1 /* 2 * Copyright (C) 2018 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #ifndef SRC_TRACING_CORE_TRACE_BUFFER_H_ 18 #define SRC_TRACING_CORE_TRACE_BUFFER_H_ 19 20 #include <stdint.h> 21 #include <string.h> 22 23 #include <array> 24 #include <limits> 25 #include <map> 26 #include <tuple> 27 28 #include "perfetto/base/logging.h" 29 #include "perfetto/ext/base/paged_memory.h" 30 #include "perfetto/ext/base/thread_annotations.h" 31 #include "perfetto/ext/base/utils.h" 32 #include "perfetto/ext/tracing/core/basic_types.h" 33 #include "perfetto/ext/tracing/core/slice.h" 34 #include "perfetto/ext/tracing/core/trace_stats.h" 35 36 namespace perfetto { 37 38 class TracePacket; 39 40 // The main buffer, owned by the tracing service, where all the trace data is 41 // ultimately stored into. The service will own several instances of this class, 42 // at least one per active consumer (as defined in the |buffers| section of 43 // trace_config.proto) and will copy chunks from the producer's shared memory 44 // buffers into here when a CommitData IPC is received. 45 // 46 // Writing into the buffer 47 // ----------------------- 48 // Data is copied from the SMB(s) using CopyChunkUntrusted(). The buffer will 49 // hence contain data coming from different producers and different writer 50 // sequences, more specifically: 51 // - The service receives data by several producer(s), identified by their ID. 52 // - Each producer writes several sequences identified by the same WriterID. 53 // (they correspond to TraceWriter instances in the producer). 54 // - Each Writer writes, in order, several chunks. 55 // - Each chunk contains zero, one, or more TracePacket(s), or even just 56 // fragments of packets (when they span across several chunks). 57 // 58 // So at any point in time, the buffer will contain a variable number of logical 59 // sequences identified by the {ProducerID, WriterID} tuple. Any given chunk 60 // will only contain packets (or fragments) belonging to the same sequence. 61 // 62 // The buffer operates by default as a ring buffer. 63 // It has two overwrite policies: 64 // 1. kOverwrite (default): if the write pointer reaches the read pointer, old 65 // unread chunks will be overwritten by new chunks. 66 // 2. kDiscard: if the write pointer reaches the read pointer, unread chunks 67 // are preserved and the new chunks are discarded. Any future write becomes 68 // a no-op, even if the reader manages to fully catch up. This is because 69 // once a chunk is discarded, the sequence of packets is broken and trying 70 // to recover would be too hard (also due to the fact that, at the same 71 // time, we allow out-of-order commits and chunk re-writes). 72 // 73 // Chunks are (over)written in the same order of the CopyChunkUntrusted() calls. 74 // When overwriting old content, entire chunks are overwritten or clobbered. 75 // The buffer never leaves a partial chunk around. Chunks' payload is copied 76 // as-is, but their header is not and is repacked in order to keep the 77 // ProducerID around. 78 // 79 // Chunks are stored in the buffer next to each other. Each chunk is prefixed by 80 // an inline header (ChunkRecord), which contains most of the fields of the 81 // SharedMemoryABI ChunkHeader + the ProducerID + the size of the payload. 82 // It's a conventional binary object stream essentially, where each ChunkRecord 83 // tells where it ends and hence where to find the next one, like this: 84 // 85 // .-------------------------. 