• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  */
8 #ifndef _UAPI__LINUX_BPF_H__
9 #define _UAPI__LINUX_BPF_H__
10 
11 #include <linux/types.h>
12 #include <linux/bpf_common.h>
13 
14 /* Extended instruction set based on top of classic BPF */
15 
16 /* instruction classes */
17 #define BPF_JMP32	0x06	/* jmp mode in word width */
18 #define BPF_ALU64	0x07	/* alu mode in double word width */
19 
20 /* ld/ldx fields */
21 #define BPF_DW		0x18	/* double word (64-bit) */
22 #define BPF_ATOMIC	0xc0	/* atomic memory ops - op type in immediate */
23 #define BPF_XADD	0xc0	/* exclusive add - legacy name */
24 
25 /* alu/jmp fields */
26 #define BPF_MOV		0xb0	/* mov reg to reg */
27 #define BPF_ARSH	0xc0	/* sign extending arithmetic shift right */
28 
29 /* change endianness of a register */
30 #define BPF_END		0xd0	/* flags for endianness conversion: */
31 #define BPF_TO_LE	0x00	/* convert to little-endian */
32 #define BPF_TO_BE	0x08	/* convert to big-endian */
33 #define BPF_FROM_LE	BPF_TO_LE
34 #define BPF_FROM_BE	BPF_TO_BE
35 
36 /* jmp encodings */
37 #define BPF_JNE		0x50	/* jump != */
38 #define BPF_JLT		0xa0	/* LT is unsigned, '<' */
39 #define BPF_JLE		0xb0	/* LE is unsigned, '<=' */
40 #define BPF_JSGT	0x60	/* SGT is signed '>', GT in x86 */
41 #define BPF_JSGE	0x70	/* SGE is signed '>=', GE in x86 */
42 #define BPF_JSLT	0xc0	/* SLT is signed, '<' */
43 #define BPF_JSLE	0xd0	/* SLE is signed, '<=' */
44 #define BPF_CALL	0x80	/* function call */
45 #define BPF_EXIT	0x90	/* function return */
46 
47 /* atomic op type fields (stored in immediate) */
48 #define BPF_FETCH	0x01	/* not an opcode on its own, used to build others */
49 #define BPF_XCHG	(0xe0 | BPF_FETCH)	/* atomic exchange */
50 #define BPF_CMPXCHG	(0xf0 | BPF_FETCH)	/* atomic compare-and-write */
51 
52 /* Register numbers */
53 enum {
54 	BPF_REG_0 = 0,
55 	BPF_REG_1,
56 	BPF_REG_2,
57 	BPF_REG_3,
58 	BPF_REG_4,
59 	BPF_REG_5,
60 	BPF_REG_6,
61 	BPF_REG_7,
62 	BPF_REG_8,
63 	BPF_REG_9,
64 	BPF_REG_10,
65 	__MAX_BPF_REG,
66 };
67 
68 /* BPF has 10 general purpose 64-bit registers and stack frame. */
69 #define MAX_BPF_REG	__MAX_BPF_REG
70 
71 struct bpf_insn {
72 	__u8	code;		/* opcode */
73 	__u8	dst_reg:4;	/* dest register */
74 	__u8	src_reg:4;	/* source register */
75 	__s16	off;		/* signed offset */
76 	__s32	imm;		/* signed immediate constant */
77 };
78 
79 /* Key of an a BPF_MAP_TYPE_LPM_TRIE entry */
80 struct bpf_lpm_trie_key {
81 	__u32	prefixlen;	/* up to 32 for AF_INET, 128 for AF_INET6 */
82 	__u8	data[0];	/* Arbitrary size */
83 };
84 
85 struct bpf_cgroup_storage_key {
86 	__u64	cgroup_inode_id;	/* cgroup inode id */
87 	__u32	attach_type;		/* program attach type */
88 };
89 
90 union bpf_iter_link_info {
91 	struct {
92 		__u32	map_fd;
93 	} map;
94 };
95 
96 /* BPF syscall commands, see bpf(2) man-page for details. */
97 enum bpf_cmd {
98 	BPF_MAP_CREATE,
99 	BPF_MAP_LOOKUP_ELEM,
100 	BPF_MAP_UPDATE_ELEM,
101 	BPF_MAP_DELETE_ELEM,
102 	BPF_MAP_GET_NEXT_KEY,
103 	BPF_PROG_LOAD,
104 	BPF_OBJ_PIN,
105 	BPF_OBJ_GET,
106 	BPF_PROG_ATTACH,
107 	BPF_PROG_DETACH,
108 	BPF_PROG_TEST_RUN,
109 	BPF_PROG_GET_NEXT_ID,
110 	BPF_MAP_GET_NEXT_ID,
111 	BPF_PROG_GET_FD_BY_ID,
112 	BPF_MAP_GET_FD_BY_ID,
113 	BPF_OBJ_GET_INFO_BY_FD,
114 	BPF_PROG_QUERY,
115 	BPF_RAW_TRACEPOINT_OPEN,
116 	BPF_BTF_LOAD,
117 	BPF_BTF_GET_FD_BY_ID,
118 	BPF_TASK_FD_QUERY,
119 	BPF_MAP_LOOKUP_AND_DELETE_ELEM,
120 	BPF_MAP_FREEZE,
121 	BPF_BTF_GET_NEXT_ID,
122 	BPF_MAP_LOOKUP_BATCH,
123 	BPF_MAP_LOOKUP_AND_DELETE_BATCH,
124 	BPF_MAP_UPDATE_BATCH,
125 	BPF_MAP_DELETE_BATCH,
126 	BPF_LINK_CREATE,
127 	BPF_LINK_UPDATE,
128 	BPF_LINK_GET_FD_BY_ID,
129 	BPF_LINK_GET_NEXT_ID,
130 	BPF_ENABLE_STATS,
131 	BPF_ITER_CREATE,
132 	BPF_LINK_DETACH,
133 	BPF_PROG_BIND_MAP,
134 };
135 
136 enum bpf_map_type {
137 	BPF_MAP_TYPE_UNSPEC,
138 	BPF_MAP_TYPE_HASH,
139 	BPF_MAP_TYPE_ARRAY,
140 	BPF_MAP_TYPE_PROG_ARRAY,
141 	BPF_MAP_TYPE_PERF_EVENT_ARRAY,
142 	BPF_MAP_TYPE_PERCPU_HASH,
143 	BPF_MAP_TYPE_PERCPU_ARRAY,
144 	BPF_MAP_TYPE_STACK_TRACE,
145 	BPF_MAP_TYPE_CGROUP_ARRAY,
146 	BPF_MAP_TYPE_LRU_HASH,
147 	BPF_MAP_TYPE_LRU_PERCPU_HASH,
148 	BPF_MAP_TYPE_LPM_TRIE,
149 	BPF_MAP_TYPE_ARRAY_OF_MAPS,
150 	BPF_MAP_TYPE_HASH_OF_MAPS,
151 	BPF_MAP_TYPE_DEVMAP,
152 	BPF_MAP_TYPE_SOCKMAP,
153 	BPF_MAP_TYPE_CPUMAP,
154 	BPF_MAP_TYPE_XSKMAP,
155 	BPF_MAP_TYPE_SOCKHASH,
156 	BPF_MAP_TYPE_CGROUP_STORAGE,
157 	BPF_MAP_TYPE_REUSEPORT_SOCKARRAY,
158 	BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE,
159 	BPF_MAP_TYPE_QUEUE,
160 	BPF_MAP_TYPE_STACK,
161 	BPF_MAP_TYPE_SK_STORAGE,
162 	BPF_MAP_TYPE_DEVMAP_HASH,
163 	BPF_MAP_TYPE_STRUCT_OPS,
164 	BPF_MAP_TYPE_RINGBUF,
165 	BPF_MAP_TYPE_INODE_STORAGE,
166 	BPF_MAP_TYPE_TASK_STORAGE,
167 };
168 
169 /* Note that tracing related programs such as
170  * BPF_PROG_TYPE_{KPROBE,TRACEPOINT,PERF_EVENT,RAW_TRACEPOINT}
171  * are not subject to a stable API since kernel internal data
172  * structures can change from release to release and may
173  * therefore break existing tracing BPF programs. Tracing BPF
174  * programs correspond to /a/ specific kernel which is to be
175  * analyzed, and not /a/ specific kernel /and/ all future ones.
176  */
177 enum bpf_prog_type {
178 	BPF_PROG_TYPE_UNSPEC,
179 	BPF_PROG_TYPE_SOCKET_FILTER,
180 	BPF_PROG_TYPE_KPROBE,
181 	BPF_PROG_TYPE_SCHED_CLS,
182 	BPF_PROG_TYPE_SCHED_ACT,
183 	BPF_PROG_TYPE_TRACEPOINT,
184 	BPF_PROG_TYPE_XDP,
185 	BPF_PROG_TYPE_PERF_EVENT,
186 	BPF_PROG_TYPE_CGROUP_SKB,
187 	BPF_PROG_TYPE_CGROUP_SOCK,
188 	BPF_PROG_TYPE_LWT_IN,
189 	BPF_PROG_TYPE_LWT_OUT,
190 	BPF_PROG_TYPE_LWT_XMIT,
191 	BPF_PROG_TYPE_SOCK_OPS,
192 	BPF_PROG_TYPE_SK_SKB,
193 	BPF_PROG_TYPE_CGROUP_DEVICE,
194 	BPF_PROG_TYPE_SK_MSG,
195 	BPF_PROG_TYPE_RAW_TRACEPOINT,
196 	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
197 	BPF_PROG_TYPE_LWT_SEG6LOCAL,
198 	BPF_PROG_TYPE_LIRC_MODE2,
199 	BPF_PROG_TYPE_SK_REUSEPORT,
200 	BPF_PROG_TYPE_FLOW_DISSECTOR,
201 	BPF_PROG_TYPE_CGROUP_SYSCTL,
202 	BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE,
203 	BPF_PROG_TYPE_CGROUP_SOCKOPT,
204 	BPF_PROG_TYPE_TRACING,
205 	BPF_PROG_TYPE_STRUCT_OPS,
206 	BPF_PROG_TYPE_EXT,
207 	BPF_PROG_TYPE_LSM,
208 	BPF_PROG_TYPE_SK_LOOKUP,
209 };
210 
211 enum bpf_attach_type {
212 	BPF_CGROUP_INET_INGRESS,
213 	BPF_CGROUP_INET_EGRESS,
214 	BPF_CGROUP_INET_SOCK_CREATE,
215 	BPF_CGROUP_SOCK_OPS,
216 	BPF_SK_SKB_STREAM_PARSER,
217 	BPF_SK_SKB_STREAM_VERDICT,
218 	BPF_CGROUP_DEVICE,
219 	BPF_SK_MSG_VERDICT,
220 	BPF_CGROUP_INET4_BIND,
221 	BPF_CGROUP_INET6_BIND,
222 	BPF_CGROUP_INET4_CONNECT,
223 	BPF_CGROUP_INET6_CONNECT,
224 	BPF_CGROUP_INET4_POST_BIND,
225 	BPF_CGROUP_INET6_POST_BIND,
226 	BPF_CGROUP_UDP4_SENDMSG,
227 	BPF_CGROUP_UDP6_SENDMSG,
228 	BPF_LIRC_MODE2,
229 	BPF_FLOW_DISSECTOR,
230 	BPF_CGROUP_SYSCTL,
231 	BPF_CGROUP_UDP4_RECVMSG,
232 	BPF_CGROUP_UDP6_RECVMSG,
233 	BPF_CGROUP_GETSOCKOPT,
234 	BPF_CGROUP_SETSOCKOPT,
235 	BPF_TRACE_RAW_TP,
236 	BPF_TRACE_FENTRY,
237 	BPF_TRACE_FEXIT,
238 	BPF_MODIFY_RETURN,
239 	BPF_LSM_MAC,
240 	BPF_TRACE_ITER,
241 	BPF_CGROUP_INET4_GETPEERNAME,
242 	BPF_CGROUP_INET6_GETPEERNAME,
243 	BPF_CGROUP_INET4_GETSOCKNAME,
244 	BPF_CGROUP_INET6_GETSOCKNAME,
245 	BPF_XDP_DEVMAP,
246 	BPF_CGROUP_INET_SOCK_RELEASE,
247 	BPF_XDP_CPUMAP,
248 	BPF_SK_LOOKUP,
249 	BPF_XDP,
250 	__MAX_BPF_ATTACH_TYPE
251 };
252 
253 #define MAX_BPF_ATTACH_TYPE __MAX_BPF_ATTACH_TYPE
254 
255 enum bpf_link_type {
256 	BPF_LINK_TYPE_UNSPEC = 0,
257 	BPF_LINK_TYPE_RAW_TRACEPOINT = 1,
258 	BPF_LINK_TYPE_TRACING = 2,
259 	BPF_LINK_TYPE_CGROUP = 3,
260 	BPF_LINK_TYPE_ITER = 4,
261 	BPF_LINK_TYPE_NETNS = 5,
262 	BPF_LINK_TYPE_XDP = 6,
263 
264 	MAX_BPF_LINK_TYPE,
265 };
266 
267 /* cgroup-bpf attach flags used in BPF_PROG_ATTACH command
268  *
269  * NONE(default): No further bpf programs allowed in the subtree.
270  *
271  * BPF_F_ALLOW_OVERRIDE: If a sub-cgroup installs some bpf program,
272  * the program in this cgroup yields to sub-cgroup program.
273  *
274  * BPF_F_ALLOW_MULTI: If a sub-cgroup installs some bpf program,
275  * that cgroup program gets run in addition to the program in this cgroup.
276  *
277  * Only one program is allowed to be attached to a cgroup with
278  * NONE or BPF_F_ALLOW_OVERRIDE flag.
279  * Attaching another program on top of NONE or BPF_F_ALLOW_OVERRIDE will
280  * release old program and attach the new one. Attach flags has to match.
281  *
282  * Multiple programs are allowed to be attached to a cgroup with
283  * BPF_F_ALLOW_MULTI flag. They are executed in FIFO order
284  * (those that were attached first, run first)
285  * The programs of sub-cgroup are executed first, then programs of
286  * this cgroup and then programs of parent cgroup.
287  * When children program makes decision (like picking TCP CA or sock bind)
288  * parent program has a chance to override it.
289  *
290  * With BPF_F_ALLOW_MULTI a new program is added to the end of the list of
291  * programs for a cgroup. Though it's possible to replace an old program at
292  * any position by also specifying BPF_F_REPLACE flag and position itself in
293  * replace_bpf_fd attribute. Old program at this position will be released.
294  *
295  * A cgroup with MULTI or OVERRIDE flag allows any attach flags in sub-cgroups.
296  * A cgroup with NONE doesn't allow any programs in sub-cgroups.
297  * Ex1:
298  * cgrp1 (MULTI progs A, B) ->
299  *    cgrp2 (OVERRIDE prog C) ->
300  *      cgrp3 (MULTI prog D) ->
301  *        cgrp4 (OVERRIDE prog E) ->
302  *          cgrp5 (NONE prog F)
303  * the event in cgrp5 triggers execution of F,D,A,B in that order.
304  * if prog F is detached, the execution is E,D,A,B
305  * if prog F and D are detached, the execution is E,A,B
306  * if prog F, E and D are detached, the execution is C,A,B
307  *
308  * All eligible programs are executed regardless of return code from
309  * earlier programs.
310  */
311 #define BPF_F_ALLOW_OVERRIDE	(1U << 0)
312 #define BPF_F_ALLOW_MULTI	(1U << 1)
313 #define BPF_F_REPLACE		(1U << 2)
314 
315 /* If BPF_F_STRICT_ALIGNMENT is used in BPF_PROG_LOAD command, the
316  * verifier will perform strict alignment checking as if the kernel
317  * has been built with CONFIG_EFFICIENT_UNALIGNED_ACCESS not set,
318  * and NET_IP_ALIGN defined to 2.
319  */
320 #define BPF_F_STRICT_ALIGNMENT	(1U << 0)
321 
322 /* If BPF_F_ANY_ALIGNMENT is used in BPF_PROF_LOAD command, the
323  * verifier will allow any alignment whatsoever.  On platforms
324  * with strict alignment requirements for loads ands stores (such
325  * as sparc and mips) the verifier validates that all loads and
326  * stores provably follow this requirement.  This flag turns that
327  * checking and enforcement off.
328  *
329  * It is mostly used for testing when we want to validate the
330  * context and memory access aspects of the verifier, but because
331  * of an unaligned access the alignment check would trigger before
332  * the one we are interested in.
333  */
334 #define BPF_F_ANY_ALIGNMENT	(1U << 1)
335 
336 /* BPF_F_TEST_RND_HI32 is used in BPF_PROG_LOAD command for testing purpose.
337  * Verifier does sub-register def/use analysis and identifies instructions whose
338  * def only matters for low 32-bit, high 32-bit is never referenced later
339  * through implicit zero extension. Therefore verifier notifies JIT back-ends
340  * that it is safe to ignore clearing high 32-bit for these instructions. This
341  * saves some back-ends a lot of code-gen. However such optimization is not
342  * necessary on some arches, for example x86_64, arm64 etc, whose JIT back-ends
343  * hence hasn't used verifier's analysis result. But, we really want to have a
344  * way to be able to verify the correctness of the described optimization on
345  * x86_64 on which testsuites are frequently exercised.
346  *
347  * So, this flag is introduced. Once it is set, verifier will randomize high
348  * 32-bit for those instructions who has been identified as safe to ignore them.
349  * Then, if verifier is not doing correct analysis, such randomization will
350  * regress tests to expose bugs.
351  */
352 #define BPF_F_TEST_RND_HI32	(1U << 2)
353 
354 /* The verifier internal test flag. Behavior is undefined */
355 #define BPF_F_TEST_STATE_FREQ	(1U << 3)
356 
357 /* If BPF_F_SLEEPABLE is used in BPF_PROG_LOAD command, the verifier will
358  * restrict map and helper usage for such programs. Sleepable BPF programs can
359  * only be attached to hooks where kernel execution context allows sleeping.
360  * Such programs are allowed to use helpers that may sleep like
361  * bpf_copy_from_user().
362  */
363 #define BPF_F_SLEEPABLE		(1U << 4)
364 
365 /* When BPF ldimm64's insn[0].src_reg != 0 then this can have
366  * the following extensions:
367  *
368  * insn[0].src_reg:  BPF_PSEUDO_MAP_FD
369  * insn[0].imm:      map fd
370  * insn[1].imm:      0
371  * insn[0].off:      0
372  * insn[1].off:      0
373  * ldimm64 rewrite:  address of map
374  * verifier type:    CONST_PTR_TO_MAP
375  */
376 #define BPF_PSEUDO_MAP_FD	1
377 /* insn[0].src_reg:  BPF_PSEUDO_MAP_VALUE
378  * insn[0].imm:      map fd
379  * insn[1].imm:      offset into value
380  * insn[0].off:      0
381  * insn[1].off:      0
382  * ldimm64 rewrite:  address of map[0]+offset
383  * verifier type:    PTR_TO_MAP_VALUE
384  */
385 #define BPF_PSEUDO_MAP_VALUE	2
386 /* insn[0].src_reg:  BPF_PSEUDO_BTF_ID
387  * insn[0].imm:      kernel btd id of VAR
388  * insn[1].imm:      0
389  * insn[0].off:      0
390  * insn[1].off:      0
391  * ldimm64 rewrite:  address of the kernel variable
392  * verifier type:    PTR_TO_BTF_ID or PTR_TO_MEM, depending on whether the var
393  *                   is struct/union.
394  */
395 #define BPF_PSEUDO_BTF_ID	3
396 
397 /* when bpf_call->src_reg == BPF_PSEUDO_CALL, bpf_call->imm == pc-relative
398  * offset to another bpf function
399  */
400 #define BPF_PSEUDO_CALL		1
401 
402 /* flags for BPF_MAP_UPDATE_ELEM command */
403 enum {
404 	BPF_ANY		= 0, /* create new element or update existing */
405 	BPF_NOEXIST	= 1, /* create new element if it didn't exist */
406 	BPF_EXIST	= 2, /* update existing element */
407 	BPF_F_LOCK	= 4, /* spin_lock-ed map_lookup/map_update */
408 };
409 
410 /* flags for BPF_MAP_CREATE command */
411 enum {
412 	BPF_F_NO_PREALLOC	= (1U << 0),
413 /* Instead of having one common LRU list in the
414  * BPF_MAP_TYPE_LRU_[PERCPU_]HASH map, use a percpu LRU list
415  * which can scale and perform better.
416  * Note, the LRU nodes (including free nodes) cannot be moved
417  * across different LRU lists.
418  */
419 	BPF_F_NO_COMMON_LRU	= (1U << 1),
420 /* Specify numa node during map creation */
421 	BPF_F_NUMA_NODE		= (1U << 2),
422 
423 /* Flags for accessing BPF object from syscall side. */
424 	BPF_F_RDONLY		= (1U << 3),
425 	BPF_F_WRONLY		= (1U << 4),
426 
427 /* Flag for stack_map, store build_id+offset instead of pointer */
428 	BPF_F_STACK_BUILD_ID	= (1U << 5),
429 
430 /* Zero-initialize hash function seed. This should only be used for testing. */
431 	BPF_F_ZERO_SEED		= (1U << 6),
432 
433 /* Flags for accessing BPF object from program side. */
434 	BPF_F_RDONLY_PROG	= (1U << 7),
435 	BPF_F_WRONLY_PROG	= (1U << 8),
436 
437 /* Clone map from listener for newly accepted socket */
438 	BPF_F_CLONE		= (1U << 9),
439 
440 /* Enable memory-mapping BPF map */
441 	BPF_F_MMAPABLE		= (1U << 10),
442 
443 /* Share perf_event among processes */
444 	BPF_F_PRESERVE_ELEMS	= (1U << 11),
445 
446 /* Create a map that is suitable to be an inner map with dynamic max entries */
447 	BPF_F_INNER_MAP		= (1U << 12),
448 };
449 
450 /* Flags for BPF_PROG_QUERY. */
451 
452 /* Query effective (directly attached + inherited from ancestor cgroups)
453  * programs that will be executed for events within a cgroup.
454  * attach_flags with this flag are returned only for directly attached programs.
455  */
456 #define BPF_F_QUERY_EFFECTIVE	(1U << 0)
457 
458 /* Flags for BPF_PROG_TEST_RUN */
459 
460 /* If set, run the test on the cpu specified by bpf_attr.test.cpu */
461 #define BPF_F_TEST_RUN_ON_CPU	(1U << 0)
462 
463 /* type for BPF_ENABLE_STATS */
464 enum bpf_stats_type {
465 	/* enabled run_time_ns and run_cnt */
466 	BPF_STATS_RUN_TIME = 0,
467 };
468 
469 enum bpf_stack_build_id_status {
470 	/* user space need an empty entry to identify end of a trace */
471 	BPF_STACK_BUILD_ID_EMPTY = 0,
472 	/* with valid build_id and offset */
473 	BPF_STACK_BUILD_ID_VALID = 1,
474 	/* couldn't get build_id, fallback to ip */
475 	BPF_STACK_BUILD_ID_IP = 2,
476 };
477 
478 #define BPF_BUILD_ID_SIZE 20
479 struct bpf_stack_build_id {
480 	__s32		status;
481 	unsigned char	build_id[BPF_BUILD_ID_SIZE];
482 	union {
483 		__u64	offset;
484 		__u64	ip;
485 	};
486 };
487 
488 #define BPF_OBJ_NAME_LEN 16U
489 
490 union bpf_attr {
491 	struct { /* anonymous struct used by BPF_MAP_CREATE command */
492 		__u32	map_type;	/* one of enum bpf_map_type */
493 		__u32	key_size;	/* size of key in bytes */
494 		__u32	value_size;	/* size of value in bytes */
495 		__u32	max_entries;	/* max number of entries in a map */
496 		__u32	map_flags;	/* BPF_MAP_CREATE related
497 					 * flags defined above.
498 					 */
499 		__u32	inner_map_fd;	/* fd pointing to the inner map */
500 		__u32	numa_node;	/* numa node (effective only if
501 					 * BPF_F_NUMA_NODE is set).
502 					 */
503 		char	map_name[BPF_OBJ_NAME_LEN];
504 		__u32	map_ifindex;	/* ifindex of netdev to create on */
505 		__u32	btf_fd;		/* fd pointing to a BTF type data */
506 		__u32	btf_key_type_id;	/* BTF type_id of the key */
507 		__u32	btf_value_type_id;	/* BTF type_id of the value */
508 		__u32	btf_vmlinux_value_type_id;/* BTF type_id of a kernel-
509 						   * struct stored as the
510 						   * map value
511 						   */
512 	};
513 
514 	struct { /* anonymous struct used by BPF_MAP_*_ELEM commands */
515 		__u32		map_fd;
516 		__aligned_u64	key;
517 		union {
518 			__aligned_u64 value;
519 			__aligned_u64 next_key;
520 		};
521 		__u64		flags;
522 	};
523 
524 	struct { /* struct used by BPF_MAP_*_BATCH commands */
525 		__aligned_u64	in_batch;	/* start batch,
526 						 * NULL to start from beginning
527 						 */
528 		__aligned_u64	out_batch;	/* output: next start batch */
529 		__aligned_u64	keys;
530 		__aligned_u64	values;
531 		__u32		count;		/* input/output:
532 						 * input: # of key/value
533 						 * elements
534 						 * output: # of filled elements
535 						 */
536 		__u32		map_fd;
537 		__u64		elem_flags;
538 		__u64		flags;
539 	} batch;
540 
541 	struct { /* anonymous struct used by BPF_PROG_LOAD command */
542 		__u32		prog_type;	/* one of enum bpf_prog_type */
543 		__u32		insn_cnt;
544 		__aligned_u64	insns;
545 		__aligned_u64	license;
546 		__u32		log_level;	/* verbosity level of verifier */
547 		__u32		log_size;	/* size of user buffer */
548 		__aligned_u64	log_buf;	/* user supplied buffer */
549 		__u32		kern_version;	/* not used */
550 		__u32		prog_flags;
551 		char		prog_name[BPF_OBJ_NAME_LEN];
552 		__u32		prog_ifindex;	/* ifindex of netdev to prep for */
553 		/* For some prog types expected attach type must be known at
554 		 * load time to verify attach type specific parts of prog
555 		 * (context accesses, allowed helpers, etc).
556 		 */
557 		__u32		expected_attach_type;
558 		__u32		prog_btf_fd;	/* fd pointing to BTF type data */
559 		__u32		func_info_rec_size;	/* userspace bpf_func_info size */
560 		__aligned_u64	func_info;	/* func info */
561 		__u32		func_info_cnt;	/* number of bpf_func_info records */
562 		__u32		line_info_rec_size;	/* userspace bpf_line_info size */
563 		__aligned_u64	line_info;	/* line info */
564 		__u32		line_info_cnt;	/* number of bpf_line_info records */
565 		__u32		attach_btf_id;	/* in-kernel BTF type id to attach to */
566 		union {
567 			/* valid prog_fd to attach to bpf prog */
568 			__u32		attach_prog_fd;
569 			/* or valid module BTF object fd or 0 to attach to vmlinux */
570 			__u32		attach_btf_obj_fd;
571 		};
572 	};
573 
574 	struct { /* anonymous struct used by BPF_OBJ_* commands */
575 		__aligned_u64	pathname;
576 		__u32		bpf_fd;
577 		__u32		file_flags;
578 	};
579 
580 	struct { /* anonymous struct used by BPF_PROG_ATTACH/DETACH commands */
581 		__u32		target_fd;	/* container object to attach to */
582 		__u32		attach_bpf_fd;	/* eBPF program to attach */
583 		__u32		attach_type;
584 		__u32		attach_flags;
585 		__u32		replace_bpf_fd;	/* previously attached eBPF
586 						 * program to replace if
587 						 * BPF_F_REPLACE is used
588 						 */
589 	};
590 
591 	struct { /* anonymous struct used by BPF_PROG_TEST_RUN command */
592 		__u32		prog_fd;
593 		__u32		retval;
594 		__u32		data_size_in;	/* input: len of data_in */
595 		__u32		data_size_out;	/* input/output: len of data_out
596 						 *   returns ENOSPC if data_out
597 						 *   is too small.
598 						 */
599 		__aligned_u64	data_in;
600 		__aligned_u64	data_out;
601 		__u32		repeat;
602 		__u32		duration;
603 		__u32		ctx_size_in;	/* input: len of ctx_in */
604 		__u32		ctx_size_out;	/* input/output: len of ctx_out
605 						 *   returns ENOSPC if ctx_out
606 						 *   is too small.
607 						 */
608 		__aligned_u64	ctx_in;
609 		__aligned_u64	ctx_out;
610 		__u32		flags;
611 		__u32		cpu;
612 	} test;
613 
614 	struct { /* anonymous struct used by BPF_*_GET_*_ID */
615 		union {
616 			__u32		start_id;
617 			__u32		prog_id;
618 			__u32		map_id;
619 			__u32		btf_id;
620 			__u32		link_id;
621 		};
622 		__u32		next_id;
623 		__u32		open_flags;
624 	};
625 
626 	struct { /* anonymous struct used by BPF_OBJ_GET_INFO_BY_FD */
627 		__u32		bpf_fd;
628 		__u32		info_len;
629 		__aligned_u64	info;
630 	} info;
631 
632 	struct { /* anonymous struct used by BPF_PROG_QUERY command */
633 		__u32		target_fd;	/* container object to query */
634 		__u32		attach_type;
635 		__u32		query_flags;
636 		__u32		attach_flags;
637 		__aligned_u64	prog_ids;
638 		__u32		prog_cnt;
639 	} query;
640 
641 	struct { /* anonymous struct used by BPF_RAW_TRACEPOINT_OPEN command */
642 		__u64 name;
643 		__u32 prog_fd;
644 	} raw_tracepoint;
645 
646 	struct { /* anonymous struct for BPF_BTF_LOAD */
647 		__aligned_u64	btf;
648 		__aligned_u64	btf_log_buf;
649 		__u32		btf_size;
650 		__u32		btf_log_size;
651 		__u32		btf_log_level;
652 	};
653 
654 	struct {
655 		__u32		pid;		/* input: pid */
656 		__u32		fd;		/* input: fd */
657 		__u32		flags;		/* input: flags */
658 		__u32		buf_len;	/* input/output: buf len */
659 		__aligned_u64	buf;		/* input/output:
660 						 *   tp_name for tracepoint
661 						 *   symbol for kprobe
662 						 *   filename for uprobe
663 						 */
664 		__u32		prog_id;	/* output: prod_id */
665 		__u32		fd_type;	/* output: BPF_FD_TYPE_* */
666 		__u64		probe_offset;	/* output: probe_offset */
667 		__u64		probe_addr;	/* output: probe_addr */
668 	} task_fd_query;
669 
670 	struct { /* struct used by BPF_LINK_CREATE command */
671 		__u32		prog_fd;	/* eBPF program to attach */
672 		union {
673 			__u32		target_fd;	/* object to attach to */
674 			__u32		target_ifindex; /* target ifindex */
675 		};
676 		__u32		attach_type;	/* attach type */
677 		__u32		flags;		/* extra flags */
678 		union {
679 			__u32		target_btf_id;	/* btf_id of target to attach to */
680 			struct {
681 				__aligned_u64	iter_info;	/* extra bpf_iter_link_info */
682 				__u32		iter_info_len;	/* iter_info length */
683 			};
684 		};
685 	} link_create;
686 
687 	struct { /* struct used by BPF_LINK_UPDATE command */
688 		__u32		link_fd;	/* link fd */
689 		/* new program fd to update link with */
690 		__u32		new_prog_fd;
691 		__u32		flags;		/* extra flags */
692 		/* expected link's program fd; is specified only if
693 		 * BPF_F_REPLACE flag is set in flags */
694 		__u32		old_prog_fd;
695 	} link_update;
696 
697 	struct {
698 		__u32		link_fd;
699 	} link_detach;
700 
701 	struct { /* struct used by BPF_ENABLE_STATS command */
702 		__u32		type;
703 	} enable_stats;
704 
705 	struct { /* struct used by BPF_ITER_CREATE command */
706 		__u32		link_fd;
707 		__u32		flags;
708 	} iter_create;
709 
710 	struct { /* struct used by BPF_PROG_BIND_MAP command */
711 		__u32		prog_fd;
712 		__u32		map_fd;
713 		__u32		flags;		/* extra flags */
714 	} prog_bind_map;
715 
716 } __attribute__((aligned(8)));
717 
718 /* The description below is an attempt at providing documentation to eBPF
719  * developers about the multiple available eBPF helper functions. It can be
720  * parsed and used to produce a manual page. The workflow is the following,
721  * and requires the rst2man utility:
722  *
723  *     $ ./scripts/bpf_helpers_doc.py \
724  *             --filename include/uapi/linux/bpf.h > /tmp/bpf-helpers.rst
725  *     $ rst2man /tmp/bpf-helpers.rst > /tmp/bpf-helpers.7
726  *     $ man /tmp/bpf-helpers.7
727  *
728  * Note that in order to produce this external documentation, some RST
729  * formatting is used in the descriptions to get "bold" and "italics" in
730  * manual pages. Also note that the few trailing white spaces are
731  * intentional, removing them would break paragraphs for rst2man.
