• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2     pybind11/cast.h: Partial template specializations to cast between
3     C++ and Python types
4 
5     Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
6 
7     All rights reserved. Use of this source code is governed by a
8     BSD-style license that can be found in the LICENSE file.
9 */
10 
11 #pragma once
12 
13 #include "pytypes.h"
14 #include "detail/typeid.h"
15 #include "detail/descr.h"
16 #include "detail/internals.h"
17 #include <array>
18 #include <limits>
19 #include <tuple>
20 #include <type_traits>
21 
22 #if defined(PYBIND11_CPP17)
23 #  if defined(__has_include)
24 #    if __has_include(<string_view>)
25 #      define PYBIND11_HAS_STRING_VIEW
26 #    endif
27 #  elif defined(_MSC_VER)
28 #    define PYBIND11_HAS_STRING_VIEW
29 #  endif
30 #endif
31 #ifdef PYBIND11_HAS_STRING_VIEW
32 #include <string_view>
33 #endif
34 
35 #if defined(__cpp_lib_char8_t) && __cpp_lib_char8_t >= 201811L
36 #  define PYBIND11_HAS_U8STRING
37 #endif
38 
39 PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
PYBIND11_NAMESPACE_BEGIN(detail)40 PYBIND11_NAMESPACE_BEGIN(detail)
41 
42 /// A life support system for temporary objects created by `type_caster::load()`.
43 /// Adding a patient will keep it alive up until the enclosing function returns.
44 class loader_life_support {
45 public:
46     /// A new patient frame is created when a function is entered
47     loader_life_support() {
48         get_internals().loader_patient_stack.push_back(nullptr);
49     }
50 
51     /// ... and destroyed after it returns
52     ~loader_life_support() {
53         auto &stack = get_internals().loader_patient_stack;
54         if (stack.empty())
55             pybind11_fail("loader_life_support: internal error");
56 
57         auto ptr = stack.back();
58         stack.pop_back();
59         Py_CLEAR(ptr);
60 
61         // A heuristic to reduce the stack's capacity (e.g. after long recursive calls)
62         if (stack.capacity() > 16 && !stack.empty() && stack.capacity() / stack.size() > 2)
63             stack.shrink_to_fit();
64     }
65 
66     /// This can only be used inside a pybind11-bound function, either by `argument_loader`
67     /// at argument preparation time or by `py::cast()` at execution time.
68     PYBIND11_NOINLINE static void add_patient(handle h) {
69         auto &stack = get_internals().loader_patient_stack;
70         if (stack.empty())
71             throw cast_error("When called outside a bound function, py::cast() cannot "
72                              "do Python -> C++ conversions which require the creation "
73                              "of temporary values");
74 
75         auto &list_ptr = stack.back();
76         if (list_ptr == nullptr) {
77             list_ptr = PyList_New(1);
78             if (!list_ptr)
79                 pybind11_fail("loader_life_support: error allocating list");
80             PyList_SET_ITEM(list_ptr, 0, h.inc_ref().ptr());
81         } else {
82             auto result = PyList_Append(list_ptr, h.ptr());
83             if (result == -1)
84                 pybind11_fail("loader_life_support: error adding patient");
85         }
86     }
87 };
88 
89 // Gets the cache entry for the given type, creating it if necessary.  The return value is the pair
90 // returned by emplace, i.e. an iterator for the entry and a bool set to `true` if the entry was
91 // just created.
92 inline std::pair<decltype(internals::registered_types_py)::iterator, bool> all_type_info_get_cache(PyTypeObject *type);
93 
94 // Populates a just-created cache entry.
all_type_info_populate(PyTypeObject * t,std::vector<type_info * > & bases)95 PYBIND11_NOINLINE inline void all_type_info_populate(PyTypeObject *t, std::vector<type_info *> &bases) {
96     std::vector<PyTypeObject *> check;
97     for (handle parent : reinterpret_borrow<tuple>(t->tp_bases))
98         check.push_back((PyTypeObject *) parent.ptr());
99 
100     auto const &type_dict = get_internals().registered_types_py;
101     for (size_t i = 0; i < check.size(); i++) {
102         auto type = check[i];
103         // Ignore Python2 old-style class super type:
104         if (!PyType_Check((PyObject *) type)) continue;
105 
106         // Check `type` in the current set of registered python types:
107         auto it = type_dict.find(type);
108         if (it != type_dict.end()) {
109             // We found a cache entry for it, so it's either pybind-registered or has pre-computed
110             // pybind bases, but we have to make sure we haven't already seen the type(s) before: we
111             // want to follow Python/virtual C++ rules that there should only be one instance of a
112             // common base.
113             for (auto *tinfo : it->second) {
114                 // NB: Could use a second set here, rather than doing a linear search, but since
115                 // having a large number of immediate pybind11-registered types seems fairly
116                 // unlikely, that probably isn't worthwhile.
117                 bool found = false;
118                 for (auto *known : bases) {
119                     if (known == tinfo) { found = true; break; }
120                 }
121                 if (!found) bases.push_back(tinfo);
122             }
123         }
124         else if (type->tp_bases) {
125             // It's some python type, so keep follow its bases classes to look for one or more
126             // registered types
127             if (i + 1 == check.size()) {
128                 // When we're at the end, we can pop off the current element to avoid growing
129                 // `check` when adding just one base (which is typical--i.e. when there is no
130                 // multiple inheritance)
131                 check.pop_back();
132                 i--;
133             }
134             for (handle parent : reinterpret_borrow<tuple>(type->tp_bases))
135                 check.push_back((PyTypeObject *) parent.ptr());
136         }
137     }
138 }
139 
140 /**
141  * Extracts vector of type_info pointers of pybind-registered roots of the given Python type.  Will
142  * be just 1 pybind type for the Python type of a pybind-registered class, or for any Python-side
143  * derived class that uses single inheritance.  Will contain as many types as required for a Python
144  * class that uses multiple inheritance to inherit (directly or indirectly) from multiple
145  * pybind-registered classes.  Will be empty if neither the type nor any base classes are
146  * pybind-registered.
147  *
148  * The value is cached for the lifetime of the Python type.
149  */
all_type_info(PyTypeObject * type)150 inline const std::vector<detail::type_info *> &all_type_info(PyTypeObject *type) {
151     auto ins = all_type_info_get_cache(type);
152     if (ins.second)
153         // New cache entry: populate it
154         all_type_info_populate(type, ins.first->second);
155 
156     return ins.first->second;
157 }
158 
159 /**
160  * Gets a single pybind11 type info for a python type.  Returns nullptr if neither the type nor any
161  * ancestors are pybind11-registered.  Throws an exception if there are multiple bases--use
162  * `all_type_info` instead if you want to support multiple bases.
163  */
get_type_info(PyTypeObject * type)164 PYBIND11_NOINLINE inline detail::type_info* get_type_info(PyTypeObject *type) {
165     auto &bases = all_type_info(type);
166     if (bases.empty())
167         return nullptr;
168     if (bases.size() > 1)
169         pybind11_fail("pybind11::detail::get_type_info: type has multiple pybind11-registered bases");
170     return bases.front();
171 }
172 
get_local_type_info(const std::type_index & tp)173 inline detail::type_info *get_local_type_info(const std::type_index &tp) {
174     auto &locals = registered_local_types_cpp();
175     auto it = locals.find(tp);
176     if (it != locals.end())
177         return it->second;
178     return nullptr;
179 }
180 
get_global_type_info(const std::type_index & tp)181 inline detail::type_info *get_global_type_info(const std::type_index &tp) {
182     auto &types = get_internals().registered_types_cpp;
183     auto it = types.find(tp);
184     if (it != types.end())
185         return it->second;
186     return nullptr;
187 }
188 
189 /// Return the type info for a given C++ type; on lookup failure can either throw or return nullptr.
190 PYBIND11_NOINLINE inline detail::type_info *get_type_info(const std::type_index &tp,
191                                                           bool throw_if_missing = false) {
192     if (auto ltype = get_local_type_info(tp))
193         return ltype;
194     if (auto gtype = get_global_type_info(tp))
195         return gtype;
196 
197     if (throw_if_missing) {
198         std::string tname = tp.name();
199         detail::clean_type_id(tname);
200         pybind11_fail("pybind11::detail::get_type_info: unable to find type info for \"" + tname + "\"");
201     }
202     return nullptr;
203 }
204 
get_type_handle(const std::type_info & tp,bool throw_if_missing)205 PYBIND11_NOINLINE inline handle get_type_handle(const std::type_info &tp, bool throw_if_missing) {
206     detail::type_info *type_info = get_type_info(tp, throw_if_missing);
207     return handle(type_info ? ((PyObject *) type_info->type) : nullptr);
208 }
209 
210 struct value_and_holder {
211     instance *inst = nullptr;
212     size_t index = 0u;
213     const detail::type_info *type = nullptr;
214     void **vh = nullptr;
215 
216     // Main constructor for a found value/holder:
value_and_holdervalue_and_holder217     value_and_holder(instance *i, const detail::type_info *type, size_t vpos, size_t index) :
218         inst{i}, index{index}, type{type},
219         vh{inst->simple_layout ? inst->simple_value_holder : &inst->nonsimple.values_and_holders[vpos]}
220     {}
221 
222     // Default constructor (used to signal a value-and-holder not found by get_value_and_holder())
223     value_and_holder() = default;
224 
225     // Used for past-the-end iterator
value_and_holdervalue_and_holder226     value_and_holder(size_t index) : index{index} {}
227 
value_ptrvalue_and_holder228     template <typename V = void> V *&value_ptr() const {
229         return reinterpret_cast<V *&>(vh[0]);
230     }
231     // True if this `value_and_holder` has a non-null value pointer
232     explicit operator bool() const { return value_ptr(); }
233 
holdervalue_and_holder234     template <typename H> H &holder() const {
235         return reinterpret_cast<H &>(vh[1]);
236     }
holder_constructedvalue_and_holder237     bool holder_constructed() const {
238         return inst->simple_layout
239             ? inst->simple_holder_constructed
240             : inst->nonsimple.status[index] & instance::status_holder_constructed;
241     }
242     void set_holder_constructed(bool v = true) {
243         if (inst->simple_layout)
244             inst->simple_holder_constructed = v;
245         else if (v)
246             inst->nonsimple.status[index] |= instance::status_holder_constructed;
247         else
248             inst->nonsimple.status[index] &= (uint8_t) ~instance::status_holder_constructed;
249     }
instance_registeredvalue_and_holder250     bool instance_registered() const {
251         return inst->simple_layout
252             ? inst->simple_instance_registered
253             : inst->nonsimple.status[index] & instance::status_instance_registered;
254     }
255     void set_instance_registered(bool v = true) {
256         if (inst->simple_layout)
257             inst->simple_instance_registered = v;
258         else if (v)
259             inst->nonsimple.status[index] |= instance::status_instance_registered;
260         else
261             inst->nonsimple.status[index] &= (uint8_t) ~instance::status_instance_registered;
262     }
263 };
264 
265 // Container for accessing and iterating over an instance's values/holders
266 struct values_and_holders {
267 private:
268     instance *inst;
269     using type_vec = std::vector<detail::type_info *>;
270     const type_vec &tinfo;
271 
272 public:
values_and_holdersvalues_and_holders273     values_and_holders(instance *inst) : inst{inst}, tinfo(all_type_info(Py_TYPE(inst))) {}
274 
275     struct iterator {
276     private:
277         instance *inst = nullptr;
278         const type_vec *types = nullptr;
279         value_and_holder curr;
280         friend struct values_and_holders;
iteratorvalues_and_holders::iterator281         iterator(instance *inst, const type_vec *tinfo)
282             : inst{inst}, types{tinfo},
283             curr(inst /* instance */,
284                  types->empty() ? nullptr : (*types)[0] /* type info */,
285                  0, /* vpos: (non-simple types only): the first vptr comes first */
286                  0 /* index */)
287         {}
288         // Past-the-end iterator:
iteratorvalues_and_holders::iterator289         iterator(size_t end) : curr(end) {}
290     public:
291         bool operator==(const iterator &other) const { return curr.index == other.curr.index; }
292         bool operator!=(const iterator &other) const { return curr.index != other.curr.index; }
293         iterator &operator++() {
294             if (!inst->simple_layout)
295                 curr.vh += 1 + (*types)[curr.index]->holder_size_in_ptrs;
296             ++curr.index;
297             curr.type = curr.index < types->size() ? (*types)[curr.index] : nullptr;
298             return *this;
299         }
300         value_and_holder &operator*() { return curr; }
301         value_and_holder *operator->() { return &curr; }
302     };
303 
beginvalues_and_holders304     iterator begin() { return iterator(inst, &tinfo); }
endvalues_and_holders305     iterator end() { return iterator(tinfo.size()); }
306 
findvalues_and_holders307     iterator find(const type_info *find_type) {
308         auto it = begin(), endit = end();
309         while (it != endit && it->type != find_type) ++it;
310         return it;
311     }
312 
sizevalues_and_holders313     size_t size() { return tinfo.size(); }
314 };
315 
316 /**
317  * Extracts C++ value and holder pointer references from an instance (which may contain multiple
318  * values/holders for python-side multiple inheritance) that match the given type.  Throws an error
319  * if the given type (or ValueType, if omitted) is not a pybind11 base of the given instance.  If
320  * `find_type` is omitted (or explicitly specified as nullptr) the first value/holder are returned,
321  * regardless of type (and the resulting .type will be nullptr).