16 byte boundary 86 // | ChunkRecord: 16 bytes | 87 // | - chunk id: 4 bytes | 88 // | - producer id: 2 bytes | 89 // | - writer id: 2 bytes | 90 // | - #fragments: 2 bytes | 91 // +-----+ - record size: 2 bytes | 92 // | | - flags+pad: 4 bytes | 93 // | +-------------------------+ 94 // | | | 95 // | : Chunk payload : 96 // | | | 97 // | +-------------------------+ 98 // | | Optional padding | 99 // +---> +-------------------------+ 16 byte boundary 100 // | ChunkRecord | 101 // : : 102 // Chunks stored in the buffer are always rounded up to 16 bytes (that is 103 // sizeof(ChunkRecord)), in order to avoid further inner fragmentation. 104 // Special "padding" chunks can be put in the buffer, e.g. in the case when we 105 // try to write a chunk of size N while the write pointer is at the end of the 106 // buffer, but the write pointer is < N bytes from the end (and hence needs to 107 // wrap over). 108 // Because of this, the buffer is self-describing: the contents of the buffer 109 // can be reconstructed by just looking at the buffer content (this will be 110 // quite useful in future to recover the buffer from crash reports). 111 // 112 // However, in order to keep some operations (patching and reading) fast, a 113 // lookaside index is maintained (in |index_|), keeping each chunk in the buffer 114 // indexed by their {ProducerID, WriterID, ChunkID} tuple. 115 // 116 // Patching data out-of-band 117 // ------------------------- 118 // This buffer also supports patching chunks' payload out-of-band, after they 119 // have been stored. This is to allow producers to backfill the "size" fields 120 // of the protos that spawn across several chunks, when the previous chunks are 121 // returned to the service. The MaybePatchChunkContents() deals with the fact 122 // that a chunk might have been lost (because of wrapping) by the time the OOB 123 // IPC comes. 124 // 125 // Reading from the buffer 126 // ----------------------- 127 // This class supports one reader only (the consumer). Reads are NOT idempotent 128 // as they move the read cursors around. Reading back the buffer is the most 129 // conceptually complex part. The ReadNextTracePacket() method operates with 130 // whole packet granularity. Packets are returned only when all their fragments 131 // are available. 132 // This class takes care of: 133 // - Gluing packets within the same sequence, even if they are not stored 134 // adjacently in the buffer. 135 // - Re-ordering chunks within a sequence (using the ChunkID, which wraps). 136 // - Detecting holes in packet fragments (because of loss of chunks). 137 // Reads guarantee that packets for the same sequence are read in FIFO order 138 // (according to their ChunkID), but don't give any guarantee about the read 139 // order of packets from different sequences, see comments in 140 // ReadNextTracePacket() below. 141 class TraceBuffer { 142 public: 143 static const size_t InlineChunkHeaderSize; // For test/fake_packet.{cc,h}. 144 145 // See comment in the header above. 146 enum OverwritePolicy { kOverwrite, kDiscard }; 147 148 // Argument for out-of-band patches applied through TryPatchChunkContents(). 149 struct Patch { 150 // From SharedMemoryABI::kPacketHeaderSize. 151 static constexpr size_t kSize = 4; 152 153 size_t offset_untrusted; 154 std::array<uint8_t, kSize> data; 155 }; 156 157 // Identifiers that are constant for a packet sequence. 158 struct PacketSequenceProperties { 159 ProducerID producer_id_trusted; 160 uid_t producer_uid_trusted; 161 WriterID writer_id; 162 }; 163 164 // Can return nullptr if the memory allocation fails. 165 static std::unique_ptr<TraceBuffer> Create(size_t size_in_bytes, 166 OverwritePolicy = kOverwrite); 167 168 ~TraceBuffer(); 169 170 // Copies a Chunk from a producer Shared Memory Buffer into the trace buffer. 