• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 /**
25  * \file linker.cpp
26  * GLSL linker implementation
27  *
28  * Given a set of shaders that are to be linked to generate a final program,
29  * there are three distinct stages.
30  *
31  * In the first stage shaders are partitioned into groups based on the shader
32  * type.  All shaders of a particular type (e.g., vertex shaders) are linked
33  * together.
34  *
35  *   - Undefined references in each shader are resolve to definitions in
36  *     another shader.
37  *   - Types and qualifiers of uniforms, outputs, and global variables defined
38  *     in multiple shaders with the same name are verified to be the same.
39  *   - Initializers for uniforms and global variables defined
40  *     in multiple shaders with the same name are verified to be the same.
41  *
42  * The result, in the terminology of the GLSL spec, is a set of shader
43  * executables for each processing unit.
44  *
45  * After the first stage is complete, a series of semantic checks are performed
46  * on each of the shader executables.
47  *
48  *   - Each shader executable must define a \c main function.
49  *   - Each vertex shader executable must write to \c gl_Position.
50  *   - Each fragment shader executable must write to either \c gl_FragData or
51  *     \c gl_FragColor.
52  *
53  * In the final stage individual shader executables are linked to create a
54  * complete exectuable.
55  *
56  *   - Types of uniforms defined in multiple shader stages with the same name
57  *     are verified to be the same.
58  *   - Initializers for uniforms defined in multiple shader stages with the
59  *     same name are verified to be the same.
60  *   - Types and qualifiers of outputs defined in one stage are verified to
61  *     be the same as the types and qualifiers of inputs defined with the same
62  *     name in a later stage.
63  *
64  * \author Ian Romanick <ian.d.romanick@intel.com>
65  */
66 
67 #include <ctype.h>
68 #include "util/strndup.h"
69 #include "glsl_symbol_table.h"
70 #include "glsl_parser_extras.h"
71 #include "ir.h"
72 #include "program.h"
73 #include "program/prog_instruction.h"
74 #include "program/program.h"
75 #include "util/mesa-sha1.h"
76 #include "util/set.h"
77 #include "string_to_uint_map.h"
78 #include "linker.h"
79 #include "linker_util.h"
80 #include "link_varyings.h"
81 #include "ir_optimization.h"
82 #include "ir_rvalue_visitor.h"
83 #include "ir_uniform.h"
84 #include "builtin_functions.h"
85 #include "shader_cache.h"
86 #include "util/u_string.h"
87 #include "util/u_math.h"
88 
89 
90 #include "main/shaderobj.h"
91 #include "main/enums.h"
92 #include "main/mtypes.h"
93 
94 
95 namespace {
96 
97 struct find_variable {
98    const char *name;
99    bool found;
100 
find_variable__anon8efa989c0111::find_variable101    find_variable(const char *name) : name(name), found(false) {}
102 };
103 
104 /**
105  * Visitor that determines whether or not a variable is ever written.
106  *
107  * Use \ref find_assignments for convenience.
108  */
109 class find_assignment_visitor : public ir_hierarchical_visitor {
110 public:
find_assignment_visitor(unsigned num_vars,find_variable * const * vars)111    find_assignment_visitor(unsigned num_vars,
112                            find_variable * const *vars)
113       : num_variables(num_vars), num_found(0), variables(vars)
114    {
115    }
116 
visit_enter(ir_assignment * ir)117    virtual ir_visitor_status visit_enter(ir_assignment *ir)
118    {
119       ir_variable *const var = ir->lhs->variable_referenced();
120 
121       return check_variable_name(var->name);
122    }
123 
visit_enter(ir_call * ir)124    virtual ir_visitor_status visit_enter(ir_call *ir)
125    {
126       foreach_two_lists(formal_node, &ir->callee->parameters,
127                         actual_node, &ir->actual_parameters) {
128          ir_rvalue *param_rval = (ir_rvalue *) actual_node;
129          ir_variable *sig_param = (ir_variable *) formal_node;
130 
131          if (sig_param->data.mode == ir_var_function_out ||
132              sig_param->data.mode == ir_var_function_inout) {
133             ir_variable *var = param_rval->variable_referenced();
134             if (var && check_variable_name(var->name) == visit_stop)
135                return visit_stop;
136          }
137       }
138 
139       if (ir->return_deref != NULL) {
140          ir_variable *const var = ir->return_deref->variable_referenced();
141 
142          if (check_variable_name(var->name) == visit_stop)
143             return visit_stop;
144       }
145 
146       return visit_continue_with_parent;
147    }
148 
149 private:
check_variable_name(const char * name)150    ir_visitor_status check_variable_name(const char *name)
151    {
152       for (unsigned i = 0; i < num_variables; ++i) {
153          if (strcmp(variables[i]->name, name) == 0) {
154             if (!variables[i]->found) {
155                variables[i]->found = true;
156 
157                assert(num_found < num_variables);
158                if (++num_found == num_variables)
159                   return visit_stop;
160             }
161             break;
162          }
163       }
164 
165       return visit_continue_with_parent;
166    }
167 
168 private:
169    unsigned num_variables;           /**< Number of variables to find */
170    unsigned num_found;               /**< Number of variables already found */
171    find_variable * const *variables; /**< Variables to find */
172 };
173 
174 /**
175  * Determine whether or not any of NULL-terminated list of variables is ever
176  * written to.
177  */
178 static void
find_assignments(exec_list * ir,find_variable * const * vars)179 find_assignments(exec_list *ir, find_variable * const *vars)
180 {
181    unsigned num_variables = 0;
182 
183    for (find_variable * const *v = vars; *v; ++v)
184       num_variables++;
185 
186    find_assignment_visitor visitor(num_variables, vars);
187    visitor.run(ir);
188 }
189 
190 /**
191  * Determine whether or not the given variable is ever written to.
192  */
193 static void
find_assignments(exec_list * ir,find_variable * var)194 find_assignments(exec_list *ir, find_variable *var)
195 {
196    find_assignment_visitor visitor(1, &var);
197    visitor.run(ir);
198 }
199 
200 /**
201  * Visitor that determines whether or not a variable is ever read.
202  */
203 class find_deref_visitor : public ir_hierarchical_visitor {
204 public:
find_deref_visitor(const char * name)205    find_deref_visitor(const char *name)
206       : name(name), found(false)
207    {
208       /* empty */
209    }
210 
visit(ir_dereference_variable * ir)211    virtual ir_visitor_status visit(ir_dereference_variable *ir)
212    {
213       if (strcmp(this->name, ir->var->name) == 0) {
214          this->found = true;
215          return visit_stop;
216       }
217 
218       return visit_continue;
219    }
220 
variable_found() const221    bool variable_found() const
222    {
223       return this->found;
224    }
225 
226 private:
227    const char *name;       /**< Find writes to a variable with this name. */
228    bool found;             /**< Was a write to the variable found? */
229 };
230 
231 
232 /**
233  * A visitor helper that provides methods for updating the types of
234  * ir_dereferences.  Classes that update variable types (say, updating
235  * array sizes) will want to use this so that dereference types stay in sync.
236  */
237 class deref_type_updater : public ir_hierarchical_visitor {
238 public:
visit(ir_dereference_variable * ir)239    virtual ir_visitor_status visit(ir_dereference_variable *ir)
240    {
241       ir->type = ir->var->type;
242       return visit_continue;
243    }
244 
visit_leave(ir_dereference_array * ir)245    virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
246    {
247       const glsl_type *const vt = ir->array->type;
248       if (vt->is_array())
249          ir->type = vt->fields.array;
250       return visit_continue;
251    }
252 
visit_leave(ir_dereference_record * ir)253    virtual ir_visitor_status visit_leave(ir_dereference_record *ir)
254    {
255       ir->type = ir->record->type->fields.structure[ir->field_idx].type;
256       return visit_continue;
257    }
258 };
259 
260 
261 class array_resize_visitor : public deref_type_updater {
262 public:
263    using deref_type_updater::visit;
264 
265    unsigned num_vertices;
266    gl_shader_program *prog;
267    gl_shader_stage stage;
268 
array_resize_visitor(unsigned num_vertices,gl_shader_program * prog,gl_shader_stage stage)269    array_resize_visitor(unsigned num_vertices,
270                         gl_shader_program *prog,
271                         gl_shader_stage stage)
272    {
273       this->num_vertices = num_vertices;
274       this->prog = prog;
275       this->stage = stage;
276    }
277 
~array_resize_visitor()278    virtual ~array_resize_visitor()
279    {
280       /* empty */
281    }
282 
visit(ir_variable * var)283    virtual ir_visitor_status visit(ir_variable *var)
284    {
285       if (!var->type->is_array() || var->data.mode != ir_var_shader_in ||
286           var->data.patch)
287          return visit_continue;
288 
289       unsigned size = var->type->length;
290 
291       if (stage == MESA_SHADER_GEOMETRY) {
292          /* Generate a link error if the shader has declared this array with
293           * an incorrect size.
294           */
295          if (!var->data.implicit_sized_array &&
296              size && size != this->num_vertices) {
297             linker_error(this->prog, "size of array %s declared as %u, "
298                          "but number of input vertices is %u\n",
299                          var->name, size, this->num_vertices);
300             return visit_continue;
301          }
302 
303          /* Generate a link error if the shader attempts to access an input
304           * array using an index too large for its actual size assigned at
305           * link time.
306           */
307          if (var->data.max_array_access >= (int)this->num_vertices) {
308             linker_error(this->prog, "%s shader accesses element %i of "
309                          "%s, but only %i input vertices\n",
310                          _mesa_shader_stage_to_string(this->stage),
311                          var->data.max_array_access, var->name, this->num_vertices);
312             return visit_continue;
313          }
314       }
315 
316       var->type = glsl_type::get_array_instance(var->type->fields.array,
317                                                 this->num_vertices);
318       var->data.max_array_access = this->num_vertices - 1;
319 
320       return visit_continue;
321    }
322 };
323 
324 /**
325  * Visitor that determines the highest stream id to which a (geometry) shader
326  * emits vertices. It also checks whether End{Stream}Primitive is ever called.
327  */
328 class find_emit_vertex_visitor : public ir_hierarchical_visitor {
329 public:
find_emit_vertex_visitor(int max_allowed)330    find_emit_vertex_visitor(int max_allowed)
331       : max_stream_allowed(max_allowed),
332         invalid_stream_id(0),
333         invalid_stream_id_from_emit_vertex(false),
334         end_primitive_found(false),
335         used_streams(0)
336    {
337       /* empty */
338    }
339 
visit_leave(ir_emit_vertex * ir)340    virtual ir_visitor_status visit_leave(ir_emit_vertex *ir)
341    {
342       int stream_id = ir->stream_id();
343 
344       if (stream_id < 0) {
345          invalid_stream_id = stream_id;
346          invalid_stream_id_from_emit_vertex = true;
347          return visit_stop;
348       }
349 
350       if (stream_id > max_stream_allowed) {
351          invalid_stream_id = stream_id;
352          invalid_stream_id_from_emit_vertex = true;
353          return visit_stop;
354       }
355 
356       used_streams |= 1 << stream_id;
357 
358       return visit_continue;
359    }
360 
visit_leave(ir_end_primitive * ir)361    virtual ir_visitor_status visit_leave(ir_end_primitive *ir)
362    {
363       end_primitive_found = true;
364 
365       int stream_id = ir->stream_id();
366 
367       if (stream_id < 0) {
368          invalid_stream_id = stream_id;
369          invalid_stream_id_from_emit_vertex = false;
370          return visit_stop;
371       }
372 
373       if (stream_id > max_stream_allowed) {
374          invalid_stream_id = stream_id;
375          invalid_stream_id_from_emit_vertex = false;
376          return visit_stop;
377       }
378 
379       used_streams |= 1 << stream_id;
380 
381       return visit_continue;
382    }
383 
error()384    bool error()
385    {
386       return invalid_stream_id != 0;
387    }
388 
error_func()389    const char *error_func()
390    {
391       return invalid_stream_id_from_emit_vertex ?
392          "EmitStreamVertex" : "EndStreamPrimitive";
393    }
394 
error_stream()395    int error_stream()
396    {
397       return invalid_stream_id;
398    }
399 
active_stream_mask()400    unsigned active_stream_mask()
401    {
402       return used_streams;
403    }
404 
uses_end_primitive()405    bool uses_end_primitive()
406    {
407       return end_primitive_found;
408    }
409 
410 private:
411    int max_stream_allowed;
412    int invalid_stream_id;
413    bool invalid_stream_id_from_emit_vertex;
414    bool end_primitive_found;
415    unsigned used_streams;
416 };
417 
418 /* Class that finds array derefs and check if indexes are dynamic. */
419 class dynamic_sampler_array_indexing_visitor : public ir_hierarchical_visitor
420 {
421 public:
dynamic_sampler_array_indexing_visitor()422    dynamic_sampler_array_indexing_visitor() :
423       dynamic_sampler_array_indexing(false)
424    {
425    }
426 
visit_enter(ir_dereference_array * ir)427    ir_visitor_status visit_enter(ir_dereference_array *ir)
428    {
429       if (!ir->variable_referenced())
430          return visit_continue;
431 
432       if (!ir->variable_referenced()->type->contains_sampler())
433          return visit_continue;
434 
435       if (!ir->array_index->constant_expression_value(ralloc_parent(ir))) {
436          dynamic_sampler_array_indexing = true;
437          return visit_stop;
438       }
439       return visit_continue;
440    }
441 
uses_dynamic_sampler_array_indexing()442    bool uses_dynamic_sampler_array_indexing()
443    {
444       return dynamic_sampler_array_indexing;
445    }
446 
447 private:
448    bool dynamic_sampler_array_indexing;
449 };
450 
451 } /* anonymous namespace */
452 
453 void
linker_error(gl_shader_program * prog,const char * fmt,...)454 linker_error(gl_shader_program *prog, const char *fmt, ...)
455 {
456    va_list ap;
457 
458    ralloc_strcat(&prog->data->InfoLog, "error: ");
459    va_start(ap, fmt);
460    ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
461    va_end(ap);
462 
463    prog->data->LinkStatus = LINKING_FAILURE;
464 }
465 
466 
467 void
linker_warning(gl_shader_program * prog,const char * fmt,...)468 linker_warning(gl_shader_program *prog, const char *fmt, ...)
469 {
470    va_list ap;
471 
472    ralloc_strcat(&prog->data->InfoLog, "warning: ");
473    va_start(ap, fmt);
474    ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
475    va_end(ap);
476 
477 }
478 
479 
480 /**
481  * Given a string identifying a program resource, break it into a base name
482  * and an optional array index in square brackets.
483  *
484  * If an array index is present, \c out_base_name_end is set to point to the
485  * "[" that precedes the array index, and the array index itself is returned
486  * as a long.
487  *
488  * If no array index is present (or if the array index is negative or
489  * mal-formed), \c out_base_name_end, is set to point to the null terminator
490  * at the end of the input string, and -1 is returned.
491  *
492  * Only the final array index is parsed; if the string contains other array
493  * indices (or structure field accesses), they are left in the base name.
494  *
495  * No attempt is made to check that the base name is properly formed;
496  * typically the caller will look up the base name in a hash table, so
497  * ill-formed base names simply turn into hash table lookup failures.
498  */
499 long
parse_program_resource_name(const GLchar * name,const GLchar ** out_base_name_end)500 parse_program_resource_name(const GLchar *name,
501                             const GLchar **out_base_name_end)
502 {
503    /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
504     *
505     *     "When an integer array element or block instance number is part of
506     *     the name string, it will be specified in decimal form without a "+"
507     *     or "-" sign or any extra leading zeroes. Additionally, the name
508     *     string will not include white space anywhere in the string."
509     */
510 
511    const size_t len = strlen(name);
512    *out_base_name_end = name + len;
513 
514    if (len == 0 || name[len-1] != ']')
515       return -1;
516 
517    /* Walk backwards over the string looking for a non-digit character.  This
518     * had better be the opening bracket for an array index.
519     *
520     * Initially, i specifies the location of the ']'.  Since the string may
521     * contain only the ']' charcater, walk backwards very carefully.
522     */
523    unsigned i;
524    for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
525       /* empty */ ;
526 
527    if ((i == 0) || name[i-1] != '[')
528       return -1;
529 
530    long array_index = strtol(&name[i], NULL, 10);
531    if (array_index < 0)
532       return -1;
533 
534    /* Check for leading zero */
535    if (name[i] == '0' && name[i+1] != ']')
536       return -1;
537 
538    *out_base_name_end = name + (i - 1);
539    return array_index;
540 }
541 
542 
543 void
link_invalidate_variable_locations(exec_list * ir)544 link_invalidate_variable_locations(exec_list *ir)
545 {
546    foreach_in_list(ir_instruction, node, ir) {
547       ir_variable *const var = node->as_variable();
548 
549       if (var == NULL)
550          continue;
551 
552       /* Only assign locations for variables that lack an explicit location.
553        * Explicit locations are set for all built-in variables, generic vertex
554        * shader inputs (via layout(location=...)), and generic fragment shader
555        * outputs (also via layout(location=...)).
556        */
557       if (!var->data.explicit_location) {
558          var->data.location = -1;
559          var->data.location_frac = 0;
560       }
561 
562       /* ir_variable::is_unmatched_generic_inout is used by the linker while
563        * connecting outputs from one stage to inputs of the next stage.
564        */
565       if (var->data.explicit_location &&
566           var->data.location < VARYING_SLOT_VAR0) {
567          var->data.is_unmatched_generic_inout = 0;
568       } else {
569          var->data.is_unmatched_generic_inout = 1;
570       }
571    }
572 }
573 
574 
575 /**
576  * Set clip_distance_array_size based and cull_distance_array_size on the given
577  * shader.
578  *
579  * Also check for errors based on incorrect usage of gl_ClipVertex and
580  * gl_ClipDistance and gl_CullDistance.
581  * Additionally test whether the arrays gl_ClipDistance and gl_CullDistance
582  * exceed the maximum size defined by gl_MaxCombinedClipAndCullDistances.
583  *
584  * Return false if an error was reported.
585  */
586 static void
analyze_clip_cull_usage(struct gl_shader_program * prog,struct gl_linked_shader * shader,struct gl_context * ctx,struct shader_info * info)587 analyze_clip_cull_usage(struct gl_shader_program *prog,
588                         struct gl_linked_shader *shader,
589                         struct gl_context *ctx,
590                         struct shader_info *info)
591 {
592    info->clip_distance_array_size = 0;
593    info->cull_distance_array_size = 0;
594 
595    if (prog->data->Version >= (prog->IsES ? 300 : 130)) {
596       /* From section 7.1 (Vertex Shader Special Variables) of the
597        * GLSL 1.30 spec:
598        *
599        *   "It is an error for a shader to statically write both
600        *   gl_ClipVertex and gl_ClipDistance."
601        *
602        * This does not apply to GLSL ES shaders, since GLSL ES defines neither
603        * gl_ClipVertex nor gl_ClipDistance. However with
604        * GL_EXT_clip_cull_distance, this functionality is exposed in ES 3.0.
605        */
606       find_variable gl_ClipDistance("gl_ClipDistance");
607       find_variable gl_CullDistance("gl_CullDistance");
608       find_variable gl_ClipVertex("gl_ClipVertex");
609       find_variable * const variables[] = {
610          &gl_ClipDistance,
611          &gl_CullDistance,
612          !prog->IsES ? &gl_ClipVertex : NULL,
613          NULL
614       };
615       find_assignments(shader->ir, variables);
616 
617       /* From the ARB_cull_distance spec:
618        *
619        * It is a compile-time or link-time error for the set of shaders forming
620        * a program to statically read or write both gl_ClipVertex and either
621        * gl_ClipDistance or gl_CullDistance.
622        *
623        * This does not apply to GLSL ES shaders, since GLSL ES doesn't define
624        * gl_ClipVertex.
625        */
626       if (!prog->IsES) {
627          if (gl_ClipVertex.found && gl_ClipDistance.found) {
628             linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
629                          "and `gl_ClipDistance'\n",
630                          _mesa_shader_stage_to_string(shader->Stage));
631             return;
632          }
633          if (gl_ClipVertex.found && gl_CullDistance.found) {
634             linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
635                          "and `gl_CullDistance'\n",
636                          _mesa_shader_stage_to_string(shader->Stage));
637             return;
638          }
639       }
640 
641       if (gl_ClipDistance.found) {
642          ir_variable *clip_distance_var =
643                 shader->symbols->get_variable("gl_ClipDistance");
644          assert(clip_distance_var);
645          info->clip_distance_array_size = clip_distance_var->type->length;
646       }
647       if (gl_CullDistance.found) {
648          ir_variable *cull_distance_var =
649                 shader->symbols->get_variable("gl_CullDistance");
650          assert(cull_distance_var);
651          info->cull_distance_array_size = cull_distance_var->type->length;
652       }
653       /* From the ARB_cull_distance spec:
654        *
655        * It is a compile-time or link-time error for the set of shaders forming
656        * a program to have the sum of the sizes of the gl_ClipDistance and
657        * gl_CullDistance arrays to be larger than
658        * gl_MaxCombinedClipAndCullDistances.
659        */
660       if ((uint32_t)(info->clip_distance_array_size + info->cull_distance_array_size) >
661           ctx->Const.MaxClipPlanes) {
662           linker_error(prog, "%s shader: the combined size of "
663                        "'gl_ClipDistance' and 'gl_CullDistance' size cannot "
664                        "be larger than "
665                        "gl_MaxCombinedClipAndCullDistances (%u)",
666                        _mesa_shader_stage_to_string(shader->Stage),
667                        ctx->Const.MaxClipPlanes);
668       }
669    }
670 }
671 
672 
673 /**
674  * Verify that a vertex shader executable meets all semantic requirements.
675  *
676  * Also sets info.clip_distance_array_size and
677  * info.cull_distance_array_size as a side effect.
678  *
679  * \param shader  Vertex shader executable to be verified
680  */
681 static void
validate_vertex_shader_executable(struct gl_shader_program * prog,struct gl_linked_shader * shader,struct gl_context * ctx)682 validate_vertex_shader_executable(struct gl_shader_program *prog,
683                                   struct gl_linked_shader *shader,
684                                   struct gl_context *ctx)
685 {
686    if (shader == NULL)
687       return;
688 
689    /* From the GLSL 1.10 spec, page 48:
690     *
691     *     "The variable gl_Position is available only in the vertex
692     *      language and is intended for writing the homogeneous vertex
693     *      position. All executions of a well-formed vertex shader
694     *      executable must write a value into this variable. [...] The
695     *      variable gl_Position is available only in the vertex
696     *      language and is intended for writing the homogeneous vertex
697     *      position. All executions of a well-formed vertex shader
698     *      executable must write a value into this variable."
699     *
700     * while in GLSL 1.40 this text is changed to:
701     *
702     *     "The variable gl_Position is available only in the vertex
703     *      language and is intended for writing the homogeneous vertex
704     *      position. It can be written at any time during shader
705     *      execution. It may also be read back by a vertex shader
706     *      after being written. This value will be used by primitive
707     *      assembly, clipping, culling, and other fixed functionality
708     *      operations, if present, that operate on primitives after
709     *      vertex processing has occurred. Its value is undefined if
710     *      the vertex shader executable does not write gl_Position."
711     *
712     * All GLSL ES Versions are similar to GLSL 1.40--failing to write to
713     * gl_Position is not an error.