322  *
323  * The returned object should be short-lived: in particular, it must not outlive the called-upon
324  * instance.
325  */
get_value_and_holder(const type_info * find_type,bool throw_if_missing)326 PYBIND11_NOINLINE inline value_and_holder instance::get_value_and_holder(const type_info *find_type /*= nullptr default in common.h*/, bool throw_if_missing /*= true in common.h*/) {
327     // Optimize common case:
328     if (!find_type || Py_TYPE(this) == find_type->type)
329         return value_and_holder(this, find_type, 0, 0);
330 
331     detail::values_and_holders vhs(this);
332     auto it = vhs.find(find_type);
333     if (it != vhs.end())
334         return *it;
335 
336     if (!throw_if_missing)
337         return value_and_holder();
338 
339 #if defined(NDEBUG)
340     pybind11_fail("pybind11::detail::instance::get_value_and_holder: "
341             "type is not a pybind11 base of the given instance "
342             "(compile in debug mode for type details)");
343 #else
344     pybind11_fail("pybind11::detail::instance::get_value_and_holder: `" +
345             get_fully_qualified_tp_name(find_type->type) + "' is not a pybind11 base of the given `" +
346             get_fully_qualified_tp_name(Py_TYPE(this)) + "' instance");
347 #endif
348 }
349 
allocate_layout()350 PYBIND11_NOINLINE inline void instance::allocate_layout() {
351     auto &tinfo = all_type_info(Py_TYPE(this));
352 
353     const size_t n_types = tinfo.size();
354 
355     if (n_types == 0)
356         pybind11_fail("instance allocation failed: new instance has no pybind11-registered base types");
357 
358     simple_layout =
359         n_types == 1 && tinfo.front()->holder_size_in_ptrs <= instance_simple_holder_in_ptrs();
360 
361     // Simple path: no python-side multiple inheritance, and a small-enough holder
362     if (simple_layout) {
363         simple_value_holder[0] = nullptr;
364         simple_holder_constructed = false;
365         simple_instance_registered = false;
366     }
367     else { // multiple base types or a too-large holder
368         // Allocate space to hold: [v1*][h1][v2*][h2]...[bb...] where [vN*] is a value pointer,
369         // [hN] is the (uninitialized) holder instance for value N, and [bb...] is a set of bool
370         // values that tracks whether each associated holder has been initialized.  Each [block] is
371         // padded, if necessary, to an integer multiple of sizeof(void *).
372         size_t space = 0;
373         for (auto t : tinfo) {
374             space += 1; // value pointer
375             space += t->holder_size_in_ptrs; // holder instance
376         }
377         size_t flags_at = space;
378         space += size_in_ptrs(n_types); // status bytes (holder_constructed and instance_registered)
379 
380         // Allocate space for flags, values, and holders, and initialize it to 0 (flags and values,
381         // in particular, need to be 0).  Use Python's memory allocation functions: in Python 3.6
382         // they default to using pymalloc, which is designed to be efficient for small allocations
383         // like the one we're doing here; in earlier versions (and for larger allocations) they are
384         // just wrappers around malloc.
385 #if PY_VERSION_HEX >= 0x03050000
386         nonsimple.values_and_holders = (void **) PyMem_Calloc(space, sizeof(void *));
387         if (!nonsimple.values_and_holders) throw std::bad_alloc();
388 #else
389         nonsimple.values_and_holders = (void **) PyMem_New(void *, space);
390         if (!nonsimple.values_and_holders) throw std::bad_alloc();
391         std::memset(nonsimple.values_and_holders, 0, space * sizeof(void *));
392 #endif
393         nonsimple.status = reinterpret_cast<uint8_t *>(&nonsimple.values_and_holders[flags_at]);
394     }
395     owned = true;
396 }
397 
deallocate_layout()398 PYBIND11_NOINLINE inline void instance::deallocate_layout() {
399     if (!simple_layout)
400         PyMem_Free(nonsimple.values_and_holders);
401 }
402 
isinstance_generic(handle obj,const std::type_info & tp)403 PYBIND11_NOINLINE inline bool isinstance_generic(handle obj, const std::type_info &tp) {
404     handle type = detail::get_type_handle(tp, false);
405     if (!type)
406         return false;
407     return isinstance(obj, type);
408 }
409 
error_string()410 PYBIND11_NOINLINE inline std::string error_string() {
411     if (!PyErr_Occurred()) {
412         PyErr_SetString(PyExc_RuntimeError, "Unknown internal error occurred");
413         return "Unknown internal error occurred";
414     }
415 
416     error_scope scope; // Preserve error state
417 
418     std::string errorString;
419     if (scope.type) {
420         errorString += handle(scope.type).attr("__name__").cast<std::string>();
421         errorString += ": ";
422     }
423     if (scope.value)
424         errorString += (std::string) str(scope.value);
425 
426     PyErr_NormalizeException(&scope.type, &scope.value, &scope.trace);
427 
428 #if PY_MAJOR_VERSION >= 3
429     if (scope.trace != nullptr)
430         PyException_SetTraceback(scope.value, scope.trace);
431 #endif
432 
433 #if !defined(PYPY_VERSION)
434     if (scope.trace) {
435         auto *trace = (PyTracebackObject *) scope.trace;
436 
437         /* Get the deepest trace possible */
438         while (trace->tb_next)
439             trace = trace->tb_next;
440 
441         PyFrameObject *frame = trace->tb_frame;
442         errorString += "\n\nAt:\n";
443         while (frame) {
444             int lineno = PyFrame_GetLineNumber(frame);
445             errorString +=
446                 "  " + handle(frame->f_code->co_filename).cast<std::string>() +
447                 "(" + std::to_string(lineno) + "): " +
448                 handle(frame->f_code->co_name).cast<std::string>() + "\n";
449             frame = frame->f_back;
450         }
451     }
452 #endif
453 
454     return errorString;
455 }
456 
get_object_handle(const void * ptr,const detail::type_info * type)457 PYBIND11_NOINLINE inline handle get_object_handle(const void *ptr, const detail::type_info *type ) {
458     auto &instances = get_internals().registered_instances;
459     auto range = instances.equal_range(ptr);
460     for (auto it = range.first; it != range.second; ++it) {
461         for (const auto &vh : values_and_holders(it->second)) {
462             if (vh.type == type)
463                 return handle((PyObject *) it->second);
464         }
465     }
466     return handle();
467 }
468 
get_thread_state_unchecked()469 inline PyThreadState *get_thread_state_unchecked() {
470 #if defined(PYPY_VERSION)
471     return PyThreadState_GET();
472 #elif PY_VERSION_HEX < 0x03000000
473     return _PyThreadState_Current;
474 #elif PY_VERSION_HEX < 0x03050000
475     return (PyThreadState*) _Py_atomic_load_relaxed(&_PyThreadState_Current);
476 #elif PY_VERSION_HEX < 0x03050200
477     return (PyThreadState*) _PyThreadState_Current.value;
478 #else
479     return _PyThreadState_UncheckedGet();
480 #endif
481 }
482 
483 // Forward declarations
484 inline void keep_alive_impl(handle nurse, handle patient);
485 inline PyObject *make_new_instance(PyTypeObject *type);
486 
487 class type_caster_generic {
488 public:
type_caster_generic(const std::type_info & type_info)489     PYBIND11_NOINLINE type_caster_generic(const std::type_info &type_info)
490         : typeinfo(get_type_info(type_info)), cpptype(&type_info) { }
491 
type_caster_generic(const type_info * typeinfo)492     type_caster_generic(const type_info *typeinfo)
493         : typeinfo(typeinfo), cpptype(typeinfo ? typeinfo->cpptype : nullptr) { }
494 
load(handle src,bool convert)495     bool load(handle src, bool convert) {
496         return load_impl<type_caster_generic>(src, convert);
497     }
498 
499     PYBIND11_NOINLINE static handle cast(const void *_src, return_value_policy policy, handle parent,
500                                          const detail::type_info *tinfo,
501                                          void *(*copy_constructor)(const void *),
502                                          void *(*move_constructor)(const void *),
503                                          const void *existing_holder = nullptr) {
504         if (!tinfo) // no type info: error will be set already
505             return handle();
506 
507         void *src = const_cast<void *>(_src);
508         if (src == nullptr)
509             return none().release();
510 
511         auto it_instances = get_internals().registered_instances.equal_range(src);
512         for (auto it_i = it_instances.first; it_i != it_instances.second; ++it_i) {
513             for (auto instance_type : detail::all_type_info(Py_TYPE(it_i->second))) {
514                 if (instance_type && same_type(*instance_type->cpptype, *tinfo->cpptype))
515                     return handle((PyObject *) it_i->second).inc_ref();
516             }
517         }
518 
519         auto inst = reinterpret_steal<object>(make_new_instance(tinfo->type));
520         auto wrapper = reinterpret_cast<instance *>(inst.ptr());
521         wrapper->owned = false;
522         void *&valueptr = values_and_holders(wrapper).begin()->value_ptr();
523 
524         switch (policy) {
525             case return_value_policy::automatic:
526             case return_value_policy::take_ownership:
527                 valueptr = src;
528                 wrapper->owned = true;
529                 break;
530 
531             case return_value_policy::automatic_reference:
532             case return_value_policy::reference:
533                 valueptr = src;
534                 wrapper->owned = false;
535                 break;
536 
537             case return_value_policy::copy:
538                 if (copy_constructor)
539                     valueptr = copy_constructor(src);
540                 else {
541 #if defined(NDEBUG)
542                     throw cast_error("return_value_policy = copy, but type is "
543                                      "non-copyable! (compile in debug mode for details)");
544 #else
545                     std::string type_name(tinfo->cpptype->name());
546                     detail::clean_type_id(type_name);
547                     throw cast_error("return_value_policy = copy, but type " +
548                                      type_name + " is non-copyable!");
549 #endif
550                 }
551                 wrapper->owned = true;
552                 break;
553 
554             case return_value_policy::move:
555                 if (move_constructor)
556                     valueptr = move_constructor(src);
557                 else if (copy_constructor)
558                     valueptr = copy_constructor(src);
559                 else {
560 #if defined(NDEBUG)
561                     throw cast_error("return_value_policy = move, but type is neither "
562                                      "movable nor copyable! "
563                                      "(compile in debug mode for details)");
564 #else
565                     std::string type_name(tinfo->cpptype->name());
566                     detail::clean_type_id(type_name);
567                     throw cast_error("return_value_policy = move, but type " +
568                                      type_name + " is neither movable nor copyable!");
569 #endif
570                 }
571                 wrapper->owned = true;
572                 break;
573 
574             case return_value_policy::reference_internal:
575                 valueptr = src;
576                 wrapper->owned = false;
577                 keep_alive_impl(inst, parent);
578                 break;
579 
580             default:
581                 throw cast_error("unhandled return_value_policy: should not happen!");
582         }
583 
584         tinfo->init_instance(wrapper, existing_holder);
585 
586         return inst.release();
587     }
588 
589     // Base methods for generic caster; there are overridden in copyable_holder_caster
load_value(value_and_holder && v_h)590     void load_value(value_and_holder &&v_h) {
591         auto *&vptr = v_h.value_ptr();
592         // Lazy allocation for unallocated values:
593         if (vptr == nullptr) {
594             auto *type = v_h.type ? v_h.type : typeinfo;
595             if (type->operator_new) {
596                 vptr = type->operator_new(type->type_size);
597             } else {
598                 #if defined(__cpp_aligned_new) && (!defined(_MSC_VER) || _MSC_VER >= 1912)
599                     if (type->type_align > __STDCPP_DEFAULT_NEW_ALIGNMENT__)
600                         vptr = ::operator new(type->type_size,
601                                               std::align_val_t(type->type_align));
602                     else
603                 #endif
604                 vptr = ::operator new(type->type_size);
605             }
606         }
607         value = vptr;
608     }
try_implicit_casts(handle src,bool convert)609     bool try_implicit_casts(handle src, bool convert) {
610         for (auto &cast : typeinfo->implicit_casts) {
611             type_caster_generic sub_caster(*cast.first);
612             if (sub_caster.load(src, convert)) {
613                 value = cast.second(sub_caster.value);
614                 return true;
615             }
616         }
617         return false;
618     }
try_direct_conversions(handle src)619     bool try_direct_conversions(handle src) {
620         for (auto &converter : *typeinfo->direct_conversions) {
621             if (converter(src.ptr(), value))
622                 return true;
623         }
624         return false;
625     }
check_holder_compat()626     void check_holder_compat() {}
627 
local_load(PyObject * src,const type_info * ti)628     PYBIND11_NOINLINE static void *local_load(PyObject *src, const type_info *ti) {
629         auto caster = type_caster_generic(ti);
630         if (caster.load(src, false))
631             return caster.value;
632         return nullptr;
633     }
634 
635     /// Try to load with foreign typeinfo, if available. Used when there is no
636     /// native typeinfo, or when the native one wasn't able to produce a value.
try_load_foreign_module_local(handle src)637     PYBIND11_NOINLINE bool try_load_foreign_module_local(handle src) {
638         constexpr auto *local_key = PYBIND11_MODULE_LOCAL_ID;
639         const auto pytype = type::handle_of(src);
640         if (!hasattr(pytype, local_key))
641             return false;
642 
643         type_info *foreign_typeinfo = reinterpret_borrow<capsule>(getattr(pytype, local_key));
644         // Only consider this foreign loader if actually foreign and is a loader of the correct cpp type
645         if (foreign_typeinfo->module_local_load == &local_load
646             || (cpptype && !same_type(*cpptype, *foreign_typeinfo->cpptype)))
647             return false;
648 
649         if (auto result = foreign_typeinfo->module_local_load(src.ptr(), foreign_typeinfo)) {
650             value = result;
651             return true;
652         }
653         return false;
654     }
655 
656     // Implementation of `load`; this takes the type of `this` so that it can dispatch the relevant
657     // bits of code between here and copyable_holder_caster where the two classes need different
658     // logic (without having to resort to virtual inheritance).