171 // |src| points to the first packet in the SharedMemoryABI's chunk shared with 172 // an untrusted producer. "untrusted" here means: the producer might be 173 // malicious and might change |src| concurrently while we read it (internally 174 // this method memcpy()-s first the chunk before processing it). None of the 175 // arguments should be trusted, unless otherwise stated. We can trust that 176 // |src| points to a valid memory area, but not its contents. 177 // 178 // This method may be called multiple times for the same chunk. In this case, 179 // the original chunk's payload will be overridden and its number of fragments 180 // and flags adjusted to match |num_fragments| and |chunk_flags|. The service 181 // may use this to insert partial chunks (|chunk_complete = false|) before the 182 // producer has committed them. 183 // 184 // If |chunk_complete| is |false|, the TraceBuffer will only consider the 185 // first |num_fragments - 1| packets to be complete, since the producer may 186 // not have finished writing the latest packet. Reading from a sequence will 187 // also not progress past any incomplete chunks until they were rewritten with 188 // |chunk_complete = true|, e.g. after a producer's commit. 189 // 190 // TODO(eseckler): Pass in a PacketStreamProperties instead of individual IDs. 191 void CopyChunkUntrusted(ProducerID producer_id_trusted, 192 uid_t producer_uid_trusted, 193 WriterID writer_id, 194 ChunkID chunk_id, 195 uint16_t num_fragments, 196 uint8_t chunk_flags, 197 bool chunk_complete, 198 const uint8_t* src, 199 size_t size); 200 // Applies a batch of |patches| to the given chunk, if the given chunk is 201 // still in the buffer. Does nothing if the given ChunkID is gone. 202 // Returns true if the chunk has been found and patched, false otherwise. 203 // |other_patches_pending| is used to determine whether this is the only 204 // batch of patches for the chunk or there is more. 205 // If |other_patches_pending| == false, the chunk is marked as ready to be 206 // consumed. If true, the state of the chunk is not altered. 207 // 208 // Note: If the producer is batching commits (see shared_memory_arbiter.h), it 209 // will also attempt to do patching locally. Namely, if nested messages are 210 // completed while the chunk on which they started is being batched (i.e. 211 // before it has been committed to the service), the producer will apply the 212 // respective patches to the batched chunk. These patches will not be sent to 213 // the service - i.e. only the patches that the producer did not manage to 214 // apply before committing the chunk will be applied here. 215 bool TryPatchChunkContents(ProducerID, 216 WriterID, 217 ChunkID, 218 const Patch* patches, 219 size_t patches_size, 220 bool other_patches_pending); 221 222 // To read the contents of the buffer the caller needs to: 223 // BeginRead() 224 // while (ReadNextTracePacket(packet_fragments)) { ... } 225 // No other calls to any other method should be interleaved between 226 // BeginRead() and ReadNextTracePacket(). 227 // Reads in the TraceBuffer are NOT idempotent. 228 void BeginRead(); 229 230 // Returns the next packet in the buffer, if any, and the producer_id, 231 // producer_uid, and writer_id of the producer/writer that wrote it (as passed 232 // in the CopyChunkUntrusted() call). Returns false if no packets can be read 233 // at this point. If a packet was read successfully, 234 // |previous_packet_on_sequence_dropped| is set to |true| if the previous 235 // packet on the sequence was dropped from the buffer before it could be read 236 // (e.g. because its chunk was overridden due to the ring buffer wrapping or 237 // due to an ABI violation), and to |false| otherwise. 238 // 239 // This function returns only complete packets. Specifically: 240 // When there is at least one complete packet in the buffer, this function 241 // returns true and populates the TracePacket argument with the boundaries of 242 // each fragment for one packet. 