732  *
733  * Start of BPF helper function descriptions:
734  *
735  * void *bpf_map_lookup_elem(struct bpf_map *map, const void *key)
736  * 	Description
737  * 		Perform a lookup in *map* for an entry associated to *key*.
738  * 	Return
739  * 		Map value associated to *key*, or **NULL** if no entry was
740  * 		found.
741  *
742  * long bpf_map_update_elem(struct bpf_map *map, const void *key, const void *value, u64 flags)
743  * 	Description
744  * 		Add or update the value of the entry associated to *key* in
745  * 		*map* with *value*. *flags* is one of:
746  *
747  * 		**BPF_NOEXIST**
748  * 			The entry for *key* must not exist in the map.
749  * 		**BPF_EXIST**
750  * 			The entry for *key* must already exist in the map.
751  * 		**BPF_ANY**
752  * 			No condition on the existence of the entry for *key*.
753  *
754  * 		Flag value **BPF_NOEXIST** cannot be used for maps of types
755  * 		**BPF_MAP_TYPE_ARRAY** or **BPF_MAP_TYPE_PERCPU_ARRAY**  (all
756  * 		elements always exist), the helper would return an error.
757  * 	Return
758  * 		0 on success, or a negative error in case of failure.
759  *
760  * long bpf_map_delete_elem(struct bpf_map *map, const void *key)
761  * 	Description
762  * 		Delete entry with *key* from *map*.
763  * 	Return
764  * 		0 on success, or a negative error in case of failure.
765  *
766  * long bpf_probe_read(void *dst, u32 size, const void *unsafe_ptr)
767  * 	Description
768  * 		For tracing programs, safely attempt to read *size* bytes from
769  * 		kernel space address *unsafe_ptr* and store the data in *dst*.
770  *
771  * 		Generally, use **bpf_probe_read_user**\ () or
772  * 		**bpf_probe_read_kernel**\ () instead.
773  * 	Return
774  * 		0 on success, or a negative error in case of failure.
775  *
776  * u64 bpf_ktime_get_ns(void)
777  * 	Description
778  * 		Return the time elapsed since system boot, in nanoseconds.
779  * 		Does not include time the system was suspended.
780  * 		See: **clock_gettime**\ (**CLOCK_MONOTONIC**)
781  * 	Return
782  * 		Current *ktime*.
783  *
784  * long bpf_trace_printk(const char *fmt, u32 fmt_size, ...)
785  * 	Description
786  * 		This helper is a "printk()-like" facility for debugging. It
787  * 		prints a message defined by format *fmt* (of size *fmt_size*)
788  * 		to file *\/sys/kernel/debug/tracing/trace* from DebugFS, if
789  * 		available. It can take up to three additional **u64**
790  * 		arguments (as an eBPF helpers, the total number of arguments is
791  * 		limited to five).
792  *
793  * 		Each time the helper is called, it appends a line to the trace.
794  * 		Lines are discarded while *\/sys/kernel/debug/tracing/trace* is
795  * 		open, use *\/sys/kernel/debug/tracing/trace_pipe* to avoid this.
796  * 		The format of the trace is customizable, and the exact output
797  * 		one will get depends on the options set in
798  * 		*\/sys/kernel/debug/tracing/trace_options* (see also the
799  * 		*README* file under the same directory). However, it usually
800  * 		defaults to something like:
801  *
802  * 		::
803  *
804  * 			telnet-470   [001] .N.. 419421.045894: 0x00000001: <formatted msg>
805  *
806  * 		In the above:
807  *
808  * 			* ``telnet`` is the name of the current task.
809  * 			* ``470`` is the PID of the current task.
810  * 			* ``001`` is the CPU number on which the task is
811  * 			  running.
812  * 			* In ``.N..``, each character refers to a set of
813  * 			  options (whether irqs are enabled, scheduling
814  * 			  options, whether hard/softirqs are running, level of
815  * 			  preempt_disabled respectively). **N** means that
816  * 			  **TIF_NEED_RESCHED** and **PREEMPT_NEED_RESCHED**
817  * 			  are set.
818  * 			* ``419421.045894`` is a timestamp.
819  * 			* ``0x00000001`` is a fake value used by BPF for the
820  * 			  instruction pointer register.
821  * 			* ``<formatted msg>`` is the message formatted with
822  * 			  *fmt*.
823  *
824  * 		The conversion specifiers supported by *fmt* are similar, but
825  * 		more limited than for printk(). They are **%d**, **%i**,
826  * 		**%u**, **%x**, **%ld**, **%li**, **%lu**, **%lx**, **%lld**,
827  * 		**%lli**, **%llu**, **%llx**, **%p**, **%s**. No modifier (size
828  * 		of field, padding with zeroes, etc.) is available, and the
829  * 		helper will return **-EINVAL** (but print nothing) if it
830  * 		encounters an unknown specifier.
831  *
832  * 		Also, note that **bpf_trace_printk**\ () is slow, and should
833  * 		only be used for debugging purposes. For this reason, a notice
834  * 		block (spanning several lines) is printed to kernel logs and
835  * 		states that the helper should not be used "for production use"
836  * 		the first time this helper is used (or more precisely, when
837  * 		**trace_printk**\ () buffers are allocated). For passing values
838  * 		to user space, perf events should be preferred.
839  * 	Return
840  * 		The number of bytes written to the buffer, or a negative error
841  * 		in case of failure.
842  *
843  * u32 bpf_get_prandom_u32(void)
844  * 	Description
845  * 		Get a pseudo-random number.
846  *
847  * 		From a security point of view, this helper uses its own
848  * 		pseudo-random internal state, and cannot be used to infer the
849  * 		seed of other random functions in the kernel. However, it is
850  * 		essential to note that the generator used by the helper is not
851  * 		cryptographically secure.
852  * 	Return
853  * 		A random 32-bit unsigned value.
854  *
855  * u32 bpf_get_smp_processor_id(void)
856  * 	Description
857  * 		Get the SMP (symmetric multiprocessing) processor id. Note that
858  * 		all programs run with preemption disabled, which means that the
859  * 		SMP processor id is stable during all the execution of the
860  * 		program.
861  * 	Return
862  * 		The SMP id of the processor running the program.
863  *
864  * long bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len, u64 flags)
865  * 	Description
866  * 		Store *len* bytes from address *from* into the packet
867  * 		associated to *skb*, at *offset*. *flags* are a combination of
868  * 		**BPF_F_RECOMPUTE_CSUM** (automatically recompute the
869  * 		checksum for the packet after storing the bytes) and
870  * 		**BPF_F_INVALIDATE_HASH** (set *skb*\ **->hash**, *skb*\
871  * 		**->swhash** and *skb*\ **->l4hash** to 0).
872  *
873  * 		A call to this helper is susceptible to change the underlying
874  * 		packet buffer. Therefore, at load time, all checks on pointers
875  * 		previously done by the verifier are invalidated and must be
876  * 		performed again, if the helper is used in combination with
877  * 		direct packet access.
878  * 	Return
879  * 		0 on success, or a negative error in case of failure.
880  *
881  * long bpf_l3_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 size)
882  * 	Description
883  * 		Recompute the layer 3 (e.g. IP) checksum for the packet
884  * 		associated to *skb*. Computation is incremental, so the helper
885  * 		must know the former value of the header field that was
886  * 		modified (*from*), the new value of this field (*to*), and the
887  * 		number of bytes (2 or 4) for this field, stored in *size*.
888  * 		Alternatively, it is possible to store the difference between
889  * 		the previous and the new values of the header field in *to*, by
890  * 		setting *from* and *size* to 0. For both methods, *offset*
891  * 		indicates the location of the IP checksum within the packet.
892  *
893  * 		This helper works in combination with **bpf_csum_diff**\ (),
894  * 		which does not update the checksum in-place, but offers more
895  * 		flexibility and can handle sizes larger than 2 or 4 for the
896  * 		checksum to update.
897  *
898  * 		A call to this helper is susceptible to change the underlying
899  * 		packet buffer. Therefore, at load time, all checks on pointers
900  * 		previously done by the verifier are invalidated and must be
901  * 		performed again, if the helper is used in combination with
902  * 		direct packet access.
903  * 	Return
904  * 		0 on success, or a negative error in case of failure.
905  *
906  * long bpf_l4_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 flags)
907  * 	Description
908  * 		Recompute the layer 4 (e.g. TCP, UDP or ICMP) checksum for the
909  * 		packet associated to *skb*. Computation is incremental, so the
910  * 		helper must know the former value of the header field that was
911  * 		modified (*from*), the new value of this field (*to*), and the
912  * 		number of bytes (2 or 4) for this field, stored on the lowest
913  * 		four bits of *flags*. Alternatively, it is possible to store
914  * 		the difference between the previous and the new values of the
915  * 		header field in *to*, by setting *from* and the four lowest
916  * 		bits of *flags* to 0. For both methods, *offset* indicates the
917  * 		location of the IP checksum within the packet. In addition to
918  * 		the size of the field, *flags* can be added (bitwise OR) actual
919  * 		flags. With **BPF_F_MARK_MANGLED_0**, a null checksum is left
920  * 		untouched (unless **BPF_F_MARK_ENFORCE** is added as well), and
921  * 		for updates resulting in a null checksum the value is set to
922  * 		**CSUM_MANGLED_0** instead. Flag **BPF_F_PSEUDO_HDR** indicates
923  * 		the checksum is to be computed against a pseudo-header.
924  *
925  * 		This helper works in combination with **bpf_csum_diff**\ (),
926  * 		which does not update the checksum in-place, but offers more
927  * 		flexibility and can handle sizes larger than 2 or 4 for the
928  * 		checksum to update.
929  *
930  * 		A call to this helper is susceptible to change the underlying
931  * 		packet buffer. Therefore, at load time, all checks on pointers
932  * 		previously done by the verifier are invalidated and must be
933  * 		performed again, if the helper is used in combination with
934  * 		direct packet access.
935  * 	Return
936  * 		0 on success, or a negative error in case of failure.
937  *
938  * long bpf_tail_call(void *ctx, struct bpf_map *prog_array_map, u32 index)
939  * 	Description
940  * 		This special helper is used to trigger a "tail call", or in
941  * 		other words, to jump into another eBPF program. The same stack
942  * 		frame is used (but values on stack and in registers for the
943  * 		caller are not accessible to the callee). This mechanism allows
944  * 		for program chaining, either for raising the maximum number of
945  * 		available eBPF instructions, or to execute given programs in
946  * 		conditional blocks. For security reasons, there is an upper
947  * 		limit to the number of successive tail calls that can be
948  * 		performed.
949  *
950  * 		Upon call of this helper, the program attempts to jump into a
951  * 		program referenced at index *index* in *prog_array_map*, a
952  * 		special map of type **BPF_MAP_TYPE_PROG_ARRAY**, and passes
953  * 		*ctx*, a pointer to the context.
954  *
955  * 		If the call succeeds, the kernel immediately runs the first
956  * 		instruction of the new program. This is not a function call,
957  * 		and it never returns to the previous program. If the call
958  * 		fails, then the helper has no effect, and the caller continues
959  * 		to run its subsequent instructions. A call can fail if the
960  * 		destination program for the jump does not exist (i.e. *index*
961  * 		is superior to the number of entries in *prog_array_map*), or
962  * 		if the maximum number of tail calls has been reached for this
963  * 		chain of programs. This limit is defined in the kernel by the
964  * 		macro **MAX_TAIL_CALL_CNT** (not accessible to user space),
965  * 		which is currently set to 32.
966  * 	Return
967  * 		0 on success, or a negative error in case of failure.
968  *
969  * long bpf_clone_redirect(struct sk_buff *skb, u32 ifindex, u64 flags)
970  * 	Description
971  * 		Clone and redirect the packet associated to *skb* to another
972  * 		net device of index *ifindex*. Both ingress and egress
973  * 		interfaces can be used for redirection. The **BPF_F_INGRESS**
974  * 		value in *flags* is used to make the distinction (ingress path
975  * 		is selected if the flag is present, egress path otherwise).
976  * 		This is the only flag supported for now.
977  *
978  * 		In comparison with **bpf_redirect**\ () helper,
979  * 		**bpf_clone_redirect**\ () has the associated cost of
980  * 		duplicating the packet buffer, but this can be executed out of
981  * 		the eBPF program. Conversely, **bpf_redirect**\ () is more
982  * 		efficient, but it is handled through an action code where the
983  * 		redirection happens only after the eBPF program has returned.
984  *
985  * 		A call to this helper is susceptible to change the underlying
986  * 		packet buffer. Therefore, at load time, all checks on pointers
987  * 		previously done by the verifier are invalidated and must be
988  * 		performed again, if the helper is used in combination with
989  * 		direct packet access.
990  * 	Return
991  * 		0 on success, or a negative error in case of failure.
992  *
993  * u64 bpf_get_current_pid_tgid(void)
994  * 	Return
995  * 		A 64-bit integer containing the current tgid and pid, and
996  * 		created as such:
997  * 		*current_task*\ **->tgid << 32 \|**
998  * 		*current_task*\ **->pid**.
999  *
1000  * u64 bpf_get_current_uid_gid(void)
1001  * 	Return
1002  * 		A 64-bit integer containing the current GID and UID, and
1003  * 		created as such: *current_gid* **<< 32 \|** *current_uid*.
1004  *
1005  * long bpf_get_current_comm(void *buf, u32 size_of_buf)
1006  * 	Description
1007  * 		Copy the **comm** attribute of the current task into *buf* of
1008  * 		*size_of_buf*. The **comm** attribute contains the name of
1009  * 		the executable (excluding the path) for the current task. The
1010  * 		*size_of_buf* must be strictly positive. On success, the
1011  * 		helper makes sure that the *buf* is NUL-terminated. On failure,
1012  * 		it is filled with zeroes.
1013  * 	Return
1014  * 		0 on success, or a negative error in case of failure.
1015  *
1016  * u32 bpf_get_cgroup_classid(struct sk_buff *skb)
1017  * 	Description
1018  * 		Retrieve the classid for the current task, i.e. for the net_cls
1019  * 		cgroup to which *skb* belongs.
1020  *
1021  * 		This helper can be used on TC egress path, but not on ingress.
1022  *
1023  * 		The net_cls cgroup provides an interface to tag network packets
1024  * 		based on a user-provided identifier for all traffic coming from
1025  * 		the tasks belonging to the related cgroup. See also the related
1026  * 		kernel documentation, available from the Linux sources in file
1027  * 		*Documentation/admin-guide/cgroup-v1/net_cls.rst*.
1028  *
1029  * 		The Linux kernel has two versions for cgroups: there are
1030  * 		cgroups v1 and cgroups v2. Both are available to users, who can
1031  * 		use a mixture of them, but note that the net_cls cgroup is for
1032  * 		cgroup v1 only. This makes it incompatible with BPF programs
1033  * 		run on cgroups, which is a cgroup-v2-only feature (a socket can
1034  * 		only hold data for one version of cgroups at a time).
1035  *
1036  * 		This helper is only available is the kernel was compiled with
1037  * 		the **CONFIG_CGROUP_NET_CLASSID** configuration option set to
1038  * 		"**y**" or to "**m**".
1039  * 	Return
1040  * 		The classid, or 0 for the default unconfigured classid.
1041  *
1042  * long bpf_skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
1043  * 	Description
1044  * 		Push a *vlan_tci* (VLAN tag control information) of protocol
1045  * 		*vlan_proto* to the packet associated to *skb*, then update
1046  * 		the checksum. Note that if *vlan_proto* is different from
1047  * 		**ETH_P_8021Q** and **ETH_P_8021AD**, it is considered to
1048  * 		be **ETH_P_8021Q**.
1049  *
1050  * 		A call to this helper is susceptible to change the underlying
1051  * 		packet buffer. Therefore, at load time, all checks on pointers
1052  * 		previously done by the verifier are invalidated and must be
1053  * 		performed again, if the helper is used in combination with
1054  * 		direct packet access.
1055  * 	Return
1056  * 		0 on success, or a negative error in case of failure.
1057  *
1058  * long bpf_skb_vlan_pop(struct sk_buff *skb)
1059  * 	Description
1060  * 		Pop a VLAN header from the packet associated to *skb*.
1061  *
1062  * 		A call to this helper is susceptible to change the underlying
1063  * 		packet buffer. Therefore, at load time, all checks on pointers
1064  * 		previously done by the verifier are invalidated and must be
1065  * 		performed again, if the helper is used in combination with
1066  * 		direct packet access.
1067  * 	Return
1068  * 		0 on success, or a negative error in case of failure.
1069  *
1070  * long bpf_skb_get_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags)
1071  * 	Description
1072  * 		Get tunnel metadata. This helper takes a pointer *key* to an
1073  * 		empty **struct bpf_tunnel_key** of **size**, that will be
1074  * 		filled with tunnel metadata for the packet associated to *skb*.
1075  * 		The *flags* can be set to **BPF_F_TUNINFO_IPV6**, which
1076  * 		indicates that the tunnel is based on IPv6 protocol instead of
1077  * 		IPv4.
1078  *
1079  * 		The **struct bpf_tunnel_key** is an object that generalizes the
1080  * 		principal parameters used by various tunneling protocols into a
1081  * 		single struct. This way, it can be used to easily make a
1082  * 		decision based on the contents of the encapsulation header,
1083  * 		"summarized" in this struct. In particular, it holds the IP
1084  * 		address of the remote end (IPv4 or IPv6, depending on the case)
1085  * 		in *key*\ **->remote_ipv4** or *key*\ **->remote_ipv6**. Also,
1086  * 		this struct exposes the *key*\ **->tunnel_id**, which is
1087  * 		generally mapped to a VNI (Virtual Network Identifier), making
1088  * 		it programmable together with the **bpf_skb_set_tunnel_key**\
1089  * 		() helper.
1090  *
1091  * 		Let's imagine that the following code is part of a program
1092  * 		attached to the TC ingress interface, on one end of a GRE
1093  * 		tunnel, and is supposed to filter out all messages coming from
1094  * 		remote ends with IPv4 address other than 10.0.0.1:
1095  *
1096  * 		::
1097  *
1098  * 			int ret;
1099  * 			struct bpf_tunnel_key key = {};
1100  *
1101  * 			ret = bpf_skb_get_tunnel_key(skb, &key, sizeof(key), 0);
1102  * 			if (ret < 0)
1103  * 				return TC_ACT_SHOT;	// drop packet
1104  *
1105  * 			if (key.remote_ipv4 != 0x0a000001)
1106  * 				return TC_ACT_SHOT;	// drop packet
1107  *
1108  * 			return TC_ACT_OK;		// accept packet
1109  *
1110  * 		This interface can also be used with all encapsulation devices
1111  * 		that can operate in "collect metadata" mode: instead of having
1112  * 		one network device per specific configuration, the "collect
1113  * 		metadata" mode only requires a single device where the
1114  * 		configuration can be extracted from this helper.
1115  *
1116  * 		This can be used together with various tunnels such as VXLan,
1117  * 		Geneve, GRE or IP in IP (IPIP).
1118  * 	Return
1119  * 		0 on success, or a negative error in case of failure.
1120  *
1121  * long bpf_skb_set_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags)
1122  * 	Description
1123  * 		Populate tunnel metadata for packet associated to *skb.* The
1124  * 		tunnel metadata is set to the contents of *key*, of *size*. The
1125  * 		*flags* can be set to a combination of the following values:
1126  *
1127  * 		**BPF_F_TUNINFO_IPV6**
1128  * 			Indicate that the tunnel is based on IPv6 protocol
1129  * 			instead of IPv4.
1130  * 		**BPF_F_ZERO_CSUM_TX**
1131  * 			For IPv4 packets, add a flag to tunnel metadata
1132  * 			indicating that checksum computation should be skipped
1133  * 			and checksum set to zeroes.
1134  * 		**BPF_F_DONT_FRAGMENT**
1135  * 			Add a flag to tunnel metadata indicating that the
1136  * 			packet should not be fragmented.
1137  * 		**BPF_F_SEQ_NUMBER**
1138  * 			Add a flag to tunnel metadata indicating that a
1139  * 			sequence number should be added to tunnel header before
1140  * 			sending the packet. This flag was added for GRE
1141  * 			encapsulation, but might be used with other protocols
1142  * 			as well in the future.
1143  *
1144  * 		Here is a typical usage on the transmit path:
1145  *
1146  * 		::
1147  *
1148  * 			struct bpf_tunnel_key key;
1149  * 			     populate key ...
1150  * 			bpf_skb_set_tunnel_key(skb, &key, sizeof(key), 0);
1151  * 			bpf_clone_redirect(skb, vxlan_dev_ifindex, 0);
1152  *
1153  * 		See also the description of the **bpf_skb_get_tunnel_key**\ ()
1154  * 		helper for additional information.
1155  * 	Return
1156  * 		0 on success, or a negative error in case of failure.
1157  *
1158  * u64 bpf_perf_event_read(struct bpf_map *map, u64 flags)
1159  * 	Description
1160  * 		Read the value of a perf event counter. This helper relies on a
1161  * 		*map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of
1162  * 		the perf event counter is selected when *map* is updated with
1163  * 		perf event file descriptors. The *map* is an array whose size
1164  * 		is the number of available CPUs, and each cell contains a value
1165  * 		relative to one CPU. The value to retrieve is indicated by
1166  * 		*flags*, that contains the index of the CPU to look up, masked
1167  * 		with **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to
1168  * 		**BPF_F_CURRENT_CPU** to indicate that the value for the
1169  * 		current CPU should be retrieved.
1170  *
1171  * 		Note that before Linux 4.13, only hardware perf event can be
1172  * 		retrieved.
1173  *
1174  * 		Also, be aware that the newer helper
1175  * 		**bpf_perf_event_read_value**\ () is recommended over
1176  * 		**bpf_perf_event_read**\ () in general. The latter has some ABI
1177  * 		quirks where error and counter value are used as a return code
1178  * 		(which is wrong to do since ranges may overlap). This issue is
1179  * 		fixed with **bpf_perf_event_read_value**\ (), which at the same
1180  * 		time provides more features over the **bpf_perf_event_read**\
1181  * 		() interface. Please refer to the description of
1182  * 		**bpf_perf_event_read_value**\ () for details.
1183  * 	Return
1184  * 		The value of the perf event counter read from the map, or a
1185  * 		negative error code in case of failure.
1186  *
1187  * long bpf_redirect(u32 ifindex, u64 flags)
1188  * 	Description
1189  * 		Redirect the packet to another net device of index *ifindex*.
1190  * 		This helper is somewhat similar to **bpf_clone_redirect**\
1191  * 		(), except that the packet is not cloned, which provides
1192  * 		increased performance.
1193  *
1194  * 		Except for XDP, both ingress and egress interfaces can be used
1195  * 		for redirection. The **BPF_F_INGRESS** value in *flags* is used
1196  * 		to make the distinction (ingress path is selected if the flag
1197  * 		is present, egress path otherwise). Currently, XDP only
1198  * 		supports redirection to the egress interface, and accepts no
1199  * 		flag at all.
1200  *
1201  * 		The same effect can also be attained with the more generic
1202  * 		**bpf_redirect_map**\ (), which uses a BPF map to store the
1203  * 		redirect target instead of providing it directly to the helper.
1204  * 	Return
1205  * 		For XDP, the helper returns **XDP_REDIRECT** on success or
1206  * 		**XDP_ABORTED** on error. For other program types, the values
1207  * 		are **TC_ACT_REDIRECT** on success or **TC_ACT_SHOT** on
1208  * 		error.
1209  *
1210  * u32 bpf_get_route_realm(struct sk_buff *skb)
1211  * 	Description
1212  * 		Retrieve the realm or the route, that is to say the
1213  * 		**tclassid** field of the destination for the *skb*. The
1214  * 		identifier retrieved is a user-provided tag, similar to the
1215  * 		one used with the net_cls cgroup (see description for
1216  * 		**bpf_get_cgroup_classid**\ () helper), but here this tag is
1217  * 		held by a route (a destination entry), not by a task.
1218  *
1219  * 		Retrieving this identifier works with the clsact TC egress hook
1220  * 		(see also **tc-bpf(8)**), or alternatively on conventional
1221  * 		classful egress qdiscs, but not on TC ingress path. In case of
1222  * 		clsact TC egress hook, this has the advantage that, internally,
1223  * 		the destination entry has not been dropped yet in the transmit
1224  * 		path. Therefore, the destination entry does not need to be
1225  * 		artificially held via **netif_keep_dst**\ () for a classful
1226  * 		qdisc until the *skb* is freed.
1227  *
1228  * 		This helper is available only if the kernel was compiled with
1229  * 		**CONFIG_IP_ROUTE_CLASSID** configuration option.
1230  * 	Return
1231  * 		The realm of the route for the packet associated to *skb*, or 0
1232  * 		if none was found.
1233  *
1234  * long bpf_perf_event_output(void *ctx, struct bpf_map *map, u64 flags, void *data, u64 size)
1235  * 	Description
1236  * 		Write raw *data* blob into a special BPF perf event held by
1237  * 		*map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf
1238  * 		event must have the following attributes: **PERF_SAMPLE_RAW**
1239  * 		as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and
1240  * 		**PERF_COUNT_SW_BPF_OUTPUT** as **config**.
1241  *
1242  * 		The *flags* are used to indicate the index in *map* for which
1243  * 		the value must be put, masked with **BPF_F_INDEX_MASK**.
1244  * 		Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU**
1245  * 		to indicate that the index of the current CPU core should be
1246  * 		used.
1247  *
1248  * 		The value to write, of *size*, is passed through eBPF stack and
1249  * 		pointed by *data*.
1250  *
1251  * 		The context of the program *ctx* needs also be passed to the
1252  * 		helper.
1253  *
1254  * 		On user space, a program willing to read the values needs to
1255  * 		call **perf_event_open**\ () on the perf event (either for
1256  * 		one or for all CPUs) and to store the file descriptor into the
1257  * 		*map*. This must be done before the eBPF program can send data
1258  * 		into it. An example is available in file
1259  * 		*samples/bpf/trace_output_user.c* in the Linux kernel source
1260  * 		tree (the eBPF program counterpart is in
1261  * 		*samples/bpf/trace_output_kern.c*).
1262  *
1263  * 		**bpf_perf_event_output**\ () achieves better performance
1264  * 		than **bpf_trace_printk**\ () for sharing data with user
1265  * 		space, and is much better suitable for streaming data from eBPF
1266  * 		programs.
1267  *
1268  * 		Note that this helper is not restricted to tracing use cases
1269  * 		and can be used with programs attached to TC or XDP as well,
1270  * 		where it allows for passing data to user space listeners. Data
1271  * 		can be:
1272  *
1273  * 		* Only custom structs,
1274  * 		* Only the packet payload, or
1275  * 		* A combination of both.
1276  * 	Return
1277  * 		0 on success, or a negative error in case of failure.
1278  *
1279  * long bpf_skb_load_bytes(const void *skb, u32 offset, void *to, u32 len)
1280  * 	Description
1281  * 		This helper was provided as an easy way to load data from a
1282  * 		packet. It can be used to load *len* bytes from *offset* from
1283  * 		the packet associated to *skb*, into the buffer pointed by
1284  * 		*to*.
1285  *
1286  * 		Since Linux 4.7, usage of this helper has mostly been replaced
1287  * 		by "direct packet access", enabling packet data to be
1288  * 		manipulated with *skb*\ **->data** and *skb*\ **->data_end**
1289  * 		pointing respectively to the first byte of packet data and to
1290  * 		the byte after the last byte of packet data. However, it
1291  * 		remains useful if one wishes to read large quantities of data
1292  * 		at once from a packet into the eBPF stack.
1293  * 	Return
1294  * 		0 on success, or a negative error in case of failure.
1295  *
1296  * long bpf_get_stackid(void *ctx, struct bpf_map *map, u64 flags)
1297  * 	Description
1298  * 		Walk a user or a kernel stack and return its id. To achieve
1299  * 		this, the helper needs *ctx*, which is a pointer to the context
1300  * 		on which the tracing program is executed, and a pointer to a
1301  * 		*map* of type **BPF_MAP_TYPE_STACK_TRACE**.
1302  *
1303  * 		The last argument, *flags*, holds the number of stack frames to
1304  * 		skip (from 0 to 255), masked with
1305  * 		**BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
1306  * 		a combination of the following flags:
1307  *
1308  * 		**BPF_F_USER_STACK**
1309  * 			Collect a user space stack instead of a kernel stack.
1310  * 		**BPF_F_FAST_STACK_CMP**
1311  * 			Compare stacks by hash only.
1312  * 		**BPF_F_REUSE_STACKID**
1313  * 			If two different stacks hash into the same *stackid*,
1314  * 			discard the old one.
1315  *
1316  * 		The stack id retrieved is a 32 bit long integer handle which
1317  * 		can be further combined with other data (including other stack
1318  * 		ids) and used as a key into maps. This can be useful for
1319  * 		generating a variety of graphs (such as flame graphs or off-cpu
1320  * 		graphs).
1321  *
1322  * 		For walking a stack, this helper is an improvement over
1323  * 		**bpf_probe_read**\ (), which can be used with unrolled loops
1324  * 		but is not efficient and consumes a lot of eBPF instructions.