659     template <typename ThisT>
load_impl(handle src,bool convert)660     PYBIND11_NOINLINE bool load_impl(handle src, bool convert) {
661         if (!src) return false;
662         if (!typeinfo) return try_load_foreign_module_local(src);
663         if (src.is_none()) {
664             // Defer accepting None to other overloads (if we aren't in convert mode):
665             if (!convert) return false;
666             value = nullptr;
667             return true;
668         }
669 
670         auto &this_ = static_cast<ThisT &>(*this);
671         this_.check_holder_compat();
672 
673         PyTypeObject *srctype = Py_TYPE(src.ptr());
674 
675         // Case 1: If src is an exact type match for the target type then we can reinterpret_cast
676         // the instance's value pointer to the target type:
677         if (srctype == typeinfo->type) {
678             this_.load_value(reinterpret_cast<instance *>(src.ptr())->get_value_and_holder());
679             return true;
680         }
681         // Case 2: We have a derived class
682         else if (PyType_IsSubtype(srctype, typeinfo->type)) {
683             auto &bases = all_type_info(srctype);
684             bool no_cpp_mi = typeinfo->simple_type;
685 
686             // Case 2a: the python type is a Python-inherited derived class that inherits from just
687             // one simple (no MI) pybind11 class, or is an exact match, so the C++ instance is of
688             // the right type and we can use reinterpret_cast.
689             // (This is essentially the same as case 2b, but because not using multiple inheritance
690             // is extremely common, we handle it specially to avoid the loop iterator and type
691             // pointer lookup overhead)
692             if (bases.size() == 1 && (no_cpp_mi || bases.front()->type == typeinfo->type)) {
693                 this_.load_value(reinterpret_cast<instance *>(src.ptr())->get_value_and_holder());
694                 return true;
695             }
696             // Case 2b: the python type inherits from multiple C++ bases.  Check the bases to see if
697             // we can find an exact match (or, for a simple C++ type, an inherited match); if so, we
698             // can safely reinterpret_cast to the relevant pointer.
699             else if (bases.size() > 1) {
700                 for (auto base : bases) {
701                     if (no_cpp_mi ? PyType_IsSubtype(base->type, typeinfo->type) : base->type == typeinfo->type) {
702                         this_.load_value(reinterpret_cast<instance *>(src.ptr())->get_value_and_holder(base));
703                         return true;
704                     }
705                 }
706             }
707 
708             // Case 2c: C++ multiple inheritance is involved and we couldn't find an exact type match
709             // in the registered bases, above, so try implicit casting (needed for proper C++ casting
710             // when MI is involved).
711             if (this_.try_implicit_casts(src, convert))
712                 return true;
713         }
714 
715         // Perform an implicit conversion
716         if (convert) {
717             for (auto &converter : typeinfo->implicit_conversions) {
718                 auto temp = reinterpret_steal<object>(converter(src.ptr(), typeinfo->type));
719                 if (load_impl<ThisT>(temp, false)) {
720                     loader_life_support::add_patient(temp);
721                     return true;
722                 }
723             }
724             if (this_.try_direct_conversions(src))
725                 return true;
726         }
727 
728         // Failed to match local typeinfo. Try again with global.
729         if (typeinfo->module_local) {
730             if (auto gtype = get_global_type_info(*typeinfo->cpptype)) {
731                 typeinfo = gtype;
732                 return load(src, false);
733             }
734         }
735 
736         // Global typeinfo has precedence over foreign module_local
737         return try_load_foreign_module_local(src);
738     }
739 
740 
741     // Called to do type lookup and wrap the pointer and type in a pair when a dynamic_cast
742     // isn't needed or can't be used.  If the type is unknown, sets the error and returns a pair
743     // with .second = nullptr.  (p.first = nullptr is not an error: it becomes None).
744     PYBIND11_NOINLINE static std::pair<const void *, const type_info *> src_and_type(
745             const void *src, const std::type_info &cast_type, const std::type_info *rtti_type = nullptr) {
746         if (auto *tpi = get_type_info(cast_type))
747             return {src, const_cast<const type_info *>(tpi)};
748 
749         // Not found, set error:
750         std::string tname = rtti_type ? rtti_type->name() : cast_type.name();
751         detail::clean_type_id(tname);
752         std::string msg = "Unregistered type : " + tname;
753         PyErr_SetString(PyExc_TypeError, msg.c_str());
754         return {nullptr, nullptr};
755     }
756 
757     const type_info *typeinfo = nullptr;
758     const std::type_info *cpptype = nullptr;
759     void *value = nullptr;
760 };
761 
762 /**
763  * Determine suitable casting operator for pointer-or-lvalue-casting type casters.  The type caster
764  * needs to provide `operator T*()` and `operator T&()` operators.
765  *
766  * If the type supports moving the value away via an `operator T&&() &&` method, it should use
767  * `movable_cast_op_type` instead.
768  */
769 template <typename T>
770 using cast_op_type =
771     conditional_t<std::is_pointer<remove_reference_t<T>>::value,
772         typename std::add_pointer<intrinsic_t<T>>::type,
773         typename std::add_lvalue_reference<intrinsic_t<T>>::type>;
774 
775 /**
776  * Determine suitable casting operator for a type caster with a movable value.  Such a type caster
777  * needs to provide `operator T*()`, `operator T&()`, and `operator T&&() &&`.  The latter will be
778  * called in appropriate contexts where the value can be moved rather than copied.
779  *
780  * These operator are automatically provided when using the PYBIND11_TYPE_CASTER macro.
781  */
782 template <typename T>
783 using movable_cast_op_type =
784     conditional_t<std::is_pointer<typename std::remove_reference<T>::type>::value,
785         typename std::add_pointer<intrinsic_t<T>>::type,
786     conditional_t<std::is_rvalue_reference<T>::value,
787         typename std::add_rvalue_reference<intrinsic_t<T>>::type,
788         typename std::add_lvalue_reference<intrinsic_t<T>>::type>>;
789 
790 // std::is_copy_constructible isn't quite enough: it lets std::vector<T> (and similar) through when
791 // T is non-copyable, but code containing such a copy constructor fails to actually compile.
792 template <typename T, typename SFINAE = void> struct is_copy_constructible : std::is_copy_constructible<T> {};
793 
794 // Specialization for types that appear to be copy constructible but also look like stl containers
795 // (we specifically check for: has `value_type` and `reference` with `reference = value_type&`): if
796 // so, copy constructability depends on whether the value_type is copy constructible.
797 template <typename Container> struct is_copy_constructible<Container, enable_if_t<all_of<
798         std::is_copy_constructible<Container>,
799         std::is_same<typename Container::value_type &, typename Container::reference>,
800         // Avoid infinite recursion
801         negation<std::is_same<Container, typename Container::value_type>>
802     >::value>> : is_copy_constructible<typename Container::value_type> {};
803 
804 // Likewise for std::pair
805 // (after C++17 it is mandatory that the copy constructor not exist when the two types aren't themselves
806 // copy constructible, but this can not be relied upon when T1 or T2 are themselves containers).
807 template <typename T1, typename T2> struct is_copy_constructible<std::pair<T1, T2>>
808     : all_of<is_copy_constructible<T1>, is_copy_constructible<T2>> {};
809 
810 // The same problems arise with std::is_copy_assignable, so we use the same workaround.
811 template <typename T, typename SFINAE = void> struct is_copy_assignable : std::is_copy_assignable<T> {};
812 template <typename Container> struct is_copy_assignable<Container, enable_if_t<all_of<
813         std::is_copy_assignable<Container>,
814         std::is_same<typename Container::value_type &, typename Container::reference>
815     >::value>> : is_copy_assignable<typename Container::value_type> {};
816 template <typename T1, typename T2> struct is_copy_assignable<std::pair<T1, T2>>
817     : all_of<is_copy_assignable<T1>, is_copy_assignable<T2>> {};
818 
819 PYBIND11_NAMESPACE_END(detail)
820 
821 // polymorphic_type_hook<itype>::get(src, tinfo) determines whether the object pointed
822 // to by `src` actually is an instance of some class derived from `itype`.
823 // If so, it sets `tinfo` to point to the std::type_info representing that derived
824 // type, and returns a pointer to the start of the most-derived object of that type
825 // (in which `src` is a subobject; this will be the same address as `src` in most
826 // single inheritance cases). If not, or if `src` is nullptr, it simply returns `src`
827 // and leaves `tinfo` at its default value of nullptr.
828 //
829 // The default polymorphic_type_hook just returns src. A specialization for polymorphic
830 // types determines the runtime type of the passed object and adjusts the this-pointer
831 // appropriately via dynamic_cast<void*>. This is what enables a C++ Animal* to appear
832 // to Python as a Dog (if Dog inherits from Animal, Animal is polymorphic, Dog is
833 // registered with pybind11, and this Animal is in fact a Dog).
834 //
835 // You may specialize polymorphic_type_hook yourself for types that want to appear
836 // polymorphic to Python but do not use C++ RTTI. (This is a not uncommon pattern
837 // in performance-sensitive applications, used most notably in LLVM.)
838 //
839 // polymorphic_type_hook_base allows users to specialize polymorphic_type_hook with
840 // std::enable_if. User provided specializations will always have higher priority than
841 // the default implementation and specialization provided in polymorphic_type_hook_base.
842 template <typename itype, typename SFINAE = void>
843 struct polymorphic_type_hook_base
844 {
845     static const void *get(const itype *src, const std::type_info*&) { return src; }
846 };
847 template <typename itype>
848 struct polymorphic_type_hook_base<itype, detail::enable_if_t<std::is_polymorphic<itype>::value>>
849 {
850     static const void *get(const itype *src, const std::type_info*& type) {
851         type = src ? &typeid(*src) : nullptr;
852         return dynamic_cast<const void*>(src);
853     }
854 };
855 template <typename itype, typename SFINAE = void>
856 struct polymorphic_type_hook : public polymorphic_type_hook_base<itype> {};
857 
858 PYBIND11_NAMESPACE_BEGIN(detail)
859 
860 /// Generic type caster for objects stored on the heap
861 template <typename type> class type_caster_base : public type_caster_generic {
862     using itype = intrinsic_t<type>;
863 
864 public:
865     static constexpr auto name = _<type>();
866 
867     type_caster_base() : type_caster_base(typeid(type)) { }
868     explicit type_caster_base(const std::type_info &info) : type_caster_generic(info) { }
869 
870     static handle cast(const itype &src, return_value_policy policy, handle parent) {
871         if (policy == return_value_policy::automatic || policy == return_value_policy::automatic_reference)
872             policy = return_value_policy::copy;
873         return cast(&src, policy, parent);
874     }
875 
876     static handle cast(itype &&src, return_value_policy, handle parent) {
877         return cast(&src, return_value_policy::move, parent);
878     }
879 
880     // Returns a (pointer, type_info) pair taking care of necessary type lookup for a
881     // polymorphic type (using RTTI by default, but can be overridden by specializing
882     // polymorphic_type_hook). If the instance isn't derived, returns the base version.
