1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "InputFiles.h"
10 #include "Driver.h"
11 #include "InputSection.h"
12 #include "LinkerScript.h"
13 #include "SymbolTable.h"
14 #include "Symbols.h"
15 #include "SyntheticSections.h"
16 #include "lld/Common/DWARF.h"
17 #include "lld/Common/ErrorHandler.h"
18 #include "lld/Common/Memory.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/CodeGen/Analysis.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/IR/Module.h"
23 #include "llvm/LTO/LTO.h"
24 #include "llvm/MC/StringTableBuilder.h"
25 #include "llvm/Object/ELFObjectFile.h"
26 #include "llvm/Support/ARMAttributeParser.h"
27 #include "llvm/Support/ARMBuildAttributes.h"
28 #include "llvm/Support/Endian.h"
29 #include "llvm/Support/Path.h"
30 #include "llvm/Support/RISCVAttributeParser.h"
31 #include "llvm/Support/TarWriter.h"
32 #include "llvm/Support/raw_ostream.h"
33
34 using namespace llvm;
35 using namespace llvm::ELF;
36 using namespace llvm::object;
37 using namespace llvm::sys;
38 using namespace llvm::sys::fs;
39 using namespace llvm::support::endian;
40 using namespace lld;
41 using namespace lld::elf;
42
43 bool InputFile::isInGroup;
44 uint32_t InputFile::nextGroupId;
45
46 std::vector<ArchiveFile *> elf::archiveFiles;
47 std::vector<BinaryFile *> elf::binaryFiles;
48 std::vector<BitcodeFile *> elf::bitcodeFiles;
49 std::vector<LazyObjFile *> elf::lazyObjFiles;
50 std::vector<InputFile *> elf::objectFiles;
51 std::vector<SharedFile *> elf::sharedFiles;
52
53 std::unique_ptr<TarWriter> elf::tar;
54
55 // Returns "<internal>", "foo.a(bar.o)" or "baz.o".
toString(const InputFile * f)56 std::string lld::toString(const InputFile *f) {
57 if (!f)
58 return "<internal>";
59
60 if (f->toStringCache.empty()) {
61 if (f->archiveName.empty())
62 f->toStringCache = std::string(f->getName());
63 else
64 f->toStringCache = (f->archiveName + "(" + f->getName() + ")").str();
65 }
66 return f->toStringCache;
67 }
68
getELFKind(MemoryBufferRef mb,StringRef archiveName)69 static ELFKind getELFKind(MemoryBufferRef mb, StringRef archiveName) {
70 unsigned char size;
71 unsigned char endian;
72 std::tie(size, endian) = getElfArchType(mb.getBuffer());
73
74 auto report = [&](StringRef msg) {
75 StringRef filename = mb.getBufferIdentifier();
76 if (archiveName.empty())
77 fatal(filename + ": " + msg);
78 else
79 fatal(archiveName + "(" + filename + "): " + msg);
80 };
81
82 if (!mb.getBuffer().startswith(ElfMagic))
83 report("not an ELF file");
84 if (endian != ELFDATA2LSB && endian != ELFDATA2MSB)
85 report("corrupted ELF file: invalid data encoding");
86 if (size != ELFCLASS32 && size != ELFCLASS64)
87 report("corrupted ELF file: invalid file class");
88
89 size_t bufSize = mb.getBuffer().size();
90 if ((size == ELFCLASS32 && bufSize < sizeof(Elf32_Ehdr)) ||
91 (size == ELFCLASS64 && bufSize < sizeof(Elf64_Ehdr)))
92 report("corrupted ELF file: file is too short");
93
94 if (size == ELFCLASS32)
95 return (endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind;
96 return (endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind;
97 }
98
InputFile(Kind k,MemoryBufferRef m)99 InputFile::InputFile(Kind k, MemoryBufferRef m)
100 : mb(m), groupId(nextGroupId), fileKind(k) {
101 // All files within the same --{start,end}-group get the same group ID.
102 // Otherwise, a new file will get a new group ID.
103 if (!isInGroup)
104 ++nextGroupId;
105 }
106
readFile(StringRef path)107 Optional<MemoryBufferRef> elf::readFile(StringRef path) {
108 llvm::TimeTraceScope timeScope("Load input files", path);
109
110 // The --chroot option changes our virtual root directory.
111 // This is useful when you are dealing with files created by --reproduce.
112 if (!config->chroot.empty() && path.startswith("/"))
113 path = saver.save(config->chroot + path);
114
115 log(path);
116 config->dependencyFiles.insert(llvm::CachedHashString(path));
117
118 auto mbOrErr = MemoryBuffer::getFile(path, -1, false);
119 if (auto ec = mbOrErr.getError()) {
120 error("cannot open " + path + ": " + ec.message());
121 return None;
122 }
123
124 std::unique_ptr<MemoryBuffer> &mb = *mbOrErr;
125 MemoryBufferRef mbref = mb->getMemBufferRef();
126 make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take MB ownership
127
128 if (tar)
129 tar->append(relativeToRoot(path), mbref.getBuffer());
130 return mbref;
131 }
132
133 // All input object files must be for the same architecture
134 // (e.g. it does not make sense to link x86 object files with
135 // MIPS object files.) This function checks for that error.
isCompatible(InputFile * file)136 static bool isCompatible(InputFile *file) {
137 if (!file->isElf() && !isa<BitcodeFile>(file))
138 return true;
139
140 if (file->ekind == config->ekind && file->emachine == config->emachine) {
141 if (config->emachine != EM_MIPS)
142 return true;
143 if (isMipsN32Abi(file) == config->mipsN32Abi)
144 return true;
145 }
146
147 StringRef target =
148 !config->bfdname.empty() ? config->bfdname : config->emulation;
149 if (!target.empty()) {
150 error(toString(file) + " is incompatible with " + target);
151 return false;
152 }
153
154 InputFile *existing;
155 if (!objectFiles.empty())
156 existing = objectFiles[0];
157 else if (!sharedFiles.empty())
158 existing = sharedFiles[0];
159 else if (!bitcodeFiles.empty())
160 existing = bitcodeFiles[0];
161 else
162 llvm_unreachable("Must have -m, OUTPUT_FORMAT or existing input file to "
163 "determine target emulation");
164
165 error(toString(file) + " is incompatible with " + toString(existing));
166 return false;
167 }
168
doParseFile(InputFile * file)169 template <class ELFT> static void doParseFile(InputFile *file) {
170 if (!isCompatible(file))
171 return;
172
173 // Binary file
174 if (auto *f = dyn_cast<BinaryFile>(file)) {
175 binaryFiles.push_back(f);
176 f->parse();
177 return;
178 }
179
180 // .a file
181 if (auto *f = dyn_cast<ArchiveFile>(file)) {
182 archiveFiles.push_back(f);
183 f->parse();
184 return;
185 }
186
187 // Lazy object file
188 if (auto *f = dyn_cast<LazyObjFile>(file)) {
189 lazyObjFiles.push_back(f);
190 f->parse<ELFT>();
191 return;
192 }
193
194 if (config->trace)
195 message(toString(file));
196
197 // .so file
198 if (auto *f = dyn_cast<SharedFile>(file)) {
199 f->parse<ELFT>();
200 return;
201 }
202
203 // LLVM bitcode file
204 if (auto *f = dyn_cast<BitcodeFile>(file)) {
205 bitcodeFiles.push_back(f);
206 f->parse<ELFT>();
207 return;
208 }
209
210 // Regular object file
211 objectFiles.push_back(file);
212 cast<ObjFile<ELFT>>(file)->parse();
213 }
214
215 // Add symbols in File to the symbol table.
parseFile(InputFile * file)216 void elf::parseFile(InputFile *file) {
217 switch (config->ekind) {
218 case ELF32LEKind:
219 doParseFile<ELF32LE>(file);
220 return;
221 case ELF32BEKind:
222 doParseFile<ELF32BE>(file);
223 return;
224 case ELF64LEKind:
225 doParseFile<ELF64LE>(file);
226 return;
227 case ELF64BEKind:
228 doParseFile<ELF64BE>(file);
229 return;
230 default:
231 llvm_unreachable("unknown ELFT");
232 }
233 }
234
235 // Concatenates arguments to construct a string representing an error location.
createFileLineMsg(StringRef path,unsigned line)236 static std::string createFileLineMsg(StringRef path, unsigned line) {
237 std::string filename = std::string(path::filename(path));
238 std::string lineno = ":" + std::to_string(line);
239 if (filename == path)
240 return filename + lineno;
241 return filename + lineno + " (" + path.str() + lineno + ")";
242 }
243
244 template <class ELFT>
getSrcMsgAux(ObjFile<ELFT> & file,const Symbol & sym,InputSectionBase & sec,uint64_t offset)245 static std::string getSrcMsgAux(ObjFile<ELFT> &file, const Symbol &sym,
246 InputSectionBase &sec, uint64_t offset) {
247 // In DWARF, functions and variables are stored to different places.
248 // First, lookup a function for a given offset.
249 if (Optional<DILineInfo> info = file.getDILineInfo(&sec, offset))
250 return createFileLineMsg(info->FileName, info->Line);
251
252 // If it failed, lookup again as a variable.
253 if (Optional<std::pair<std::string, unsigned>> fileLine =
254 file.getVariableLoc(sym.getName()))
255 return createFileLineMsg(fileLine->first, fileLine->second);
256
257 // File.sourceFile contains STT_FILE symbol, and that is a last resort.
258 return std::string(file.sourceFile);
259 }
260
getSrcMsg(const Symbol & sym,InputSectionBase & sec,uint64_t offset)261 std::string InputFile::getSrcMsg(const Symbol &sym, InputSectionBase &sec,
262 uint64_t offset) {
263 if (kind() != ObjKind)
264 return "";
265 switch (config->ekind) {
266 default:
267 llvm_unreachable("Invalid kind");
268 case ELF32LEKind:
269 return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), sym, sec, offset);
270 case ELF32BEKind:
271 return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), sym, sec, offset);
272 case ELF64LEKind:
273 return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), sym, sec, offset);
274 case ELF64BEKind:
275 return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), sym, sec, offset);
276 }
277 }
278
getNameForScript() const279 StringRef InputFile::getNameForScript() const {
280 if (archiveName.empty())
281 return getName();
282
283 if (nameForScriptCache.empty())
284 nameForScriptCache = (archiveName + Twine(':') + getName()).str();
285
286 return nameForScriptCache;
287 }
288
getDwarf()289 template <class ELFT> DWARFCache *ObjFile<ELFT>::getDwarf() {
290 llvm::call_once(initDwarf, [this]() {
291 dwarf = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>(
292 std::make_unique<LLDDwarfObj<ELFT>>(this), "",
293 [&](Error err) { warn(getName() + ": " + toString(std::move(err))); },
294 [&](Error warning) {
295 warn(getName() + ": " + toString(std::move(warning)));
296 }));
297 });
298
299 return dwarf.get();
300 }
301
302 // Returns the pair of file name and line number describing location of data
303 // object (variable, array, etc) definition.