1325  * 		Instead, **bpf_get_stackid**\ () can collect up to
1326  * 		**PERF_MAX_STACK_DEPTH** both kernel and user frames. Note that
1327  * 		this limit can be controlled with the **sysctl** program, and
1328  * 		that it should be manually increased in order to profile long
1329  * 		user stacks (such as stacks for Java programs). To do so, use:
1330  *
1331  * 		::
1332  *
1333  * 			# sysctl kernel.perf_event_max_stack=<new value>
1334  * 	Return
1335  * 		The positive or null stack id on success, or a negative error
1336  * 		in case of failure.
1337  *
1338  * s64 bpf_csum_diff(__be32 *from, u32 from_size, __be32 *to, u32 to_size, __wsum seed)
1339  * 	Description
1340  * 		Compute a checksum difference, from the raw buffer pointed by
1341  * 		*from*, of length *from_size* (that must be a multiple of 4),
1342  * 		towards the raw buffer pointed by *to*, of size *to_size*
1343  * 		(same remark). An optional *seed* can be added to the value
1344  * 		(this can be cascaded, the seed may come from a previous call
1345  * 		to the helper).
1346  *
1347  * 		This is flexible enough to be used in several ways:
1348  *
1349  * 		* With *from_size* == 0, *to_size* > 0 and *seed* set to
1350  * 		  checksum, it can be used when pushing new data.
1351  * 		* With *from_size* > 0, *to_size* == 0 and *seed* set to
1352  * 		  checksum, it can be used when removing data from a packet.
1353  * 		* With *from_size* > 0, *to_size* > 0 and *seed* set to 0, it
1354  * 		  can be used to compute a diff. Note that *from_size* and
1355  * 		  *to_size* do not need to be equal.
1356  *
1357  * 		This helper can be used in combination with
1358  * 		**bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\ (), to
1359  * 		which one can feed in the difference computed with
1360  * 		**bpf_csum_diff**\ ().
1361  * 	Return
1362  * 		The checksum result, or a negative error code in case of
1363  * 		failure.
1364  *
1365  * long bpf_skb_get_tunnel_opt(struct sk_buff *skb, void *opt, u32 size)
1366  * 	Description
1367  * 		Retrieve tunnel options metadata for the packet associated to
1368  * 		*skb*, and store the raw tunnel option data to the buffer *opt*
1369  * 		of *size*.
1370  *
1371  * 		This helper can be used with encapsulation devices that can
1372  * 		operate in "collect metadata" mode (please refer to the related
1373  * 		note in the description of **bpf_skb_get_tunnel_key**\ () for
1374  * 		more details). A particular example where this can be used is
1375  * 		in combination with the Geneve encapsulation protocol, where it
1376  * 		allows for pushing (with **bpf_skb_get_tunnel_opt**\ () helper)
1377  * 		and retrieving arbitrary TLVs (Type-Length-Value headers) from
1378  * 		the eBPF program. This allows for full customization of these
1379  * 		headers.
1380  * 	Return
1381  * 		The size of the option data retrieved.
1382  *
1383  * long bpf_skb_set_tunnel_opt(struct sk_buff *skb, void *opt, u32 size)
1384  * 	Description
1385  * 		Set tunnel options metadata for the packet associated to *skb*
1386  * 		to the option data contained in the raw buffer *opt* of *size*.
1387  *
1388  * 		See also the description of the **bpf_skb_get_tunnel_opt**\ ()
1389  * 		helper for additional information.
1390  * 	Return
1391  * 		0 on success, or a negative error in case of failure.
1392  *
1393  * long bpf_skb_change_proto(struct sk_buff *skb, __be16 proto, u64 flags)
1394  * 	Description
1395  * 		Change the protocol of the *skb* to *proto*. Currently
1396  * 		supported are transition from IPv4 to IPv6, and from IPv6 to
1397  * 		IPv4. The helper takes care of the groundwork for the
1398  * 		transition, including resizing the socket buffer. The eBPF
1399  * 		program is expected to fill the new headers, if any, via
1400  * 		**skb_store_bytes**\ () and to recompute the checksums with
1401  * 		**bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\
1402  * 		(). The main case for this helper is to perform NAT64
1403  * 		operations out of an eBPF program.
1404  *
1405  * 		Internally, the GSO type is marked as dodgy so that headers are
1406  * 		checked and segments are recalculated by the GSO/GRO engine.
1407  * 		The size for GSO target is adapted as well.
1408  *
1409  * 		All values for *flags* are reserved for future usage, and must
1410  * 		be left at zero.
1411  *
1412  * 		A call to this helper is susceptible to change the underlying
1413  * 		packet buffer. Therefore, at load time, all checks on pointers
1414  * 		previously done by the verifier are invalidated and must be
1415  * 		performed again, if the helper is used in combination with
1416  * 		direct packet access.
1417  * 	Return
1418  * 		0 on success, or a negative error in case of failure.
1419  *
1420  * long bpf_skb_change_type(struct sk_buff *skb, u32 type)
1421  * 	Description
1422  * 		Change the packet type for the packet associated to *skb*. This
1423  * 		comes down to setting *skb*\ **->pkt_type** to *type*, except
1424  * 		the eBPF program does not have a write access to *skb*\
1425  * 		**->pkt_type** beside this helper. Using a helper here allows
1426  * 		for graceful handling of errors.
1427  *
1428  * 		The major use case is to change incoming *skb*s to
1429  * 		**PACKET_HOST** in a programmatic way instead of having to
1430  * 		recirculate via **redirect**\ (..., **BPF_F_INGRESS**), for
1431  * 		example.
1432  *
1433  * 		Note that *type* only allows certain values. At this time, they
1434  * 		are:
1435  *
1436  * 		**PACKET_HOST**
1437  * 			Packet is for us.
1438  * 		**PACKET_BROADCAST**
1439  * 			Send packet to all.
1440  * 		**PACKET_MULTICAST**
1441  * 			Send packet to group.
1442  * 		**PACKET_OTHERHOST**
1443  * 			Send packet to someone else.
1444  * 	Return
1445  * 		0 on success, or a negative error in case of failure.
1446  *
1447  * long bpf_skb_under_cgroup(struct sk_buff *skb, struct bpf_map *map, u32 index)
1448  * 	Description
1449  * 		Check whether *skb* is a descendant of the cgroup2 held by
1450  * 		*map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*.
1451  * 	Return
1452  * 		The return value depends on the result of the test, and can be:
1453  *
1454  * 		* 0, if the *skb* failed the cgroup2 descendant test.
1455  * 		* 1, if the *skb* succeeded the cgroup2 descendant test.
1456  * 		* A negative error code, if an error occurred.
1457  *
1458  * u32 bpf_get_hash_recalc(struct sk_buff *skb)
1459  * 	Description
1460  * 		Retrieve the hash of the packet, *skb*\ **->hash**. If it is
1461  * 		not set, in particular if the hash was cleared due to mangling,
1462  * 		recompute this hash. Later accesses to the hash can be done
1463  * 		directly with *skb*\ **->hash**.
1464  *
1465  * 		Calling **bpf_set_hash_invalid**\ (), changing a packet
1466  * 		prototype with **bpf_skb_change_proto**\ (), or calling
1467  * 		**bpf_skb_store_bytes**\ () with the
1468  * 		**BPF_F_INVALIDATE_HASH** are actions susceptible to clear
1469  * 		the hash and to trigger a new computation for the next call to
1470  * 		**bpf_get_hash_recalc**\ ().
1471  * 	Return
1472  * 		The 32-bit hash.
1473  *
1474  * u64 bpf_get_current_task(void)
1475  * 	Return
1476  * 		A pointer to the current task struct.
1477  *
1478  * long bpf_probe_write_user(void *dst, const void *src, u32 len)
1479  * 	Description
1480  * 		Attempt in a safe way to write *len* bytes from the buffer
1481  * 		*src* to *dst* in memory. It only works for threads that are in
1482  * 		user context, and *dst* must be a valid user space address.
1483  *
1484  * 		This helper should not be used to implement any kind of
1485  * 		security mechanism because of TOC-TOU attacks, but rather to
1486  * 		debug, divert, and manipulate execution of semi-cooperative
1487  * 		processes.
1488  *
1489  * 		Keep in mind that this feature is meant for experiments, and it
1490  * 		has a risk of crashing the system and running programs.
1491  * 		Therefore, when an eBPF program using this helper is attached,
1492  * 		a warning including PID and process name is printed to kernel
1493  * 		logs.
1494  * 	Return
1495  * 		0 on success, or a negative error in case of failure.
1496  *
1497  * long bpf_current_task_under_cgroup(struct bpf_map *map, u32 index)
1498  * 	Description
1499  * 		Check whether the probe is being run is the context of a given
1500  * 		subset of the cgroup2 hierarchy. The cgroup2 to test is held by
1501  * 		*map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*.
1502  * 	Return
1503  * 		The return value depends on the result of the test, and can be:
1504  *
1505  *		* 0, if current task belongs to the cgroup2.
1506  *		* 1, if current task does not belong to the cgroup2.
1507  * 		* A negative error code, if an error occurred.
1508  *
1509  * long bpf_skb_change_tail(struct sk_buff *skb, u32 len, u64 flags)
1510  * 	Description
1511  * 		Resize (trim or grow) the packet associated to *skb* to the
1512  * 		new *len*. The *flags* are reserved for future usage, and must
1513  * 		be left at zero.
1514  *
1515  * 		The basic idea is that the helper performs the needed work to
1516  * 		change the size of the packet, then the eBPF program rewrites
1517  * 		the rest via helpers like **bpf_skb_store_bytes**\ (),
1518  * 		**bpf_l3_csum_replace**\ (), **bpf_l3_csum_replace**\ ()
1519  * 		and others. This helper is a slow path utility intended for
1520  * 		replies with control messages. And because it is targeted for
1521  * 		slow path, the helper itself can afford to be slow: it
1522  * 		implicitly linearizes, unclones and drops offloads from the
1523  * 		*skb*.
1524  *
1525  * 		A call to this helper is susceptible to change the underlying
1526  * 		packet buffer. Therefore, at load time, all checks on pointers
1527  * 		previously done by the verifier are invalidated and must be
1528  * 		performed again, if the helper is used in combination with
1529  * 		direct packet access.
1530  * 	Return
1531  * 		0 on success, or a negative error in case of failure.
1532  *
1533  * long bpf_skb_pull_data(struct sk_buff *skb, u32 len)
1534  * 	Description
1535  * 		Pull in non-linear data in case the *skb* is non-linear and not
1536  * 		all of *len* are part of the linear section. Make *len* bytes
1537  * 		from *skb* readable and writable. If a zero value is passed for
1538  * 		*len*, then the whole length of the *skb* is pulled.
1539  *
1540  * 		This helper is only needed for reading and writing with direct
1541  * 		packet access.
1542  *
1543  * 		For direct packet access, testing that offsets to access
1544  * 		are within packet boundaries (test on *skb*\ **->data_end**) is
1545  * 		susceptible to fail if offsets are invalid, or if the requested
1546  * 		data is in non-linear parts of the *skb*. On failure the
1547  * 		program can just bail out, or in the case of a non-linear
1548  * 		buffer, use a helper to make the data available. The
1549  * 		**bpf_skb_load_bytes**\ () helper is a first solution to access
1550  * 		the data. Another one consists in using **bpf_skb_pull_data**
1551  * 		to pull in once the non-linear parts, then retesting and
1552  * 		eventually access the data.
1553  *
1554  * 		At the same time, this also makes sure the *skb* is uncloned,
1555  * 		which is a necessary condition for direct write. As this needs
1556  * 		to be an invariant for the write part only, the verifier
1557  * 		detects writes and adds a prologue that is calling
1558  * 		**bpf_skb_pull_data()** to effectively unclone the *skb* from
1559  * 		the very beginning in case it is indeed cloned.
1560  *
1561  * 		A call to this helper is susceptible to change the underlying
1562  * 		packet buffer. Therefore, at load time, all checks on pointers
1563  * 		previously done by the verifier are invalidated and must be
1564  * 		performed again, if the helper is used in combination with
1565  * 		direct packet access.
1566  * 	Return
1567  * 		0 on success, or a negative error in case of failure.
1568  *
1569  * s64 bpf_csum_update(struct sk_buff *skb, __wsum csum)
1570  * 	Description
1571  * 		Add the checksum *csum* into *skb*\ **->csum** in case the
1572  * 		driver has supplied a checksum for the entire packet into that
1573  * 		field. Return an error otherwise. This helper is intended to be
1574  * 		used in combination with **bpf_csum_diff**\ (), in particular
1575  * 		when the checksum needs to be updated after data has been
1576  * 		written into the packet through direct packet access.
1577  * 	Return
1578  * 		The checksum on success, or a negative error code in case of
1579  * 		failure.
1580  *
1581  * void bpf_set_hash_invalid(struct sk_buff *skb)
1582  * 	Description
1583  * 		Invalidate the current *skb*\ **->hash**. It can be used after
1584  * 		mangling on headers through direct packet access, in order to
1585  * 		indicate that the hash is outdated and to trigger a
1586  * 		recalculation the next time the kernel tries to access this
1587  * 		hash or when the **bpf_get_hash_recalc**\ () helper is called.
1588  *
1589  * long bpf_get_numa_node_id(void)
1590  * 	Description
1591  * 		Return the id of the current NUMA node. The primary use case
1592  * 		for this helper is the selection of sockets for the local NUMA
1593  * 		node, when the program is attached to sockets using the
1594  * 		**SO_ATTACH_REUSEPORT_EBPF** option (see also **socket(7)**),
1595  * 		but the helper is also available to other eBPF program types,
1596  * 		similarly to **bpf_get_smp_processor_id**\ ().
1597  * 	Return
1598  * 		The id of current NUMA node.
1599  *
1600  * long bpf_skb_change_head(struct sk_buff *skb, u32 len, u64 flags)
1601  * 	Description
1602  * 		Grows headroom of packet associated to *skb* and adjusts the
1603  * 		offset of the MAC header accordingly, adding *len* bytes of
1604  * 		space. It automatically extends and reallocates memory as
1605  * 		required.
1606  *
1607  * 		This helper can be used on a layer 3 *skb* to push a MAC header
1608  * 		for redirection into a layer 2 device.
1609  *
1610  * 		All values for *flags* are reserved for future usage, and must
1611  * 		be left at zero.
1612  *
1613  * 		A call to this helper is susceptible to change the underlying
1614  * 		packet buffer. Therefore, at load time, all checks on pointers
1615  * 		previously done by the verifier are invalidated and must be
1616  * 		performed again, if the helper is used in combination with
1617  * 		direct packet access.
1618  * 	Return
1619  * 		0 on success, or a negative error in case of failure.
1620  *
1621  * long bpf_xdp_adjust_head(struct xdp_buff *xdp_md, int delta)
1622  * 	Description
1623  * 		Adjust (move) *xdp_md*\ **->data** by *delta* bytes. Note that
1624  * 		it is possible to use a negative value for *delta*. This helper
1625  * 		can be used to prepare the packet for pushing or popping
1626  * 		headers.
1627  *
1628  * 		A call to this helper is susceptible to change the underlying
1629  * 		packet buffer. Therefore, at load time, all checks on pointers
1630  * 		previously done by the verifier are invalidated and must be
1631  * 		performed again, if the helper is used in combination with
1632  * 		direct packet access.
1633  * 	Return
1634  * 		0 on success, or a negative error in case of failure.
1635  *
1636  * long bpf_probe_read_str(void *dst, u32 size, const void *unsafe_ptr)
1637  * 	Description
1638  * 		Copy a NUL terminated string from an unsafe kernel address
1639  * 		*unsafe_ptr* to *dst*. See **bpf_probe_read_kernel_str**\ () for
1640  * 		more details.
1641  *
1642  * 		Generally, use **bpf_probe_read_user_str**\ () or
1643  * 		**bpf_probe_read_kernel_str**\ () instead.
1644  * 	Return
1645  * 		On success, the strictly positive length of the string,
1646  * 		including the trailing NUL character. On error, a negative
1647  * 		value.
1648  *
1649  * u64 bpf_get_socket_cookie(struct sk_buff *skb)
1650  * 	Description
1651  * 		If the **struct sk_buff** pointed by *skb* has a known socket,
1652  * 		retrieve the cookie (generated by the kernel) of this socket.
1653  * 		If no cookie has been set yet, generate a new cookie. Once
1654  * 		generated, the socket cookie remains stable for the life of the
1655  * 		socket. This helper can be useful for monitoring per socket
1656  * 		networking traffic statistics as it provides a global socket
1657  * 		identifier that can be assumed unique.
1658  * 	Return
1659  * 		A 8-byte long unique number on success, or 0 if the socket
1660  * 		field is missing inside *skb*.
1661  *
1662  * u64 bpf_get_socket_cookie(struct bpf_sock_addr *ctx)
1663  * 	Description
1664  * 		Equivalent to bpf_get_socket_cookie() helper that accepts
1665  * 		*skb*, but gets socket from **struct bpf_sock_addr** context.
1666  * 	Return
1667  * 		A 8-byte long unique number.
1668  *
1669  * u64 bpf_get_socket_cookie(struct bpf_sock_ops *ctx)
1670  * 	Description
1671  * 		Equivalent to **bpf_get_socket_cookie**\ () helper that accepts
1672  * 		*skb*, but gets socket from **struct bpf_sock_ops** context.
1673  * 	Return
1674  * 		A 8-byte long unique number.
1675  *
1676  * u64 bpf_get_socket_cookie(struct sock *sk)
1677  * 	Description
1678  * 		Equivalent to **bpf_get_socket_cookie**\ () helper that accepts
1679  * 		*sk*, but gets socket from a BTF **struct sock**. This helper
1680  * 		also works for sleepable programs.
1681  * 	Return
1682  * 		A 8-byte long unique number or 0 if *sk* is NULL.
1683  *
1684  * u32 bpf_get_socket_uid(struct sk_buff *skb)
1685  * 	Return
1686  * 		The owner UID of the socket associated to *skb*. If the socket
1687  * 		is **NULL**, or if it is not a full socket (i.e. if it is a
1688  * 		time-wait or a request socket instead), **overflowuid** value
1689  * 		is returned (note that **overflowuid** might also be the actual
1690  * 		UID value for the socket).
1691  *
1692  * long bpf_set_hash(struct sk_buff *skb, u32 hash)
1693  * 	Description
1694  * 		Set the full hash for *skb* (set the field *skb*\ **->hash**)
1695  * 		to value *hash*.
1696  * 	Return
1697  * 		0
1698  *
1699  * long bpf_setsockopt(void *bpf_socket, int level, int optname, void *optval, int optlen)
1700  * 	Description
1701  * 		Emulate a call to **setsockopt()** on the socket associated to
1702  * 		*bpf_socket*, which must be a full socket. The *level* at
1703  * 		which the option resides and the name *optname* of the option
1704  * 		must be specified, see **setsockopt(2)** for more information.
1705  * 		The option value of length *optlen* is pointed by *optval*.
1706  *
1707  * 		*bpf_socket* should be one of the following:
1708  *
1709  * 		* **struct bpf_sock_ops** for **BPF_PROG_TYPE_SOCK_OPS**.
1710  * 		* **struct bpf_sock_addr** for **BPF_CGROUP_INET4_CONNECT**
1711  * 		  and **BPF_CGROUP_INET6_CONNECT**.
1712  *
1713  * 		This helper actually implements a subset of **setsockopt()**.
1714  * 		It supports the following *level*\ s:
1715  *
1716  * 		* **SOL_SOCKET**, which supports the following *optname*\ s:
1717  * 		  **SO_RCVBUF**, **SO_SNDBUF**, **SO_MAX_PACING_RATE**,
1718  * 		  **SO_PRIORITY**, **SO_RCVLOWAT**, **SO_MARK**,
1719  * 		  **SO_BINDTODEVICE**, **SO_KEEPALIVE**.
1720  * 		* **IPPROTO_TCP**, which supports the following *optname*\ s:
1721  * 		  **TCP_CONGESTION**, **TCP_BPF_IW**,
1722  * 		  **TCP_BPF_SNDCWND_CLAMP**, **TCP_SAVE_SYN**,
1723  * 		  **TCP_KEEPIDLE**, **TCP_KEEPINTVL**, **TCP_KEEPCNT**,
1724  *		  **TCP_SYNCNT**, **TCP_USER_TIMEOUT**, **TCP_NOTSENT_LOWAT**.
1725  * 		* **IPPROTO_IP**, which supports *optname* **IP_TOS**.
1726  * 		* **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**.
1727  * 	Return
1728  * 		0 on success, or a negative error in case of failure.
1729  *
1730  * long bpf_skb_adjust_room(struct sk_buff *skb, s32 len_diff, u32 mode, u64 flags)
1731  * 	Description
1732  * 		Grow or shrink the room for data in the packet associated to
1733  * 		*skb* by *len_diff*, and according to the selected *mode*.
1734  *
1735  * 		By default, the helper will reset any offloaded checksum
1736  * 		indicator of the skb to CHECKSUM_NONE. This can be avoided
1737  * 		by the following flag:
1738  *
1739  * 		* **BPF_F_ADJ_ROOM_NO_CSUM_RESET**: Do not reset offloaded
1740  * 		  checksum data of the skb to CHECKSUM_NONE.
1741  *
1742  *		There are two supported modes at this time:
1743  *
1744  *		* **BPF_ADJ_ROOM_MAC**: Adjust room at the mac layer
1745  *		  (room space is added or removed below the layer 2 header).
1746  *
1747  * 		* **BPF_ADJ_ROOM_NET**: Adjust room at the network layer
1748  * 		  (room space is added or removed below the layer 3 header).
1749  *
1750  *		The following flags are supported at this time:
1751  *
1752  *		* **BPF_F_ADJ_ROOM_FIXED_GSO**: Do not adjust gso_size.
1753  *		  Adjusting mss in this way is not allowed for datagrams.
1754  *
1755  *		* **BPF_F_ADJ_ROOM_ENCAP_L3_IPV4**,
1756  *		  **BPF_F_ADJ_ROOM_ENCAP_L3_IPV6**:
1757  *		  Any new space is reserved to hold a tunnel header.
1758  *		  Configure skb offsets and other fields accordingly.
1759  *
1760  *		* **BPF_F_ADJ_ROOM_ENCAP_L4_GRE**,
1761  *		  **BPF_F_ADJ_ROOM_ENCAP_L4_UDP**:
1762  *		  Use with ENCAP_L3 flags to further specify the tunnel type.
1763  *
1764  *		* **BPF_F_ADJ_ROOM_ENCAP_L2**\ (*len*):
1765  *		  Use with ENCAP_L3/L4 flags to further specify the tunnel
1766  *		  type; *len* is the length of the inner MAC header.
1767  *
1768  * 		A call to this helper is susceptible to change the underlying
1769  * 		packet buffer. Therefore, at load time, all checks on pointers
1770  * 		previously done by the verifier are invalidated and must be
1771  * 		performed again, if the helper is used in combination with
1772  * 		direct packet access.
1773  * 	Return
1774  * 		0 on success, or a negative error in case of failure.
1775  *
1776  * long bpf_redirect_map(struct bpf_map *map, u32 key, u64 flags)
1777  * 	Description
1778  * 		Redirect the packet to the endpoint referenced by *map* at
1779  * 		index *key*. Depending on its type, this *map* can contain
1780  * 		references to net devices (for forwarding packets through other
1781  * 		ports), or to CPUs (for redirecting XDP frames to another CPU;
1782  * 		but this is only implemented for native XDP (with driver
1783  * 		support) as of this writing).
1784  *
1785  * 		The lower two bits of *flags* are used as the return code if
1786  * 		the map lookup fails. This is so that the return value can be
1787  * 		one of the XDP program return codes up to **XDP_TX**, as chosen
1788  * 		by the caller. Any higher bits in the *flags* argument must be
1789  * 		unset.
1790  *
1791  * 		See also **bpf_redirect**\ (), which only supports redirecting
1792  * 		to an ifindex, but doesn't require a map to do so.
1793  * 	Return
1794  * 		**XDP_REDIRECT** on success, or the value of the two lower bits
1795  * 		of the *flags* argument on error.
1796  *
1797  * long bpf_sk_redirect_map(struct sk_buff *skb, struct bpf_map *map, u32 key, u64 flags)
1798  * 	Description
1799  * 		Redirect the packet to the socket referenced by *map* (of type
1800  * 		**BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and
1801  * 		egress interfaces can be used for redirection. The
1802  * 		**BPF_F_INGRESS** value in *flags* is used to make the
1803  * 		distinction (ingress path is selected if the flag is present,
1804  * 		egress path otherwise). This is the only flag supported for now.
1805  * 	Return
1806  * 		**SK_PASS** on success, or **SK_DROP** on error.
1807  *
1808  * long bpf_sock_map_update(struct bpf_sock_ops *skops, struct bpf_map *map, void *key, u64 flags)
1809  * 	Description
1810  * 		Add an entry to, or update a *map* referencing sockets. The
1811  * 		*skops* is used as a new value for the entry associated to
1812  * 		*key*. *flags* is one of:
1813  *
1814  * 		**BPF_NOEXIST**
1815  * 			The entry for *key* must not exist in the map.
1816  * 		**BPF_EXIST**
1817  * 			The entry for *key* must already exist in the map.
1818  * 		**BPF_ANY**
1819  * 			No condition on the existence of the entry for *key*.
1820  *
1821  * 		If the *map* has eBPF programs (parser and verdict), those will
1822  * 		be inherited by the socket being added. If the socket is
1823  * 		already attached to eBPF programs, this results in an error.
1824  * 	Return
1825  * 		0 on success, or a negative error in case of failure.
1826  *
1827  * long bpf_xdp_adjust_meta(struct xdp_buff *xdp_md, int delta)
1828  * 	Description
1829  * 		Adjust the address pointed by *xdp_md*\ **->data_meta** by
1830  * 		*delta* (which can be positive or negative). Note that this
1831  * 		operation modifies the address stored in *xdp_md*\ **->data**,
1832  * 		so the latter must be loaded only after the helper has been
1833  * 		called.
1834  *
1835  * 		The use of *xdp_md*\ **->data_meta** is optional and programs
1836  * 		are not required to use it. The rationale is that when the
1837  * 		packet is processed with XDP (e.g. as DoS filter), it is
1838  * 		possible to push further meta data along with it before passing
1839  * 		to the stack, and to give the guarantee that an ingress eBPF
1840  * 		program attached as a TC classifier on the same device can pick
1841  * 		this up for further post-processing. Since TC works with socket
1842  * 		buffers, it remains possible to set from XDP the **mark** or
1843  * 		**priority** pointers, or other pointers for the socket buffer.
1844  * 		Having this scratch space generic and programmable allows for
1845  * 		more flexibility as the user is free to store whatever meta
1846  * 		data they need.
1847  *
1848  * 		A call to this helper is susceptible to change the underlying
1849  * 		packet buffer. Therefore, at load time, all checks on pointers
1850  * 		previously done by the verifier are invalidated and must be
1851  * 		performed again, if the helper is used in combination with
1852  * 		direct packet access.
1853  * 	Return
1854  * 		0 on success, or a negative error in case of failure.
1855  *
1856  * long bpf_perf_event_read_value(struct bpf_map *map, u64 flags, struct bpf_perf_event_value *buf, u32 buf_size)
1857  * 	Description
1858  * 		Read the value of a perf event counter, and store it into *buf*
1859  * 		of size *buf_size*. This helper relies on a *map* of type
1860  * 		**BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of the perf event
1861  * 		counter is selected when *map* is updated with perf event file
1862  * 		descriptors. The *map* is an array whose size is the number of
1863  * 		available CPUs, and each cell contains a value relative to one
1864  * 		CPU. The value to retrieve is indicated by *flags*, that
1865  * 		contains the index of the CPU to look up, masked with
1866  * 		**BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to
1867  * 		**BPF_F_CURRENT_CPU** to indicate that the value for the
1868  * 		current CPU should be retrieved.
1869  *
1870  * 		This helper behaves in a way close to
1871  * 		**bpf_perf_event_read**\ () helper, save that instead of
1872  * 		just returning the value observed, it fills the *buf*
1873  * 		structure. This allows for additional data to be retrieved: in
1874  * 		particular, the enabled and running times (in *buf*\
1875  * 		**->enabled** and *buf*\ **->running**, respectively) are
1876  * 		copied. In general, **bpf_perf_event_read_value**\ () is
1877  * 		recommended over **bpf_perf_event_read**\ (), which has some
1878  * 		ABI issues and provides fewer functionalities.
1879  *
1880  * 		These values are interesting, because hardware PMU (Performance
1881  * 		Monitoring Unit) counters are limited resources. When there are
1882  * 		more PMU based perf events opened than available counters,
1883  * 		kernel will multiplex these events so each event gets certain
1884  * 		percentage (but not all) of the PMU time. In case that
1885  * 		multiplexing happens, the number of samples or counter value
1886  * 		will not reflect the case compared to when no multiplexing
1887  * 		occurs. This makes comparison between different runs difficult.
1888  * 		Typically, the counter value should be normalized before
1889  * 		comparing to other experiments. The usual normalization is done
1890  * 		as follows.
1891  *
1892  * 		::
1893  *
1894  * 			normalized_counter = counter * t_enabled / t_running
1895  *
1896  * 		Where t_enabled is the time enabled for event and t_running is
1897  * 		the time running for event since last normalization. The
1898  * 		enabled and running times are accumulated since the perf event
1899  * 		open. To achieve scaling factor between two invocations of an
1900  * 		eBPF program, users can use CPU id as the key (which is
1901  * 		typical for perf array usage model) to remember the previous
1902  * 		value and do the calculation inside the eBPF program.
1903  * 	Return
1904  * 		0 on success, or a negative error in case of failure.
1905  *
1906  * long bpf_perf_prog_read_value(struct bpf_perf_event_data *ctx, struct bpf_perf_event_value *buf, u32 buf_size)
1907  * 	Description
1908  * 		For en eBPF program attached to a perf event, retrieve the
1909  * 		value of the event counter associated to *ctx* and store it in
1910  * 		the structure pointed by *buf* and of size *buf_size*. Enabled
1911  * 		and running times are also stored in the structure (see
1912  * 		description of helper **bpf_perf_event_read_value**\ () for
1913  * 		more details).
1914  * 	Return
1915  * 		0 on success, or a negative error in case of failure.
1916  *
1917  * long bpf_getsockopt(void *bpf_socket, int level, int optname, void *optval, int optlen)
1918  * 	Description
1919  * 		Emulate a call to **getsockopt()** on the socket associated to
1920  * 		*bpf_socket*, which must be a full socket. The *level* at
1921  * 		which the option resides and the name *optname* of the option
1922  * 		must be specified, see **getsockopt(2)** for more information.
1923  * 		The retrieved value is stored in the structure pointed by
1924  * 		*opval* and of length *optlen*.
1925  *
1926  * 		*bpf_socket* should be one of the following:
1927  *
1928  * 		* **struct bpf_sock_ops** for **BPF_PROG_TYPE_SOCK_OPS**.
1929  * 		* **struct bpf_sock_addr** for **BPF_CGROUP_INET4_CONNECT**
1930  * 		  and **BPF_CGROUP_INET6_CONNECT**.
1931  *
1932  * 		This helper actually implements a subset of **getsockopt()**.
1933  * 		It supports the following *level*\ s:
1934  *
1935  * 		* **IPPROTO_TCP**, which supports *optname*
1936  * 		  **TCP_CONGESTION**.
1937  * 		* **IPPROTO_IP**, which supports *optname* **IP_TOS**.
1938  * 		* **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**.
