1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * tools/testing/selftests/kvm/lib/kvm_util.c
4 *
5 * Copyright (C) 2018, Google LLC.
6 */
7
8 #include "test_util.h"
9 #include "kvm_util.h"
10 #include "kvm_util_internal.h"
11 #include "processor.h"
12
13 #include <assert.h>
14 #include <sys/mman.h>
15 #include <sys/types.h>
16 #include <sys/stat.h>
17 #include <linux/kernel.h>
18
19 #define KVM_UTIL_PGS_PER_HUGEPG 512
20 #define KVM_UTIL_MIN_PFN 2
21
22 /* Aligns x up to the next multiple of size. Size must be a power of 2. */
align(void * x,size_t size)23 static void *align(void *x, size_t size)
24 {
25 size_t mask = size - 1;
26 TEST_ASSERT(size != 0 && !(size & (size - 1)),
27 "size not a power of 2: %lu", size);
28 return (void *) (((size_t) x + mask) & ~mask);
29 }
30
31 /*
32 * Capability
33 *
34 * Input Args:
35 * cap - Capability
36 *
37 * Output Args: None
38 *
39 * Return:
40 * On success, the Value corresponding to the capability (KVM_CAP_*)
41 * specified by the value of cap. On failure a TEST_ASSERT failure
42 * is produced.
43 *
44 * Looks up and returns the value corresponding to the capability
45 * (KVM_CAP_*) given by cap.
46 */
kvm_check_cap(long cap)47 int kvm_check_cap(long cap)
48 {
49 int ret;
50 int kvm_fd;
51
52 kvm_fd = open(KVM_DEV_PATH, O_RDONLY);
53 if (kvm_fd < 0)
54 exit(KSFT_SKIP);
55
56 ret = ioctl(kvm_fd, KVM_CHECK_EXTENSION, cap);
57 TEST_ASSERT(ret != -1, "KVM_CHECK_EXTENSION IOCTL failed,\n"
58 " rc: %i errno: %i", ret, errno);
59
60 close(kvm_fd);
61
62 return ret;
63 }
64
65 /* VM Enable Capability
66 *
67 * Input Args:
68 * vm - Virtual Machine
69 * cap - Capability
70 *
71 * Output Args: None
72 *
73 * Return: On success, 0. On failure a TEST_ASSERT failure is produced.
74 *
75 * Enables a capability (KVM_CAP_*) on the VM.
76 */
vm_enable_cap(struct kvm_vm * vm,struct kvm_enable_cap * cap)77 int vm_enable_cap(struct kvm_vm *vm, struct kvm_enable_cap *cap)
78 {
79 int ret;
80
81 ret = ioctl(vm->fd, KVM_ENABLE_CAP, cap);
82 TEST_ASSERT(ret == 0, "KVM_ENABLE_CAP IOCTL failed,\n"
83 " rc: %i errno: %i", ret, errno);
84
85 return ret;
86 }
87
vm_open(struct kvm_vm * vm,int perm)88 static void vm_open(struct kvm_vm *vm, int perm)
89 {
90 vm->kvm_fd = open(KVM_DEV_PATH, perm);
91 if (vm->kvm_fd < 0)
92 exit(KSFT_SKIP);
93
94 if (!kvm_check_cap(KVM_CAP_IMMEDIATE_EXIT)) {
95 fprintf(stderr, "immediate_exit not available, skipping test\n");
96 exit(KSFT_SKIP);
97 }
98
99 vm->fd = ioctl(vm->kvm_fd, KVM_CREATE_VM, vm->type);
100 TEST_ASSERT(vm->fd >= 0, "KVM_CREATE_VM ioctl failed, "
101 "rc: %i errno: %i", vm->fd, errno);
102 }
103
104 const char * const vm_guest_mode_string[] = {
105 "PA-bits:52, VA-bits:48, 4K pages",
106 "PA-bits:52, VA-bits:48, 64K pages",
107 "PA-bits:48, VA-bits:48, 4K pages",
108 "PA-bits:48, VA-bits:48, 64K pages",
109 "PA-bits:40, VA-bits:48, 4K pages",
110 "PA-bits:40, VA-bits:48, 64K pages",
111 "PA-bits:ANY, VA-bits:48, 4K pages",
112 };
113 _Static_assert(sizeof(vm_guest_mode_string)/sizeof(char *) == NUM_VM_MODES,
114 "Missing new mode strings?");
115
116 /*
117 * VM Create
118 *
119 * Input Args:
120 * mode - VM Mode (e.g. VM_MODE_P52V48_4K)
121 * phy_pages - Physical memory pages
122 * perm - permission
123 *
124 * Output Args: None
125 *
126 * Return:
127 * Pointer to opaque structure that describes the created VM.
128 *
129 * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
130 * When phy_pages is non-zero, a memory region of phy_pages physical pages
131 * is created and mapped starting at guest physical address 0. The file
132 * descriptor to control the created VM is created with the permissions
133 * given by perm (e.g. O_RDWR).
134 */
_vm_create(enum vm_guest_mode mode,uint64_t phy_pages,int perm)135 struct kvm_vm *_vm_create(enum vm_guest_mode mode, uint64_t phy_pages, int perm)
136 {
137 struct kvm_vm *vm;
138
139 DEBUG("Testing guest mode: %s\n", vm_guest_mode_string(mode));
140
141 vm = calloc(1, sizeof(*vm));
142 TEST_ASSERT(vm != NULL, "Insufficient Memory");
143
144 vm->mode = mode;
145 vm->type = 0;
146
147 /* Setup mode specific traits. */
148 switch (vm->mode) {
149 case VM_MODE_P52V48_4K:
150 vm->pgtable_levels = 4;
151 vm->pa_bits = 52;
152 vm->va_bits = 48;
153 vm->page_size = 0x1000;
154 vm->page_shift = 12;
155 break;
156 case VM_MODE_P52V48_64K:
157 vm->pgtable_levels = 3;
158 vm->pa_bits = 52;
159 vm->va_bits = 48;
160 vm->page_size = 0x10000;
161 vm->page_shift = 16;
162 break;
163 case VM_MODE_P48V48_4K:
164 vm->pgtable_levels = 4;
165 vm->pa_bits = 48;
166 vm->va_bits = 48;
167 vm->page_size = 0x1000;
168 vm->page_shift = 12;
169 break;
170 case VM_MODE_P48V48_64K:
171 vm->pgtable_levels = 3;
172 vm->pa_bits = 48;
173 vm->va_bits = 48;
174 vm->page_size = 0x10000;
175 vm->page_shift = 16;
176 break;
177 case VM_MODE_P40V48_4K:
178 vm->pgtable_levels = 4;
179 vm->pa_bits = 40;
180 vm->va_bits = 48;
181 vm->page_size = 0x1000;
182 vm->page_shift = 12;
183 break;
184 case VM_MODE_P40V48_64K:
185 vm->pgtable_levels = 3;
186 vm->pa_bits = 40;
187 vm->va_bits = 48;
188 vm->page_size = 0x10000;
189 vm->page_shift = 16;
190 break;
191 case VM_MODE_PXXV48_4K:
192 #ifdef __x86_64__
193 kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits);
194 TEST_ASSERT(vm->va_bits == 48, "Linear address width "
195 "(%d bits) not supported", vm->va_bits);
196 vm->pgtable_levels = 4;
197 vm->page_size = 0x1000;
198 vm->page_shift = 12;
199 DEBUG("Guest physical address width detected: %d\n",
200 vm->pa_bits);
201 #else
202 TEST_ASSERT(false, "VM_MODE_PXXV48_4K not supported on "
203 "non-x86 platforms");
204 #endif
205 break;
206 default:
207 TEST_ASSERT(false, "Unknown guest mode, mode: 0x%x", mode);
208 }
209
210 #ifdef __aarch64__
211 if (vm->pa_bits != 40)
212 vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits);
213 #endif
214
215 vm_open(vm, perm);
216
217 /* Limit to VA-bit canonical virtual addresses. */
218 vm->vpages_valid = sparsebit_alloc();
219 sparsebit_set_num(vm->vpages_valid,
220 0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
221 sparsebit_set_num(vm->vpages_valid,
222 (~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
223 (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
224
225 /* Limit physical addresses to PA-bits. */
226 vm->max_gfn = ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
227
228 /* Allocate and setup memory for guest. */
229 vm->vpages_mapped = sparsebit_alloc();
230 if (phy_pages != 0)
231 vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS,
232 0, 0, phy_pages, 0);
233
234 return vm;
235 }
236
vm_create(enum vm_guest_mode mode,uint64_t phy_pages,int perm)237 struct kvm_vm *vm_create(enum vm_guest_mode mode, uint64_t phy_pages, int perm)
238 {
239 return _vm_create(mode, phy_pages, perm);
240 }
241
242 /*
243 * VM Restart
244 *
245 * Input Args:
246 * vm - VM that has been released before
247 * perm - permission
248 *
249 * Output Args: None
250 *
251 * Reopens the file descriptors associated to the VM and reinstates the
252 * global state, such as the irqchip and the memory regions that are mapped
253 * into the guest.
