is_valid() { return num_pages() > 0; } 460 page_start(size_t page_idx)461 uint8_t* page_start(size_t page_idx) { 462 PERFETTO_DCHECK(page_idx < num_pages_); 463 return start_ + page_size_ * page_idx; 464 } 465 page_header(size_t page_idx)466 PageHeader* page_header(size_t page_idx) { 467 return reinterpret_cast<PageHeader*>(page_start(page_idx)); 468 } 469 470 // Returns true if the page is fully clear and has not been partitioned yet. 471 // The state of the page can change at any point after this returns (or even 472 // before). The Producer should use this only as a hint to decide out whether 473 // it should TryPartitionPage() or acquire an individual chunk. is_page_free(size_t page_idx)474 bool is_page_free(size_t page_idx) { 475 return page_header(page_idx)->layout.load(std::memory_order_relaxed) == 0; 476 } 477 478 // Returns true if all chunks in the page are kChunkComplete. As above, this 479 // is advisory only. The Service is supposed to use this only to decide 480 // whether to TryAcquireAllChunksForReading() or not. is_page_complete(size_t page_idx)481 bool is_page_complete(size_t page_idx) { 482 auto layout = page_header(page_idx)->layout.load(std::memory_order_relaxed); 483 const uint32_t num_chunks = GetNumChunksForLayout(layout); 484 if (num_chunks == 0) 485 return false; // Non partitioned pages cannot be complete. 486 return (layout & kAllChunksMask) == 487 (kAllChunksComplete & ((1 << (num_chunks * kChunkShift)) - 1)); 488 } 489 490 // For testing / debugging only. page_header_dbg(size_t page_idx)491 std::string page_header_dbg(size_t page_idx) { 492 uint32_t x = page_header(page_idx)->layout.load(std::memory_order_relaxed); 493 return std::bitset<32>(x).to_string(); 494 } 495 496 // Returns the page layout, which is a bitmap that specifies the chunking 497 // layout of the page and each chunk's current state. Reads with an 498 // acquire-load semantic to ensure a producer's writes corresponding to an 499 // update of the layout (e.g. clearing a chunk's header) are observed 500 // consistently. GetPageLayout(size_t page_idx)501 uint32_t GetPageLayout(size_t page_idx) { 502 return page_header(page_idx)->layout.load(std::memory_order_acquire); 503 } 504 505 // Returns a bitmap in which each bit is set if the corresponding Chunk exists 506 // in the page (according to the page layout) and is free. If the page is not 507 // partitioned it returns 0 (as if the page had no free chunks). 508 uint32_t GetFreeChunks(size_t page_idx); 509 510 // Tries to atomically partition a page with the given |layout|. Returns true 511 // if the page was free and has been partitioned with the given |layout|, 512 // false if the page wasn't free anymore by the time we got there. 513 // If succeeds all the chunks are atomically set in the kChunkFree state. 514 bool TryPartitionPage(size_t page_idx, PageLayout layout); 515 516 // Tries to atomically mark a single chunk within the page as 517 // kChunkBeingWritten. Returns an invalid chunk if the page is not partitioned 518 // or the chunk is not in the kChunkFree state. If succeeds sets the chunk 519 // header to |header|. TryAcquireChunkForWriting(size_t page_idx,size_t chunk_idx,const ChunkHeader * header)520 Chunk TryAcquireChunkForWriting(size_t page_idx, 521 size_t chunk_idx, 522 const ChunkHeader* header) { 523 return TryAcquireChunk(page_idx, chunk_idx, kChunkBeingWritten, header); 524 } 525 526 // Similar to TryAcquireChunkForWriting. Fails if the chunk isn't in the 527 // kChunkComplete state. TryAcquireChunkForReading(size_t page_idx,size_t chunk_idx)528 Chunk TryAcquireChunkForReading(size_t page_idx, size_t chunk_idx) { 529 return TryAcquireChunk(page_idx, chunk_idx, kChunkBeingRead, nullptr); 530 } 531 532 // The caller must have successfully TryAcquireAllChunksForReading() or it 533 // needs to guarantee that the chunk is already in the kChunkBeingWritten 534 // state. 535 Chunk GetChunkUnchecked(size_t page_idx, 536 uint32_t page_layout, 537 size_t chunk_idx); 538 539 // Puts a chunk into the kChunkComplete state. Returns the page index. ReleaseChunkAsComplete(Chunk chunk)540 size_t ReleaseChunkAsComplete(Chunk chunk) { 541 return ReleaseChunk(std::move(chunk), kChunkComplete); 542 } 543 544 // Puts a chunk into the kChunkFree state. Returns the page index. ReleaseChunkAsFree(Chunk chunk)545 size_t ReleaseChunkAsFree(Chunk chunk) { 546 return ReleaseChunk(std::move(chunk), kChunkFree); 547 } 548 GetChunkState(size_t page_idx,size_t chunk_idx)549 ChunkState GetChunkState(size_t page_idx, size_t chunk_idx) { 550 PageHeader* phdr = page_header(page_idx); 551 uint32_t layout = phdr->layout.load(std::memory_order_relaxed); 552 return GetChunkStateFromLayout(layout, chunk_idx); 553 } 554 555 std::pair<size_t, size_t> GetPageAndChunkIndex(const Chunk& chunk); 556 GetChunkSizeForLayout(uint32_t page_layout)557 uint16_t GetChunkSizeForLayout(uint32_t page_layout) const { 558 return chunk_sizes_[(page_layout & kLayoutMask) >> kLayoutShift]; 559 } 560 GetChunkStateFromLayout(uint32_t page_layout,size_t chunk_idx)561 static ChunkState GetChunkStateFromLayout(uint32_t page_layout, 562 size_t chunk_idx) { 563 return static_cast<ChunkState>((page_layout >> (chunk_idx * kChunkShift)) & 564 kChunkMask); 565 } 566 GetNumChunksForLayout(uint32_t page_layout)567 static constexpr uint32_t GetNumChunksForLayout(uint32_t page_layout) { 568 return kNumChunksForLayout[(page_layout & kLayoutMask) >> kLayoutShift]; 569 } 570 571 // Returns a bitmap in which each bit is set if the corresponding Chunk exists 572 // in the page (according to the page layout) and is not free. If the page is 573 // not partitioned it returns 0 (as if the page had no used chunks). Bit N 574 // corresponds to Chunk N. GetUsedChunks(uint32_t page_layout)575 static uint32_t GetUsedChunks(uint32_t page_layout) { 576 const uint32_t num_chunks = GetNumChunksForLayout(page_layout); 577 uint32_t res = 0; 578 for (uint32_t i = 0; i < num_chunks; i++) { 579 res |= ((page_layout & kChunkMask) != kChunkFree) ? (1 << i) : 0; 580 page_layout >>= kChunkShift; 581 } 582 return res; 583 } 584 585 private: 586 SharedMemoryABI(const SharedMemoryABI&) = delete; 587 SharedMemoryABI& operator=(const SharedMemoryABI&) = delete; 588 589 Chunk TryAcquireChunk(size_t page_idx, 590 size_t chunk_idx, 591 ChunkState, 592 const ChunkHeader*); 593 size_t ReleaseChunk(Chunk chunk, ChunkState); 594 595 uint8_t* start_ = nullptr; 596 size_t size_ = 0; 597 size_t page_size_ = 0; 598 size_t num_pages_ = 0; 599 std::array<uint16_t, kNumPageLayouts> chunk_sizes_; 600 }; 601 602 } // namespace perfetto 603 604 #endif // INCLUDE_PERFETTO_EXT_TRACING_CORE_SHARED_MEMORY_ABI_H_ 605