1939  * 	Return
1940  * 		0 on success, or a negative error in case of failure.
1941  *
1942  * long bpf_override_return(struct pt_regs *regs, u64 rc)
1943  * 	Description
1944  * 		Used for error injection, this helper uses kprobes to override
1945  * 		the return value of the probed function, and to set it to *rc*.
1946  * 		The first argument is the context *regs* on which the kprobe
1947  * 		works.
1948  *
1949  * 		This helper works by setting the PC (program counter)
1950  * 		to an override function which is run in place of the original
1951  * 		probed function. This means the probed function is not run at
1952  * 		all. The replacement function just returns with the required
1953  * 		value.
1954  *
1955  * 		This helper has security implications, and thus is subject to
1956  * 		restrictions. It is only available if the kernel was compiled
1957  * 		with the **CONFIG_BPF_KPROBE_OVERRIDE** configuration
1958  * 		option, and in this case it only works on functions tagged with
1959  * 		**ALLOW_ERROR_INJECTION** in the kernel code.
1960  *
1961  * 		Also, the helper is only available for the architectures having
1962  * 		the CONFIG_FUNCTION_ERROR_INJECTION option. As of this writing,
1963  * 		x86 architecture is the only one to support this feature.
1964  * 	Return
1965  * 		0
1966  *
1967  * long bpf_sock_ops_cb_flags_set(struct bpf_sock_ops *bpf_sock, int argval)
1968  * 	Description
1969  * 		Attempt to set the value of the **bpf_sock_ops_cb_flags** field
1970  * 		for the full TCP socket associated to *bpf_sock_ops* to
1971  * 		*argval*.
1972  *
1973  * 		The primary use of this field is to determine if there should
1974  * 		be calls to eBPF programs of type
1975  * 		**BPF_PROG_TYPE_SOCK_OPS** at various points in the TCP
1976  * 		code. A program of the same type can change its value, per
1977  * 		connection and as necessary, when the connection is
1978  * 		established. This field is directly accessible for reading, but
1979  * 		this helper must be used for updates in order to return an
1980  * 		error if an eBPF program tries to set a callback that is not
1981  * 		supported in the current kernel.
1982  *
1983  * 		*argval* is a flag array which can combine these flags:
1984  *
1985  * 		* **BPF_SOCK_OPS_RTO_CB_FLAG** (retransmission time out)
1986  * 		* **BPF_SOCK_OPS_RETRANS_CB_FLAG** (retransmission)
1987  * 		* **BPF_SOCK_OPS_STATE_CB_FLAG** (TCP state change)
1988  * 		* **BPF_SOCK_OPS_RTT_CB_FLAG** (every RTT)
1989  *
1990  * 		Therefore, this function can be used to clear a callback flag by
1991  * 		setting the appropriate bit to zero. e.g. to disable the RTO
1992  * 		callback:
1993  *
1994  * 		**bpf_sock_ops_cb_flags_set(bpf_sock,**
1995  * 			**bpf_sock->bpf_sock_ops_cb_flags & ~BPF_SOCK_OPS_RTO_CB_FLAG)**
1996  *
1997  * 		Here are some examples of where one could call such eBPF
1998  * 		program:
1999  *
2000  * 		* When RTO fires.
2001  * 		* When a packet is retransmitted.
2002  * 		* When the connection terminates.
2003  * 		* When a packet is sent.
2004  * 		* When a packet is received.
2005  * 	Return
2006  * 		Code **-EINVAL** if the socket is not a full TCP socket;
2007  * 		otherwise, a positive number containing the bits that could not
2008  * 		be set is returned (which comes down to 0 if all bits were set
2009  * 		as required).
2010  *
2011  * long bpf_msg_redirect_map(struct sk_msg_buff *msg, struct bpf_map *map, u32 key, u64 flags)
2012  * 	Description
2013  * 		This helper is used in programs implementing policies at the
2014  * 		socket level. If the message *msg* is allowed to pass (i.e. if
2015  * 		the verdict eBPF program returns **SK_PASS**), redirect it to
2016  * 		the socket referenced by *map* (of type
2017  * 		**BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and
2018  * 		egress interfaces can be used for redirection. The
2019  * 		**BPF_F_INGRESS** value in *flags* is used to make the
2020  * 		distinction (ingress path is selected if the flag is present,
2021  * 		egress path otherwise). This is the only flag supported for now.
2022  * 	Return
2023  * 		**SK_PASS** on success, or **SK_DROP** on error.
2024  *
2025  * long bpf_msg_apply_bytes(struct sk_msg_buff *msg, u32 bytes)
2026  * 	Description
2027  * 		For socket policies, apply the verdict of the eBPF program to
2028  * 		the next *bytes* (number of bytes) of message *msg*.
2029  *
2030  * 		For example, this helper can be used in the following cases:
2031  *
2032  * 		* A single **sendmsg**\ () or **sendfile**\ () system call
2033  * 		  contains multiple logical messages that the eBPF program is
2034  * 		  supposed to read and for which it should apply a verdict.
2035  * 		* An eBPF program only cares to read the first *bytes* of a
2036  * 		  *msg*. If the message has a large payload, then setting up
2037  * 		  and calling the eBPF program repeatedly for all bytes, even
2038  * 		  though the verdict is already known, would create unnecessary
2039  * 		  overhead.
2040  *
2041  * 		When called from within an eBPF program, the helper sets a
2042  * 		counter internal to the BPF infrastructure, that is used to
2043  * 		apply the last verdict to the next *bytes*. If *bytes* is
2044  * 		smaller than the current data being processed from a
2045  * 		**sendmsg**\ () or **sendfile**\ () system call, the first
2046  * 		*bytes* will be sent and the eBPF program will be re-run with
2047  * 		the pointer for start of data pointing to byte number *bytes*
2048  * 		**+ 1**. If *bytes* is larger than the current data being
2049  * 		processed, then the eBPF verdict will be applied to multiple
2050  * 		**sendmsg**\ () or **sendfile**\ () calls until *bytes* are
2051  * 		consumed.
2052  *
2053  * 		Note that if a socket closes with the internal counter holding
2054  * 		a non-zero value, this is not a problem because data is not
2055  * 		being buffered for *bytes* and is sent as it is received.
2056  * 	Return
2057  * 		0
2058  *
2059  * long bpf_msg_cork_bytes(struct sk_msg_buff *msg, u32 bytes)
2060  * 	Description
2061  * 		For socket policies, prevent the execution of the verdict eBPF
2062  * 		program for message *msg* until *bytes* (byte number) have been
2063  * 		accumulated.
2064  *
2065  * 		This can be used when one needs a specific number of bytes
2066  * 		before a verdict can be assigned, even if the data spans
2067  * 		multiple **sendmsg**\ () or **sendfile**\ () calls. The extreme
2068  * 		case would be a user calling **sendmsg**\ () repeatedly with
2069  * 		1-byte long message segments. Obviously, this is bad for
2070  * 		performance, but it is still valid. If the eBPF program needs
2071  * 		*bytes* bytes to validate a header, this helper can be used to
2072  * 		prevent the eBPF program to be called again until *bytes* have
2073  * 		been accumulated.
2074  * 	Return
2075  * 		0
2076  *
2077  * long bpf_msg_pull_data(struct sk_msg_buff *msg, u32 start, u32 end, u64 flags)
2078  * 	Description
2079  * 		For socket policies, pull in non-linear data from user space
2080  * 		for *msg* and set pointers *msg*\ **->data** and *msg*\
2081  * 		**->data_end** to *start* and *end* bytes offsets into *msg*,
2082  * 		respectively.
2083  *
2084  * 		If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a
2085  * 		*msg* it can only parse data that the (**data**, **data_end**)
2086  * 		pointers have already consumed. For **sendmsg**\ () hooks this
2087  * 		is likely the first scatterlist element. But for calls relying
2088  * 		on the **sendpage** handler (e.g. **sendfile**\ ()) this will
2089  * 		be the range (**0**, **0**) because the data is shared with
2090  * 		user space and by default the objective is to avoid allowing
2091  * 		user space to modify data while (or after) eBPF verdict is
2092  * 		being decided. This helper can be used to pull in data and to
2093  * 		set the start and end pointer to given values. Data will be
2094  * 		copied if necessary (i.e. if data was not linear and if start
2095  * 		and end pointers do not point to the same chunk).
2096  *
2097  * 		A call to this helper is susceptible to change the underlying
2098  * 		packet buffer. Therefore, at load time, all checks on pointers
2099  * 		previously done by the verifier are invalidated and must be
2100  * 		performed again, if the helper is used in combination with
2101  * 		direct packet access.
2102  *
2103  * 		All values for *flags* are reserved for future usage, and must
2104  * 		be left at zero.
2105  * 	Return
2106  * 		0 on success, or a negative error in case of failure.
2107  *
2108  * long bpf_bind(struct bpf_sock_addr *ctx, struct sockaddr *addr, int addr_len)
2109  * 	Description
2110  * 		Bind the socket associated to *ctx* to the address pointed by
2111  * 		*addr*, of length *addr_len*. This allows for making outgoing
2112  * 		connection from the desired IP address, which can be useful for
2113  * 		example when all processes inside a cgroup should use one
2114  * 		single IP address on a host that has multiple IP configured.
2115  *
2116  * 		This helper works for IPv4 and IPv6, TCP and UDP sockets. The
2117  * 		domain (*addr*\ **->sa_family**) must be **AF_INET** (or
2118  * 		**AF_INET6**). It's advised to pass zero port (**sin_port**
2119  * 		or **sin6_port**) which triggers IP_BIND_ADDRESS_NO_PORT-like
2120  * 		behavior and lets the kernel efficiently pick up an unused
2121  * 		port as long as 4-tuple is unique. Passing non-zero port might
2122  * 		lead to degraded performance.
2123  * 	Return
2124  * 		0 on success, or a negative error in case of failure.
2125  *
2126  * long bpf_xdp_adjust_tail(struct xdp_buff *xdp_md, int delta)
2127  * 	Description
2128  * 		Adjust (move) *xdp_md*\ **->data_end** by *delta* bytes. It is
2129  * 		possible to both shrink and grow the packet tail.
2130  * 		Shrink done via *delta* being a negative integer.
2131  *
2132  * 		A call to this helper is susceptible to change the underlying
2133  * 		packet buffer. Therefore, at load time, all checks on pointers
2134  * 		previously done by the verifier are invalidated and must be
2135  * 		performed again, if the helper is used in combination with
2136  * 		direct packet access.
2137  * 	Return
2138  * 		0 on success, or a negative error in case of failure.
2139  *
2140  * long bpf_skb_get_xfrm_state(struct sk_buff *skb, u32 index, struct bpf_xfrm_state *xfrm_state, u32 size, u64 flags)
2141  * 	Description
2142  * 		Retrieve the XFRM state (IP transform framework, see also
2143  * 		**ip-xfrm(8)**) at *index* in XFRM "security path" for *skb*.
2144  *
2145  * 		The retrieved value is stored in the **struct bpf_xfrm_state**
2146  * 		pointed by *xfrm_state* and of length *size*.
2147  *
2148  * 		All values for *flags* are reserved for future usage, and must
2149  * 		be left at zero.
2150  *
2151  * 		This helper is available only if the kernel was compiled with
2152  * 		**CONFIG_XFRM** configuration option.
2153  * 	Return
2154  * 		0 on success, or a negative error in case of failure.
2155  *
2156  * long bpf_get_stack(void *ctx, void *buf, u32 size, u64 flags)
2157  * 	Description
2158  * 		Return a user or a kernel stack in bpf program provided buffer.
2159  * 		To achieve this, the helper needs *ctx*, which is a pointer
2160  * 		to the context on which the tracing program is executed.
2161  * 		To store the stacktrace, the bpf program provides *buf* with
2162  * 		a nonnegative *size*.
2163  *
2164  * 		The last argument, *flags*, holds the number of stack frames to
2165  * 		skip (from 0 to 255), masked with
2166  * 		**BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
2167  * 		the following flags:
2168  *
2169  * 		**BPF_F_USER_STACK**
2170  * 			Collect a user space stack instead of a kernel stack.
2171  * 		**BPF_F_USER_BUILD_ID**
2172  * 			Collect buildid+offset instead of ips for user stack,
2173  * 			only valid if **BPF_F_USER_STACK** is also specified.
2174  *
2175  * 		**bpf_get_stack**\ () can collect up to
2176  * 		**PERF_MAX_STACK_DEPTH** both kernel and user frames, subject
2177  * 		to sufficient large buffer size. Note that
2178  * 		this limit can be controlled with the **sysctl** program, and
2179  * 		that it should be manually increased in order to profile long
2180  * 		user stacks (such as stacks for Java programs). To do so, use:
2181  *
2182  * 		::
2183  *
2184  * 			# sysctl kernel.perf_event_max_stack=<new value>
2185  * 	Return
2186  * 		A non-negative value equal to or less than *size* on success,
2187  * 		or a negative error in case of failure.
2188  *
2189  * long bpf_skb_load_bytes_relative(const void *skb, u32 offset, void *to, u32 len, u32 start_header)
2190  * 	Description
2191  * 		This helper is similar to **bpf_skb_load_bytes**\ () in that
2192  * 		it provides an easy way to load *len* bytes from *offset*
2193  * 		from the packet associated to *skb*, into the buffer pointed
2194  * 		by *to*. The difference to **bpf_skb_load_bytes**\ () is that
2195  * 		a fifth argument *start_header* exists in order to select a
2196  * 		base offset to start from. *start_header* can be one of:
2197  *
2198  * 		**BPF_HDR_START_MAC**
2199  * 			Base offset to load data from is *skb*'s mac header.
2200  * 		**BPF_HDR_START_NET**
2201  * 			Base offset to load data from is *skb*'s network header.
2202  *
2203  * 		In general, "direct packet access" is the preferred method to
2204  * 		access packet data, however, this helper is in particular useful
2205  * 		in socket filters where *skb*\ **->data** does not always point
2206  * 		to the start of the mac header and where "direct packet access"
2207  * 		is not available.
2208  * 	Return
2209  * 		0 on success, or a negative error in case of failure.
2210  *
2211  * long bpf_fib_lookup(void *ctx, struct bpf_fib_lookup *params, int plen, u32 flags)
2212  *	Description
2213  *		Do FIB lookup in kernel tables using parameters in *params*.
2214  *		If lookup is successful and result shows packet is to be
2215  *		forwarded, the neighbor tables are searched for the nexthop.
2216  *		If successful (ie., FIB lookup shows forwarding and nexthop
2217  *		is resolved), the nexthop address is returned in ipv4_dst
2218  *		or ipv6_dst based on family, smac is set to mac address of
2219  *		egress device, dmac is set to nexthop mac address, rt_metric
2220  *		is set to metric from route (IPv4/IPv6 only), and ifindex
2221  *		is set to the device index of the nexthop from the FIB lookup.
2222  *
2223  *		*plen* argument is the size of the passed in struct.
2224  *		*flags* argument can be a combination of one or more of the
2225  *		following values:
2226  *
2227  *		**BPF_FIB_LOOKUP_DIRECT**
2228  *			Do a direct table lookup vs full lookup using FIB
2229  *			rules.
2230  *		**BPF_FIB_LOOKUP_OUTPUT**
2231  *			Perform lookup from an egress perspective (default is
2232  *			ingress).
2233  *
2234  *		*ctx* is either **struct xdp_md** for XDP programs or
2235  *		**struct sk_buff** tc cls_act programs.
2236  *	Return
2237  *		* < 0 if any input argument is invalid
2238  *		*   0 on success (packet is forwarded, nexthop neighbor exists)
2239  *		* > 0 one of **BPF_FIB_LKUP_RET_** codes explaining why the
2240  *		  packet is not forwarded or needs assist from full stack
2241  *
2242  *		If lookup fails with BPF_FIB_LKUP_RET_FRAG_NEEDED, then the MTU
2243  *		was exceeded and output params->mtu_result contains the MTU.
2244  *
2245  * long bpf_sock_hash_update(struct bpf_sock_ops *skops, struct bpf_map *map, void *key, u64 flags)
2246  *	Description
2247  *		Add an entry to, or update a sockhash *map* referencing sockets.
2248  *		The *skops* is used as a new value for the entry associated to
2249  *		*key*. *flags* is one of:
2250  *
2251  *		**BPF_NOEXIST**
2252  *			The entry for *key* must not exist in the map.
2253  *		**BPF_EXIST**
2254  *			The entry for *key* must already exist in the map.
2255  *		**BPF_ANY**
2256  *			No condition on the existence of the entry for *key*.
2257  *
2258  *		If the *map* has eBPF programs (parser and verdict), those will
2259  *		be inherited by the socket being added. If the socket is
2260  *		already attached to eBPF programs, this results in an error.
2261  *	Return
2262  *		0 on success, or a negative error in case of failure.
2263  *
2264  * long bpf_msg_redirect_hash(struct sk_msg_buff *msg, struct bpf_map *map, void *key, u64 flags)
2265  *	Description
2266  *		This helper is used in programs implementing policies at the
2267  *		socket level. If the message *msg* is allowed to pass (i.e. if
2268  *		the verdict eBPF program returns **SK_PASS**), redirect it to
2269  *		the socket referenced by *map* (of type
2270  *		**BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and
2271  *		egress interfaces can be used for redirection. The
2272  *		**BPF_F_INGRESS** value in *flags* is used to make the
2273  *		distinction (ingress path is selected if the flag is present,
2274  *		egress path otherwise). This is the only flag supported for now.
2275  *	Return
2276  *		**SK_PASS** on success, or **SK_DROP** on error.
2277  *
2278  * long bpf_sk_redirect_hash(struct sk_buff *skb, struct bpf_map *map, void *key, u64 flags)
2279  *	Description
2280  *		This helper is used in programs implementing policies at the
2281  *		skb socket level. If the sk_buff *skb* is allowed to pass (i.e.
2282  *		if the verdict eBPF program returns **SK_PASS**), redirect it
2283  *		to the socket referenced by *map* (of type
2284  *		**BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and
2285  *		egress interfaces can be used for redirection. The
2286  *		**BPF_F_INGRESS** value in *flags* is used to make the
2287  *		distinction (ingress path is selected if the flag is present,
2288  *		egress otherwise). This is the only flag supported for now.
2289  *	Return
2290  *		**SK_PASS** on success, or **SK_DROP** on error.
2291  *
2292  * long bpf_lwt_push_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
2293  *	Description
2294  *		Encapsulate the packet associated to *skb* within a Layer 3
2295  *		protocol header. This header is provided in the buffer at
2296  *		address *hdr*, with *len* its size in bytes. *type* indicates
2297  *		the protocol of the header and can be one of:
2298  *
2299  *		**BPF_LWT_ENCAP_SEG6**
2300  *			IPv6 encapsulation with Segment Routing Header
2301  *			(**struct ipv6_sr_hdr**). *hdr* only contains the SRH,
2302  *			the IPv6 header is computed by the kernel.
2303  *		**BPF_LWT_ENCAP_SEG6_INLINE**
2304  *			Only works if *skb* contains an IPv6 packet. Insert a
2305  *			Segment Routing Header (**struct ipv6_sr_hdr**) inside
2306  *			the IPv6 header.
2307  *		**BPF_LWT_ENCAP_IP**
2308  *			IP encapsulation (GRE/GUE/IPIP/etc). The outer header
2309  *			must be IPv4 or IPv6, followed by zero or more
2310  *			additional headers, up to **LWT_BPF_MAX_HEADROOM**
2311  *			total bytes in all prepended headers. Please note that
2312  *			if **skb_is_gso**\ (*skb*) is true, no more than two
2313  *			headers can be prepended, and the inner header, if
2314  *			present, should be either GRE or UDP/GUE.
2315  *
2316  *		**BPF_LWT_ENCAP_SEG6**\ \* types can be called by BPF programs
2317  *		of type **BPF_PROG_TYPE_LWT_IN**; **BPF_LWT_ENCAP_IP** type can
2318  *		be called by bpf programs of types **BPF_PROG_TYPE_LWT_IN** and
2319  *		**BPF_PROG_TYPE_LWT_XMIT**.
2320  *
2321  * 		A call to this helper is susceptible to change the underlying
2322  * 		packet buffer. Therefore, at load time, all checks on pointers
2323  * 		previously done by the verifier are invalidated and must be
2324  * 		performed again, if the helper is used in combination with
2325  * 		direct packet access.
2326  *	Return
2327  * 		0 on success, or a negative error in case of failure.
2328  *
2329  * long bpf_lwt_seg6_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len)
2330  *	Description
2331  *		Store *len* bytes from address *from* into the packet
2332  *		associated to *skb*, at *offset*. Only the flags, tag and TLVs
2333  *		inside the outermost IPv6 Segment Routing Header can be
2334  *		modified through this helper.
2335  *
2336  * 		A call to this helper is susceptible to change the underlying
2337  * 		packet buffer. Therefore, at load time, all checks on pointers
2338  * 		previously done by the verifier are invalidated and must be
2339  * 		performed again, if the helper is used in combination with
2340  * 		direct packet access.
2341  *	Return
2342  * 		0 on success, or a negative error in case of failure.
2343  *
2344  * long bpf_lwt_seg6_adjust_srh(struct sk_buff *skb, u32 offset, s32 delta)
2345  *	Description
2346  *		Adjust the size allocated to TLVs in the outermost IPv6
2347  *		Segment Routing Header contained in the packet associated to
2348  *		*skb*, at position *offset* by *delta* bytes. Only offsets
2349  *		after the segments are accepted. *delta* can be as well
2350  *		positive (growing) as negative (shrinking).
2351  *
2352  * 		A call to this helper is susceptible to change the underlying
2353  * 		packet buffer. Therefore, at load time, all checks on pointers
2354  * 		previously done by the verifier are invalidated and must be
2355  * 		performed again, if the helper is used in combination with
2356  * 		direct packet access.
2357  *	Return
2358  * 		0 on success, or a negative error in case of failure.
2359  *
2360  * long bpf_lwt_seg6_action(struct sk_buff *skb, u32 action, void *param, u32 param_len)
2361  *	Description
2362  *		Apply an IPv6 Segment Routing action of type *action* to the
2363  *		packet associated to *skb*. Each action takes a parameter
2364  *		contained at address *param*, and of length *param_len* bytes.
2365  *		*action* can be one of:
2366  *
2367  *		**SEG6_LOCAL_ACTION_END_X**
2368  *			End.X action: Endpoint with Layer-3 cross-connect.
2369  *			Type of *param*: **struct in6_addr**.
2370  *		**SEG6_LOCAL_ACTION_END_T**
2371  *			End.T action: Endpoint with specific IPv6 table lookup.
2372  *			Type of *param*: **int**.
2373  *		**SEG6_LOCAL_ACTION_END_B6**
2374  *			End.B6 action: Endpoint bound to an SRv6 policy.
2375  *			Type of *param*: **struct ipv6_sr_hdr**.
2376  *		**SEG6_LOCAL_ACTION_END_B6_ENCAP**
2377  *			End.B6.Encap action: Endpoint bound to an SRv6
2378  *			encapsulation policy.
2379  *			Type of *param*: **struct ipv6_sr_hdr**.
2380  *
2381  * 		A call to this helper is susceptible to change the underlying
2382  * 		packet buffer. Therefore, at load time, all checks on pointers
2383  * 		previously done by the verifier are invalidated and must be
2384  * 		performed again, if the helper is used in combination with
2385  * 		direct packet access.
2386  *	Return
2387  * 		0 on success, or a negative error in case of failure.
2388  *
2389  * long bpf_rc_repeat(void *ctx)
2390  *	Description
2391  *		This helper is used in programs implementing IR decoding, to
2392  *		report a successfully decoded repeat key message. This delays
2393  *		the generation of a key up event for previously generated
2394  *		key down event.
2395  *
2396  *		Some IR protocols like NEC have a special IR message for
2397  *		repeating last button, for when a button is held down.
2398  *
2399  *		The *ctx* should point to the lirc sample as passed into
2400  *		the program.
2401  *
2402  *		This helper is only available is the kernel was compiled with
2403  *		the **CONFIG_BPF_LIRC_MODE2** configuration option set to
2404  *		"**y**".
2405  *	Return
2406  *		0
2407  *
2408  * long bpf_rc_keydown(void *ctx, u32 protocol, u64 scancode, u32 toggle)
2409  *	Description
2410  *		This helper is used in programs implementing IR decoding, to
2411  *		report a successfully decoded key press with *scancode*,
2412  *		*toggle* value in the given *protocol*. The scancode will be
2413  *		translated to a keycode using the rc keymap, and reported as
2414  *		an input key down event. After a period a key up event is
2415  *		generated. This period can be extended by calling either
2416  *		**bpf_rc_keydown**\ () again with the same values, or calling
2417  *		**bpf_rc_repeat**\ ().
2418  *
2419  *		Some protocols include a toggle bit, in case the button was
2420  *		released and pressed again between consecutive scancodes.
2421  *
2422  *		The *ctx* should point to the lirc sample as passed into
2423  *		the program.
2424  *
2425  *		The *protocol* is the decoded protocol number (see
2426  *		**enum rc_proto** for some predefined values).
2427  *
2428  *		This helper is only available is the kernel was compiled with
2429  *		the **CONFIG_BPF_LIRC_MODE2** configuration option set to
2430  *		"**y**".
2431  *	Return
2432  *		0
2433  *
2434  * u64 bpf_skb_cgroup_id(struct sk_buff *skb)
2435  * 	Description
2436  * 		Return the cgroup v2 id of the socket associated with the *skb*.
2437  * 		This is roughly similar to the **bpf_get_cgroup_classid**\ ()
2438  * 		helper for cgroup v1 by providing a tag resp. identifier that
2439  * 		can be matched on or used for map lookups e.g. to implement
2440  * 		policy. The cgroup v2 id of a given path in the hierarchy is
2441  * 		exposed in user space through the f_handle API in order to get
2442  * 		to the same 64-bit id.
2443  *
2444  * 		This helper can be used on TC egress path, but not on ingress,
2445  * 		and is available only if the kernel was compiled with the
2446  * 		**CONFIG_SOCK_CGROUP_DATA** configuration option.
2447  * 	Return
2448  * 		The id is returned or 0 in case the id could not be retrieved.
2449  *
2450  * u64 bpf_get_current_cgroup_id(void)
2451  * 	Return
2452  * 		A 64-bit integer containing the current cgroup id based
2453  * 		on the cgroup within which the current task is running.
2454  *
2455  * void *bpf_get_local_storage(void *map, u64 flags)
2456  *	Description
2457  *		Get the pointer to the local storage area.
2458  *		The type and the size of the local storage is defined
2459  *		by the *map* argument.
2460  *		The *flags* meaning is specific for each map type,
2461  *		and has to be 0 for cgroup local storage.
2462  *
2463  *		Depending on the BPF program type, a local storage area
2464  *		can be shared between multiple instances of the BPF program,
2465  *		running simultaneously.
2466  *
2467  *		A user should care about the synchronization by himself.
2468  *		For example, by using the **BPF_ATOMIC** instructions to alter
2469  *		the shared data.
2470  *	Return
2471  *		A pointer to the local storage area.
2472  *
2473  * long bpf_sk_select_reuseport(struct sk_reuseport_md *reuse, struct bpf_map *map, void *key, u64 flags)
2474  *	Description
2475  *		Select a **SO_REUSEPORT** socket from a
2476  *		**BPF_MAP_TYPE_REUSEPORT_ARRAY** *map*.
2477  *		It checks the selected socket is matching the incoming
2478  *		request in the socket buffer.
2479  *	Return
2480  *		0 on success, or a negative error in case of failure.
2481  *
2482  * u64 bpf_skb_ancestor_cgroup_id(struct sk_buff *skb, int ancestor_level)
2483  *	Description
2484  *		Return id of cgroup v2 that is ancestor of cgroup associated
2485  *		with the *skb* at the *ancestor_level*.  The root cgroup is at
2486  *		*ancestor_level* zero and each step down the hierarchy
2487  *		increments the level. If *ancestor_level* == level of cgroup
2488  *		associated with *skb*, then return value will be same as that
2489  *		of **bpf_skb_cgroup_id**\ ().
2490  *
2491  *		The helper is useful to implement policies based on cgroups
2492  *		that are upper in hierarchy than immediate cgroup associated
2493  *		with *skb*.
2494  *
2495  *		The format of returned id and helper limitations are same as in
2496  *		**bpf_skb_cgroup_id**\ ().
2497  *	Return
2498  *		The id is returned or 0 in case the id could not be retrieved.
2499  *
2500  * struct bpf_sock *bpf_sk_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags)
2501  *	Description
2502  *		Look for TCP socket matching *tuple*, optionally in a child
2503  *		network namespace *netns*. The return value must be checked,
2504  *		and if non-**NULL**, released via **bpf_sk_release**\ ().
2505  *
2506  *		The *ctx* should point to the context of the program, such as
2507  *		the skb or socket (depending on the hook in use). This is used
2508  *		to determine the base network namespace for the lookup.
2509  *
2510  *		*tuple_size* must be one of:
2511  *
2512  *		**sizeof**\ (*tuple*\ **->ipv4**)
2513  *			Look for an IPv4 socket.
2514  *		**sizeof**\ (*tuple*\ **->ipv6**)
2515  *			Look for an IPv6 socket.
2516  *
2517  *		If the *netns* is a negative signed 32-bit integer, then the
2518  *		socket lookup table in the netns associated with the *ctx*
2519  *		will be used. For the TC hooks, this is the netns of the device
2520  *		in the skb. For socket hooks, this is the netns of the socket.
2521  *		If *netns* is any other signed 32-bit value greater than or
2522  *		equal to zero then it specifies the ID of the netns relative to
2523  *		the netns associated with the *ctx*. *netns* values beyond the
2524  *		range of 32-bit integers are reserved for future use.
2525  *
2526  *		All values for *flags* are reserved for future usage, and must
2527  *		be left at zero.
2528  *
2529  *		This helper is available only if the kernel was compiled with
2530  *		**CONFIG_NET** configuration option.
2531  *	Return
2532  *		Pointer to **struct bpf_sock**, or **NULL** in case of failure.
2533  *		For sockets with reuseport option, the **struct bpf_sock**
2534  *		result is from *reuse*\ **->socks**\ [] using the hash of the
2535  *		tuple.
2536  *
2537  * struct bpf_sock *bpf_sk_lookup_udp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags)
2538  *	Description
2539  *		Look for UDP socket matching *tuple*, optionally in a child
2540  *		network namespace *netns*. The return value must be checked,
2541  *		and if non-**NULL**, released via **bpf_sk_release**\ ().
2542  *
2543  *		The *ctx* should point to the context of the program, such as
2544  *		the skb or socket (depending on the hook in use). This is used
2545  *		to determine the base network namespace for the lookup.
2546  *
2547  *		*tuple_size* must be one of:
2548  *
2549  *		**sizeof**\ (*tuple*\ **->ipv4**)
2550  *			Look for an IPv4 socket.
2551  *		**sizeof**\ (*tuple*\ **->ipv6**)
2552  *			Look for an IPv6 socket.
2553  *
2554  *		If the *netns* is a negative signed 32-bit integer, then the
2555  *		socket lookup table in the netns associated with the *ctx*
2556  *		will be used. For the TC hooks, this is the netns of the device
2557  *		in the skb. For socket hooks, this is the netns of the socket.