304 template <class ELFT>
305 Optional<std::pair<std::string, unsigned>>
getVariableLoc(StringRef name)306 ObjFile<ELFT>::getVariableLoc(StringRef name) {
307 return getDwarf()->getVariableLoc(name);
308 }
309
310 // Returns source line information for a given offset
311 // using DWARF debug info.
312 template <class ELFT>
getDILineInfo(InputSectionBase * s,uint64_t offset)313 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *s,
314 uint64_t offset) {
315 // Detect SectionIndex for specified section.
316 uint64_t sectionIndex = object::SectionedAddress::UndefSection;
317 ArrayRef<InputSectionBase *> sections = s->file->getSections();
318 for (uint64_t curIndex = 0; curIndex < sections.size(); ++curIndex) {
319 if (s == sections[curIndex]) {
320 sectionIndex = curIndex;
321 break;
322 }
323 }
324
325 return getDwarf()->getDILineInfo(offset, sectionIndex);
326 }
327
ELFFileBase(Kind k,MemoryBufferRef mb)328 ELFFileBase::ELFFileBase(Kind k, MemoryBufferRef mb) : InputFile(k, mb) {
329 ekind = getELFKind(mb, "");
330
331 switch (ekind) {
332 case ELF32LEKind:
333 init<ELF32LE>();
334 break;
335 case ELF32BEKind:
336 init<ELF32BE>();
337 break;
338 case ELF64LEKind:
339 init<ELF64LE>();
340 break;
341 case ELF64BEKind:
342 init<ELF64BE>();
343 break;
344 default:
345 llvm_unreachable("getELFKind");
346 }
347 }
348
349 template <typename Elf_Shdr>
findSection(ArrayRef<Elf_Shdr> sections,uint32_t type)350 static const Elf_Shdr *findSection(ArrayRef<Elf_Shdr> sections, uint32_t type) {
351 for (const Elf_Shdr &sec : sections)
352 if (sec.sh_type == type)
353 return &sec;
354 return nullptr;
355 }
356
init()357 template <class ELFT> void ELFFileBase::init() {
358 using Elf_Shdr = typename ELFT::Shdr;
359 using Elf_Sym = typename ELFT::Sym;
360
361 // Initialize trivial attributes.
362 const ELFFile<ELFT> &obj = getObj<ELFT>();
363 emachine = obj.getHeader().e_machine;
364 osabi = obj.getHeader().e_ident[llvm::ELF::EI_OSABI];
365 abiVersion = obj.getHeader().e_ident[llvm::ELF::EI_ABIVERSION];
366
367 ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this);
368
369 // Find a symbol table.
370 bool isDSO =
371 (identify_magic(mb.getBuffer()) == file_magic::elf_shared_object);
372 const Elf_Shdr *symtabSec =
373 findSection(sections, isDSO ? SHT_DYNSYM : SHT_SYMTAB);
374
375 if (!symtabSec)
376 return;
377
378 // Initialize members corresponding to a symbol table.
379 firstGlobal = symtabSec->sh_info;
380
381 ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(symtabSec), this);
382 if (firstGlobal == 0 || firstGlobal > eSyms.size())
383 fatal(toString(this) + ": invalid sh_info in symbol table");
384
385 elfSyms = reinterpret_cast<const void *>(eSyms.data());
386 numELFSyms = eSyms.size();
387 stringTable = CHECK(obj.getStringTableForSymtab(*symtabSec, sections), this);
388 }
389
390 template <class ELFT>
getSectionIndex(const Elf_Sym & sym) const391 uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &sym) const {
392 return CHECK(
393 this->getObj().getSectionIndex(sym, getELFSyms<ELFT>(), shndxTable),
394 this);
395 }
396
getLocalSymbols()397 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getLocalSymbols() {
398 if (this->symbols.empty())
399 return {};
400 return makeArrayRef(this->symbols).slice(1, this->firstGlobal - 1);
401 }
402
getGlobalSymbols()403 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getGlobalSymbols() {
404 return makeArrayRef(this->symbols).slice(this->firstGlobal);
405 }
406
parse(bool ignoreComdats)407 template <class ELFT> void ObjFile<ELFT>::parse(bool ignoreComdats) {
408 // Read a section table. justSymbols is usually false.
409 if (this->justSymbols)
410 initializeJustSymbols();
411 else
412 initializeSections(ignoreComdats);
413
414 // Read a symbol table.
415 initializeSymbols();
416 }
417
418 // Sections with SHT_GROUP and comdat bits define comdat section groups.
419 // They are identified and deduplicated by group name. This function
420 // returns a group name.
421 template <class ELFT>
getShtGroupSignature(ArrayRef<Elf_Shdr> sections,const Elf_Shdr & sec)422 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> sections,
423 const Elf_Shdr &sec) {
424 typename ELFT::SymRange symbols = this->getELFSyms<ELFT>();
425 if (sec.sh_info >= symbols.size())
426 fatal(toString(this) + ": invalid symbol index");
427 const typename ELFT::Sym &sym = symbols[sec.sh_info];
428 StringRef signature = CHECK(sym.getName(this->stringTable), this);
429
430 // As a special case, if a symbol is a section symbol and has no name,
431 // we use a section name as a signature.
432 //
433 // Such SHT_GROUP sections are invalid from the perspective of the ELF
434 // standard, but GNU gold 1.14 (the newest version as of July 2017) or
435 // older produce such sections as outputs for the -r option, so we need
436 // a bug-compatibility.
437 if (signature.empty() && sym.getType() == STT_SECTION)
438 return getSectionName(sec);
439 return signature;
440 }
441
442 template <class ELFT>
shouldMerge(const Elf_Shdr & sec,StringRef name)443 bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &sec, StringRef name) {
444 if (!(sec.sh_flags & SHF_MERGE))
445 return false;
446
447 // On a regular link we don't merge sections if -O0 (default is -O1). This
448 // sometimes makes the linker significantly faster, although the output will
449 // be bigger.
450 //
451 // Doing the same for -r would create a problem as it would combine sections
452 // with different sh_entsize. One option would be to just copy every SHF_MERGE
453 // section as is to the output. While this would produce a valid ELF file with
454 // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when
455 // they see two .debug_str. We could have separate logic for combining
456 // SHF_MERGE sections based both on their name and sh_entsize, but that seems
457 // to be more trouble than it is worth. Instead, we just use the regular (-O1)
458 // logic for -r.
459 if (config->optimize == 0 && !config->relocatable)
460 return false;
461
462 // A mergeable section with size 0 is useless because they don't have
463 // any data to merge. A mergeable string section with size 0 can be
464 // argued as invalid because it doesn't end with a null character.
465 // We'll avoid a mess by handling them as if they were non-mergeable.
466 if (sec.sh_size == 0)
467 return false;
468
469 // Check for sh_entsize. The ELF spec is not clear about the zero
470 // sh_entsize. It says that "the member [sh_entsize] contains 0 if
471 // the section does not hold a table of fixed-size entries". We know
472 // that Rust 1.13 produces a string mergeable section with a zero
473 // sh_entsize. Here we just accept it rather than being picky about it.
474 uint64_t entSize = sec.sh_entsize;
475 if (entSize == 0)
476 return false;
477 if (sec.sh_size % entSize)
478 fatal(toString(this) + ":(" + name + "): SHF_MERGE section size (" +
479 Twine(sec.sh_size) + ") must be a multiple of sh_entsize (" +
480 Twine(entSize) + ")");
481
482 if (sec.sh_flags & SHF_WRITE)
483 fatal(toString(this) + ":(" + name +
484 "): writable SHF_MERGE section is not supported");
485
486 return true;
487 }
488
489 // This is for --just-symbols.
490 //
491 // --just-symbols is a very minor feature that allows you to link your
492 // output against other existing program, so that if you load both your
493 // program and the other program into memory, your output can refer the
494 // other program's symbols.
495 //
496 // When the option is given, we link "just symbols". The section table is
497 // initialized with null pointers.
initializeJustSymbols()498 template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() {
499 ArrayRef<Elf_Shdr> sections = CHECK(this->getObj().sections(), this);
500 this->sections.resize(sections.size());
501 }
502
503 // An ELF object file may contain a `.deplibs` section. If it exists, the
504 // section contains a list of library specifiers such as `m` for libm. This
505 // function resolves a given name by finding the first matching library checking
506 // the various ways that a library can be specified to LLD. This ELF extension
507 // is a form of autolinking and is called `dependent libraries`. It is currently
508 // unique to LLVM and lld.
addDependentLibrary(StringRef specifier,const InputFile * f)509 static void addDependentLibrary(StringRef specifier, const InputFile *f) {
510 if (!config->dependentLibraries)
511 return;
512 if (fs::exists(specifier))
513 driver->addFile(specifier, /*withLOption=*/false);
514 else if (Optional<std::string> s = findFromSearchPaths(specifier))
515 driver->addFile(*s, /*withLOption=*/true);
516 else if (Optional<std::string> s = searchLibraryBaseName(specifier))
517 driver->addFile(*s, /*withLOption=*/true);
518 else
519 error(toString(f) +
520 ": unable to find library from dependent library specifier: " +
521 specifier);
522 }
523
524 // Record the membership of a section group so that in the garbage collection
525 // pass, section group members are kept or discarded as a unit.