883     static std::pair<const void *, const type_info *> src_and_type(const itype *src) {
884         auto &cast_type = typeid(itype);
885         const std::type_info *instance_type = nullptr;
886         const void *vsrc = polymorphic_type_hook<itype>::get(src, instance_type);
887         if (instance_type && !same_type(cast_type, *instance_type)) {
888             // This is a base pointer to a derived type. If the derived type is registered
889             // with pybind11, we want to make the full derived object available.
890             // In the typical case where itype is polymorphic, we get the correct
891             // derived pointer (which may be != base pointer) by a dynamic_cast to
892             // most derived type. If itype is not polymorphic, we won't get here
893             // except via a user-provided specialization of polymorphic_type_hook,
894             // and the user has promised that no this-pointer adjustment is
895             // required in that case, so it's OK to use static_cast.
896             if (const auto *tpi = get_type_info(*instance_type))
897                 return {vsrc, tpi};
898         }
899         // Otherwise we have either a nullptr, an `itype` pointer, or an unknown derived pointer, so
900         // don't do a cast
901         return type_caster_generic::src_and_type(src, cast_type, instance_type);
902     }
903 
904     static handle cast(const itype *src, return_value_policy policy, handle parent) {
905         auto st = src_and_type(src);
906         return type_caster_generic::cast(
907             st.first, policy, parent, st.second,
908             make_copy_constructor(src), make_move_constructor(src));
909     }
910 
911     static handle cast_holder(const itype *src, const void *holder) {
912         auto st = src_and_type(src);
913         return type_caster_generic::cast(
914             st.first, return_value_policy::take_ownership, {}, st.second,
915             nullptr, nullptr, holder);
916     }
917 
918     template <typename T> using cast_op_type = detail::cast_op_type<T>;
919 
920     operator itype*() { return (type *) value; }
921     operator itype&() { if (!value) throw reference_cast_error(); return *((itype *) value); }
922 
923 protected:
924     using Constructor = void *(*)(const void *);
925 
926     /* Only enabled when the types are {copy,move}-constructible *and* when the type
927        does not have a private operator new implementation. */
928     template <typename T, typename = enable_if_t<is_copy_constructible<T>::value>>
929     static auto make_copy_constructor(const T *x) -> decltype(new T(*x), Constructor{}) {
930         return [](const void *arg) -> void * {
931             return new T(*reinterpret_cast<const T *>(arg));
932         };
933     }
934 
935     template <typename T, typename = enable_if_t<std::is_move_constructible<T>::value>>
936     static auto make_move_constructor(const T *x) -> decltype(new T(std::move(*const_cast<T *>(x))), Constructor{}) {
937         return [](const void *arg) -> void * {
938             return new T(std::move(*const_cast<T *>(reinterpret_cast<const T *>(arg))));
939         };
940     }
941 
942     static Constructor make_copy_constructor(...) { return nullptr; }
943     static Constructor make_move_constructor(...) { return nullptr; }
944 };
945 
946 template <typename type, typename SFINAE = void> class type_caster : public type_caster_base<type> { };
947 template <typename type> using make_caster = type_caster<intrinsic_t<type>>;
948 
949 // Shortcut for calling a caster's `cast_op_type` cast operator for casting a type_caster to a T
950 template <typename T> typename make_caster<T>::template cast_op_type<T> cast_op(make_caster<T> &caster) {
951     return caster.operator typename make_caster<T>::template cast_op_type<T>();
952 }
953 template <typename T> typename make_caster<T>::template cast_op_type<typename std::add_rvalue_reference<T>::type>
954 cast_op(make_caster<T> &&caster) {
955     return std::move(caster).operator
956         typename make_caster<T>::template cast_op_type<typename std::add_rvalue_reference<T>::type>();
957 }
958 
959 template <typename type> class type_caster<std::reference_wrapper<type>> {
960 private:
961     using caster_t = make_caster<type>;
962     caster_t subcaster;
963     using reference_t = type&;
964     using subcaster_cast_op_type =
965         typename caster_t::template cast_op_type<reference_t>;
966 
967     static_assert(std::is_same<typename std::remove_const<type>::type &, subcaster_cast_op_type>::value ||
968                   std::is_same<reference_t, subcaster_cast_op_type>::value,
969                   "std::reference_wrapper<T> caster requires T to have a caster with an "
970                   "`operator T &()` or `operator const T &()`");
971 public:
972     bool load(handle src, bool convert) { return subcaster.load(src, convert); }
973     static constexpr auto name = caster_t::name;
974     static handle cast(const std::reference_wrapper<type> &src, return_value_policy policy, handle parent) {
975         // It is definitely wrong to take ownership of this pointer, so mask that rvp
976         if (policy == return_value_policy::take_ownership || policy == return_value_policy::automatic)
977             policy = return_value_policy::automatic_reference;
978         return caster_t::cast(&src.get(), policy, parent);
979     }
980     template <typename T> using cast_op_type = std::reference_wrapper<type>;
981     operator std::reference_wrapper<type>() { return cast_op<type &>(subcaster); }
982 };
983 
984 #define PYBIND11_TYPE_CASTER(type, py_name) \
985     protected: \
986         type value; \
987     public: \
988         static constexpr auto name = py_name; \
989         template <typename T_, enable_if_t<std::is_same<type, remove_cv_t<T_>>::value, int> = 0> \
990         static handle cast(T_ *src, return_value_policy policy, handle parent) { \
991             if (!src) return none().release(); \
992             if (policy == return_value_policy::take_ownership) { \
993                 auto h = cast(std::move(*src), policy, parent); delete src; return h; \
994             } else { \
995                 return cast(*src, policy, parent); \
996             } \
997         } \
998         operator type*() { return &value; } \
999         operator type&() { return value; } \
1000         operator type&&() && { return std::move(value); } \
1001         template <typename T_> using cast_op_type = pybind11::detail::movable_cast_op_type<T_>
1002 
1003 
1004 template <typename CharT> using is_std_char_type = any_of<
1005     std::is_same<CharT, char>, /* std::string */
1006 #if defined(PYBIND11_HAS_U8STRING)
1007     std::is_same<CharT, char8_t>, /* std::u8string */
1008 #endif
1009     std::is_same<CharT, char16_t>, /* std::u16string */
1010     std::is_same<CharT, char32_t>, /* std::u32string */
1011     std::is_same<CharT, wchar_t> /* std::wstring */
1012 >;
1013 
1014 
1015 template <typename T>
1016 struct type_caster<T, enable_if_t<std::is_arithmetic<T>::value && !is_std_char_type<T>::value>> {
1017     using _py_type_0 = conditional_t<sizeof(T) <= sizeof(long), long, long long>;
1018     using _py_type_1 = conditional_t<std::is_signed<T>::value, _py_type_0, typename std::make_unsigned<_py_type_0>::type>;
1019     using py_type = conditional_t<std::is_floating_point<T>::value, double, _py_type_1>;
1020 public:
1021 
1022     bool load(handle src, bool convert) {
1023         py_type py_value;
1024 
1025         if (!src)
1026             return false;
1027 
1028 #if !defined(PYPY_VERSION)
1029         auto index_check = [](PyObject *o) { return PyIndex_Check(o); };
1030 #else
1031         // In PyPy 7.3.3, `PyIndex_Check` is implemented by calling `__index__`,
1032         // while CPython only considers the existence of `nb_index`/`__index__`.
1033         auto index_check = [](PyObject *o) { return hasattr(o, "__index__"); };
1034 #endif
1035 
1036         if (std::is_floating_point<T>::value) {
1037             if (convert || PyFloat_Check(src.ptr()))
1038                 py_value = (py_type) PyFloat_AsDouble(src.ptr());
1039             else
1040                 return false;
1041         } else if (PyFloat_Check(src.ptr())) {
1042             return false;
1043         } else if (!convert && !PYBIND11_LONG_CHECK(src.ptr()) && !index_check(src.ptr())) {
1044             return false;
1045         } else {
1046             handle src_or_index = src;
1047 #if PY_VERSION_HEX < 0x03080000
1048             object index;
1049             if (!PYBIND11_LONG_CHECK(src.ptr())) {  // So: index_check(src.ptr())
1050                 index = reinterpret_steal<object>(PyNumber_Index(src.ptr()));
1051                 if (!index) {
1052                     PyErr_Clear();
1053                     if (!convert)
1054                         return false;
1055                 }
1056                 else {
1057                     src_or_index = index;
1058                 }
1059             }
1060 #endif
1061             if (std::is_unsigned<py_type>::value) {
1062                 py_value = as_unsigned<py_type>(src_or_index.ptr());
1063             } else { // signed integer:
1064                 py_value = sizeof(T) <= sizeof(long)
1065                     ? (py_type) PyLong_AsLong(src_or_index.ptr())
1066                     : (py_type) PYBIND11_LONG_AS_LONGLONG(src_or_index.ptr());
1067             }
1068         }
1069 
1070         // Python API reported an error
1071         bool py_err = py_value == (py_type) -1 && PyErr_Occurred();
1072 
1073         // Check to see if the conversion is valid (integers should match exactly)
1074         // Signed/unsigned checks happen elsewhere
1075         if (py_err || (std::is_integral<T>::value && sizeof(py_type) != sizeof(T) && py_value != (py_type) (T) py_value)) {
1076             PyErr_Clear();
1077             if (py_err && convert && PyNumber_Check(src.ptr())) {
1078                 auto tmp = reinterpret_steal<object>(std::is_floating_point<T>::value
1079                                                      ? PyNumber_Float(src.ptr())
1080                                                      : PyNumber_Long(src.ptr()));
1081                 PyErr_Clear();
1082                 return load(tmp, false);
1083             }
1084             return false;
1085         }
1086 
1087         value = (T) py_value;
1088         return true;
1089     }
1090 
1091     template<typename U = T>
1092     static typename std::enable_if<std::is_floating_point<U>::value, handle>::type
1093     cast(U src, return_value_policy /* policy */, handle /* parent */) {
1094         return PyFloat_FromDouble((double) src);
1095     }
1096 
1097     template<typename U = T>
1098     static typename std::enable_if<!std::is_floating_point<U>::value && std::is_signed<U>::value && (sizeof(U) <= sizeof(long)), handle>::type
1099     cast(U src, return_value_policy /* policy */, handle /* parent */) {
1100         return PYBIND11_LONG_FROM_SIGNED((long) src);
1101     }
1102 
1103     template<typename U = T>
1104     static typename std::enable_if<!std::is_floating_point<U>::value && std::is_unsigned<U>::value && (sizeof(U) <= sizeof(unsigned long)), handle>::type
1105     cast(U src, return_value_policy /* policy */, handle /* parent */) {
1106         return PYBIND11_LONG_FROM_UNSIGNED((unsigned long) src);
1107     }
1108 
1109     template<typename U = T>
1110     static typename std::enable_if<!std::is_floating_point<U>::value && std::is_signed<U>::value && (sizeof(U) > sizeof(long)), handle>::type
1111     cast(U src, return_value_policy /* policy */, handle /* parent */) {
1112         return PyLong_FromLongLong((long long) src);
1113     }
1114 
1115     template<typename U = T>
1116     static typename std::enable_if<!std::is_floating_point<U>::value && std::is_unsigned<U>::value && (sizeof(U) > sizeof(unsigned long)), handle>::type
1117     cast(U src, return_value_policy /* policy */, handle /* parent */) {
1118         return PyLong_FromUnsignedLongLong((unsigned long long) src);
1119     }
1120 
1121     PYBIND11_TYPE_CASTER(T, _<std::is_integral<T>::value>("int", "float"));
1122 };
1123 
1124 template<typename T> struct void_caster {
1125 public:
1126     bool load(handle src, bool) {
1127         if (src && src.is_none())
1128             return true;
1129         return false;
1130     }
1131     static handle cast(T, return_value_policy /* policy */, handle /* parent */) {
1132         return none().inc_ref();
1133     }
1134     PYBIND11_TYPE_CASTER(T, _("None"));
1135 };
1136 
1137 template <> class type_caster<void_type> : public void_caster<void_type> {};
1138 
1139 template <> class type_caster<void> : public type_caster<void_type> {
1140 public:
1141     using type_caster<void_type>::cast;
1142 
1143     bool load(handle h, bool) {
1144         if (!h) {
1145             return false;
1146         } else if (h.is_none()) {
1147             value = nullptr;
1148             return true;
1149         }
1150 
1151         /* Check if this is a capsule */
1152         if (isinstance<capsule>(h)) {
1153             value = reinterpret_borrow<capsule>(h);
1154             return true;
1155         }
1156 
1157         /* Check if this is a C++ type */
1158         auto &bases = all_type_info((PyTypeObject *) type::handle_of(h).ptr());
1159         if (bases.size() == 1) { // Only allowing loading from a single-value type
1160             value = values_and_holders(reinterpret_cast<instance *>(h.ptr())).begin()->value_ptr();
1161             return true;
1162         }
1163 
1164         /* Fail */
1165         return false;
1166     }
1167 
1168     static handle cast(const void *ptr, return_value_policy /* policy */, handle /* parent */) {
1169         if (ptr)
1170             return capsule(ptr).release();
1171         else
1172             return none().inc_ref();
1173     }
1174 
1175     template <typename T> using cast_op_type = void*&;
1176     operator void *&() { return value; }
1177     static constexpr auto name = _("capsule");
1178 private:
1179     void *value = nullptr;
1180 };
1181 
1182 template <> class type_caster<std::nullptr_t> : public void_caster<std::nullptr_t> { };
1183 
1184 template <> class type_caster<bool> {
1185 public:
1186     bool load(handle src, bool convert) {
1187         if (!src) return false;
1188         else if (src.ptr() == Py_True) { value = true; return true; }
1189         else if (src.ptr() == Py_False) { value = false; return true; }
1190         else if (convert || !strcmp("numpy.bool_", Py_TYPE(src.ptr())->tp_name)) {
1191             // (allow non-implicit conversion for numpy booleans)
1192 
1193             Py_ssize_t res = -1;
1194             if (src.is_none()) {
1195                 res = 0;  // None is implicitly converted to False
1196             }
1197             #if defined(PYPY_VERSION)
1198             // On PyPy, check that "__bool__" (or "__nonzero__" on Python 2.7) attr exists
1199             else if (hasattr(src, PYBIND11_BOOL_ATTR)) {
1200                 res = PyObject_IsTrue(src.ptr());
1201             }
1202             #else
1203             // Alternate approach for CPython: this does the same as the above, but optimized
1204             // using the CPython API so as to avoid an unneeded attribute lookup.