243 // TracePacket will have at least one slice when this function returns true. 244 // When there are no whole packets eligible to read (e.g. we are still missing 245 // fragments) this function returns false. 246 // This function guarantees also that packets for a given 247 // {ProducerID, WriterID} are read in FIFO order. 248 // This function does not guarantee any ordering w.r.t. packets belonging to 249 // different WriterID(s). For instance, given the following packets copied 250 // into the buffer: 251 // {ProducerID: 1, WriterID: 1}: P1 P2 P3 252 // {ProducerID: 1, WriterID: 2}: P4 P5 P6 253 // {ProducerID: 2, WriterID: 1}: P7 P8 P9 254 // The following read sequence is possible: 255 // P1, P4, P7, P2, P3, P5, P8, P9, P6 256 // But the following is guaranteed to NOT happen: 257 // P1, P5, P7, P4 (P4 cannot come after P5) 258 bool ReadNextTracePacket(TracePacket*, 259 PacketSequenceProperties* sequence_properties, 260 bool* previous_packet_on_sequence_dropped); 261 stats()262 const TraceStats::BufferStats& stats() const { return stats_; } size()263 size_t size() const { return size_; } 264 265 private: 266 friend class TraceBufferTest; 267 268 // ChunkRecord is a Chunk header stored inline in the |data_| buffer, before 269 // the chunk payload (the packets' data). The |data_| buffer looks like this: 270 // +---------------+------------------++---------------+-----------------+ 271 // | ChunkRecord 1 | Chunk payload 1 || ChunkRecord 2 | Chunk payload 2 | ... 272 // +---------------+------------------++---------------+-----------------+ 273 // Most of the ChunkRecord fields are copied from SharedMemoryABI::ChunkHeader 274 // (the chunk header used in the shared memory buffers). 275 // A ChunkRecord can be a special "padding" record. In this case its payload 276 // should be ignored and the record should be just skipped. 277 // 278 // Full page move optimization: 279 // This struct has to be exactly (sizeof(PageHeader) + sizeof(ChunkHeader)) 280 // (from shared_memory_abi.h) to allow full page move optimizations 281 // (TODO(primiano): not implemented yet). In the special case of moving a full 282 // 4k page that contains only one chunk, in fact, we can just ask the kernel 283 // to move the full SHM page (see SPLICE_F_{GIFT,MOVE}) and overlay the 284 // ChunkRecord on top of the moved SMB's header (page + chunk header). 285 // This special requirement is covered by static_assert(s) in the .cc file. 286 struct ChunkRecord { ChunkRecordChunkRecord287 explicit ChunkRecord(size_t sz) : flags{0}, is_padding{0} { 288 PERFETTO_DCHECK(sz >= sizeof(ChunkRecord) && 289 sz % sizeof(ChunkRecord) == 0 && sz <= kMaxSize); 290 size = static_cast<decltype(size)>(sz); 291 } 292 is_validChunkRecord293 bool is_valid() const { return size != 0; } 294 295 // Keep this structure packed and exactly 16 bytes (128 bits) big. 296 297 // [32 bits] Monotonic counter within the same writer_id. 298 ChunkID chunk_id = 0; 299 300 // [16 bits] ID of the Producer from which the Chunk was copied from. 301 ProducerID producer_id = 0; 302 303 // [16 bits] Unique per Producer (but not within the service). 304 // If writer_id == kWriterIdPadding the record should just be skipped. 305 WriterID writer_id = 0; 306 307 // Number of fragments contained in the chunk. 308 uint16_t num_fragments = 0; 309 310 // Size in bytes, including sizeof(ChunkRecord) itself. 311 uint16_t size; 312 313 uint8_t flags : 6; // See SharedMemoryABI::ChunkHeader::flags. 314 uint8_t is_padding : 1; 315 uint8_t unused_flag : 1; 316 317 // Not strictly needed, can be reused for more fields in the future. But 318 // right now helps to spot chunks in hex dumps. 