2558  *		If *netns* is any other signed 32-bit value greater than or
2559  *		equal to zero then it specifies the ID of the netns relative to
2560  *		the netns associated with the *ctx*. *netns* values beyond the
2561  *		range of 32-bit integers are reserved for future use.
2562  *
2563  *		All values for *flags* are reserved for future usage, and must
2564  *		be left at zero.
2565  *
2566  *		This helper is available only if the kernel was compiled with
2567  *		**CONFIG_NET** configuration option.
2568  *	Return
2569  *		Pointer to **struct bpf_sock**, or **NULL** in case of failure.
2570  *		For sockets with reuseport option, the **struct bpf_sock**
2571  *		result is from *reuse*\ **->socks**\ [] using the hash of the
2572  *		tuple.
2573  *
2574  * long bpf_sk_release(void *sock)
2575  *	Description
2576  *		Release the reference held by *sock*. *sock* must be a
2577  *		non-**NULL** pointer that was returned from
2578  *		**bpf_sk_lookup_xxx**\ ().
2579  *	Return
2580  *		0 on success, or a negative error in case of failure.
2581  *
2582  * long bpf_map_push_elem(struct bpf_map *map, const void *value, u64 flags)
2583  * 	Description
2584  * 		Push an element *value* in *map*. *flags* is one of:
2585  *
2586  * 		**BPF_EXIST**
2587  * 			If the queue/stack is full, the oldest element is
2588  * 			removed to make room for this.
2589  * 	Return
2590  * 		0 on success, or a negative error in case of failure.
2591  *
2592  * long bpf_map_pop_elem(struct bpf_map *map, void *value)
2593  * 	Description
2594  * 		Pop an element from *map*.
2595  * 	Return
2596  * 		0 on success, or a negative error in case of failure.
2597  *
2598  * long bpf_map_peek_elem(struct bpf_map *map, void *value)
2599  * 	Description
2600  * 		Get an element from *map* without removing it.
2601  * 	Return
2602  * 		0 on success, or a negative error in case of failure.
2603  *
2604  * long bpf_msg_push_data(struct sk_msg_buff *msg, u32 start, u32 len, u64 flags)
2605  *	Description
2606  *		For socket policies, insert *len* bytes into *msg* at offset
2607  *		*start*.
2608  *
2609  *		If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a
2610  *		*msg* it may want to insert metadata or options into the *msg*.
2611  *		This can later be read and used by any of the lower layer BPF
2612  *		hooks.
2613  *
2614  *		This helper may fail if under memory pressure (a malloc
2615  *		fails) in these cases BPF programs will get an appropriate
2616  *		error and BPF programs will need to handle them.
2617  *	Return
2618  *		0 on success, or a negative error in case of failure.
2619  *
2620  * long bpf_msg_pop_data(struct sk_msg_buff *msg, u32 start, u32 len, u64 flags)
2621  *	Description
2622  *		Will remove *len* bytes from a *msg* starting at byte *start*.
2623  *		This may result in **ENOMEM** errors under certain situations if
2624  *		an allocation and copy are required due to a full ring buffer.
2625  *		However, the helper will try to avoid doing the allocation
2626  *		if possible. Other errors can occur if input parameters are
2627  *		invalid either due to *start* byte not being valid part of *msg*
2628  *		payload and/or *pop* value being to large.
2629  *	Return
2630  *		0 on success, or a negative error in case of failure.
2631  *
2632  * long bpf_rc_pointer_rel(void *ctx, s32 rel_x, s32 rel_y)
2633  *	Description
2634  *		This helper is used in programs implementing IR decoding, to
2635  *		report a successfully decoded pointer movement.
2636  *
2637  *		The *ctx* should point to the lirc sample as passed into
2638  *		the program.
2639  *
2640  *		This helper is only available is the kernel was compiled with
2641  *		the **CONFIG_BPF_LIRC_MODE2** configuration option set to
2642  *		"**y**".
2643  *	Return
2644  *		0
2645  *
2646  * long bpf_spin_lock(struct bpf_spin_lock *lock)
2647  *	Description
2648  *		Acquire a spinlock represented by the pointer *lock*, which is
2649  *		stored as part of a value of a map. Taking the lock allows to
2650  *		safely update the rest of the fields in that value. The
2651  *		spinlock can (and must) later be released with a call to
2652  *		**bpf_spin_unlock**\ (\ *lock*\ ).
2653  *
2654  *		Spinlocks in BPF programs come with a number of restrictions
2655  *		and constraints:
2656  *
2657  *		* **bpf_spin_lock** objects are only allowed inside maps of
2658  *		  types **BPF_MAP_TYPE_HASH** and **BPF_MAP_TYPE_ARRAY** (this
2659  *		  list could be extended in the future).
2660  *		* BTF description of the map is mandatory.
2661  *		* The BPF program can take ONE lock at a time, since taking two
2662  *		  or more could cause dead locks.
2663  *		* Only one **struct bpf_spin_lock** is allowed per map element.
2664  *		* When the lock is taken, calls (either BPF to BPF or helpers)
2665  *		  are not allowed.
2666  *		* The **BPF_LD_ABS** and **BPF_LD_IND** instructions are not
2667  *		  allowed inside a spinlock-ed region.
2668  *		* The BPF program MUST call **bpf_spin_unlock**\ () to release
2669  *		  the lock, on all execution paths, before it returns.
2670  *		* The BPF program can access **struct bpf_spin_lock** only via
2671  *		  the **bpf_spin_lock**\ () and **bpf_spin_unlock**\ ()
2672  *		  helpers. Loading or storing data into the **struct
2673  *		  bpf_spin_lock** *lock*\ **;** field of a map is not allowed.
2674  *		* To use the **bpf_spin_lock**\ () helper, the BTF description
2675  *		  of the map value must be a struct and have **struct
2676  *		  bpf_spin_lock** *anyname*\ **;** field at the top level.
2677  *		  Nested lock inside another struct is not allowed.
2678  *		* The **struct bpf_spin_lock** *lock* field in a map value must
2679  *		  be aligned on a multiple of 4 bytes in that value.
2680  *		* Syscall with command **BPF_MAP_LOOKUP_ELEM** does not copy
2681  *		  the **bpf_spin_lock** field to user space.
2682  *		* Syscall with command **BPF_MAP_UPDATE_ELEM**, or update from
2683  *		  a BPF program, do not update the **bpf_spin_lock** field.
2684  *		* **bpf_spin_lock** cannot be on the stack or inside a
2685  *		  networking packet (it can only be inside of a map values).
2686  *		* **bpf_spin_lock** is available to root only.
2687  *		* Tracing programs and socket filter programs cannot use
2688  *		  **bpf_spin_lock**\ () due to insufficient preemption checks
2689  *		  (but this may change in the future).
2690  *		* **bpf_spin_lock** is not allowed in inner maps of map-in-map.
2691  *	Return
2692  *		0
2693  *
2694  * long bpf_spin_unlock(struct bpf_spin_lock *lock)
2695  *	Description
2696  *		Release the *lock* previously locked by a call to
2697  *		**bpf_spin_lock**\ (\ *lock*\ ).
2698  *	Return
2699  *		0
2700  *
2701  * struct bpf_sock *bpf_sk_fullsock(struct bpf_sock *sk)
2702  *	Description
2703  *		This helper gets a **struct bpf_sock** pointer such
2704  *		that all the fields in this **bpf_sock** can be accessed.
2705  *	Return
2706  *		A **struct bpf_sock** pointer on success, or **NULL** in
2707  *		case of failure.
2708  *
2709  * struct bpf_tcp_sock *bpf_tcp_sock(struct bpf_sock *sk)
2710  *	Description
2711  *		This helper gets a **struct bpf_tcp_sock** pointer from a
2712  *		**struct bpf_sock** pointer.
2713  *	Return
2714  *		A **struct bpf_tcp_sock** pointer on success, or **NULL** in
2715  *		case of failure.
2716  *
2717  * long bpf_skb_ecn_set_ce(struct sk_buff *skb)
2718  *	Description
2719  *		Set ECN (Explicit Congestion Notification) field of IP header
2720  *		to **CE** (Congestion Encountered) if current value is **ECT**
2721  *		(ECN Capable Transport). Otherwise, do nothing. Works with IPv6
2722  *		and IPv4.
2723  *	Return
2724  *		1 if the **CE** flag is set (either by the current helper call
2725  *		or because it was already present), 0 if it is not set.
2726  *
2727  * struct bpf_sock *bpf_get_listener_sock(struct bpf_sock *sk)
2728  *	Description
2729  *		Return a **struct bpf_sock** pointer in **TCP_LISTEN** state.
2730  *		**bpf_sk_release**\ () is unnecessary and not allowed.
2731  *	Return
2732  *		A **struct bpf_sock** pointer on success, or **NULL** in
2733  *		case of failure.
2734  *
2735  * struct bpf_sock *bpf_skc_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags)
2736  *	Description
2737  *		Look for TCP socket matching *tuple*, optionally in a child
2738  *		network namespace *netns*. The return value must be checked,
2739  *		and if non-**NULL**, released via **bpf_sk_release**\ ().
2740  *
2741  *		This function is identical to **bpf_sk_lookup_tcp**\ (), except
2742  *		that it also returns timewait or request sockets. Use
2743  *		**bpf_sk_fullsock**\ () or **bpf_tcp_sock**\ () to access the
2744  *		full structure.
2745  *
2746  *		This helper is available only if the kernel was compiled with
2747  *		**CONFIG_NET** configuration option.
2748  *	Return
2749  *		Pointer to **struct bpf_sock**, or **NULL** in case of failure.
2750  *		For sockets with reuseport option, the **struct bpf_sock**
2751  *		result is from *reuse*\ **->socks**\ [] using the hash of the
2752  *		tuple.
2753  *
2754  * long bpf_tcp_check_syncookie(void *sk, void *iph, u32 iph_len, struct tcphdr *th, u32 th_len)
2755  * 	Description
2756  * 		Check whether *iph* and *th* contain a valid SYN cookie ACK for
2757  * 		the listening socket in *sk*.
2758  *
2759  * 		*iph* points to the start of the IPv4 or IPv6 header, while
2760  * 		*iph_len* contains **sizeof**\ (**struct iphdr**) or
2761  * 		**sizeof**\ (**struct ip6hdr**).
2762  *
2763  * 		*th* points to the start of the TCP header, while *th_len*
2764  * 		contains **sizeof**\ (**struct tcphdr**).
2765  * 	Return
2766  * 		0 if *iph* and *th* are a valid SYN cookie ACK, or a negative
2767  * 		error otherwise.
2768  *
2769  * long bpf_sysctl_get_name(struct bpf_sysctl *ctx, char *buf, size_t buf_len, u64 flags)
2770  *	Description
2771  *		Get name of sysctl in /proc/sys/ and copy it into provided by
2772  *		program buffer *buf* of size *buf_len*.
2773  *
2774  *		The buffer is always NUL terminated, unless it's zero-sized.
2775  *
2776  *		If *flags* is zero, full name (e.g. "net/ipv4/tcp_mem") is
2777  *		copied. Use **BPF_F_SYSCTL_BASE_NAME** flag to copy base name
2778  *		only (e.g. "tcp_mem").
2779  *	Return
2780  *		Number of character copied (not including the trailing NUL).
2781  *
2782  *		**-E2BIG** if the buffer wasn't big enough (*buf* will contain
2783  *		truncated name in this case).
2784  *
2785  * long bpf_sysctl_get_current_value(struct bpf_sysctl *ctx, char *buf, size_t buf_len)
2786  *	Description
2787  *		Get current value of sysctl as it is presented in /proc/sys
2788  *		(incl. newline, etc), and copy it as a string into provided
2789  *		by program buffer *buf* of size *buf_len*.
2790  *
2791  *		The whole value is copied, no matter what file position user
2792  *		space issued e.g. sys_read at.
2793  *
2794  *		The buffer is always NUL terminated, unless it's zero-sized.
2795  *	Return
2796  *		Number of character copied (not including the trailing NUL).
2797  *
2798  *		**-E2BIG** if the buffer wasn't big enough (*buf* will contain
2799  *		truncated name in this case).
2800  *
2801  *		**-EINVAL** if current value was unavailable, e.g. because
2802  *		sysctl is uninitialized and read returns -EIO for it.
2803  *
2804  * long bpf_sysctl_get_new_value(struct bpf_sysctl *ctx, char *buf, size_t buf_len)
2805  *	Description
2806  *		Get new value being written by user space to sysctl (before
2807  *		the actual write happens) and copy it as a string into
2808  *		provided by program buffer *buf* of size *buf_len*.
2809  *
2810  *		User space may write new value at file position > 0.
2811  *
2812  *		The buffer is always NUL terminated, unless it's zero-sized.
2813  *	Return
2814  *		Number of character copied (not including the trailing NUL).
2815  *
2816  *		**-E2BIG** if the buffer wasn't big enough (*buf* will contain
2817  *		truncated name in this case).
2818  *
2819  *		**-EINVAL** if sysctl is being read.
2820  *
2821  * long bpf_sysctl_set_new_value(struct bpf_sysctl *ctx, const char *buf, size_t buf_len)
2822  *	Description
2823  *		Override new value being written by user space to sysctl with
2824  *		value provided by program in buffer *buf* of size *buf_len*.
2825  *
2826  *		*buf* should contain a string in same form as provided by user
2827  *		space on sysctl write.
2828  *
2829  *		User space may write new value at file position > 0. To override
2830  *		the whole sysctl value file position should be set to zero.
2831  *	Return
2832  *		0 on success.
2833  *
2834  *		**-E2BIG** if the *buf_len* is too big.
2835  *
2836  *		**-EINVAL** if sysctl is being read.
2837  *
2838  * long bpf_strtol(const char *buf, size_t buf_len, u64 flags, long *res)
2839  *	Description
2840  *		Convert the initial part of the string from buffer *buf* of
2841  *		size *buf_len* to a long integer according to the given base
2842  *		and save the result in *res*.
2843  *
2844  *		The string may begin with an arbitrary amount of white space
2845  *		(as determined by **isspace**\ (3)) followed by a single
2846  *		optional '**-**' sign.
2847  *
2848  *		Five least significant bits of *flags* encode base, other bits
2849  *		are currently unused.
2850  *
2851  *		Base must be either 8, 10, 16 or 0 to detect it automatically
2852  *		similar to user space **strtol**\ (3).
2853  *	Return
2854  *		Number of characters consumed on success. Must be positive but
2855  *		no more than *buf_len*.
2856  *
2857  *		**-EINVAL** if no valid digits were found or unsupported base
2858  *		was provided.
2859  *
2860  *		**-ERANGE** if resulting value was out of range.
2861  *
2862  * long bpf_strtoul(const char *buf, size_t buf_len, u64 flags, unsigned long *res)
2863  *	Description
2864  *		Convert the initial part of the string from buffer *buf* of
2865  *		size *buf_len* to an unsigned long integer according to the
2866  *		given base and save the result in *res*.
2867  *
2868  *		The string may begin with an arbitrary amount of white space
2869  *		(as determined by **isspace**\ (3)).
2870  *
2871  *		Five least significant bits of *flags* encode base, other bits
2872  *		are currently unused.
2873  *
2874  *		Base must be either 8, 10, 16 or 0 to detect it automatically
2875  *		similar to user space **strtoul**\ (3).
2876  *	Return
2877  *		Number of characters consumed on success. Must be positive but
2878  *		no more than *buf_len*.
2879  *
2880  *		**-EINVAL** if no valid digits were found or unsupported base
2881  *		was provided.
2882  *
2883  *		**-ERANGE** if resulting value was out of range.
2884  *
2885  * void *bpf_sk_storage_get(struct bpf_map *map, void *sk, void *value, u64 flags)
2886  *	Description
2887  *		Get a bpf-local-storage from a *sk*.
2888  *
2889  *		Logically, it could be thought of getting the value from
2890  *		a *map* with *sk* as the **key**.  From this
2891  *		perspective,  the usage is not much different from
2892  *		**bpf_map_lookup_elem**\ (*map*, **&**\ *sk*) except this
2893  *		helper enforces the key must be a full socket and the map must
2894  *		be a **BPF_MAP_TYPE_SK_STORAGE** also.
2895  *
2896  *		Underneath, the value is stored locally at *sk* instead of
2897  *		the *map*.  The *map* is used as the bpf-local-storage
2898  *		"type". The bpf-local-storage "type" (i.e. the *map*) is
2899  *		searched against all bpf-local-storages residing at *sk*.
2900  *
2901  *		*sk* is a kernel **struct sock** pointer for LSM program.
2902  *		*sk* is a **struct bpf_sock** pointer for other program types.
2903  *
2904  *		An optional *flags* (**BPF_SK_STORAGE_GET_F_CREATE**) can be
2905  *		used such that a new bpf-local-storage will be
2906  *		created if one does not exist.  *value* can be used
2907  *		together with **BPF_SK_STORAGE_GET_F_CREATE** to specify
2908  *		the initial value of a bpf-local-storage.  If *value* is
2909  *		**NULL**, the new bpf-local-storage will be zero initialized.
2910  *	Return
2911  *		A bpf-local-storage pointer is returned on success.
2912  *
2913  *		**NULL** if not found or there was an error in adding
2914  *		a new bpf-local-storage.
2915  *
2916  * long bpf_sk_storage_delete(struct bpf_map *map, void *sk)
2917  *	Description
2918  *		Delete a bpf-local-storage from a *sk*.
2919  *	Return
2920  *		0 on success.
2921  *
2922  *		**-ENOENT** if the bpf-local-storage cannot be found.
2923  *		**-EINVAL** if sk is not a fullsock (e.g. a request_sock).
2924  *
2925  * long bpf_send_signal(u32 sig)
2926  *	Description
2927  *		Send signal *sig* to the process of the current task.
2928  *		The signal may be delivered to any of this process's threads.
2929  *	Return
2930  *		0 on success or successfully queued.
2931  *
2932  *		**-EBUSY** if work queue under nmi is full.
2933  *
2934  *		**-EINVAL** if *sig* is invalid.
2935  *
2936  *		**-EPERM** if no permission to send the *sig*.
2937  *
2938  *		**-EAGAIN** if bpf program can try again.
2939  *
2940  * s64 bpf_tcp_gen_syncookie(void *sk, void *iph, u32 iph_len, struct tcphdr *th, u32 th_len)
2941  *	Description
2942  *		Try to issue a SYN cookie for the packet with corresponding
2943  *		IP/TCP headers, *iph* and *th*, on the listening socket in *sk*.
2944  *
2945  *		*iph* points to the start of the IPv4 or IPv6 header, while
2946  *		*iph_len* contains **sizeof**\ (**struct iphdr**) or
2947  *		**sizeof**\ (**struct ip6hdr**).
2948  *
2949  *		*th* points to the start of the TCP header, while *th_len*
2950  *		contains the length of the TCP header.
2951  *	Return
2952  *		On success, lower 32 bits hold the generated SYN cookie in
2953  *		followed by 16 bits which hold the MSS value for that cookie,
2954  *		and the top 16 bits are unused.
2955  *
2956  *		On failure, the returned value is one of the following:
2957  *
2958  *		**-EINVAL** SYN cookie cannot be issued due to error
2959  *
2960  *		**-ENOENT** SYN cookie should not be issued (no SYN flood)
2961  *
2962  *		**-EOPNOTSUPP** kernel configuration does not enable SYN cookies
2963  *
2964  *		**-EPROTONOSUPPORT** IP packet version is not 4 or 6
2965  *
2966  * long bpf_skb_output(void *ctx, struct bpf_map *map, u64 flags, void *data, u64 size)
2967  * 	Description
2968  * 		Write raw *data* blob into a special BPF perf event held by
2969  * 		*map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf
2970  * 		event must have the following attributes: **PERF_SAMPLE_RAW**
2971  * 		as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and
2972  * 		**PERF_COUNT_SW_BPF_OUTPUT** as **config**.
2973  *
2974  * 		The *flags* are used to indicate the index in *map* for which
2975  * 		the value must be put, masked with **BPF_F_INDEX_MASK**.
2976  * 		Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU**
2977  * 		to indicate that the index of the current CPU core should be
2978  * 		used.
2979  *
2980  * 		The value to write, of *size*, is passed through eBPF stack and
2981  * 		pointed by *data*.
2982  *
2983  * 		*ctx* is a pointer to in-kernel struct sk_buff.
2984  *
2985  * 		This helper is similar to **bpf_perf_event_output**\ () but
2986  * 		restricted to raw_tracepoint bpf programs.
2987  * 	Return
2988  * 		0 on success, or a negative error in case of failure.
2989  *
2990  * long bpf_probe_read_user(void *dst, u32 size, const void *unsafe_ptr)
2991  * 	Description
2992  * 		Safely attempt to read *size* bytes from user space address
2993  * 		*unsafe_ptr* and store the data in *dst*.
2994  * 	Return
2995  * 		0 on success, or a negative error in case of failure.
2996  *
2997  * long bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)
2998  * 	Description
2999  * 		Safely attempt to read *size* bytes from kernel space address
3000  * 		*unsafe_ptr* and store the data in *dst*.
3001  * 	Return
3002  * 		0 on success, or a negative error in case of failure.
3003  *
3004  * long bpf_probe_read_user_str(void *dst, u32 size, const void *unsafe_ptr)
3005  * 	Description
3006  * 		Copy a NUL terminated string from an unsafe user address
3007  * 		*unsafe_ptr* to *dst*. The *size* should include the
3008  * 		terminating NUL byte. In case the string length is smaller than
3009  * 		*size*, the target is not padded with further NUL bytes. If the
3010  * 		string length is larger than *size*, just *size*-1 bytes are
3011  * 		copied and the last byte is set to NUL.
3012  *
3013  * 		On success, returns the number of bytes that were written,
3014  * 		including the terminal NUL. This makes this helper useful in
3015  * 		tracing programs for reading strings, and more importantly to
3016  * 		get its length at runtime. See the following snippet:
3017  *
3018  * 		::
3019  *
3020  * 			SEC("kprobe/sys_open")
3021  * 			void bpf_sys_open(struct pt_regs *ctx)
3022  * 			{
3023  * 			        char buf[PATHLEN]; // PATHLEN is defined to 256
3024  * 			        int res = bpf_probe_read_user_str(buf, sizeof(buf),
3025  * 				                                  ctx->di);
3026  *
3027  * 				// Consume buf, for example push it to
3028  * 				// userspace via bpf_perf_event_output(); we
3029  * 				// can use res (the string length) as event
3030  * 				// size, after checking its boundaries.
3031  * 			}
3032  *
3033  * 		In comparison, using **bpf_probe_read_user**\ () helper here
3034  * 		instead to read the string would require to estimate the length
3035  * 		at compile time, and would often result in copying more memory
3036  * 		than necessary.
3037  *
3038  * 		Another useful use case is when parsing individual process
3039  * 		arguments or individual environment variables navigating
3040  * 		*current*\ **->mm->arg_start** and *current*\
3041  * 		**->mm->env_start**: using this helper and the return value,
3042  * 		one can quickly iterate at the right offset of the memory area.
3043  * 	Return
3044  * 		On success, the strictly positive length of the output string,
3045  * 		including the trailing NUL character. On error, a negative
3046  * 		value.
3047  *
3048  * long bpf_probe_read_kernel_str(void *dst, u32 size, const void *unsafe_ptr)
3049  * 	Description
3050  * 		Copy a NUL terminated string from an unsafe kernel address *unsafe_ptr*
3051  * 		to *dst*. Same semantics as with **bpf_probe_read_user_str**\ () apply.
3052  * 	Return
3053  * 		On success, the strictly positive length of the string, including
3054  * 		the trailing NUL character. On error, a negative value.
3055  *
3056  * long bpf_tcp_send_ack(void *tp, u32 rcv_nxt)
3057  *	Description
3058  *		Send out a tcp-ack. *tp* is the in-kernel struct **tcp_sock**.
3059  *		*rcv_nxt* is the ack_seq to be sent out.
3060  *	Return
3061  *		0 on success, or a negative error in case of failure.
3062  *
3063  * long bpf_send_signal_thread(u32 sig)
3064  *	Description
3065  *		Send signal *sig* to the thread corresponding to the current task.
3066  *	Return
3067  *		0 on success or successfully queued.
3068  *
3069  *		**-EBUSY** if work queue under nmi is full.
3070  *
3071  *		**-EINVAL** if *sig* is invalid.
3072  *
3073  *		**-EPERM** if no permission to send the *sig*.
3074  *
3075  *		**-EAGAIN** if bpf program can try again.
3076  *
3077  * u64 bpf_jiffies64(void)
3078  *	Description
3079  *		Obtain the 64bit jiffies
3080  *	Return
3081  *		The 64 bit jiffies
3082  *
3083  * long bpf_read_branch_records(struct bpf_perf_event_data *ctx, void *buf, u32 size, u64 flags)
3084  *	Description
3085  *		For an eBPF program attached to a perf event, retrieve the
3086  *		branch records (**struct perf_branch_entry**) associated to *ctx*
3087  *		and store it in the buffer pointed by *buf* up to size
3088  *		*size* bytes.
3089  *	Return
3090  *		On success, number of bytes written to *buf*. On error, a
3091  *		negative value.
3092  *
3093  *		The *flags* can be set to **BPF_F_GET_BRANCH_RECORDS_SIZE** to
3094  *		instead return the number of bytes required to store all the
3095  *		branch entries. If this flag is set, *buf* may be NULL.
3096  *
3097  *		**-EINVAL** if arguments invalid or **size** not a multiple
3098  *		of **sizeof**\ (**struct perf_branch_entry**\ ).
3099  *
3100  *		**-ENOENT** if architecture does not support branch records.
3101  *
3102  * long bpf_get_ns_current_pid_tgid(u64 dev, u64 ino, struct bpf_pidns_info *nsdata, u32 size)
3103  *	Description
3104  *		Returns 0 on success, values for *pid* and *tgid* as seen from the current
3105  *		*namespace* will be returned in *nsdata*.
3106  *	Return
3107  *		0 on success, or one of the following in case of failure:
3108  *
3109  *		**-EINVAL** if dev and inum supplied don't match dev_t and inode number
3110  *              with nsfs of current task, or if dev conversion to dev_t lost high bits.
3111  *
3112  *		**-ENOENT** if pidns does not exists for the current task.
3113  *
3114  * long bpf_xdp_output(void *ctx, struct bpf_map *map, u64 flags, void *data, u64 size)
3115  *	Description
3116  *		Write raw *data* blob into a special BPF perf event held by
3117  *		*map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf
3118  *		event must have the following attributes: **PERF_SAMPLE_RAW**
3119  *		as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and
3120  *		**PERF_COUNT_SW_BPF_OUTPUT** as **config**.
3121  *
3122  *		The *flags* are used to indicate the index in *map* for which
3123  *		the value must be put, masked with **BPF_F_INDEX_MASK**.
3124  *		Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU**
3125  *		to indicate that the index of the current CPU core should be
3126  *		used.
3127  *
3128  *		The value to write, of *size*, is passed through eBPF stack and
3129  *		pointed by *data*.
3130  *
3131  *		*ctx* is a pointer to in-kernel struct xdp_buff.
3132  *
3133  *		This helper is similar to **bpf_perf_eventoutput**\ () but
3134  *		restricted to raw_tracepoint bpf programs.
3135  *	Return
3136  *		0 on success, or a negative error in case of failure.
3137  *
3138  * u64 bpf_get_netns_cookie(void *ctx)
3139  * 	Description
3140  * 		Retrieve the cookie (generated by the kernel) of the network
3141  * 		namespace the input *ctx* is associated with. The network
3142  * 		namespace cookie remains stable for its lifetime and provides
3143  * 		a global identifier that can be assumed unique. If *ctx* is
3144  * 		NULL, then the helper returns the cookie for the initial
3145  * 		network namespace. The cookie itself is very similar to that
3146  * 		of **bpf_get_socket_cookie**\ () helper, but for network
3147  * 		namespaces instead of sockets.
3148  * 	Return
3149  * 		A 8-byte long opaque number.
3150  *
3151  * u64 bpf_get_current_ancestor_cgroup_id(int ancestor_level)
3152  * 	Description
3153  * 		Return id of cgroup v2 that is ancestor of the cgroup associated
3154  * 		with the current task at the *ancestor_level*. The root cgroup
3155  * 		is at *ancestor_level* zero and each step down the hierarchy
3156  * 		increments the level. If *ancestor_level* == level of cgroup
3157  * 		associated with the current task, then return value will be the
3158  * 		same as that of **bpf_get_current_cgroup_id**\ ().
3159  *
3160  * 		The helper is useful to implement policies based on cgroups
3161  * 		that are upper in hierarchy than immediate cgroup associated
3162  * 		with the current task.
3163  *
3164  * 		The format of returned id and helper limitations are same as in
3165  * 		**bpf_get_current_cgroup_id**\ ().
3166  * 	Return
3167  * 		The id is returned or 0 in case the id could not be retrieved.
3168  *
3169  * long bpf_sk_assign(struct sk_buff *skb, void *sk, u64 flags)
3170  *	Description
3171  *		Helper is overloaded depending on BPF program type. This
3172  *		description applies to **BPF_PROG_TYPE_SCHED_CLS** and
3173  *		**BPF_PROG_TYPE_SCHED_ACT** programs.
3174  *
3175  *		Assign the *sk* to the *skb*. When combined with appropriate
3176  *		routing configuration to receive the packet towards the socket,
3177  *		will cause *skb* to be delivered to the specified socket.
3178  *		Subsequent redirection of *skb* via  **bpf_redirect**\ (),
3179  *		**bpf_clone_redirect**\ () or other methods outside of BPF may
3180  *		interfere with successful delivery to the socket.
3181  *
3182  *		This operation is only valid from TC ingress path.
3183  *
3184  *		The *flags* argument must be zero.
3185  *	Return
3186  *		0 on success, or a negative error in case of failure:
3187  *
3188  *		**-EINVAL** if specified *flags* are not supported.
3189  *
3190  *		**-ENOENT** if the socket is unavailable for assignment.
3191  *
3192  *		**-ENETUNREACH** if the socket is unreachable (wrong netns).
3193  *
3194  *		**-EOPNOTSUPP** if the operation is not supported, for example
3195  *		a call from outside of TC ingress.
3196  *
3197  *		**-ESOCKTNOSUPPORT** if the socket type is not supported
3198  *		(reuseport).
3199  *
3200  * long bpf_sk_assign(struct bpf_sk_lookup *ctx, struct bpf_sock *sk, u64 flags)
3201  *	Description
3202  *		Helper is overloaded depending on BPF program type. This
3203  *		description applies to **BPF_PROG_TYPE_SK_LOOKUP** programs.
3204  *
3205  *		Select the *sk* as a result of a socket lookup.
3206  *
3207  *		For the operation to succeed passed socket must be compatible
3208  *		with the packet description provided by the *ctx* object.
3209  *
3210  *		L4 protocol (**IPPROTO_TCP** or **IPPROTO_UDP**) must
3211  *		be an exact match. While IP family (**AF_INET** or
3212  *		**AF_INET6**) must be compatible, that is IPv6 sockets
3213  *		that are not v6-only can be selected for IPv4 packets.
3214  *
3215  *		Only TCP listeners and UDP unconnected sockets can be
3216  *		selected. *sk* can also be NULL to reset any previous
3217  *		selection.