1205             else if (auto tp_as_number = src.ptr()->ob_type->tp_as_number) {
1206                 if (PYBIND11_NB_BOOL(tp_as_number)) {
1207                     res = (*PYBIND11_NB_BOOL(tp_as_number))(src.ptr());
1208                 }
1209             }
1210             #endif
1211             if (res == 0 || res == 1) {
1212                 value = (bool) res;
1213                 return true;
1214             } else {
1215                 PyErr_Clear();
1216             }
1217         }
1218         return false;
1219     }
1220     static handle cast(bool src, return_value_policy /* policy */, handle /* parent */) {
1221         return handle(src ? Py_True : Py_False).inc_ref();
1222     }
1223     PYBIND11_TYPE_CASTER(bool, _("bool"));
1224 };
1225 
1226 // Helper class for UTF-{8,16,32} C++ stl strings:
1227 template <typename StringType, bool IsView = false> struct string_caster {
1228     using CharT = typename StringType::value_type;
1229 
1230     // Simplify life by being able to assume standard char sizes (the standard only guarantees
1231     // minimums, but Python requires exact sizes)
1232     static_assert(!std::is_same<CharT, char>::value || sizeof(CharT) == 1, "Unsupported char size != 1");
1233 #if defined(PYBIND11_HAS_U8STRING)
1234     static_assert(!std::is_same<CharT, char8_t>::value || sizeof(CharT) == 1, "Unsupported char8_t size != 1");
1235 #endif
1236     static_assert(!std::is_same<CharT, char16_t>::value || sizeof(CharT) == 2, "Unsupported char16_t size != 2");
1237     static_assert(!std::is_same<CharT, char32_t>::value || sizeof(CharT) == 4, "Unsupported char32_t size != 4");
1238     // wchar_t can be either 16 bits (Windows) or 32 (everywhere else)
1239     static_assert(!std::is_same<CharT, wchar_t>::value || sizeof(CharT) == 2 || sizeof(CharT) == 4,
1240             "Unsupported wchar_t size != 2/4");
1241     static constexpr size_t UTF_N = 8 * sizeof(CharT);
1242 
1243     bool load(handle src, bool) {
1244 #if PY_MAJOR_VERSION < 3
1245         object temp;
1246 #endif
1247         handle load_src = src;
1248         if (!src) {
1249             return false;
1250         } else if (!PyUnicode_Check(load_src.ptr())) {
1251 #if PY_MAJOR_VERSION >= 3
1252             return load_bytes(load_src);
1253 #else
1254             if (std::is_same<CharT, char>::value) {
1255                 return load_bytes(load_src);
1256             }
1257 
1258             // The below is a guaranteed failure in Python 3 when PyUnicode_Check returns false
1259             if (!PYBIND11_BYTES_CHECK(load_src.ptr()))
1260                 return false;
1261 
1262             temp = reinterpret_steal<object>(PyUnicode_FromObject(load_src.ptr()));
1263             if (!temp) { PyErr_Clear(); return false; }
1264             load_src = temp;
1265 #endif
1266         }
1267 
1268         auto utfNbytes = reinterpret_steal<object>(PyUnicode_AsEncodedString(
1269             load_src.ptr(), UTF_N == 8 ? "utf-8" : UTF_N == 16 ? "utf-16" : "utf-32", nullptr));
1270         if (!utfNbytes) { PyErr_Clear(); return false; }
1271 
1272         const auto *buffer = reinterpret_cast<const CharT *>(PYBIND11_BYTES_AS_STRING(utfNbytes.ptr()));
1273         size_t length = (size_t) PYBIND11_BYTES_SIZE(utfNbytes.ptr()) / sizeof(CharT);
1274         if (UTF_N > 8) { buffer++; length--; } // Skip BOM for UTF-16/32
1275         value = StringType(buffer, length);
1276 
1277         // If we're loading a string_view we need to keep the encoded Python object alive:
1278         if (IsView)
1279             loader_life_support::add_patient(utfNbytes);
1280 
1281         return true;
1282     }
1283 
1284     static handle cast(const StringType &src, return_value_policy /* policy */, handle /* parent */) {
1285         const char *buffer = reinterpret_cast<const char *>(src.data());
1286         auto nbytes = ssize_t(src.size() * sizeof(CharT));
1287         handle s = decode_utfN(buffer, nbytes);
1288         if (!s) throw error_already_set();
1289         return s;
1290     }
1291 
1292     PYBIND11_TYPE_CASTER(StringType, _(PYBIND11_STRING_NAME));
1293 
1294 private:
1295     static handle decode_utfN(const char *buffer, ssize_t nbytes) {
1296 #if !defined(PYPY_VERSION)
1297         return
1298             UTF_N == 8  ? PyUnicode_DecodeUTF8(buffer, nbytes, nullptr) :
1299             UTF_N == 16 ? PyUnicode_DecodeUTF16(buffer, nbytes, nullptr, nullptr) :
1300                           PyUnicode_DecodeUTF32(buffer, nbytes, nullptr, nullptr);
1301 #else
1302         // PyPy segfaults when on PyUnicode_DecodeUTF16 (and possibly on PyUnicode_DecodeUTF32 as well),
1303         // so bypass the whole thing by just passing the encoding as a string value, which works properly:
1304         return PyUnicode_Decode(buffer, nbytes, UTF_N == 8 ? "utf-8" : UTF_N == 16 ? "utf-16" : "utf-32", nullptr);
1305 #endif
1306     }
1307 
1308     // When loading into a std::string or char*, accept a bytes object as-is (i.e.
1309     // without any encoding/decoding attempt).  For other C++ char sizes this is a no-op.
1310     // which supports loading a unicode from a str, doesn't take this path.
1311     template <typename C = CharT>
1312     bool load_bytes(enable_if_t<std::is_same<C, char>::value, handle> src) {
1313         if (PYBIND11_BYTES_CHECK(src.ptr())) {
1314             // We were passed a Python 3 raw bytes; accept it into a std::string or char*
1315             // without any encoding attempt.
1316             const char *bytes = PYBIND11_BYTES_AS_STRING(src.ptr());
1317             if (bytes) {
1318                 value = StringType(bytes, (size_t) PYBIND11_BYTES_SIZE(src.ptr()));
1319                 return true;
1320             }
1321         }
1322 
1323         return false;
1324     }
1325 
1326     template <typename C = CharT>
1327     bool load_bytes(enable_if_t<!std::is_same<C, char>::value, handle>) { return false; }
1328 };
1329 
1330 template <typename CharT, class Traits, class Allocator>
1331 struct type_caster<std::basic_string<CharT, Traits, Allocator>, enable_if_t<is_std_char_type<CharT>::value>>
1332     : string_caster<std::basic_string<CharT, Traits, Allocator>> {};
1333 
1334 #ifdef PYBIND11_HAS_STRING_VIEW
1335 template <typename CharT, class Traits>
1336 struct type_caster<std::basic_string_view<CharT, Traits>, enable_if_t<is_std_char_type<CharT>::value>>
1337     : string_caster<std::basic_string_view<CharT, Traits>, true> {};
1338 #endif
1339 
1340 // Type caster for C-style strings.  We basically use a std::string type caster, but also add the
1341 // ability to use None as a nullptr char* (which the string caster doesn't allow).
1342 template <typename CharT> struct type_caster<CharT, enable_if_t<is_std_char_type<CharT>::value>> {
1343     using StringType = std::basic_string<CharT>;
1344     using StringCaster = type_caster<StringType>;
1345     StringCaster str_caster;
1346     bool none = false;
1347     CharT one_char = 0;
1348 public:
1349     bool load(handle src, bool convert) {
1350         if (!src) return false;
1351         if (src.is_none()) {
1352             // Defer accepting None to other overloads (if we aren't in convert mode):
1353             if (!convert) return false;
1354             none = true;
1355             return true;
1356         }
1357         return str_caster.load(src, convert);
1358     }
1359 
1360     static handle cast(const CharT *src, return_value_policy policy, handle parent) {
1361         if (src == nullptr) return pybind11::none().inc_ref();
1362         return StringCaster::cast(StringType(src), policy, parent);
1363     }
1364 
1365     static handle cast(CharT src, return_value_policy policy, handle parent) {
1366         if (std::is_same<char, CharT>::value) {
1367             handle s = PyUnicode_DecodeLatin1((const char *) &src, 1, nullptr);
1368             if (!s) throw error_already_set();
1369             return s;
1370         }
1371         return StringCaster::cast(StringType(1, src), policy, parent);
1372     }
1373 
1374     operator CharT*() { return none ? nullptr : const_cast<CharT *>(static_cast<StringType &>(str_caster).c_str()); }
1375     operator CharT&() {
1376         if (none)
1377             throw value_error("Cannot convert None to a character");
1378 
1379         auto &value = static_cast<StringType &>(str_caster);
1380         size_t str_len = value.size();
1381         if (str_len == 0)
1382             throw value_error("Cannot convert empty string to a character");
1383 
1384         // If we're in UTF-8 mode, we have two possible failures: one for a unicode character that
1385         // is too high, and one for multiple unicode characters (caught later), so we need to figure
1386         // out how long the first encoded character is in bytes to distinguish between these two
1387         // errors.  We also allow want to allow unicode characters U+0080 through U+00FF, as those
1388         // can fit into a single char value.
1389         if (StringCaster::UTF_N == 8 && str_len > 1 && str_len <= 4) {
1390             auto v0 = static_cast<unsigned char>(value[0]);
1391             size_t char0_bytes = !(v0 & 0x80) ? 1 : // low bits only: 0-127
1392                 (v0 & 0xE0) == 0xC0 ? 2 : // 0b110xxxxx - start of 2-byte sequence
1393                 (v0 & 0xF0) == 0xE0 ? 3 : // 0b1110xxxx - start of 3-byte sequence
1394                 4; // 0b11110xxx - start of 4-byte sequence
1395 
1396             if (char0_bytes == str_len) {
1397                 // If we have a 128-255 value, we can decode it into a single char:
1398                 if (char0_bytes == 2 && (v0 & 0xFC) == 0xC0) { // 0x110000xx 0x10xxxxxx
1399                     one_char = static_cast<CharT>(((v0 & 3) << 6) + (static_cast<unsigned char>(value[1]) & 0x3F));
1400                     return one_char;
1401                 }
1402                 // Otherwise we have a single character, but it's > U+00FF
1403                 throw value_error("Character code point not in range(0x100)");
1404             }
1405         }
1406 
1407         // UTF-16 is much easier: we can only have a surrogate pair for values above U+FFFF, thus a
1408         // surrogate pair with total length 2 instantly indicates a range error (but not a "your
1409         // string was too long" error).