714     */
715    if (prog->data->Version < (prog->IsES ? 300 : 140)) {
716       find_variable gl_Position("gl_Position");
717       find_assignments(shader->ir, &gl_Position);
718       if (!gl_Position.found) {
719         if (prog->IsES) {
720           linker_warning(prog,
721                          "vertex shader does not write to `gl_Position'. "
722                          "Its value is undefined. \n");
723         } else {
724           linker_error(prog,
725                        "vertex shader does not write to `gl_Position'. \n");
726         }
727          return;
728       }
729    }
730 
731    analyze_clip_cull_usage(prog, shader, ctx, &shader->Program->info);
732 }
733 
734 static void
validate_tess_eval_shader_executable(struct gl_shader_program * prog,struct gl_linked_shader * shader,struct gl_context * ctx)735 validate_tess_eval_shader_executable(struct gl_shader_program *prog,
736                                      struct gl_linked_shader *shader,
737                                      struct gl_context *ctx)
738 {
739    if (shader == NULL)
740       return;
741 
742    analyze_clip_cull_usage(prog, shader, ctx, &shader->Program->info);
743 }
744 
745 
746 /**
747  * Verify that a fragment shader executable meets all semantic requirements
748  *
749  * \param shader  Fragment shader executable to be verified
750  */
751 static void
validate_fragment_shader_executable(struct gl_shader_program * prog,struct gl_linked_shader * shader)752 validate_fragment_shader_executable(struct gl_shader_program *prog,
753                                     struct gl_linked_shader *shader)
754 {
755    if (shader == NULL)
756       return;
757 
758    find_variable gl_FragColor("gl_FragColor");
759    find_variable gl_FragData("gl_FragData");
760    find_variable * const variables[] = { &gl_FragColor, &gl_FragData, NULL };
761    find_assignments(shader->ir, variables);
762 
763    if (gl_FragColor.found && gl_FragData.found) {
764       linker_error(prog,  "fragment shader writes to both "
765                    "`gl_FragColor' and `gl_FragData'\n");
766    }
767 }
768 
769 /**
770  * Verify that a geometry shader executable meets all semantic requirements
771  *
772  * Also sets prog->Geom.VerticesIn, and info.clip_distance_array_sizeand
773  * info.cull_distance_array_size as a side effect.
774  *
775  * \param shader Geometry shader executable to be verified
776  */
777 static void
validate_geometry_shader_executable(struct gl_shader_program * prog,struct gl_linked_shader * shader,struct gl_context * ctx)778 validate_geometry_shader_executable(struct gl_shader_program *prog,
779                                     struct gl_linked_shader *shader,
780                                     struct gl_context *ctx)
781 {
782    if (shader == NULL)
783       return;
784 
785    unsigned num_vertices =
786       vertices_per_prim(shader->Program->info.gs.input_primitive);
787    prog->Geom.VerticesIn = num_vertices;
788 
789    analyze_clip_cull_usage(prog, shader, ctx, &shader->Program->info);
790 }
791 
792 /**
793  * Check if geometry shaders emit to non-zero streams and do corresponding
794  * validations.
795  */
796 static void
validate_geometry_shader_emissions(struct gl_context * ctx,struct gl_shader_program * prog)797 validate_geometry_shader_emissions(struct gl_context *ctx,
798                                    struct gl_shader_program *prog)
799 {
800    struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
801 
802    if (sh != NULL) {
803       find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1);
804       emit_vertex.run(sh->ir);
805       if (emit_vertex.error()) {
806          linker_error(prog, "Invalid call %s(%d). Accepted values for the "
807                       "stream parameter are in the range [0, %d].\n",
808                       emit_vertex.error_func(),
809                       emit_vertex.error_stream(),
810                       ctx->Const.MaxVertexStreams - 1);
811       }
812       prog->Geom.ActiveStreamMask = emit_vertex.active_stream_mask();
813       prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive();
814 
815       /* From the ARB_gpu_shader5 spec:
816        *
817        *   "Multiple vertex streams are supported only if the output primitive
818        *    type is declared to be "points".  A program will fail to link if it
819        *    contains a geometry shader calling EmitStreamVertex() or
820        *    EndStreamPrimitive() if its output primitive type is not "points".
821        *
822        * However, in the same spec:
823        *
824        *   "The function EmitVertex() is equivalent to calling EmitStreamVertex()
825        *    with <stream> set to zero."
826        *
827        * And:
828        *
829        *   "The function EndPrimitive() is equivalent to calling
830        *    EndStreamPrimitive() with <stream> set to zero."
831        *
832        * Since we can call EmitVertex() and EndPrimitive() when we output
833        * primitives other than points, calling EmitStreamVertex(0) or
834        * EmitEndPrimitive(0) should not produce errors. This it also what Nvidia
835        * does. We can use prog->Geom.ActiveStreamMask to check whether only the
836        * first (zero) stream is active.
837        * stream.
838        */
839       if (prog->Geom.ActiveStreamMask & ~(1 << 0) &&
840           sh->Program->info.gs.output_primitive != GL_POINTS) {
841          linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) "
842                       "with n>0 requires point output\n");
843       }
844    }
845 }
846 
847 bool
validate_intrastage_arrays(struct gl_shader_program * prog,ir_variable * const var,ir_variable * const existing,bool match_precision)848 validate_intrastage_arrays(struct gl_shader_program *prog,
849                            ir_variable *const var,
850                            ir_variable *const existing,
851                            bool match_precision)
852 {
853    /* Consider the types to be "the same" if both types are arrays
854     * of the same type and one of the arrays is implicitly sized.
855     * In addition, set the type of the linked variable to the
856     * explicitly sized array.
857     */
858    if (var->type->is_array() && existing->type->is_array()) {
859       const glsl_type *no_array_var = var->type->fields.array;
860       const glsl_type *no_array_existing = existing->type->fields.array;
861       bool type_matches;
862 
863       type_matches = (match_precision ?
864                       no_array_var == no_array_existing :
865                       no_array_var->compare_no_precision(no_array_existing));
866 
867       if (type_matches &&
868           ((var->type->length == 0)|| (existing->type->length == 0))) {
869          if (var->type->length != 0) {
870             if ((int)var->type->length <= existing->data.max_array_access) {
871                linker_error(prog, "%s `%s' declared as type "
872                            "`%s' but outermost dimension has an index"
873                            " of `%i'\n",
874                            mode_string(var),
875                            var->name, var->type->name,
876                            existing->data.max_array_access);
877             }
878             existing->type = var->type;
879             return true;
880          } else if (existing->type->length != 0) {
881             if((int)existing->type->length <= var->data.max_array_access &&
882                !existing->data.from_ssbo_unsized_array) {
883                linker_error(prog, "%s `%s' declared as type "
884                            "`%s' but outermost dimension has an index"
885                            " of `%i'\n",
886                            mode_string(var),
887                            var->name, existing->type->name,
888                            var->data.max_array_access);
889             }
890             return true;
891          }
892       }
893    }
894    return false;
895 }
896 
897 
898 /**
899  * Perform validation of global variables used across multiple shaders
900  */
901 static void
cross_validate_globals(struct gl_context * ctx,struct gl_shader_program * prog,struct exec_list * ir,glsl_symbol_table * variables,bool uniforms_only)902 cross_validate_globals(struct gl_context *ctx, struct gl_shader_program *prog,
903                        struct exec_list *ir, glsl_symbol_table *variables,
904                        bool uniforms_only)
905 {
906    foreach_in_list(ir_instruction, node, ir) {
907       ir_variable *const var = node->as_variable();
908 
909       if (var == NULL)
910          continue;
911 
912       if (uniforms_only && (var->data.mode != ir_var_uniform && var->data.mode != ir_var_shader_storage))
913          continue;
914 
915       /* don't cross validate subroutine uniforms */
916       if (var->type->contains_subroutine())
917          continue;
918 
919       /* Don't cross validate interface instances. These are only relevant
920        * inside a shader. The cross validation is done at the Interface Block
921        * name level.
922        */
923       if (var->is_interface_instance())
924          continue;
925 
926       /* Don't cross validate temporaries that are at global scope.  These
927        * will eventually get pulled into the shaders 'main'.
928        */
929       if (var->data.mode == ir_var_temporary)
930          continue;
931 
932       /* If a global with this name has already been seen, verify that the
933        * new instance has the same type.  In addition, if the globals have
934        * initializers, the values of the initializers must be the same.
935        */
936       ir_variable *const existing = variables->get_variable(var->name);
937       if (existing != NULL) {
938          /* Check if types match. */
939          if (var->type != existing->type) {
940             if (!validate_intrastage_arrays(prog, var, existing)) {
941                /* If it is an unsized array in a Shader Storage Block,
942                 * two different shaders can access to different elements.
943                 * Because of that, they might be converted to different
944                 * sized arrays, then check that they are compatible but
945                 * ignore the array size.
946                 */
947                if (!(var->data.mode == ir_var_shader_storage &&
948                      var->data.from_ssbo_unsized_array &&
949                      existing->data.mode == ir_var_shader_storage &&
950                      existing->data.from_ssbo_unsized_array &&
951                      var->type->gl_type == existing->type->gl_type)) {
952                   linker_error(prog, "%s `%s' declared as type "
953                                  "`%s' and type `%s'\n",
954                                  mode_string(var),
955                                  var->name, var->type->name,
956                                  existing->type->name);
957                   return;
958                }
959             }
960          }
961 
962          if (var->data.explicit_location) {
963             if (existing->data.explicit_location
964                 && (var->data.location != existing->data.location)) {
965                linker_error(prog, "explicit locations for %s "
966                             "`%s' have differing values\n",
967                             mode_string(var), var->name);
968                return;
969             }
970 
971             if (var->data.location_frac != existing->data.location_frac) {
972                linker_error(prog, "explicit components for %s `%s' have "
973                             "differing values\n", mode_string(var), var->name);
974                return;
975             }
976 
977             existing->data.location = var->data.location;
978             existing->data.explicit_location = true;
979          } else {
980             /* Check if uniform with implicit location was marked explicit
981              * by earlier shader stage. If so, mark it explicit in this stage
982              * too to make sure later processing does not treat it as
983              * implicit one.
984              */
985             if (existing->data.explicit_location) {
986                var->data.location = existing->data.location;
987                var->data.explicit_location = true;
988             }
989          }
990 
991          /* From the GLSL 4.20 specification:
992           * "A link error will result if two compilation units in a program
993           *  specify different integer-constant bindings for the same
994           *  opaque-uniform name.  However, it is not an error to specify a
995           *  binding on some but not all declarations for the same name"
996           */
997          if (var->data.explicit_binding) {
998             if (existing->data.explicit_binding &&
999                 var->data.binding != existing->data.binding) {
1000                linker_error(prog, "explicit bindings for %s "
1001                             "`%s' have differing values\n",
1002                             mode_string(var), var->name);
1003                return;
1004             }
1005 
1006             existing->data.binding = var->data.binding;
1007             existing->data.explicit_binding = true;
1008          }
1009 
1010          if (var->type->contains_atomic() &&
1011              var->data.offset != existing->data.offset) {
1012             linker_error(prog, "offset specifications for %s "
1013                          "`%s' have differing values\n",
1014                          mode_string(var), var->name);
1015             return;
1016          }
1017 
1018          /* Validate layout qualifiers for gl_FragDepth.
1019           *
1020           * From the AMD/ARB_conservative_depth specs:
1021           *
1022           *    "If gl_FragDepth is redeclared in any fragment shader in a
1023           *    program, it must be redeclared in all fragment shaders in
1024           *    that program that have static assignments to
1025           *    gl_FragDepth. All redeclarations of gl_FragDepth in all
1026           *    fragment shaders in a single program must have the same set
1027           *    of qualifiers."
1028           */
1029          if (strcmp(var->name, "gl_FragDepth") == 0) {
1030             bool layout_declared = var->data.depth_layout != ir_depth_layout_none;
1031             bool layout_differs =
1032                var->data.depth_layout != existing->data.depth_layout;
1033 
1034             if (layout_declared && layout_differs) {
1035                linker_error(prog,
1036                             "All redeclarations of gl_FragDepth in all "
1037                             "fragment shaders in a single program must have "
1038                             "the same set of qualifiers.\n");
1039             }
1040 
1041             if (var->data.used && layout_differs) {
1042                linker_error(prog,
1043                             "If gl_FragDepth is redeclared with a layout "
1044                             "qualifier in any fragment shader, it must be "
1045                             "redeclared with the same layout qualifier in "
1046                             "all fragment shaders that have assignments to "
1047                             "gl_FragDepth\n");
1048             }
1049          }
1050 
1051          /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
1052           *
1053           *     "If a shared global has multiple initializers, the
1054           *     initializers must all be constant expressions, and they
1055           *     must all have the same value. Otherwise, a link error will
1056           *     result. (A shared global having only one initializer does
1057           *     not require that initializer to be a constant expression.)"
1058           *
1059           * Previous to 4.20 the GLSL spec simply said that initializers
1060           * must have the same value.  In this case of non-constant
1061           * initializers, this was impossible to determine.  As a result,
1062           * no vendor actually implemented that behavior.  The 4.20
1063           * behavior matches the implemented behavior of at least one other
1064           * vendor, so we'll implement that for all GLSL versions.
1065           * If (at least) one of these constant expressions is implicit,
1066           * because it was added by glsl_zero_init, we skip the verification.
1067           */
1068          if (var->constant_initializer != NULL) {
1069             if (existing->constant_initializer != NULL &&
1070                 !existing->data.is_implicit_initializer &&
1071                 !var->data.is_implicit_initializer) {
1072                if (!var->constant_initializer->has_value(existing->constant_initializer)) {
1073                   linker_error(prog, "initializers for %s "
1074                                "`%s' have differing values\n",
1075                                mode_string(var), var->name);
1076                   return;
1077                }
1078             } else {
1079                /* If the first-seen instance of a particular uniform did
1080                 * not have an initializer but a later instance does,
1081                 * replace the former with the later.
1082                 */
1083                if (!var->data.is_implicit_initializer)
1084                   variables->replace_variable(existing->name, var);
1085             }
1086          }
1087 
1088          if (var->data.has_initializer) {
1089             if (existing->data.has_initializer
1090                 && (var->constant_initializer == NULL
1091                     || existing->constant_initializer == NULL)) {
1092                linker_error(prog,
1093                             "shared global variable `%s' has multiple "
1094                             "non-constant initializers.\n",
1095                             var->name);
1096                return;
1097             }
1098          }
1099 
1100          if (existing->data.explicit_invariant != var->data.explicit_invariant) {
1101             linker_error(prog, "declarations for %s `%s' have "
1102                          "mismatching invariant qualifiers\n",
1103                          mode_string(var), var->name);
1104             return;
1105          }
1106          if (existing->data.centroid != var->data.centroid) {
1107             linker_error(prog, "declarations for %s `%s' have "
1108                          "mismatching centroid qualifiers\n",
1109                          mode_string(var), var->name);
1110             return;
1111          }
1112          if (existing->data.sample != var->data.sample) {
1113             linker_error(prog, "declarations for %s `%s` have "
1114                          "mismatching sample qualifiers\n",
1115                          mode_string(var), var->name);
1116             return;
1117          }
1118          if (existing->data.image_format != var->data.image_format) {
1119             linker_error(prog, "declarations for %s `%s` have "
1120                          "mismatching image format qualifiers\n",
1121                          mode_string(var), var->name);
1122             return;
1123          }
1124 
1125          /* Check the precision qualifier matches for uniform variables on
1126           * GLSL ES.
1127           */
1128          if (!ctx->Const.AllowGLSLRelaxedES &&
1129              prog->IsES && !var->get_interface_type() &&
1130              existing->data.precision != var->data.precision) {
1131             if ((existing->data.used && var->data.used) || prog->data->Version >= 300) {
1132                linker_error(prog, "declarations for %s `%s` have "
1133                             "mismatching precision qualifiers\n",
1134                             mode_string(var), var->name);
1135                return;
1136             } else {
1137                linker_warning(prog, "declarations for %s `%s` have "
1138                               "mismatching precision qualifiers\n",
1139                               mode_string(var), var->name);
1140             }
1141          }
1142 
1143          /* In OpenGL GLSL 3.20 spec, section 4.3.9:
1144           *
1145           *   "It is a link-time error if any particular shader interface
1146           *    contains:
1147           *
1148           *    - two different blocks, each having no instance name, and each
1149           *      having a member of the same name, or
1150           *
1151           *    - a variable outside a block, and a block with no instance name,
1152           *      where the variable has the same name as a member in the block."
1153           */
1154          const glsl_type *var_itype = var->get_interface_type();
1155          const glsl_type *existing_itype = existing->get_interface_type();
1156          if (var_itype != existing_itype) {
1157             if (!var_itype || !existing_itype) {
1158                linker_error(prog, "declarations for %s `%s` are inside block "
1159                             "`%s` and outside a block",
1160                             mode_string(var), var->name,
1161                             var_itype ? var_itype->name : existing_itype->name);
1162                return;
1163             } else if (strcmp(var_itype->name, existing_itype->name) != 0) {
1164                linker_error(prog, "declarations for %s `%s` are inside blocks "
1165                             "`%s` and `%s`",
1166                             mode_string(var), var->name,
1167                             existing_itype->name,
1168                             var_itype->name);
1169                return;
1170             }
1171          }
1172       } else
1173          variables->add_variable(var);
1174    }
1175 }
1176 
1177 
1178 /**
1179  * Perform validation of uniforms used across multiple shader stages
1180  */
1181 static void
cross_validate_uniforms(struct gl_context * ctx,struct gl_shader_program * prog)1182 cross_validate_uniforms(struct gl_context *ctx,
1183                         struct gl_shader_program *prog)
1184 {
1185    glsl_symbol_table variables;
1186    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1187       if (prog->_LinkedShaders[i] == NULL)
1188          continue;
1189 
1190       cross_validate_globals(ctx, prog, prog->_LinkedShaders[i]->ir,
1191                              &variables, true);
1192    }
1193 }
1194 
1195 /**
1196  * Accumulates the array of buffer blocks and checks that all definitions of
1197  * blocks agree on their contents.
1198  */
1199 static bool
interstage_cross_validate_uniform_blocks(struct gl_shader_program * prog,bool validate_ssbo)1200 interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog,
1201                                          bool validate_ssbo)
1202 {
1203    int *InterfaceBlockStageIndex[MESA_SHADER_STAGES];
1204    struct gl_uniform_block *blks = NULL;
1205    unsigned *num_blks = validate_ssbo ? &prog->data->NumShaderStorageBlocks :
1206       &prog->data->NumUniformBlocks;
1207 
1208    unsigned max_num_buffer_blocks = 0;
1209    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1210       if (prog->_LinkedShaders[i]) {
1211          if (validate_ssbo) {
1212             max_num_buffer_blocks +=
1213                prog->_LinkedShaders[i]->Program->info.num_ssbos;
1214          } else {
1215             max_num_buffer_blocks +=
1216                prog->_LinkedShaders[i]->Program->info.num_ubos;
1217          }
1218       }
1219    }
1220 
1221    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1222       struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1223 
1224       InterfaceBlockStageIndex[i] = new int[max_num_buffer_blocks];
1225       for (unsigned int j = 0; j < max_num_buffer_blocks; j++)
1226          InterfaceBlockStageIndex[i][j] = -1;
1227 
1228       if (sh == NULL)
1229          continue;
1230 
1231       unsigned sh_num_blocks;
1232       struct gl_uniform_block **sh_blks;
1233       if (validate_ssbo) {
1234          sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ssbos;
1235          sh_blks = sh->Program->sh.ShaderStorageBlocks;
1236       } else {
1237          sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ubos;
1238          sh_blks = sh->Program->sh.UniformBlocks;
1239       }
1240 
1241       for (unsigned int j = 0; j < sh_num_blocks; j++) {
1242          int index = link_cross_validate_uniform_block(prog->data, &blks,
1243                                                        num_blks, sh_blks[j]);
1244 
1245          if (index == -1) {
1246             linker_error(prog, "buffer block `%s' has mismatching "
1247                          "definitions\n", sh_blks[j]->Name);
1248 
1249             for (unsigned k = 0; k <= i; k++) {
1250                delete[] InterfaceBlockStageIndex[k];
1251             }
1252 
1253             /* Reset the block count. This will help avoid various segfaults
1254              * from api calls that assume the array exists due to the count
1255              * being non-zero.
1256              */
1257             *num_blks = 0;
1258             return false;
1259          }
1260 
1261          InterfaceBlockStageIndex[i][index] = j;
1262       }
1263    }
1264 
1265    /* Update per stage block pointers to point to the program list.
1266     * FIXME: We should be able to free the per stage blocks here.
1267     */
1268    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1269       for (unsigned j = 0; j < *num_blks; j++) {
1270          int stage_index = InterfaceBlockStageIndex[i][j];
1271 
1272          if (stage_index != -1) {
1273             struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1274 
1275             struct gl_uniform_block **sh_blks = validate_ssbo ?
1276                sh->Program->sh.ShaderStorageBlocks :
1277                sh->Program->sh.UniformBlocks;
1278 
1279             blks[j].stageref |= sh_blks[stage_index]->stageref;
1280             sh_blks[stage_index] = &blks[j];
1281          }
1282       }
1283    }
1284 
1285    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1286       delete[] InterfaceBlockStageIndex[i];
1287    }
1288 
1289    if (validate_ssbo)
1290       prog->data->ShaderStorageBlocks = blks;
1291    else
1292       prog->data->UniformBlocks = blks;
1293 
1294    return true;
1295 }
1296 
1297 /**
1298  * Verifies the invariance of built-in special variables.
1299  */
1300 static bool
validate_invariant_builtins(struct gl_shader_program * prog,const gl_linked_shader * vert,const gl_linked_shader * frag)1301 validate_invariant_builtins(struct gl_shader_program *prog,
1302                             const gl_linked_shader *vert,
1303                             const gl_linked_shader *frag)
1304 {
1305    const ir_variable *var_vert;
1306    const ir_variable *var_frag;
1307 
1308    if (!vert || !frag)
1309       return true;
1310 
1311    /*
1312     * From OpenGL ES Shading Language 1.0 specification
1313     * (4.6.4 Invariance and Linkage):
1314     *     "The invariance of varyings that are declared in both the vertex and
1315     *     fragment shaders must match. For the built-in special variables,
1316     *     gl_FragCoord can only be declared invariant if and only if
1317     *     gl_Position is declared invariant. Similarly gl_PointCoord can only
1318     *     be declared invariant if and only if gl_PointSize is declared
1319     *     invariant. It is an error to declare gl_FrontFacing as invariant.
1320     *     The invariance of gl_FrontFacing is the same as the invariance of
1321     *     gl_Position."
1322     */
1323    var_frag = frag->symbols->get_variable("gl_FragCoord");
1324    if (var_frag && var_frag->data.invariant) {
1325       var_vert = vert->symbols->get_variable("gl_Position");
1326       if (var_vert && !var_vert->data.invariant) {
1327          linker_error(prog,
1328                "fragment shader built-in `%s' has invariant qualifier, "
1329                "but vertex shader built-in `%s' lacks invariant qualifier\n",
1330                var_frag->name, var_vert->name);
1331          return false;
1332       }
1333    }
1334 
1335    var_frag = frag->symbols->get_variable("gl_PointCoord");
1336    if (var_frag && var_frag->data.invariant) {
1337       var_vert = vert->symbols->get_variable("gl_PointSize");
1338       if (var_vert && !var_vert->data.invariant) {
1339          linker_error(prog,
1340                "fragment shader built-in `%s' has invariant qualifier, "
1341                "but vertex shader built-in `%s' lacks invariant qualifier\n",
1342                var_frag->name, var_vert->name);
1343          return false;
1344       }
1345    }
1346 
1347    var_frag = frag->symbols->get_variable("gl_FrontFacing");
1348    if (var_frag && var_frag->data.invariant) {
1349       linker_error(prog,
1350             "fragment shader built-in `%s' can not be declared as invariant\n",
1351             var_frag->name);
1352       return false;
1353    }
1354 
1355    return true;
1356 }
1357 
1358 /**
1359  * Populates a shaders symbol table with all global declarations
1360  */
1361 static void
populate_symbol_table(gl_linked_shader * sh,glsl_symbol_table * symbols)1362 populate_symbol_table(gl_linked_shader *sh, glsl_symbol_table *symbols)
1363 {
1364    sh->symbols = new(sh) glsl_symbol_table;
1365 
1366    _mesa_glsl_copy_symbols_from_table(sh->ir, symbols, sh->symbols);
1367 }
1368 
1369 
1370 /**
1371  * Remap variables referenced in an instruction tree
1372  *
1373  * This is used when instruction trees are cloned from one shader and placed in
1374  * another.  These trees will contain references to \c ir_variable nodes that
1375  * do not exist in the target shader.  This function finds these \c ir_variable
1376  * references and replaces the references with matching variables in the target
1377  * shader.