319 char unused[3] = {'C', 'H', 'U'}; 320 321 static constexpr size_t kMaxSize = 322 std::numeric_limits<decltype(size)>::max(); 323 }; 324 325 // Lookaside index entry. This serves two purposes: 326 // 1) Allow a fast lookup of ChunkRecord by their ID (the tuple 327 // {ProducerID, WriterID, ChunkID}). This is used when applying out-of-band 328 // patches to the contents of the chunks after they have been copied into 329 // the TraceBuffer. 330 // 2) keep the chunks ordered by their ID. This is used when reading back. 331 // 3) Keep metadata about the status of the chunk, e.g. whether the contents 332 // have been read already and should be skipped in a future read pass. 333 // This struct should not have any field that is essential for reconstructing 334 // the contents of the buffer from a crash dump. 335 struct ChunkMeta { 336 // Key used for sorting in the map. 337 struct Key { KeyChunkMeta::Key338 Key(ProducerID p, WriterID w, ChunkID c) 339 : producer_id{p}, writer_id{w}, chunk_id{c} {} 340 KeyChunkMeta::Key341 explicit Key(const ChunkRecord& cr) 342 : Key(cr.producer_id, cr.writer_id, cr.chunk_id) {} 343 344 // Note that this sorting doesn't keep into account the fact that ChunkID 345 // will wrap over at some point. The extra logic in SequenceIterator deals 346 // with that. 347 bool operator<(const Key& other) const { 348 return std::tie(producer_id, writer_id, chunk_id) < 349 std::tie(other.producer_id, other.writer_id, other.chunk_id); 350 } 351 352 bool operator==(const Key& other) const { 353 return std::tie(producer_id, writer_id, chunk_id) == 354 std::tie(other.producer_id, other.writer_id, other.chunk_id); 355 } 356 357 bool operator!=(const Key& other) const { return !(*this == other); } 358 359 // These fields should match at all times the corresponding fields in 360 // the |chunk_record|. They are copied here purely for efficiency to avoid 361 // dereferencing the buffer all the time. 362 ProducerID producer_id; 363 WriterID writer_id; 364 ChunkID chunk_id; 365 }; 366 367 enum IndexFlags : uint8_t { 368 // If set, the chunk state was kChunkComplete at the time it was copied. 369 // If unset, the chunk was still kChunkBeingWritten while copied. When 370 // reading from the chunk's sequence, the sequence will not advance past 371 // this chunk until this flag is set. 372 kComplete = 1 << 0, 373 374 // If set, we skipped the last packet that we read from this chunk e.g. 375 // because we it was a continuation from a previous chunk that was dropped 376 // or due to an ABI violation. 377 kLastReadPacketSkipped = 1 << 1 378 }; 379 ChunkMetaChunkMeta380 ChunkMeta(ChunkRecord* r, uint16_t p, bool complete, uint8_t f, uid_t u) 381 : chunk_record{r}, trusted_uid{u}, flags{f}, num_fragments{p} { 382 if (complete) 383 index_flags = kComplete; 384 } 385 is_completeChunkMeta386 bool is_complete() const { return index_flags & kComplete; } 387 set_completeChunkMeta388 void set_complete(bool complete) { 389 if (complete) { 390 index_flags |= kComplete; 391 } else { 392 index_flags &= ~kComplete; 393 } 394 } 395 last_read_packet_skippedChunkMeta396 bool last_read_packet_skipped() const { 397 return index_flags & kLastReadPacketSkipped; 398 } 399 set_last_read_packet_skippedChunkMeta400 void set_last_read_packet_skipped(bool skipped) { 401 if (skipped) { 402 index_flags |= kLastReadPacketSkipped; 403 } else { 404 index_flags &= ~kLastReadPacketSkipped; 405 } 406 } 407 408 ChunkRecord* const chunk_record; // Addr of ChunkRecord within |data_|. 409 const uid_t trusted_uid; // uid of the producer. 410 411 // Flags set by TraceBuffer to track the state of the chunk in the index. 412 uint8_t index_flags = 0; 413 414 // Correspond to |chunk_record->flags| and |chunk_record->num_fragments|. 