526 template <class ELFT>
handleSectionGroup(ArrayRef<InputSectionBase * > sections,ArrayRef<typename ELFT::Word> entries)527 static void handleSectionGroup(ArrayRef<InputSectionBase *> sections,
528 ArrayRef<typename ELFT::Word> entries) {
529 bool hasAlloc = false;
530 for (uint32_t index : entries.slice(1)) {
531 if (index >= sections.size())
532 return;
533 if (InputSectionBase *s = sections[index])
534 if (s != &InputSection::discarded && s->flags & SHF_ALLOC)
535 hasAlloc = true;
536 }
537
538 // If any member has the SHF_ALLOC flag, the whole group is subject to garbage
539 // collection. See the comment in markLive(). This rule retains .debug_types
540 // and .rela.debug_types.
541 if (!hasAlloc)
542 return;
543
544 // Connect the members in a circular doubly-linked list via
545 // nextInSectionGroup.
546 InputSectionBase *head;
547 InputSectionBase *prev = nullptr;
548 for (uint32_t index : entries.slice(1)) {
549 InputSectionBase *s = sections[index];
550 if (!s || s == &InputSection::discarded)
551 continue;
552 if (prev)
553 prev->nextInSectionGroup = s;
554 else
555 head = s;
556 prev = s;
557 }
558 if (prev)
559 prev->nextInSectionGroup = head;
560 }
561
562 template <class ELFT>
initializeSections(bool ignoreComdats)563 void ObjFile<ELFT>::initializeSections(bool ignoreComdats) {
564 const ELFFile<ELFT> &obj = this->getObj();
565
566 ArrayRef<Elf_Shdr> objSections = CHECK(obj.sections(), this);
567 uint64_t size = objSections.size();
568 this->sections.resize(size);
569 this->sectionStringTable =
570 CHECK(obj.getSectionStringTable(objSections), this);
571
572 std::vector<ArrayRef<Elf_Word>> selectedGroups;
573
574 for (size_t i = 0, e = objSections.size(); i < e; ++i) {
575 if (this->sections[i] == &InputSection::discarded)
576 continue;
577 const Elf_Shdr &sec = objSections[i];
578
579 if (sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE)
580 cgProfile =
581 check(obj.template getSectionContentsAsArray<Elf_CGProfile>(sec));
582
583 // SHF_EXCLUDE'ed sections are discarded by the linker. However,
584 // if -r is given, we'll let the final link discard such sections.
585 // This is compatible with GNU.
586 if ((sec.sh_flags & SHF_EXCLUDE) && !config->relocatable) {
587 if (sec.sh_type == SHT_LLVM_ADDRSIG) {
588 // We ignore the address-significance table if we know that the object
589 // file was created by objcopy or ld -r. This is because these tools
590 // will reorder the symbols in the symbol table, invalidating the data
591 // in the address-significance table, which refers to symbols by index.
592 if (sec.sh_link != 0)
593 this->addrsigSec = &sec;
594 else if (config->icf == ICFLevel::Safe)
595 warn(toString(this) + ": --icf=safe is incompatible with object "
596 "files created using objcopy or ld -r");
597 }
598 this->sections[i] = &InputSection::discarded;
599 continue;
600 }
601
602 switch (sec.sh_type) {
603 case SHT_GROUP: {
604 // De-duplicate section groups by their signatures.
605 StringRef signature = getShtGroupSignature(objSections, sec);
606 this->sections[i] = &InputSection::discarded;
607
608
609 ArrayRef<Elf_Word> entries =
610 CHECK(obj.template getSectionContentsAsArray<Elf_Word>(sec), this);
611 if (entries.empty())
612 fatal(toString(this) + ": empty SHT_GROUP");
613
614 // The first word of a SHT_GROUP section contains flags. Currently,
615 // the standard defines only "GRP_COMDAT" flag for the COMDAT group.
616 // An group with the empty flag doesn't define anything; such sections
617 // are just skipped.
618 if (entries[0] == 0)
619 continue;
620
621 if (entries[0] != GRP_COMDAT)
622 fatal(toString(this) + ": unsupported SHT_GROUP format");
623
624 bool isNew =
625 ignoreComdats ||
626 symtab->comdatGroups.try_emplace(CachedHashStringRef(signature), this)
627 .second;
628 if (isNew) {
629 if (config->relocatable)
630 this->sections[i] = createInputSection(sec);
631 selectedGroups.push_back(entries);
632 continue;
633 }
634
635 // Otherwise, discard group members.
636 for (uint32_t secIndex : entries.slice(1)) {
637 if (secIndex >= size)
638 fatal(toString(this) +
639 ": invalid section index in group: " + Twine(secIndex));
640 this->sections[secIndex] = &InputSection::discarded;
641 }
642 break;
643 }
644 case SHT_SYMTAB_SHNDX:
645 shndxTable = CHECK(obj.getSHNDXTable(sec, objSections), this);
646 break;
647 case SHT_SYMTAB:
648 case SHT_STRTAB:
649 case SHT_REL:
650 case SHT_RELA:
651 case SHT_NULL:
652 break;
653 default:
654 this->sections[i] = createInputSection(sec);
655 }
656 }
657
658 // We have a second loop. It is used to:
659 // 1) handle SHF_LINK_ORDER sections.
660 // 2) create SHT_REL[A] sections. In some cases the section header index of a
661 // relocation section may be smaller than that of the relocated section. In
662 // such cases, the relocation section would attempt to reference a target
663 // section that has not yet been created. For simplicity, delay creation of
664 // relocation sections until now.
665 for (size_t i = 0, e = objSections.size(); i < e; ++i) {
666 if (this->sections[i] == &InputSection::discarded)
667 continue;
668 const Elf_Shdr &sec = objSections[i];
669
670 if (sec.sh_type == SHT_REL || sec.sh_type == SHT_RELA)
671 this->sections[i] = createInputSection(sec);
672
673 // A SHF_LINK_ORDER section with sh_link=0 is handled as if it did not have
674 // the flag.
675 if (!(sec.sh_flags & SHF_LINK_ORDER) || !sec.sh_link)
676 continue;
677
678 InputSectionBase *linkSec = nullptr;
679 if (sec.sh_link < this->sections.size())
680 linkSec = this->sections[sec.sh_link];
681 if (!linkSec)
682 fatal(toString(this) + ": invalid sh_link index: " + Twine(sec.sh_link));
683
684 // A SHF_LINK_ORDER section is discarded if its linked-to section is
685 // discarded.
686 InputSection *isec = cast<InputSection>(this->sections[i]);
687 linkSec->dependentSections.push_back(isec);
688 if (!isa<InputSection>(linkSec))
689 error("a section " + isec->name +
690 " with SHF_LINK_ORDER should not refer a non-regular section: " +
691 toString(linkSec));
692 }
693
694 for (ArrayRef<Elf_Word> entries : selectedGroups)
695 handleSectionGroup<ELFT>(this->sections, entries);
696 }
697
698 // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD
699 // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how
700 // the input objects have been compiled.
updateARMVFPArgs(const ARMAttributeParser & attributes,const InputFile * f)701 static void updateARMVFPArgs(const ARMAttributeParser &attributes,
702 const InputFile *f) {
703 Optional<unsigned> attr =
704 attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args);
705 if (!attr.hasValue())
706 // If an ABI tag isn't present then it is implicitly given the value of 0
707 // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files,
708 // including some in glibc that don't use FP args (and should have value 3)
709 // don't have the attribute so we do not consider an implicit value of 0
710 // as a clash.
711 return;
712
713 unsigned vfpArgs = attr.getValue();
714 ARMVFPArgKind arg;
715 switch (vfpArgs) {
716 case ARMBuildAttrs::BaseAAPCS:
717 arg = ARMVFPArgKind::Base;
718 break;
719 case ARMBuildAttrs::HardFPAAPCS:
720 arg = ARMVFPArgKind::VFP;
721 break;
722 case ARMBuildAttrs::ToolChainFPPCS:
723 // Tool chain specific convention that conforms to neither AAPCS variant.
724 arg = ARMVFPArgKind::ToolChain;
725 break;
726 case ARMBuildAttrs::CompatibleFPAAPCS:
727 // Object compatible with all conventions.
728 return;
729 default:
730 error(toString(f) + ": unknown Tag_ABI_VFP_args value: " + Twine(vfpArgs));
731 return;
732 }
733 // Follow ld.bfd and error if there is a mix of calling conventions.
734 if (config->armVFPArgs != arg && config->armVFPArgs != ARMVFPArgKind::Default)
735 error(toString(f) + ": incompatible Tag_ABI_VFP_args");
736 else
737 config->armVFPArgs = arg;
738 }
739
740 // The ARM support in lld makes some use of instructions that are not available
741 // on all ARM architectures. Namely:
742 // - Use of BLX instruction for interworking between ARM and Thumb state.
743 // - Use of the extended Thumb branch encoding in relocation.
744 // - Use of the MOVT/MOVW instructions in Thumb Thunks.
745 // The ARM Attributes section contains information about the architecture chosen
746 // at compile time. We follow the convention that if at least one input object
747 // is compiled with an architecture that supports these features then lld is
748 // permitted to use them.
updateSupportedARMFeatures(const ARMAttributeParser & attributes)749 static void updateSupportedARMFeatures(const ARMAttributeParser &attributes) {
750 Optional<unsigned> attr =
751 attributes.getAttributeValue(ARMBuildAttrs::CPU_arch);
752 if (!attr.hasValue())
753 return;
754 auto arch = attr.getValue();
755 switch (arch) {
756 case ARMBuildAttrs::Pre_v4:
757 case ARMBuildAttrs::v4:
758 case ARMBuildAttrs::v4T:
759 // Architectures prior to v5 do not support BLX instruction
760 break;
761 case ARMBuildAttrs::v5T:
762 case ARMBuildAttrs::v5TE:
763 case ARMBuildAttrs::v5TEJ:
764 case ARMBuildAttrs::v6:
765 case ARMBuildAttrs::v6KZ:
766 case ARMBuildAttrs::v6K:
767 config->armHasBlx = true;
768 // Architectures used in pre-Cortex processors do not support
769 // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception
770 // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do.
771 break;
772 default:
773 // All other Architectures have BLX and extended branch encoding
774 config->armHasBlx = true;
775 config->armJ1J2BranchEncoding = true;
776 if (arch != ARMBuildAttrs::v6_M && arch != ARMBuildAttrs::v6S_M)
777 // All Architectures used in Cortex processors with the exception
778 // of v6-M and v6S-M have the MOVT and MOVW instructions.