1378  *
1379  * If there is no matching variable in the target shader, a clone of the
1380  * \c ir_variable is made and added to the target shader.  The new variable is
1381  * added to \b both the instruction stream and the symbol table.
1382  *
1383  * \param inst         IR tree that is to be processed.
1384  * \param symbols      Symbol table containing global scope symbols in the
1385  *                     linked shader.
1386  * \param instructions Instruction stream where new variable declarations
1387  *                     should be added.
1388  */
1389 static void
remap_variables(ir_instruction * inst,struct gl_linked_shader * target,hash_table * temps)1390 remap_variables(ir_instruction *inst, struct gl_linked_shader *target,
1391                 hash_table *temps)
1392 {
1393    class remap_visitor : public ir_hierarchical_visitor {
1394    public:
1395          remap_visitor(struct gl_linked_shader *target, hash_table *temps)
1396       {
1397          this->target = target;
1398          this->symbols = target->symbols;
1399          this->instructions = target->ir;
1400          this->temps = temps;
1401       }
1402 
1403       virtual ir_visitor_status visit(ir_dereference_variable *ir)
1404       {
1405          if (ir->var->data.mode == ir_var_temporary) {
1406             hash_entry *entry = _mesa_hash_table_search(temps, ir->var);
1407             ir_variable *var = entry ? (ir_variable *) entry->data : NULL;
1408 
1409             assert(var != NULL);
1410             ir->var = var;
1411             return visit_continue;
1412          }
1413 
1414          ir_variable *const existing =
1415             this->symbols->get_variable(ir->var->name);
1416          if (existing != NULL)
1417             ir->var = existing;
1418          else {
1419             ir_variable *copy = ir->var->clone(this->target, NULL);
1420 
1421             this->symbols->add_variable(copy);
1422             this->instructions->push_head(copy);
1423             ir->var = copy;
1424          }
1425 
1426          return visit_continue;
1427       }
1428 
1429    private:
1430       struct gl_linked_shader *target;
1431       glsl_symbol_table *symbols;
1432       exec_list *instructions;
1433       hash_table *temps;
1434    };
1435 
1436    remap_visitor v(target, temps);
1437 
1438    inst->accept(&v);
1439 }
1440 
1441 
1442 /**
1443  * Move non-declarations from one instruction stream to another
1444  *
1445  * The intended usage pattern of this function is to pass the pointer to the
1446  * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
1447  * pointer) for \c last and \c false for \c make_copies on the first
1448  * call.  Successive calls pass the return value of the previous call for
1449  * \c last and \c true for \c make_copies.
1450  *
1451  * \param instructions Source instruction stream
1452  * \param last         Instruction after which new instructions should be
1453  *                     inserted in the target instruction stream
1454  * \param make_copies  Flag selecting whether instructions in \c instructions
1455  *                     should be copied (via \c ir_instruction::clone) into the
1456  *                     target list or moved.
1457  *
1458  * \return
1459  * The new "last" instruction in the target instruction stream.  This pointer
1460  * is suitable for use as the \c last parameter of a later call to this
1461  * function.
1462  */
1463 static exec_node *
move_non_declarations(exec_list * instructions,exec_node * last,bool make_copies,gl_linked_shader * target)1464 move_non_declarations(exec_list *instructions, exec_node *last,
1465                       bool make_copies, gl_linked_shader *target)
1466 {
1467    hash_table *temps = NULL;
1468 
1469    if (make_copies)
1470       temps = _mesa_pointer_hash_table_create(NULL);
1471 
1472    foreach_in_list_safe(ir_instruction, inst, instructions) {
1473       if (inst->as_function())
1474          continue;
1475 
1476       ir_variable *var = inst->as_variable();
1477       if ((var != NULL) && (var->data.mode != ir_var_temporary))
1478          continue;
1479 
1480       assert(inst->as_assignment()
1481              || inst->as_call()
1482              || inst->as_if() /* for initializers with the ?: operator */
1483              || ((var != NULL) && (var->data.mode == ir_var_temporary)));
1484 
1485       if (make_copies) {
1486          inst = inst->clone(target, NULL);
1487 
1488          if (var != NULL)
1489             _mesa_hash_table_insert(temps, var, inst);
1490          else
1491             remap_variables(inst, target, temps);
1492       } else {
1493          inst->remove();
1494       }
1495 
1496       last->insert_after(inst);
1497       last = inst;
1498    }
1499 
1500    if (make_copies)
1501       _mesa_hash_table_destroy(temps, NULL);
1502 
1503    return last;
1504 }
1505 
1506 
1507 /**
1508  * This class is only used in link_intrastage_shaders() below but declaring
1509  * it inside that function leads to compiler warnings with some versions of
1510  * gcc.
1511  */
1512 class array_sizing_visitor : public deref_type_updater {
1513 public:
1514    using deref_type_updater::visit;
1515 
array_sizing_visitor()1516    array_sizing_visitor()
1517       : mem_ctx(ralloc_context(NULL)),
1518         unnamed_interfaces(_mesa_pointer_hash_table_create(NULL))
1519    {
1520    }
1521 
~array_sizing_visitor()1522    ~array_sizing_visitor()
1523    {
1524       _mesa_hash_table_destroy(this->unnamed_interfaces, NULL);
1525       ralloc_free(this->mem_ctx);
1526    }
1527 
visit(ir_variable * var)1528    virtual ir_visitor_status visit(ir_variable *var)
1529    {
1530       const glsl_type *type_without_array;
1531       bool implicit_sized_array = var->data.implicit_sized_array;
1532       fixup_type(&var->type, var->data.max_array_access,
1533                  var->data.from_ssbo_unsized_array,
1534                  &implicit_sized_array);
1535       var->data.implicit_sized_array = implicit_sized_array;
1536       type_without_array = var->type->without_array();
1537       if (var->type->is_interface()) {
1538          if (interface_contains_unsized_arrays(var->type)) {
1539             const glsl_type *new_type =
1540                resize_interface_members(var->type,
1541                                         var->get_max_ifc_array_access(),
1542                                         var->is_in_shader_storage_block());
1543             var->type = new_type;
1544             var->change_interface_type(new_type);
1545          }
1546       } else if (type_without_array->is_interface()) {
1547          if (interface_contains_unsized_arrays(type_without_array)) {
1548             const glsl_type *new_type =
1549                resize_interface_members(type_without_array,
1550                                         var->get_max_ifc_array_access(),
1551                                         var->is_in_shader_storage_block());
1552             var->change_interface_type(new_type);
1553             var->type = update_interface_members_array(var->type, new_type);
1554          }
1555       } else if (const glsl_type *ifc_type = var->get_interface_type()) {
1556          /* Store a pointer to the variable in the unnamed_interfaces
1557           * hashtable.
1558           */
1559          hash_entry *entry =
1560                _mesa_hash_table_search(this->unnamed_interfaces,
1561                                        ifc_type);
1562 
1563          ir_variable **interface_vars = entry ? (ir_variable **) entry->data : NULL;
1564 
1565          if (interface_vars == NULL) {
1566             interface_vars = rzalloc_array(mem_ctx, ir_variable *,
1567                                            ifc_type->length);
1568             _mesa_hash_table_insert(this->unnamed_interfaces, ifc_type,
1569                                     interface_vars);
1570          }
1571          unsigned index = ifc_type->field_index(var->name);
1572          assert(index < ifc_type->length);
1573          assert(interface_vars[index] == NULL);
1574          interface_vars[index] = var;
1575       }
1576       return visit_continue;
1577    }
1578 
1579    /**
1580     * For each unnamed interface block that was discovered while running the
1581     * visitor, adjust the interface type to reflect the newly assigned array
1582     * sizes, and fix up the ir_variable nodes to point to the new interface
1583     * type.
1584     */
fixup_unnamed_interface_types()1585    void fixup_unnamed_interface_types()
1586    {
1587       hash_table_call_foreach(this->unnamed_interfaces,
1588                               fixup_unnamed_interface_type, NULL);
1589    }
1590 
1591 private:
1592    /**
1593     * If the type pointed to by \c type represents an unsized array, replace
1594     * it with a sized array whose size is determined by max_array_access.
1595     */
fixup_type(const glsl_type ** type,unsigned max_array_access,bool from_ssbo_unsized_array,bool * implicit_sized)1596    static void fixup_type(const glsl_type **type, unsigned max_array_access,
1597                           bool from_ssbo_unsized_array, bool *implicit_sized)
1598    {
1599       if (!from_ssbo_unsized_array && (*type)->is_unsized_array()) {
1600          *type = glsl_type::get_array_instance((*type)->fields.array,
1601                                                max_array_access + 1);
1602          *implicit_sized = true;
1603          assert(*type != NULL);
1604       }
1605    }
1606 
1607    static const glsl_type *
update_interface_members_array(const glsl_type * type,const glsl_type * new_interface_type)1608    update_interface_members_array(const glsl_type *type,
1609                                   const glsl_type *new_interface_type)
1610    {
1611       const glsl_type *element_type = type->fields.array;
1612       if (element_type->is_array()) {
1613          const glsl_type *new_array_type =
1614             update_interface_members_array(element_type, new_interface_type);
1615          return glsl_type::get_array_instance(new_array_type, type->length);
1616       } else {
1617          return glsl_type::get_array_instance(new_interface_type,
1618                                               type->length);
1619       }
1620    }
1621 
1622    /**
1623     * Determine whether the given interface type contains unsized arrays (if
1624     * it doesn't, array_sizing_visitor doesn't need to process it).
1625     */
interface_contains_unsized_arrays(const glsl_type * type)1626    static bool interface_contains_unsized_arrays(const glsl_type *type)
1627    {
1628       for (unsigned i = 0; i < type->length; i++) {
1629          const glsl_type *elem_type = type->fields.structure[i].type;
1630          if (elem_type->is_unsized_array())
1631             return true;
1632       }
1633       return false;
1634    }
1635 
1636    /**
1637     * Create a new interface type based on the given type, with unsized arrays
1638     * replaced by sized arrays whose size is determined by
1639     * max_ifc_array_access.
1640     */
1641    static const glsl_type *
resize_interface_members(const glsl_type * type,const int * max_ifc_array_access,bool is_ssbo)1642    resize_interface_members(const glsl_type *type,
1643                             const int *max_ifc_array_access,
1644                             bool is_ssbo)
1645    {
1646       unsigned num_fields = type->length;
1647       glsl_struct_field *fields = new glsl_struct_field[num_fields];
1648       memcpy(fields, type->fields.structure,
1649              num_fields * sizeof(*fields));
1650       for (unsigned i = 0; i < num_fields; i++) {
1651          bool implicit_sized_array = fields[i].implicit_sized_array;
1652          /* If SSBO last member is unsized array, we don't replace it by a sized
1653           * array.
1654           */
1655          if (is_ssbo && i == (num_fields - 1))
1656             fixup_type(&fields[i].type, max_ifc_array_access[i],
1657                        true, &implicit_sized_array);
1658          else
1659             fixup_type(&fields[i].type, max_ifc_array_access[i],
1660                        false, &implicit_sized_array);
1661          fields[i].implicit_sized_array = implicit_sized_array;
1662       }
1663       glsl_interface_packing packing =
1664          (glsl_interface_packing) type->interface_packing;
1665       bool row_major = (bool) type->interface_row_major;
1666       const glsl_type *new_ifc_type =
1667          glsl_type::get_interface_instance(fields, num_fields,
1668                                            packing, row_major, type->name);
1669       delete [] fields;
1670       return new_ifc_type;
1671    }
1672 
fixup_unnamed_interface_type(const void * key,void * data,void *)1673    static void fixup_unnamed_interface_type(const void *key, void *data,
1674                                             void *)
1675    {
1676       const glsl_type *ifc_type = (const glsl_type *) key;
1677       ir_variable **interface_vars = (ir_variable **) data;
1678       unsigned num_fields = ifc_type->length;
1679       glsl_struct_field *fields = new glsl_struct_field[num_fields];
1680       memcpy(fields, ifc_type->fields.structure,
1681              num_fields * sizeof(*fields));
1682       bool interface_type_changed = false;
1683       for (unsigned i = 0; i < num_fields; i++) {
1684          if (interface_vars[i] != NULL &&
1685              fields[i].type != interface_vars[i]->type) {
1686             fields[i].type = interface_vars[i]->type;
1687             interface_type_changed = true;
1688          }
1689       }
1690       if (!interface_type_changed) {
1691          delete [] fields;
1692          return;
1693       }
1694       glsl_interface_packing packing =
1695          (glsl_interface_packing) ifc_type->interface_packing;
1696       bool row_major = (bool) ifc_type->interface_row_major;
1697       const glsl_type *new_ifc_type =
1698          glsl_type::get_interface_instance(fields, num_fields, packing,
1699                                            row_major, ifc_type->name);
1700       delete [] fields;
1701       for (unsigned i = 0; i < num_fields; i++) {
1702          if (interface_vars[i] != NULL)
1703             interface_vars[i]->change_interface_type(new_ifc_type);
1704       }
1705    }
1706 
1707    /**
1708     * Memory context used to allocate the data in \c unnamed_interfaces.
1709     */
1710    void *mem_ctx;
1711 
1712    /**
1713     * Hash table from const glsl_type * to an array of ir_variable *'s
1714     * pointing to the ir_variables constituting each unnamed interface block.
1715     */
1716    hash_table *unnamed_interfaces;
1717 };
1718 
1719 static bool
validate_xfb_buffer_stride(struct gl_context * ctx,unsigned idx,struct gl_shader_program * prog)1720 validate_xfb_buffer_stride(struct gl_context *ctx, unsigned idx,
1721                            struct gl_shader_program *prog)
1722 {
1723    /* We will validate doubles at a later stage */
1724    if (prog->TransformFeedback.BufferStride[idx] % 4) {
1725       linker_error(prog, "invalid qualifier xfb_stride=%d must be a "
1726                    "multiple of 4 or if its applied to a type that is "
1727                    "or contains a double a multiple of 8.",
1728                    prog->TransformFeedback.BufferStride[idx]);
1729       return false;
1730    }
1731 
1732    if (prog->TransformFeedback.BufferStride[idx] / 4 >
1733        ctx->Const.MaxTransformFeedbackInterleavedComponents) {
1734       linker_error(prog, "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
1735                    "limit has been exceeded.");
1736       return false;
1737    }
1738 
1739    return true;
1740 }
1741 
1742 /**
1743  * Check for conflicting xfb_stride default qualifiers and store buffer stride
1744  * for later use.
1745  */
1746 static void
link_xfb_stride_layout_qualifiers(struct gl_context * ctx,struct gl_shader_program * prog,struct gl_shader ** shader_list,unsigned num_shaders)1747 link_xfb_stride_layout_qualifiers(struct gl_context *ctx,
1748                                   struct gl_shader_program *prog,
1749                                   struct gl_shader **shader_list,
1750                                   unsigned num_shaders)
1751 {
1752    for (unsigned i = 0; i < MAX_FEEDBACK_BUFFERS; i++) {
1753       prog->TransformFeedback.BufferStride[i] = 0;
1754    }
1755 
1756    for (unsigned i = 0; i < num_shaders; i++) {
1757       struct gl_shader *shader = shader_list[i];
1758 
1759       for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1760          if (shader->TransformFeedbackBufferStride[j]) {
1761             if (prog->TransformFeedback.BufferStride[j] == 0) {
1762                prog->TransformFeedback.BufferStride[j] =
1763                   shader->TransformFeedbackBufferStride[j];
1764                if (!validate_xfb_buffer_stride(ctx, j, prog))
1765                   return;
1766             } else if (prog->TransformFeedback.BufferStride[j] !=
1767                        shader->TransformFeedbackBufferStride[j]){
1768                linker_error(prog,
1769                             "intrastage shaders defined with conflicting "
1770                             "xfb_stride for buffer %d (%d and %d)\n", j,
1771                             prog->TransformFeedback.BufferStride[j],
1772                             shader->TransformFeedbackBufferStride[j]);
1773                return;
1774             }
1775          }
1776       }
1777    }
1778 }
1779 
1780 /**
1781  * Check for conflicting bindless/bound sampler/image layout qualifiers at
1782  * global scope.
1783  */
1784 static void
link_bindless_layout_qualifiers(struct gl_shader_program * prog,struct gl_shader ** shader_list,unsigned num_shaders)1785 link_bindless_layout_qualifiers(struct gl_shader_program *prog,
1786                                 struct gl_shader **shader_list,
1787                                 unsigned num_shaders)
1788 {
1789    bool bindless_sampler, bindless_image;
1790    bool bound_sampler, bound_image;
1791 
1792    bindless_sampler = bindless_image = false;
1793    bound_sampler = bound_image = false;
1794 
1795    for (unsigned i = 0; i < num_shaders; i++) {
1796       struct gl_shader *shader = shader_list[i];
1797 
1798       if (shader->bindless_sampler)
1799          bindless_sampler = true;
1800       if (shader->bindless_image)
1801          bindless_image = true;
1802       if (shader->bound_sampler)
1803          bound_sampler = true;
1804       if (shader->bound_image)
1805          bound_image = true;
1806 
1807       if ((bindless_sampler && bound_sampler) ||
1808           (bindless_image && bound_image)) {
1809          /* From section 4.4.6 of the ARB_bindless_texture spec:
1810           *
1811           *     "If both bindless_sampler and bound_sampler, or bindless_image
1812           *      and bound_image, are declared at global scope in any
1813           *      compilation unit, a link- time error will be generated."
1814           */
1815          linker_error(prog, "both bindless_sampler and bound_sampler, or "
1816                       "bindless_image and bound_image, can't be declared at "
1817                       "global scope");
1818       }
1819    }
1820 }
1821 
1822 /**
1823  * Check for conflicting viewport_relative settings across shaders, and sets
1824  * the value for the linked shader.
1825  */
1826 static void
link_layer_viewport_relative_qualifier(struct gl_shader_program * prog,struct gl_program * gl_prog,struct gl_shader ** shader_list,unsigned num_shaders)1827 link_layer_viewport_relative_qualifier(struct gl_shader_program *prog,
1828                                        struct gl_program *gl_prog,
1829                                        struct gl_shader **shader_list,
1830                                        unsigned num_shaders)
1831 {
1832    unsigned i;
1833 
1834    /* Find first shader with explicit layer declaration */
1835    for (i = 0; i < num_shaders; i++) {
1836       if (shader_list[i]->redeclares_gl_layer) {
1837          gl_prog->info.layer_viewport_relative =
1838             shader_list[i]->layer_viewport_relative;
1839          break;
1840       }
1841    }
1842 
1843    /* Now make sure that each subsequent shader's explicit layer declaration
1844     * matches the first one's.
1845     */
1846    for (; i < num_shaders; i++) {
1847       if (shader_list[i]->redeclares_gl_layer &&
1848           shader_list[i]->layer_viewport_relative !=
1849           gl_prog->info.layer_viewport_relative) {
1850          linker_error(prog, "all gl_Layer redeclarations must have identical "
1851                       "viewport_relative settings");
1852       }
1853    }
1854 }
1855 
1856 /**
1857  * Performs the cross-validation of tessellation control shader vertices and
1858  * layout qualifiers for the attached tessellation control shaders,
1859  * and propagates them to the linked TCS and linked shader program.
1860  */
1861 static void
link_tcs_out_layout_qualifiers(struct gl_shader_program * prog,struct gl_program * gl_prog,struct gl_shader ** shader_list,unsigned num_shaders)1862 link_tcs_out_layout_qualifiers(struct gl_shader_program *prog,
1863                                struct gl_program *gl_prog,
1864                                struct gl_shader **shader_list,
1865                                unsigned num_shaders)
1866 {
1867    if (gl_prog->info.stage != MESA_SHADER_TESS_CTRL)
1868       return;
1869 
1870    gl_prog->info.tess.tcs_vertices_out = 0;
1871 
1872    /* From the GLSL 4.0 spec (chapter 4.3.8.2):
1873     *
1874     *     "All tessellation control shader layout declarations in a program
1875     *      must specify the same output patch vertex count.  There must be at
1876     *      least one layout qualifier specifying an output patch vertex count
1877     *      in any program containing tessellation control shaders; however,
1878     *      such a declaration is not required in all tessellation control
1879     *      shaders."
1880     */
1881 
1882    for (unsigned i = 0; i < num_shaders; i++) {
1883       struct gl_shader *shader = shader_list[i];
1884 
1885       if (shader->info.TessCtrl.VerticesOut != 0) {
1886          if (gl_prog->info.tess.tcs_vertices_out != 0 &&
1887              gl_prog->info.tess.tcs_vertices_out !=
1888              (unsigned) shader->info.TessCtrl.VerticesOut) {
1889             linker_error(prog, "tessellation control shader defined with "
1890                          "conflicting output vertex count (%d and %d)\n",
1891                          gl_prog->info.tess.tcs_vertices_out,
1892                          shader->info.TessCtrl.VerticesOut);
1893             return;
1894          }
1895          gl_prog->info.tess.tcs_vertices_out =
1896             shader->info.TessCtrl.VerticesOut;
1897       }
1898    }
1899 
1900    /* Just do the intrastage -> interstage propagation right now,
1901     * since we already know we're in the right type of shader program
1902     * for doing it.
1903     */
1904    if (gl_prog->info.tess.tcs_vertices_out == 0) {
1905       linker_error(prog, "tessellation control shader didn't declare "
1906                    "vertices out layout qualifier\n");
1907       return;
1908    }
1909 }
1910 
1911 
1912 /**
1913  * Performs the cross-validation of tessellation evaluation shader
1914  * primitive type, vertex spacing, ordering and point_mode layout qualifiers
1915  * for the attached tessellation evaluation shaders, and propagates them
1916  * to the linked TES and linked shader program.
1917  */
1918 static void
link_tes_in_layout_qualifiers(struct gl_shader_program * prog,struct gl_program * gl_prog,struct gl_shader ** shader_list,unsigned num_shaders)1919 link_tes_in_layout_qualifiers(struct gl_shader_program *prog,
1920                               struct gl_program *gl_prog,
1921                               struct gl_shader **shader_list,
1922                               unsigned num_shaders)
1923 {
1924    if (gl_prog->info.stage != MESA_SHADER_TESS_EVAL)
1925       return;
1926 
1927    int point_mode = -1;
1928    unsigned vertex_order = 0;
1929 
1930    gl_prog->info.tess.primitive_mode = PRIM_UNKNOWN;
1931    gl_prog->info.tess.spacing = TESS_SPACING_UNSPECIFIED;
1932 
1933    /* From the GLSL 4.0 spec (chapter 4.3.8.1):
1934     *
1935     *     "At least one tessellation evaluation shader (compilation unit) in
1936     *      a program must declare a primitive mode in its input layout.
1937     *      Declaration vertex spacing, ordering, and point mode identifiers is
1938     *      optional.  It is not required that all tessellation evaluation
1939     *      shaders in a program declare a primitive mode.  If spacing or
1940     *      vertex ordering declarations are omitted, the tessellation
1941     *      primitive generator will use equal spacing or counter-clockwise
1942     *      vertex ordering, respectively.  If a point mode declaration is
1943     *      omitted, the tessellation primitive generator will produce lines or
1944     *      triangles according to the primitive mode."