3218  *
3219  *		*flags* argument can combination of following values:
3220  *
3221  *		* **BPF_SK_LOOKUP_F_REPLACE** to override the previous
3222  *		  socket selection, potentially done by a BPF program
3223  *		  that ran before us.
3224  *
3225  *		* **BPF_SK_LOOKUP_F_NO_REUSEPORT** to skip
3226  *		  load-balancing within reuseport group for the socket
3227  *		  being selected.
3228  *
3229  *		On success *ctx->sk* will point to the selected socket.
3230  *
3231  *	Return
3232  *		0 on success, or a negative errno in case of failure.
3233  *
3234  *		* **-EAFNOSUPPORT** if socket family (*sk->family*) is
3235  *		  not compatible with packet family (*ctx->family*).
3236  *
3237  *		* **-EEXIST** if socket has been already selected,
3238  *		  potentially by another program, and
3239  *		  **BPF_SK_LOOKUP_F_REPLACE** flag was not specified.
3240  *
3241  *		* **-EINVAL** if unsupported flags were specified.
3242  *
3243  *		* **-EPROTOTYPE** if socket L4 protocol
3244  *		  (*sk->protocol*) doesn't match packet protocol
3245  *		  (*ctx->protocol*).
3246  *
3247  *		* **-ESOCKTNOSUPPORT** if socket is not in allowed
3248  *		  state (TCP listening or UDP unconnected).
3249  *
3250  * u64 bpf_ktime_get_boot_ns(void)
3251  * 	Description
3252  * 		Return the time elapsed since system boot, in nanoseconds.
3253  * 		Does include the time the system was suspended.
3254  * 		See: **clock_gettime**\ (**CLOCK_BOOTTIME**)
3255  * 	Return
3256  * 		Current *ktime*.
3257  *
3258  * long bpf_seq_printf(struct seq_file *m, const char *fmt, u32 fmt_size, const void *data, u32 data_len)
3259  * 	Description
3260  * 		**bpf_seq_printf**\ () uses seq_file **seq_printf**\ () to print
3261  * 		out the format string.
3262  * 		The *m* represents the seq_file. The *fmt* and *fmt_size* are for
3263  * 		the format string itself. The *data* and *data_len* are format string
3264  * 		arguments. The *data* are a **u64** array and corresponding format string
3265  * 		values are stored in the array. For strings and pointers where pointees
3266  * 		are accessed, only the pointer values are stored in the *data* array.
3267  * 		The *data_len* is the size of *data* in bytes.
3268  *
3269  *		Formats **%s**, **%p{i,I}{4,6}** requires to read kernel memory.
3270  *		Reading kernel memory may fail due to either invalid address or
3271  *		valid address but requiring a major memory fault. If reading kernel memory
3272  *		fails, the string for **%s** will be an empty string, and the ip
3273  *		address for **%p{i,I}{4,6}** will be 0. Not returning error to
3274  *		bpf program is consistent with what **bpf_trace_printk**\ () does for now.
3275  * 	Return
3276  * 		0 on success, or a negative error in case of failure:
3277  *
3278  *		**-EBUSY** if per-CPU memory copy buffer is busy, can try again
3279  *		by returning 1 from bpf program.
3280  *
3281  *		**-EINVAL** if arguments are invalid, or if *fmt* is invalid/unsupported.
3282  *
3283  *		**-E2BIG** if *fmt* contains too many format specifiers.
3284  *
3285  *		**-EOVERFLOW** if an overflow happened: The same object will be tried again.
3286  *
3287  * long bpf_seq_write(struct seq_file *m, const void *data, u32 len)
3288  * 	Description
3289  * 		**bpf_seq_write**\ () uses seq_file **seq_write**\ () to write the data.
3290  * 		The *m* represents the seq_file. The *data* and *len* represent the
3291  * 		data to write in bytes.
3292  * 	Return
3293  * 		0 on success, or a negative error in case of failure:
3294  *
3295  *		**-EOVERFLOW** if an overflow happened: The same object will be tried again.
3296  *
3297  * u64 bpf_sk_cgroup_id(void *sk)
3298  *	Description
3299  *		Return the cgroup v2 id of the socket *sk*.
3300  *
3301  *		*sk* must be a non-**NULL** pointer to a socket, e.g. one
3302  *		returned from **bpf_sk_lookup_xxx**\ (),
3303  *		**bpf_sk_fullsock**\ (), etc. The format of returned id is
3304  *		same as in **bpf_skb_cgroup_id**\ ().
3305  *
3306  *		This helper is available only if the kernel was compiled with
3307  *		the **CONFIG_SOCK_CGROUP_DATA** configuration option.
3308  *	Return
3309  *		The id is returned or 0 in case the id could not be retrieved.
3310  *
3311  * u64 bpf_sk_ancestor_cgroup_id(void *sk, int ancestor_level)
3312  *	Description
3313  *		Return id of cgroup v2 that is ancestor of cgroup associated
3314  *		with the *sk* at the *ancestor_level*.  The root cgroup is at
3315  *		*ancestor_level* zero and each step down the hierarchy
3316  *		increments the level. If *ancestor_level* == level of cgroup
3317  *		associated with *sk*, then return value will be same as that
3318  *		of **bpf_sk_cgroup_id**\ ().
3319  *
3320  *		The helper is useful to implement policies based on cgroups
3321  *		that are upper in hierarchy than immediate cgroup associated
3322  *		with *sk*.
3323  *
3324  *		The format of returned id and helper limitations are same as in
3325  *		**bpf_sk_cgroup_id**\ ().
3326  *	Return
3327  *		The id is returned or 0 in case the id could not be retrieved.
3328  *
3329  * long bpf_ringbuf_output(void *ringbuf, void *data, u64 size, u64 flags)
3330  * 	Description
3331  * 		Copy *size* bytes from *data* into a ring buffer *ringbuf*.
3332  * 		If **BPF_RB_NO_WAKEUP** is specified in *flags*, no notification
3333  * 		of new data availability is sent.
3334  * 		If **BPF_RB_FORCE_WAKEUP** is specified in *flags*, notification
3335  * 		of new data availability is sent unconditionally.
3336  * 	Return
3337  * 		0 on success, or a negative error in case of failure.
3338  *
3339  * void *bpf_ringbuf_reserve(void *ringbuf, u64 size, u64 flags)
3340  * 	Description
3341  * 		Reserve *size* bytes of payload in a ring buffer *ringbuf*.
3342  * 	Return
3343  * 		Valid pointer with *size* bytes of memory available; NULL,
3344  * 		otherwise.
3345  *
3346  * void bpf_ringbuf_submit(void *data, u64 flags)
3347  * 	Description
3348  * 		Submit reserved ring buffer sample, pointed to by *data*.
3349  * 		If **BPF_RB_NO_WAKEUP** is specified in *flags*, no notification
3350  * 		of new data availability is sent.
3351  * 		If **BPF_RB_FORCE_WAKEUP** is specified in *flags*, notification
3352  * 		of new data availability is sent unconditionally.
3353  * 	Return
3354  * 		Nothing. Always succeeds.
3355  *
3356  * void bpf_ringbuf_discard(void *data, u64 flags)
3357  * 	Description
3358  * 		Discard reserved ring buffer sample, pointed to by *data*.
3359  * 		If **BPF_RB_NO_WAKEUP** is specified in *flags*, no notification
3360  * 		of new data availability is sent.
3361  * 		If **BPF_RB_FORCE_WAKEUP** is specified in *flags*, notification
3362  * 		of new data availability is sent unconditionally.
3363  * 	Return
3364  * 		Nothing. Always succeeds.
3365  *
3366  * u64 bpf_ringbuf_query(void *ringbuf, u64 flags)
3367  *	Description
3368  *		Query various characteristics of provided ring buffer. What
3369  *		exactly is queries is determined by *flags*:
3370  *
3371  *		* **BPF_RB_AVAIL_DATA**: Amount of data not yet consumed.
3372  *		* **BPF_RB_RING_SIZE**: The size of ring buffer.
3373  *		* **BPF_RB_CONS_POS**: Consumer position (can wrap around).
3374  *		* **BPF_RB_PROD_POS**: Producer(s) position (can wrap around).
3375  *
3376  *		Data returned is just a momentary snapshot of actual values
3377  *		and could be inaccurate, so this facility should be used to
3378  *		power heuristics and for reporting, not to make 100% correct
3379  *		calculation.
3380  *	Return
3381  *		Requested value, or 0, if *flags* are not recognized.
3382  *
3383  * long bpf_csum_level(struct sk_buff *skb, u64 level)
3384  * 	Description
3385  * 		Change the skbs checksum level by one layer up or down, or
3386  * 		reset it entirely to none in order to have the stack perform
3387  * 		checksum validation. The level is applicable to the following
3388  * 		protocols: TCP, UDP, GRE, SCTP, FCOE. For example, a decap of
3389  * 		| ETH | IP | UDP | GUE | IP | TCP | into | ETH | IP | TCP |
3390  * 		through **bpf_skb_adjust_room**\ () helper with passing in
3391  * 		**BPF_F_ADJ_ROOM_NO_CSUM_RESET** flag would require one	call
3392  * 		to **bpf_csum_level**\ () with **BPF_CSUM_LEVEL_DEC** since
3393  * 		the UDP header is removed. Similarly, an encap of the latter
3394  * 		into the former could be accompanied by a helper call to
3395  * 		**bpf_csum_level**\ () with **BPF_CSUM_LEVEL_INC** if the
3396  * 		skb is still intended to be processed in higher layers of the
3397  * 		stack instead of just egressing at tc.
3398  *
3399  * 		There are three supported level settings at this time:
3400  *
3401  * 		* **BPF_CSUM_LEVEL_INC**: Increases skb->csum_level for skbs
3402  * 		  with CHECKSUM_UNNECESSARY.
3403  * 		* **BPF_CSUM_LEVEL_DEC**: Decreases skb->csum_level for skbs
3404  * 		  with CHECKSUM_UNNECESSARY.
3405  * 		* **BPF_CSUM_LEVEL_RESET**: Resets skb->csum_level to 0 and
3406  * 		  sets CHECKSUM_NONE to force checksum validation by the stack.
3407  * 		* **BPF_CSUM_LEVEL_QUERY**: No-op, returns the current
3408  * 		  skb->csum_level.
3409  * 	Return
3410  * 		0 on success, or a negative error in case of failure. In the
3411  * 		case of **BPF_CSUM_LEVEL_QUERY**, the current skb->csum_level
3412  * 		is returned or the error code -EACCES in case the skb is not
3413  * 		subject to CHECKSUM_UNNECESSARY.
3414  *
3415  * struct tcp6_sock *bpf_skc_to_tcp6_sock(void *sk)
3416  *	Description
3417  *		Dynamically cast a *sk* pointer to a *tcp6_sock* pointer.
3418  *	Return
3419  *		*sk* if casting is valid, or **NULL** otherwise.
3420  *
3421  * struct tcp_sock *bpf_skc_to_tcp_sock(void *sk)
3422  *	Description
3423  *		Dynamically cast a *sk* pointer to a *tcp_sock* pointer.
3424  *	Return
3425  *		*sk* if casting is valid, or **NULL** otherwise.
3426  *
3427  * struct tcp_timewait_sock *bpf_skc_to_tcp_timewait_sock(void *sk)
3428  * 	Description
3429  *		Dynamically cast a *sk* pointer to a *tcp_timewait_sock* pointer.
3430  *	Return
3431  *		*sk* if casting is valid, or **NULL** otherwise.
3432  *
3433  * struct tcp_request_sock *bpf_skc_to_tcp_request_sock(void *sk)
3434  * 	Description
3435  *		Dynamically cast a *sk* pointer to a *tcp_request_sock* pointer.
3436  *	Return
3437  *		*sk* if casting is valid, or **NULL** otherwise.
3438  *
3439  * struct udp6_sock *bpf_skc_to_udp6_sock(void *sk)
3440  * 	Description
3441  *		Dynamically cast a *sk* pointer to a *udp6_sock* pointer.
3442  *	Return
3443  *		*sk* if casting is valid, or **NULL** otherwise.
3444  *
3445  * long bpf_get_task_stack(struct task_struct *task, void *buf, u32 size, u64 flags)
3446  *	Description
3447  *		Return a user or a kernel stack in bpf program provided buffer.
3448  *		To achieve this, the helper needs *task*, which is a valid
3449  *		pointer to **struct task_struct**. To store the stacktrace, the
3450  *		bpf program provides *buf* with a nonnegative *size*.
3451  *
3452  *		The last argument, *flags*, holds the number of stack frames to
3453  *		skip (from 0 to 255), masked with
3454  *		**BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
3455  *		the following flags:
3456  *
3457  *		**BPF_F_USER_STACK**
3458  *			Collect a user space stack instead of a kernel stack.
3459  *		**BPF_F_USER_BUILD_ID**
3460  *			Collect buildid+offset instead of ips for user stack,
3461  *			only valid if **BPF_F_USER_STACK** is also specified.
3462  *
3463  *		**bpf_get_task_stack**\ () can collect up to
3464  *		**PERF_MAX_STACK_DEPTH** both kernel and user frames, subject
3465  *		to sufficient large buffer size. Note that
3466  *		this limit can be controlled with the **sysctl** program, and
3467  *		that it should be manually increased in order to profile long
3468  *		user stacks (such as stacks for Java programs). To do so, use:
3469  *
3470  *		::
3471  *
3472  *			# sysctl kernel.perf_event_max_stack=<new value>
3473  *	Return
3474  *		A non-negative value equal to or less than *size* on success,
3475  *		or a negative error in case of failure.
3476  *
3477  * long bpf_load_hdr_opt(struct bpf_sock_ops *skops, void *searchby_res, u32 len, u64 flags)
3478  *	Description
3479  *		Load header option.  Support reading a particular TCP header
3480  *		option for bpf program (**BPF_PROG_TYPE_SOCK_OPS**).
3481  *
3482  *		If *flags* is 0, it will search the option from the
3483  *		*skops*\ **->skb_data**.  The comment in **struct bpf_sock_ops**
3484  *		has details on what skb_data contains under different
3485  *		*skops*\ **->op**.
3486  *
3487  *		The first byte of the *searchby_res* specifies the
3488  *		kind that it wants to search.
3489  *
3490  *		If the searching kind is an experimental kind
3491  *		(i.e. 253 or 254 according to RFC6994).  It also
3492  *		needs to specify the "magic" which is either
3493  *		2 bytes or 4 bytes.  It then also needs to
3494  *		specify the size of the magic by using
3495  *		the 2nd byte which is "kind-length" of a TCP
3496  *		header option and the "kind-length" also
3497  *		includes the first 2 bytes "kind" and "kind-length"
3498  *		itself as a normal TCP header option also does.
3499  *
3500  *		For example, to search experimental kind 254 with
3501  *		2 byte magic 0xeB9F, the searchby_res should be
3502  *		[ 254, 4, 0xeB, 0x9F, 0, 0, .... 0 ].
3503  *
3504  *		To search for the standard window scale option (3),
3505  *		the *searchby_res* should be [ 3, 0, 0, .... 0 ].
3506  *		Note, kind-length must be 0 for regular option.
3507  *
3508  *		Searching for No-Op (0) and End-of-Option-List (1) are
3509  *		not supported.
3510  *
3511  *		*len* must be at least 2 bytes which is the minimal size
3512  *		of a header option.
3513  *
3514  *		Supported flags:
3515  *
3516  *		* **BPF_LOAD_HDR_OPT_TCP_SYN** to search from the
3517  *		  saved_syn packet or the just-received syn packet.
3518  *
3519  *	Return
3520  *		> 0 when found, the header option is copied to *searchby_res*.
3521  *		The return value is the total length copied. On failure, a
3522  *		negative error code is returned:
3523  *
3524  *		**-EINVAL** if a parameter is invalid.
3525  *
3526  *		**-ENOMSG** if the option is not found.
3527  *
3528  *		**-ENOENT** if no syn packet is available when
3529  *		**BPF_LOAD_HDR_OPT_TCP_SYN** is used.
3530  *
3531  *		**-ENOSPC** if there is not enough space.  Only *len* number of
3532  *		bytes are copied.
3533  *
3534  *		**-EFAULT** on failure to parse the header options in the
3535  *		packet.
3536  *
3537  *		**-EPERM** if the helper cannot be used under the current
3538  *		*skops*\ **->op**.
3539  *
3540  * long bpf_store_hdr_opt(struct bpf_sock_ops *skops, const void *from, u32 len, u64 flags)
3541  *	Description
3542  *		Store header option.  The data will be copied
3543  *		from buffer *from* with length *len* to the TCP header.
3544  *
3545  *		The buffer *from* should have the whole option that
3546  *		includes the kind, kind-length, and the actual
3547  *		option data.  The *len* must be at least kind-length
3548  *		long.  The kind-length does not have to be 4 byte
3549  *		aligned.  The kernel will take care of the padding
3550  *		and setting the 4 bytes aligned value to th->doff.
3551  *
3552  *		This helper will check for duplicated option
3553  *		by searching the same option in the outgoing skb.
3554  *
3555  *		This helper can only be called during
3556  *		**BPF_SOCK_OPS_WRITE_HDR_OPT_CB**.
3557  *
3558  *	Return
3559  *		0 on success, or negative error in case of failure:
3560  *
3561  *		**-EINVAL** If param is invalid.
3562  *
3563  *		**-ENOSPC** if there is not enough space in the header.
3564  *		Nothing has been written
3565  *
3566  *		**-EEXIST** if the option already exists.
3567  *
3568  *		**-EFAULT** on failrue to parse the existing header options.
3569  *
3570  *		**-EPERM** if the helper cannot be used under the current
3571  *		*skops*\ **->op**.
3572  *
3573  * long bpf_reserve_hdr_opt(struct bpf_sock_ops *skops, u32 len, u64 flags)
3574  *	Description
3575  *		Reserve *len* bytes for the bpf header option.  The
3576  *		space will be used by **bpf_store_hdr_opt**\ () later in
3577  *		**BPF_SOCK_OPS_WRITE_HDR_OPT_CB**.
3578  *
3579  *		If **bpf_reserve_hdr_opt**\ () is called multiple times,
3580  *		the total number of bytes will be reserved.
3581  *
3582  *		This helper can only be called during
3583  *		**BPF_SOCK_OPS_HDR_OPT_LEN_CB**.
3584  *
3585  *	Return
3586  *		0 on success, or negative error in case of failure:
3587  *
3588  *		**-EINVAL** if a parameter is invalid.
3589  *
3590  *		**-ENOSPC** if there is not enough space in the header.
3591  *
3592  *		**-EPERM** if the helper cannot be used under the current
3593  *		*skops*\ **->op**.
3594  *
3595  * void *bpf_inode_storage_get(struct bpf_map *map, void *inode, void *value, u64 flags)
3596  *	Description
3597  *		Get a bpf_local_storage from an *inode*.
3598  *
3599  *		Logically, it could be thought of as getting the value from
3600  *		a *map* with *inode* as the **key**.  From this
3601  *		perspective,  the usage is not much different from
3602  *		**bpf_map_lookup_elem**\ (*map*, **&**\ *inode*) except this
3603  *		helper enforces the key must be an inode and the map must also
3604  *		be a **BPF_MAP_TYPE_INODE_STORAGE**.
3605  *
3606  *		Underneath, the value is stored locally at *inode* instead of
3607  *		the *map*.  The *map* is used as the bpf-local-storage
3608  *		"type". The bpf-local-storage "type" (i.e. the *map*) is
3609  *		searched against all bpf_local_storage residing at *inode*.
3610  *
3611  *		An optional *flags* (**BPF_LOCAL_STORAGE_GET_F_CREATE**) can be
3612  *		used such that a new bpf_local_storage will be
3613  *		created if one does not exist.  *value* can be used
3614  *		together with **BPF_LOCAL_STORAGE_GET_F_CREATE** to specify
3615  *		the initial value of a bpf_local_storage.  If *value* is
3616  *		**NULL**, the new bpf_local_storage will be zero initialized.
3617  *	Return
3618  *		A bpf_local_storage pointer is returned on success.
3619  *
3620  *		**NULL** if not found or there was an error in adding
3621  *		a new bpf_local_storage.
3622  *
3623  * int bpf_inode_storage_delete(struct bpf_map *map, void *inode)
3624  *	Description
3625  *		Delete a bpf_local_storage from an *inode*.
3626  *	Return
3627  *		0 on success.
3628  *
3629  *		**-ENOENT** if the bpf_local_storage cannot be found.
3630  *
3631  * long bpf_d_path(struct path *path, char *buf, u32 sz)
3632  *	Description
3633  *		Return full path for given **struct path** object, which
3634  *		needs to be the kernel BTF *path* object. The path is
3635  *		returned in the provided buffer *buf* of size *sz* and
3636  *		is zero terminated.
3637  *
3638  *	Return
3639  *		On success, the strictly positive length of the string,
3640  *		including the trailing NUL character. On error, a negative
3641  *		value.
3642  *
3643  * long bpf_copy_from_user(void *dst, u32 size, const void *user_ptr)
3644  * 	Description
3645  * 		Read *size* bytes from user space address *user_ptr* and store
3646  * 		the data in *dst*. This is a wrapper of **copy_from_user**\ ().
3647  * 	Return
3648  * 		0 on success, or a negative error in case of failure.
3649  *
3650  * long bpf_snprintf_btf(char *str, u32 str_size, struct btf_ptr *ptr, u32 btf_ptr_size, u64 flags)
3651  *	Description
3652  *		Use BTF to store a string representation of *ptr*->ptr in *str*,
3653  *		using *ptr*->type_id.  This value should specify the type
3654  *		that *ptr*->ptr points to. LLVM __builtin_btf_type_id(type, 1)
3655  *		can be used to look up vmlinux BTF type ids. Traversing the
3656  *		data structure using BTF, the type information and values are
3657  *		stored in the first *str_size* - 1 bytes of *str*.  Safe copy of
3658  *		the pointer data is carried out to avoid kernel crashes during
3659  *		operation.  Smaller types can use string space on the stack;
3660  *		larger programs can use map data to store the string
3661  *		representation.
3662  *
3663  *		The string can be subsequently shared with userspace via
3664  *		bpf_perf_event_output() or ring buffer interfaces.
3665  *		bpf_trace_printk() is to be avoided as it places too small
3666  *		a limit on string size to be useful.
3667  *
3668  *		*flags* is a combination of
3669  *
3670  *		**BTF_F_COMPACT**
3671  *			no formatting around type information
3672  *		**BTF_F_NONAME**
3673  *			no struct/union member names/types
3674  *		**BTF_F_PTR_RAW**
3675  *			show raw (unobfuscated) pointer values;
3676  *			equivalent to printk specifier %px.
3677  *		**BTF_F_ZERO**
3678  *			show zero-valued struct/union members; they
3679  *			are not displayed by default
3680  *
3681  *	Return
3682  *		The number of bytes that were written (or would have been
3683  *		written if output had to be truncated due to string size),
3684  *		or a negative error in cases of failure.
3685  *
3686  * long bpf_seq_printf_btf(struct seq_file *m, struct btf_ptr *ptr, u32 ptr_size, u64 flags)
3687  *	Description
3688  *		Use BTF to write to seq_write a string representation of
3689  *		*ptr*->ptr, using *ptr*->type_id as per bpf_snprintf_btf().
3690  *		*flags* are identical to those used for bpf_snprintf_btf.
3691  *	Return
3692  *		0 on success or a negative error in case of failure.
3693  *
3694  * u64 bpf_skb_cgroup_classid(struct sk_buff *skb)
3695  * 	Description
3696  * 		See **bpf_get_cgroup_classid**\ () for the main description.
3697  * 		This helper differs from **bpf_get_cgroup_classid**\ () in that
3698  * 		the cgroup v1 net_cls class is retrieved only from the *skb*'s
3699  * 		associated socket instead of the current process.
3700  * 	Return
3701  * 		The id is returned or 0 in case the id could not be retrieved.
3702  *
3703  * long bpf_redirect_neigh(u32 ifindex, struct bpf_redir_neigh *params, int plen, u64 flags)
3704  * 	Description
3705  * 		Redirect the packet to another net device of index *ifindex*
3706  * 		and fill in L2 addresses from neighboring subsystem. This helper
3707  * 		is somewhat similar to **bpf_redirect**\ (), except that it
3708  * 		populates L2 addresses as well, meaning, internally, the helper
3709  * 		relies on the neighbor lookup for the L2 address of the nexthop.
3710  *
3711  * 		The helper will perform a FIB lookup based on the skb's
3712  * 		networking header to get the address of the next hop, unless
3713  * 		this is supplied by the caller in the *params* argument. The
3714  * 		*plen* argument indicates the len of *params* and should be set
3715  * 		to 0 if *params* is NULL.
3716  *
3717  * 		The *flags* argument is reserved and must be 0. The helper is
3718  * 		currently only supported for tc BPF program types, and enabled
3719  * 		for IPv4 and IPv6 protocols.
3720  * 	Return
3721  * 		The helper returns **TC_ACT_REDIRECT** on success or
3722  * 		**TC_ACT_SHOT** on error.
3723  *
3724  * void *bpf_per_cpu_ptr(const void *percpu_ptr, u32 cpu)
3725  *     Description
3726  *             Take a pointer to a percpu ksym, *percpu_ptr*, and return a
3727  *             pointer to the percpu kernel variable on *cpu*. A ksym is an
3728  *             extern variable decorated with '__ksym'. For ksym, there is a
3729  *             global var (either static or global) defined of the same name
3730  *             in the kernel. The ksym is percpu if the global var is percpu.
3731  *             The returned pointer points to the global percpu var on *cpu*.
3732  *
3733  *             bpf_per_cpu_ptr() has the same semantic as per_cpu_ptr() in the
3734  *             kernel, except that bpf_per_cpu_ptr() may return NULL. This
3735  *             happens if *cpu* is larger than nr_cpu_ids. The caller of
3736  *             bpf_per_cpu_ptr() must check the returned value.
3737  *     Return
3738  *             A pointer pointing to the kernel percpu variable on *cpu*, or
3739  *             NULL, if *cpu* is invalid.
3740  *
3741  * void *bpf_this_cpu_ptr(const void *percpu_ptr)
3742  *	Description
3743  *		Take a pointer to a percpu ksym, *percpu_ptr*, and return a
3744  *		pointer to the percpu kernel variable on this cpu. See the
3745  *		description of 'ksym' in **bpf_per_cpu_ptr**\ ().
3746  *
3747  *		bpf_this_cpu_ptr() has the same semantic as this_cpu_ptr() in
3748  *		the kernel. Different from **bpf_per_cpu_ptr**\ (), it would
3749  *		never return NULL.
3750  *	Return
3751  *		A pointer pointing to the kernel percpu variable on this cpu.
3752  *
3753  * long bpf_redirect_peer(u32 ifindex, u64 flags)
3754  * 	Description
3755  * 		Redirect the packet to another net device of index *ifindex*.
3756  * 		This helper is somewhat similar to **bpf_redirect**\ (), except
3757  * 		that the redirection happens to the *ifindex*' peer device and
3758  * 		the netns switch takes place from ingress to ingress without
3759  * 		going through the CPU's backlog queue.
3760  *
3761  * 		The *flags* argument is reserved and must be 0. The helper is
3762  * 		currently only supported for tc BPF program types at the ingress
3763  * 		hook and for veth device types. The peer device must reside in a
3764  * 		different network namespace.
3765  * 	Return
3766  * 		The helper returns **TC_ACT_REDIRECT** on success or
3767  * 		**TC_ACT_SHOT** on error.
3768  *
3769  * void *bpf_task_storage_get(struct bpf_map *map, struct task_struct *task, void *value, u64 flags)
3770  *	Description
3771  *		Get a bpf_local_storage from the *task*.
3772  *
3773  *		Logically, it could be thought of as getting the value from
3774  *		a *map* with *task* as the **key**.  From this
3775  *		perspective,  the usage is not much different from
3776  *		**bpf_map_lookup_elem**\ (*map*, **&**\ *task*) except this
3777  *		helper enforces the key must be an task_struct and the map must also
3778  *		be a **BPF_MAP_TYPE_TASK_STORAGE**.
3779  *
3780  *		Underneath, the value is stored locally at *task* instead of
3781  *		the *map*.  The *map* is used as the bpf-local-storage
3782  *		"type". The bpf-local-storage "type" (i.e. the *map*) is
3783  *		searched against all bpf_local_storage residing at *task*.
3784  *
3785  *		An optional *flags* (**BPF_LOCAL_STORAGE_GET_F_CREATE**) can be
3786  *		used such that a new bpf_local_storage will be
3787  *		created if one does not exist.  *value* can be used
3788  *		together with **BPF_LOCAL_STORAGE_GET_F_CREATE** to specify
3789  *		the initial value of a bpf_local_storage.  If *value* is
3790  *		**NULL**, the new bpf_local_storage will be zero initialized.
3791  *	Return
3792  *		A bpf_local_storage pointer is returned on success.
3793  *
3794  *		**NULL** if not found or there was an error in adding
3795  *		a new bpf_local_storage.
3796  *
3797  * long bpf_task_storage_delete(struct bpf_map *map, struct task_struct *task)
3798  *	Description
3799  *		Delete a bpf_local_storage from a *task*.
3800  *	Return
3801  *		0 on success.
3802  *
3803  *		**-ENOENT** if the bpf_local_storage cannot be found.
3804  *
3805  * struct task_struct *bpf_get_current_task_btf(void)
3806  *	Description
3807  *		Return a BTF pointer to the "current" task.
3808  *		This pointer can also be used in helpers that accept an
3809  *		*ARG_PTR_TO_BTF_ID* of type *task_struct*.
3810  *	Return
3811  *		Pointer to the current task.
3812  *
3813  * long bpf_bprm_opts_set(struct linux_binprm *bprm, u64 flags)
3814  *	Description
3815  *		Set or clear certain options on *bprm*:
3816  *
3817  *		**BPF_F_BPRM_SECUREEXEC** Set the secureexec bit
3818  *		which sets the **AT_SECURE** auxv for glibc. The bit
3819  *		is cleared if the flag is not specified.
3820  *	Return
3821  *		**-EINVAL** if invalid *flags* are passed, zero otherwise.
3822  *
3823  * u64 bpf_ktime_get_coarse_ns(void)
3824  * 	Description
3825  * 		Return a coarse-grained version of the time elapsed since
3826  * 		system boot, in nanoseconds. Does not include time the system
3827  * 		was suspended.
3828  *
3829  * 		See: **clock_gettime**\ (**CLOCK_MONOTONIC_COARSE**)
3830  * 	Return
3831  * 		Current *ktime*.
3832  *
3833  * long bpf_ima_inode_hash(struct inode *inode, void *dst, u32 size)
3834  *	Description
3835  *		Returns the stored IMA hash of the *inode* (if it's avaialable).
3836  *		If the hash is larger than *size*, then only *size*
3837  *		bytes will be copied to *dst*
3838  *	Return
3839  *		The **hash_algo** is returned on success,
3840  *		**-EOPNOTSUP** if IMA is disabled or **-EINVAL** if
3841  *		invalid arguments are passed.
3842  *
3843  * struct socket *bpf_sock_from_file(struct file *file)
3844  *	Description
3845  *		If the given file represents a socket, returns the associated
3846  *		socket.
3847  *	Return
3848  *		A pointer to a struct socket on success or NULL if the file is
3849  *		not a socket.