779 config->armHasMovtMovw = true;
780 break;
781 }
782 }
783
784 // If a source file is compiled with x86 hardware-assisted call flow control
785 // enabled, the generated object file contains feature flags indicating that
786 // fact. This function reads the feature flags and returns it.
787 //
788 // Essentially we want to read a single 32-bit value in this function, but this
789 // function is rather complicated because the value is buried deep inside a
790 // .note.gnu.property section.
791 //
792 // The section consists of one or more NOTE records. Each NOTE record consists
793 // of zero or more type-length-value fields. We want to find a field of a
794 // certain type. It seems a bit too much to just store a 32-bit value, perhaps
795 // the ABI is unnecessarily complicated.
readAndFeatures(const InputSection & sec)796 template <class ELFT> static uint32_t readAndFeatures(const InputSection &sec) {
797 using Elf_Nhdr = typename ELFT::Nhdr;
798 using Elf_Note = typename ELFT::Note;
799
800 uint32_t featuresSet = 0;
801 ArrayRef<uint8_t> data = sec.data();
802 auto reportFatal = [&](const uint8_t *place, const char *msg) {
803 fatal(toString(sec.file) + ":(" + sec.name + "+0x" +
804 Twine::utohexstr(place - sec.data().data()) + "): " + msg);
805 };
806 while (!data.empty()) {
807 // Read one NOTE record.
808 auto *nhdr = reinterpret_cast<const Elf_Nhdr *>(data.data());
809 if (data.size() < sizeof(Elf_Nhdr) || data.size() < nhdr->getSize())
810 reportFatal(data.data(), "data is too short");
811
812 Elf_Note note(*nhdr);
813 if (nhdr->n_type != NT_GNU_PROPERTY_TYPE_0 || note.getName() != "GNU") {
814 data = data.slice(nhdr->getSize());
815 continue;
816 }
817
818 uint32_t featureAndType = config->emachine == EM_AARCH64
819 ? GNU_PROPERTY_AARCH64_FEATURE_1_AND
820 : GNU_PROPERTY_X86_FEATURE_1_AND;
821
822 // Read a body of a NOTE record, which consists of type-length-value fields.
823 ArrayRef<uint8_t> desc = note.getDesc();
824 while (!desc.empty()) {
825 const uint8_t *place = desc.data();
826 if (desc.size() < 8)
827 reportFatal(place, "program property is too short");
828 uint32_t type = read32<ELFT::TargetEndianness>(desc.data());
829 uint32_t size = read32<ELFT::TargetEndianness>(desc.data() + 4);
830 desc = desc.slice(8);
831 if (desc.size() < size)
832 reportFatal(place, "program property is too short");
833
834 if (type == featureAndType) {
835 // We found a FEATURE_1_AND field. There may be more than one of these
836 // in a .note.gnu.property section, for a relocatable object we
837 // accumulate the bits set.
838 if (size < 4)
839 reportFatal(place, "FEATURE_1_AND entry is too short");
840 featuresSet |= read32<ELFT::TargetEndianness>(desc.data());
841 }
842
843 // Padding is present in the note descriptor, if necessary.
844 desc = desc.slice(alignTo<(ELFT::Is64Bits ? 8 : 4)>(size));
845 }
846
847 // Go to next NOTE record to look for more FEATURE_1_AND descriptions.
848 data = data.slice(nhdr->getSize());
849 }
850
851 return featuresSet;
852 }
853
854 template <class ELFT>
getRelocTarget(const Elf_Shdr & sec)855 InputSectionBase *ObjFile<ELFT>::getRelocTarget(const Elf_Shdr &sec) {
856 uint32_t idx = sec.sh_info;
857 if (idx >= this->sections.size())
858 fatal(toString(this) + ": invalid relocated section index: " + Twine(idx));
859 InputSectionBase *target = this->sections[idx];
860
861 // Strictly speaking, a relocation section must be included in the
862 // group of the section it relocates. However, LLVM 3.3 and earlier
863 // would fail to do so, so we gracefully handle that case.
864 if (target == &InputSection::discarded)
865 return nullptr;
866
867 if (!target)
868 fatal(toString(this) + ": unsupported relocation reference");
869 return target;
870 }
871
872 // Create a regular InputSection class that has the same contents
873 // as a given section.
toRegularSection(MergeInputSection * sec)874 static InputSection *toRegularSection(MergeInputSection *sec) {
875 return make<InputSection>(sec->file, sec->flags, sec->type, sec->alignment,
876 sec->data(), sec->name);
877 }
878
879 template <class ELFT>
createInputSection(const Elf_Shdr & sec)880 InputSectionBase *ObjFile<ELFT>::createInputSection(const Elf_Shdr &sec) {
881 StringRef name = getSectionName(sec);
882
883 if (config->emachine == EM_ARM && sec.sh_type == SHT_ARM_ATTRIBUTES) {
884 ARMAttributeParser attributes;
885 ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(sec));
886 if (Error e = attributes.parse(contents, config->ekind == ELF32LEKind
887 ? support::little
888 : support::big)) {
889 auto *isec = make<InputSection>(*this, sec, name);
890 warn(toString(isec) + ": " + llvm::toString(std::move(e)));
891 } else {
892 updateSupportedARMFeatures(attributes);
893 updateARMVFPArgs(attributes, this);
894
895 // FIXME: Retain the first attribute section we see. The eglibc ARM
896 // dynamic loaders require the presence of an attribute section for dlopen
897 // to work. In a full implementation we would merge all attribute
898 // sections.
899 if (in.attributes == nullptr) {
900 in.attributes = make<InputSection>(*this, sec, name);
901 return in.attributes;
902 }
903 return &InputSection::discarded;
904 }
905 }
906
907 if (config->emachine == EM_RISCV && sec.sh_type == SHT_RISCV_ATTRIBUTES) {
908 RISCVAttributeParser attributes;
909 ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(sec));
910 if (Error e = attributes.parse(contents, support::little)) {
911 auto *isec = make<InputSection>(*this, sec, name);
912 warn(toString(isec) + ": " + llvm::toString(std::move(e)));
913 } else {
914 // FIXME: Validate arch tag contains C if and only if EF_RISCV_RVC is
915 // present.
916
917 // FIXME: Retain the first attribute section we see. Tools such as
918 // llvm-objdump make use of the attribute section to determine which
919 // standard extensions to enable. In a full implementation we would merge
920 // all attribute sections.
921 if (in.attributes == nullptr) {
922 in.attributes = make<InputSection>(*this, sec, name);
923 return in.attributes;
924 }
925 return &InputSection::discarded;
926 }
927 }
928
929 switch (sec.sh_type) {
930 case SHT_LLVM_DEPENDENT_LIBRARIES: {
931 if (config->relocatable)
932 break;
933 ArrayRef<char> data =
934 CHECK(this->getObj().template getSectionContentsAsArray<char>(sec), this);
935 if (!data.empty() && data.back() != '\0') {
936 error(toString(this) +
937 ": corrupted dependent libraries section (unterminated string): " +
938 name);
939 return &InputSection::discarded;
940 }
941 for (const char *d = data.begin(), *e = data.end(); d < e;) {
942 StringRef s(d);
943 addDependentLibrary(s, this);
944 d += s.size() + 1;
945 }
946 return &InputSection::discarded;
947 }
948 case SHT_RELA:
949 case SHT_REL: {
950 // Find a relocation target section and associate this section with that.
951 // Target may have been discarded if it is in a different section group
952 // and the group is discarded, even though it's a violation of the
953 // spec. We handle that situation gracefully by discarding dangling
954 // relocation sections.
955 InputSectionBase *target = getRelocTarget(sec);
956 if (!target)
957 return nullptr;
958
959 // ELF spec allows mergeable sections with relocations, but they are
960 // rare, and it is in practice hard to merge such sections by contents,
961 // because applying relocations at end of linking changes section
962 // contents. So, we simply handle such sections as non-mergeable ones.
963 // Degrading like this is acceptable because section merging is optional.
964 if (auto *ms = dyn_cast<MergeInputSection>(target)) {
965 target = toRegularSection(ms);
966 this->sections[sec.sh_info] = target;
967 }
968
969 if (target->firstRelocation)
970 fatal(toString(this) +
971 ": multiple relocation sections to one section are not supported");
972
973 if (sec.sh_type == SHT_RELA) {
974 ArrayRef<Elf_Rela> rels = CHECK(getObj().relas(sec), this);
975 target->firstRelocation = rels.begin();
976 target->numRelocations = rels.size();
977 target->areRelocsRela = true;
978 } else {
979 ArrayRef<Elf_Rel> rels = CHECK(getObj().rels(sec), this);
980 target->firstRelocation = rels.begin();
981 target->numRelocations = rels.size();
982 target->areRelocsRela = false;
983 }
984 assert(isUInt<31>(target->numRelocations));
985
986 // Relocation sections are usually removed from the output, so return
987 // `nullptr` for the normal case. However, if -r or --emit-relocs is
988 // specified, we need to copy them to the output. (Some post link analysis
989 // tools specify --emit-relocs to obtain the information.)
990 if (!config->relocatable && !config->emitRelocs)
991 return nullptr;
992 InputSection *relocSec = make<InputSection>(*this, sec, name);
993 // If the relocated section is discarded (due to /DISCARD/ or
994 // --gc-sections), the relocation section should be discarded as well.
995 target->dependentSections.push_back(relocSec);
996 return relocSec;
997 }
998 }
999
1000 // The GNU linker uses .note.GNU-stack section as a marker indicating
1001 // that the code in the object file does not expect that the stack is
1002 // executable (in terms of NX bit). If all input files have the marker,
1003 // the GNU linker adds a PT_GNU_STACK segment to tells the loader to
1004 // make the stack non-executable. Most object files have this section as
1005 // of 2017.
1006 //
1007 // But making the stack non-executable is a norm today for security
1008 // reasons. Failure to do so may result in a serious security issue.
1009 // Therefore, we make LLD always add PT_GNU_STACK unless it is
1010 // explicitly told to do otherwise (by -z execstack). Because the stack
1011 // executable-ness is controlled solely by command line options,
1012 // .note.GNU-stack sections are simply ignored.