1945     */
1946 
1947    for (unsigned i = 0; i < num_shaders; i++) {
1948       struct gl_shader *shader = shader_list[i];
1949 
1950       if (shader->info.TessEval.PrimitiveMode != PRIM_UNKNOWN) {
1951          if (gl_prog->info.tess.primitive_mode != PRIM_UNKNOWN &&
1952              gl_prog->info.tess.primitive_mode !=
1953              shader->info.TessEval.PrimitiveMode) {
1954             linker_error(prog, "tessellation evaluation shader defined with "
1955                          "conflicting input primitive modes.\n");
1956             return;
1957          }
1958          gl_prog->info.tess.primitive_mode =
1959             shader->info.TessEval.PrimitiveMode;
1960       }
1961 
1962       if (shader->info.TessEval.Spacing != 0) {
1963          if (gl_prog->info.tess.spacing != 0 && gl_prog->info.tess.spacing !=
1964              shader->info.TessEval.Spacing) {
1965             linker_error(prog, "tessellation evaluation shader defined with "
1966                          "conflicting vertex spacing.\n");
1967             return;
1968          }
1969          gl_prog->info.tess.spacing = shader->info.TessEval.Spacing;
1970       }
1971 
1972       if (shader->info.TessEval.VertexOrder != 0) {
1973          if (vertex_order != 0 &&
1974              vertex_order != shader->info.TessEval.VertexOrder) {
1975             linker_error(prog, "tessellation evaluation shader defined with "
1976                          "conflicting ordering.\n");
1977             return;
1978          }
1979          vertex_order = shader->info.TessEval.VertexOrder;
1980       }
1981 
1982       if (shader->info.TessEval.PointMode != -1) {
1983          if (point_mode != -1 &&
1984              point_mode != shader->info.TessEval.PointMode) {
1985             linker_error(prog, "tessellation evaluation shader defined with "
1986                          "conflicting point modes.\n");
1987             return;
1988          }
1989          point_mode = shader->info.TessEval.PointMode;
1990       }
1991 
1992    }
1993 
1994    /* Just do the intrastage -> interstage propagation right now,
1995     * since we already know we're in the right type of shader program
1996     * for doing it.
1997     */
1998    if (gl_prog->info.tess.primitive_mode == PRIM_UNKNOWN) {
1999       linker_error(prog,
2000                    "tessellation evaluation shader didn't declare input "
2001                    "primitive modes.\n");
2002       return;
2003    }
2004 
2005    if (gl_prog->info.tess.spacing == TESS_SPACING_UNSPECIFIED)
2006       gl_prog->info.tess.spacing = TESS_SPACING_EQUAL;
2007 
2008    if (vertex_order == 0 || vertex_order == GL_CCW)
2009       gl_prog->info.tess.ccw = true;
2010    else
2011       gl_prog->info.tess.ccw = false;
2012 
2013 
2014    if (point_mode == -1 || point_mode == GL_FALSE)
2015       gl_prog->info.tess.point_mode = false;
2016    else
2017       gl_prog->info.tess.point_mode = true;
2018 }
2019 
2020 
2021 /**
2022  * Performs the cross-validation of layout qualifiers specified in
2023  * redeclaration of gl_FragCoord for the attached fragment shaders,
2024  * and propagates them to the linked FS and linked shader program.
2025  */
2026 static void
link_fs_inout_layout_qualifiers(struct gl_shader_program * prog,struct gl_linked_shader * linked_shader,struct gl_shader ** shader_list,unsigned num_shaders)2027 link_fs_inout_layout_qualifiers(struct gl_shader_program *prog,
2028                                 struct gl_linked_shader *linked_shader,
2029                                 struct gl_shader **shader_list,
2030                                 unsigned num_shaders)
2031 {
2032    bool redeclares_gl_fragcoord = false;
2033    bool uses_gl_fragcoord = false;
2034    bool origin_upper_left = false;
2035    bool pixel_center_integer = false;
2036 
2037    if (linked_shader->Stage != MESA_SHADER_FRAGMENT ||
2038        (prog->data->Version < 150 &&
2039         !prog->ARB_fragment_coord_conventions_enable))
2040       return;
2041 
2042    for (unsigned i = 0; i < num_shaders; i++) {
2043       struct gl_shader *shader = shader_list[i];
2044       /* From the GLSL 1.50 spec, page 39:
2045        *
2046        *   "If gl_FragCoord is redeclared in any fragment shader in a program,
2047        *    it must be redeclared in all the fragment shaders in that program
2048        *    that have a static use gl_FragCoord."
2049        */
2050       if ((redeclares_gl_fragcoord && !shader->redeclares_gl_fragcoord &&
2051            shader->uses_gl_fragcoord)
2052           || (shader->redeclares_gl_fragcoord && !redeclares_gl_fragcoord &&
2053               uses_gl_fragcoord)) {
2054              linker_error(prog, "fragment shader defined with conflicting "
2055                          "layout qualifiers for gl_FragCoord\n");
2056       }
2057 
2058       /* From the GLSL 1.50 spec, page 39:
2059        *
2060        *   "All redeclarations of gl_FragCoord in all fragment shaders in a
2061        *    single program must have the same set of qualifiers."
2062        */
2063       if (redeclares_gl_fragcoord && shader->redeclares_gl_fragcoord &&
2064           (shader->origin_upper_left != origin_upper_left ||
2065            shader->pixel_center_integer != pixel_center_integer)) {
2066          linker_error(prog, "fragment shader defined with conflicting "
2067                       "layout qualifiers for gl_FragCoord\n");
2068       }
2069 
2070       /* Update the linked shader state.  Note that uses_gl_fragcoord should
2071        * accumulate the results.  The other values should replace.  If there
2072        * are multiple redeclarations, all the fields except uses_gl_fragcoord
2073        * are already known to be the same.
2074        */
2075       if (shader->redeclares_gl_fragcoord || shader->uses_gl_fragcoord) {
2076          redeclares_gl_fragcoord = shader->redeclares_gl_fragcoord;
2077          uses_gl_fragcoord |= shader->uses_gl_fragcoord;
2078          origin_upper_left = shader->origin_upper_left;
2079          pixel_center_integer = shader->pixel_center_integer;
2080       }
2081 
2082       linked_shader->Program->info.fs.early_fragment_tests |=
2083          shader->EarlyFragmentTests || shader->PostDepthCoverage;
2084       linked_shader->Program->info.fs.inner_coverage |= shader->InnerCoverage;
2085       linked_shader->Program->info.fs.post_depth_coverage |=
2086          shader->PostDepthCoverage;
2087       linked_shader->Program->info.fs.pixel_interlock_ordered |=
2088          shader->PixelInterlockOrdered;
2089       linked_shader->Program->info.fs.pixel_interlock_unordered |=
2090          shader->PixelInterlockUnordered;
2091       linked_shader->Program->info.fs.sample_interlock_ordered |=
2092          shader->SampleInterlockOrdered;
2093       linked_shader->Program->info.fs.sample_interlock_unordered |=
2094          shader->SampleInterlockUnordered;
2095       linked_shader->Program->sh.fs.BlendSupport |= shader->BlendSupport;
2096    }
2097 
2098    linked_shader->Program->info.fs.pixel_center_integer = pixel_center_integer;
2099    linked_shader->Program->info.fs.origin_upper_left = origin_upper_left;
2100 }
2101 
2102 /**
2103  * Performs the cross-validation of geometry shader max_vertices and
2104  * primitive type layout qualifiers for the attached geometry shaders,
2105  * and propagates them to the linked GS and linked shader program.
2106  */
2107 static void
link_gs_inout_layout_qualifiers(struct gl_shader_program * prog,struct gl_program * gl_prog,struct gl_shader ** shader_list,unsigned num_shaders)2108 link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
2109                                 struct gl_program *gl_prog,
2110                                 struct gl_shader **shader_list,
2111                                 unsigned num_shaders)
2112 {
2113    /* No in/out qualifiers defined for anything but GLSL 1.50+
2114     * geometry shaders so far.
2115     */
2116    if (gl_prog->info.stage != MESA_SHADER_GEOMETRY ||
2117        prog->data->Version < 150)
2118       return;
2119 
2120    int vertices_out = -1;
2121 
2122    gl_prog->info.gs.invocations = 0;
2123    gl_prog->info.gs.input_primitive = PRIM_UNKNOWN;
2124    gl_prog->info.gs.output_primitive = PRIM_UNKNOWN;
2125 
2126    /* From the GLSL 1.50 spec, page 46:
2127     *
2128     *     "All geometry shader output layout declarations in a program
2129     *      must declare the same layout and same value for
2130     *      max_vertices. There must be at least one geometry output
2131     *      layout declaration somewhere in a program, but not all
2132     *      geometry shaders (compilation units) are required to
2133     *      declare it."
2134     */
2135 
2136    for (unsigned i = 0; i < num_shaders; i++) {
2137       struct gl_shader *shader = shader_list[i];
2138 
2139       if (shader->info.Geom.InputType != PRIM_UNKNOWN) {
2140          if (gl_prog->info.gs.input_primitive != PRIM_UNKNOWN &&
2141              gl_prog->info.gs.input_primitive !=
2142              shader->info.Geom.InputType) {
2143             linker_error(prog, "geometry shader defined with conflicting "
2144                          "input types\n");
2145             return;
2146          }
2147          gl_prog->info.gs.input_primitive = shader->info.Geom.InputType;
2148       }
2149 
2150       if (shader->info.Geom.OutputType != PRIM_UNKNOWN) {
2151          if (gl_prog->info.gs.output_primitive != PRIM_UNKNOWN &&
2152              gl_prog->info.gs.output_primitive !=
2153              shader->info.Geom.OutputType) {
2154             linker_error(prog, "geometry shader defined with conflicting "
2155                          "output types\n");
2156             return;
2157          }
2158          gl_prog->info.gs.output_primitive = shader->info.Geom.OutputType;
2159       }
2160 
2161       if (shader->info.Geom.VerticesOut != -1) {
2162          if (vertices_out != -1 &&
2163              vertices_out != shader->info.Geom.VerticesOut) {
2164             linker_error(prog, "geometry shader defined with conflicting "
2165                          "output vertex count (%d and %d)\n",
2166                          vertices_out, shader->info.Geom.VerticesOut);
2167             return;
2168          }
2169          vertices_out = shader->info.Geom.VerticesOut;
2170       }
2171 
2172       if (shader->info.Geom.Invocations != 0) {
2173          if (gl_prog->info.gs.invocations != 0 &&
2174              gl_prog->info.gs.invocations !=
2175              (unsigned) shader->info.Geom.Invocations) {
2176             linker_error(prog, "geometry shader defined with conflicting "
2177                          "invocation count (%d and %d)\n",
2178                          gl_prog->info.gs.invocations,
2179                          shader->info.Geom.Invocations);
2180             return;
2181          }
2182          gl_prog->info.gs.invocations = shader->info.Geom.Invocations;
2183       }
2184    }
2185 
2186    /* Just do the intrastage -> interstage propagation right now,
2187     * since we already know we're in the right type of shader program
2188     * for doing it.
2189     */
2190    if (gl_prog->info.gs.input_primitive == PRIM_UNKNOWN) {
2191       linker_error(prog,
2192                    "geometry shader didn't declare primitive input type\n");
2193       return;
2194    }
2195 
2196    if (gl_prog->info.gs.output_primitive == PRIM_UNKNOWN) {
2197       linker_error(prog,
2198                    "geometry shader didn't declare primitive output type\n");
2199       return;
2200    }
2201 
2202    if (vertices_out == -1) {
2203       linker_error(prog,
2204                    "geometry shader didn't declare max_vertices\n");
2205       return;
2206    } else {
2207       gl_prog->info.gs.vertices_out = vertices_out;
2208    }
2209 
2210    if (gl_prog->info.gs.invocations == 0)
2211       gl_prog->info.gs.invocations = 1;
2212 }
2213 
2214 
2215 /**
2216  * Perform cross-validation of compute shader local_size_{x,y,z} layout and
2217  * derivative arrangement qualifiers for the attached compute shaders, and
2218  * propagate them to the linked CS and linked shader program.
2219  */
2220 static void
link_cs_input_layout_qualifiers(struct gl_shader_program * prog,struct gl_program * gl_prog,struct gl_shader ** shader_list,unsigned num_shaders)2221 link_cs_input_layout_qualifiers(struct gl_shader_program *prog,
2222                                 struct gl_program *gl_prog,
2223                                 struct gl_shader **shader_list,
2224                                 unsigned num_shaders)
2225 {
2226    /* This function is called for all shader stages, but it only has an effect
2227     * for compute shaders.
2228     */
2229    if (gl_prog->info.stage != MESA_SHADER_COMPUTE)
2230       return;
2231 
2232    for (int i = 0; i < 3; i++)
2233       gl_prog->info.cs.local_size[i] = 0;
2234 
2235    gl_prog->info.cs.local_size_variable = false;
2236 
2237    gl_prog->info.cs.derivative_group = DERIVATIVE_GROUP_NONE;
2238 
2239    /* From the ARB_compute_shader spec, in the section describing local size
2240     * declarations:
2241     *
2242     *     If multiple compute shaders attached to a single program object
2243     *     declare local work-group size, the declarations must be identical;
2244     *     otherwise a link-time error results. Furthermore, if a program
2245     *     object contains any compute shaders, at least one must contain an
2246     *     input layout qualifier specifying the local work sizes of the
2247     *     program, or a link-time error will occur.
2248     */
2249    for (unsigned sh = 0; sh < num_shaders; sh++) {
2250       struct gl_shader *shader = shader_list[sh];
2251 
2252       if (shader->info.Comp.LocalSize[0] != 0) {
2253          if (gl_prog->info.cs.local_size[0] != 0) {
2254             for (int i = 0; i < 3; i++) {
2255                if (gl_prog->info.cs.local_size[i] !=
2256                    shader->info.Comp.LocalSize[i]) {
2257                   linker_error(prog, "compute shader defined with conflicting "
2258                                "local sizes\n");
2259                   return;
2260                }
2261             }
2262          }
2263          for (int i = 0; i < 3; i++) {
2264             gl_prog->info.cs.local_size[i] =
2265                shader->info.Comp.LocalSize[i];
2266          }
2267       } else if (shader->info.Comp.LocalSizeVariable) {
2268          if (gl_prog->info.cs.local_size[0] != 0) {
2269             /* The ARB_compute_variable_group_size spec says:
2270              *
2271              *     If one compute shader attached to a program declares a
2272              *     variable local group size and a second compute shader
2273              *     attached to the same program declares a fixed local group
2274              *     size, a link-time error results.
2275              */
2276             linker_error(prog, "compute shader defined with both fixed and "
2277                          "variable local group size\n");
2278             return;
2279          }
2280          gl_prog->info.cs.local_size_variable = true;
2281       }
2282 
2283       enum gl_derivative_group group = shader->info.Comp.DerivativeGroup;
2284       if (group != DERIVATIVE_GROUP_NONE) {
2285          if (gl_prog->info.cs.derivative_group != DERIVATIVE_GROUP_NONE &&
2286              gl_prog->info.cs.derivative_group != group) {
2287             linker_error(prog, "compute shader defined with conflicting "
2288                          "derivative groups\n");
2289             return;
2290          }
2291          gl_prog->info.cs.derivative_group = group;
2292       }
2293    }
2294 
2295    /* Just do the intrastage -> interstage propagation right now,
2296     * since we already know we're in the right type of shader program
2297     * for doing it.
2298     */
2299    if (gl_prog->info.cs.local_size[0] == 0 &&
2300        !gl_prog->info.cs.local_size_variable) {
2301       linker_error(prog, "compute shader must contain a fixed or a variable "
2302                          "local group size\n");
2303       return;
2304    }
2305 
2306    if (gl_prog->info.cs.derivative_group == DERIVATIVE_GROUP_QUADS) {
2307       if (gl_prog->info.cs.local_size[0] % 2 != 0) {
2308          linker_error(prog, "derivative_group_quadsNV must be used with a "
2309                       "local group size whose first dimension "
2310                       "is a multiple of 2\n");
2311          return;
2312       }
2313       if (gl_prog->info.cs.local_size[1] % 2 != 0) {
2314          linker_error(prog, "derivative_group_quadsNV must be used with a local"
2315                       "group size whose second dimension "
2316                       "is a multiple of 2\n");
2317          return;
2318       }
2319    } else if (gl_prog->info.cs.derivative_group == DERIVATIVE_GROUP_LINEAR) {
2320       if ((gl_prog->info.cs.local_size[0] *
2321            gl_prog->info.cs.local_size[1] *
2322            gl_prog->info.cs.local_size[2]) % 4 != 0) {
2323          linker_error(prog, "derivative_group_linearNV must be used with a "
2324                       "local group size whose total number of invocations "
2325                       "is a multiple of 4\n");
2326          return;
2327       }
2328    }
2329 }
2330 
2331 /**
2332  * Link all out variables on a single stage which are not
2333  * directly used in a shader with the main function.
2334  */
2335 static void
link_output_variables(struct gl_linked_shader * linked_shader,struct gl_shader ** shader_list,unsigned num_shaders)2336 link_output_variables(struct gl_linked_shader *linked_shader,
2337                       struct gl_shader **shader_list,
2338                       unsigned num_shaders)
2339 {
2340    struct glsl_symbol_table *symbols = linked_shader->symbols;
2341 
2342    for (unsigned i = 0; i < num_shaders; i++) {
2343 
2344       /* Skip shader object with main function */
2345       if (shader_list[i]->symbols->get_function("main"))
2346          continue;
2347 
2348       foreach_in_list(ir_instruction, ir, shader_list[i]->ir) {
2349          if (ir->ir_type != ir_type_variable)
2350             continue;
2351 
2352          ir_variable *var = (ir_variable *) ir;
2353 
2354          if (var->data.mode == ir_var_shader_out &&
2355                !symbols->get_variable(var->name)) {
2356             var = var->clone(linked_shader, NULL);
2357             symbols->add_variable(var);
2358             linked_shader->ir->push_head(var);
2359          }
2360       }
2361    }
2362 
2363    return;
2364 }
2365 
2366 
2367 /**
2368  * Combine a group of shaders for a single stage to generate a linked shader
2369  *
2370  * \note
2371  * If this function is supplied a single shader, it is cloned, and the new
2372  * shader is returned.
2373  */
2374 struct gl_linked_shader *
link_intrastage_shaders(void * mem_ctx,struct gl_context * ctx,struct gl_shader_program * prog,struct gl_shader ** shader_list,unsigned num_shaders,bool allow_missing_main)2375 link_intrastage_shaders(void *mem_ctx,
2376                         struct gl_context *ctx,
2377                         struct gl_shader_program *prog,
2378                         struct gl_shader **shader_list,
2379                         unsigned num_shaders,
2380                         bool allow_missing_main)
2381 {
2382    struct gl_uniform_block *ubo_blocks = NULL;
2383    struct gl_uniform_block *ssbo_blocks = NULL;
2384    unsigned num_ubo_blocks = 0;
2385    unsigned num_ssbo_blocks = 0;
2386 
2387    /* Check that global variables defined in multiple shaders are consistent.
2388     */
2389    glsl_symbol_table variables;
2390    for (unsigned i = 0; i < num_shaders; i++) {
2391       if (shader_list[i] == NULL)
2392          continue;
2393       cross_validate_globals(ctx, prog, shader_list[i]->ir, &variables,
2394                              false);
2395    }
2396 
2397    if (!prog->data->LinkStatus)
2398       return NULL;
2399 
2400    /* Check that interface blocks defined in multiple shaders are consistent.
2401     */
2402    validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
2403                                         num_shaders);
2404    if (!prog->data->LinkStatus)
2405       return NULL;
2406 
2407    /* Check that there is only a single definition of each function signature
2408     * across all shaders.
2409     */
2410    for (unsigned i = 0; i < (num_shaders - 1); i++) {
2411       foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
2412          ir_function *const f = node->as_function();
2413 
2414          if (f == NULL)
2415             continue;
2416 
2417          for (unsigned j = i + 1; j < num_shaders; j++) {
2418             ir_function *const other =
2419                shader_list[j]->symbols->get_function(f->name);
2420 
2421             /* If the other shader has no function (and therefore no function
2422              * signatures) with the same name, skip to the next shader.
2423              */
2424             if (other == NULL)
2425                continue;
2426 
2427             foreach_in_list(ir_function_signature, sig, &f->signatures) {
2428                if (!sig->is_defined)
2429                   continue;
2430 
2431                ir_function_signature *other_sig =
2432                   other->exact_matching_signature(NULL, &sig->parameters);
2433 
2434                if (other_sig != NULL && other_sig->is_defined) {
2435                   linker_error(prog, "function `%s' is multiply defined\n",
2436                                f->name);
2437                   return NULL;
2438                }
2439             }
2440          }
2441       }
2442    }
2443 
2444    /* Find the shader that defines main, and make a clone of it.
2445     *
2446     * Starting with the clone, search for undefined references.  If one is
2447     * found, find the shader that defines it.  Clone the reference and add
2448     * it to the shader.  Repeat until there are no undefined references or
2449     * until a reference cannot be resolved.
2450     */
2451    gl_shader *main = NULL;
2452    for (unsigned i = 0; i < num_shaders; i++) {
2453       if (_mesa_get_main_function_signature(shader_list[i]->symbols)) {
2454          main = shader_list[i];
2455          break;
2456       }
2457    }
2458 
2459    if (main == NULL && allow_missing_main)
2460       main = shader_list[0];
2461 
2462    if (main == NULL) {
2463       linker_error(prog, "%s shader lacks `main'\n",
2464                    _mesa_shader_stage_to_string(shader_list[0]->Stage));
2465       return NULL;
2466    }
2467 
2468    gl_linked_shader *linked = rzalloc(NULL, struct gl_linked_shader);
2469    linked->Stage = shader_list[0]->Stage;
2470 
2471    /* Create program and attach it to the linked shader */
2472    struct gl_program *gl_prog =
2473       ctx->Driver.NewProgram(ctx, shader_list[0]->Stage, prog->Name, false);
2474    if (!gl_prog) {
2475       prog->data->LinkStatus = LINKING_FAILURE;
2476       _mesa_delete_linked_shader(ctx, linked);
2477       return NULL;
2478    }
2479 
2480    _mesa_reference_shader_program_data(ctx, &gl_prog->sh.data, prog->data);
2481 
2482    /* Don't use _mesa_reference_program() just take ownership */
2483    linked->Program = gl_prog;
2484 
2485    linked->ir = new(linked) exec_list;
2486    clone_ir_list(mem_ctx, linked->ir, main->ir);
2487 
2488    link_fs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
2489    link_tcs_out_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2490    link_tes_in_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2491    link_gs_inout_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2492    link_cs_input_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2493 
2494    if (linked->Stage != MESA_SHADER_FRAGMENT)
2495       link_xfb_stride_layout_qualifiers(ctx, prog, shader_list, num_shaders);
2496 
2497    link_bindless_layout_qualifiers(prog, shader_list, num_shaders);
2498 
2499    link_layer_viewport_relative_qualifier(prog, gl_prog, shader_list, num_shaders);
2500 
2501    populate_symbol_table(linked, shader_list[0]->symbols);
2502 
2503    /* The pointer to the main function in the final linked shader (i.e., the
2504     * copy of the original shader that contained the main function).
2505     */
2506    ir_function_signature *const main_sig =
2507       _mesa_get_main_function_signature(linked->symbols);
2508 
2509    /* Move any instructions other than variable declarations or function
2510     * declarations into main.
2511     */
2512    if (main_sig != NULL) {
2513       exec_node *insertion_point =
2514          move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
2515                                linked);
2516 
2517       for (unsigned i = 0; i < num_shaders; i++) {
2518          if (shader_list[i] == main)
2519             continue;
2520 
2521          insertion_point = move_non_declarations(shader_list[i]->ir,
2522                                                  insertion_point, true, linked);
2523       }
2524    }
2525 
2526    if (!link_function_calls(prog, linked, shader_list, num_shaders)) {
2527       _mesa_delete_linked_shader(ctx, linked);
2528       return NULL;
2529    }
2530 
2531    if (linked->Stage != MESA_SHADER_FRAGMENT)
2532       link_output_variables(linked, shader_list, num_shaders);
2533 
2534    /* Make a pass over all variable declarations to ensure that arrays with
2535     * unspecified sizes have a size specified.  The size is inferred from the
2536     * max_array_access field.