254 */
kvm_vm_restart(struct kvm_vm * vmp,int perm)255 void kvm_vm_restart(struct kvm_vm *vmp, int perm)
256 {
257 struct userspace_mem_region *region;
258
259 vm_open(vmp, perm);
260 if (vmp->has_irqchip)
261 vm_create_irqchip(vmp);
262
263 for (region = vmp->userspace_mem_region_head; region;
264 region = region->next) {
265 int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region);
266 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
267 " rc: %i errno: %i\n"
268 " slot: %u flags: 0x%x\n"
269 " guest_phys_addr: 0x%lx size: 0x%lx",
270 ret, errno, region->region.slot,
271 region->region.flags,
272 region->region.guest_phys_addr,
273 region->region.memory_size);
274 }
275 }
276
kvm_vm_get_dirty_log(struct kvm_vm * vm,int slot,void * log)277 void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log)
278 {
279 struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot };
280 int ret;
281
282 ret = ioctl(vm->fd, KVM_GET_DIRTY_LOG, &args);
283 TEST_ASSERT(ret == 0, "%s: KVM_GET_DIRTY_LOG failed: %s",
284 strerror(-ret));
285 }
286
kvm_vm_clear_dirty_log(struct kvm_vm * vm,int slot,void * log,uint64_t first_page,uint32_t num_pages)287 void kvm_vm_clear_dirty_log(struct kvm_vm *vm, int slot, void *log,
288 uint64_t first_page, uint32_t num_pages)
289 {
290 struct kvm_clear_dirty_log args = { .dirty_bitmap = log, .slot = slot,
291 .first_page = first_page,
292 .num_pages = num_pages };
293 int ret;
294
295 ret = ioctl(vm->fd, KVM_CLEAR_DIRTY_LOG, &args);
296 TEST_ASSERT(ret == 0, "%s: KVM_CLEAR_DIRTY_LOG failed: %s",
297 strerror(-ret));
298 }
299
300 /*
301 * Userspace Memory Region Find
302 *
303 * Input Args:
304 * vm - Virtual Machine
305 * start - Starting VM physical address
306 * end - Ending VM physical address, inclusive.
307 *
308 * Output Args: None
309 *
310 * Return:
311 * Pointer to overlapping region, NULL if no such region.
312 *
313 * Searches for a region with any physical memory that overlaps with
314 * any portion of the guest physical addresses from start to end
315 * inclusive. If multiple overlapping regions exist, a pointer to any
316 * of the regions is returned. Null is returned only when no overlapping
317 * region exists.
318 */
319 static struct userspace_mem_region *
userspace_mem_region_find(struct kvm_vm * vm,uint64_t start,uint64_t end)320 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
321 {
322 struct userspace_mem_region *region;
323
324 for (region = vm->userspace_mem_region_head; region;
325 region = region->next) {
326 uint64_t existing_start = region->region.guest_phys_addr;
327 uint64_t existing_end = region->region.guest_phys_addr
328 + region->region.memory_size - 1;
329 if (start <= existing_end && end >= existing_start)
330 return region;
331 }
332
333 return NULL;
334 }
335
336 /*
337 * KVM Userspace Memory Region Find
338 *
339 * Input Args:
340 * vm - Virtual Machine
341 * start - Starting VM physical address
342 * end - Ending VM physical address, inclusive.
343 *
344 * Output Args: None
345 *
346 * Return:
347 * Pointer to overlapping region, NULL if no such region.
348 *
349 * Public interface to userspace_mem_region_find. Allows tests to look up
350 * the memslot datastructure for a given range of guest physical memory.
351 */
352 struct kvm_userspace_memory_region *
kvm_userspace_memory_region_find(struct kvm_vm * vm,uint64_t start,uint64_t end)353 kvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start,
354 uint64_t end)
355 {
356 struct userspace_mem_region *region;
357
358 region = userspace_mem_region_find(vm, start, end);
359 if (!region)
360 return NULL;
361
362 return ®ion->region;
363 }
364
365 /*
366 * VCPU Find
367 *
368 * Input Args:
369 * vm - Virtual Machine
370 * vcpuid - VCPU ID
371 *
372 * Output Args: None
373 *
374 * Return:
375 * Pointer to VCPU structure
376 *
377 * Locates a vcpu structure that describes the VCPU specified by vcpuid and
378 * returns a pointer to it. Returns NULL if the VM doesn't contain a VCPU
379 * for the specified vcpuid.
380 */
vcpu_find(struct kvm_vm * vm,uint32_t vcpuid)381 struct vcpu *vcpu_find(struct kvm_vm *vm, uint32_t vcpuid)
382 {
383 struct vcpu *vcpup;
384
385 for (vcpup = vm->vcpu_head; vcpup; vcpup = vcpup->next) {
386 if (vcpup->id == vcpuid)
387 return vcpup;
388 }
389
390 return NULL;
391 }
392
393 /*
394 * VM VCPU Remove
395 *
396 * Input Args:
397 * vm - Virtual Machine
398 * vcpuid - VCPU ID
399 *
400 * Output Args: None
401 *
402 * Return: None, TEST_ASSERT failures for all error conditions
403 *
404 * Within the VM specified by vm, removes the VCPU given by vcpuid.