1013 if (name == ".note.GNU-stack")
1014 return &InputSection::discarded;
1015
1016 // Object files that use processor features such as Intel Control-Flow
1017 // Enforcement (CET) or AArch64 Branch Target Identification BTI, use a
1018 // .note.gnu.property section containing a bitfield of feature bits like the
1019 // GNU_PROPERTY_X86_FEATURE_1_IBT flag. Read a bitmap containing the flag.
1020 //
1021 // Since we merge bitmaps from multiple object files to create a new
1022 // .note.gnu.property containing a single AND'ed bitmap, we discard an input
1023 // file's .note.gnu.property section.
1024 if (name == ".note.gnu.property") {
1025 this->andFeatures = readAndFeatures<ELFT>(InputSection(*this, sec, name));
1026 return &InputSection::discarded;
1027 }
1028
1029 // Split stacks is a feature to support a discontiguous stack,
1030 // commonly used in the programming language Go. For the details,
1031 // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled
1032 // for split stack will include a .note.GNU-split-stack section.
1033 if (name == ".note.GNU-split-stack") {
1034 if (config->relocatable) {
1035 error("cannot mix split-stack and non-split-stack in a relocatable link");
1036 return &InputSection::discarded;
1037 }
1038 this->splitStack = true;
1039 return &InputSection::discarded;
1040 }
1041
1042 // An object file cmpiled for split stack, but where some of the
1043 // functions were compiled with the no_split_stack_attribute will
1044 // include a .note.GNU-no-split-stack section.
1045 if (name == ".note.GNU-no-split-stack") {
1046 this->someNoSplitStack = true;
1047 return &InputSection::discarded;
1048 }
1049
1050 // The linkonce feature is a sort of proto-comdat. Some glibc i386 object
1051 // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce
1052 // sections. Drop those sections to avoid duplicate symbol errors.
1053 // FIXME: This is glibc PR20543, we should remove this hack once that has been
1054 // fixed for a while.
1055 if (name == ".gnu.linkonce.t.__x86.get_pc_thunk.bx" ||
1056 name == ".gnu.linkonce.t.__i686.get_pc_thunk.bx")
1057 return &InputSection::discarded;
1058
1059 // If we are creating a new .build-id section, strip existing .build-id
1060 // sections so that the output won't have more than one .build-id.
1061 // This is not usually a problem because input object files normally don't
1062 // have .build-id sections, but you can create such files by
1063 // "ld.{bfd,gold,lld} -r --build-id", and we want to guard against it.
1064 if (name == ".note.gnu.build-id" && config->buildId != BuildIdKind::None)
1065 return &InputSection::discarded;
1066
1067 // The linker merges EH (exception handling) frames and creates a
1068 // .eh_frame_hdr section for runtime. So we handle them with a special
1069 // class. For relocatable outputs, they are just passed through.
1070 if (name == ".eh_frame" && !config->relocatable)
1071 return make<EhInputSection>(*this, sec, name);
1072
1073 if (shouldMerge(sec, name))
1074 return make<MergeInputSection>(*this, sec, name);
1075 return make<InputSection>(*this, sec, name);
1076 }
1077
1078 template <class ELFT>
getSectionName(const Elf_Shdr & sec)1079 StringRef ObjFile<ELFT>::getSectionName(const Elf_Shdr &sec) {
1080 return CHECK(getObj().getSectionName(sec, sectionStringTable), this);
1081 }
1082
1083 // Initialize this->Symbols. this->Symbols is a parallel array as
1084 // its corresponding ELF symbol table.
initializeSymbols()1085 template <class ELFT> void ObjFile<ELFT>::initializeSymbols() {
1086 ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>();
1087 this->symbols.resize(eSyms.size());
1088
1089 // Fill in InputFile::symbols. Some entries have been initialized
1090 // because of LazyObjFile.
1091 for (size_t i = 0, end = eSyms.size(); i != end; ++i) {
1092 if (this->symbols[i])
1093 continue;
1094 const Elf_Sym &eSym = eSyms[i];
1095 uint32_t secIdx = getSectionIndex(eSym);
1096 if (secIdx >= this->sections.size())
1097 fatal(toString(this) + ": invalid section index: " + Twine(secIdx));
1098 if (eSym.getBinding() != STB_LOCAL) {
1099 if (i < firstGlobal)
1100 error(toString(this) + ": non-local symbol (" + Twine(i) +
1101 ") found at index < .symtab's sh_info (" + Twine(firstGlobal) +
1102 ")");
1103 this->symbols[i] =
1104 symtab->insert(CHECK(eSyms[i].getName(this->stringTable), this));
1105 continue;
1106 }
1107
1108 // Handle local symbols. Local symbols are not added to the symbol
1109 // table because they are not visible from other object files. We
1110 // allocate symbol instances and add their pointers to symbols.
1111 if (i >= firstGlobal)
1112 errorOrWarn(toString(this) + ": STB_LOCAL symbol (" + Twine(i) +
1113 ") found at index >= .symtab's sh_info (" +
1114 Twine(firstGlobal) + ")");
1115
1116 InputSectionBase *sec = this->sections[secIdx];
1117 uint8_t type = eSym.getType();
1118 if (type == STT_FILE)
1119 sourceFile = CHECK(eSym.getName(this->stringTable), this);
1120 if (this->stringTable.size() <= eSym.st_name)
1121 fatal(toString(this) + ": invalid symbol name offset");
1122 StringRefZ name = this->stringTable.data() + eSym.st_name;
1123
1124 if (eSym.st_shndx == SHN_UNDEF)
1125 this->symbols[i] =
1126 make<Undefined>(this, name, STB_LOCAL, eSym.st_other, type);
1127 else if (sec == &InputSection::discarded)
1128 this->symbols[i] =
1129 make<Undefined>(this, name, STB_LOCAL, eSym.st_other, type,
1130 /*discardedSecIdx=*/secIdx);
1131 else
1132 this->symbols[i] = make<Defined>(this, name, STB_LOCAL, eSym.st_other,
1133 type, eSym.st_value, eSym.st_size, sec);
1134 }
1135
1136 // Symbol resolution of non-local symbols.
1137 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) {
1138 const Elf_Sym &eSym = eSyms[i];
1139 uint8_t binding = eSym.getBinding();
1140 if (binding == STB_LOCAL)
1141 continue; // Errored above.
1142
1143 uint32_t secIdx = getSectionIndex(eSym);
1144 InputSectionBase *sec = this->sections[secIdx];
1145 uint8_t stOther = eSym.st_other;
1146 uint8_t type = eSym.getType();
1147 uint64_t value = eSym.st_value;
1148 uint64_t size = eSym.st_size;
1149 StringRefZ name = this->stringTable.data() + eSym.st_name;
1150
1151 // Handle global undefined symbols.
1152 if (eSym.st_shndx == SHN_UNDEF) {
1153 this->symbols[i]->resolve(Undefined{this, name, binding, stOther, type});
1154 this->symbols[i]->referenced = true;
1155 continue;
1156 }
1157
1158 // Handle global common symbols.
1159 if (eSym.st_shndx == SHN_COMMON) {
1160 if (value == 0 || value >= UINT32_MAX)
1161 fatal(toString(this) + ": common symbol '" + StringRef(name.data) +
1162 "' has invalid alignment: " + Twine(value));
1163 this->symbols[i]->resolve(
1164 CommonSymbol{this, name, binding, stOther, type, value, size});
1165 continue;
1166 }
1167
1168 // If a defined symbol is in a discarded section, handle it as if it
1169 // were an undefined symbol. Such symbol doesn't comply with the
1170 // standard, but in practice, a .eh_frame often directly refer
1171 // COMDAT member sections, and if a comdat group is discarded, some
1172 // defined symbol in a .eh_frame becomes dangling symbols.
1173 if (sec == &InputSection::discarded) {
1174 Undefined und{this, name, binding, stOther, type, secIdx};
1175 Symbol *sym = this->symbols[i];
1176 // !ArchiveFile::parsed or LazyObjFile::fetched means that the file
1177 // containing this object has not finished processing, i.e. this symbol is
1178 // a result of a lazy symbol fetch. We should demote the lazy symbol to an
1179 // Undefined so that any relocations outside of the group to it will
1180 // trigger a discarded section error.
1181 if ((sym->symbolKind == Symbol::LazyArchiveKind &&
1182 !cast<ArchiveFile>(sym->file)->parsed) ||
1183 (sym->symbolKind == Symbol::LazyObjectKind &&
1184 cast<LazyObjFile>(sym->file)->fetched))
1185 sym->replace(und);
1186 else
1187 sym->resolve(und);
1188 continue;
1189 }
1190
1191 // Handle global defined symbols.
1192 if (binding == STB_GLOBAL || binding == STB_WEAK ||
1193 binding == STB_GNU_UNIQUE) {
1194 this->symbols[i]->resolve(
1195 Defined{this, name, binding, stOther, type, value, size, sec});
1196 continue;
1197 }
1198
1199 fatal(toString(this) + ": unexpected binding: " + Twine((int)binding));
1200 }
1201 }
1202
ArchiveFile(std::unique_ptr<Archive> && file)1203 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&file)
1204 : InputFile(ArchiveKind, file->getMemoryBufferRef()),
1205 file(std::move(file)) {}
1206
parse()1207 void ArchiveFile::parse() {
1208 for (const Archive::Symbol &sym : file->symbols())
1209 symtab->addSymbol(LazyArchive{*this, sym});
1210
1211 // Inform a future invocation of ObjFile<ELFT>::initializeSymbols() that this
1212 // archive has been processed.
1213 parsed = true;
1214 }
1215
1216 // Returns a buffer pointing to a member file containing a given symbol.
fetch(const Archive::Symbol & sym)1217 void ArchiveFile::fetch(const Archive::Symbol &sym) {
1218 Archive::Child c =
1219 CHECK(sym.getMember(), toString(this) +
1220 ": could not get the member for symbol " +
1221 toELFString(sym));
1222
1223 if (!seen.insert(c.getChildOffset()).second)
1224 return;
1225
1226 MemoryBufferRef mb =
1227 CHECK(c.getMemoryBufferRef(),
1228 toString(this) +
1229 ": could not get the buffer for the member defining symbol " +
1230 toELFString(sym));
1231
1232 if (tar && c.getParent()->isThin())
1233 tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer());
1234
1235 InputFile *file = createObjectFile(mb, getName(), c.getChildOffset());
1236 file->groupId = groupId;
1237 parseFile(file);
1238 }
1239
1240 // The handling of tentative definitions (COMMON symbols) in archives is murky.