2537     */
2538    array_sizing_visitor v;
2539    v.run(linked->ir);
2540    v.fixup_unnamed_interface_types();
2541 
2542    /* Link up uniform blocks defined within this stage. */
2543    link_uniform_blocks(mem_ctx, ctx, prog, linked, &ubo_blocks,
2544                        &num_ubo_blocks, &ssbo_blocks, &num_ssbo_blocks);
2545 
2546    const unsigned max_uniform_blocks =
2547       ctx->Const.Program[linked->Stage].MaxUniformBlocks;
2548    if (num_ubo_blocks > max_uniform_blocks) {
2549       linker_error(prog, "Too many %s uniform blocks (%d/%d)\n",
2550                    _mesa_shader_stage_to_string(linked->Stage),
2551                    num_ubo_blocks, max_uniform_blocks);
2552    }
2553 
2554    const unsigned max_shader_storage_blocks =
2555       ctx->Const.Program[linked->Stage].MaxShaderStorageBlocks;
2556    if (num_ssbo_blocks > max_shader_storage_blocks) {
2557       linker_error(prog, "Too many %s shader storage blocks (%d/%d)\n",
2558                    _mesa_shader_stage_to_string(linked->Stage),
2559                    num_ssbo_blocks, max_shader_storage_blocks);
2560    }
2561 
2562    if (!prog->data->LinkStatus) {
2563       _mesa_delete_linked_shader(ctx, linked);
2564       return NULL;
2565    }
2566 
2567    /* Copy ubo blocks to linked shader list */
2568    linked->Program->sh.UniformBlocks =
2569       ralloc_array(linked, gl_uniform_block *, num_ubo_blocks);
2570    ralloc_steal(linked, ubo_blocks);
2571    for (unsigned i = 0; i < num_ubo_blocks; i++) {
2572       linked->Program->sh.UniformBlocks[i] = &ubo_blocks[i];
2573    }
2574    linked->Program->sh.NumUniformBlocks = num_ubo_blocks;
2575    linked->Program->info.num_ubos = num_ubo_blocks;
2576 
2577    /* Copy ssbo blocks to linked shader list */
2578    linked->Program->sh.ShaderStorageBlocks =
2579       ralloc_array(linked, gl_uniform_block *, num_ssbo_blocks);
2580    ralloc_steal(linked, ssbo_blocks);
2581    for (unsigned i = 0; i < num_ssbo_blocks; i++) {
2582       linked->Program->sh.ShaderStorageBlocks[i] = &ssbo_blocks[i];
2583    }
2584    linked->Program->info.num_ssbos = num_ssbo_blocks;
2585 
2586    /* At this point linked should contain all of the linked IR, so
2587     * validate it to make sure nothing went wrong.
2588     */
2589    validate_ir_tree(linked->ir);
2590 
2591    /* Set the size of geometry shader input arrays */
2592    if (linked->Stage == MESA_SHADER_GEOMETRY) {
2593       unsigned num_vertices =
2594          vertices_per_prim(gl_prog->info.gs.input_primitive);
2595       array_resize_visitor input_resize_visitor(num_vertices, prog,
2596                                                 MESA_SHADER_GEOMETRY);
2597       foreach_in_list(ir_instruction, ir, linked->ir) {
2598          ir->accept(&input_resize_visitor);
2599       }
2600    }
2601 
2602    if (ctx->Const.VertexID_is_zero_based)
2603       lower_vertex_id(linked);
2604 
2605    if (ctx->Const.LowerCsDerivedVariables)
2606       lower_cs_derived(linked);
2607 
2608 #ifdef DEBUG
2609    /* Compute the source checksum. */
2610    linked->SourceChecksum = 0;
2611    for (unsigned i = 0; i < num_shaders; i++) {
2612       if (shader_list[i] == NULL)
2613          continue;
2614       linked->SourceChecksum ^= shader_list[i]->SourceChecksum;
2615    }
2616 #endif
2617 
2618    return linked;
2619 }
2620 
2621 /**
2622  * Update the sizes of linked shader uniform arrays to the maximum
2623  * array index used.
2624  *
2625  * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
2626  *
2627  *     If one or more elements of an array are active,
2628  *     GetActiveUniform will return the name of the array in name,
2629  *     subject to the restrictions listed above. The type of the array
2630  *     is returned in type. The size parameter contains the highest
2631  *     array element index used, plus one. The compiler or linker
2632  *     determines the highest index used.  There will be only one
2633  *     active uniform reported by the GL per uniform array.
2634 
2635  */
2636 static void
update_array_sizes(struct gl_shader_program * prog)2637 update_array_sizes(struct gl_shader_program *prog)
2638 {
2639    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2640          if (prog->_LinkedShaders[i] == NULL)
2641             continue;
2642 
2643       bool types_were_updated = false;
2644 
2645       foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
2646          ir_variable *const var = node->as_variable();
2647 
2648          if ((var == NULL) || (var->data.mode != ir_var_uniform) ||
2649              !var->type->is_array())
2650             continue;
2651 
2652          /* GL_ARB_uniform_buffer_object says that std140 uniforms
2653           * will not be eliminated.  Since we always do std140, just
2654           * don't resize arrays in UBOs.
2655           *
2656           * Atomic counters are supposed to get deterministic
2657           * locations assigned based on the declaration ordering and
2658           * sizes, array compaction would mess that up.
2659           *
2660           * Subroutine uniforms are not removed.
2661           */
2662          if (var->is_in_buffer_block() || var->type->contains_atomic() ||
2663              var->type->contains_subroutine() || var->constant_initializer)
2664             continue;
2665 
2666          int size = var->data.max_array_access;
2667          for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2668                if (prog->_LinkedShaders[j] == NULL)
2669                   continue;
2670 
2671             foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) {
2672                ir_variable *other_var = node2->as_variable();
2673                if (!other_var)
2674                   continue;
2675 
2676                if (strcmp(var->name, other_var->name) == 0 &&
2677                    other_var->data.max_array_access > size) {
2678                   size = other_var->data.max_array_access;
2679                }
2680             }
2681          }
2682 
2683          if (size + 1 != (int)var->type->length) {
2684             /* If this is a built-in uniform (i.e., it's backed by some
2685              * fixed-function state), adjust the number of state slots to
2686              * match the new array size.  The number of slots per array entry
2687              * is not known.  It seems safe to assume that the total number of
2688              * slots is an integer multiple of the number of array elements.
2689              * Determine the number of slots per array element by dividing by
2690              * the old (total) size.
2691              */
2692             const unsigned num_slots = var->get_num_state_slots();
2693             if (num_slots > 0) {
2694                var->set_num_state_slots((size + 1)
2695                                         * (num_slots / var->type->length));
2696             }
2697 
2698             var->type = glsl_type::get_array_instance(var->type->fields.array,
2699                                                       size + 1);
2700             types_were_updated = true;
2701          }
2702       }
2703 
2704       /* Update the types of dereferences in case we changed any. */
2705       if (types_were_updated) {
2706          deref_type_updater v;
2707          v.run(prog->_LinkedShaders[i]->ir);
2708       }
2709    }
2710 }
2711 
2712 /**
2713  * Resize tessellation evaluation per-vertex inputs to the size of
2714  * tessellation control per-vertex outputs.
2715  */
2716 static void
resize_tes_inputs(struct gl_context * ctx,struct gl_shader_program * prog)2717 resize_tes_inputs(struct gl_context *ctx,
2718                   struct gl_shader_program *prog)
2719 {
2720    if (prog->_LinkedShaders[MESA_SHADER_TESS_EVAL] == NULL)
2721       return;
2722 
2723    gl_linked_shader *const tcs = prog->_LinkedShaders[MESA_SHADER_TESS_CTRL];
2724    gl_linked_shader *const tes = prog->_LinkedShaders[MESA_SHADER_TESS_EVAL];
2725 
2726    /* If no control shader is present, then the TES inputs are statically
2727     * sized to MaxPatchVertices; the actual size of the arrays won't be
2728     * known until draw time.
2729     */
2730    const int num_vertices = tcs
2731       ? tcs->Program->info.tess.tcs_vertices_out
2732       : ctx->Const.MaxPatchVertices;
2733 
2734    array_resize_visitor input_resize_visitor(num_vertices, prog,
2735                                              MESA_SHADER_TESS_EVAL);
2736    foreach_in_list(ir_instruction, ir, tes->ir) {
2737       ir->accept(&input_resize_visitor);
2738    }
2739 
2740    if (tcs) {
2741       /* Convert the gl_PatchVerticesIn system value into a constant, since
2742        * the value is known at this point.
2743        */
2744       foreach_in_list(ir_instruction, ir, tes->ir) {
2745          ir_variable *var = ir->as_variable();
2746          if (var && var->data.mode == ir_var_system_value &&
2747              var->data.location == SYSTEM_VALUE_VERTICES_IN) {
2748             void *mem_ctx = ralloc_parent(var);
2749             var->data.location = 0;
2750             var->data.explicit_location = false;
2751             var->data.mode = ir_var_auto;
2752             var->constant_value = new(mem_ctx) ir_constant(num_vertices);
2753          }
2754       }
2755    }
2756 }
2757 
2758 /**
2759  * Find a contiguous set of available bits in a bitmask.
2760  *
2761  * \param used_mask     Bits representing used (1) and unused (0) locations
2762  * \param needed_count  Number of contiguous bits needed.
2763  *
2764  * \return
2765  * Base location of the available bits on success or -1 on failure.
2766  */
2767 static int
find_available_slots(unsigned used_mask,unsigned needed_count)2768 find_available_slots(unsigned used_mask, unsigned needed_count)
2769 {
2770    unsigned needed_mask = (1 << needed_count) - 1;
2771    const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
2772 
2773    /* The comparison to 32 is redundant, but without it GCC emits "warning:
2774     * cannot optimize possibly infinite loops" for the loop below.
2775     */
2776    if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
2777       return -1;
2778 
2779    for (int i = 0; i <= max_bit_to_test; i++) {
2780       if ((needed_mask & ~used_mask) == needed_mask)
2781          return i;
2782 
2783       needed_mask <<= 1;
2784    }
2785 
2786    return -1;
2787 }
2788 
2789 
2790 #define SAFE_MASK_FROM_INDEX(i) (((i) >= 32) ? ~0 : ((1 << (i)) - 1))
2791 
2792 /**
2793  * Assign locations for either VS inputs or FS outputs.
2794  *
2795  * \param mem_ctx        Temporary ralloc context used for linking.
2796  * \param prog           Shader program whose variables need locations
2797  *                       assigned.
2798  * \param constants      Driver specific constant values for the program.
2799  * \param target_index   Selector for the program target to receive location
2800  *                       assignmnets.  Must be either \c MESA_SHADER_VERTEX or
2801  *                       \c MESA_SHADER_FRAGMENT.
2802  * \param do_assignment  Whether we are actually marking the assignment or we
2803  *                       are just doing a dry-run checking.
2804  *
2805  * \return
2806  * If locations are (or can be, in case of dry-running) successfully assigned,
2807  * true is returned.  Otherwise an error is emitted to the shader link log and
2808  * false is returned.
2809  */
2810 static bool
assign_attribute_or_color_locations(void * mem_ctx,gl_shader_program * prog,struct gl_constants * constants,unsigned target_index,bool do_assignment)2811 assign_attribute_or_color_locations(void *mem_ctx,
2812                                     gl_shader_program *prog,
2813                                     struct gl_constants *constants,
2814                                     unsigned target_index,
2815                                     bool do_assignment)
2816 {
2817    /* Maximum number of generic locations.  This corresponds to either the
2818     * maximum number of draw buffers or the maximum number of generic
2819     * attributes.
2820     */
2821    unsigned max_index = (target_index == MESA_SHADER_VERTEX) ?
2822       constants->Program[target_index].MaxAttribs :
2823       MAX2(constants->MaxDrawBuffers, constants->MaxDualSourceDrawBuffers);
2824 
2825    /* Mark invalid locations as being used.
2826     */
2827    unsigned used_locations = ~SAFE_MASK_FROM_INDEX(max_index);
2828    unsigned double_storage_locations = 0;
2829 
2830    assert((target_index == MESA_SHADER_VERTEX)
2831           || (target_index == MESA_SHADER_FRAGMENT));
2832 
2833    gl_linked_shader *const sh = prog->_LinkedShaders[target_index];
2834    if (sh == NULL)
2835       return true;
2836 
2837    /* Operate in a total of four passes.
2838     *
2839     * 1. Invalidate the location assignments for all vertex shader inputs.
2840     *
2841     * 2. Assign locations for inputs that have user-defined (via
2842     *    glBindVertexAttribLocation) locations and outputs that have
2843     *    user-defined locations (via glBindFragDataLocation).
2844     *
2845     * 3. Sort the attributes without assigned locations by number of slots
2846     *    required in decreasing order.  Fragmentation caused by attribute
2847     *    locations assigned by the application may prevent large attributes
2848     *    from having enough contiguous space.
2849     *
2850     * 4. Assign locations to any inputs without assigned locations.
2851     */
2852 
2853    const int generic_base = (target_index == MESA_SHADER_VERTEX)
2854       ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
2855 
2856    const enum ir_variable_mode direction =
2857       (target_index == MESA_SHADER_VERTEX)
2858       ? ir_var_shader_in : ir_var_shader_out;
2859 
2860 
2861    /* Temporary storage for the set of attributes that need locations assigned.
2862     */
2863    struct temp_attr {
2864       unsigned slots;
2865       ir_variable *var;
2866 
2867       /* Used below in the call to qsort. */
2868       static int compare(const void *a, const void *b)
2869       {
2870          const temp_attr *const l = (const temp_attr *) a;
2871          const temp_attr *const r = (const temp_attr *) b;
2872 
2873          /* Reversed because we want a descending order sort below. */
2874          return r->slots - l->slots;
2875       }
2876    } to_assign[32];
2877    assert(max_index <= 32);
2878 
2879    /* Temporary array for the set of attributes that have locations assigned,
2880     * for the purpose of checking overlapping slots/components of (non-ES)
2881     * fragment shader outputs.
2882     */
2883    ir_variable *assigned[12 * 4]; /* (max # of FS outputs) * # components */
2884    unsigned assigned_attr = 0;
2885 
2886    unsigned num_attr = 0;
2887 
2888    foreach_in_list(ir_instruction, node, sh->ir) {
2889       ir_variable *const var = node->as_variable();
2890 
2891       if ((var == NULL) || (var->data.mode != (unsigned) direction))
2892          continue;
2893 
2894       if (var->data.explicit_location) {
2895          var->data.is_unmatched_generic_inout = 0;
2896          if ((var->data.location >= (int)(max_index + generic_base))
2897              || (var->data.location < 0)) {
2898             linker_error(prog,
2899                          "invalid explicit location %d specified for `%s'\n",
2900                          (var->data.location < 0)
2901                          ? var->data.location
2902                          : var->data.location - generic_base,
2903                          var->name);
2904             return false;
2905          }
2906       } else if (target_index == MESA_SHADER_VERTEX) {
2907          unsigned binding;
2908 
2909          if (prog->AttributeBindings->get(binding, var->name)) {
2910             assert(binding >= VERT_ATTRIB_GENERIC0);
2911             var->data.location = binding;
2912             var->data.is_unmatched_generic_inout = 0;
2913          }
2914       } else if (target_index == MESA_SHADER_FRAGMENT) {
2915          unsigned binding;
2916          unsigned index;
2917          const char *name = var->name;
2918          const glsl_type *type = var->type;
2919 
2920          while (type) {
2921             /* Check if there's a binding for the variable name */
2922             if (prog->FragDataBindings->get(binding, name)) {
2923                assert(binding >= FRAG_RESULT_DATA0);
2924                var->data.location = binding;
2925                var->data.is_unmatched_generic_inout = 0;
2926 
2927                if (prog->FragDataIndexBindings->get(index, name)) {
2928                   var->data.index = index;
2929                }
2930                break;
2931             }
2932 
2933             /* If not, but it's an array type, look for name[0] */
2934             if (type->is_array()) {
2935                name = ralloc_asprintf(mem_ctx, "%s[0]", name);
2936                type = type->fields.array;
2937                continue;
2938             }
2939 
2940             break;
2941          }
2942       }
2943 
2944       if (strcmp(var->name, "gl_LastFragData") == 0)
2945          continue;
2946 
2947       /* From GL4.5 core spec, section 15.2 (Shader Execution):
2948        *
2949        *     "Output binding assignments will cause LinkProgram to fail:
2950        *     ...
2951        *     If the program has an active output assigned to a location greater
2952        *     than or equal to the value of MAX_DUAL_SOURCE_DRAW_BUFFERS and has
2953        *     an active output assigned an index greater than or equal to one;"
2954        */
2955       if (target_index == MESA_SHADER_FRAGMENT && var->data.index >= 1 &&
2956           var->data.location - generic_base >=
2957           (int) constants->MaxDualSourceDrawBuffers) {
2958          linker_error(prog,
2959                       "output location %d >= GL_MAX_DUAL_SOURCE_DRAW_BUFFERS "
2960                       "with index %u for %s\n",
2961                       var->data.location - generic_base, var->data.index,
2962                       var->name);
2963          return false;
2964       }
2965 
2966       const unsigned slots = var->type->count_attribute_slots(target_index == MESA_SHADER_VERTEX);
2967 
2968       /* If the variable is not a built-in and has a location statically
2969        * assigned in the shader (presumably via a layout qualifier), make sure
2970        * that it doesn't collide with other assigned locations.  Otherwise,
2971        * add it to the list of variables that need linker-assigned locations.
2972        */
2973       if (var->data.location != -1) {
2974          if (var->data.location >= generic_base && var->data.index < 1) {
2975             /* From page 61 of the OpenGL 4.0 spec:
2976              *
2977              *     "LinkProgram will fail if the attribute bindings assigned
2978              *     by BindAttribLocation do not leave not enough space to
2979              *     assign a location for an active matrix attribute or an
2980              *     active attribute array, both of which require multiple
2981              *     contiguous generic attributes."
2982              *
2983              * I think above text prohibits the aliasing of explicit and
2984              * automatic assignments. But, aliasing is allowed in manual
2985              * assignments of attribute locations. See below comments for
2986              * the details.
2987              *
2988              * From OpenGL 4.0 spec, page 61:
2989              *
2990              *     "It is possible for an application to bind more than one
2991              *     attribute name to the same location. This is referred to as
2992              *     aliasing. This will only work if only one of the aliased
2993              *     attributes is active in the executable program, or if no
2994              *     path through the shader consumes more than one attribute of
2995              *     a set of attributes aliased to the same location. A link
2996              *     error can occur if the linker determines that every path
2997              *     through the shader consumes multiple aliased attributes,
2998              *     but implementations are not required to generate an error
2999              *     in this case."
3000              *
3001              * From GLSL 4.30 spec, page 54:
3002              *
3003              *    "A program will fail to link if any two non-vertex shader
3004              *     input variables are assigned to the same location. For
3005              *     vertex shaders, multiple input variables may be assigned
3006              *     to the same location using either layout qualifiers or via
3007              *     the OpenGL API. However, such aliasing is intended only to
3008              *     support vertex shaders where each execution path accesses
3009              *     at most one input per each location. Implementations are
3010              *     permitted, but not required, to generate link-time errors
3011              *     if they detect that every path through the vertex shader
3012              *     executable accesses multiple inputs assigned to any single
3013              *     location. For all shader types, a program will fail to link
3014              *     if explicit location assignments leave the linker unable
3015              *     to find space for other variables without explicit
3016              *     assignments."
3017              *
3018              * From OpenGL ES 3.0 spec, page 56:
3019              *
3020              *    "Binding more than one attribute name to the same location
3021              *     is referred to as aliasing, and is not permitted in OpenGL
3022              *     ES Shading Language 3.00 vertex shaders. LinkProgram will
3023              *     fail when this condition exists. However, aliasing is
3024              *     possible in OpenGL ES Shading Language 1.00 vertex shaders.
3025              *     This will only work if only one of the aliased attributes
3026              *     is active in the executable program, or if no path through
3027              *     the shader consumes more than one attribute of a set of
3028              *     attributes aliased to the same location. A link error can
3029              *     occur if the linker determines that every path through the
3030              *     shader consumes multiple aliased attributes, but implemen-
3031              *     tations are not required to generate an error in this case."
3032              *
3033              * After looking at above references from OpenGL, OpenGL ES and
3034              * GLSL specifications, we allow aliasing of vertex input variables
3035              * in: OpenGL 2.0 (and above) and OpenGL ES 2.0.
3036              *
3037              * NOTE: This is not required by the spec but its worth mentioning
3038              * here that we're not doing anything to make sure that no path
3039              * through the vertex shader executable accesses multiple inputs
3040              * assigned to any single location.
3041              */
3042 
3043             /* Mask representing the contiguous slots that will be used by
3044              * this attribute.
3045              */
3046             const unsigned attr = var->data.location - generic_base;
3047             const unsigned use_mask = (1 << slots) - 1;
3048             const char *const string = (target_index == MESA_SHADER_VERTEX)
3049                ? "vertex shader input" : "fragment shader output";
3050 
3051             /* Generate a link error if the requested locations for this
3052              * attribute exceed the maximum allowed attribute location.
3053              */
3054             if (attr + slots > max_index) {
3055                linker_error(prog,
3056                            "insufficient contiguous locations "
3057                            "available for %s `%s' %d %d %d\n", string,
3058                            var->name, used_locations, use_mask, attr);
3059                return false;
3060             }
3061 
3062             /* Generate a link error if the set of bits requested for this
3063              * attribute overlaps any previously allocated bits.
3064              */
3065             if ((~(use_mask << attr) & used_locations) != used_locations) {
3066                if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) {
3067                   /* From section 4.4.2 (Output Layout Qualifiers) of the GLSL
3068                    * 4.40 spec:
3069                    *
3070                    *    "Additionally, for fragment shader outputs, if two
3071                    *    variables are placed within the same location, they
3072                    *    must have the same underlying type (floating-point or
3073                    *    integer). No component aliasing of output variables or
3074                    *    members is allowed.
3075                    */
3076                   for (unsigned i = 0; i < assigned_attr; i++) {
3077                      unsigned assigned_slots =
3078                         assigned[i]->type->count_attribute_slots(false);
3079                      unsigned assig_attr =
3080                         assigned[i]->data.location - generic_base;
3081                      unsigned assigned_use_mask = (1 << assigned_slots) - 1;
3082 
3083                      if ((assigned_use_mask << assig_attr) &
3084                          (use_mask << attr)) {
3085 
3086                         const glsl_type *assigned_type =
3087                            assigned[i]->type->without_array();
3088                         const glsl_type *type = var->type->without_array();
3089                         if (assigned_type->base_type != type->base_type) {
3090                            linker_error(prog, "types do not match for aliased"
3091                                         " %ss %s and %s\n", string,
3092                                         assigned[i]->name, var->name);
3093                            return false;
3094                         }
3095 
3096                         unsigned assigned_component_mask =
3097                            ((1 << assigned_type->vector_elements) - 1) <<
3098                            assigned[i]->data.location_frac;
3099                         unsigned component_mask =
3100                            ((1 << type->vector_elements) - 1) <<
3101                            var->data.location_frac;
3102                         if (assigned_component_mask & component_mask) {
3103                            linker_error(prog, "overlapping component is "
3104                                         "assigned to %ss %s and %s "
3105                                         "(component=%d)\n",
3106                                         string, assigned[i]->name, var->name,
3107                                         var->data.location_frac);
3108                            return false;
3109                         }
3110                      }
3111                   }
3112                } else if (target_index == MESA_SHADER_FRAGMENT ||
3113                           (prog->IsES && prog->data->Version >= 300)) {
3114                   linker_error(prog, "overlapping location is assigned "
3115                                "to %s `%s' %d %d %d\n", string, var->name,
3116                                used_locations, use_mask, attr);
3117                   return false;
3118                } else {
3119                   linker_warning(prog, "overlapping location is assigned "
3120                                  "to %s `%s' %d %d %d\n", string, var->name,
3121                                  used_locations, use_mask, attr);
3122                }
3123             }
3124 
3125             if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) {
3126                /* Only track assigned variables for non-ES fragment shaders
3127                 * to avoid overflowing the array.