415 // Copied here for performance reasons (avoids having to dereference 416 // |chunk_record| while iterating over ChunkMeta) and to aid debugging in 417 // case the buffer gets corrupted. 418 uint8_t flags = 0; // See SharedMemoryABI::ChunkHeader::flags. 419 uint16_t num_fragments = 0; // Total number of packet fragments. 420 421 uint16_t num_fragments_read = 0; // Number of fragments already read. 422 423 // The start offset of the next fragment (the |num_fragments_read|-th) to be 424 // read. This is the offset in bytes from the beginning of the ChunkRecord's 425 // payload (the 1st fragment starts at |chunk_record| + 426 // sizeof(ChunkRecord)). 427 uint16_t cur_fragment_offset = 0; 428 }; 429 430 using ChunkMap = std::map<ChunkMeta::Key, ChunkMeta>; 431 432 // Allows to iterate over a sub-sequence of |index_| for all keys belonging to 433 // the same {ProducerID,WriterID}. Furthermore takes into account the wrapping 434 // of ChunkID. Instances are valid only as long as the |index_| is not altered 435 // (can be used safely only between adjacent ReadNextTracePacket() calls). 436 // The order of the iteration will proceed in the following order: 437 // |wrapping_id| + 1 -> |seq_end|, |seq_begin| -> |wrapping_id|. 438 // Practical example: 439 // - Assume that kMaxChunkID == 7 440 // - Assume that we have all 8 chunks in the range (0..7). 441 // - Hence, |seq_begin| == c0, |seq_end| == c7 442 // - Assume |wrapping_id| = 4 (c4 is the last chunk copied over 443 // through a CopyChunkUntrusted()). 444 // The resulting iteration order will be: c5, c6, c7, c0, c1, c2, c3, c4. 445 struct SequenceIterator { 446 // Points to the 1st key (the one with the numerically min ChunkID). 447 ChunkMap::iterator seq_begin; 448 449 // Points one past the last key (the one with the numerically max ChunkID). 450 ChunkMap::iterator seq_end; 451 452 // Current iterator, always >= seq_begin && <= seq_end. 453 ChunkMap::iterator cur; 454 455 // The latest ChunkID written. Determines the start/end of the sequence. 456 ChunkID wrapping_id; 457 is_validSequenceIterator458 bool is_valid() const { return cur != seq_end; } 459 producer_idSequenceIterator460 ProducerID producer_id() const { 461 PERFETTO_DCHECK(is_valid()); 462 return cur->first.producer_id; 463 } 464 writer_idSequenceIterator465 WriterID writer_id() const { 466 PERFETTO_DCHECK(is_valid()); 467 return cur->first.writer_id; 468 } 469 chunk_idSequenceIterator470 ChunkID chunk_id() const { 471 PERFETTO_DCHECK(is_valid()); 472 return cur->first.chunk_id; 473 } 474 475 ChunkMeta& operator*() { 476 PERFETTO_DCHECK(is_valid()); 477 return cur->second; 478 } 479 480 // Moves |cur| to the next chunk in the index. 481 // is_valid() will become false after calling this, if this was the last 482 // entry of the sequence. 483 void MoveNext(); 484 MoveToEndSequenceIterator485 void MoveToEnd() { cur = seq_end; } 486 }; 487 488 enum class ReadAheadResult { 489 kSucceededReturnSlices, 490 kFailedMoveToNextSequence, 491 kFailedStayOnSameSequence, 492 }; 493 494 enum class ReadPacketResult { 495 kSucceeded, 496 kFailedInvalidPacket, 497 kFailedEmptyPacket, 498 }; 499 500 explicit TraceBuffer(OverwritePolicy); 501 TraceBuffer(const TraceBuffer&) = delete; 502 TraceBuffer& operator=(const TraceBuffer&) = delete; 503 504 bool Initialize(size_t size); 505 506 // Returns an object that allows to iterate over chunks in the |index_| that 507 // have the same {ProducerID, WriterID} of 508 // |seq_begin.first.{producer,writer}_id|. |seq_begin| must be an iterator to 509 // the first entry in the |index_| that has a different {ProducerID, WriterID} 510 // from the previous one. It is valid for |seq_begin| to be == index_.end() 511 // (i.e. if the index is empty). The iteration takes care of ChunkID wrapping, 512 // by using |last_chunk_id_|. 