1241 // A tentative defintion will be promoted to a global definition if there are no
1242 // non-tentative definitions to dominate it. When we hold a tentative definition
1243 // to a symbol and are inspecting archive memebers for inclusion there are 2
1244 // ways we can proceed:
1245 //
1246 // 1) Consider the tentative definition a 'real' definition (ie promotion from
1247 // tentative to real definition has already happened) and not inspect
1248 // archive members for Global/Weak definitions to replace the tentative
1249 // definition. An archive member would only be included if it satisfies some
1250 // other undefined symbol. This is the behavior Gold uses.
1251 //
1252 // 2) Consider the tentative definition as still undefined (ie the promotion to
1253 // a real definiton happens only after all symbol resolution is done).
1254 // The linker searches archive memebers for global or weak definitions to
1255 // replace the tentative definition with. This is the behavior used by
1256 // GNU ld.
1257 //
1258 // The second behavior is inherited from SysVR4, which based it on the FORTRAN
1259 // COMMON BLOCK model. This behavior is needed for proper initalizations in old
1260 // (pre F90) FORTRAN code that is packaged into an archive.
1261 //
1262 // The following functions search archive members for defintions to replace
1263 // tentative defintions (implementing behavior 2).
isBitcodeNonCommonDef(MemoryBufferRef mb,StringRef symName,StringRef archiveName)1264 static bool isBitcodeNonCommonDef(MemoryBufferRef mb, StringRef symName,
1265 StringRef archiveName) {
1266 IRSymtabFile symtabFile = check(readIRSymtab(mb));
1267 for (const irsymtab::Reader::SymbolRef &sym :
1268 symtabFile.TheReader.symbols()) {
1269 if (sym.isGlobal() && sym.getName() == symName)
1270 return !sym.isUndefined() && !sym.isCommon();
1271 }
1272 return false;
1273 }
1274
1275 template <class ELFT>
isNonCommonDef(MemoryBufferRef mb,StringRef symName,StringRef archiveName)1276 static bool isNonCommonDef(MemoryBufferRef mb, StringRef symName,
1277 StringRef archiveName) {
1278 ObjFile<ELFT> *obj = make<ObjFile<ELFT>>(mb, archiveName);
1279 StringRef stringtable = obj->getStringTable();
1280
1281 for (auto sym : obj->template getGlobalELFSyms<ELFT>()) {
1282 Expected<StringRef> name = sym.getName(stringtable);
1283 if (name && name.get() == symName)
1284 return sym.isDefined() && !sym.isCommon();
1285 }
1286 return false;
1287 }
1288
isNonCommonDef(MemoryBufferRef mb,StringRef symName,StringRef archiveName)1289 static bool isNonCommonDef(MemoryBufferRef mb, StringRef symName,
1290 StringRef archiveName) {
1291 switch (getELFKind(mb, archiveName)) {
1292 case ELF32LEKind:
1293 return isNonCommonDef<ELF32LE>(mb, symName, archiveName);
1294 case ELF32BEKind:
1295 return isNonCommonDef<ELF32BE>(mb, symName, archiveName);
1296 case ELF64LEKind:
1297 return isNonCommonDef<ELF64LE>(mb, symName, archiveName);
1298 case ELF64BEKind:
1299 return isNonCommonDef<ELF64BE>(mb, symName, archiveName);
1300 default:
1301 llvm_unreachable("getELFKind");
1302 }
1303 }
1304
shouldFetchForCommon(const Archive::Symbol & sym)1305 bool ArchiveFile::shouldFetchForCommon(const Archive::Symbol &sym) {
1306 Archive::Child c =
1307 CHECK(sym.getMember(), toString(this) +
1308 ": could not get the member for symbol " +
1309 toELFString(sym));
1310 MemoryBufferRef mb =
1311 CHECK(c.getMemoryBufferRef(),
1312 toString(this) +
1313 ": could not get the buffer for the member defining symbol " +
1314 toELFString(sym));
1315
1316 if (isBitcode(mb))
1317 return isBitcodeNonCommonDef(mb, sym.getName(), getName());
1318
1319 return isNonCommonDef(mb, sym.getName(), getName());
1320 }
1321
getMemberCount() const1322 size_t ArchiveFile::getMemberCount() const {
1323 size_t count = 0;
1324 Error err = Error::success();
1325 for (const Archive::Child &c : file->children(err)) {
1326 (void)c;
1327 ++count;
1328 }
1329 // This function is used by --print-archive-stats=, where an error does not
1330 // really matter.
1331 consumeError(std::move(err));
1332 return count;
1333 }
1334
1335 unsigned SharedFile::vernauxNum;
1336
1337 // Parse the version definitions in the object file if present, and return a
1338 // vector whose nth element contains a pointer to the Elf_Verdef for version
1339 // identifier n. Version identifiers that are not definitions map to nullptr.
1340 template <typename ELFT>
parseVerdefs(const uint8_t * base,const typename ELFT::Shdr * sec)1341 static std::vector<const void *> parseVerdefs(const uint8_t *base,
1342 const typename ELFT::Shdr *sec) {
1343 if (!sec)
1344 return {};
1345
1346 // We cannot determine the largest verdef identifier without inspecting
1347 // every Elf_Verdef, but both bfd and gold assign verdef identifiers
1348 // sequentially starting from 1, so we predict that the largest identifier
1349 // will be verdefCount.
1350 unsigned verdefCount = sec->sh_info;
1351 std::vector<const void *> verdefs(verdefCount + 1);
1352
1353 // Build the Verdefs array by following the chain of Elf_Verdef objects
1354 // from the start of the .gnu.version_d section.
1355 const uint8_t *verdef = base + sec->sh_offset;
1356 for (unsigned i = 0; i != verdefCount; ++i) {
1357 auto *curVerdef = reinterpret_cast<const typename ELFT::Verdef *>(verdef);
1358 verdef += curVerdef->vd_next;
1359 unsigned verdefIndex = curVerdef->vd_ndx;
1360 verdefs.resize(verdefIndex + 1);
1361 verdefs[verdefIndex] = curVerdef;
1362 }
1363 return verdefs;
1364 }
1365
1366 // Parse SHT_GNU_verneed to properly set the name of a versioned undefined
1367 // symbol. We detect fatal issues which would cause vulnerabilities, but do not
1368 // implement sophisticated error checking like in llvm-readobj because the value
1369 // of such diagnostics is low.
1370 template <typename ELFT>
parseVerneed(const ELFFile<ELFT> & obj,const typename ELFT::Shdr * sec)1371 std::vector<uint32_t> SharedFile::parseVerneed(const ELFFile<ELFT> &obj,
1372 const typename ELFT::Shdr *sec) {
1373 if (!sec)
1374 return {};
1375 std::vector<uint32_t> verneeds;
1376 ArrayRef<uint8_t> data = CHECK(obj.getSectionContents(*sec), this);
1377 const uint8_t *verneedBuf = data.begin();
1378 for (unsigned i = 0; i != sec->sh_info; ++i) {
1379 if (verneedBuf + sizeof(typename ELFT::Verneed) > data.end())
1380 fatal(toString(this) + " has an invalid Verneed");
1381 auto *vn = reinterpret_cast<const typename ELFT::Verneed *>(verneedBuf);
1382 const uint8_t *vernauxBuf = verneedBuf + vn->vn_aux;
1383 for (unsigned j = 0; j != vn->vn_cnt; ++j) {
1384 if (vernauxBuf + sizeof(typename ELFT::Vernaux) > data.end())
1385 fatal(toString(this) + " has an invalid Vernaux");
1386 auto *aux = reinterpret_cast<const typename ELFT::Vernaux *>(vernauxBuf);
1387 if (aux->vna_name >= this->stringTable.size())
1388 fatal(toString(this) + " has a Vernaux with an invalid vna_name");
1389 uint16_t version = aux->vna_other & VERSYM_VERSION;
1390 if (version >= verneeds.size())
1391 verneeds.resize(version + 1);
1392 verneeds[version] = aux->vna_name;
1393 vernauxBuf += aux->vna_next;
1394 }
1395 verneedBuf += vn->vn_next;
1396 }
1397 return verneeds;
1398 }
1399
1400 // We do not usually care about alignments of data in shared object
1401 // files because the loader takes care of it. However, if we promote a
1402 // DSO symbol to point to .bss due to copy relocation, we need to keep
1403 // the original alignment requirements. We infer it in this function.
1404 template <typename ELFT>
getAlignment(ArrayRef<typename ELFT::Shdr> sections,const typename ELFT::Sym & sym)1405 static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> sections,
1406 const typename ELFT::Sym &sym) {
1407 uint64_t ret = UINT64_MAX;
1408 if (sym.st_value)
1409 ret = 1ULL << countTrailingZeros((uint64_t)sym.st_value);
1410 if (0 < sym.st_shndx && sym.st_shndx < sections.size())
1411 ret = std::min<uint64_t>(ret, sections[sym.st_shndx].sh_addralign);
1412 return (ret > UINT32_MAX) ? 0 : ret;
1413 }
1414
1415 // Fully parse the shared object file.
1416 //
1417 // This function parses symbol versions. If a DSO has version information,
1418 // the file has a ".gnu.version_d" section which contains symbol version
1419 // definitions. Each symbol is associated to one version through a table in
1420 // ".gnu.version" section. That table is a parallel array for the symbol
1421 // table, and each table entry contains an index in ".gnu.version_d".
1422 //
1423 // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for
1424 // VER_NDX_GLOBAL. There's no table entry for these special versions in
1425 // ".gnu.version_d".