3850  *
3851  * long bpf_check_mtu(void *ctx, u32 ifindex, u32 *mtu_len, s32 len_diff, u64 flags)
3852  *	Description
3853  *		Check packet size against exceeding MTU of net device (based
3854  *		on *ifindex*).  This helper will likely be used in combination
3855  *		with helpers that adjust/change the packet size.
3856  *
3857  *		The argument *len_diff* can be used for querying with a planned
3858  *		size change. This allows to check MTU prior to changing packet
3859  *		ctx. Providing an *len_diff* adjustment that is larger than the
3860  *		actual packet size (resulting in negative packet size) will in
3861  *		principle not exceed the MTU, why it is not considered a
3862  *		failure.  Other BPF-helpers are needed for performing the
3863  *		planned size change, why the responsability for catch a negative
3864  *		packet size belong in those helpers.
3865  *
3866  *		Specifying *ifindex* zero means the MTU check is performed
3867  *		against the current net device.  This is practical if this isn't
3868  *		used prior to redirect.
3869  *
3870  *		On input *mtu_len* must be a valid pointer, else verifier will
3871  *		reject BPF program.  If the value *mtu_len* is initialized to
3872  *		zero then the ctx packet size is use.  When value *mtu_len* is
3873  *		provided as input this specify the L3 length that the MTU check
3874  *		is done against. Remember XDP and TC length operate at L2, but
3875  *		this value is L3 as this correlate to MTU and IP-header tot_len
3876  *		values which are L3 (similar behavior as bpf_fib_lookup).
3877  *
3878  *		The Linux kernel route table can configure MTUs on a more
3879  *		specific per route level, which is not provided by this helper.
3880  *		For route level MTU checks use the **bpf_fib_lookup**\ ()
3881  *		helper.
3882  *
3883  *		*ctx* is either **struct xdp_md** for XDP programs or
3884  *		**struct sk_buff** for tc cls_act programs.
3885  *
3886  *		The *flags* argument can be a combination of one or more of the
3887  *		following values:
3888  *
3889  *		**BPF_MTU_CHK_SEGS**
3890  *			This flag will only works for *ctx* **struct sk_buff**.
3891  *			If packet context contains extra packet segment buffers
3892  *			(often knows as GSO skb), then MTU check is harder to
3893  *			check at this point, because in transmit path it is
3894  *			possible for the skb packet to get re-segmented
3895  *			(depending on net device features).  This could still be
3896  *			a MTU violation, so this flag enables performing MTU
3897  *			check against segments, with a different violation
3898  *			return code to tell it apart. Check cannot use len_diff.
3899  *
3900  *		On return *mtu_len* pointer contains the MTU value of the net
3901  *		device.  Remember the net device configured MTU is the L3 size,
3902  *		which is returned here and XDP and TC length operate at L2.
3903  *		Helper take this into account for you, but remember when using
3904  *		MTU value in your BPF-code.
3905  *
3906  *	Return
3907  *		* 0 on success, and populate MTU value in *mtu_len* pointer.
3908  *
3909  *		* < 0 if any input argument is invalid (*mtu_len* not updated)
3910  *
3911  *		MTU violations return positive values, but also populate MTU
3912  *		value in *mtu_len* pointer, as this can be needed for
3913  *		implementing PMTU handing:
3914  *
3915  *		* **BPF_MTU_CHK_RET_FRAG_NEEDED**
3916  *		* **BPF_MTU_CHK_RET_SEGS_TOOBIG**
3917  *
3918  */
3919 #define __BPF_FUNC_MAPPER(FN)		\
3920 	FN(unspec),			\
3921 	FN(map_lookup_elem),		\
3922 	FN(map_update_elem),		\
3923 	FN(map_delete_elem),		\
3924 	FN(probe_read),			\
3925 	FN(ktime_get_ns),		\
3926 	FN(trace_printk),		\
3927 	FN(get_prandom_u32),		\
3928 	FN(get_smp_processor_id),	\
3929 	FN(skb_store_bytes),		\
3930 	FN(l3_csum_replace),		\
3931 	FN(l4_csum_replace),		\
3932 	FN(tail_call),			\
3933 	FN(clone_redirect),		\
3934 	FN(get_current_pid_tgid),	\
3935 	FN(get_current_uid_gid),	\
3936 	FN(get_current_comm),		\
3937 	FN(get_cgroup_classid),		\
3938 	FN(skb_vlan_push),		\
3939 	FN(skb_vlan_pop),		\
3940 	FN(skb_get_tunnel_key),		\
3941 	FN(skb_set_tunnel_key),		\
3942 	FN(perf_event_read),		\
3943 	FN(redirect),			\
3944 	FN(get_route_realm),		\
3945 	FN(perf_event_output),		\
3946 	FN(skb_load_bytes),		\
3947 	FN(get_stackid),		\
3948 	FN(csum_diff),			\
3949 	FN(skb_get_tunnel_opt),		\
3950 	FN(skb_set_tunnel_opt),		\
3951 	FN(skb_change_proto),		\
3952 	FN(skb_change_type),		\
3953 	FN(skb_under_cgroup),		\
3954 	FN(get_hash_recalc),		\
3955 	FN(get_current_task),		\
3956 	FN(probe_write_user),		\
3957 	FN(current_task_under_cgroup),	\
3958 	FN(skb_change_tail),		\
3959 	FN(skb_pull_data),		\
3960 	FN(csum_update),		\
3961 	FN(set_hash_invalid),		\
3962 	FN(get_numa_node_id),		\
3963 	FN(skb_change_head),		\
3964 	FN(xdp_adjust_head),		\
3965 	FN(probe_read_str),		\
3966 	FN(get_socket_cookie),		\
3967 	FN(get_socket_uid),		\
3968 	FN(set_hash),			\
3969 	FN(setsockopt),			\
3970 	FN(skb_adjust_room),		\
3971 	FN(redirect_map),		\
3972 	FN(sk_redirect_map),		\
3973 	FN(sock_map_update),		\
3974 	FN(xdp_adjust_meta),		\
3975 	FN(perf_event_read_value),	\
3976 	FN(perf_prog_read_value),	\
3977 	FN(getsockopt),			\
3978 	FN(override_return),		\
3979 	FN(sock_ops_cb_flags_set),	\
3980 	FN(msg_redirect_map),		\
3981 	FN(msg_apply_bytes),		\
3982 	FN(msg_cork_bytes),		\
3983 	FN(msg_pull_data),		\
3984 	FN(bind),			\
3985 	FN(xdp_adjust_tail),		\
3986 	FN(skb_get_xfrm_state),		\
3987 	FN(get_stack),			\
3988 	FN(skb_load_bytes_relative),	\
3989 	FN(fib_lookup),			\
3990 	FN(sock_hash_update),		\
3991 	FN(msg_redirect_hash),		\
3992 	FN(sk_redirect_hash),		\
3993 	FN(lwt_push_encap),		\
3994 	FN(lwt_seg6_store_bytes),	\
3995 	FN(lwt_seg6_adjust_srh),	\
3996 	FN(lwt_seg6_action),		\
3997 	FN(rc_repeat),			\
3998 	FN(rc_keydown),			\
3999 	FN(skb_cgroup_id),		\
4000 	FN(get_current_cgroup_id),	\
4001 	FN(get_local_storage),		\
4002 	FN(sk_select_reuseport),	\
4003 	FN(skb_ancestor_cgroup_id),	\
4004 	FN(sk_lookup_tcp),		\
4005 	FN(sk_lookup_udp),		\
4006 	FN(sk_release),			\
4007 	FN(map_push_elem),		\
4008 	FN(map_pop_elem),		\
4009 	FN(map_peek_elem),		\
4010 	FN(msg_push_data),		\
4011 	FN(msg_pop_data),		\
4012 	FN(rc_pointer_rel),		\
4013 	FN(spin_lock),			\
4014 	FN(spin_unlock),		\
4015 	FN(sk_fullsock),		\
4016 	FN(tcp_sock),			\
4017 	FN(skb_ecn_set_ce),		\
4018 	FN(get_listener_sock),		\
4019 	FN(skc_lookup_tcp),		\
4020 	FN(tcp_check_syncookie),	\
4021 	FN(sysctl_get_name),		\
4022 	FN(sysctl_get_current_value),	\
4023 	FN(sysctl_get_new_value),	\
4024 	FN(sysctl_set_new_value),	\
4025 	FN(strtol),			\
4026 	FN(strtoul),			\
4027 	FN(sk_storage_get),		\
4028 	FN(sk_storage_delete),		\
4029 	FN(send_signal),		\
4030 	FN(tcp_gen_syncookie),		\
4031 	FN(skb_output),			\
4032 	FN(probe_read_user),		\
4033 	FN(probe_read_kernel),		\
4034 	FN(probe_read_user_str),	\
4035 	FN(probe_read_kernel_str),	\
4036 	FN(tcp_send_ack),		\
4037 	FN(send_signal_thread),		\
4038 	FN(jiffies64),			\
4039 	FN(read_branch_records),	\
4040 	FN(get_ns_current_pid_tgid),	\
4041 	FN(xdp_output),			\
4042 	FN(get_netns_cookie),		\
4043 	FN(get_current_ancestor_cgroup_id),	\
4044 	FN(sk_assign),			\
4045 	FN(ktime_get_boot_ns),		\
4046 	FN(seq_printf),			\
4047 	FN(seq_write),			\
4048 	FN(sk_cgroup_id),		\
4049 	FN(sk_ancestor_cgroup_id),	\
4050 	FN(ringbuf_output),		\
4051 	FN(ringbuf_reserve),		\
4052 	FN(ringbuf_submit),		\
4053 	FN(ringbuf_discard),		\
4054 	FN(ringbuf_query),		\
4055 	FN(csum_level),			\
4056 	FN(skc_to_tcp6_sock),		\
4057 	FN(skc_to_tcp_sock),		\
4058 	FN(skc_to_tcp_timewait_sock),	\
4059 	FN(skc_to_tcp_request_sock),	\
4060 	FN(skc_to_udp6_sock),		\
4061 	FN(get_task_stack),		\
4062 	FN(load_hdr_opt),		\
4063 	FN(store_hdr_opt),		\
4064 	FN(reserve_hdr_opt),		\
4065 	FN(inode_storage_get),		\
4066 	FN(inode_storage_delete),	\
4067 	FN(d_path),			\
4068 	FN(copy_from_user),		\
4069 	FN(snprintf_btf),		\
4070 	FN(seq_printf_btf),		\
4071 	FN(skb_cgroup_classid),		\
4072 	FN(redirect_neigh),		\
4073 	FN(per_cpu_ptr),		\
4074 	FN(this_cpu_ptr),		\
4075 	FN(redirect_peer),		\
4076 	FN(task_storage_get),		\
4077 	FN(task_storage_delete),	\
4078 	FN(get_current_task_btf),	\
4079 	FN(bprm_opts_set),		\
4080 	FN(ktime_get_coarse_ns),	\
4081 	FN(ima_inode_hash),		\
4082 	FN(sock_from_file),		\
4083 	FN(check_mtu),			\
4084 	/* */
4085 
4086 /* integer value in 'imm' field of BPF_CALL instruction selects which helper
4087  * function eBPF program intends to call
4088  */
4089 #define __BPF_ENUM_FN(x) BPF_FUNC_ ## x
4090 enum bpf_func_id {
4091 	__BPF_FUNC_MAPPER(__BPF_ENUM_FN)
4092 	__BPF_FUNC_MAX_ID,
4093 };
4094 #undef __BPF_ENUM_FN
4095 
4096 /* All flags used by eBPF helper functions, placed here. */
4097 
4098 /* BPF_FUNC_skb_store_bytes flags. */
4099 enum {
4100 	BPF_F_RECOMPUTE_CSUM		= (1ULL << 0),
4101 	BPF_F_INVALIDATE_HASH		= (1ULL << 1),
4102 };
4103 
4104 /* BPF_FUNC_l3_csum_replace and BPF_FUNC_l4_csum_replace flags.
4105  * First 4 bits are for passing the header field size.
4106  */
4107 enum {
4108 	BPF_F_HDR_FIELD_MASK		= 0xfULL,
4109 };
4110 
4111 /* BPF_FUNC_l4_csum_replace flags. */
4112 enum {
4113 	BPF_F_PSEUDO_HDR		= (1ULL << 4),
4114 	BPF_F_MARK_MANGLED_0		= (1ULL << 5),
4115 	BPF_F_MARK_ENFORCE		= (1ULL << 6),
4116 };
4117 
4118 /* BPF_FUNC_clone_redirect and BPF_FUNC_redirect flags. */
4119 enum {
4120 	BPF_F_INGRESS			= (1ULL << 0),
4121 };
4122 
4123 /* BPF_FUNC_skb_set_tunnel_key and BPF_FUNC_skb_get_tunnel_key flags. */
4124 enum {
4125 	BPF_F_TUNINFO_IPV6		= (1ULL << 0),
4126 };
4127 
4128 /* flags for both BPF_FUNC_get_stackid and BPF_FUNC_get_stack. */
4129 enum {
4130 	BPF_F_SKIP_FIELD_MASK		= 0xffULL,
4131 	BPF_F_USER_STACK		= (1ULL << 8),
4132 /* flags used by BPF_FUNC_get_stackid only. */
4133 	BPF_F_FAST_STACK_CMP		= (1ULL << 9),
4134 	BPF_F_REUSE_STACKID		= (1ULL << 10),
4135 /* flags used by BPF_FUNC_get_stack only. */
4136 	BPF_F_USER_BUILD_ID		= (1ULL << 11),
4137 };
4138 
4139 /* BPF_FUNC_skb_set_tunnel_key flags. */
4140 enum {
4141 	BPF_F_ZERO_CSUM_TX		= (1ULL << 1),
4142 	BPF_F_DONT_FRAGMENT		= (1ULL << 2),
4143 	BPF_F_SEQ_NUMBER		= (1ULL << 3),
4144 };
4145 
4146 /* BPF_FUNC_perf_event_output, BPF_FUNC_perf_event_read and
4147  * BPF_FUNC_perf_event_read_value flags.
4148  */
4149 enum {
4150 	BPF_F_INDEX_MASK		= 0xffffffffULL,
4151 	BPF_F_CURRENT_CPU		= BPF_F_INDEX_MASK,
4152 /* BPF_FUNC_perf_event_output for sk_buff input context. */
4153 	BPF_F_CTXLEN_MASK		= (0xfffffULL << 32),
4154 };
4155 
4156 /* Current network namespace */
4157 enum {
4158 	BPF_F_CURRENT_NETNS		= (-1L),
4159 };
4160 
4161 /* BPF_FUNC_csum_level level values. */
4162 enum {
4163 	BPF_CSUM_LEVEL_QUERY,
4164 	BPF_CSUM_LEVEL_INC,
4165 	BPF_CSUM_LEVEL_DEC,
4166 	BPF_CSUM_LEVEL_RESET,
4167 };
4168 
4169 /* BPF_FUNC_skb_adjust_room flags. */
4170 enum {
4171 	BPF_F_ADJ_ROOM_FIXED_GSO	= (1ULL << 0),
4172 	BPF_F_ADJ_ROOM_ENCAP_L3_IPV4	= (1ULL << 1),
4173 	BPF_F_ADJ_ROOM_ENCAP_L3_IPV6	= (1ULL << 2),
4174 	BPF_F_ADJ_ROOM_ENCAP_L4_GRE	= (1ULL << 3),
4175 	BPF_F_ADJ_ROOM_ENCAP_L4_UDP	= (1ULL << 4),
4176 	BPF_F_ADJ_ROOM_NO_CSUM_RESET	= (1ULL << 5),
4177 };
4178 
4179 enum {
4180 	BPF_ADJ_ROOM_ENCAP_L2_MASK	= 0xff,
4181 	BPF_ADJ_ROOM_ENCAP_L2_SHIFT	= 56,
4182 };
4183 
4184 #define BPF_F_ADJ_ROOM_ENCAP_L2(len)	(((__u64)len & \
4185 					  BPF_ADJ_ROOM_ENCAP_L2_MASK) \
4186 					 << BPF_ADJ_ROOM_ENCAP_L2_SHIFT)
4187 
4188 /* BPF_FUNC_sysctl_get_name flags. */
4189 enum {
4190 	BPF_F_SYSCTL_BASE_NAME		= (1ULL << 0),
4191 };
4192 
4193 /* BPF_FUNC_<kernel_obj>_storage_get flags */
4194 enum {
4195 	BPF_LOCAL_STORAGE_GET_F_CREATE	= (1ULL << 0),
4196 	/* BPF_SK_STORAGE_GET_F_CREATE is only kept for backward compatibility
4197 	 * and BPF_LOCAL_STORAGE_GET_F_CREATE must be used instead.
4198 	 */
4199 	BPF_SK_STORAGE_GET_F_CREATE  = BPF_LOCAL_STORAGE_GET_F_CREATE,
4200 };
4201 
4202 /* BPF_FUNC_read_branch_records flags. */
4203 enum {
4204 	BPF_F_GET_BRANCH_RECORDS_SIZE	= (1ULL << 0),
4205 };
4206 
4207 /* BPF_FUNC_bpf_ringbuf_commit, BPF_FUNC_bpf_ringbuf_discard, and
4208  * BPF_FUNC_bpf_ringbuf_output flags.
4209  */
4210 enum {
4211 	BPF_RB_NO_WAKEUP		= (1ULL << 0),
4212 	BPF_RB_FORCE_WAKEUP		= (1ULL << 1),
4213 };
4214 
4215 /* BPF_FUNC_bpf_ringbuf_query flags */
4216 enum {
4217 	BPF_RB_AVAIL_DATA = 0,
4218 	BPF_RB_RING_SIZE = 1,
4219 	BPF_RB_CONS_POS = 2,
4220 	BPF_RB_PROD_POS = 3,
4221 };
4222 
4223 /* BPF ring buffer constants */
4224 enum {
4225 	BPF_RINGBUF_BUSY_BIT		= (1U << 31),
4226 	BPF_RINGBUF_DISCARD_BIT		= (1U << 30),
4227 	BPF_RINGBUF_HDR_SZ		= 8,
4228 };
4229 
4230 /* BPF_FUNC_sk_assign flags in bpf_sk_lookup context. */
4231 enum {
4232 	BPF_SK_LOOKUP_F_REPLACE		= (1ULL << 0),
4233 	BPF_SK_LOOKUP_F_NO_REUSEPORT	= (1ULL << 1),
4234 };
4235 
4236 /* Mode for BPF_FUNC_skb_adjust_room helper. */
4237 enum bpf_adj_room_mode {
4238 	BPF_ADJ_ROOM_NET,
4239 	BPF_ADJ_ROOM_MAC,
4240 };
4241 
4242 /* Mode for BPF_FUNC_skb_load_bytes_relative helper. */
4243 enum bpf_hdr_start_off {
4244 	BPF_HDR_START_MAC,
4245 	BPF_HDR_START_NET,
4246 };
4247 
4248 /* Encapsulation type for BPF_FUNC_lwt_push_encap helper. */
4249 enum bpf_lwt_encap_mode {
4250 	BPF_LWT_ENCAP_SEG6,
4251 	BPF_LWT_ENCAP_SEG6_INLINE,
4252 	BPF_LWT_ENCAP_IP,
4253 };
4254 
4255 /* Flags for bpf_bprm_opts_set helper */
4256 enum {
4257 	BPF_F_BPRM_SECUREEXEC	= (1ULL << 0),
4258 };
4259 
4260 #define __bpf_md_ptr(type, name)	\
4261 union {					\
4262 	type name;			\
4263 	__u64 :64;			\
4264 } __attribute__((aligned(8)))
4265 
4266 /* user accessible mirror of in-kernel sk_buff.
4267  * new fields can only be added to the end of this structure
4268  */
4269 struct __sk_buff {
4270 	__u32 len;
4271 	__u32 pkt_type;
4272 	__u32 mark;
4273 	__u32 queue_mapping;
4274 	__u32 protocol;
4275 	__u32 vlan_present;
4276 	__u32 vlan_tci;
4277 	__u32 vlan_proto;
4278 	__u32 priority;
4279 	__u32 ingress_ifindex;
4280 	__u32 ifindex;
4281 	__u32 tc_index;
4282 	__u32 cb[5];
4283 	__u32 hash;
4284 	__u32 tc_classid;
4285 	__u32 data;
4286 	__u32 data_end;
4287 	__u32 napi_id;
4288 
4289 	/* Accessed by BPF_PROG_TYPE_sk_skb types from here to ... */
4290 	__u32 family;
4291 	__u32 remote_ip4;	/* Stored in network byte order */
4292 	__u32 local_ip4;	/* Stored in network byte order */
4293 	__u32 remote_ip6[4];	/* Stored in network byte order */
4294 	__u32 local_ip6[4];	/* Stored in network byte order */
4295 	__u32 remote_port;	/* Stored in network byte order */
4296 	__u32 local_port;	/* stored in host byte order */
4297 	/* ... here. */
4298 
4299 	__u32 data_meta;
4300 	__bpf_md_ptr(struct bpf_flow_keys *, flow_keys);
4301 	__u64 tstamp;
4302 	__u32 wire_len;
4303 	__u32 gso_segs;
4304 	__bpf_md_ptr(struct bpf_sock *, sk);
4305 	__u32 gso_size;
4306 };
4307 
4308 struct bpf_tunnel_key {
4309 	__u32 tunnel_id;
4310 	union {
4311 		__u32 remote_ipv4;
4312 		__u32 remote_ipv6[4];
4313 	};
4314 	__u8 tunnel_tos;
4315 	__u8 tunnel_ttl;
4316 	__u16 tunnel_ext;	/* Padding, future use. */
4317 	__u32 tunnel_label;
4318 };
4319 
4320 /* user accessible mirror of in-kernel xfrm_state.
4321  * new fields can only be added to the end of this structure
4322  */
4323 struct bpf_xfrm_state {
4324 	__u32 reqid;
4325 	__u32 spi;	/* Stored in network byte order */
4326 	__u16 family;
4327 	__u16 ext;	/* Padding, future use. */
4328 	union {
4329 		__u32 remote_ipv4;	/* Stored in network byte order */
4330 		__u32 remote_ipv6[4];	/* Stored in network byte order */
4331 	};
4332 };
4333 
4334 /* Generic BPF return codes which all BPF program types may support.
4335  * The values are binary compatible with their TC_ACT_* counter-part to
4336  * provide backwards compatibility with existing SCHED_CLS and SCHED_ACT
4337  * programs.
4338  *
4339  * XDP is handled seprately, see XDP_*.
4340  */
4341 enum bpf_ret_code {
4342 	BPF_OK = 0,
4343 	/* 1 reserved */
4344 	BPF_DROP = 2,
4345 	/* 3-6 reserved */
4346 	BPF_REDIRECT = 7,
4347 	/* >127 are reserved for prog type specific return codes.
4348 	 *
4349 	 * BPF_LWT_REROUTE: used by BPF_PROG_TYPE_LWT_IN and
4350 	 *    BPF_PROG_TYPE_LWT_XMIT to indicate that skb had been
4351 	 *    changed and should be routed based on its new L3 header.
4352 	 *    (This is an L3 redirect, as opposed to L2 redirect
4353 	 *    represented by BPF_REDIRECT above).
4354 	 */
4355 	BPF_LWT_REROUTE = 128,
4356 };
4357 
4358 struct bpf_sock {
4359 	__u32 bound_dev_if;
4360 	__u32 family;
4361 	__u32 type;
4362 	__u32 protocol;
4363 	__u32 mark;
4364 	__u32 priority;
4365 	/* IP address also allows 1 and 2 bytes access */
4366 	__u32 src_ip4;
4367 	__u32 src_ip6[4];
4368 	__u32 src_port;		/* host byte order */
4369 	__u32 dst_port;		/* network byte order */
4370 	__u32 dst_ip4;
4371 	__u32 dst_ip6[4];
4372 	__u32 state;
4373 	__s32 rx_queue_mapping;
4374 };
4375 
4376 struct bpf_tcp_sock {
4377 	__u32 snd_cwnd;		/* Sending congestion window		*/
4378 	__u32 srtt_us;		/* smoothed round trip time << 3 in usecs */
4379 	__u32 rtt_min;
4380 	__u32 snd_ssthresh;	/* Slow start size threshold		*/
4381 	__u32 rcv_nxt;		/* What we want to receive next		*/
4382 	__u32 snd_nxt;		/* Next sequence we send		*/
4383 	__u32 snd_una;		/* First byte we want an ack for	*/
4384 	__u32 mss_cache;	/* Cached effective mss, not including SACKS */
4385 	__u32 ecn_flags;	/* ECN status bits.			*/
4386 	__u32 rate_delivered;	/* saved rate sample: packets delivered */
4387 	__u32 rate_interval_us;	/* saved rate sample: time elapsed */
4388 	__u32 packets_out;	/* Packets which are "in flight"	*/
4389 	__u32 retrans_out;	/* Retransmitted packets out		*/
4390 	__u32 total_retrans;	/* Total retransmits for entire connection */
4391 	__u32 segs_in;		/* RFC4898 tcpEStatsPerfSegsIn
4392 				 * total number of segments in.
4393 				 */
4394 	__u32 data_segs_in;	/* RFC4898 tcpEStatsPerfDataSegsIn
4395 				 * total number of data segments in.
4396 				 */
4397 	__u32 segs_out;		/* RFC4898 tcpEStatsPerfSegsOut
4398 				 * The total number of segments sent.
4399 				 */
4400 	__u32 data_segs_out;	/* RFC4898 tcpEStatsPerfDataSegsOut
4401 				 * total number of data segments sent.
4402 				 */
4403 	__u32 lost_out;		/* Lost packets			*/
4404 	__u32 sacked_out;	/* SACK'd packets			*/
4405 	__u64 bytes_received;	/* RFC4898 tcpEStatsAppHCThruOctetsReceived
4406 				 * sum(delta(rcv_nxt)), or how many bytes
4407 				 * were acked.
4408 				 */
4409 	__u64 bytes_acked;	/* RFC4898 tcpEStatsAppHCThruOctetsAcked
4410 				 * sum(delta(snd_una)), or how many bytes
4411 				 * were acked.
4412 				 */
4413 	__u32 dsack_dups;	/* RFC4898 tcpEStatsStackDSACKDups
4414 				 * total number of DSACK blocks received
4415 				 */
4416 	__u32 delivered;	/* Total data packets delivered incl. rexmits */
4417 	__u32 delivered_ce;	/* Like the above but only ECE marked packets */
4418 	__u32 icsk_retransmits;	/* Number of unrecovered [RTO] timeouts */
4419 };
4420 
4421 struct bpf_sock_tuple {
4422 	union {
4423 		struct {
4424 			__be32 saddr;
4425 			__be32 daddr;
4426 			__be16 sport;
4427 			__be16 dport;
4428 		} ipv4;
4429 		struct {
4430 			__be32 saddr[4];
4431 			__be32 daddr[4];
4432 			__be16 sport;
4433 			__be16 dport;
4434 		} ipv6;
4435 	};
4436 };
4437 
4438 struct bpf_xdp_sock {
4439 	__u32 queue_id;
4440 };
4441 
4442 #define XDP_PACKET_HEADROOM 256
4443 
4444 /* User return codes for XDP prog type.
4445  * A valid XDP program must return one of these defined values. All other
4446  * return codes are reserved for future use. Unknown return codes will
4447  * result in packet drops and a warning via bpf_warn_invalid_xdp_action().
4448  */
4449 enum xdp_action {
4450 	XDP_ABORTED = 0,
4451 	XDP_DROP,
4452 	XDP_PASS,
4453 	XDP_TX,
4454 	XDP_REDIRECT,
4455 };
4456 
4457 /* user accessible metadata for XDP packet hook
4458  * new fields must be added to the end of this structure
4459  */
4460 struct xdp_md {
4461 	__u32 data;
4462 	__u32 data_end;
4463 	__u32 data_meta;
4464 	/* Below access go through struct xdp_rxq_info */
4465 	__u32 ingress_ifindex; /* rxq->dev->ifindex */
4466 	__u32 rx_queue_index;  /* rxq->queue_index  */
4467 
4468 	__u32 egress_ifindex;  /* txq->dev->ifindex */
4469 };
4470 
4471 /* DEVMAP map-value layout
4472  *
4473  * The struct data-layout of map-value is a configuration interface.
4474  * New members can only be added to the end of this structure.
4475  */
4476 struct bpf_devmap_val {
4477 	__u32 ifindex;   /* device index */
4478 	union {
4479 		int   fd;  /* prog fd on map write */
4480 		__u32 id;  /* prog id on map read */
4481 	} bpf_prog;
4482 };
4483 
4484 /* CPUMAP map-value layout
4485  *
4486  * The struct data-layout of map-value is a configuration interface.
4487  * New members can only be added to the end of this structure.
4488  */
4489 struct bpf_cpumap_val {
4490 	__u32 qsize;	/* queue size to remote target CPU */
4491 	union {
4492 		int   fd;	/* prog fd on map write */
4493 		__u32 id;	/* prog id on map read */
4494 	} bpf_prog;
4495 };
4496 
4497 enum sk_action {
4498 	SK_DROP = 0,
4499 	SK_PASS,
4500 };
4501 
4502 /* user accessible metadata for SK_MSG packet hook, new fields must
4503  * be added to the end of this structure
4504  */
4505 struct sk_msg_md {
4506 	__bpf_md_ptr(void *, data);
4507 	__bpf_md_ptr(void *, data_end);
4508 
4509 	__u32 family;
4510 	__u32 remote_ip4;	/* Stored in network byte order */
4511 	__u32 local_ip4;	/* Stored in network byte order */
4512 	__u32 remote_ip6[4];	/* Stored in network byte order */
4513 	__u32 local_ip6[4];	/* Stored in network byte order */
4514 	__u32 remote_port;	/* Stored in network byte order */
4515 	__u32 local_port;	/* stored in host byte order */
4516 	__u32 size;		/* Total size of sk_msg */
4517 
4518 	__bpf_md_ptr(struct bpf_sock *, sk); /* current socket */
4519 };
4520 
4521 struct sk_reuseport_md {
4522 	/*
4523 	 * Start of directly accessible data. It begins from
4524 	 * the tcp/udp header.
4525 	 */
4526 	__bpf_md_ptr(void *, data);
4527 	/* End of directly accessible data */
4528 	__bpf_md_ptr(void *, data_end);
4529 	/*
4530 	 * Total length of packet (starting from the tcp/udp header).
4531 	 * Note that the directly accessible bytes (data_end - data)
4532 	 * could be less than this "len".  Those bytes could be
4533 	 * indirectly read by a helper "bpf_skb_load_bytes()".
4534 	 */
4535 	__u32 len;
4536 	/*
4537 	 * Eth protocol in the mac header (network byte order). e.g.