1410         else if (StringCaster::UTF_N == 16 && str_len == 2) {
1411             one_char = static_cast<CharT>(value[0]);
1412             if (one_char >= 0xD800 && one_char < 0xE000)
1413                 throw value_error("Character code point not in range(0x10000)");
1414         }
1415 
1416         if (str_len != 1)
1417             throw value_error("Expected a character, but multi-character string found");
1418 
1419         one_char = value[0];
1420         return one_char;
1421     }
1422 
1423     static constexpr auto name = _(PYBIND11_STRING_NAME);
1424     template <typename _T> using cast_op_type = pybind11::detail::cast_op_type<_T>;
1425 };
1426 
1427 // Base implementation for std::tuple and std::pair
1428 template <template<typename...> class Tuple, typename... Ts> class tuple_caster {
1429     using type = Tuple<Ts...>;
1430     static constexpr auto size = sizeof...(Ts);
1431     using indices = make_index_sequence<size>;
1432 public:
1433 
1434     bool load(handle src, bool convert) {
1435         if (!isinstance<sequence>(src))
1436             return false;
1437         const auto seq = reinterpret_borrow<sequence>(src);
1438         if (seq.size() != size)
1439             return false;
1440         return load_impl(seq, convert, indices{});
1441     }
1442 
1443     template <typename T>
1444     static handle cast(T &&src, return_value_policy policy, handle parent) {
1445         return cast_impl(std::forward<T>(src), policy, parent, indices{});
1446     }
1447 
1448     // copied from the PYBIND11_TYPE_CASTER macro
1449     template <typename T>
1450     static handle cast(T *src, return_value_policy policy, handle parent) {
1451         if (!src) return none().release();
1452         if (policy == return_value_policy::take_ownership) {
1453             auto h = cast(std::move(*src), policy, parent); delete src; return h;
1454         } else {
1455             return cast(*src, policy, parent);
1456         }
1457     }
1458 
1459     static constexpr auto name = _("Tuple[") + concat(make_caster<Ts>::name...) + _("]");
1460 
1461     template <typename T> using cast_op_type = type;
1462 
1463     operator type() & { return implicit_cast(indices{}); }
1464     operator type() && { return std::move(*this).implicit_cast(indices{}); }
1465 
1466 protected:
1467     template <size_t... Is>
1468     type implicit_cast(index_sequence<Is...>) & { return type(cast_op<Ts>(std::get<Is>(subcasters))...); }
1469     template <size_t... Is>
1470     type implicit_cast(index_sequence<Is...>) && { return type(cast_op<Ts>(std::move(std::get<Is>(subcasters)))...); }
1471 
1472     static constexpr bool load_impl(const sequence &, bool, index_sequence<>) { return true; }
1473 
1474     template <size_t... Is>
1475     bool load_impl(const sequence &seq, bool convert, index_sequence<Is...>) {
1476 #ifdef __cpp_fold_expressions
1477         if ((... || !std::get<Is>(subcasters).load(seq[Is], convert)))
1478             return false;
1479 #else
1480         for (bool r : {std::get<Is>(subcasters).load(seq[Is], convert)...})
1481             if (!r)
1482                 return false;
1483 #endif
1484         return true;
1485     }
1486 
1487     /* Implementation: Convert a C++ tuple into a Python tuple */
1488     template <typename T, size_t... Is>
1489     static handle cast_impl(T &&src, return_value_policy policy, handle parent, index_sequence<Is...>) {
1490         std::array<object, size> entries{{
1491             reinterpret_steal<object>(make_caster<Ts>::cast(std::get<Is>(std::forward<T>(src)), policy, parent))...
1492         }};
1493         for (const auto &entry: entries)
1494             if (!entry)
1495                 return handle();
1496         tuple result(size);
1497         int counter = 0;
1498         for (auto & entry: entries)
1499             PyTuple_SET_ITEM(result.ptr(), counter++, entry.release().ptr());
1500         return result.release();
1501     }
1502 
1503     Tuple<make_caster<Ts>...> subcasters;
1504 };
1505 
1506 template <typename T1, typename T2> class type_caster<std::pair<T1, T2>>
1507     : public tuple_caster<std::pair, T1, T2> {};
1508 
1509 template <typename... Ts> class type_caster<std::tuple<Ts...>>
1510     : public tuple_caster<std::tuple, Ts...> {};
1511 
1512 /// Helper class which abstracts away certain actions. Users can provide specializations for
1513 /// custom holders, but it's only necessary if the type has a non-standard interface.
1514 template <typename T>
1515 struct holder_helper {
1516     static auto get(const T &p) -> decltype(p.get()) { return p.get(); }
1517 };
1518 
1519 /// Type caster for holder types like std::shared_ptr, etc.
1520 template <typename type, typename holder_type>
1521 struct copyable_holder_caster : public type_caster_base<type> {
1522 public:
1523     using base = type_caster_base<type>;
1524     static_assert(std::is_base_of<base, type_caster<type>>::value,
1525             "Holder classes are only supported for custom types");
1526     using base::base;
1527     using base::cast;
1528     using base::typeinfo;
1529     using base::value;
1530 
1531     bool load(handle src, bool convert) {
1532         return base::template load_impl<copyable_holder_caster<type, holder_type>>(src, convert);
1533     }
1534 
1535     explicit operator type*() { return this->value; }
1536     // static_cast works around compiler error with MSVC 17 and CUDA 10.2
1537     // see issue #2180
1538     explicit operator type&() { return *(static_cast<type *>(this->value)); }
1539     explicit operator holder_type*() { return std::addressof(holder); }
1540     explicit operator holder_type&() { return holder; }
1541 
1542     static handle cast(const holder_type &src, return_value_policy, handle) {
1543         const auto *ptr = holder_helper<holder_type>::get(src);
1544         return type_caster_base<type>::cast_holder(ptr, &src);
1545     }
1546 
1547 protected:
1548     friend class type_caster_generic;
1549     void check_holder_compat() {
1550         if (typeinfo->default_holder)
1551             throw cast_error("Unable to load a custom holder type from a default-holder instance");
1552     }
1553 
1554     bool load_value(value_and_holder &&v_h) {
1555         if (v_h.holder_constructed()) {
1556             value = v_h.value_ptr();
1557             holder = v_h.template holder<holder_type>();
1558             return true;
1559         } else {
1560             throw cast_error("Unable to cast from non-held to held instance (T& to Holder<T>) "
1561 #if defined(NDEBUG)
1562                              "(compile in debug mode for type information)");
1563 #else
1564                              "of type '" + type_id<holder_type>() + "''");
1565 #endif
1566         }
1567     }
1568 
1569     template <typename T = holder_type, detail::enable_if_t<!std::is_constructible<T, const T &, type*>::value, int> = 0>
1570     bool try_implicit_casts(handle, bool) { return false; }
1571 
1572     template <typename T = holder_type, detail::enable_if_t<std::is_constructible<T, const T &, type*>::value, int> = 0>
1573     bool try_implicit_casts(handle src, bool convert) {
1574         for (auto &cast : typeinfo->implicit_casts) {
1575             copyable_holder_caster sub_caster(*cast.first);
1576             if (sub_caster.load(src, convert)) {
1577                 value = cast.second(sub_caster.value);
1578                 holder = holder_type(sub_caster.holder, (type *) value);
1579                 return true;
1580             }
1581         }
1582         return false;
1583     }
1584 
1585     static bool try_direct_conversions(handle) { return false; }
1586 
1587 
1588     holder_type holder;
1589 };
1590 
1591 /// Specialize for the common std::shared_ptr, so users don't need to
1592 template <typename T>
1593 class type_caster<std::shared_ptr<T>> : public copyable_holder_caster<T, std::shared_ptr<T>> { };
1594 
1595 template <typename type, typename holder_type>
1596 struct move_only_holder_caster {
1597     static_assert(std::is_base_of<type_caster_base<type>, type_caster<type>>::value,
1598             "Holder classes are only supported for custom types");
1599 
1600     static handle cast(holder_type &&src, return_value_policy, handle) {
1601         auto *ptr = holder_helper<holder_type>::get(src);
1602         return type_caster_base<type>::cast_holder(ptr, std::addressof(src));
1603     }
1604     static constexpr auto name = type_caster_base<type>::name;
1605 };
1606 
1607 template <typename type, typename deleter>
1608 class type_caster<std::unique_ptr<type, deleter>>
1609     : public move_only_holder_caster<type, std::unique_ptr<type, deleter>> { };
1610 
1611 template <typename type, typename holder_type>
1612 using type_caster_holder = conditional_t<is_copy_constructible<holder_type>::value,
1613                                          copyable_holder_caster<type, holder_type>,
1614                                          move_only_holder_caster<type, holder_type>>;
1615 
1616 template <typename T, bool Value = false> struct always_construct_holder { static constexpr bool value = Value; };
1617 
1618 /// Create a specialization for custom holder types (silently ignores std::shared_ptr)
1619 #define PYBIND11_DECLARE_HOLDER_TYPE(type, holder_type, ...) \
1620     namespace pybind11 { namespace detail { \
1621     template <typename type> \
1622     struct always_construct_holder<holder_type> : always_construct_holder<void, ##__VA_ARGS__>  { }; \
1623     template <typename type> \
1624     class type_caster<holder_type, enable_if_t<!is_shared_ptr<holder_type>::value>> \
1625         : public type_caster_holder<type, holder_type> { }; \
1626     }}
1627 
1628 // PYBIND11_DECLARE_HOLDER_TYPE holder types:
1629 template <typename base, typename holder> struct is_holder_type :
1630     std::is_base_of<detail::type_caster_holder<base, holder>, detail::type_caster<holder>> {};
1631 // Specialization for always-supported unique_ptr holders:
1632 template <typename base, typename deleter> struct is_holder_type<base, std::unique_ptr<base, deleter>> :
1633     std::true_type {};
1634 
1635 template <typename T> struct handle_type_name { static constexpr auto name = _<T>(); };
1636 template <> struct handle_type_name<bytes> { static constexpr auto name = _(PYBIND11_BYTES_NAME); };
1637 template <> struct handle_type_name<int_> { static constexpr auto name = _("int"); };
1638 template <> struct handle_type_name<iterable> { static constexpr auto name = _("Iterable"); };
1639 template <> struct handle_type_name<iterator> { static constexpr auto name = _("Iterator"); };
1640 template <> struct handle_type_name<none> { static constexpr auto name = _("None"); };
1641 template <> struct handle_type_name<args> { static constexpr auto name = _("*args"); };
1642 template <> struct handle_type_name<kwargs> { static constexpr auto name = _("**kwargs"); };
1643 
1644 template <typename type>
1645 struct pyobject_caster {
1646     template <typename T = type, enable_if_t<std::is_same<T, handle>::value, int> = 0>
1647     bool load(handle src, bool /* convert */) { value = src; return static_cast<bool>(value); }
1648 
1649     template <typename T = type, enable_if_t<std::is_base_of<object, T>::value, int> = 0>
1650     bool load(handle src, bool /* convert */) {
1651         if (!isinstance<type>(src))
1652             return false;
1653         value = reinterpret_borrow<type>(src);
1654         return true;
1655     }
1656 
1657     static handle cast(const handle &src, return_value_policy /* policy */, handle /* parent */) {
1658         return src.inc_ref();
1659     }
1660     PYBIND11_TYPE_CASTER(type, handle_type_name<type>::name);
1661 };
1662 
1663 template <typename T>
1664 class type_caster<T, enable_if_t<is_pyobject<T>::value>> : public pyobject_caster<T> { };
1665 
1666 // Our conditions for enabling moving are quite restrictive:
1667 // At compile time:
1668 // - T needs to be a non-const, non-pointer, non-reference type
1669 // - type_caster<T>::operator T&() must exist
1670 // - the type must be move constructible (obviously)
1671 // At run-time:
1672 // - if the type is non-copy-constructible, the object must be the sole owner of the type (i.e. it
1673 //   must have ref_count() == 1)h
1674 // If any of the above are not satisfied, we fall back to copying.
1675 template <typename T> using move_is_plain_type = satisfies_none_of<T,
1676     std::is_void, std::is_pointer, std::is_reference, std::is_const
1677 >;
1678 template <typename T, typename SFINAE = void> struct move_always : std::false_type {};
1679 template <typename T> struct move_always<T, enable_if_t<all_of<
1680     move_is_plain_type<T>,
1681     negation<is_copy_constructible<T>>,
1682     std::is_move_constructible<T>,
1683     std::is_same<decltype(std::declval<make_caster<T>>().operator T&()), T&>
1684 >::value>> : std::true_type {};
1685 template <typename T, typename SFINAE = void> struct move_if_unreferenced : std::false_type {};
1686 template <typename T> struct move_if_unreferenced<T, enable_if_t<all_of<
1687     move_is_plain_type<T>,
1688     negation<move_always<T>>,
1689     std::is_move_constructible<T>,
1690     std::is_same<decltype(std::declval<make_caster<T>>().operator T&()), T&>
1691 >::value>> : std::true_type {};
1692 template <typename T> using move_never = none_of<move_always<T>, move_if_unreferenced<T>>;
1693 
1694 // Detect whether returning a `type` from a cast on type's type_caster is going to result in a
1695 // reference or pointer to a local variable of the type_caster.  Basically, only
1696 // non-reference/pointer `type`s and reference/pointers from a type_caster_generic are safe;
1697 // everything else returns a reference/pointer to a local variable.
