1 /* 2 * Copyright (C) 2017 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #ifndef ART_LIBARTBASE_BASE_BIT_MEMORY_REGION_H_ 18 #define ART_LIBARTBASE_BASE_BIT_MEMORY_REGION_H_ 19 20 #include "memory_region.h" 21 22 #include "bit_utils.h" 23 #include "memory_tool.h" 24 25 #include <array> 26 27 namespace art { 28 29 // Bit memory region is a bit offset subregion of a normal memoryregion. This is useful for 30 // abstracting away the bit start offset to avoid needing passing as an argument everywhere. 31 class BitMemoryRegion final : public ValueObject { 32 public: 33 struct Less { operatorLess34 bool operator()(const BitMemoryRegion& lhs, const BitMemoryRegion& rhs) const { 35 return Compare(lhs, rhs) < 0; 36 } 37 }; 38 39 BitMemoryRegion() = default; BitMemoryRegion(uint8_t * data,ssize_t bit_start,size_t bit_size)40 ALWAYS_INLINE BitMemoryRegion(uint8_t* data, ssize_t bit_start, size_t bit_size) { 41 // Normalize the data pointer. Note that bit_start may be negative. 42 data_ = AlignDown(data + (bit_start >> kBitsPerByteLog2), kPageSize); 43 bit_start_ = bit_start + kBitsPerByte * (data - data_); 44 bit_size_ = bit_size; 45 } BitMemoryRegion(MemoryRegion region)46 ALWAYS_INLINE explicit BitMemoryRegion(MemoryRegion region) 47 : BitMemoryRegion(region.begin(), /* bit_start */ 0, region.size_in_bits()) { 48 } BitMemoryRegion(MemoryRegion region,size_t bit_offset,size_t bit_length)49 ALWAYS_INLINE BitMemoryRegion(MemoryRegion region, size_t bit_offset, size_t bit_length) 50 : BitMemoryRegion(region) { 51 *this = Subregion(bit_offset, bit_length); 52 } 53 IsValid()54 ALWAYS_INLINE bool IsValid() const { return data_ != nullptr; } 55 data()56 const uint8_t* data() const { 57 DCHECK_ALIGNED(bit_start_, kBitsPerByte); 58 return data_ + bit_start_ / kBitsPerByte; 59 } 60 size_in_bits()61 size_t size_in_bits() const { 62 return bit_size_; 63 } 64 Resize(size_t bit_size)65 void Resize(size_t bit_size) { 66 bit_size_ = bit_size; 67 } 68 Subregion(size_t bit_offset,size_t bit_length)69 ALWAYS_INLINE BitMemoryRegion Subregion(size_t bit_offset, size_t bit_length) const { 70 DCHECK_LE(bit_offset, bit_size_); 71 DCHECK_LE(bit_length, bit_size_ - bit_offset); 72 BitMemoryRegion result = *this; 73 result.bit_start_ += bit_offset; 74 result.bit_size_ = bit_length; 75 return result; 76 } 77 Subregion(size_t bit_offset)78 ALWAYS_INLINE BitMemoryRegion Subregion(size_t bit_offset) const { 79 DCHECK_LE(bit_offset, bit_size_); 80 BitMemoryRegion result = *this; 81 result.bit_start_ += bit_offset; 82 result.bit_size_ -= bit_offset; 83 return result; 84 } 85 86 // Load a single bit in the region. The bit at offset 0 is the least 87 // significant bit in the first byte. LoadBit(size_t bit_offset)88 ALWAYS_INLINE bool LoadBit(size_t bit_offset) const { 89 DCHECK_LT(bit_offset, bit_size_); 90 size_t index = (bit_start_ + bit_offset) / kBitsPerByte; 91 size_t shift = (bit_start_ + bit_offset) % kBitsPerByte; 92 return ((data_[index] >> shift) & 1) != 0; 93 } 94 StoreBit(size_t bit_offset,bool value)95 ALWAYS_INLINE void StoreBit(size_t bit_offset, bool value) { 96 DCHECK_LT(bit_offset, bit_size_); 97 size_t index = (bit_start_ + bit_offset) / kBitsPerByte; 98 size_t shift = (bit_start_ + bit_offset) % kBitsPerByte; 99 data_[index] &= ~(1 << shift); // Clear bit. 100 data_[index] |= (value ? 