405 */
vm_vcpu_rm(struct kvm_vm * vm,uint32_t vcpuid)406 static void vm_vcpu_rm(struct kvm_vm *vm, uint32_t vcpuid)
407 {
408 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
409 int ret;
410
411 ret = munmap(vcpu->state, sizeof(*vcpu->state));
412 TEST_ASSERT(ret == 0, "munmap of VCPU fd failed, rc: %i "
413 "errno: %i", ret, errno);
414 close(vcpu->fd);
415 TEST_ASSERT(ret == 0, "Close of VCPU fd failed, rc: %i "
416 "errno: %i", ret, errno);
417
418 if (vcpu->next)
419 vcpu->next->prev = vcpu->prev;
420 if (vcpu->prev)
421 vcpu->prev->next = vcpu->next;
422 else
423 vm->vcpu_head = vcpu->next;
424 free(vcpu);
425 }
426
kvm_vm_release(struct kvm_vm * vmp)427 void kvm_vm_release(struct kvm_vm *vmp)
428 {
429 int ret;
430
431 while (vmp->vcpu_head)
432 vm_vcpu_rm(vmp, vmp->vcpu_head->id);
433
434 ret = close(vmp->fd);
435 TEST_ASSERT(ret == 0, "Close of vm fd failed,\n"
436 " vmp->fd: %i rc: %i errno: %i", vmp->fd, ret, errno);
437
438 close(vmp->kvm_fd);
439 TEST_ASSERT(ret == 0, "Close of /dev/kvm fd failed,\n"
440 " vmp->kvm_fd: %i rc: %i errno: %i", vmp->kvm_fd, ret, errno);
441 }
442
443 /*
444 * Destroys and frees the VM pointed to by vmp.
445 */
kvm_vm_free(struct kvm_vm * vmp)446 void kvm_vm_free(struct kvm_vm *vmp)
447 {
448 int ret;
449
450 if (vmp == NULL)
451 return;
452
453 /* Free userspace_mem_regions. */
454 while (vmp->userspace_mem_region_head) {
455 struct userspace_mem_region *region
456 = vmp->userspace_mem_region_head;
457
458 region->region.memory_size = 0;
459 ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION,
460 ®ion->region);
461 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed, "
462 "rc: %i errno: %i", ret, errno);
463
464 vmp->userspace_mem_region_head = region->next;
465 sparsebit_free(®ion->unused_phy_pages);
466 ret = munmap(region->mmap_start, region->mmap_size);
467 TEST_ASSERT(ret == 0, "munmap failed, rc: %i errno: %i",
468 ret, errno);
469
470 free(region);
471 }
472
473 /* Free sparsebit arrays. */
474 sparsebit_free(&vmp->vpages_valid);
475 sparsebit_free(&vmp->vpages_mapped);
476
477 kvm_vm_release(vmp);
478
479 /* Free the structure describing the VM. */
480 free(vmp);
481 }
482
483 /*
484 * Memory Compare, host virtual to guest virtual
485 *
486 * Input Args:
487 * hva - Starting host virtual address
488 * vm - Virtual Machine
489 * gva - Starting guest virtual address
490 * len - number of bytes to compare
491 *
492 * Output Args: None
493 *
494 * Input/Output Args: None
495 *
496 * Return:
497 * Returns 0 if the bytes starting at hva for a length of len
498 * are equal the guest virtual bytes starting at gva. Returns
499 * a value < 0, if bytes at hva are less than those at gva.
500 * Otherwise a value > 0 is returned.
501 *
502 * Compares the bytes starting at the host virtual address hva, for
503 * a length of len, to the guest bytes starting at the guest virtual
504 * address given by gva.
505 */
kvm_memcmp_hva_gva(void * hva,struct kvm_vm * vm,vm_vaddr_t gva,size_t len)506 int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len)
507 {
508 size_t amt;
509
510 /*
511 * Compare a batch of bytes until either a match is found
512 * or all the bytes have been compared.
513 */
514 for (uintptr_t offset = 0; offset < len; offset += amt) {
515 uintptr_t ptr1 = (uintptr_t)hva + offset;
516
517 /*
518 * Determine host address for guest virtual address
519 * at offset.
520 */
521 uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset);
522
523 /*
524 * Determine amount to compare on this pass.
525 * Don't allow the comparsion to cross a page boundary.
526 */
527 amt = len - offset;
528 if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift))
529 amt = vm->page_size - (ptr1 % vm->page_size);
530 if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift))
531 amt = vm->page_size - (ptr2 % vm->page_size);
532
533 assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift));
534 assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift));
535
536 /*
537 * Perform the comparison. If there is a difference
538 * return that result to the caller, otherwise need
539 * to continue on looking for a mismatch.
540 */
541 int ret = memcmp((void *)ptr1, (void *)ptr2, amt);
542 if (ret != 0)
543 return ret;
544 }
545
546 /*
547 * No mismatch found. Let the caller know the two memory
548 * areas are equal.
549 */
550 return 0;
551 }
552
553 /*
554 * VM Userspace Memory Region Add
555 *
556 * Input Args:
557 * vm - Virtual Machine
558 * backing_src - Storage source for this region.
559 * NULL to use anonymous memory.
560 * guest_paddr - Starting guest physical address
561 * slot - KVM region slot
562 * npages - Number of physical pages
563 * flags - KVM memory region flags (e.g. KVM_MEM_LOG_DIRTY_PAGES)
564 *
565 * Output Args: None
566 *
567 * Return: None
568 *
569 * Allocates a memory area of the number of pages specified by npages
570 * and maps it to the VM specified by vm, at a starting physical address
571 * given by guest_paddr. The region is created with a KVM region slot
572 * given by slot, which must be unique and < KVM_MEM_SLOTS_NUM. The
573 * region is created with the flags given by flags.
574 */
vm_userspace_mem_region_add(struct kvm_vm * vm,enum vm_mem_backing_src_type src_type,uint64_t guest_paddr,uint32_t slot,uint64_t npages,uint32_t flags)575 void vm_userspace_mem_region_add(struct kvm_vm *vm,
576 enum vm_mem_backing_src_type src_type,
577 uint64_t guest_paddr, uint32_t slot, uint64_t npages,
578 uint32_t flags)
579 {
580 int ret;
581 struct userspace_mem_region *region;
582 size_t huge_page_size = KVM_UTIL_PGS_PER_HUGEPG * vm->page_size;
583 size_t alignment;
584
585 TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
586 "address not on a page boundary.\n"
587 " guest_paddr: 0x%lx vm->page_size: 0x%x",
588 guest_paddr, vm->page_size);
589 TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
590 <= vm->max_gfn, "Physical range beyond maximum "
591 "supported physical address,\n"
592 " guest_paddr: 0x%lx npages: 0x%lx\n"
593 " vm->max_gfn: 0x%lx vm->page_size: 0x%x",
594 guest_paddr, npages, vm->max_gfn, vm->page_size);
595
596 /*
597 * Confirm a mem region with an overlapping address doesn't
598 * already exist.