1698 template <typename type> using cast_is_temporary_value_reference = bool_constant<
1699     (std::is_reference<type>::value || std::is_pointer<type>::value) &&
1700     !std::is_base_of<type_caster_generic, make_caster<type>>::value &&
1701     !std::is_same<intrinsic_t<type>, void>::value
1702 >;
1703 
1704 // When a value returned from a C++ function is being cast back to Python, we almost always want to
1705 // force `policy = move`, regardless of the return value policy the function/method was declared
1706 // with.
1707 template <typename Return, typename SFINAE = void> struct return_value_policy_override {
1708     static return_value_policy policy(return_value_policy p) { return p; }
1709 };
1710 
1711 template <typename Return> struct return_value_policy_override<Return,
1712         detail::enable_if_t<std::is_base_of<type_caster_generic, make_caster<Return>>::value, void>> {
1713     static return_value_policy policy(return_value_policy p) {
1714         return !std::is_lvalue_reference<Return>::value &&
1715                !std::is_pointer<Return>::value
1716                    ? return_value_policy::move : p;
1717     }
1718 };
1719 
1720 // Basic python -> C++ casting; throws if casting fails
1721 template <typename T, typename SFINAE> type_caster<T, SFINAE> &load_type(type_caster<T, SFINAE> &conv, const handle &handle) {
1722     if (!conv.load(handle, true)) {
1723 #if defined(NDEBUG)
1724         throw cast_error("Unable to cast Python instance to C++ type (compile in debug mode for details)");
1725 #else
1726         throw cast_error("Unable to cast Python instance of type " +
1727             (std::string) str(type::handle_of(handle)) + " to C++ type '" + type_id<T>() + "'");
1728 #endif
1729     }
1730     return conv;
1731 }
1732 // Wrapper around the above that also constructs and returns a type_caster
1733 template <typename T> make_caster<T> load_type(const handle &handle) {
1734     make_caster<T> conv;
1735     load_type(conv, handle);
1736     return conv;
1737 }
1738 
1739 PYBIND11_NAMESPACE_END(detail)
1740 
1741 // pytype -> C++ type
1742 template <typename T, detail::enable_if_t<!detail::is_pyobject<T>::value, int> = 0>
1743 T cast(const handle &handle) {
1744     using namespace detail;
1745     static_assert(!cast_is_temporary_value_reference<T>::value,
1746             "Unable to cast type to reference: value is local to type caster");
1747     return cast_op<T>(load_type<T>(handle));
1748 }
1749 
1750 // pytype -> pytype (calls converting constructor)
1751 template <typename T, detail::enable_if_t<detail::is_pyobject<T>::value, int> = 0>
1752 T cast(const handle &handle) { return T(reinterpret_borrow<object>(handle)); }
1753 
1754 // C++ type -> py::object
1755 template <typename T, detail::enable_if_t<!detail::is_pyobject<T>::value, int> = 0>
1756 object cast(T &&value, return_value_policy policy = return_value_policy::automatic_reference,
1757             handle parent = handle()) {
1758     using no_ref_T = typename std::remove_reference<T>::type;
1759     if (policy == return_value_policy::automatic)
1760         policy = std::is_pointer<no_ref_T>::value ? return_value_policy::take_ownership :
1761                  std::is_lvalue_reference<T>::value ? return_value_policy::copy : return_value_policy::move;
1762     else if (policy == return_value_policy::automatic_reference)
1763         policy = std::is_pointer<no_ref_T>::value ? return_value_policy::reference :
1764                  std::is_lvalue_reference<T>::value ? return_value_policy::copy : return_value_policy::move;
1765     return reinterpret_steal<object>(detail::make_caster<T>::cast(std::forward<T>(value), policy, parent));
1766 }
1767 
1768 template <typename T> T handle::cast() const { return pybind11::cast<T>(*this); }
1769 template <> inline void handle::cast() const { return; }
1770 
1771 template <typename T>
1772 detail::enable_if_t<!detail::move_never<T>::value, T> move(object &&obj) {
1773     if (obj.ref_count() > 1)
1774 #if defined(NDEBUG)
1775         throw cast_error("Unable to cast Python instance to C++ rvalue: instance has multiple references"
1776             " (compile in debug mode for details)");
1777 #else
1778         throw cast_error("Unable to move from Python " + (std::string) str(type::handle_of(obj)) +
1779                 " instance to C++ " + type_id<T>() + " instance: instance has multiple references");
1780 #endif
1781 
1782     // Move into a temporary and return that, because the reference may be a local value of `conv`
1783     T ret = std::move(detail::load_type<T>(obj).operator T&());
1784     return ret;
1785 }
1786 
1787 // Calling cast() on an rvalue calls pybind11::cast with the object rvalue, which does:
1788 // - If we have to move (because T has no copy constructor), do it.  This will fail if the moved
1789 //   object has multiple references, but trying to copy will fail to compile.
1790 // - If both movable and copyable, check ref count: if 1, move; otherwise copy
1791 // - Otherwise (not movable), copy.
1792 template <typename T> detail::enable_if_t<detail::move_always<T>::value, T> cast(object &&object) {
1793     return move<T>(std::move(object));
1794 }
1795 template <typename T> detail::enable_if_t<detail::move_if_unreferenced<T>::value, T> cast(object &&object) {
1796     if (object.ref_count() > 1)
1797         return cast<T>(object);
1798     else
1799         return move<T>(std::move(object));
1800 }
1801 template <typename T> detail::enable_if_t<detail::move_never<T>::value, T> cast(object &&object) {
1802     return cast<T>(object);
1803 }
1804 
1805 template <typename T> T object::cast() const & { return pybind11::cast<T>(*this); }
1806 template <typename T> T object::cast() && { return pybind11::cast<T>(std::move(*this)); }
1807 template <> inline void object::cast() const & { return; }
1808 template <> inline void object::cast() && { return; }
1809 
1810 PYBIND11_NAMESPACE_BEGIN(detail)
1811 
1812 // Declared in pytypes.h:
1813 template <typename T, enable_if_t<!is_pyobject<T>::value, int>>
1814 object object_or_cast(T &&o) { return pybind11::cast(std::forward<T>(o)); }
1815 
1816 struct override_unused {}; // Placeholder type for the unneeded (and dead code) static variable in the PYBIND11_OVERRIDE_OVERRIDE macro
1817 template <typename ret_type> using override_caster_t = conditional_t<
1818     cast_is_temporary_value_reference<ret_type>::value, make_caster<ret_type>, override_unused>;
1819 
1820 // Trampoline use: for reference/pointer types to value-converted values, we do a value cast, then
1821 // store the result in the given variable.  For other types, this is a no-op.
1822 template <typename T> enable_if_t<cast_is_temporary_value_reference<T>::value, T> cast_ref(object &&o, make_caster<T> &caster) {
1823     return cast_op<T>(load_type(caster, o));
1824 }
1825 template <typename T> enable_if_t<!cast_is_temporary_value_reference<T>::value, T> cast_ref(object &&, override_unused &) {
1826     pybind11_fail("Internal error: cast_ref fallback invoked"); }
1827 
1828 // Trampoline use: Having a pybind11::cast with an invalid reference type is going to static_assert, even
1829 // though if it's in dead code, so we provide a "trampoline" to pybind11::cast that only does anything in
1830 // cases where pybind11::cast is valid.
1831 template <typename T> enable_if_t<!cast_is_temporary_value_reference<T>::value, T> cast_safe(object &&o) {
1832     return pybind11::cast<T>(std::move(o)); }
1833 template <typename T> enable_if_t<cast_is_temporary_value_reference<T>::value, T> cast_safe(object &&) {
1834     pybind11_fail("Internal error: cast_safe fallback invoked"); }
1835 template <> inline void cast_safe<void>(object &&) {}
1836 
1837 PYBIND11_NAMESPACE_END(detail)
1838 
1839 template <return_value_policy policy = return_value_policy::automatic_reference>
1840 tuple make_tuple() { return tuple(0); }
1841 
1842 template <return_value_policy policy = return_value_policy::automatic_reference,
1843           typename... Args> tuple make_tuple(Args&&... args_) {
1844     constexpr size_t size = sizeof...(Args);
1845     std::array<object, size> args {
1846         { reinterpret_steal<object>(detail::make_caster<Args>::cast(
1847             std::forward<Args>(args_), policy, nullptr))... }
1848     };
1849     for (size_t i = 0; i < args.size(); i++) {
1850         if (!args[i]) {
1851 #if defined(NDEBUG)
1852             throw cast_error("make_tuple(): unable to convert arguments to Python object (compile in debug mode for details)");
1853 #else
1854             std::array<std::string, size> argtypes { {type_id<Args>()...} };
1855             throw cast_error("make_tuple(): unable to convert argument of type '" +
1856                 argtypes[i] + "' to Python object");
1857 #endif
1858         }
1859     }
1860     tuple result(size);
1861     int counter = 0;
1862     for (auto &arg_value : args)
1863         PyTuple_SET_ITEM(result.ptr(), counter++, arg_value.release().ptr());
1864     return result;
1865 }
1866 
1867 /// \ingroup annotations
1868 /// Annotation for arguments
1869 struct arg {
1870     /// Constructs an argument with the name of the argument; if null or omitted, this is a positional argument.
1871     constexpr explicit arg(const char *name = nullptr) : name(name), flag_noconvert(false), flag_none(true) { }
1872     /// Assign a value to this argument
1873     template <typename T> arg_v operator=(T &&value) const;
1874     /// Indicate that the type should not be converted in the type caster
1875     arg &noconvert(bool flag = true) { flag_noconvert = flag; return *this; }
1876     /// Indicates that the argument should/shouldn't allow None (e.g. for nullable pointer args)
1877     arg &none(bool flag = true) { flag_none = flag; return *this; }
1878 
1879     const char *name; ///< If non-null, this is a named kwargs argument
1880     bool flag_noconvert : 1; ///< If set, do not allow conversion (requires a supporting type caster!)
1881     bool flag_none : 1; ///< If set (the default), allow None to be passed to this argument
1882 };
1883 
1884 /// \ingroup annotations
1885 /// Annotation for arguments with values
1886 struct arg_v : arg {
1887 private:
1888     template <typename T>
1889     arg_v(arg &&base, T &&x, const char *descr = nullptr)
1890         : arg(base),
1891           value(reinterpret_steal<object>(
1892               detail::make_caster<T>::cast(x, return_value_policy::automatic, {})
1893           )),
1894           descr(descr)
1895 #if !defined(NDEBUG)
1896         , type(type_id<T>())
1897 #endif
1898     {
1899         // Workaround! See:
1900         // https://github.com/pybind/pybind11/issues/2336
1901         // https://github.com/pybind/pybind11/pull/2685#issuecomment-731286700
1902         if (PyErr_Occurred()) {
1903             PyErr_Clear();
1904         }
1905     }
1906 
1907 public:
1908     /// Direct construction with name, default, and description
1909     template <typename T>
1910     arg_v(const char *name, T &&x, const char *descr = nullptr)
1911         : arg_v(arg(name), std::forward<T>(x), descr) { }
1912 
1913     /// Called internally when invoking `py::arg("a") = value`
1914     template <typename T>
1915     arg_v(const arg &base, T &&x, const char *descr = nullptr)
1916         : arg_v(arg(base), std::forward<T>(x), descr) { }
1917 
1918     /// Same as `arg::noconvert()`, but returns *this as arg_v&, not arg&
1919     arg_v &noconvert(bool flag = true) { arg::noconvert(flag); return *this; }
1920 
1921     /// Same as `arg::nonone()`, but returns *this as arg_v&, not arg&
1922     arg_v &none(bool flag = true) { arg::none(flag); return *this; }
1923 
1924     /// The default value
1925     object value;
1926     /// The (optional) description of the default value
1927     const char *descr;
1928 #if !defined(NDEBUG)
1929     /// The C++ type name of the default value (only available when compiled in debug mode)
1930     std::string type;
1931 #endif
1932 };
1933 
1934 /// \ingroup annotations
1935 /// Annotation indicating that all following arguments are keyword-only; the is the equivalent of an
1936 /// unnamed '*' argument (in Python 3)
1937 struct kw_only {};
1938 
1939 /// \ingroup annotations
1940 /// Annotation indicating that all previous arguments are positional-only; the is the equivalent of an
1941 /// unnamed '/' argument (in Python 3.8)
1942 struct pos_only {};
1943 
1944 template <typename T>
1945 arg_v arg::operator=(T &&value) const { return {std::move(*this), std::forward<T>(value)}; }
1946 
1947 /// Alias for backward compatibility -- to be removed in version 2.0
1948 template <typename /*unused*/> using arg_t = arg_v;
1949 
1950 inline namespace literals {
1951 /** \rst
1952     String literal version of `arg`
1953  \endrst */
1954 constexpr arg operator"" _a(const char *name, size_t) { return arg(name); }
1955 } // namespace literals
1956 
1957 PYBIND11_NAMESPACE_BEGIN(detail)
1958 
1959 // forward declaration (definition in attr.h)
1960 struct function_record;
1961 
1962 /// Internal data associated with a single function call
1963 struct function_call {
1964     function_call(const function_record &f, handle p); // Implementation in attr.h
1965 
1966     /// The function data:
1967     const function_record &func;
1968 
1969     /// Arguments passed to the function:
1970     std::vector<handle> args;
1971 
1972     /// The `convert` value the arguments should be loaded with
1973     std::vector<bool> args_convert;
1974 
1975     /// Extra references for the optional `py::args` and/or `py::kwargs` arguments (which, if
1976     /// present, are also in `args` but without a reference).