1 : 0) << shift; // Set bit. 101 DCHECK_EQ(value, LoadBit(bit_offset)); 102 } 103 104 // Load `bit_length` bits from `data` starting at given `bit_offset`. 105 // The least significant bit is stored in the smallest memory offset. 106 template<typename Result = size_t> 107 ATTRIBUTE_NO_SANITIZE_ADDRESS // We might touch extra bytes due to the alignment. 108 ATTRIBUTE_NO_SANITIZE_HWADDRESS // The hwasan uses different attribute. LoadBits(size_t bit_offset,size_t bit_length)109 ALWAYS_INLINE Result LoadBits(size_t bit_offset, size_t bit_length) const { 110 static_assert(std::is_integral<Result>::value, "Result must be integral"); 111 static_assert(std::is_unsigned<Result>::value, "Result must be unsigned"); 112 DCHECK(IsAligned<sizeof(Result)>(data_)); 113 DCHECK_LE(bit_offset, bit_size_); 114 DCHECK_LE(bit_length, bit_size_ - bit_offset); 115 DCHECK_LE(bit_length, BitSizeOf<Result>()); 116 if (bit_length == 0) { 117 return 0; 118 } 119 // Load naturally-aligned value which contains the least significant bit. 120 Result* data = reinterpret_cast<Result*>(data_); 121 size_t width = BitSizeOf<Result>(); 122 size_t index = (bit_start_ + bit_offset) / width; 123 size_t shift = (bit_start_ + bit_offset) % width; 124 Result value = data[index] >> shift; 125 // Load extra value containing the most significant bit (it might be the same one). 126 // We can not just load the following value as that could potentially cause SIGSEGV. 127 Result extra = data[index + (shift + (bit_length - 1)) / width]; 128 // Mask to clear unwanted bits (the 1s are needed to avoid avoid undefined shift). 129 Result clear = (std::numeric_limits<Result>::max() << 1) << (bit_length - 1); 130 // Prepend the extra value. We add explicit '& (width - 1)' so that the shift is defined. 131 // It is a no-op for `shift != 0` and if `shift == 0` then `value == extra` because of 132 // bit_length <= width causing the `value` and `extra` to be read from the same location. 133 // The '& (width - 1)' is implied by the shift instruction on ARM and removed by compiler. 134 return (value | (extra << ((width - shift) & (width - 1)))) & ~clear; 135 } 136 137 // Store `bit_length` bits in `data` starting at given `bit_offset`. 138 // The least significant bit is stored in the smallest memory offset. StoreBits(size_t bit_offset,uint32_t value,size_t bit_length)139 ALWAYS_INLINE void StoreBits(size_t bit_offset, uint32_t value, size_t bit_length) { 140 DCHECK_LE(bit_offset, bit_size_); 141 DCHECK_LE(bit_length, bit_size_ - bit_offset); 142 DCHECK_LE(bit_length, BitSizeOf<uint32_t>()); 143 DCHECK_LE(value, MaxInt<uint32_t>(bit_length)); 144 if (bit_length == 0) { 145 return; 146 } 147 // Write data byte by byte to avoid races with other threads 148 // on bytes that do not overlap with this region. 149 uint32_t mask = std::numeric_limits<uint32_t>::max() >> (BitSizeOf<uint32_t>() - bit_length); 150 size_t index = (bit_start_ + bit_offset) / kBitsPerByte; 151 size_t shift = (bit_start_ + bit_offset) % kBitsPerByte; 152 data_[index] &= ~(mask << shift); // Clear bits. 153 data_[index] |= (value << shift); // Set bits. 154 size_t finished_bits = kBitsPerByte - shift; 155 for (int i = 1; finished_bits < bit_length; i++, finished_bits += kBitsPerByte) { 156 data_[index + i] &= ~(mask >> finished_bits); // Clear bits. 157 data_[index + i] |= (value >> finished_bits); // Set bits. 158 } 159 DCHECK_EQ(value, LoadBits(bit_offset, bit_length)); 160 } 161 162 // Store bits from other bit region. StoreBits(size_t bit_offset,const BitMemoryRegion & src,size_t bit_length)163 ALWAYS_INLINE void StoreBits(size_t bit_offset, const BitMemoryRegion& src, size_t bit_length) { 164 DCHECK_LE(bit_offset, bit_size_); 165 DCHECK_LE(bit_length, bit_size_ - bit_offset); 166 size_t bit = 0; 167 constexpr size_t kNumBits = BitSizeOf<uint32_t>(); 168 for (; bit + kNumBits <= bit_length; bit += kNumBits) { 169 StoreBits(bit_offset + bit, src.LoadBits(bit, kNumBits), kNumBits); 170 } 171 size_t num_bits = bit_length - bit; 172 StoreBits(bit_offset + bit, src.LoadBits(bit, num_bits), num_bits); 173 } 174 175 // Or bits from other bit region. OrBits(size_t bit_offset,const BitMemoryRegion & src,size_t bit_length)176 ALWAYS_INLINE void OrBits(size_t bit_offset, const BitMemoryRegion& src, size_t bit_length) { 177 // TODO: Load `size_t` chunks (instead of `uint32_t`) from aligned 178 // addresses except for the leading and trailing bits. Refactor to 179 // share code with StoreBits() and maybe other functions. 180 DCHECK_LE(bit_offset, bit_size_); 181 DCHECK_LE(bit_length, bit_size_ - bit_offset); 182 size_t bit = 0; 183 constexpr size_t kNumBits = BitSizeOf<uint32_t>(); 184 for (; bit + kNumBits <= bit_length; bit += kNumBits) { 185 size_t old_bits = LoadBits(bit_offset + bit, kNumBits); 186 StoreBits(bit_offset + bit, old_bits | src.LoadBits(bit, kNumBits), kNumBits); 187 } 188 size_t num_bits = bit_length - bit; 189 size_t old_bits = LoadBits(bit_offset + bit, num_bits); 190 StoreBits(bit_offset + bit, old_bits | src.LoadBits(bit, num_bits), num_bits); 191 } 192 193 // Count the number of set bits within the given bit range. PopCount(size_t bit_offset,size_t bit_length)194 ALWAYS_INLINE size_t PopCount(size_t bit_offset, size_t bit_length) const { 195 DCHECK_LE(bit_offset, bit_size_); 196 DCHECK_LE(bit_length, bit_size_ - bit_offset); 197 size_t count = 0; 198 size_t bit = 0; 199 constexpr size_t kNumBits = BitSizeOf<uint32_t>(); 200 for (; bit + kNumBits <= bit_length; bit += kNumBits) { 201 count += POPCOUNT(LoadBits(bit_offset + bit, kNumBits)); 202 } 203 count += POPCOUNT(LoadBits(bit_offset + bit, bit_length - bit)); 204 return count; 205 } 206 207 // Check if there is any bit set within the given bit range. HasSomeBitSet(size_t bit_offset,size_t bit_length)208 ALWAYS_INLINE bool HasSomeBitSet(size_t bit_offset, size_t bit_length) const { 209 // TODO: Load `size_t` chunks (instead of `uint32_t`) from aligned 210 // addresses except for the leading and trailing bits. Refactor to 211 // share code with PopCount() and maybe also Compare(). 212 DCHECK_LE(bit_offset, bit_size_); 213 DCHECK_LE(bit_length, bit_size_ - bit_offset); 214 size_t bit = 0; 215 constexpr size_t kNumBits = BitSizeOf<uint32_t>(); 216 for (; bit + kNumBits <= bit_length; bit += kNumBits) { 217 if (LoadBits(bit_offset + bit, kNumBits) != 0u) { 218 return true; 219 } 220 } 221 return LoadBits(bit_offset + bit, bit_length - bit) != 0u; 222 } 223 Compare(const BitMemoryRegion & lhs,const BitMemoryRegion & rhs)224 static int Compare(const BitMemoryRegion& lhs, const BitMemoryRegion& rhs) { 225 if (lhs.size_in_bits() != rhs.size_in_bits()) { 226 return (lhs.size_in_bits() < rhs.size_in_bits()) ? -1 : 1; 227 } 228 size_t bit = 0; 229 constexpr size_t kNumBits = BitSizeOf<uint32_t>(); 230 for (; bit + kNumBits <= lhs.size_in_bits(); bit += kNumBits) { 231 uint32_t lhs_bits = lhs.LoadBits(bit, kNumBits); 232 uint32_t rhs_bits = rhs.LoadBits(bit, kNumBits); 233 if (lhs_bits != rhs_bits) { 234 return (lhs_bits < rhs_bits) ? -1 : 1; 235 } 236 } 237 size_t num_bits = lhs.size_in_bits() - bit; 238 uint32_t lhs_bits = lhs.LoadBits(bit, num_bits); 239 uint32_t rhs_bits = rhs.LoadBits(bit, num_bits); 240 if (lhs_bits != rhs_bits) { 241 return (lhs_bits < rhs_bits) ? -1 : 1; 242 } 243 return 0; 244 } 245 246 private: 247 uint8_t* data_ = nullptr; // The pointer is page aligned. 248 size_t bit_start_ = 0; 249 size_t bit_size_ = 0; 250 }; 251 252 constexpr uint32_t kVarintBits = 4; // Minimum number of bits used for varint. 253 constexpr uint32_t kVarintMax = 11; // Maximum value which is stored "inline". 254 255 class BitMemoryReader { 256 public: 257 BitMemoryReader(BitMemoryReader&&) = default; BitMemoryReader(BitMemoryRegion data)258 explicit BitMemoryReader(BitMemoryRegion data) 259 : finished_region_(data.Subregion(0, 0) /* set the length to zero */ ) { 260 } 261 explicit BitMemoryReader(const uint8_t* data, ssize_t bit_offset = 0) 262 : finished_region_(const_cast<uint8_t*>(data), bit_offset, /* bit_length */ 0) { 263 } 264 data()265 const uint8_t* data() const { return finished_region_.data(); } 266 GetReadRegion()267 BitMemoryRegion GetReadRegion() const { return finished_region_; } 268 NumberOfReadBits()269 size_t NumberOfReadBits() const { return finished_region_.size_in_bits(); } 270 ReadRegion(size_t bit_length)271 ALWAYS_INLINE BitMemoryRegion ReadRegion(size_t bit_length) { 272 size_t bit_offset = finished_region_.size_in_bits(); 273 finished_region_.Resize(bit_offset + bit_length); 274 return finished_region_.Subregion(bit_offset, bit_length); 275 } 276 277 template<typename Result = size_t> ReadBits(size_t bit_length)278 ALWAYS_INLINE Result ReadBits(size_t bit_length) { 279 return ReadRegion(bit_length).LoadBits<Result>(/* bit_offset */ 0, bit_length); 280 } 281 ReadBit()282 ALWAYS_INLINE bool ReadBit() { 283 return ReadRegion(/* bit_length */ 1).LoadBit(/* bit_offset */ 0); 284 } 285 286 // Read variable-length bit-packed integer. 287 // The first four bits determine the variable length of the encoded integer: 288 // Values 0..11 represent the result as-is, with no further following bits. 289 // Values 12..15 mean the result is in the next 8/16/24/32-bits respectively. ReadVarint()290 ALWAYS_INLINE uint32_t ReadVarint() { 291 uint32_t x = ReadBits(kVarintBits); 292 return (x <= kVarintMax) ? x : ReadBits((x - kVarintMax) * kBitsPerByte); 293 } 294 295 // Read N 'interleaved' varints (different to just reading consecutive varints). 296 // All small values are stored first and the large values are stored after them. 297 // This requires fewer bit-reads compared to indidually storing the varints. 298 template<size_t N> ReadInterleavedVarints()299 ALWAYS_INLINE std::array<uint32_t, N> ReadInterleavedVarints() { 300 static_assert(N * kVarintBits <= sizeof(uint64_t) * kBitsPerByte, "N too big"); 301 std::array<uint32_t, N> values; 302 // StackMap BitTable uses over 8 varints in the header, so we need uint64_t. 303 uint64_t data = ReadBits<uint64_t>(N * kVarintBits); 304 for (size_t i = 0; i < N; i++) { 305 values[i] = BitFieldExtract(data, i * kVarintBits, kVarintBits); 306 } 307 // Do the second part in its own loop as that seems to produce better code in clang. 