1426 //
1427 // The file format for symbol versioning is perhaps a bit more complicated
1428 // than necessary, but you can easily understand the code if you wrap your
1429 // head around the data structure described above.
parse()1430 template <class ELFT> void SharedFile::parse() {
1431 using Elf_Dyn = typename ELFT::Dyn;
1432 using Elf_Shdr = typename ELFT::Shdr;
1433 using Elf_Sym = typename ELFT::Sym;
1434 using Elf_Verdef = typename ELFT::Verdef;
1435 using Elf_Versym = typename ELFT::Versym;
1436
1437 ArrayRef<Elf_Dyn> dynamicTags;
1438 const ELFFile<ELFT> obj = this->getObj<ELFT>();
1439 ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this);
1440
1441 const Elf_Shdr *versymSec = nullptr;
1442 const Elf_Shdr *verdefSec = nullptr;
1443 const Elf_Shdr *verneedSec = nullptr;
1444
1445 // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d.
1446 for (const Elf_Shdr &sec : sections) {
1447 switch (sec.sh_type) {
1448 default:
1449 continue;
1450 case SHT_DYNAMIC:
1451 dynamicTags =
1452 CHECK(obj.template getSectionContentsAsArray<Elf_Dyn>(sec), this);
1453 break;
1454 case SHT_GNU_versym:
1455 versymSec = &sec;
1456 break;
1457 case SHT_GNU_verdef:
1458 verdefSec = &sec;
1459 break;
1460 case SHT_GNU_verneed:
1461 verneedSec = &sec;
1462 break;
1463 }
1464 }
1465
1466 if (versymSec && numELFSyms == 0) {
1467 error("SHT_GNU_versym should be associated with symbol table");
1468 return;
1469 }
1470
1471 // Search for a DT_SONAME tag to initialize this->soName.
1472 for (const Elf_Dyn &dyn : dynamicTags) {
1473 if (dyn.d_tag == DT_NEEDED) {
1474 uint64_t val = dyn.getVal();
1475 if (val >= this->stringTable.size())
1476 fatal(toString(this) + ": invalid DT_NEEDED entry");
1477 dtNeeded.push_back(this->stringTable.data() + val);
1478 } else if (dyn.d_tag == DT_SONAME) {
1479 uint64_t val = dyn.getVal();
1480 if (val >= this->stringTable.size())
1481 fatal(toString(this) + ": invalid DT_SONAME entry");
1482 soName = this->stringTable.data() + val;
1483 }
1484 }
1485
1486 // DSOs are uniquified not by filename but by soname.
1487 DenseMap<StringRef, SharedFile *>::iterator it;
1488 bool wasInserted;
1489 std::tie(it, wasInserted) = symtab->soNames.try_emplace(soName, this);
1490
1491 // If a DSO appears more than once on the command line with and without
1492 // --as-needed, --no-as-needed takes precedence over --as-needed because a
1493 // user can add an extra DSO with --no-as-needed to force it to be added to
1494 // the dependency list.
1495 it->second->isNeeded |= isNeeded;
1496 if (!wasInserted)
1497 return;
1498
1499 sharedFiles.push_back(this);
1500
1501 verdefs = parseVerdefs<ELFT>(obj.base(), verdefSec);
1502 std::vector<uint32_t> verneeds = parseVerneed<ELFT>(obj, verneedSec);
1503
1504 // Parse ".gnu.version" section which is a parallel array for the symbol
1505 // table. If a given file doesn't have a ".gnu.version" section, we use
1506 // VER_NDX_GLOBAL.
1507 size_t size = numELFSyms - firstGlobal;
1508 std::vector<uint16_t> versyms(size, VER_NDX_GLOBAL);
1509 if (versymSec) {
1510 ArrayRef<Elf_Versym> versym =
1511 CHECK(obj.template getSectionContentsAsArray<Elf_Versym>(*versymSec),
1512 this)
1513 .slice(firstGlobal);
1514 for (size_t i = 0; i < size; ++i)
1515 versyms[i] = versym[i].vs_index;
1516 }
1517
1518 // System libraries can have a lot of symbols with versions. Using a
1519 // fixed buffer for computing the versions name (foo@ver) can save a
1520 // lot of allocations.
1521 SmallString<0> versionedNameBuffer;
1522
1523 // Add symbols to the symbol table.
1524 ArrayRef<Elf_Sym> syms = this->getGlobalELFSyms<ELFT>();
1525 for (size_t i = 0; i < syms.size(); ++i) {
1526 const Elf_Sym &sym = syms[i];
1527
1528 // ELF spec requires that all local symbols precede weak or global
1529 // symbols in each symbol table, and the index of first non-local symbol
1530 // is stored to sh_info. If a local symbol appears after some non-local
1531 // symbol, that's a violation of the spec.
1532 StringRef name = CHECK(sym.getName(this->stringTable), this);
1533 if (sym.getBinding() == STB_LOCAL) {
1534 warn("found local symbol '" + name +
1535 "' in global part of symbol table in file " + toString(this));
1536 continue;
1537 }
1538
1539 uint16_t idx = versyms[i] & ~VERSYM_HIDDEN;
1540 if (sym.isUndefined()) {
1541 // For unversioned undefined symbols, VER_NDX_GLOBAL makes more sense but
1542 // as of binutils 2.34, GNU ld produces VER_NDX_LOCAL.
1543 if (idx != VER_NDX_LOCAL && idx != VER_NDX_GLOBAL) {
1544 if (idx >= verneeds.size()) {
1545 error("corrupt input file: version need index " + Twine(idx) +
1546 " for symbol " + name + " is out of bounds\n>>> defined in " +
1547 toString(this));
1548 continue;
1549 }
1550 StringRef verName = this->stringTable.data() + verneeds[idx];
1551 versionedNameBuffer.clear();
1552 name =
1553 saver.save((name + "@" + verName).toStringRef(versionedNameBuffer));
1554 }
1555 Symbol *s = symtab->addSymbol(
1556 Undefined{this, name, sym.getBinding(), sym.st_other, sym.getType()});
1557 s->exportDynamic = true;
1558 continue;
1559 }
1560
1561 // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly
1562 // assigns VER_NDX_LOCAL to this section global symbol. Here is a
1563 // workaround for this bug.
1564 if (config->emachine == EM_MIPS && idx == VER_NDX_LOCAL &&
1565 name == "_gp_disp")
1566 continue;
1567
1568 uint32_t alignment = getAlignment<ELFT>(sections, sym);
1569 if (!(versyms[i] & VERSYM_HIDDEN)) {
1570 symtab->addSymbol(SharedSymbol{*this, name, sym.getBinding(),
1571 sym.st_other, sym.getType(), sym.st_value,
1572 sym.st_size, alignment, idx});
1573 }
1574
1575 // Also add the symbol with the versioned name to handle undefined symbols
1576 // with explicit versions.
1577 if (idx == VER_NDX_GLOBAL)
1578 continue;
1579
1580 if (idx >= verdefs.size() || idx == VER_NDX_LOCAL) {
1581 error("corrupt input file: version definition index " + Twine(idx) +
1582 " for symbol " + name + " is out of bounds\n>>> defined in " +
1583 toString(this));
1584 continue;
1585 }
1586
1587 StringRef verName =
1588 this->stringTable.data() +
1589 reinterpret_cast<const Elf_Verdef *>(verdefs[idx])->getAux()->vda_name;
1590 versionedNameBuffer.clear();
1591 name = (name + "@" + verName).toStringRef(versionedNameBuffer);
1592 symtab->addSymbol(SharedSymbol{*this, saver.save(name), sym.getBinding(),
1593 sym.st_other, sym.getType(), sym.st_value,
1594 sym.st_size, alignment, idx});
1595 }
1596 }
1597
getBitcodeELFKind(const Triple & t)1598 static ELFKind getBitcodeELFKind(const Triple &t) {
1599 if (t.isLittleEndian())
1600 return t.isArch64Bit() ? ELF64LEKind : ELF32LEKind;
1601 return t.isArch64Bit() ? ELF64BEKind : ELF32BEKind;
1602 }
1603
getBitcodeMachineKind(StringRef path,const Triple & t)1604 static uint16_t getBitcodeMachineKind(StringRef path, const Triple &t) {
1605 switch (t.getArch()) {
1606 case Triple::aarch64:
1607 return EM_AARCH64;
1608 case Triple::amdgcn:
1609 case Triple::r600:
1610 return EM_AMDGPU;
1611 case Triple::arm:
1612 case Triple::thumb:
1613 return EM_ARM;
1614 case Triple::avr:
1615 return EM_AVR;
1616 case Triple::mips:
1617 case Triple::mipsel:
1618 case Triple::mips64:
1619 case Triple::mips64el:
1620 return EM_MIPS;
1621 case Triple::msp430:
1622 return EM_MSP430;
1623 case Triple::ppc:
1624 return EM_PPC;
1625 case Triple::ppc64:
1626 case Triple::ppc64le:
1627 return EM_PPC64;
1628 case Triple::riscv32:
1629 case Triple::riscv64:
1630 return EM_RISCV;
1631 case Triple::x86:
1632 return t.isOSIAMCU() ? EM_IAMCU : EM_386;
1633 case Triple::x86_64:
1634 return EM_X86_64;
1635 default:
1636 error(path + ": could not infer e_machine from bitcode target triple " +
1637 t.str());
1638 return EM_NONE;
1639 }
1640 }
1641
getOsAbi(const Triple & t)1642 static uint8_t getOsAbi(const Triple &t) {
1643 switch (t.getOS()) {
1644 case Triple::AMDHSA:
1645 return ELF::ELFOSABI_AMDGPU_HSA;
1646 case Triple::AMDPAL:
1647 return ELF::ELFOSABI_AMDGPU_PAL;
1648 case Triple::Mesa3D:
1649 return ELF::ELFOSABI_AMDGPU_MESA3D;
1650 default:
1651 return ELF::ELFOSABI_NONE;
1652 }
1653 }
1654
BitcodeFile(MemoryBufferRef mb,StringRef archiveName,uint64_t offsetInArchive)1655 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName,
1656 uint64_t offsetInArchive)
1657 : InputFile(BitcodeKind, mb) {
1658 this->archiveName = std::string(archiveName);
1659
1660 std::string path = mb.getBufferIdentifier().str();
1661 if (config->thinLTOIndexOnly)
1662 path = replaceThinLTOSuffix(mb.getBufferIdentifier());
1663
1664 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique
1665 // name. If two archives define two members with the same name, this
1666 // causes a collision which result in only one of the objects being taken
1667 // into consideration at LTO time (which very likely causes undefined
1668 // symbols later in the link stage). So we append file offset to make
1669 // filename unique.