1977     object args_ref, kwargs_ref;
1978 
1979     /// The parent, if any
1980     handle parent;
1981 
1982     /// If this is a call to an initializer, this argument contains `self`
1983     handle init_self;
1984 };
1985 
1986 
1987 /// Helper class which loads arguments for C++ functions called from Python
1988 template <typename... Args>
1989 class argument_loader {
1990     using indices = make_index_sequence<sizeof...(Args)>;
1991 
1992     template <typename Arg> using argument_is_args   = std::is_same<intrinsic_t<Arg>, args>;
1993     template <typename Arg> using argument_is_kwargs = std::is_same<intrinsic_t<Arg>, kwargs>;
1994     // Get args/kwargs argument positions relative to the end of the argument list:
1995     static constexpr auto args_pos = constexpr_first<argument_is_args, Args...>() - (int) sizeof...(Args),
1996                         kwargs_pos = constexpr_first<argument_is_kwargs, Args...>() - (int) sizeof...(Args);
1997 
1998     static constexpr bool args_kwargs_are_last = kwargs_pos >= - 1 && args_pos >= kwargs_pos - 1;
1999 
2000     static_assert(args_kwargs_are_last, "py::args/py::kwargs are only permitted as the last argument(s) of a function");
2001 
2002 public:
2003     static constexpr bool has_kwargs = kwargs_pos < 0;
2004     static constexpr bool has_args = args_pos < 0;
2005 
2006     static constexpr auto arg_names = concat(type_descr(make_caster<Args>::name)...);
2007 
2008     bool load_args(function_call &call) {
2009         return load_impl_sequence(call, indices{});
2010     }
2011 
2012     template <typename Return, typename Guard, typename Func>
2013     enable_if_t<!std::is_void<Return>::value, Return> call(Func &&f) && {
2014         return std::move(*this).template call_impl<Return>(std::forward<Func>(f), indices{}, Guard{});
2015     }
2016 
2017     template <typename Return, typename Guard, typename Func>
2018     enable_if_t<std::is_void<Return>::value, void_type> call(Func &&f) && {
2019         std::move(*this).template call_impl<Return>(std::forward<Func>(f), indices{}, Guard{});
2020         return void_type();
2021     }
2022 
2023 private:
2024 
2025     static bool load_impl_sequence(function_call &, index_sequence<>) { return true; }
2026 
2027     template <size_t... Is>
2028     bool load_impl_sequence(function_call &call, index_sequence<Is...>) {
2029 #ifdef __cpp_fold_expressions
2030         if ((... || !std::get<Is>(argcasters).load(call.args[Is], call.args_convert[Is])))
2031             return false;
2032 #else
2033         for (bool r : {std::get<Is>(argcasters).load(call.args[Is], call.args_convert[Is])...})
2034             if (!r)
2035                 return false;
2036 #endif
2037         return true;
2038     }
2039 
2040     template <typename Return, typename Func, size_t... Is, typename Guard>
2041     Return call_impl(Func &&f, index_sequence<Is...>, Guard &&) && {
2042         return std::forward<Func>(f)(cast_op<Args>(std::move(std::get<Is>(argcasters)))...);
2043     }
2044 
2045     std::tuple<make_caster<Args>...> argcasters;
2046 };
2047 
2048 /// Helper class which collects only positional arguments for a Python function call.
2049 /// A fancier version below can collect any argument, but this one is optimal for simple calls.
2050 template <return_value_policy policy>
2051 class simple_collector {
2052 public:
2053     template <typename... Ts>
2054     explicit simple_collector(Ts &&...values)
2055         : m_args(pybind11::make_tuple<policy>(std::forward<Ts>(values)...)) { }
2056 
2057     const tuple &args() const & { return m_args; }
2058     dict kwargs() const { return {}; }
2059 
2060     tuple args() && { return std::move(m_args); }
2061 
2062     /// Call a Python function and pass the collected arguments
2063     object call(PyObject *ptr) const {
2064         PyObject *result = PyObject_CallObject(ptr, m_args.ptr());
2065         if (!result)
2066             throw error_already_set();
2067         return reinterpret_steal<object>(result);
2068     }
2069 
2070 private:
2071     tuple m_args;
2072 };
2073 
2074 /// Helper class which collects positional, keyword, * and ** arguments for a Python function call
2075 template <return_value_policy policy>
2076 class unpacking_collector {
2077 public:
2078     template <typename... Ts>
2079     explicit unpacking_collector(Ts &&...values) {
2080         // Tuples aren't (easily) resizable so a list is needed for collection,
2081         // but the actual function call strictly requires a tuple.
2082         auto args_list = list();
2083         int _[] = { 0, (process(args_list, std::forward<Ts>(values)), 0)... };
2084         ignore_unused(_);
2085 
2086         m_args = std::move(args_list);
2087     }
2088 
2089     const tuple &args() const & { return m_args; }
2090     const dict &kwargs() const & { return m_kwargs; }
2091 
2092     tuple args() && { return std::move(m_args); }
2093     dict kwargs() && { return std::move(m_kwargs); }
2094 
2095     /// Call a Python function and pass the collected arguments
2096     object call(PyObject *ptr) const {
2097         PyObject *result = PyObject_Call(ptr, m_args.ptr(), m_kwargs.ptr());
2098         if (!result)
2099             throw error_already_set();
2100         return reinterpret_steal<object>(result);
2101     }
2102 
2103 private:
2104     template <typename T>
2105     void process(list &args_list, T &&x) {
2106         auto o = reinterpret_steal<object>(detail::make_caster<T>::cast(std::forward<T>(x), policy, {}));
2107         if (!o) {
2108 #if defined(NDEBUG)
2109             argument_cast_error();
2110 #else
2111             argument_cast_error(std::to_string(args_list.size()), type_id<T>());
2112 #endif
2113         }
2114         args_list.append(o);
2115     }
2116 
2117     void process(list &args_list, detail::args_proxy ap) {
2118         for (auto a : ap)
2119             args_list.append(a);
2120     }
2121 
2122     void process(list &/*args_list*/, arg_v a) {
2123         if (!a.name)
2124 #if defined(NDEBUG)
2125             nameless_argument_error();
2126 #else
2127             nameless_argument_error(a.type);
2128 #endif
2129 
2130         if (m_kwargs.contains(a.name)) {
2131 #if defined(NDEBUG)
2132             multiple_values_error();
2133 #else
2134             multiple_values_error(a.name);
2135 #endif
2136         }
2137         if (!a.value) {
2138 #if defined(NDEBUG)
2139             argument_cast_error();
2140 #else
2141             argument_cast_error(a.name, a.type);
2142 #endif
2143         }
2144         m_kwargs[a.name] = a.value;
2145     }
2146 
2147     void process(list &/*args_list*/, detail::kwargs_proxy kp) {
2148         if (!kp)
2149             return;
2150         for (auto k : reinterpret_borrow<dict>(kp)) {
2151             if (m_kwargs.contains(k.first)) {
2152 #if defined(NDEBUG)
2153                 multiple_values_error();
2154 #else
2155                 multiple_values_error(str(k.first));
2156 #endif
2157             }
2158             m_kwargs[k.first] = k.second;
2159         }
2160     }
2161 
2162     [[noreturn]] static void nameless_argument_error() {
2163         throw type_error("Got kwargs without a name; only named arguments "
2164                          "may be passed via py::arg() to a python function call. "
2165                          "(compile in debug mode for details)");
2166     }
2167     [[noreturn]] static void nameless_argument_error(std::string type) {
2168         throw type_error("Got kwargs without a name of type '" + type + "'; only named "
2169                          "arguments may be passed via py::arg() to a python function call. ");
2170     }
2171     [[noreturn]] static void multiple_values_error() {
2172         throw type_error("Got multiple values for keyword argument "
2173                          "(compile in debug mode for details)");
2174     }
2175 
2176     [[noreturn]] static void multiple_values_error(std::string name) {
2177         throw type_error("Got multiple values for keyword argument '" + name + "'");
2178     }
2179 
2180     [[noreturn]] static void argument_cast_error() {
2181         throw cast_error("Unable to convert call argument to Python object "
2182                          "(compile in debug mode for details)");
2183     }
2184 
2185     [[noreturn]] static void argument_cast_error(std::string name, std::string type) {
2186         throw cast_error("Unable to convert call argument '" + name
2187                          + "' of type '" + type + "' to Python object");
2188     }
2189 
2190 private:
2191     tuple m_args;
2192     dict m_kwargs;
2193 };
2194 
2195 // [workaround(intel)] Separate function required here
2196 // We need to put this into a separate function because the Intel compiler
2197 // fails to compile enable_if_t<!all_of<is_positional<Args>...>::value>
2198 // (tested with ICC 2021.1 Beta 20200827).
2199 template <typename... Args>
2200 constexpr bool args_are_all_positional()
2201 {
2202   return all_of<is_positional<Args>...>::value;
2203 }
2204 
2205 /// Collect only positional arguments for a Python function call
2206 template <return_value_policy policy, typename... Args,
2207           typename = enable_if_t<args_are_all_positional<Args...>()>>
2208 simple_collector<policy> collect_arguments(Args &&...args) {
2209     return simple_collector<policy>(std::forward<Args>(args)...);
2210 }
2211 
2212 /// Collect all arguments, including keywords and unpacking (only instantiated when needed)
2213 template <return_value_policy policy, typename... Args,
2214           typename = enable_if_t<!args_are_all_positional<Args...>()>>
2215 unpacking_collector<policy> collect_arguments(Args &&...args) {
2216     // Following argument order rules for generalized unpacking according to PEP 448
2217     static_assert(
2218         constexpr_last<is_positional, Args...>() < constexpr_first<is_keyword_or_ds, Args...>()
2219         && constexpr_last<is_s_unpacking, Args...>() < constexpr_first<is_ds_unpacking, Args...>(),
2220         "Invalid function call: positional args must precede keywords and ** unpacking; "
2221         "* unpacking must precede ** unpacking"
2222     );
2223     return unpacking_collector<policy>(std::forward<Args>(args)...);
2224 }
2225 
2226 template <typename Derived>
2227 template <return_value_policy policy, typename... Args>
2228 object object_api<Derived>::operator()(Args &&...args) const {
2229     return detail::collect_arguments<policy>(std::forward<Args>(args)...).call(derived().ptr());
2230 }
2231 
2232 template <typename Derived>
2233 template <return_value_policy policy, typename... Args>
2234 object object_api<Derived>::call(Args &&...args) const {
2235     return operator()<policy>(std::forward<Args>(args)...);
2236 }
2237 
2238 PYBIND11_NAMESPACE_END(detail)
2239 
2240 
2241 template<typename T>
2242 handle type::handle_of() {
2243    static_assert(
2244       std::is_base_of<detail::type_caster_generic, detail::make_caster<T>>::value,
2245       "py::type::of<T> only supports the case where T is a registered C++ types."
2246     );
2247 
2248     return detail::get_type_handle(typeid(T), true);
2249 }
2250 
2251 
2252 #define PYBIND11_MAKE_OPAQUE(...) \
2253     namespace pybind11 { namespace detail { \
2254         template<> class type_caster<__VA_ARGS__> : public type_caster_base<__VA_ARGS__> { }; \
2255     }}
2256 
2257 /// Lets you pass a type containing a `,` through a macro parameter without needing a separate
2258 /// typedef, e.g.: `PYBIND11_OVERRIDE(PYBIND11_TYPE(ReturnType<A, B>), PYBIND11_TYPE(Parent<C, D>), f, arg)`
2259 #define PYBIND11_TYPE(...) __VA_ARGS__
2260 
2261 PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)
2262