308 for (size_t i = 0; i < N; i++) { 309 if (UNLIKELY(values[i] > kVarintMax)) { 310 values[i] = ReadBits((values[i] - kVarintMax) * kBitsPerByte); 311 } 312 } 313 return values; 314 } 315 316 private: 317 // Represents all of the bits which were read so far. There is no upper bound. 318 // Therefore, by definition, the "cursor" is always at the end of the region. 319 BitMemoryRegion finished_region_; 320 321 DISALLOW_COPY_AND_ASSIGN(BitMemoryReader); 322 }; 323 324 template<typename Vector> 325 class BitMemoryWriter { 326 public: 327 explicit BitMemoryWriter(Vector* out, size_t bit_offset = 0) out_(out)328 : out_(out), bit_start_(bit_offset), bit_offset_(bit_offset) { 329 DCHECK_EQ(NumberOfWrittenBits(), 0u); 330 } 331 GetWrittenRegion()332 BitMemoryRegion GetWrittenRegion() const { 333 return BitMemoryRegion(out_->data(), bit_start_, bit_offset_ - bit_start_); 334 } 335 data()336 const uint8_t* data() const { return out_->data(); } 337 NumberOfWrittenBits()338 size_t NumberOfWrittenBits() const { return bit_offset_ - bit_start_; } 339 Allocate(size_t bit_length)340 ALWAYS_INLINE BitMemoryRegion Allocate(size_t bit_length) { 341 out_->resize(BitsToBytesRoundUp(bit_offset_ + bit_length)); 342 BitMemoryRegion region(out_->data(), bit_offset_, bit_length); 343 DCHECK_LE(bit_length, std::numeric_limits<size_t>::max() - bit_offset_) << "Overflow"; 344 bit_offset_ += bit_length; 345 return region; 346 } 347 WriteRegion(const BitMemoryRegion & region)348 ALWAYS_INLINE void WriteRegion(const BitMemoryRegion& region) { 349 Allocate(region.size_in_bits()).StoreBits(/* bit_offset */ 0, region, region.size_in_bits()); 350 } 351 WriteBits(uint32_t value,size_t bit_length)352 ALWAYS_INLINE void WriteBits(uint32_t value, size_t bit_length) { 353 Allocate(bit_length).StoreBits(/* bit_offset */ 0, value, bit_length); 354 } 355 WriteBit(bool value)356 ALWAYS_INLINE void WriteBit(bool value) { 357 Allocate(1).StoreBit(/* bit_offset */ 0, value); 358 } 359 360 template<size_t N> WriteInterleavedVarints(std::array<uint32_t,N> values)361 ALWAYS_INLINE void WriteInterleavedVarints(std::array<uint32_t, N> values) { 362 // Write small values (or the number of bytes needed for the large values). 363 for (uint32_t value : values) { 364 if (value > kVarintMax) { 365 WriteBits(kVarintMax + BitsToBytesRoundUp(MinimumBitsToStore(value)), kVarintBits); 366 } else { 367 WriteBits(value, kVarintBits); 368 } 369 } 370 // Write large values. 371 for (uint32_t value : values) { 372 if (value > kVarintMax) { 373 WriteBits(value, BitsToBytesRoundUp(MinimumBitsToStore(value)) * kBitsPerByte); 374 } 375 } 376 } 377 WriteVarint(uint32_t value)378 ALWAYS_INLINE void WriteVarint(uint32_t value) { 379 WriteInterleavedVarints<1>({value}); 380 } 381 ByteAlign()382 ALWAYS_INLINE void ByteAlign() { 383 size_t end = bit_start_ + bit_offset_; 384 bit_offset_ += RoundUp(end, kBitsPerByte) - end; 385 } 386 387 private: 388 Vector* out_; 389 size_t bit_start_; 390 size_t bit_offset_; 391 392 DISALLOW_COPY_AND_ASSIGN(BitMemoryWriter); 393 }; 394 395 } // namespace art 396 397 #endif // ART_LIBARTBASE_BASE_BIT_MEMORY_REGION_H_ 398