599 */
600 region = (struct userspace_mem_region *) userspace_mem_region_find(
601 vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1);
602 if (region != NULL)
603 TEST_ASSERT(false, "overlapping userspace_mem_region already "
604 "exists\n"
605 " requested guest_paddr: 0x%lx npages: 0x%lx "
606 "page_size: 0x%x\n"
607 " existing guest_paddr: 0x%lx size: 0x%lx",
608 guest_paddr, npages, vm->page_size,
609 (uint64_t) region->region.guest_phys_addr,
610 (uint64_t) region->region.memory_size);
611
612 /* Confirm no region with the requested slot already exists. */
613 for (region = vm->userspace_mem_region_head; region;
614 region = region->next) {
615 if (region->region.slot == slot)
616 break;
617 }
618 if (region != NULL)
619 TEST_ASSERT(false, "A mem region with the requested slot "
620 "already exists.\n"
621 " requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
622 " existing slot: %u paddr: 0x%lx size: 0x%lx",
623 slot, guest_paddr, npages,
624 region->region.slot,
625 (uint64_t) region->region.guest_phys_addr,
626 (uint64_t) region->region.memory_size);
627
628 /* Allocate and initialize new mem region structure. */
629 region = calloc(1, sizeof(*region));
630 TEST_ASSERT(region != NULL, "Insufficient Memory");
631 region->mmap_size = npages * vm->page_size;
632
633 #ifdef __s390x__
634 /* On s390x, the host address must be aligned to 1M (due to PGSTEs) */
635 alignment = 0x100000;
636 #else
637 alignment = 1;
638 #endif
639
640 if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
641 alignment = max(huge_page_size, alignment);
642
643 /* Add enough memory to align up if necessary */
644 if (alignment > 1)
645 region->mmap_size += alignment;
646
647 region->mmap_start = mmap(NULL, region->mmap_size,
648 PROT_READ | PROT_WRITE,
649 MAP_PRIVATE | MAP_ANONYMOUS
650 | (src_type == VM_MEM_SRC_ANONYMOUS_HUGETLB ? MAP_HUGETLB : 0),
651 -1, 0);
652 TEST_ASSERT(region->mmap_start != MAP_FAILED,
653 "test_malloc failed, mmap_start: %p errno: %i",
654 region->mmap_start, errno);
655
656 /* Align host address */
657 region->host_mem = align(region->mmap_start, alignment);
658
659 /* As needed perform madvise */
660 if (src_type == VM_MEM_SRC_ANONYMOUS || src_type == VM_MEM_SRC_ANONYMOUS_THP) {
661 ret = madvise(region->host_mem, npages * vm->page_size,
662 src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
663 TEST_ASSERT(ret == 0, "madvise failed,\n"
664 " addr: %p\n"
665 " length: 0x%lx\n"
666 " src_type: %x",
667 region->host_mem, npages * vm->page_size, src_type);
668 }
669
670 region->unused_phy_pages = sparsebit_alloc();
671 sparsebit_set_num(region->unused_phy_pages,
672 guest_paddr >> vm->page_shift, npages);
673 region->region.slot = slot;
674 region->region.flags = flags;
675 region->region.guest_phys_addr = guest_paddr;
676 region->region.memory_size = npages * vm->page_size;
677 region->region.userspace_addr = (uintptr_t) region->host_mem;
678 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region);
679 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
680 " rc: %i errno: %i\n"
681 " slot: %u flags: 0x%x\n"
682 " guest_phys_addr: 0x%lx size: 0x%lx",
683 ret, errno, slot, flags,
684 guest_paddr, (uint64_t) region->region.memory_size);
685
686 /* Add to linked-list of memory regions. */
687 if (vm->userspace_mem_region_head)
688 vm->userspace_mem_region_head->prev = region;
689 region->next = vm->userspace_mem_region_head;
690 vm->userspace_mem_region_head = region;
691 }
692
693 /*
694 * Memslot to region
695 *
696 * Input Args:
697 * vm - Virtual Machine
698 * memslot - KVM memory slot ID
699 *
700 * Output Args: None
701 *
702 * Return:
703 * Pointer to memory region structure that describe memory region
704 * using kvm memory slot ID given by memslot. TEST_ASSERT failure
705 * on error (e.g. currently no memory region using memslot as a KVM
706 * memory slot ID).
707 */
708 struct userspace_mem_region *
memslot2region(struct kvm_vm * vm,uint32_t memslot)709 memslot2region(struct kvm_vm *vm, uint32_t memslot)
710 {
711 struct userspace_mem_region *region;
712
713 for (region = vm->userspace_mem_region_head; region;
714 region = region->next) {
715 if (region->region.slot == memslot)
716 break;
717 }
718 if (region == NULL) {
719 fprintf(stderr, "No mem region with the requested slot found,\n"
720 " requested slot: %u\n", memslot);
721 fputs("---- vm dump ----\n", stderr);
722 vm_dump(stderr, vm, 2);
723 TEST_ASSERT(false, "Mem region not found");
724 }
725
726 return region;
727 }
728
729 /*
730 * VM Memory Region Flags Set
731 *
732 * Input Args:
733 * vm - Virtual Machine
734 * flags - Starting guest physical address
735 *
736 * Output Args: None
737 *
738 * Return: None
739 *
740 * Sets the flags of the memory region specified by the value of slot,
741 * to the values given by flags.
742 */
vm_mem_region_set_flags(struct kvm_vm * vm,uint32_t slot,uint32_t flags)743 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
744 {
745 int ret;
746 struct userspace_mem_region *region;
747
748 region = memslot2region(vm, slot);
749
750 region->region.flags = flags;
751
752 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region);
753
754 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
755 " rc: %i errno: %i slot: %u flags: 0x%x",
756 ret, errno, slot, flags);
757 }
758
759 /*
760 * VCPU mmap Size
761 *
762 * Input Args: None
763 *
764 * Output Args: None
765 *
766 * Return:
767 * Size of VCPU state
768 *
769 * Returns the size of the structure pointed to by the return value
770 * of vcpu_state().
771 */
vcpu_mmap_sz(void)772 static int vcpu_mmap_sz(void)
773 {
774 int dev_fd, ret;
775
776 dev_fd = open(KVM_DEV_PATH, O_RDONLY);
777 if (dev_fd < 0)
778 exit(KSFT_SKIP);
779
780 ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
781 TEST_ASSERT(ret >= sizeof(struct kvm_run),
782 "%s KVM_GET_VCPU_MMAP_SIZE ioctl failed, rc: %i errno: %i",
783 __func__, ret, errno);
784
785 close(dev_fd);
786
787 return ret;
788 }
789
790 /*
791 * VM VCPU Add
792 *
793 * Input Args:
794 * vm - Virtual Machine
795 * vcpuid - VCPU ID
796 *
797 * Output Args: None
798 *
799 * Return: None
800 *
801 * Adds a virtual CPU to the VM specified by vm with the ID given by vcpuid.
802 * No additional VCPU setup is done.