513 SequenceIterator GetReadIterForSequence(ChunkMap::iterator seq_begin); 514 515 // Used as a last resort when a buffer corruption is detected. 516 void ClearContentsAndResetRWCursors(); 517 518 // Adds a padding record of the given size (must be a multiple of 519 // sizeof(ChunkRecord)). 520 void AddPaddingRecord(size_t); 521 522 // Look for contiguous fragment of the same packet starting from |read_iter_|. 523 // If a contiguous packet is found, all the fragments are pushed into 524 // TracePacket and the function returns kSucceededReturnSlices. If not, the 525 // function returns either kFailedMoveToNextSequence or 526 // kFailedStayOnSameSequence, telling the caller to continue looking for 527 // packets. 528 ReadAheadResult ReadAhead(TracePacket*); 529 530 // Deletes (by marking the record invalid and removing form the index) all 531 // chunks from |wptr_| to |wptr_| + |bytes_to_clear|. 532 // Returns: 533 // * The size of the gap left between the next valid Chunk and the end of 534 // the deletion range. 535 // * 0 if no next valid chunk exists (if the buffer is still zeroed). 536 // * -1 if the buffer |overwrite_policy_| == kDiscard and the deletion would 537 // cause unread chunks to be overwritten. In this case the buffer is left 538 // untouched. 539 // Graphically, assume the initial situation is the following (|wptr_| = 10). 540 // |0 |10 (wptr_) |30 |40 |60 541 // +---------+-----------------+---------+-------------------+---------+ 542 // | Chunk 1 | Chunk 2 | Chunk 3 | Chunk 4 | Chunk 5 | 543 // +---------+-----------------+---------+-------------------+---------+ 544 // |_________Deletion range_______|~~return value~~| 545 // 546 // A call to DeleteNextChunksFor(32) will remove chunks 2,3,4 and return 18 547 // (60 - 42), the distance between chunk 5 and the end of the deletion range. 548 ssize_t DeleteNextChunksFor(size_t bytes_to_clear); 549 550 // Decodes the boundaries of the next packet (or a fragment) pointed by 551 // ChunkMeta and pushes that into |TracePacket|. It also increments the 552 // |num_fragments_read| counter. 553 // TracePacket can be nullptr, in which case the read state is still advanced. 554 // When TracePacket is not nullptr, ProducerID must also be not null and will 555 // be updated with the ProducerID that originally wrote the chunk. 556 ReadPacketResult ReadNextPacketInChunk(ChunkMeta*, TracePacket*); 557 DcheckIsAlignedAndWithinBounds(const uint8_t * ptr)558 void DcheckIsAlignedAndWithinBounds(const uint8_t* ptr) const { 559 PERFETTO_DCHECK(ptr >= begin() && ptr <= end() - sizeof(ChunkRecord)); 560 PERFETTO_DCHECK( 561 (reinterpret_cast<uintptr_t>(ptr) & (alignof(ChunkRecord) - 1)) == 0); 562 } 563 GetChunkRecordAt(uint8_t * ptr)564 ChunkRecord* GetChunkRecordAt(uint8_t* ptr) { 565 DcheckIsAlignedAndWithinBounds(ptr); 566 // We may be accessing a new (empty) record. 567 data_.EnsureCommitted( 568 static_cast<size_t>(ptr + sizeof(ChunkRecord) - begin())); 569 return reinterpret_cast<ChunkRecord*>(ptr); 570 } 571 572 void DiscardWrite(); 573 574 // |src| can be nullptr (in which case |size| must be == 575 // record.size - sizeof(ChunkRecord)), for the case of writing a padding 576 // record. |wptr_| is NOT advanced by this function, the caller must do that. WriteChunkRecord(uint8_t * wptr,const ChunkRecord & record,const uint8_t * src,size_t size)577 void WriteChunkRecord(uint8_t* wptr, 578 const ChunkRecord& record, 579 const uint8_t* src, 580 size_t size) { 581 // Note: |record.size| will be slightly bigger than |size| because of the 582 // ChunkRecord header and rounding, to ensure that all ChunkRecord(s) are 583 // multiple of sizeof(ChunkRecord). The invariant is: 584 // record.size >= |size| + sizeof(ChunkRecord) (== if no rounding). 