4538 	 * ETH_P_IP(0x0800) and ETH_P_IPV6(0x86DD)
4539 	 */
4540 	__u32 eth_protocol;
4541 	__u32 ip_protocol;	/* IP protocol. e.g. IPPROTO_TCP, IPPROTO_UDP */
4542 	__u32 bind_inany;	/* Is sock bound to an INANY address? */
4543 	__u32 hash;		/* A hash of the packet 4 tuples */
4544 };
4545 
4546 #define BPF_TAG_SIZE	8
4547 
4548 struct bpf_prog_info {
4549 	__u32 type;
4550 	__u32 id;
4551 	__u8  tag[BPF_TAG_SIZE];
4552 	__u32 jited_prog_len;
4553 	__u32 xlated_prog_len;
4554 	__aligned_u64 jited_prog_insns;
4555 	__aligned_u64 xlated_prog_insns;
4556 	__u64 load_time;	/* ns since boottime */
4557 	__u32 created_by_uid;
4558 	__u32 nr_map_ids;
4559 	__aligned_u64 map_ids;
4560 	char name[BPF_OBJ_NAME_LEN];
4561 	__u32 ifindex;
4562 	__u32 gpl_compatible:1;
4563 	__u32 :31; /* alignment pad */
4564 	__u64 netns_dev;
4565 	__u64 netns_ino;
4566 	__u32 nr_jited_ksyms;
4567 	__u32 nr_jited_func_lens;
4568 	__aligned_u64 jited_ksyms;
4569 	__aligned_u64 jited_func_lens;
4570 	__u32 btf_id;
4571 	__u32 func_info_rec_size;
4572 	__aligned_u64 func_info;
4573 	__u32 nr_func_info;
4574 	__u32 nr_line_info;
4575 	__aligned_u64 line_info;
4576 	__aligned_u64 jited_line_info;
4577 	__u32 nr_jited_line_info;
4578 	__u32 line_info_rec_size;
4579 	__u32 jited_line_info_rec_size;
4580 	__u32 nr_prog_tags;
4581 	__aligned_u64 prog_tags;
4582 	__u64 run_time_ns;
4583 	__u64 run_cnt;
4584 	__u64 recursion_misses;
4585 } __attribute__((aligned(8)));
4586 
4587 struct bpf_map_info {
4588 	__u32 type;
4589 	__u32 id;
4590 	__u32 key_size;
4591 	__u32 value_size;
4592 	__u32 max_entries;
4593 	__u32 map_flags;
4594 	char  name[BPF_OBJ_NAME_LEN];
4595 	__u32 ifindex;
4596 	__u32 btf_vmlinux_value_type_id;
4597 	__u64 netns_dev;
4598 	__u64 netns_ino;
4599 	__u32 btf_id;
4600 	__u32 btf_key_type_id;
4601 	__u32 btf_value_type_id;
4602 } __attribute__((aligned(8)));
4603 
4604 struct bpf_btf_info {
4605 	__aligned_u64 btf;
4606 	__u32 btf_size;
4607 	__u32 id;
4608 	__aligned_u64 name;
4609 	__u32 name_len;
4610 	__u32 kernel_btf;
4611 } __attribute__((aligned(8)));
4612 
4613 struct bpf_link_info {
4614 	__u32 type;
4615 	__u32 id;
4616 	__u32 prog_id;
4617 	union {
4618 		struct {
4619 			__aligned_u64 tp_name; /* in/out: tp_name buffer ptr */
4620 			__u32 tp_name_len;     /* in/out: tp_name buffer len */
4621 		} raw_tracepoint;
4622 		struct {
4623 			__u32 attach_type;
4624 		} tracing;
4625 		struct {
4626 			__u64 cgroup_id;
4627 			__u32 attach_type;
4628 		} cgroup;
4629 		struct {
4630 			__aligned_u64 target_name; /* in/out: target_name buffer ptr */
4631 			__u32 target_name_len;	   /* in/out: target_name buffer len */
4632 			union {
4633 				struct {
4634 					__u32 map_id;
4635 				} map;
4636 			};
4637 		} iter;
4638 		struct  {
4639 			__u32 netns_ino;
4640 			__u32 attach_type;
4641 		} netns;
4642 		struct {
4643 			__u32 ifindex;
4644 		} xdp;
4645 	};
4646 } __attribute__((aligned(8)));
4647 
4648 /* User bpf_sock_addr struct to access socket fields and sockaddr struct passed
4649  * by user and intended to be used by socket (e.g. to bind to, depends on
4650  * attach type).
4651  */
4652 struct bpf_sock_addr {
4653 	__u32 user_family;	/* Allows 4-byte read, but no write. */
4654 	__u32 user_ip4;		/* Allows 1,2,4-byte read and 4-byte write.
4655 				 * Stored in network byte order.
4656 				 */
4657 	__u32 user_ip6[4];	/* Allows 1,2,4,8-byte read and 4,8-byte write.
4658 				 * Stored in network byte order.
4659 				 */
4660 	__u32 user_port;	/* Allows 1,2,4-byte read and 4-byte write.
4661 				 * Stored in network byte order
4662 				 */
4663 	__u32 family;		/* Allows 4-byte read, but no write */
4664 	__u32 type;		/* Allows 4-byte read, but no write */
4665 	__u32 protocol;		/* Allows 4-byte read, but no write */
4666 	__u32 msg_src_ip4;	/* Allows 1,2,4-byte read and 4-byte write.
4667 				 * Stored in network byte order.
4668 				 */
4669 	__u32 msg_src_ip6[4];	/* Allows 1,2,4,8-byte read and 4,8-byte write.
4670 				 * Stored in network byte order.
4671 				 */
4672 	__bpf_md_ptr(struct bpf_sock *, sk);
4673 };
4674 
4675 /* User bpf_sock_ops struct to access socket values and specify request ops
4676  * and their replies.
4677  * Some of this fields are in network (bigendian) byte order and may need
4678  * to be converted before use (bpf_ntohl() defined in samples/bpf/bpf_endian.h).
4679  * New fields can only be added at the end of this structure
4680  */
4681 struct bpf_sock_ops {
4682 	__u32 op;
4683 	union {
4684 		__u32 args[4];		/* Optionally passed to bpf program */
4685 		__u32 reply;		/* Returned by bpf program	    */
4686 		__u32 replylong[4];	/* Optionally returned by bpf prog  */
4687 	};
4688 	__u32 family;
4689 	__u32 remote_ip4;	/* Stored in network byte order */
4690 	__u32 local_ip4;	/* Stored in network byte order */
4691 	__u32 remote_ip6[4];	/* Stored in network byte order */
4692 	__u32 local_ip6[4];	/* Stored in network byte order */
4693 	__u32 remote_port;	/* Stored in network byte order */
4694 	__u32 local_port;	/* stored in host byte order */
4695 	__u32 is_fullsock;	/* Some TCP fields are only valid if
4696 				 * there is a full socket. If not, the
4697 				 * fields read as zero.
4698 				 */
4699 	__u32 snd_cwnd;
4700 	__u32 srtt_us;		/* Averaged RTT << 3 in usecs */
4701 	__u32 bpf_sock_ops_cb_flags; /* flags defined in uapi/linux/tcp.h */
4702 	__u32 state;
4703 	__u32 rtt_min;
4704 	__u32 snd_ssthresh;
4705 	__u32 rcv_nxt;
4706 	__u32 snd_nxt;
4707 	__u32 snd_una;
4708 	__u32 mss_cache;
4709 	__u32 ecn_flags;
4710 	__u32 rate_delivered;
4711 	__u32 rate_interval_us;
4712 	__u32 packets_out;
4713 	__u32 retrans_out;
4714 	__u32 total_retrans;
4715 	__u32 segs_in;
4716 	__u32 data_segs_in;
4717 	__u32 segs_out;
4718 	__u32 data_segs_out;
4719 	__u32 lost_out;
4720 	__u32 sacked_out;
4721 	__u32 sk_txhash;
4722 	__u64 bytes_received;
4723 	__u64 bytes_acked;
4724 	__bpf_md_ptr(struct bpf_sock *, sk);
4725 	/* [skb_data, skb_data_end) covers the whole TCP header.
4726 	 *
4727 	 * BPF_SOCK_OPS_PARSE_HDR_OPT_CB: The packet received
4728 	 * BPF_SOCK_OPS_HDR_OPT_LEN_CB:   Not useful because the
4729 	 *                                header has not been written.
4730 	 * BPF_SOCK_OPS_WRITE_HDR_OPT_CB: The header and options have
4731 	 *				  been written so far.
4732 	 * BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB:  The SYNACK that concludes
4733 	 *					the 3WHS.
4734 	 * BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB: The ACK that concludes
4735 	 *					the 3WHS.
4736 	 *
4737 	 * bpf_load_hdr_opt() can also be used to read a particular option.
4738 	 */
4739 	__bpf_md_ptr(void *, skb_data);
4740 	__bpf_md_ptr(void *, skb_data_end);
4741 	__u32 skb_len;		/* The total length of a packet.
4742 				 * It includes the header, options,
4743 				 * and payload.
4744 				 */
4745 	__u32 skb_tcp_flags;	/* tcp_flags of the header.  It provides
4746 				 * an easy way to check for tcp_flags
4747 				 * without parsing skb_data.
4748 				 *
4749 				 * In particular, the skb_tcp_flags
4750 				 * will still be available in
4751 				 * BPF_SOCK_OPS_HDR_OPT_LEN even though
4752 				 * the outgoing header has not
4753 				 * been written yet.
4754 				 */
4755 };
4756 
4757 /* Definitions for bpf_sock_ops_cb_flags */
4758 enum {
4759 	BPF_SOCK_OPS_RTO_CB_FLAG	= (1<<0),
4760 	BPF_SOCK_OPS_RETRANS_CB_FLAG	= (1<<1),
4761 	BPF_SOCK_OPS_STATE_CB_FLAG	= (1<<2),
4762 	BPF_SOCK_OPS_RTT_CB_FLAG	= (1<<3),
4763 	/* Call bpf for all received TCP headers.  The bpf prog will be
4764 	 * called under sock_ops->op == BPF_SOCK_OPS_PARSE_HDR_OPT_CB
4765 	 *
4766 	 * Please refer to the comment in BPF_SOCK_OPS_PARSE_HDR_OPT_CB
4767 	 * for the header option related helpers that will be useful
4768 	 * to the bpf programs.
4769 	 *
4770 	 * It could be used at the client/active side (i.e. connect() side)
4771 	 * when the server told it that the server was in syncookie
4772 	 * mode and required the active side to resend the bpf-written
4773 	 * options.  The active side can keep writing the bpf-options until
4774 	 * it received a valid packet from the server side to confirm
4775 	 * the earlier packet (and options) has been received.  The later
4776 	 * example patch is using it like this at the active side when the
4777 	 * server is in syncookie mode.
4778 	 *
4779 	 * The bpf prog will usually turn this off in the common cases.
4780 	 */
4781 	BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG	= (1<<4),
4782 	/* Call bpf when kernel has received a header option that
4783 	 * the kernel cannot handle.  The bpf prog will be called under
4784 	 * sock_ops->op == BPF_SOCK_OPS_PARSE_HDR_OPT_CB.
4785 	 *
4786 	 * Please refer to the comment in BPF_SOCK_OPS_PARSE_HDR_OPT_CB
4787 	 * for the header option related helpers that will be useful
4788 	 * to the bpf programs.
4789 	 */
4790 	BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG = (1<<5),
4791 	/* Call bpf when the kernel is writing header options for the
4792 	 * outgoing packet.  The bpf prog will first be called
4793 	 * to reserve space in a skb under
4794 	 * sock_ops->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB.  Then
4795 	 * the bpf prog will be called to write the header option(s)
4796 	 * under sock_ops->op == BPF_SOCK_OPS_WRITE_HDR_OPT_CB.
4797 	 *
4798 	 * Please refer to the comment in BPF_SOCK_OPS_HDR_OPT_LEN_CB
4799 	 * and BPF_SOCK_OPS_WRITE_HDR_OPT_CB for the header option
4800 	 * related helpers that will be useful to the bpf programs.
4801 	 *
4802 	 * The kernel gets its chance to reserve space and write
4803 	 * options first before the BPF program does.
4804 	 */
4805 	BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG = (1<<6),
4806 /* Mask of all currently supported cb flags */
4807 	BPF_SOCK_OPS_ALL_CB_FLAGS       = 0x7F,
4808 };
4809 
4810 /* List of known BPF sock_ops operators.
4811  * New entries can only be added at the end
4812  */
4813 enum {
4814 	BPF_SOCK_OPS_VOID,
4815 	BPF_SOCK_OPS_TIMEOUT_INIT,	/* Should return SYN-RTO value to use or
4816 					 * -1 if default value should be used
4817 					 */
4818 	BPF_SOCK_OPS_RWND_INIT,		/* Should return initial advertized
4819 					 * window (in packets) or -1 if default
4820 					 * value should be used
4821 					 */
4822 	BPF_SOCK_OPS_TCP_CONNECT_CB,	/* Calls BPF program right before an
4823 					 * active connection is initialized
4824 					 */
4825 	BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB,	/* Calls BPF program when an
4826 						 * active connection is
4827 						 * established
4828 						 */
4829 	BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,	/* Calls BPF program when a
4830 						 * passive connection is
4831 						 * established
4832 						 */
4833 	BPF_SOCK_OPS_NEEDS_ECN,		/* If connection's congestion control
4834 					 * needs ECN
4835 					 */
4836 	BPF_SOCK_OPS_BASE_RTT,		/* Get base RTT. The correct value is
4837 					 * based on the path and may be
4838 					 * dependent on the congestion control
4839 					 * algorithm. In general it indicates
4840 					 * a congestion threshold. RTTs above
4841 					 * this indicate congestion
4842 					 */
4843 	BPF_SOCK_OPS_RTO_CB,		/* Called when an RTO has triggered.
4844 					 * Arg1: value of icsk_retransmits
4845 					 * Arg2: value of icsk_rto
4846 					 * Arg3: whether RTO has expired
4847 					 */
4848 	BPF_SOCK_OPS_RETRANS_CB,	/* Called when skb is retransmitted.
4849 					 * Arg1: sequence number of 1st byte
4850 					 * Arg2: # segments
4851 					 * Arg3: return value of
4852 					 *       tcp_transmit_skb (0 => success)
4853 					 */
4854 	BPF_SOCK_OPS_STATE_CB,		/* Called when TCP changes state.
4855 					 * Arg1: old_state
4856 					 * Arg2: new_state
4857 					 */
4858 	BPF_SOCK_OPS_TCP_LISTEN_CB,	/* Called on listen(2), right after
4859 					 * socket transition to LISTEN state.
4860 					 */
4861 	BPF_SOCK_OPS_RTT_CB,		/* Called on every RTT.
4862 					 */
4863 	BPF_SOCK_OPS_PARSE_HDR_OPT_CB,	/* Parse the header option.
4864 					 * It will be called to handle
4865 					 * the packets received at
4866 					 * an already established
4867 					 * connection.
4868 					 *
4869 					 * sock_ops->skb_data:
4870 					 * Referring to the received skb.
4871 					 * It covers the TCP header only.
4872 					 *
4873 					 * bpf_load_hdr_opt() can also
4874 					 * be used to search for a
4875 					 * particular option.
4876 					 */
4877 	BPF_SOCK_OPS_HDR_OPT_LEN_CB,	/* Reserve space for writing the
4878 					 * header option later in
4879 					 * BPF_SOCK_OPS_WRITE_HDR_OPT_CB.
4880 					 * Arg1: bool want_cookie. (in
4881 					 *       writing SYNACK only)
4882 					 *
4883 					 * sock_ops->skb_data:
4884 					 * Not available because no header has
4885 					 * been	written yet.
4886 					 *
4887 					 * sock_ops->skb_tcp_flags:
4888 					 * The tcp_flags of the
4889 					 * outgoing skb. (e.g. SYN, ACK, FIN).
4890 					 *
4891 					 * bpf_reserve_hdr_opt() should
4892 					 * be used to reserve space.
4893 					 */
4894 	BPF_SOCK_OPS_WRITE_HDR_OPT_CB,	/* Write the header options
4895 					 * Arg1: bool want_cookie. (in
4896 					 *       writing SYNACK only)
4897 					 *
4898 					 * sock_ops->skb_data:
4899 					 * Referring to the outgoing skb.
4900 					 * It covers the TCP header
4901 					 * that has already been written
4902 					 * by the kernel and the
4903 					 * earlier bpf-progs.
4904 					 *
4905 					 * sock_ops->skb_tcp_flags:
4906 					 * The tcp_flags of the outgoing
4907 					 * skb. (e.g. SYN, ACK, FIN).
4908 					 *
4909 					 * bpf_store_hdr_opt() should
4910 					 * be used to write the
4911 					 * option.
4912 					 *
4913 					 * bpf_load_hdr_opt() can also
4914 					 * be used to search for a
4915 					 * particular option that
4916 					 * has already been written
4917 					 * by the kernel or the
4918 					 * earlier bpf-progs.
4919 					 */
4920 };
4921 
4922 /* List of TCP states. There is a build check in net/ipv4/tcp.c to detect
4923  * changes between the TCP and BPF versions. Ideally this should never happen.
4924  * If it does, we need to add code to convert them before calling
4925  * the BPF sock_ops function.
4926  */
4927 enum {
4928 	BPF_TCP_ESTABLISHED = 1,
4929 	BPF_TCP_SYN_SENT,
4930 	BPF_TCP_SYN_RECV,
4931 	BPF_TCP_FIN_WAIT1,
4932 	BPF_TCP_FIN_WAIT2,
4933 	BPF_TCP_TIME_WAIT,
4934 	BPF_TCP_CLOSE,
4935 	BPF_TCP_CLOSE_WAIT,
4936 	BPF_TCP_LAST_ACK,
4937 	BPF_TCP_LISTEN,
4938 	BPF_TCP_CLOSING,	/* Now a valid state */
4939 	BPF_TCP_NEW_SYN_RECV,
4940 
4941 	BPF_TCP_MAX_STATES	/* Leave at the end! */
4942 };
4943 
4944 enum {
4945 	TCP_BPF_IW		= 1001,	/* Set TCP initial congestion window */
4946 	TCP_BPF_SNDCWND_CLAMP	= 1002,	/* Set sndcwnd_clamp */
4947 	TCP_BPF_DELACK_MAX	= 1003, /* Max delay ack in usecs */
4948 	TCP_BPF_RTO_MIN		= 1004, /* Min delay ack in usecs */
4949 	/* Copy the SYN pkt to optval
4950 	 *
4951 	 * BPF_PROG_TYPE_SOCK_OPS only.  It is similar to the
4952 	 * bpf_getsockopt(TCP_SAVED_SYN) but it does not limit
4953 	 * to only getting from the saved_syn.  It can either get the
4954 	 * syn packet from:
4955 	 *
4956 	 * 1. the just-received SYN packet (only available when writing the
4957 	 *    SYNACK).  It will be useful when it is not necessary to
4958 	 *    save the SYN packet for latter use.  It is also the only way
4959 	 *    to get the SYN during syncookie mode because the syn
4960 	 *    packet cannot be saved during syncookie.
4961 	 *
4962 	 * OR
4963 	 *
4964 	 * 2. the earlier saved syn which was done by
4965 	 *    bpf_setsockopt(TCP_SAVE_SYN).
4966 	 *
4967 	 * The bpf_getsockopt(TCP_BPF_SYN*) option will hide where the
4968 	 * SYN packet is obtained.
4969 	 *
4970 	 * If the bpf-prog does not need the IP[46] header,  the
4971 	 * bpf-prog can avoid parsing the IP header by using
4972 	 * TCP_BPF_SYN.  Otherwise, the bpf-prog can get both
4973 	 * IP[46] and TCP header by using TCP_BPF_SYN_IP.
4974 	 *
4975 	 *      >0: Total number of bytes copied
4976 	 * -ENOSPC: Not enough space in optval. Only optlen number of
4977 	 *          bytes is copied.
4978 	 * -ENOENT: The SYN skb is not available now and the earlier SYN pkt
4979 	 *	    is not saved by setsockopt(TCP_SAVE_SYN).
4980 	 */
4981 	TCP_BPF_SYN		= 1005, /* Copy the TCP header */
4982 	TCP_BPF_SYN_IP		= 1006, /* Copy the IP[46] and TCP header */
4983 	TCP_BPF_SYN_MAC         = 1007, /* Copy the MAC, IP[46], and TCP header */
4984 };
4985 
4986 enum {
4987 	BPF_LOAD_HDR_OPT_TCP_SYN = (1ULL << 0),
4988 };
4989 
4990 /* args[0] value during BPF_SOCK_OPS_HDR_OPT_LEN_CB and
4991  * BPF_SOCK_OPS_WRITE_HDR_OPT_CB.
4992  */
4993 enum {
4994 	BPF_WRITE_HDR_TCP_CURRENT_MSS = 1,	/* Kernel is finding the
4995 						 * total option spaces
4996 						 * required for an established
4997 						 * sk in order to calculate the
4998 						 * MSS.  No skb is actually
4999 						 * sent.
5000 						 */
5001 	BPF_WRITE_HDR_TCP_SYNACK_COOKIE = 2,	/* Kernel is in syncookie mode
5002 						 * when sending a SYN.
5003 						 */
5004 };
5005 
5006 struct bpf_perf_event_value {
5007 	__u64 counter;
5008 	__u64 enabled;
5009 	__u64 running;
5010 };
5011 
5012 enum {
5013 	BPF_DEVCG_ACC_MKNOD	= (1ULL << 0),
5014 	BPF_DEVCG_ACC_READ	= (1ULL << 1),
5015 	BPF_DEVCG_ACC_WRITE	= (1ULL << 2),
5016 };
5017 
5018 enum {
5019 	BPF_DEVCG_DEV_BLOCK	= (1ULL << 0),
5020 	BPF_DEVCG_DEV_CHAR	= (1ULL << 1),
5021 };
5022 
5023 struct bpf_cgroup_dev_ctx {
5024 	/* access_type encoded as (BPF_DEVCG_ACC_* << 16) | BPF_DEVCG_DEV_* */
5025 	__u32 access_type;
5026 	__u32 major;
5027 	__u32 minor;
5028 };
5029 
5030 struct bpf_raw_tracepoint_args {
5031 	__u64 args[0];
5032 };
5033 
5034 /* DIRECT:  Skip the FIB rules and go to FIB table associated with device
5035  * OUTPUT:  Do lookup from egress perspective; default is ingress
5036  */
5037 enum {
5038 	BPF_FIB_LOOKUP_DIRECT  = (1U << 0),
5039 	BPF_FIB_LOOKUP_OUTPUT  = (1U << 1),
5040 };
5041 
5042 enum {
5043 	BPF_FIB_LKUP_RET_SUCCESS,      /* lookup successful */
5044 	BPF_FIB_LKUP_RET_BLACKHOLE,    /* dest is blackholed; can be dropped */
5045 	BPF_FIB_LKUP_RET_UNREACHABLE,  /* dest is unreachable; can be dropped */
5046 	BPF_FIB_LKUP_RET_PROHIBIT,     /* dest not allowed; can be dropped */
5047 	BPF_FIB_LKUP_RET_NOT_FWDED,    /* packet is not forwarded */
5048 	BPF_FIB_LKUP_RET_FWD_DISABLED, /* fwding is not enabled on ingress */
5049 	BPF_FIB_LKUP_RET_UNSUPP_LWT,   /* fwd requires encapsulation */
5050 	BPF_FIB_LKUP_RET_NO_NEIGH,     /* no neighbor entry for nh */
5051 	BPF_FIB_LKUP_RET_FRAG_NEEDED,  /* fragmentation required to fwd */
5052 };
5053 
5054 struct bpf_fib_lookup {
5055 	/* input:  network family for lookup (AF_INET, AF_INET6)
5056 	 * output: network family of egress nexthop
5057 	 */
5058 	__u8	family;
5059 
5060 	/* set if lookup is to consider L4 data - e.g., FIB rules */
5061 	__u8	l4_protocol;
5062 	__be16	sport;
5063 	__be16	dport;
5064 
5065 	union {	/* used for MTU check */
5066 		/* input to lookup */
5067 		__u16	tot_len; /* L3 length from network hdr (iph->tot_len) */
5068 
5069 		/* output: MTU value */
5070 		__u16	mtu_result;
5071 	};
5072 	/* input: L3 device index for lookup
5073 	 * output: device index from FIB lookup
5074 	 */
5075 	__u32	ifindex;
5076 
5077 	union {
5078 		/* inputs to lookup */
5079 		__u8	tos;		/* AF_INET  */
5080 		__be32	flowinfo;	/* AF_INET6, flow_label + priority */
5081 
5082 		/* output: metric of fib result (IPv4/IPv6 only) */
5083 		__u32	rt_metric;
5084 	};
5085 
5086 	union {
5087 		__be32		ipv4_src;
5088 		__u32		ipv6_src[4];  /* in6_addr; network order */
5089 	};
5090 
5091 	/* input to bpf_fib_lookup, ipv{4,6}_dst is destination address in
5092 	 * network header. output: bpf_fib_lookup sets to gateway address
5093 	 * if FIB lookup returns gateway route
5094 	 */
5095 	union {
5096 		__be32		ipv4_dst;
5097 		__u32		ipv6_dst[4];  /* in6_addr; network order */
5098 	};
5099 
5100 	/* output */
5101 	__be16	h_vlan_proto;
5102 	__be16	h_vlan_TCI;
5103 	__u8	smac[6];     /* ETH_ALEN */
5104 	__u8	dmac[6];     /* ETH_ALEN */
5105 };
5106 
5107 struct bpf_redir_neigh {
5108 	/* network family for lookup (AF_INET, AF_INET6) */
5109 	__u32 nh_family;
5110 	/* network address of nexthop; skips fib lookup to find gateway */
5111 	union {
5112 		__be32		ipv4_nh;
5113 		__u32		ipv6_nh[4];  /* in6_addr; network order */
5114 	};
5115 };
5116 
5117 /* bpf_check_mtu flags*/
5118 enum  bpf_check_mtu_flags {
5119 	BPF_MTU_CHK_SEGS  = (1U << 0),
5120 };
5121 
5122 enum bpf_check_mtu_ret {
5123 	BPF_MTU_CHK_RET_SUCCESS,      /* check and lookup successful */
5124 	BPF_MTU_CHK_RET_FRAG_NEEDED,  /* fragmentation required to fwd */
5125 	BPF_MTU_CHK_RET_SEGS_TOOBIG,  /* GSO re-segmentation needed to fwd */
5126 };
5127 
5128 enum bpf_task_fd_type {
5129 	BPF_FD_TYPE_RAW_TRACEPOINT,	/* tp name */
5130 	BPF_FD_TYPE_TRACEPOINT,		/* tp name */
5131 	BPF_FD_TYPE_KPROBE,		/* (symbol + offset) or addr */
5132 	BPF_FD_TYPE_KRETPROBE,		/* (symbol + offset) or addr */
5133 	BPF_FD_TYPE_UPROBE,		/* filename + offset */
5134 	BPF_FD_TYPE_URETPROBE,		/* filename + offset */
5135 };
5136 
5137 enum {
5138 	BPF_FLOW_DISSECTOR_F_PARSE_1ST_FRAG		= (1U << 0),
5139 	BPF_FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL		= (1U << 1),
5140 	BPF_FLOW_DISSECTOR_F_STOP_AT_ENCAP		= (1U << 2),
5141 };
5142 
5143 struct bpf_flow_keys {
5144 	__u16	nhoff;
5145 	__u16	thoff;
5146 	__u16	addr_proto;			/* ETH_P_* of valid addrs */
5147 	__u8	is_frag;
5148 	__u8	is_first_frag;
5149 	__u8	is_encap;
5150 	__u8	ip_proto;
5151 	__be16	n_proto;
5152 	__be16	sport;
5153 	__be16	dport;
5154 	union {
5155 		struct {
5156 			__be32	ipv4_src;
5157 			__be32	ipv4_dst;
5158 		};
5159 		struct {
5160 			__u32	ipv6_src[4];	/* in6_addr; network order */
5161 			__u32	ipv6_dst[4];	/* in6_addr; network order */
5162 		};
5163 	};
5164 	__u32	flags;
5165 	__be32	flow_label;
5166 };
5167 
5168 struct bpf_func_info {
5169 	__u32	insn_off;
5170 	__u32	type_id;
5171 };
5172 
5173 #define BPF_LINE_INFO_LINE_NUM(line_col)	((line_col) >> 10)
5174 #define BPF_LINE_INFO_LINE_COL(line_col)	((line_col) & 0x3ff)
5175 
5176 struct bpf_line_info {
5177 	__u32	insn_off;
5178 	__u32	file_name_off;
5179 	__u32	line_off;
5180 	__u32	line_col;
5181 };
5182 
5183 struct bpf_spin_lock {
5184 	__u32	val;
5185 };
5186 
5187 struct bpf_sysctl {
5188 	__u32	write;		/* Sysctl is being read (= 0) or written (= 1).
5189 				 * Allows 1,2,4-byte read, but no write.
5190 				 */
5191 	__u32	file_pos;	/* Sysctl file position to read from, write to.
5192 				 * Allows 1,2,4-byte read an 4-byte write.
5193 				 */
5194 };
5195 
5196 struct bpf_sockopt {
5197 	__bpf_md_ptr(struct bpf_sock *, sk);
5198 	__bpf_md_ptr(void *, optval);
5199 	__bpf_md_ptr(void *, optval_end);
5200 
5201 	__s32	level;
5202 	__s32	optname;
5203 	__s32	optlen;
5204 	__s32	retval;
5205 };
5206 
5207 struct bpf_pidns_info {
5208 	__u32 pid;
5209 	__u32 tgid;
5210 };
5211 
5212 /* User accessible data for SK_LOOKUP programs. Add new fields at the end. */
5213 struct bpf_sk_lookup {
5214 	__bpf_md_ptr(struct bpf_sock *, sk); /* Selected socket */
5215 
5216 	__u32 family;		/* Protocol family (AF_INET, AF_INET6) */
5217 	__u32 protocol;		/* IP protocol (IPPROTO_TCP, IPPROTO_UDP) */
5218 	__u32 remote_ip4;	/* Network byte order */
5219 	__u32 remote_ip6[4];	/* Network byte order */
5220 	__u32 remote_port;	/* Network byte order */
5221 	__u32 local_ip4;	/* Network byte order */
5222 	__u32 local_ip6[4];	/* Network byte order */
5223 	__u32 local_port;	/* Host byte order */
5224 };
5225 
5226 /*
5227  * struct btf_ptr is used for typed pointer representation; the
5228  * type id is used to render the pointer data as the appropriate type
5229  * via the bpf_snprintf_btf() helper described above.  A flags field -
5230  * potentially to specify additional details about the BTF pointer
5231  * (rather than its mode of display) - is included for future use.
5232  * Display flags - BTF_F_* - are passed to bpf_snprintf_btf separately.
5233  */
5234 struct btf_ptr {
5235 	void *ptr;
5236 	__u32 type_id;
5237 	__u32 flags;		/* BTF ptr flags; unused at present. */
5238 };
5239 
5240 /*
5241  * Flags to control bpf_snprintf_btf() behaviour.
5242  *     - BTF_F_COMPACT: no formatting around type information
5243  *     - BTF_F_NONAME: no struct/union member names/types
5244  *     - BTF_F_PTR_RAW: show raw (unobfuscated) pointer values;
5245  *       equivalent to %px.
5246  *     - BTF_F_ZERO: show zero-valued struct/union members; they
5247  *       are not displayed by default
5248  */
5249 enum {
5250 	BTF_F_COMPACT	=	(1ULL << 0),
5251 	BTF_F_NONAME	=	(1ULL << 1),
5252 	BTF_F_PTR_RAW	=	(1ULL << 2),
5253 	BTF_F_ZERO	=	(1ULL << 3),
5254 };
5255 
5256 #endif /* _UAPI__LINUX_BPF_H__ */
5257