803 */
vm_vcpu_add(struct kvm_vm * vm,uint32_t vcpuid)804 void vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpuid)
805 {
806 struct vcpu *vcpu;
807
808 /* Confirm a vcpu with the specified id doesn't already exist. */
809 vcpu = vcpu_find(vm, vcpuid);
810 if (vcpu != NULL)
811 TEST_ASSERT(false, "vcpu with the specified id "
812 "already exists,\n"
813 " requested vcpuid: %u\n"
814 " existing vcpuid: %u state: %p",
815 vcpuid, vcpu->id, vcpu->state);
816
817 /* Allocate and initialize new vcpu structure. */
818 vcpu = calloc(1, sizeof(*vcpu));
819 TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
820 vcpu->id = vcpuid;
821 vcpu->fd = ioctl(vm->fd, KVM_CREATE_VCPU, vcpuid);
822 TEST_ASSERT(vcpu->fd >= 0, "KVM_CREATE_VCPU failed, rc: %i errno: %i",
823 vcpu->fd, errno);
824
825 TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->state), "vcpu mmap size "
826 "smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
827 vcpu_mmap_sz(), sizeof(*vcpu->state));
828 vcpu->state = (struct kvm_run *) mmap(NULL, sizeof(*vcpu->state),
829 PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
830 TEST_ASSERT(vcpu->state != MAP_FAILED, "mmap vcpu_state failed, "
831 "vcpu id: %u errno: %i", vcpuid, errno);
832
833 /* Add to linked-list of VCPUs. */
834 if (vm->vcpu_head)
835 vm->vcpu_head->prev = vcpu;
836 vcpu->next = vm->vcpu_head;
837 vm->vcpu_head = vcpu;
838 }
839
840 /*
841 * VM Virtual Address Unused Gap
842 *
843 * Input Args:
844 * vm - Virtual Machine
845 * sz - Size (bytes)
846 * vaddr_min - Minimum Virtual Address
847 *
848 * Output Args: None
849 *
850 * Return:
851 * Lowest virtual address at or below vaddr_min, with at least
852 * sz unused bytes. TEST_ASSERT failure if no area of at least
853 * size sz is available.
854 *
855 * Within the VM specified by vm, locates the lowest starting virtual
856 * address >= vaddr_min, that has at least sz unallocated bytes. A
857 * TEST_ASSERT failure occurs for invalid input or no area of at least
858 * sz unallocated bytes >= vaddr_min is available.
859 */
vm_vaddr_unused_gap(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min)860 static vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
861 vm_vaddr_t vaddr_min)
862 {
863 uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
864
865 /* Determine lowest permitted virtual page index. */
866 uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
867 if ((pgidx_start * vm->page_size) < vaddr_min)
868 goto no_va_found;
869
870 /* Loop over section with enough valid virtual page indexes. */
871 if (!sparsebit_is_set_num(vm->vpages_valid,
872 pgidx_start, pages))
873 pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
874 pgidx_start, pages);
875 do {
876 /*
877 * Are there enough unused virtual pages available at
878 * the currently proposed starting virtual page index.
879 * If not, adjust proposed starting index to next
880 * possible.
881 */
882 if (sparsebit_is_clear_num(vm->vpages_mapped,
883 pgidx_start, pages))
884 goto va_found;
885 pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
886 pgidx_start, pages);
887 if (pgidx_start == 0)
888 goto no_va_found;
889
890 /*
891 * If needed, adjust proposed starting virtual address,
892 * to next range of valid virtual addresses.
893 */
894 if (!sparsebit_is_set_num(vm->vpages_valid,
895 pgidx_start, pages)) {
896 pgidx_start = sparsebit_next_set_num(
897 vm->vpages_valid, pgidx_start, pages);
898 if (pgidx_start == 0)
899 goto no_va_found;
900 }
901 } while (pgidx_start != 0);
902
903 no_va_found:
904 TEST_ASSERT(false, "No vaddr of specified pages available, "
905 "pages: 0x%lx", pages);
906
907 /* NOT REACHED */
908 return -1;
909
910 va_found:
911 TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
912 pgidx_start, pages),
913 "Unexpected, invalid virtual page index range,\n"
914 " pgidx_start: 0x%lx\n"
915 " pages: 0x%lx",
916 pgidx_start, pages);
917 TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
918 pgidx_start, pages),
919 "Unexpected, pages already mapped,\n"
920 " pgidx_start: 0x%lx\n"
921 " pages: 0x%lx",
922 pgidx_start, pages);
923
924 return pgidx_start * vm->page_size;
925 }
926
927 /*
928 * VM Virtual Address Allocate
929 *
930 * Input Args:
931 * vm - Virtual Machine
932 * sz - Size in bytes
933 * vaddr_min - Minimum starting virtual address
934 * data_memslot - Memory region slot for data pages
935 * pgd_memslot - Memory region slot for new virtual translation tables
936 *
937 * Output Args: None
938 *
939 * Return:
940 * Starting guest virtual address
941 *
942 * Allocates at least sz bytes within the virtual address space of the vm
943 * given by vm. The allocated bytes are mapped to a virtual address >=
944 * the address given by vaddr_min. Note that each allocation uses a
945 * a unique set of pages, with the minimum real allocation being at least
946 * a page.
947 */
vm_vaddr_alloc(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min,uint32_t data_memslot,uint32_t pgd_memslot)948 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
949 uint32_t data_memslot, uint32_t pgd_memslot)
950 {
951 uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
952
953 virt_pgd_alloc(vm, pgd_memslot);
954
955 /*
956 * Find an unused range of virtual page addresses of at least
957 * pages in length.
958 */
959 vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
960
961 /* Map the virtual pages. */
962 for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
963 pages--, vaddr += vm->page_size) {
964 vm_paddr_t paddr;
965
966 paddr = vm_phy_page_alloc(vm,
967 KVM_UTIL_MIN_PFN * vm->page_size, data_memslot);
968
969 virt_pg_map(vm, vaddr, paddr, pgd_memslot);
970
971 sparsebit_set(vm->vpages_mapped,
972 vaddr >> vm->page_shift);
973 }
974
975 return vaddr_start;
976 }
977
978 /*
979 * Map a range of VM virtual address to the VM's physical address
980 *
981 * Input Args:
982 * vm - Virtual Machine
983 * vaddr - Virtuall address to map
984 * paddr - VM Physical Address
985 * size - The size of the range to map
986 * pgd_memslot - Memory region slot for new virtual translation tables
987 *
988 * Output Args: None
989 *
990 * Return: None
991 *
992 * Within the VM given by vm, creates a virtual translation for the
993 * page range starting at vaddr to the page range starting at paddr.
994 */
virt_map(struct kvm_vm * vm,uint64_t vaddr,uint64_t paddr,size_t size,uint32_t pgd_memslot)995 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
996 size_t size, uint32_t pgd_memslot)
997 {
998 size_t page_size = vm->page_size;
999 size_t npages = size / page_size;
1000
1001 TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
1002 TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
1003
1004 while (npages--) {
1005 virt_pg_map(vm, vaddr, paddr, pgd_memslot);
1006 vaddr += page_size;
1007 paddr += page_size;
1008 }
1009 }
1010
1011 /*
1012 * Address VM Physical to Host Virtual
1013 *
1014 * Input Args:
1015 * vm - Virtual Machine
1016 * gpa - VM physical address
1017 *
1018 * Output Args: None
1019 *
1020 * Return:
1021 * Equivalent host virtual address
1022 *
1023 * Locates the memory region containing the VM physical address given
1024 * by gpa, within the VM given by vm. When found, the host virtual
1025 * address providing the memory to the vm physical address is returned.
1026 * A TEST_ASSERT failure occurs if no region containing gpa exists.