3128                 *
3129                 * At most one variable per fragment output component should
3130                 * reach this.
3131                 */
3132                assert(assigned_attr < ARRAY_SIZE(assigned));
3133                assigned[assigned_attr] = var;
3134                assigned_attr++;
3135             }
3136 
3137             used_locations |= (use_mask << attr);
3138 
3139             /* From the GL 4.5 core spec, section 11.1.1 (Vertex Attributes):
3140              *
3141              * "A program with more than the value of MAX_VERTEX_ATTRIBS
3142              *  active attribute variables may fail to link, unless
3143              *  device-dependent optimizations are able to make the program
3144              *  fit within available hardware resources. For the purposes
3145              *  of this test, attribute variables of the type dvec3, dvec4,
3146              *  dmat2x3, dmat2x4, dmat3, dmat3x4, dmat4x3, and dmat4 may
3147              *  count as consuming twice as many attributes as equivalent
3148              *  single-precision types. While these types use the same number
3149              *  of generic attributes as their single-precision equivalents,
3150              *  implementations are permitted to consume two single-precision
3151              *  vectors of internal storage for each three- or four-component
3152              *  double-precision vector."
3153              *
3154              * Mark this attribute slot as taking up twice as much space
3155              * so we can count it properly against limits.  According to
3156              * issue (3) of the GL_ARB_vertex_attrib_64bit behavior, this
3157              * is optional behavior, but it seems preferable.
3158              */
3159             if (var->type->without_array()->is_dual_slot())
3160                double_storage_locations |= (use_mask << attr);
3161          }
3162 
3163          continue;
3164       }
3165 
3166       if (num_attr >= max_index) {
3167          linker_error(prog, "too many %s (max %u)",
3168                       target_index == MESA_SHADER_VERTEX ?
3169                       "vertex shader inputs" : "fragment shader outputs",
3170                       max_index);
3171          return false;
3172       }
3173       to_assign[num_attr].slots = slots;
3174       to_assign[num_attr].var = var;
3175       num_attr++;
3176    }
3177 
3178    if (!do_assignment)
3179       return true;
3180 
3181    if (target_index == MESA_SHADER_VERTEX) {
3182       unsigned total_attribs_size =
3183          util_bitcount(used_locations & SAFE_MASK_FROM_INDEX(max_index)) +
3184          util_bitcount(double_storage_locations);
3185       if (total_attribs_size > max_index) {
3186          linker_error(prog,
3187                       "attempt to use %d vertex attribute slots only %d available ",
3188                       total_attribs_size, max_index);
3189          return false;
3190       }
3191    }
3192 
3193    /* If all of the attributes were assigned locations by the application (or
3194     * are built-in attributes with fixed locations), return early.  This should
3195     * be the common case.
3196     */
3197    if (num_attr == 0)
3198       return true;
3199 
3200    qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
3201 
3202    if (target_index == MESA_SHADER_VERTEX) {
3203       /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS.  It can
3204        * only be explicitly assigned by via glBindAttribLocation.  Mark it as
3205        * reserved to prevent it from being automatically allocated below.
3206        */
3207       find_deref_visitor find("gl_Vertex");
3208       find.run(sh->ir);
3209       if (find.variable_found())
3210          used_locations |= (1 << 0);
3211    }
3212 
3213    for (unsigned i = 0; i < num_attr; i++) {
3214       /* Mask representing the contiguous slots that will be used by this
3215        * attribute.
3216        */
3217       const unsigned use_mask = (1 << to_assign[i].slots) - 1;
3218 
3219       int location = find_available_slots(used_locations, to_assign[i].slots);
3220 
3221       if (location < 0) {
3222          const char *const string = (target_index == MESA_SHADER_VERTEX)
3223             ? "vertex shader input" : "fragment shader output";
3224 
3225          linker_error(prog,
3226                       "insufficient contiguous locations "
3227                       "available for %s `%s'\n",
3228                       string, to_assign[i].var->name);
3229          return false;
3230       }
3231 
3232       to_assign[i].var->data.location = generic_base + location;
3233       to_assign[i].var->data.is_unmatched_generic_inout = 0;
3234       used_locations |= (use_mask << location);
3235 
3236       if (to_assign[i].var->type->without_array()->is_dual_slot())
3237          double_storage_locations |= (use_mask << location);
3238    }
3239 
3240    /* Now that we have all the locations, from the GL 4.5 core spec, section
3241     * 11.1.1 (Vertex Attributes), dvec3, dvec4, dmat2x3, dmat2x4, dmat3,
3242     * dmat3x4, dmat4x3, and dmat4 count as consuming twice as many attributes
3243     * as equivalent single-precision types.
3244     */
3245    if (target_index == MESA_SHADER_VERTEX) {
3246       unsigned total_attribs_size =
3247          util_bitcount(used_locations & SAFE_MASK_FROM_INDEX(max_index)) +
3248          util_bitcount(double_storage_locations);
3249       if (total_attribs_size > max_index) {
3250          linker_error(prog,
3251                       "attempt to use %d vertex attribute slots only %d available ",
3252                       total_attribs_size, max_index);
3253          return false;
3254       }
3255    }
3256 
3257    return true;
3258 }
3259 
3260 /**
3261  * Match explicit locations of outputs to inputs and deactivate the
3262  * unmatch flag if found so we don't optimise them away.
3263  */
3264 static void
match_explicit_outputs_to_inputs(gl_linked_shader * producer,gl_linked_shader * consumer)3265 match_explicit_outputs_to_inputs(gl_linked_shader *producer,
3266                                  gl_linked_shader *consumer)
3267 {
3268    glsl_symbol_table parameters;
3269    ir_variable *explicit_locations[MAX_VARYINGS_INCL_PATCH][4] =
3270       { {NULL, NULL} };
3271 
3272    /* Find all shader outputs in the "producer" stage.
3273     */
3274    foreach_in_list(ir_instruction, node, producer->ir) {
3275       ir_variable *const var = node->as_variable();
3276 
3277       if ((var == NULL) || (var->data.mode != ir_var_shader_out))
3278          continue;
3279 
3280       if (var->data.explicit_location &&
3281           var->data.location >= VARYING_SLOT_VAR0) {
3282          const unsigned idx = var->data.location - VARYING_SLOT_VAR0;
3283          if (explicit_locations[idx][var->data.location_frac] == NULL)
3284             explicit_locations[idx][var->data.location_frac] = var;
3285 
3286          /* Always match TCS outputs. They are shared by all invocations
3287           * within a patch and can be used as shared memory.
3288           */
3289          if (producer->Stage == MESA_SHADER_TESS_CTRL)
3290             var->data.is_unmatched_generic_inout = 0;
3291       }
3292    }
3293 
3294    /* Match inputs to outputs */
3295    foreach_in_list(ir_instruction, node, consumer->ir) {
3296       ir_variable *const input = node->as_variable();
3297 
3298       if ((input == NULL) || (input->data.mode != ir_var_shader_in))
3299          continue;
3300 
3301       ir_variable *output = NULL;
3302       if (input->data.explicit_location
3303           && input->data.location >= VARYING_SLOT_VAR0) {
3304          output = explicit_locations[input->data.location - VARYING_SLOT_VAR0]
3305             [input->data.location_frac];
3306 
3307          if (output != NULL){
3308             input->data.is_unmatched_generic_inout = 0;
3309             output->data.is_unmatched_generic_inout = 0;
3310          }
3311       }
3312    }
3313 }
3314 
3315 /**
3316  * Store the gl_FragDepth layout in the gl_shader_program struct.
3317  */
3318 static void
store_fragdepth_layout(struct gl_shader_program * prog)3319 store_fragdepth_layout(struct gl_shader_program *prog)
3320 {
3321    if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
3322       return;
3323    }
3324 
3325    struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
3326 
3327    /* We don't look up the gl_FragDepth symbol directly because if
3328     * gl_FragDepth is not used in the shader, it's removed from the IR.
3329     * However, the symbol won't be removed from the symbol table.
3330     *
3331     * We're only interested in the cases where the variable is NOT removed
3332     * from the IR.
3333     */
3334    foreach_in_list(ir_instruction, node, ir) {
3335       ir_variable *const var = node->as_variable();
3336 
3337       if (var == NULL || var->data.mode != ir_var_shader_out) {
3338          continue;
3339       }
3340 
3341       if (strcmp(var->name, "gl_FragDepth") == 0) {
3342          switch (var->data.depth_layout) {
3343          case ir_depth_layout_none:
3344             prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
3345             return;
3346          case ir_depth_layout_any:
3347             prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
3348             return;
3349          case ir_depth_layout_greater:
3350             prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
3351             return;
3352          case ir_depth_layout_less:
3353             prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
3354             return;
3355          case ir_depth_layout_unchanged:
3356             prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
3357             return;
3358          default:
3359             assert(0);
3360             return;
3361          }
3362       }
3363    }
3364 }
3365 
3366 /**
3367  * Validate shader image resources.
3368  */
3369 static void
check_image_resources(struct gl_context * ctx,struct gl_shader_program * prog)3370 check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3371 {
3372    unsigned total_image_units = 0;
3373    unsigned fragment_outputs = 0;
3374    unsigned total_shader_storage_blocks = 0;
3375 
3376    if (!ctx->Extensions.ARB_shader_image_load_store)
3377       return;
3378 
3379    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3380       struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3381 
3382       if (sh) {
3383          total_image_units += sh->Program->info.num_images;
3384          total_shader_storage_blocks += sh->Program->info.num_ssbos;
3385 
3386          if (i == MESA_SHADER_FRAGMENT) {
3387             foreach_in_list(ir_instruction, node, sh->ir) {
3388                ir_variable *var = node->as_variable();
3389                if (var && var->data.mode == ir_var_shader_out)
3390                   /* since there are no double fs outputs - pass false */
3391                   fragment_outputs += var->type->count_attribute_slots(false);
3392             }
3393          }
3394       }
3395    }
3396 
3397    if (total_image_units > ctx->Const.MaxCombinedImageUniforms)
3398       linker_error(prog, "Too many combined image uniforms\n");
3399 
3400    if (total_image_units + fragment_outputs + total_shader_storage_blocks >
3401        ctx->Const.MaxCombinedShaderOutputResources)
3402       linker_error(prog, "Too many combined image uniforms, shader storage "
3403                          " buffers and fragment outputs\n");
3404 }
3405 
3406 
3407 /**
3408  * Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION
3409  * for a variable, checks for overlaps between other uniforms using explicit
3410  * locations.
3411  */
3412 static int
reserve_explicit_locations(struct gl_shader_program * prog,string_to_uint_map * map,ir_variable * var)3413 reserve_explicit_locations(struct gl_shader_program *prog,
3414                            string_to_uint_map *map, ir_variable *var)
3415 {
3416    unsigned slots = var->type->uniform_locations();
3417    unsigned max_loc = var->data.location + slots - 1;
3418    unsigned return_value = slots;
3419 
3420    /* Resize remap table if locations do not fit in the current one. */
3421    if (max_loc + 1 > prog->NumUniformRemapTable) {
3422       prog->UniformRemapTable =
3423          reralloc(prog, prog->UniformRemapTable,
3424                   gl_uniform_storage *,
3425                   max_loc + 1);
3426 
3427       if (!prog->UniformRemapTable) {
3428          linker_error(prog, "Out of memory during linking.\n");
3429          return -1;
3430       }
3431 
3432       /* Initialize allocated space. */
3433       for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++)
3434          prog->UniformRemapTable[i] = NULL;
3435 
3436       prog->NumUniformRemapTable = max_loc + 1;
3437    }
3438 
3439    for (unsigned i = 0; i < slots; i++) {
3440       unsigned loc = var->data.location + i;
3441 
3442       /* Check if location is already used. */
3443       if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3444 
3445          /* Possibly same uniform from a different stage, this is ok. */
3446          unsigned hash_loc;
3447          if (map->get(hash_loc, var->name) && hash_loc == loc - i) {
3448             return_value = 0;
3449             continue;
3450          }
3451 
3452          /* ARB_explicit_uniform_location specification states:
3453           *
3454           *     "No two default-block uniform variables in the program can have
3455           *     the same location, even if they are unused, otherwise a compiler
3456           *     or linker error will be generated."
3457           */
3458          linker_error(prog,
3459                       "location qualifier for uniform %s overlaps "
3460                       "previously used location\n",
3461                       var->name);
3462          return -1;
3463       }
3464 
3465       /* Initialize location as inactive before optimization
3466        * rounds and location assignment.
3467        */
3468       prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3469    }
3470 
3471    /* Note, base location used for arrays. */
3472    map->put(var->data.location, var->name);
3473 
3474    return return_value;
3475 }
3476 
3477 static bool
reserve_subroutine_explicit_locations(struct gl_shader_program * prog,struct gl_program * p,ir_variable * var)3478 reserve_subroutine_explicit_locations(struct gl_shader_program *prog,
3479                                       struct gl_program *p,
3480                                       ir_variable *var)
3481 {
3482    unsigned slots = var->type->uniform_locations();
3483    unsigned max_loc = var->data.location + slots - 1;
3484 
3485    /* Resize remap table if locations do not fit in the current one. */
3486    if (max_loc + 1 > p->sh.NumSubroutineUniformRemapTable) {
3487       p->sh.SubroutineUniformRemapTable =
3488          reralloc(p, p->sh.SubroutineUniformRemapTable,
3489                   gl_uniform_storage *,
3490                   max_loc + 1);
3491 
3492       if (!p->sh.SubroutineUniformRemapTable) {
3493          linker_error(prog, "Out of memory during linking.\n");
3494          return false;
3495       }
3496 
3497       /* Initialize allocated space. */
3498       for (unsigned i = p->sh.NumSubroutineUniformRemapTable; i < max_loc + 1; i++)
3499          p->sh.SubroutineUniformRemapTable[i] = NULL;
3500 
3501       p->sh.NumSubroutineUniformRemapTable = max_loc + 1;
3502    }
3503 
3504    for (unsigned i = 0; i < slots; i++) {
3505       unsigned loc = var->data.location + i;
3506 
3507       /* Check if location is already used. */
3508       if (p->sh.SubroutineUniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3509 
3510          /* ARB_explicit_uniform_location specification states:
3511           *     "No two subroutine uniform variables can have the same location
3512           *     in the same shader stage, otherwise a compiler or linker error
3513           *     will be generated."
3514           */
3515          linker_error(prog,
3516                       "location qualifier for uniform %s overlaps "
3517                       "previously used location\n",
3518                       var->name);
3519          return false;
3520       }
3521 
3522       /* Initialize location as inactive before optimization
3523        * rounds and location assignment.
3524        */
3525       p->sh.SubroutineUniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3526    }
3527 
3528    return true;
3529 }
3530 /**
3531  * Check and reserve all explicit uniform locations, called before
3532  * any optimizations happen to handle also inactive uniforms and
3533  * inactive array elements that may get trimmed away.
3534  */
3535 static void
check_explicit_uniform_locations(struct gl_context * ctx,struct gl_shader_program * prog)3536 check_explicit_uniform_locations(struct gl_context *ctx,
3537                                  struct gl_shader_program *prog)
3538 {
3539    prog->NumExplicitUniformLocations = 0;
3540 
3541    if (!ctx->Extensions.ARB_explicit_uniform_location)
3542       return;
3543 
3544    /* This map is used to detect if overlapping explicit locations
3545     * occur with the same uniform (from different stage) or a different one.
3546     */
3547    string_to_uint_map *uniform_map = new string_to_uint_map;
3548 
3549    if (!uniform_map) {
3550       linker_error(prog, "Out of memory during linking.\n");
3551       return;
3552    }
3553 
3554    unsigned entries_total = 0;
3555    unsigned mask = prog->data->linked_stages;
3556    while (mask) {
3557       const int i = u_bit_scan(&mask);
3558       struct gl_program *p = prog->_LinkedShaders[i]->Program;
3559 
3560       foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
3561          ir_variable *var = node->as_variable();
3562          if (!var || var->data.mode != ir_var_uniform)
3563             continue;
3564 
3565          if (var->data.explicit_location) {
3566             bool ret = false;
3567             if (var->type->without_array()->is_subroutine())
3568                ret = reserve_subroutine_explicit_locations(prog, p, var);
3569             else {
3570                int slots = reserve_explicit_locations(prog, uniform_map,
3571                                                       var);
3572                if (slots != -1) {
3573                   ret = true;
3574                   entries_total += slots;
3575                }
3576             }
3577             if (!ret) {
3578                delete uniform_map;
3579                return;
3580             }
3581          }
3582       }
3583    }
3584 
3585    link_util_update_empty_uniform_locations(prog);
3586 
3587    delete uniform_map;
3588    prog->NumExplicitUniformLocations = entries_total;
3589 }
3590 
3591 /* Function checks if a variable var is a packed varying and
3592  * if given name is part of packed varying's list.
3593  *
3594  * If a variable is a packed varying, it has a name like
3595  * 'packed:a,b,c' where a, b and c are separate variables.
3596  */
3597 static bool
included_in_packed_varying(ir_variable * var,const char * name)3598 included_in_packed_varying(ir_variable *var, const char *name)
3599 {
3600    if (strncmp(var->name, "packed:", 7) != 0)
3601       return false;
3602 
3603    char *list = strdup(var->name + 7);
3604    assert(list);
3605 
3606    bool found = false;
3607    char *saveptr;
3608    char *token = strtok_r(list, ",", &saveptr);
3609    while (token) {
3610       if (strcmp(token, name) == 0) {
3611          found = true;
3612          break;
3613       }
3614       token = strtok_r(NULL, ",", &saveptr);
3615    }
3616    free(list);
3617    return found;
3618 }
3619 
3620 /**
3621  * Function builds a stage reference bitmask from variable name.
3622  */
3623 static uint8_t
build_stageref(struct gl_shader_program * shProg,const char * name,unsigned mode)3624 build_stageref(struct gl_shader_program *shProg, const char *name,
3625                unsigned mode)
3626 {
3627    uint8_t stages = 0;
3628 
3629    /* Note, that we assume MAX 8 stages, if there will be more stages, type
3630     * used for reference mask in gl_program_resource will need to be changed.
3631     */
3632    assert(MESA_SHADER_STAGES < 8);
3633 
3634    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3635       struct gl_linked_shader *sh = shProg->_LinkedShaders[i];
3636       if (!sh)
3637          continue;
3638 
3639       /* Shader symbol table may contain variables that have
3640        * been optimized away. Search IR for the variable instead.
3641        */
3642       foreach_in_list(ir_instruction, node, sh->ir) {
3643          ir_variable *var = node->as_variable();
3644          if (var) {
3645             unsigned baselen = strlen(var->name);
3646 
3647             if (included_in_packed_varying(var, name)) {
3648                   stages |= (1 << i);
3649                   break;
3650             }
3651 
3652             /* Type needs to match if specified, otherwise we might
3653              * pick a variable with same name but different interface.
3654              */
3655             if (var->data.mode != mode)
3656                continue;
3657 
3658             if (strncmp(var->name, name, baselen) == 0) {
3659                /* Check for exact name matches but also check for arrays and
3660                 * structs.
3661                 */
3662                if (name[baselen] == '\0' ||
3663                    name[baselen] == '[' ||
3664                    name[baselen] == '.') {
3665                   stages |= (1 << i);
3666                   break;
3667                }
3668             }
3669          }
3670       }
3671    }
3672    return stages;
3673 }
3674 
3675 /**
3676  * Create gl_shader_variable from ir_variable class.
3677  */
3678 static gl_shader_variable *
create_shader_variable(struct gl_shader_program * shProg,const ir_variable * in,const char * name,const glsl_type * type,const glsl_type * interface_type,bool use_implicit_location,int location,const glsl_type * outermost_struct_type)3679 create_shader_variable(struct gl_shader_program *shProg,
3680                        const ir_variable *in,
3681                        const char *name, const glsl_type *type,
3682                        const glsl_type *interface_type,
3683                        bool use_implicit_location, int location,
3684                        const glsl_type *outermost_struct_type)
3685 {
3686    /* Allocate zero-initialized memory to ensure that bitfield padding
3687     * is zero.
3688     */
3689    gl_shader_variable *out = rzalloc(shProg, struct gl_shader_variable);
3690    if (!out)
3691       return NULL;
3692 
3693    /* Since gl_VertexID may be lowered to gl_VertexIDMESA, but applications
3694     * expect to see gl_VertexID in the program resource list.  Pretend.
3695     */
3696    if (in->data.mode == ir_var_system_value &&
3697        in->data.location == SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) {
3698       out->name = ralloc_strdup(shProg, "gl_VertexID");
3699    } else if ((in->data.mode == ir_var_shader_out &&
3700                in->data.location == VARYING_SLOT_TESS_LEVEL_OUTER) ||
3701               (in->data.mode == ir_var_system_value &&
3702                in->data.location == SYSTEM_VALUE_TESS_LEVEL_OUTER)) {
3703       out->name = ralloc_strdup(shProg, "gl_TessLevelOuter");
3704       type = glsl_type::get_array_instance(glsl_type::float_type, 4);
3705    } else if ((in->data.mode == ir_var_shader_out &&
3706                in->data.location == VARYING_SLOT_TESS_LEVEL_INNER) ||
3707               (in->data.mode == ir_var_system_value &&
3708                in->data.location == SYSTEM_VALUE_TESS_LEVEL_INNER)) {
3709       out->name = ralloc_strdup(shProg, "gl_TessLevelInner");
3710       type = glsl_type::get_array_instance(glsl_type::float_type, 2);
3711    } else {
3712       out->name = ralloc_strdup(shProg, name);
3713    }
3714 
3715    if (!out->name)
3716       return NULL;
3717 
3718    /* The ARB_program_interface_query spec says:
3719     *
3720     *     "Not all active variables are assigned valid locations; the
3721     *     following variables will have an effective location of -1:
3722     *
3723     *      * uniforms declared as atomic counters;
3724     *
3725     *      * members of a uniform block;
3726     *
3727     *      * built-in inputs, outputs, and uniforms (starting with "gl_"); and
3728     *
3729     *      * inputs or outputs not declared with a "location" layout
3730     *        qualifier, except for vertex shader inputs and fragment shader
3731     *        outputs."
3732     */
3733    if (in->type->is_atomic_uint() || is_gl_identifier(in->name) ||
3734        !(in->data.explicit_location || use_implicit_location)) {
3735       out->location = -1;
3736    } else {
3737       out->location = location;
3738    }
3739 
3740    out->type = type;
3741    out->outermost_struct_type = outermost_struct_type;
3742    out->interface_type = interface_type;
3743    out->component = in->data.location_frac;
3744    out->index = in->data.index;
3745    out->patch = in->data.patch;
3746    out->mode = in->data.mode;
3747    out->interpolation = in->data.interpolation;
3748    out->explicit_location = in->data.explicit_location;
3749    out->precision = in->data.precision;
3750 
3751    return out;
3752 }
3753 
3754 static bool
add_shader_variable(const struct gl_context * ctx,struct gl_shader_program * shProg,struct set * resource_set,unsigned stage_mask,GLenum programInterface,ir_variable * var,const char * name,const glsl_type * type,bool use_implicit_location,int location,bool inouts_share_location,const glsl_type * outermost_struct_type=NULL)3755 add_shader_variable(const struct gl_context *ctx,
3756                     struct gl_shader_program *shProg,
3757                     struct set *resource_set,
3758                     unsigned stage_mask,
3759                     GLenum programInterface, ir_variable *var,
3760                     const char *name, const glsl_type *type,
3761                     bool use_implicit_location, int location,
3762                     bool inouts_share_location,
3763                     const glsl_type *outermost_struct_type = NULL)
3764 {
3765    const glsl_type *interface_type = var->get_interface_type();
3766 
3767    if (outermost_struct_type == NULL) {
3768       if (var->data.from_named_ifc_block) {
3769          const char *interface_name = interface_type->name;
3770 
3771          if (interface_type->is_array()) {
3772             /* Issue #16 of the ARB_program_interface_query spec says:
3773              *
3774              * "* If a variable is a member of an interface block without an
3775              *    instance name, it is enumerated using just the variable name.