1670 StringRef name =
1671 archiveName.empty()
1672 ? saver.save(path)
1673 : saver.save(archiveName + "(" + path::filename(path) + " at " +
1674 utostr(offsetInArchive) + ")");
1675 MemoryBufferRef mbref(mb.getBuffer(), name);
1676
1677 obj = CHECK(lto::InputFile::create(mbref), this);
1678
1679 Triple t(obj->getTargetTriple());
1680 ekind = getBitcodeELFKind(t);
1681 emachine = getBitcodeMachineKind(mb.getBufferIdentifier(), t);
1682 osabi = getOsAbi(t);
1683 }
1684
mapVisibility(GlobalValue::VisibilityTypes gvVisibility)1685 static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) {
1686 switch (gvVisibility) {
1687 case GlobalValue::DefaultVisibility:
1688 return STV_DEFAULT;
1689 case GlobalValue::HiddenVisibility:
1690 return STV_HIDDEN;
1691 case GlobalValue::ProtectedVisibility:
1692 return STV_PROTECTED;
1693 }
1694 llvm_unreachable("unknown visibility");
1695 }
1696
1697 template <class ELFT>
createBitcodeSymbol(const std::vector<bool> & keptComdats,const lto::InputFile::Symbol & objSym,BitcodeFile & f)1698 static Symbol *createBitcodeSymbol(const std::vector<bool> &keptComdats,
1699 const lto::InputFile::Symbol &objSym,
1700 BitcodeFile &f) {
1701 StringRef name = saver.save(objSym.getName());
1702 uint8_t binding = objSym.isWeak() ? STB_WEAK : STB_GLOBAL;
1703 uint8_t type = objSym.isTLS() ? STT_TLS : STT_NOTYPE;
1704 uint8_t visibility = mapVisibility(objSym.getVisibility());
1705 bool canOmitFromDynSym = objSym.canBeOmittedFromSymbolTable();
1706
1707 int c = objSym.getComdatIndex();
1708 if (objSym.isUndefined() || (c != -1 && !keptComdats[c])) {
1709 Undefined newSym(&f, name, binding, visibility, type);
1710 if (canOmitFromDynSym)
1711 newSym.exportDynamic = false;
1712 Symbol *ret = symtab->addSymbol(newSym);
1713 ret->referenced = true;
1714 return ret;
1715 }
1716
1717 if (objSym.isCommon())
1718 return symtab->addSymbol(
1719 CommonSymbol{&f, name, binding, visibility, STT_OBJECT,
1720 objSym.getCommonAlignment(), objSym.getCommonSize()});
1721
1722 Defined newSym(&f, name, binding, visibility, type, 0, 0, nullptr);
1723 if (canOmitFromDynSym)
1724 newSym.exportDynamic = false;
1725 return symtab->addSymbol(newSym);
1726 }
1727
parse()1728 template <class ELFT> void BitcodeFile::parse() {
1729 std::vector<bool> keptComdats;
1730 for (StringRef s : obj->getComdatTable())
1731 keptComdats.push_back(
1732 symtab->comdatGroups.try_emplace(CachedHashStringRef(s), this).second);
1733
1734 for (const lto::InputFile::Symbol &objSym : obj->symbols())
1735 symbols.push_back(createBitcodeSymbol<ELFT>(keptComdats, objSym, *this));
1736
1737 for (auto l : obj->getDependentLibraries())
1738 addDependentLibrary(l, this);
1739 }
1740
parse()1741 void BinaryFile::parse() {
1742 ArrayRef<uint8_t> data = arrayRefFromStringRef(mb.getBuffer());
1743 auto *section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS,
1744 8, data, ".data");
1745 sections.push_back(section);
1746
1747 // For each input file foo that is embedded to a result as a binary
1748 // blob, we define _binary_foo_{start,end,size} symbols, so that
1749 // user programs can access blobs by name. Non-alphanumeric
1750 // characters in a filename are replaced with underscore.
1751 std::string s = "_binary_" + mb.getBufferIdentifier().str();
1752 for (size_t i = 0; i < s.size(); ++i)
1753 if (!isAlnum(s[i]))
1754 s[i] = '_';
1755
1756 symtab->addSymbol(Defined{nullptr, saver.save(s + "_start"), STB_GLOBAL,
1757 STV_DEFAULT, STT_OBJECT, 0, 0, section});
1758 symtab->addSymbol(Defined{nullptr, saver.save(s + "_end"), STB_GLOBAL,
1759 STV_DEFAULT, STT_OBJECT, data.size(), 0, section});
1760 symtab->addSymbol(Defined{nullptr, saver.save(s + "_size"), STB_GLOBAL,
1761 STV_DEFAULT, STT_OBJECT, data.size(), 0, nullptr});
1762 }
1763
createObjectFile(MemoryBufferRef mb,StringRef archiveName,uint64_t offsetInArchive)1764 InputFile *elf::createObjectFile(MemoryBufferRef mb, StringRef archiveName,
1765 uint64_t offsetInArchive) {
1766 if (isBitcode(mb))
1767 return make<BitcodeFile>(mb, archiveName, offsetInArchive);
1768
1769 switch (getELFKind(mb, archiveName)) {
1770 case ELF32LEKind:
1771 return make<ObjFile<ELF32LE>>(mb, archiveName);
1772 case ELF32BEKind:
1773 return make<ObjFile<ELF32BE>>(mb, archiveName);
1774 case ELF64LEKind:
1775 return make<ObjFile<ELF64LE>>(mb, archiveName);
1776 case ELF64BEKind:
1777 return make<ObjFile<ELF64BE>>(mb, archiveName);
1778 default:
1779 llvm_unreachable("getELFKind");
1780 }
1781 }
1782
fetch()1783 void LazyObjFile::fetch() {
1784 if (fetched)
1785 return;
1786 fetched = true;
1787
1788 InputFile *file = createObjectFile(mb, archiveName, offsetInArchive);
1789 file->groupId = groupId;
1790
1791 // Copy symbol vector so that the new InputFile doesn't have to
1792 // insert the same defined symbols to the symbol table again.
1793 file->symbols = std::move(symbols);
1794
1795 parseFile(file);
1796 }
1797
parse()1798 template <class ELFT> void LazyObjFile::parse() {
1799 using Elf_Sym = typename ELFT::Sym;
1800
1801 // A lazy object file wraps either a bitcode file or an ELF file.
1802 if (isBitcode(this->mb)) {
1803 std::unique_ptr<lto::InputFile> obj =
1804 CHECK(lto::InputFile::create(this->mb), this);
1805 for (const lto::InputFile::Symbol &sym : obj->symbols()) {
1806 if (sym.isUndefined())
1807 continue;
1808 symtab->addSymbol(LazyObject{*this, saver.save(sym.getName())});
1809 }
1810 return;
1811 }
1812
1813 if (getELFKind(this->mb, archiveName) != config->ekind) {
1814 error("incompatible file: " + this->mb.getBufferIdentifier());
1815 return;
1816 }
1817
1818 // Find a symbol table.
1819 ELFFile<ELFT> obj = check(ELFFile<ELFT>::create(mb.getBuffer()));
1820 ArrayRef<typename ELFT::Shdr> sections = CHECK(obj.sections(), this);
1821
1822 for (const typename ELFT::Shdr &sec : sections) {
1823 if (sec.sh_type != SHT_SYMTAB)
1824 continue;
1825
1826 // A symbol table is found.
1827 ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(&sec), this);
1828 uint32_t firstGlobal = sec.sh_info;
1829 StringRef strtab = CHECK(obj.getStringTableForSymtab(sec, sections), this);
1830 this->symbols.resize(eSyms.size());
1831
1832 // Get existing symbols or insert placeholder symbols.
1833 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i)
1834 if (eSyms[i].st_shndx != SHN_UNDEF)
1835 this->symbols[i] = symtab->insert(CHECK(eSyms[i].getName(strtab), this));
1836
1837 // Replace existing symbols with LazyObject symbols.
1838 //
1839 // resolve() may trigger this->fetch() if an existing symbol is an
1840 // undefined symbol. If that happens, this LazyObjFile has served
1841 // its purpose, and we can exit from the loop early.
1842 for (Symbol *sym : this->symbols) {
1843 if (!sym)
1844 continue;
1845 sym->resolve(LazyObject{*this, sym->getName()});
1846
1847 // If fetched, stop iterating because this->symbols has been transferred
1848 // to the instantiated ObjFile.
1849 if (fetched)
1850 return;
1851 }
1852 return;
1853 }
1854 }
1855
shouldFetchForCommon(const StringRef & name)1856 bool LazyObjFile::shouldFetchForCommon(const StringRef &name) {
1857 if (isBitcode(mb))
1858 return isBitcodeNonCommonDef(mb, name, archiveName);
1859
1860 return isNonCommonDef(mb, name, archiveName);
1861 }
1862
replaceThinLTOSuffix(StringRef path)1863 std::string elf::replaceThinLTOSuffix(StringRef path) {
1864 StringRef suffix = config->thinLTOObjectSuffixReplace.first;
1865 StringRef repl = config->thinLTOObjectSuffixReplace.second;
1866
1867 if (path.consume_back(suffix))
1868 return (path + repl).str();
1869 return std::string(path);
1870 }
1871
1872 template void BitcodeFile::parse<ELF32LE>();
1873 template void BitcodeFile::parse<ELF32BE>();
1874 template void BitcodeFile::parse<ELF64LE>();
1875 template void BitcodeFile::parse<ELF64BE>();
1876
1877 template void LazyObjFile::parse<ELF32LE>();
1878 template void LazyObjFile::parse<ELF32BE>();
1879 template void LazyObjFile::parse<ELF64LE>();
1880 template void LazyObjFile::parse<ELF64BE>();
1881
1882 template class elf::ObjFile<ELF32LE>;
1883 template class elf::ObjFile<ELF32BE>;
1884 template class elf::ObjFile<ELF64LE>;
1885 template class elf::ObjFile<ELF64BE>;
1886
1887 template void SharedFile::parse<ELF32LE>();
1888 template void SharedFile::parse<ELF32BE>();
1889 template void SharedFile::parse<ELF64LE>();
1890 template void SharedFile::parse<ELF64BE>();
1891