1027 */
addr_gpa2hva(struct kvm_vm * vm,vm_paddr_t gpa)1028 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
1029 {
1030 struct userspace_mem_region *region;
1031 for (region = vm->userspace_mem_region_head; region;
1032 region = region->next) {
1033 if ((gpa >= region->region.guest_phys_addr)
1034 && (gpa <= (region->region.guest_phys_addr
1035 + region->region.memory_size - 1)))
1036 return (void *) ((uintptr_t) region->host_mem
1037 + (gpa - region->region.guest_phys_addr));
1038 }
1039
1040 TEST_ASSERT(false, "No vm physical memory at 0x%lx", gpa);
1041 return NULL;
1042 }
1043
1044 /*
1045 * Address Host Virtual to VM Physical
1046 *
1047 * Input Args:
1048 * vm - Virtual Machine
1049 * hva - Host virtual address
1050 *
1051 * Output Args: None
1052 *
1053 * Return:
1054 * Equivalent VM physical address
1055 *
1056 * Locates the memory region containing the host virtual address given
1057 * by hva, within the VM given by vm. When found, the equivalent
1058 * VM physical address is returned. A TEST_ASSERT failure occurs if no
1059 * region containing hva exists.
1060 */
addr_hva2gpa(struct kvm_vm * vm,void * hva)1061 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
1062 {
1063 struct userspace_mem_region *region;
1064 for (region = vm->userspace_mem_region_head; region;
1065 region = region->next) {
1066 if ((hva >= region->host_mem)
1067 && (hva <= (region->host_mem
1068 + region->region.memory_size - 1)))
1069 return (vm_paddr_t) ((uintptr_t)
1070 region->region.guest_phys_addr
1071 + (hva - (uintptr_t) region->host_mem));
1072 }
1073
1074 TEST_ASSERT(false, "No mapping to a guest physical address, "
1075 "hva: %p", hva);
1076 return -1;
1077 }
1078
1079 /*
1080 * VM Create IRQ Chip
1081 *
1082 * Input Args:
1083 * vm - Virtual Machine
1084 *
1085 * Output Args: None
1086 *
1087 * Return: None
1088 *
1089 * Creates an interrupt controller chip for the VM specified by vm.
1090 */
vm_create_irqchip(struct kvm_vm * vm)1091 void vm_create_irqchip(struct kvm_vm *vm)
1092 {
1093 int ret;
1094
1095 ret = ioctl(vm->fd, KVM_CREATE_IRQCHIP, 0);
1096 TEST_ASSERT(ret == 0, "KVM_CREATE_IRQCHIP IOCTL failed, "
1097 "rc: %i errno: %i", ret, errno);
1098
1099 vm->has_irqchip = true;
1100 }
1101
1102 /*
1103 * VM VCPU State
1104 *
1105 * Input Args:
1106 * vm - Virtual Machine
1107 * vcpuid - VCPU ID
1108 *
1109 * Output Args: None
1110 *
1111 * Return:
1112 * Pointer to structure that describes the state of the VCPU.
1113 *
1114 * Locates and returns a pointer to a structure that describes the
1115 * state of the VCPU with the given vcpuid.
1116 */
vcpu_state(struct kvm_vm * vm,uint32_t vcpuid)1117 struct kvm_run *vcpu_state(struct kvm_vm *vm, uint32_t vcpuid)
1118 {
1119 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1120 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1121
1122 return vcpu->state;
1123 }
1124
1125 /*
1126 * VM VCPU Run
1127 *
1128 * Input Args:
1129 * vm - Virtual Machine
1130 * vcpuid - VCPU ID
1131 *
1132 * Output Args: None
1133 *
1134 * Return: None
1135 *
1136 * Switch to executing the code for the VCPU given by vcpuid, within the VM
1137 * given by vm.
1138 */
vcpu_run(struct kvm_vm * vm,uint32_t vcpuid)1139 void vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
1140 {
1141 int ret = _vcpu_run(vm, vcpuid);
1142 TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, "
1143 "rc: %i errno: %i", ret, errno);
1144 }
1145
_vcpu_run(struct kvm_vm * vm,uint32_t vcpuid)1146 int _vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
1147 {
1148 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1149 int rc;
1150
1151 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1152 do {
1153 rc = ioctl(vcpu->fd, KVM_RUN, NULL);
1154 } while (rc == -1 && errno == EINTR);
1155 return rc;
1156 }
1157
vcpu_run_complete_io(struct kvm_vm * vm,uint32_t vcpuid)1158 void vcpu_run_complete_io(struct kvm_vm *vm, uint32_t vcpuid)
1159 {
1160 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1161 int ret;
1162
1163 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1164
1165 vcpu->state->immediate_exit = 1;
1166 ret = ioctl(vcpu->fd, KVM_RUN, NULL);
1167 vcpu->state->immediate_exit = 0;
1168
1169 TEST_ASSERT(ret == -1 && errno == EINTR,
1170 "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
1171 ret, errno);
1172 }
1173
1174 /*
1175 * VM VCPU Set MP State
1176 *
1177 * Input Args:
1178 * vm - Virtual Machine
1179 * vcpuid - VCPU ID
1180 * mp_state - mp_state to be set
1181 *
1182 * Output Args: None
1183 *
1184 * Return: None
1185 *
1186 * Sets the MP state of the VCPU given by vcpuid, to the state given
1187 * by mp_state.
1188 */
vcpu_set_mp_state(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_mp_state * mp_state)1189 void vcpu_set_mp_state(struct kvm_vm *vm, uint32_t vcpuid,
1190 struct kvm_mp_state *mp_state)
1191 {
1192 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1193 int ret;
1194
1195 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1196
1197 ret = ioctl(vcpu->fd, KVM_SET_MP_STATE, mp_state);
1198 TEST_ASSERT(ret == 0, "KVM_SET_MP_STATE IOCTL failed, "
1199 "rc: %i errno: %i", ret, errno);
1200 }
1201
1202 /*
1203 * VM VCPU Regs Get
1204 *
1205 * Input Args:
1206 * vm - Virtual Machine
1207 * vcpuid - VCPU ID
1208 *
1209 * Output Args:
1210 * regs - current state of VCPU regs
1211 *
1212 * Return: None
1213 *
1214 * Obtains the current register state for the VCPU specified by vcpuid
1215 * and stores it at the location given by regs.
1216 */
vcpu_regs_get(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_regs * regs)1217 void vcpu_regs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs)
1218 {
1219 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1220 int ret;
1221
1222 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1223
1224 ret = ioctl(vcpu->fd, KVM_GET_REGS, regs);
1225 TEST_ASSERT(ret == 0, "KVM_GET_REGS failed, rc: %i errno: %i",
1226 ret, errno);
1227 }
1228
1229 /*
1230 * VM VCPU Regs Set
1231 *
1232 * Input Args:
1233 * vm - Virtual Machine
1234 * vcpuid - VCPU ID
1235 * regs - Values to set VCPU regs to
1236 *
1237 * Output Args: None
1238 *
1239 * Return: None
1240 *
1241 * Sets the regs of the VCPU specified by vcpuid to the values
1242 * given by regs.