3776              *
3777              *  * If a variable is a member of an interface block with an
3778              *    instance name, it is enumerated as "BlockName.Member", where
3779              *    "BlockName" is the name of the interface block (not the
3780              *    instance name) and "Member" is the name of the variable."
3781              *
3782              * In particular, it indicates that it should be "BlockName",
3783              * not "BlockName[array length]".  The conformance suite and
3784              * dEQP both require this behavior.
3785              *
3786              * Here, we unwrap the extra array level added by named interface
3787              * block array lowering so we have the correct variable type.  We
3788              * also unwrap the interface type when constructing the name.
3789              *
3790              * We leave interface_type the same so that ES 3.x SSO pipeline
3791              * validation can enforce the rules requiring array length to
3792              * match on interface blocks.
3793              */
3794             type = type->fields.array;
3795 
3796             interface_name = interface_type->fields.array->name;
3797          }
3798 
3799          name = ralloc_asprintf(shProg, "%s.%s", interface_name, name);
3800       }
3801    }
3802 
3803    switch (type->base_type) {
3804    case GLSL_TYPE_STRUCT: {
3805       /* The ARB_program_interface_query spec says:
3806        *
3807        *     "For an active variable declared as a structure, a separate entry
3808        *     will be generated for each active structure member.  The name of
3809        *     each entry is formed by concatenating the name of the structure,
3810        *     the "."  character, and the name of the structure member.  If a
3811        *     structure member to enumerate is itself a structure or array,
3812        *     these enumeration rules are applied recursively."
3813        */
3814       if (outermost_struct_type == NULL)
3815          outermost_struct_type = type;
3816 
3817       unsigned field_location = location;
3818       for (unsigned i = 0; i < type->length; i++) {
3819          const struct glsl_struct_field *field = &type->fields.structure[i];
3820          char *field_name = ralloc_asprintf(shProg, "%s.%s", name, field->name);
3821          if (!add_shader_variable(ctx, shProg, resource_set,
3822                                   stage_mask, programInterface,
3823                                   var, field_name, field->type,
3824                                   use_implicit_location, field_location,
3825                                   false, outermost_struct_type))
3826             return false;
3827 
3828          field_location += field->type->count_attribute_slots(false);
3829       }
3830       return true;
3831    }
3832 
3833    case GLSL_TYPE_ARRAY: {
3834       /* The ARB_program_interface_query spec says:
3835        *
3836        *     "For an active variable declared as an array of basic types, a
3837        *      single entry will be generated, with its name string formed by
3838        *      concatenating the name of the array and the string "[0]"."
3839        *
3840        *     "For an active variable declared as an array of an aggregate data
3841        *      type (structures or arrays), a separate entry will be generated
3842        *      for each active array element, unless noted immediately below.
3843        *      The name of each entry is formed by concatenating the name of
3844        *      the array, the "[" character, an integer identifying the element
3845        *      number, and the "]" character.  These enumeration rules are
3846        *      applied recursively, treating each enumerated array element as a
3847        *      separate active variable."
3848        */
3849       const struct glsl_type *array_type = type->fields.array;
3850       if (array_type->base_type == GLSL_TYPE_STRUCT ||
3851           array_type->base_type == GLSL_TYPE_ARRAY) {
3852          unsigned elem_location = location;
3853          unsigned stride = inouts_share_location ? 0 :
3854                            array_type->count_attribute_slots(false);
3855          for (unsigned i = 0; i < type->length; i++) {
3856             char *elem = ralloc_asprintf(shProg, "%s[%d]", name, i);
3857             if (!add_shader_variable(ctx, shProg, resource_set,
3858                                      stage_mask, programInterface,
3859                                      var, elem, array_type,
3860                                      use_implicit_location, elem_location,
3861                                      false, outermost_struct_type))
3862                return false;
3863             elem_location += stride;
3864          }
3865          return true;
3866       }
3867       /* fallthrough */
3868    }
3869 
3870    default: {
3871       /* The ARB_program_interface_query spec says:
3872        *
3873        *     "For an active variable declared as a single instance of a basic
3874        *     type, a single entry will be generated, using the variable name
3875        *     from the shader source."
3876        */
3877       gl_shader_variable *sha_v =
3878          create_shader_variable(shProg, var, name, type, interface_type,
3879                                 use_implicit_location, location,
3880                                 outermost_struct_type);
3881       if (!sha_v)
3882          return false;
3883 
3884       return link_util_add_program_resource(shProg, resource_set,
3885                                             programInterface, sha_v, stage_mask);
3886    }
3887    }
3888 }
3889 
3890 static bool
inout_has_same_location(const ir_variable * var,unsigned stage)3891 inout_has_same_location(const ir_variable *var, unsigned stage)
3892 {
3893    if (!var->data.patch &&
3894        ((var->data.mode == ir_var_shader_out &&
3895          stage == MESA_SHADER_TESS_CTRL) ||
3896         (var->data.mode == ir_var_shader_in &&
3897          (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_TESS_EVAL ||
3898           stage == MESA_SHADER_GEOMETRY))))
3899       return true;
3900    else
3901       return false;
3902 }
3903 
3904 static bool
add_interface_variables(const struct gl_context * ctx,struct gl_shader_program * shProg,struct set * resource_set,unsigned stage,GLenum programInterface)3905 add_interface_variables(const struct gl_context *ctx,
3906                         struct gl_shader_program *shProg,
3907                         struct set *resource_set,
3908                         unsigned stage, GLenum programInterface)
3909 {
3910    exec_list *ir = shProg->_LinkedShaders[stage]->ir;
3911 
3912    foreach_in_list(ir_instruction, node, ir) {
3913       ir_variable *var = node->as_variable();
3914 
3915       if (!var || var->data.how_declared == ir_var_hidden)
3916          continue;
3917 
3918       int loc_bias;
3919 
3920       switch (var->data.mode) {
3921       case ir_var_system_value:
3922       case ir_var_shader_in:
3923          if (programInterface != GL_PROGRAM_INPUT)
3924             continue;
3925          loc_bias = (stage == MESA_SHADER_VERTEX) ? int(VERT_ATTRIB_GENERIC0)
3926                                                   : int(VARYING_SLOT_VAR0);
3927          break;
3928       case ir_var_shader_out:
3929          if (programInterface != GL_PROGRAM_OUTPUT)
3930             continue;
3931          loc_bias = (stage == MESA_SHADER_FRAGMENT) ? int(FRAG_RESULT_DATA0)
3932                                                     : int(VARYING_SLOT_VAR0);
3933          break;
3934       default:
3935          continue;
3936       };
3937 
3938       if (var->data.patch)
3939          loc_bias = int(VARYING_SLOT_PATCH0);
3940 
3941       /* Skip packed varyings, packed varyings are handled separately
3942        * by add_packed_varyings.
3943        */
3944       if (strncmp(var->name, "packed:", 7) == 0)
3945          continue;
3946 
3947       /* Skip fragdata arrays, these are handled separately
3948        * by add_fragdata_arrays.
3949        */
3950       if (strncmp(var->name, "gl_out_FragData", 15) == 0)
3951          continue;
3952 
3953       const bool vs_input_or_fs_output =
3954          (stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in) ||
3955          (stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_out);
3956 
3957       if (!add_shader_variable(ctx, shProg, resource_set,
3958                                1 << stage, programInterface,
3959                                var, var->name, var->type, vs_input_or_fs_output,
3960                                var->data.location - loc_bias,
3961                                inout_has_same_location(var, stage)))
3962          return false;
3963    }
3964    return true;
3965 }
3966 
3967 static bool
add_packed_varyings(const struct gl_context * ctx,struct gl_shader_program * shProg,struct set * resource_set,int stage,GLenum type)3968 add_packed_varyings(const struct gl_context *ctx,
3969                     struct gl_shader_program *shProg,
3970                     struct set *resource_set,
3971                     int stage, GLenum type)
3972 {
3973    struct gl_linked_shader *sh = shProg->_LinkedShaders[stage];
3974    GLenum iface;
3975 
3976    if (!sh || !sh->packed_varyings)
3977       return true;
3978 
3979    foreach_in_list(ir_instruction, node, sh->packed_varyings) {
3980       ir_variable *var = node->as_variable();
3981       if (var) {
3982          switch (var->data.mode) {
3983          case ir_var_shader_in:
3984             iface = GL_PROGRAM_INPUT;
3985             break;
3986          case ir_var_shader_out:
3987             iface = GL_PROGRAM_OUTPUT;
3988             break;
3989          default:
3990             unreachable("unexpected type");
3991          }
3992 
3993          if (type == iface) {
3994             const int stage_mask =
3995                build_stageref(shProg, var->name, var->data.mode);
3996             if (!add_shader_variable(ctx, shProg, resource_set,
3997                                      stage_mask,
3998                                      iface, var, var->name, var->type, false,
3999                                      var->data.location - VARYING_SLOT_VAR0,
4000                                      inout_has_same_location(var, stage)))
4001                return false;
4002          }
4003       }
4004    }
4005    return true;
4006 }
4007 
4008 static bool
add_fragdata_arrays(const struct gl_context * ctx,struct gl_shader_program * shProg,struct set * resource_set)4009 add_fragdata_arrays(const struct gl_context *ctx,
4010                     struct gl_shader_program *shProg,
4011                     struct set *resource_set)
4012 {
4013    struct gl_linked_shader *sh = shProg->_LinkedShaders[MESA_SHADER_FRAGMENT];
4014 
4015    if (!sh || !sh->fragdata_arrays)
4016       return true;
4017 
4018    foreach_in_list(ir_instruction, node, sh->fragdata_arrays) {
4019       ir_variable *var = node->as_variable();
4020       if (var) {
4021          assert(var->data.mode == ir_var_shader_out);
4022 
4023          if (!add_shader_variable(ctx, shProg, resource_set,
4024                                   1 << MESA_SHADER_FRAGMENT,
4025                                   GL_PROGRAM_OUTPUT, var, var->name, var->type,
4026                                   true, var->data.location - FRAG_RESULT_DATA0,
4027                                   false))
4028             return false;
4029       }
4030    }
4031    return true;
4032 }
4033 
4034 /**
4035  * Builds up a list of program resources that point to existing
4036  * resource data.
4037  */
4038 void
build_program_resource_list(struct gl_context * ctx,struct gl_shader_program * shProg,bool add_packed_varyings_only)4039 build_program_resource_list(struct gl_context *ctx,
4040                             struct gl_shader_program *shProg,
4041                             bool add_packed_varyings_only)
4042 {
4043    /* Rebuild resource list. */
4044    if (shProg->data->ProgramResourceList) {
4045       ralloc_free(shProg->data->ProgramResourceList);
4046       shProg->data->ProgramResourceList = NULL;
4047       shProg->data->NumProgramResourceList = 0;
4048    }
4049 
4050    int input_stage = MESA_SHADER_STAGES, output_stage = 0;
4051 
4052    /* Determine first input and final output stage. These are used to
4053     * detect which variables should be enumerated in the resource list
4054     * for GL_PROGRAM_INPUT and GL_PROGRAM_OUTPUT.
4055     */
4056    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4057       if (!shProg->_LinkedShaders[i])
4058          continue;
4059       if (input_stage == MESA_SHADER_STAGES)
4060          input_stage = i;
4061       output_stage = i;
4062    }
4063 
4064    /* Empty shader, no resources. */
4065    if (input_stage == MESA_SHADER_STAGES && output_stage == 0)
4066       return;
4067 
4068    struct set *resource_set = _mesa_pointer_set_create(NULL);
4069 
4070    /* Program interface needs to expose varyings in case of SSO. */
4071    if (shProg->SeparateShader) {
4072       if (!add_packed_varyings(ctx, shProg, resource_set,
4073                                input_stage, GL_PROGRAM_INPUT))
4074          return;
4075 
4076       if (!add_packed_varyings(ctx, shProg, resource_set,
4077                                output_stage, GL_PROGRAM_OUTPUT))
4078          return;
4079    }
4080 
4081    if (add_packed_varyings_only) {
4082       _mesa_set_destroy(resource_set, NULL);
4083       return;
4084    }
4085 
4086    if (!add_fragdata_arrays(ctx, shProg, resource_set))
4087       return;
4088 
4089    /* Add inputs and outputs to the resource list. */
4090    if (!add_interface_variables(ctx, shProg, resource_set,
4091                                 input_stage, GL_PROGRAM_INPUT))
4092       return;
4093 
4094    if (!add_interface_variables(ctx, shProg, resource_set,
4095                                 output_stage, GL_PROGRAM_OUTPUT))
4096       return;
4097 
4098    if (shProg->last_vert_prog) {
4099       struct gl_transform_feedback_info *linked_xfb =
4100          shProg->last_vert_prog->sh.LinkedTransformFeedback;
4101 
4102       /* Add transform feedback varyings. */
4103       if (linked_xfb->NumVarying > 0) {
4104          for (int i = 0; i < linked_xfb->NumVarying; i++) {
4105             if (!link_util_add_program_resource(shProg, resource_set,
4106                                                 GL_TRANSFORM_FEEDBACK_VARYING,
4107                                                 &linked_xfb->Varyings[i], 0))
4108             return;
4109          }
4110       }
4111 
4112       /* Add transform feedback buffers. */
4113       for (unsigned i = 0; i < ctx->Const.MaxTransformFeedbackBuffers; i++) {
4114          if ((linked_xfb->ActiveBuffers >> i) & 1) {
4115             linked_xfb->Buffers[i].Binding = i;
4116             if (!link_util_add_program_resource(shProg, resource_set,
4117                                                 GL_TRANSFORM_FEEDBACK_BUFFER,
4118                                                 &linked_xfb->Buffers[i], 0))
4119             return;
4120          }
4121       }
4122    }
4123 
4124    int top_level_array_base_offset = -1;
4125    int top_level_array_size_in_bytes = -1;
4126    int second_element_offset = -1;
4127    int buffer_block_index = -1;
4128 
4129    /* Add uniforms from uniform storage. */
4130    for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
4131       /* Do not add uniforms internally used by Mesa. */
4132       if (shProg->data->UniformStorage[i].hidden)
4133          continue;
4134 
4135       bool is_shader_storage =
4136         shProg->data->UniformStorage[i].is_shader_storage;
4137       GLenum type = is_shader_storage ? GL_BUFFER_VARIABLE : GL_UNIFORM;
4138       if (!link_util_should_add_buffer_variable(shProg,
4139                                                 &shProg->data->UniformStorage[i],
4140                                                 top_level_array_base_offset,
4141                                                 top_level_array_size_in_bytes,
4142                                                 second_element_offset,
4143                                                 buffer_block_index))
4144          continue;
4145 
4146       if (is_shader_storage) {
4147          /* From the OpenGL 4.6 specification, 7.3.1.1 Naming Active Resources:
4148           *
4149           *    "For an active shader storage block member declared as an array
4150           *    of an aggregate type, an entry will be generated only for the
4151           *    first array element, regardless of its type. Such block members
4152           *    are referred to as top-level arrays. If the block member is an
4153           *    aggregate type, the enumeration rules are then applied
4154           *    recursively."
4155           *
4156           * Below we update our tracking values used by
4157           * link_util_should_add_buffer_variable(). We only want to reset the
4158           * offsets once we have moved past the first element.
4159           */
4160          if (shProg->data->UniformStorage[i].offset >= second_element_offset) {
4161             top_level_array_base_offset =
4162                shProg->data->UniformStorage[i].offset;
4163 
4164             top_level_array_size_in_bytes =
4165                shProg->data->UniformStorage[i].top_level_array_size *
4166                shProg->data->UniformStorage[i].top_level_array_stride;
4167 
4168             /* Set or reset the second element offset. For non arrays this
4169              * will be set to -1.
4170              */
4171             second_element_offset = top_level_array_size_in_bytes ?
4172                top_level_array_base_offset +
4173                shProg->data->UniformStorage[i].top_level_array_stride : -1;
4174          }
4175 
4176          buffer_block_index = shProg->data->UniformStorage[i].block_index;
4177       }
4178 
4179       uint8_t stageref = shProg->data->UniformStorage[i].active_shader_mask;
4180       if (!link_util_add_program_resource(shProg, resource_set, type,
4181                                           &shProg->data->UniformStorage[i], stageref))
4182          return;
4183    }
4184 
4185    /* Add program uniform blocks. */
4186    for (unsigned i = 0; i < shProg->data->NumUniformBlocks; i++) {
4187       if (!link_util_add_program_resource(shProg, resource_set, GL_UNIFORM_BLOCK,
4188                                           &shProg->data->UniformBlocks[i], 0))
4189          return;
4190    }
4191 
4192    /* Add program shader storage blocks. */
4193    for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
4194       if (!link_util_add_program_resource(shProg, resource_set, GL_SHADER_STORAGE_BLOCK,
4195                                           &shProg->data->ShaderStorageBlocks[i], 0))
4196          return;
4197    }
4198 
4199    /* Add atomic counter buffers. */
4200    for (unsigned i = 0; i < shProg->data->NumAtomicBuffers; i++) {
4201       if (!link_util_add_program_resource(shProg, resource_set, GL_ATOMIC_COUNTER_BUFFER,
4202                                           &shProg->data->AtomicBuffers[i], 0))
4203          return;
4204    }
4205 
4206    for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
4207       GLenum type;
4208       if (!shProg->data->UniformStorage[i].hidden)
4209          continue;
4210 
4211       for (int j = MESA_SHADER_VERTEX; j < MESA_SHADER_STAGES; j++) {
4212          if (!shProg->data->UniformStorage[i].opaque[j].active ||
4213              !shProg->data->UniformStorage[i].type->is_subroutine())
4214             continue;
4215 
4216          type = _mesa_shader_stage_to_subroutine_uniform((gl_shader_stage)j);
4217          /* add shader subroutines */
4218          if (!link_util_add_program_resource(shProg, resource_set,
4219                                              type, &shProg->data->UniformStorage[i], 0))
4220             return;
4221       }
4222    }
4223 
4224    unsigned mask = shProg->data->linked_stages;
4225    while (mask) {
4226       const int i = u_bit_scan(&mask);
4227       struct gl_program *p = shProg->_LinkedShaders[i]->Program;
4228 
4229       GLuint type = _mesa_shader_stage_to_subroutine((gl_shader_stage)i);
4230       for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4231          if (!link_util_add_program_resource(shProg, resource_set,
4232                                              type, &p->sh.SubroutineFunctions[j], 0))
4233             return;
4234       }
4235    }
4236 
4237    _mesa_set_destroy(resource_set, NULL);
4238 }
4239 
4240 /**
4241  * This check is done to make sure we allow only constant expression
4242  * indexing and "constant-index-expression" (indexing with an expression
4243  * that includes loop induction variable).
4244  */
4245 static bool
validate_sampler_array_indexing(struct gl_context * ctx,struct gl_shader_program * prog)4246 validate_sampler_array_indexing(struct gl_context *ctx,
4247                                 struct gl_shader_program *prog)
4248 {
4249    dynamic_sampler_array_indexing_visitor v;
4250    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4251       if (prog->_LinkedShaders[i] == NULL)
4252          continue;
4253 
4254       bool no_dynamic_indexing =
4255          ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectSampler;
4256 
4257       /* Search for array derefs in shader. */
4258       v.run(prog->_LinkedShaders[i]->ir);
4259       if (v.uses_dynamic_sampler_array_indexing()) {
4260          const char *msg = "sampler arrays indexed with non-constant "
4261                            "expressions is forbidden in GLSL %s %u";
4262          /* Backend has indicated that it has no dynamic indexing support. */
4263          if (no_dynamic_indexing) {
4264             linker_error(prog, msg, prog->IsES ? "ES" : "",
4265                          prog->data->Version);
4266             return false;
4267          } else {
4268             linker_warning(prog, msg, prog->IsES ? "ES" : "",
4269                            prog->data->Version);
4270          }
4271       }
4272    }
4273    return true;
4274 }
4275 
4276 static void
link_assign_subroutine_types(struct gl_shader_program * prog)4277 link_assign_subroutine_types(struct gl_shader_program *prog)
4278 {
4279    unsigned mask = prog->data->linked_stages;
4280    while (mask) {
4281       const int i = u_bit_scan(&mask);
4282       gl_program *p = prog->_LinkedShaders[i]->Program;
4283 
4284       p->sh.MaxSubroutineFunctionIndex = 0;
4285       foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
4286          ir_function *fn = node->as_function();
4287          if (!fn)
4288             continue;
4289 
4290          if (fn->is_subroutine)
4291             p->sh.NumSubroutineUniformTypes++;
4292 
4293          if (!fn->num_subroutine_types)
4294             continue;
4295 
4296          /* these should have been calculated earlier. */
4297          assert(fn->subroutine_index != -1);
4298          if (p->sh.NumSubroutineFunctions + 1 > MAX_SUBROUTINES) {
4299             linker_error(prog, "Too many subroutine functions declared.\n");
4300             return;
4301          }
4302          p->sh.SubroutineFunctions = reralloc(p, p->sh.SubroutineFunctions,
4303                                             struct gl_subroutine_function,
4304                                             p->sh.NumSubroutineFunctions + 1);
4305          p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].name = ralloc_strdup(p, fn->name);
4306          p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].num_compat_types = fn->num_subroutine_types;
4307          p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types =
4308             ralloc_array(p, const struct glsl_type *,
4309                          fn->num_subroutine_types);
4310 
4311          /* From Section 4.4.4(Subroutine Function Layout Qualifiers) of the
4312           * GLSL 4.5 spec:
4313           *
4314           *    "Each subroutine with an index qualifier in the shader must be
4315           *    given a unique index, otherwise a compile or link error will be
4316           *    generated."
4317           */
4318          for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4319             if (p->sh.SubroutineFunctions[j].index != -1 &&
4320                 p->sh.SubroutineFunctions[j].index == fn->subroutine_index) {
4321                linker_error(prog, "each subroutine index qualifier in the "
4322                             "shader must be unique\n");
4323                return;
4324             }
4325          }
4326          p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].index =
4327             fn->subroutine_index;
4328 
4329          if (fn->subroutine_index > (int)p->sh.MaxSubroutineFunctionIndex)
4330             p->sh.MaxSubroutineFunctionIndex = fn->subroutine_index;
4331 
4332          for (int j = 0; j < fn->num_subroutine_types; j++)
4333             p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types[j] = fn->subroutine_types[j];
4334          p->sh.NumSubroutineFunctions++;
4335       }
4336    }
4337 }
4338 
4339 static void
verify_subroutine_associated_funcs(struct gl_shader_program * prog)4340 verify_subroutine_associated_funcs(struct gl_shader_program *prog)
4341 {
4342    unsigned mask = prog->data->linked_stages;
4343    while (mask) {
4344       const int i = u_bit_scan(&mask);
4345       gl_program *p = prog->_LinkedShaders[i]->Program;
4346       glsl_symbol_table *symbols = prog->_LinkedShaders[i]->symbols;
4347 
4348       /* Section 6.1.2 (Subroutines) of the GLSL 4.00 spec says:
4349        *
4350        *   "A program will fail to compile or link if any shader
4351        *    or stage contains two or more functions with the same
4352        *    name if the name is associated with a subroutine type."