585 PERFETTO_DCHECK(size <= ChunkRecord::kMaxSize); 586 PERFETTO_DCHECK(record.size >= sizeof(record)); 587 PERFETTO_DCHECK(record.size % sizeof(record) == 0); 588 PERFETTO_DCHECK(record.size >= size + sizeof(record)); 589 PERFETTO_CHECK(record.size <= size_to_end()); 590 DcheckIsAlignedAndWithinBounds(wptr); 591 592 // We may be writing to this area for the first time. 593 data_.EnsureCommitted(static_cast<size_t>(wptr + record.size - begin())); 594 595 // Deliberately not a *D*CHECK. 596 PERFETTO_CHECK(wptr + sizeof(record) + size <= end()); 597 memcpy(wptr, &record, sizeof(record)); 598 if (PERFETTO_LIKELY(src)) { 599 // If the producer modifies the data in the shared memory buffer while we 600 // are copying it to the central buffer, TSAN will (rightfully) flag that 601 // as a race. However the entire purpose of copying the data into the 602 // central buffer is that we can validate it without worrying that the 603 // producer changes it from under our feet, so this race is benign. The 604 // alternative would be to try computing which part of the buffer is safe 605 // to read (assuming a well-behaving client), but the risk of introducing 606 // a bug that way outweighs the benefit. 607 PERFETTO_ANNOTATE_BENIGN_RACE_SIZED( 608 src, size, "Benign race when copying chunk from shared memory.") 609 memcpy(wptr + sizeof(record), src, size); 610 } else { 611 PERFETTO_DCHECK(size == record.size - sizeof(record)); 612 } 613 const size_t rounding_size = record.size - sizeof(record) - size; 614 memset(wptr + sizeof(record) + size, 0, rounding_size); 615 } 616 begin()617 uint8_t* begin() const { return reinterpret_cast<uint8_t*>(data_.Get()); } end()618 uint8_t* end() const { return begin() + size_; } size_to_end()619 size_t size_to_end() const { return static_cast<size_t>(end() - wptr_); } 620 621 base::PagedMemory data_; 622 size_t size_ = 0; // Size in bytes of |data_|. 623 size_t max_chunk_size_ = 0; // Max size in bytes allowed for a chunk. 624 uint8_t* wptr_ = nullptr; // Write pointer. 625 626 // An index that keeps track of the positions and metadata of each 627 // ChunkRecord. 628 ChunkMap index_; 629 630 // Read iterator used for ReadNext(). It is reset by calling BeginRead(). 631 // It becomes invalid after any call to methods that alters the |index_|. 632 SequenceIterator read_iter_; 633 634 // See comments at the top of the file. 635 OverwritePolicy overwrite_policy_ = kOverwrite; 636 637 // Only used when |overwrite_policy_ == kDiscard|. This is set the first time 638 // a write fails because it would overwrite unread chunks. 639 bool discard_writes_ = false; 640 641 // Keeps track of the highest ChunkID written for a given sequence, taking 642 // into account a potential overflow of ChunkIDs. In the case of overflow, 643 // stores the highest ChunkID written since the overflow. 644 // 645 // TODO(primiano): should clean up keys from this map. Right now it grows 646 // without bounds (although realistically is not a problem unless we have too 647 // many producers/writers within the same trace session). 648 std::map<std::pair<ProducerID, WriterID>, ChunkID> last_chunk_id_written_; 649 650 // Statistics about buffer usage. 651 TraceStats::BufferStats stats_; 652 653 #if PERFETTO_DCHECK_IS_ON() 654 bool changed_since_last_read_ = false; 655 #endif 656 657 // When true disable some DCHECKs that have been put in place to detect 658 // bugs in the producers. This is for tests that feed malicious inputs and 659 // hence mimic a buggy producer. 660 bool suppress_client_dchecks_for_testing_ = false; 661 }; 662 663 } // namespace perfetto 664 665 #endif // SRC_TRACING_CORE_TRACE_BUFFER_H_ 666