1243 */
vcpu_regs_set(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_regs * regs)1244 void vcpu_regs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs)
1245 {
1246 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1247 int ret;
1248
1249 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1250
1251 ret = ioctl(vcpu->fd, KVM_SET_REGS, regs);
1252 TEST_ASSERT(ret == 0, "KVM_SET_REGS failed, rc: %i errno: %i",
1253 ret, errno);
1254 }
1255
1256 #ifdef __KVM_HAVE_VCPU_EVENTS
vcpu_events_get(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_vcpu_events * events)1257 void vcpu_events_get(struct kvm_vm *vm, uint32_t vcpuid,
1258 struct kvm_vcpu_events *events)
1259 {
1260 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1261 int ret;
1262
1263 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1264
1265 ret = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, events);
1266 TEST_ASSERT(ret == 0, "KVM_GET_VCPU_EVENTS, failed, rc: %i errno: %i",
1267 ret, errno);
1268 }
1269
vcpu_events_set(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_vcpu_events * events)1270 void vcpu_events_set(struct kvm_vm *vm, uint32_t vcpuid,
1271 struct kvm_vcpu_events *events)
1272 {
1273 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1274 int ret;
1275
1276 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1277
1278 ret = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, events);
1279 TEST_ASSERT(ret == 0, "KVM_SET_VCPU_EVENTS, failed, rc: %i errno: %i",
1280 ret, errno);
1281 }
1282 #endif
1283
1284 #ifdef __x86_64__
vcpu_nested_state_get(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_nested_state * state)1285 void vcpu_nested_state_get(struct kvm_vm *vm, uint32_t vcpuid,
1286 struct kvm_nested_state *state)
1287 {
1288 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1289 int ret;
1290
1291 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1292
1293 ret = ioctl(vcpu->fd, KVM_GET_NESTED_STATE, state);
1294 TEST_ASSERT(ret == 0,
1295 "KVM_SET_NESTED_STATE failed, ret: %i errno: %i",
1296 ret, errno);
1297 }
1298
vcpu_nested_state_set(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_nested_state * state,bool ignore_error)1299 int vcpu_nested_state_set(struct kvm_vm *vm, uint32_t vcpuid,
1300 struct kvm_nested_state *state, bool ignore_error)
1301 {
1302 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1303 int ret;
1304
1305 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1306
1307 ret = ioctl(vcpu->fd, KVM_SET_NESTED_STATE, state);
1308 if (!ignore_error) {
1309 TEST_ASSERT(ret == 0,
1310 "KVM_SET_NESTED_STATE failed, ret: %i errno: %i",
1311 ret, errno);
1312 }
1313
1314 return ret;
1315 }
1316 #endif
1317
1318 /*
1319 * VM VCPU System Regs Get
1320 *
1321 * Input Args:
1322 * vm - Virtual Machine
1323 * vcpuid - VCPU ID
1324 *
1325 * Output Args:
1326 * sregs - current state of VCPU system regs
1327 *
1328 * Return: None
1329 *
1330 * Obtains the current system register state for the VCPU specified by
1331 * vcpuid and stores it at the location given by sregs.
1332 */
vcpu_sregs_get(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_sregs * sregs)1333 void vcpu_sregs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1334 {
1335 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1336 int ret;
1337
1338 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1339
1340 ret = ioctl(vcpu->fd, KVM_GET_SREGS, sregs);
1341 TEST_ASSERT(ret == 0, "KVM_GET_SREGS failed, rc: %i errno: %i",
1342 ret, errno);
1343 }
1344
1345 /*
1346 * VM VCPU System Regs Set
1347 *
1348 * Input Args:
1349 * vm - Virtual Machine
1350 * vcpuid - VCPU ID
1351 * sregs - Values to set VCPU system regs to
1352 *
1353 * Output Args: None
1354 *
1355 * Return: None
1356 *
1357 * Sets the system regs of the VCPU specified by vcpuid to the values
1358 * given by sregs.
1359 */
vcpu_sregs_set(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_sregs * sregs)1360 void vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1361 {
1362 int ret = _vcpu_sregs_set(vm, vcpuid, sregs);
1363 TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, "
1364 "rc: %i errno: %i", ret, errno);
1365 }
1366
_vcpu_sregs_set(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_sregs * sregs)1367 int _vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1368 {
1369 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1370
1371 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1372
1373 return ioctl(vcpu->fd, KVM_SET_SREGS, sregs);
1374 }
1375
1376 /*
1377 * VCPU Ioctl
1378 *
1379 * Input Args:
1380 * vm - Virtual Machine
1381 * vcpuid - VCPU ID
1382 * cmd - Ioctl number
1383 * arg - Argument to pass to the ioctl
1384 *
1385 * Return: None
1386 *
1387 * Issues an arbitrary ioctl on a VCPU fd.
1388 */
vcpu_ioctl(struct kvm_vm * vm,uint32_t vcpuid,unsigned long cmd,void * arg)1389 void vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid,
1390 unsigned long cmd, void *arg)
1391 {
1392 int ret;
1393
1394 ret = _vcpu_ioctl(vm, vcpuid, cmd, arg);
1395 TEST_ASSERT(ret == 0, "vcpu ioctl %lu failed, rc: %i errno: %i (%s)",
1396 cmd, ret, errno, strerror(errno));
1397 }
1398
_vcpu_ioctl(struct kvm_vm * vm,uint32_t vcpuid,unsigned long cmd,void * arg)1399 int _vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid,
1400 unsigned long cmd, void *arg)
1401 {
1402 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1403 int ret;
1404
1405 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1406
1407 ret = ioctl(vcpu->fd, cmd, arg);
1408
1409 return ret;
1410 }
1411
1412 /*
1413 * VM Ioctl
1414 *
1415 * Input Args:
1416 * vm - Virtual Machine
1417 * cmd - Ioctl number
1418 * arg - Argument to pass to the ioctl
1419 *
1420 * Return: None
1421 *
1422 * Issues an arbitrary ioctl on a VM fd.
1423 */
vm_ioctl(struct kvm_vm * vm,unsigned long cmd,void * arg)1424 void vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
1425 {
1426 int ret;
1427
1428 ret = ioctl(vm->fd, cmd, arg);
1429 TEST_ASSERT(ret == 0, "vm ioctl %lu failed, rc: %i errno: %i (%s)",
1430 cmd, ret, errno, strerror(errno));
1431 }
1432
1433 /*
1434 * VM Dump
1435 *
1436 * Input Args:
1437 * vm - Virtual Machine
1438 * indent - Left margin indent amount
1439 *
1440 * Output Args:
1441 * stream - Output FILE stream
1442 *
1443 * Return: None
1444 *
1445 * Dumps the current state of the VM given by vm, to the FILE stream
1446 * given by stream.