4353        */
4354       for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4355          unsigned definitions = 0;
4356          char *name = p->sh.SubroutineFunctions[j].name;
4357          ir_function *fn = symbols->get_function(name);
4358 
4359          /* Calculate number of function definitions with the same name */
4360          foreach_in_list(ir_function_signature, sig, &fn->signatures) {
4361             if (sig->is_defined) {
4362                if (++definitions > 1) {
4363                   linker_error(prog, "%s shader contains two or more function "
4364                                "definitions with name `%s', which is "
4365                                "associated with a subroutine type.\n",
4366                                _mesa_shader_stage_to_string(i),
4367                                fn->name);
4368                   return;
4369                }
4370             }
4371          }
4372       }
4373    }
4374 }
4375 
4376 
4377 static void
set_always_active_io(exec_list * ir,ir_variable_mode io_mode)4378 set_always_active_io(exec_list *ir, ir_variable_mode io_mode)
4379 {
4380    assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out);
4381 
4382    foreach_in_list(ir_instruction, node, ir) {
4383       ir_variable *const var = node->as_variable();
4384 
4385       if (var == NULL || var->data.mode != io_mode)
4386          continue;
4387 
4388       /* Don't set always active on builtins that haven't been redeclared */
4389       if (var->data.how_declared == ir_var_declared_implicitly)
4390          continue;
4391 
4392       var->data.always_active_io = true;
4393    }
4394 }
4395 
4396 /**
4397  * When separate shader programs are enabled, only input/outputs between
4398  * the stages of a multi-stage separate program can be safely removed
4399  * from the shader interface. Other inputs/outputs must remain active.
4400  */
4401 static void
disable_varying_optimizations_for_sso(struct gl_shader_program * prog)4402 disable_varying_optimizations_for_sso(struct gl_shader_program *prog)
4403 {
4404    unsigned first, last;
4405    assert(prog->SeparateShader);
4406 
4407    first = MESA_SHADER_STAGES;
4408    last = 0;
4409 
4410    /* Determine first and last stage. Excluding the compute stage */
4411    for (unsigned i = 0; i < MESA_SHADER_COMPUTE; i++) {
4412       if (!prog->_LinkedShaders[i])
4413          continue;
4414       if (first == MESA_SHADER_STAGES)
4415          first = i;
4416       last = i;
4417    }
4418 
4419    if (first == MESA_SHADER_STAGES)
4420       return;
4421 
4422    for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4423       gl_linked_shader *sh = prog->_LinkedShaders[stage];
4424       if (!sh)
4425          continue;
4426 
4427       /* Prevent the removal of inputs to the first and outputs from the last
4428        * stage, unless they are the initial pipeline inputs or final pipeline
4429        * outputs, respectively.
4430        *
4431        * The removal of IO between shaders in the same program is always
4432        * allowed.
4433        */
4434       if (stage == first && stage != MESA_SHADER_VERTEX)
4435          set_always_active_io(sh->ir, ir_var_shader_in);
4436       if (stage == last && stage != MESA_SHADER_FRAGMENT)
4437          set_always_active_io(sh->ir, ir_var_shader_out);
4438    }
4439 }
4440 
4441 static void
link_and_validate_uniforms(struct gl_context * ctx,struct gl_shader_program * prog)4442 link_and_validate_uniforms(struct gl_context *ctx,
4443                            struct gl_shader_program *prog)
4444 {
4445    assert(!ctx->Const.UseNIRGLSLLinker);
4446 
4447    update_array_sizes(prog);
4448    link_assign_uniform_locations(prog, ctx);
4449 
4450    if (prog->data->LinkStatus == LINKING_FAILURE)
4451       return;
4452 
4453    link_util_calculate_subroutine_compat(prog);
4454    link_util_check_uniform_resources(ctx, prog);
4455    link_util_check_subroutine_resources(prog);
4456    check_image_resources(ctx, prog);
4457    link_assign_atomic_counter_resources(ctx, prog);
4458    link_check_atomic_counter_resources(ctx, prog);
4459 }
4460 
4461 static bool
link_varyings_and_uniforms(unsigned first,unsigned last,struct gl_context * ctx,struct gl_shader_program * prog,void * mem_ctx)4462 link_varyings_and_uniforms(unsigned first, unsigned last,
4463                            struct gl_context *ctx,
4464                            struct gl_shader_program *prog, void *mem_ctx)
4465 {
4466    /* Mark all generic shader inputs and outputs as unpaired. */
4467    for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) {
4468       if (prog->_LinkedShaders[i] != NULL) {
4469          link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir);
4470       }
4471    }
4472 
4473    unsigned prev = first;
4474    for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4475       if (prog->_LinkedShaders[i] == NULL)
4476          continue;
4477 
4478       match_explicit_outputs_to_inputs(prog->_LinkedShaders[prev],
4479                                        prog->_LinkedShaders[i]);
4480       prev = i;
4481    }
4482 
4483    if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4484                                             MESA_SHADER_VERTEX, true)) {
4485       return false;
4486    }
4487 
4488    if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4489                                             MESA_SHADER_FRAGMENT, true)) {
4490       return false;
4491    }
4492 
4493    prog->last_vert_prog = NULL;
4494    for (int i = MESA_SHADER_GEOMETRY; i >= MESA_SHADER_VERTEX; i--) {
4495       if (prog->_LinkedShaders[i] == NULL)
4496          continue;
4497 
4498       prog->last_vert_prog = prog->_LinkedShaders[i]->Program;
4499       break;
4500    }
4501 
4502    if (!link_varyings(prog, first, last, ctx, mem_ctx))
4503       return false;
4504 
4505    if (!ctx->Const.UseNIRGLSLLinker)
4506       link_and_validate_uniforms(ctx, prog);
4507 
4508    if (!prog->data->LinkStatus)
4509       return false;
4510 
4511    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4512       if (prog->_LinkedShaders[i] == NULL)
4513          continue;
4514 
4515       const struct gl_shader_compiler_options *options =
4516          &ctx->Const.ShaderCompilerOptions[i];
4517 
4518       if (options->LowerBufferInterfaceBlocks)
4519          lower_ubo_reference(prog->_LinkedShaders[i],
4520                              options->ClampBlockIndicesToArrayBounds,
4521                              ctx->Const.UseSTD430AsDefaultPacking);
4522 
4523       if (i == MESA_SHADER_COMPUTE)
4524          lower_shared_reference(ctx, prog, prog->_LinkedShaders[i]);
4525 
4526       lower_vector_derefs(prog->_LinkedShaders[i]);
4527       do_vec_index_to_swizzle(prog->_LinkedShaders[i]->ir);
4528    }
4529 
4530    return true;
4531 }
4532 
4533 static void
linker_optimisation_loop(struct gl_context * ctx,exec_list * ir,unsigned stage)4534 linker_optimisation_loop(struct gl_context *ctx, exec_list *ir,
4535                          unsigned stage)
4536 {
4537       if (ctx->Const.GLSLOptimizeConservatively) {
4538          /* Run it just once. */
4539          do_common_optimization(ir, true, false,
4540                                 &ctx->Const.ShaderCompilerOptions[stage],
4541                                 ctx->Const.NativeIntegers);
4542       } else {
4543          /* Repeat it until it stops making changes. */
4544          while (do_common_optimization(ir, true, false,
4545                                        &ctx->Const.ShaderCompilerOptions[stage],
4546                                        ctx->Const.NativeIntegers))
4547             ;
4548       }
4549 }
4550 
4551 void
link_shaders(struct gl_context * ctx,struct gl_shader_program * prog)4552 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
4553 {
4554    prog->data->LinkStatus = LINKING_SUCCESS; /* All error paths will set this to false */
4555    prog->data->Validated = false;
4556 
4557    /* Section 7.3 (Program Objects) of the OpenGL 4.5 Core Profile spec says:
4558     *
4559     *     "Linking can fail for a variety of reasons as specified in the
4560     *     OpenGL Shading Language Specification, as well as any of the
4561     *     following reasons:
4562     *
4563     *     - No shader objects are attached to program."
4564     *
4565     * The Compatibility Profile specification does not list the error.  In
4566     * Compatibility Profile missing shader stages are replaced by
4567     * fixed-function.  This applies to the case where all stages are
4568     * missing.
4569     */
4570    if (prog->NumShaders == 0) {
4571       if (ctx->API != API_OPENGL_COMPAT)
4572          linker_error(prog, "no shaders attached to the program\n");
4573       return;
4574    }
4575 
4576 #ifdef ENABLE_SHADER_CACHE
4577    if (shader_cache_read_program_metadata(ctx, prog))
4578       return;
4579 #endif
4580 
4581    void *mem_ctx = ralloc_context(NULL); // temporary linker context
4582 
4583    prog->ARB_fragment_coord_conventions_enable = false;
4584 
4585    /* Separate the shaders into groups based on their type.
4586     */
4587    struct gl_shader **shader_list[MESA_SHADER_STAGES];
4588    unsigned num_shaders[MESA_SHADER_STAGES];
4589 
4590    for (int i = 0; i < MESA_SHADER_STAGES; i++) {
4591       shader_list[i] = (struct gl_shader **)
4592          calloc(prog->NumShaders, sizeof(struct gl_shader *));
4593       num_shaders[i] = 0;
4594    }
4595 
4596    unsigned min_version = UINT_MAX;
4597    unsigned max_version = 0;
4598    for (unsigned i = 0; i < prog->NumShaders; i++) {
4599       min_version = MIN2(min_version, prog->Shaders[i]->Version);
4600       max_version = MAX2(max_version, prog->Shaders[i]->Version);
4601 
4602       if (!ctx->Const.AllowGLSLRelaxedES &&
4603           prog->Shaders[i]->IsES != prog->Shaders[0]->IsES) {
4604          linker_error(prog, "all shaders must use same shading "
4605                       "language version\n");
4606          goto done;
4607       }
4608 
4609       if (prog->Shaders[i]->ARB_fragment_coord_conventions_enable) {
4610          prog->ARB_fragment_coord_conventions_enable = true;
4611       }
4612 
4613       gl_shader_stage shader_type = prog->Shaders[i]->Stage;
4614       shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i];
4615       num_shaders[shader_type]++;
4616    }
4617 
4618    /* In desktop GLSL, different shader versions may be linked together.  In
4619     * GLSL ES, all shader versions must be the same.
4620     */
4621    if (!ctx->Const.AllowGLSLRelaxedES && prog->Shaders[0]->IsES &&
4622        min_version != max_version) {
4623       linker_error(prog, "all shaders must use same shading "
4624                    "language version\n");
4625       goto done;
4626    }
4627 
4628    prog->data->Version = max_version;
4629    prog->IsES = prog->Shaders[0]->IsES;
4630 
4631    /* Some shaders have to be linked with some other shaders present.
4632     */
4633    if (!prog->SeparateShader) {
4634       if (num_shaders[MESA_SHADER_GEOMETRY] > 0 &&
4635           num_shaders[MESA_SHADER_VERTEX] == 0) {
4636          linker_error(prog, "Geometry shader must be linked with "
4637                       "vertex shader\n");
4638          goto done;
4639       }
4640       if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
4641           num_shaders[MESA_SHADER_VERTEX] == 0) {
4642          linker_error(prog, "Tessellation evaluation shader must be linked "
4643                       "with vertex shader\n");
4644          goto done;
4645       }
4646       if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4647           num_shaders[MESA_SHADER_VERTEX] == 0) {
4648          linker_error(prog, "Tessellation control shader must be linked with "
4649                       "vertex shader\n");
4650          goto done;
4651       }
4652 
4653       /* Section 7.3 of the OpenGL ES 3.2 specification says:
4654        *
4655        *    "Linking can fail for [...] any of the following reasons:
4656        *
4657        *     * program contains an object to form a tessellation control
4658        *       shader [...] and [...] the program is not separable and
4659        *       contains no object to form a tessellation evaluation shader"
4660        *
4661        * The OpenGL spec is contradictory. It allows linking without a tess
4662        * eval shader, but that can only be used with transform feedback and
4663        * rasterization disabled. However, transform feedback isn't allowed
4664        * with GL_PATCHES, so it can't be used.
4665        *
4666        * More investigation showed that the idea of transform feedback after
4667        * a tess control shader was dropped, because some hw vendors couldn't
4668        * support tessellation without a tess eval shader, but the linker
4669        * section wasn't updated to reflect that.
4670        *
4671        * All specifications (ARB_tessellation_shader, GL 4.0-4.5) have this
4672        * spec bug.
4673        *
4674        * Do what's reasonable and always require a tess eval shader if a tess
4675        * control shader is present.
4676        */
4677       if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4678           num_shaders[MESA_SHADER_TESS_EVAL] == 0) {
4679          linker_error(prog, "Tessellation control shader must be linked with "
4680                       "tessellation evaluation shader\n");
4681          goto done;
4682       }
4683 
4684       if (prog->IsES) {
4685          if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
4686              num_shaders[MESA_SHADER_TESS_CTRL] == 0) {
4687             linker_error(prog, "GLSL ES requires non-separable programs "
4688                          "containing a tessellation evaluation shader to also "
4689                          "be linked with a tessellation control shader\n");
4690             goto done;
4691          }
4692       }
4693    }
4694 
4695    /* Compute shaders have additional restrictions. */
4696    if (num_shaders[MESA_SHADER_COMPUTE] > 0 &&
4697        num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) {
4698       linker_error(prog, "Compute shaders may not be linked with any other "
4699                    "type of shader\n");
4700    }
4701 
4702    /* Link all shaders for a particular stage and validate the result.
4703     */
4704    for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4705       if (num_shaders[stage] > 0) {
4706          gl_linked_shader *const sh =
4707             link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage],
4708                                     num_shaders[stage], false);
4709 
4710          if (!prog->data->LinkStatus) {
4711             if (sh)
4712                _mesa_delete_linked_shader(ctx, sh);
4713             goto done;
4714          }
4715 
4716          switch (stage) {
4717          case MESA_SHADER_VERTEX:
4718             validate_vertex_shader_executable(prog, sh, ctx);
4719             break;
4720          case MESA_SHADER_TESS_CTRL:
4721             /* nothing to be done */
4722             break;
4723          case MESA_SHADER_TESS_EVAL:
4724             validate_tess_eval_shader_executable(prog, sh, ctx);
4725             break;
4726          case MESA_SHADER_GEOMETRY:
4727             validate_geometry_shader_executable(prog, sh, ctx);
4728             break;
4729          case MESA_SHADER_FRAGMENT:
4730             validate_fragment_shader_executable(prog, sh);
4731             break;
4732          }
4733          if (!prog->data->LinkStatus) {
4734             if (sh)
4735                _mesa_delete_linked_shader(ctx, sh);
4736             goto done;
4737          }
4738 
4739          prog->_LinkedShaders[stage] = sh;
4740          prog->data->linked_stages |= 1 << stage;
4741       }
4742    }
4743 
4744    /* Here begins the inter-stage linking phase.  Some initial validation is
4745     * performed, then locations are assigned for uniforms, attributes, and
4746     * varyings.
4747     */
4748    cross_validate_uniforms(ctx, prog);
4749    if (!prog->data->LinkStatus)
4750       goto done;
4751 
4752    unsigned first, last, prev;
4753 
4754    first = MESA_SHADER_STAGES;
4755    last = 0;
4756 
4757    /* Determine first and last stage. */
4758    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4759       if (!prog->_LinkedShaders[i])
4760          continue;
4761       if (first == MESA_SHADER_STAGES)
4762          first = i;
4763       last = i;
4764    }
4765 
4766    check_explicit_uniform_locations(ctx, prog);
4767    link_assign_subroutine_types(prog);
4768    verify_subroutine_associated_funcs(prog);
4769 
4770    if (!prog->data->LinkStatus)
4771       goto done;
4772 
4773    resize_tes_inputs(ctx, prog);
4774 
4775    /* Validate the inputs of each stage with the output of the preceding
4776     * stage.
4777     */
4778    prev = first;
4779    for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4780       if (prog->_LinkedShaders[i] == NULL)
4781          continue;
4782 
4783       validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev],
4784                                        prog->_LinkedShaders[i]);
4785       if (!prog->data->LinkStatus)
4786          goto done;
4787 
4788       cross_validate_outputs_to_inputs(ctx, prog,
4789                                        prog->_LinkedShaders[prev],
4790                                        prog->_LinkedShaders[i]);
4791       if (!prog->data->LinkStatus)
4792          goto done;
4793 
4794       prev = i;
4795    }
4796 
4797    /* The cross validation of outputs/inputs above validates interstage
4798     * explicit locations. We need to do this also for the inputs in the first
4799     * stage and outputs of the last stage included in the program, since there
4800     * is no cross validation for these.
4801     */
4802    validate_first_and_last_interface_explicit_locations(ctx, prog,
4803                                                         (gl_shader_stage) first,
4804                                                         (gl_shader_stage) last);
4805 
4806    /* Cross-validate uniform blocks between shader stages */
4807    validate_interstage_uniform_blocks(prog, prog->_LinkedShaders);
4808    if (!prog->data->LinkStatus)
4809       goto done;
4810 
4811    for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
4812       if (prog->_LinkedShaders[i] != NULL)
4813          lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
4814    }
4815 
4816    if (prog->IsES && prog->data->Version == 100)
4817       if (!validate_invariant_builtins(prog,
4818             prog->_LinkedShaders[MESA_SHADER_VERTEX],
4819             prog->_LinkedShaders[MESA_SHADER_FRAGMENT]))
4820          goto done;
4821 
4822    /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
4823     * it before optimization because we want most of the checks to get
4824     * dropped thanks to constant propagation.
4825     *
4826     * This rule also applies to GLSL ES 3.00.
4827     */
4828    if (max_version >= (prog->IsES ? 300 : 130)) {
4829       struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
4830       if (sh) {
4831          lower_discard_flow(sh->ir);
4832       }
4833    }
4834 
4835    if (prog->SeparateShader)
4836       disable_varying_optimizations_for_sso(prog);
4837 
4838    /* Process UBOs */
4839    if (!interstage_cross_validate_uniform_blocks(prog, false))
4840       goto done;
4841 
4842    /* Process SSBOs */
4843    if (!interstage_cross_validate_uniform_blocks(prog, true))
4844       goto done;
4845 
4846    /* Do common optimization before assigning storage for attributes,
4847     * uniforms, and varyings.  Later optimization could possibly make
4848     * some of that unused.
4849     */
4850    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4851       if (prog->_LinkedShaders[i] == NULL)
4852          continue;
4853 
4854       detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
4855       if (!prog->data->LinkStatus)
4856          goto done;
4857 
4858       if (ctx->Const.ShaderCompilerOptions[i].LowerCombinedClipCullDistance) {
4859          lower_clip_cull_distance(prog, prog->_LinkedShaders[i]);
4860       }
4861 
4862       if (ctx->Const.LowerTessLevel) {
4863          lower_tess_level(prog->_LinkedShaders[i]);
4864       }
4865 
4866       /* Section 13.46 (Vertex Attribute Aliasing) of the OpenGL ES 3.2
4867        * specification says:
4868        *
4869        *    "In general, the behavior of GLSL ES should not depend on compiler
4870        *    optimizations which might be implementation-dependent. Name matching
4871        *    rules in most languages, including C++ from which GLSL ES is derived,
4872        *    are based on declarations rather than use.
4873        *
4874        *    RESOLUTION: The existence of aliasing is determined by declarations
4875        *    present after preprocessing."
4876        *
4877        * Because of this rule, we do a 'dry-run' of attribute assignment for
4878        * vertex shader inputs here.
4879        */
4880       if (prog->IsES && i == MESA_SHADER_VERTEX) {
4881          if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4882                                                   MESA_SHADER_VERTEX, false)) {
4883             goto done;
4884          }
4885       }
4886 
4887       /* Call opts before lowering const arrays to uniforms so we can const
4888        * propagate any elements accessed directly.
4889        */
4890       linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i);
4891 
4892       /* Call opts after lowering const arrays to copy propagate things. */
4893       if (ctx->Const.GLSLLowerConstArrays &&
4894           lower_const_arrays_to_uniforms(prog->_LinkedShaders[i]->ir, i,
4895                                          ctx->Const.Program[i].MaxUniformComponents))
4896          linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i);
4897 
4898    }
4899 
4900    /* Validation for special cases where we allow sampler array indexing
4901     * with loop induction variable. This check emits a warning or error
4902     * depending if backend can handle dynamic indexing.
4903     */
4904    if ((!prog->IsES && prog->data->Version < 130) ||
4905        (prog->IsES && prog->data->Version < 300)) {
4906       if (!validate_sampler_array_indexing(ctx, prog))
4907          goto done;
4908    }
4909 
4910    /* Check and validate stream emissions in geometry shaders */
4911    validate_geometry_shader_emissions(ctx, prog);
4912 
4913    store_fragdepth_layout(prog);
4914 
4915    if(!link_varyings_and_uniforms(first, last, ctx, prog, mem_ctx))
4916       goto done;
4917 
4918    /* Linking varyings can cause some extra, useless swizzles to be generated
4919     * due to packing and unpacking.
4920     */
4921    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4922       if (prog->_LinkedShaders[i] == NULL)
4923          continue;
4924 
4925       optimize_swizzles(prog->_LinkedShaders[i]->ir);
4926    }
4927 
4928    /* OpenGL ES < 3.1 requires that a vertex shader and a fragment shader both
4929     * be present in a linked program. GL_ARB_ES2_compatibility doesn't say
4930     * anything about shader linking when one of the shaders (vertex or
4931     * fragment shader) is absent. So, the extension shouldn't change the
4932     * behavior specified in GLSL specification.
4933     *
4934     * From OpenGL ES 3.1 specification (7.3 Program Objects):
4935     *     "Linking can fail for a variety of reasons as specified in the
4936     *     OpenGL ES Shading Language Specification, as well as any of the
4937     *     following reasons:
4938     *
4939     *     ...
4940     *
4941     *     * program contains objects to form either a vertex shader or
4942     *       fragment shader, and program is not separable, and does not
4943     *       contain objects to form both a vertex shader and fragment
4944     *       shader."
4945     *
4946     * However, the only scenario in 3.1+ where we don't require them both is
4947     * when we have a compute shader. For example:
4948     *
4949     * - No shaders is a link error.
4950     * - Geom or Tess without a Vertex shader is a link error which means we
4951     *   always require a Vertex shader and hence a Fragment shader.
4952     * - Finally a Compute shader linked with any other stage is a link error.
4953     */
4954    if (!prog->SeparateShader && ctx->API == API_OPENGLES2 &&
4955        num_shaders[MESA_SHADER_COMPUTE] == 0) {
4956       if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
4957          linker_error(prog, "program lacks a vertex shader\n");
4958       } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
4959          linker_error(prog, "program lacks a fragment shader\n");
4960       }
4961    }
4962 
4963 done:
4964    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4965       free(shader_list[i]);
4966       if (prog->_LinkedShaders[i] == NULL)
4967          continue;
4968 
4969       /* Do a final validation step to make sure that the IR wasn't
4970        * invalidated by any modifications performed after intrastage linking.
4971        */
4972       validate_ir_tree(prog->_LinkedShaders[i]->ir);
4973 
4974       /* Retain any live IR, but trash the rest. */
4975       reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
4976 
4977       /* The symbol table in the linked shaders may contain references to
4978        * variables that were removed (e.g., unused uniforms).  Since it may
4979        * contain junk, there is no possible valid use.  Delete it and set the
4980        * pointer to NULL.
4981        */
4982       delete prog->_LinkedShaders[i]->symbols;
4983       prog->_LinkedShaders[i]->symbols = NULL;
4984    }
4985 
4986    ralloc_free(mem_ctx);
4987 }
4988