1447 */
vm_dump(FILE * stream,struct kvm_vm * vm,uint8_t indent)1448 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1449 {
1450 struct userspace_mem_region *region;
1451 struct vcpu *vcpu;
1452
1453 fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
1454 fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
1455 fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
1456 fprintf(stream, "%*sMem Regions:\n", indent, "");
1457 for (region = vm->userspace_mem_region_head; region;
1458 region = region->next) {
1459 fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
1460 "host_virt: %p\n", indent + 2, "",
1461 (uint64_t) region->region.guest_phys_addr,
1462 (uint64_t) region->region.memory_size,
1463 region->host_mem);
1464 fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
1465 sparsebit_dump(stream, region->unused_phy_pages, 0);
1466 }
1467 fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
1468 sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
1469 fprintf(stream, "%*spgd_created: %u\n", indent, "",
1470 vm->pgd_created);
1471 if (vm->pgd_created) {
1472 fprintf(stream, "%*sVirtual Translation Tables:\n",
1473 indent + 2, "");
1474 virt_dump(stream, vm, indent + 4);
1475 }
1476 fprintf(stream, "%*sVCPUs:\n", indent, "");
1477 for (vcpu = vm->vcpu_head; vcpu; vcpu = vcpu->next)
1478 vcpu_dump(stream, vm, vcpu->id, indent + 2);
1479 }
1480
1481 /* Known KVM exit reasons */
1482 static struct exit_reason {
1483 unsigned int reason;
1484 const char *name;
1485 } exit_reasons_known[] = {
1486 {KVM_EXIT_UNKNOWN, "UNKNOWN"},
1487 {KVM_EXIT_EXCEPTION, "EXCEPTION"},
1488 {KVM_EXIT_IO, "IO"},
1489 {KVM_EXIT_HYPERCALL, "HYPERCALL"},
1490 {KVM_EXIT_DEBUG, "DEBUG"},
1491 {KVM_EXIT_HLT, "HLT"},
1492 {KVM_EXIT_MMIO, "MMIO"},
1493 {KVM_EXIT_IRQ_WINDOW_OPEN, "IRQ_WINDOW_OPEN"},
1494 {KVM_EXIT_SHUTDOWN, "SHUTDOWN"},
1495 {KVM_EXIT_FAIL_ENTRY, "FAIL_ENTRY"},
1496 {KVM_EXIT_INTR, "INTR"},
1497 {KVM_EXIT_SET_TPR, "SET_TPR"},
1498 {KVM_EXIT_TPR_ACCESS, "TPR_ACCESS"},
1499 {KVM_EXIT_S390_SIEIC, "S390_SIEIC"},
1500 {KVM_EXIT_S390_RESET, "S390_RESET"},
1501 {KVM_EXIT_DCR, "DCR"},
1502 {KVM_EXIT_NMI, "NMI"},
1503 {KVM_EXIT_INTERNAL_ERROR, "INTERNAL_ERROR"},
1504 {KVM_EXIT_OSI, "OSI"},
1505 {KVM_EXIT_PAPR_HCALL, "PAPR_HCALL"},
1506 #ifdef KVM_EXIT_MEMORY_NOT_PRESENT
1507 {KVM_EXIT_MEMORY_NOT_PRESENT, "MEMORY_NOT_PRESENT"},
1508 #endif
1509 };
1510
1511 /*
1512 * Exit Reason String
1513 *
1514 * Input Args:
1515 * exit_reason - Exit reason
1516 *
1517 * Output Args: None
1518 *
1519 * Return:
1520 * Constant string pointer describing the exit reason.
1521 *
1522 * Locates and returns a constant string that describes the KVM exit
1523 * reason given by exit_reason. If no such string is found, a constant
1524 * string of "Unknown" is returned.
1525 */
exit_reason_str(unsigned int exit_reason)1526 const char *exit_reason_str(unsigned int exit_reason)
1527 {
1528 unsigned int n1;
1529
1530 for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
1531 if (exit_reason == exit_reasons_known[n1].reason)
1532 return exit_reasons_known[n1].name;
1533 }
1534
1535 return "Unknown";
1536 }
1537
1538 /*
1539 * Physical Contiguous Page Allocator
1540 *
1541 * Input Args:
1542 * vm - Virtual Machine
1543 * num - number of pages
1544 * paddr_min - Physical address minimum
1545 * memslot - Memory region to allocate page from
1546 *
1547 * Output Args: None
1548 *
1549 * Return:
1550 * Starting physical address
1551 *
1552 * Within the VM specified by vm, locates a range of available physical
1553 * pages at or above paddr_min. If found, the pages are marked as in use
1554 * and their base address is returned. A TEST_ASSERT failure occurs if
1555 * not enough pages are available at or above paddr_min.
1556 */
vm_phy_pages_alloc(struct kvm_vm * vm,size_t num,vm_paddr_t paddr_min,uint32_t memslot)1557 vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
1558 vm_paddr_t paddr_min, uint32_t memslot)
1559 {
1560 struct userspace_mem_region *region;
1561 sparsebit_idx_t pg, base;
1562
1563 TEST_ASSERT(num > 0, "Must allocate at least one page");
1564
1565 TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
1566 "not divisible by page size.\n"
1567 " paddr_min: 0x%lx page_size: 0x%x",
1568 paddr_min, vm->page_size);
1569
1570 region = memslot2region(vm, memslot);
1571 base = pg = paddr_min >> vm->page_shift;
1572
1573 do {
1574 for (; pg < base + num; ++pg) {
1575 if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
1576 base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
1577 break;
1578 }
1579 }
1580 } while (pg && pg != base + num);
1581
1582 if (pg == 0) {
1583 fprintf(stderr, "No guest physical page available, "
1584 "paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
1585 paddr_min, vm->page_size, memslot);
1586 fputs("---- vm dump ----\n", stderr);
1587 vm_dump(stderr, vm, 2);
1588 abort();
1589 }
1590
1591 for (pg = base; pg < base + num; ++pg)
1592 sparsebit_clear(region->unused_phy_pages, pg);
1593
1594 return base * vm->page_size;
1595 }
1596
vm_phy_page_alloc(struct kvm_vm * vm,vm_paddr_t paddr_min,uint32_t memslot)1597 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
1598 uint32_t memslot)
1599 {
1600 return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
1601 }
1602
1603 /*
1604 * Address Guest Virtual to Host Virtual
1605 *
1606 * Input Args:
1607 * vm - Virtual Machine
1608 * gva - VM virtual address
1609 *
1610 * Output Args: None
1611 *
1612 * Return:
1613 * Equivalent host virtual address
1614 */
addr_gva2hva(struct kvm_vm * vm,vm_vaddr_t gva)1615 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
1616 {
1617 return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
1618 }
1619
1620 /*
1621 * Is Unrestricted Guest
1622 *
1623 * Input Args:
1624 * vm - Virtual Machine
1625 *
1626 * Output Args: None
1627 *
1628 * Return: True if the unrestricted guest is set to 'Y', otherwise return false.
1629 *
1630 * Check if the unrestricted guest flag is enabled.
1631 */
vm_is_unrestricted_guest(struct kvm_vm * vm)1632 bool vm_is_unrestricted_guest(struct kvm_vm *vm)
1633 {
1634 char val = 'N';
1635 size_t count;
1636 FILE *f;
1637
1638 if (vm == NULL) {
1639 /* Ensure that the KVM vendor-specific module is loaded. */
1640 f = fopen(KVM_DEV_PATH, "r");
1641 TEST_ASSERT(f != NULL, "Error in opening KVM dev file: %d",
1642 errno);
1643 fclose(f);
1644 }
1645
1646 f = fopen("/sys/module/kvm_intel/parameters/unrestricted_guest", "r");
1647 if (f) {
1648 count = fread(&val, sizeof(char), 1, f);
1649 TEST_ASSERT(count == 1, "Unable to read from param file.");
1650 fclose(f);
1651 }
1652
1653 return val == 'Y';
1654 }
1655
vm_get_page_size(struct kvm_vm * vm)1656 unsigned int vm_get_page_size(struct kvm_vm *vm)
1657 {
1658 return vm->page_size;
1659 }
1660
vm_get_page_shift(struct kvm_vm * vm)1661 unsigned int vm_get_page_shift(struct kvm_vm *vm)
1662 {
1663 return vm->page_shift;
1664 }
1665
vm_get_max_gfn(struct kvm_vm * vm)1666 unsigned int vm_get_max_gfn(struct kvm_vm *vm)
1667 {
1668 return vm->max_gfn;
1669 }
1670