1 //=== DWARFLinker.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "llvm/DWARFLinker/DWARFLinker.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/BitVector.h"
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/ADT/Triple.h"
14 #include "llvm/CodeGen/NonRelocatableStringpool.h"
15 #include "llvm/DWARFLinker/DWARFLinkerDeclContext.h"
16 #include "llvm/DebugInfo/DWARF/DWARFAbbreviationDeclaration.h"
17 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
18 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h"
19 #include "llvm/DebugInfo/DWARF/DWARFDebugLine.h"
20 #include "llvm/DebugInfo/DWARF/DWARFDebugRangeList.h"
21 #include "llvm/DebugInfo/DWARF/DWARFDie.h"
22 #include "llvm/DebugInfo/DWARF/DWARFFormValue.h"
23 #include "llvm/DebugInfo/DWARF/DWARFSection.h"
24 #include "llvm/DebugInfo/DWARF/DWARFUnit.h"
25 #include "llvm/Support/DataExtractor.h"
26 #include "llvm/Support/Error.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/ErrorOr.h"
29 #include "llvm/Support/FormatVariadic.h"
30 #include "llvm/Support/LEB128.h"
31 #include "llvm/Support/Path.h"
32 #include "llvm/Support/ThreadPool.h"
33 #include <vector>
34
35 namespace llvm {
36
37 /// Hold the input and output of the debug info size in bytes.
38 struct DebugInfoSize {
39 uint64_t Input;
40 uint64_t Output;
41 };
42
43 /// Compute the total size of the debug info.
getDebugInfoSize(DWARFContext & Dwarf)44 static uint64_t getDebugInfoSize(DWARFContext &Dwarf) {
45 uint64_t Size = 0;
46 for (auto &Unit : Dwarf.compile_units()) {
47 Size += Unit->getLength();
48 }
49 return Size;
50 }
51
52 /// Similar to DWARFUnitSection::getUnitForOffset(), but returning our
53 /// CompileUnit object instead.
getUnitForOffset(const UnitListTy & Units,uint64_t Offset)54 static CompileUnit *getUnitForOffset(const UnitListTy &Units, uint64_t Offset) {
55 auto CU = std::upper_bound(
56 Units.begin(), Units.end(), Offset,
57 [](uint64_t LHS, const std::unique_ptr<CompileUnit> &RHS) {
58 return LHS < RHS->getOrigUnit().getNextUnitOffset();
59 });
60 return CU != Units.end() ? CU->get() : nullptr;
61 }
62
63 /// Resolve the DIE attribute reference that has been extracted in \p RefValue.
64 /// The resulting DIE might be in another CompileUnit which is stored into \p
65 /// ReferencedCU. \returns null if resolving fails for any reason.
resolveDIEReference(const DWARFFile & File,const UnitListTy & Units,const DWARFFormValue & RefValue,const DWARFDie & DIE,CompileUnit * & RefCU)66 DWARFDie DWARFLinker::resolveDIEReference(const DWARFFile &File,
67 const UnitListTy &Units,
68 const DWARFFormValue &RefValue,
69 const DWARFDie &DIE,
70 CompileUnit *&RefCU) {
71 assert(RefValue.isFormClass(DWARFFormValue::FC_Reference));
72 uint64_t RefOffset = *RefValue.getAsReference();
73 if ((RefCU = getUnitForOffset(Units, RefOffset)))
74 if (const auto RefDie = RefCU->getOrigUnit().getDIEForOffset(RefOffset)) {
75 // In a file with broken references, an attribute might point to a NULL
76 // DIE.
77 if (!RefDie.isNULL())
78 return RefDie;
79 }
80
81 reportWarning("could not find referenced DIE", File, &DIE);
82 return DWARFDie();
83 }
84
85 /// \returns whether the passed \a Attr type might contain a DIE reference
86 /// suitable for ODR uniquing.
isODRAttribute(uint16_t Attr)87 static bool isODRAttribute(uint16_t Attr) {
88 switch (Attr) {
89 default:
90 return false;
91 case dwarf::DW_AT_type:
92 case dwarf::DW_AT_containing_type:
93 case dwarf::DW_AT_specification:
94 case dwarf::DW_AT_abstract_origin:
95 case dwarf::DW_AT_import:
96 return true;
97 }
98 llvm_unreachable("Improper attribute.");
99 }
100
isTypeTag(uint16_t Tag)101 static bool isTypeTag(uint16_t Tag) {
102 switch (Tag) {
103 case dwarf::DW_TAG_array_type:
104 case dwarf::DW_TAG_class_type:
105 case dwarf::DW_TAG_enumeration_type:
106 case dwarf::DW_TAG_pointer_type:
107 case dwarf::DW_TAG_reference_type:
108 case dwarf::DW_TAG_string_type:
109 case dwarf::DW_TAG_structure_type:
110 case dwarf::DW_TAG_subroutine_type:
111 case dwarf::DW_TAG_typedef:
112 case dwarf::DW_TAG_union_type:
113 case dwarf::DW_TAG_ptr_to_member_type:
114 case dwarf::DW_TAG_set_type:
115 case dwarf::DW_TAG_subrange_type:
116 case dwarf::DW_TAG_base_type:
117 case dwarf::DW_TAG_const_type:
118 case dwarf::DW_TAG_constant:
119 case dwarf::DW_TAG_file_type:
120 case dwarf::DW_TAG_namelist:
121 case dwarf::DW_TAG_packed_type:
122 case dwarf::DW_TAG_volatile_type:
123 case dwarf::DW_TAG_restrict_type:
124 case dwarf::DW_TAG_atomic_type:
125 case dwarf::DW_TAG_interface_type:
126 case dwarf::DW_TAG_unspecified_type:
127 case dwarf::DW_TAG_shared_type:
128 return true;
129 default:
130 break;
131 }
132 return false;
133 }
134
~AddressesMap()135 AddressesMap::~AddressesMap() {}
136
~DwarfEmitter()137 DwarfEmitter::~DwarfEmitter() {}
138
StripTemplateParameters(StringRef Name)139 static Optional<StringRef> StripTemplateParameters(StringRef Name) {
140 // We are looking for template parameters to strip from Name. e.g.
141 //
142 // operator<<B>
143 //
144 // We look for > at the end but if it does not contain any < then we
145 // have something like operator>>. We check for the operator<=> case.
146 if (!Name.endswith(">") || Name.count("<") == 0 || Name.endswith("<=>"))
147 return {};
148
149 // How many < until we have the start of the template parameters.
150 size_t NumLeftAnglesToSkip = 1;
151
152 // If we have operator<=> then we need to skip its < as well.
153 NumLeftAnglesToSkip += Name.count("<=>");
154
155 size_t RightAngleCount = Name.count('>');
156 size_t LeftAngleCount = Name.count('<');
157
158 // If we have more < than > we have operator< or operator<<
159 // we to account for their < as well.
160 if (LeftAngleCount > RightAngleCount)
161 NumLeftAnglesToSkip += LeftAngleCount - RightAngleCount;
162
163 size_t StartOfTemplate = 0;
164 while (NumLeftAnglesToSkip--)
165 StartOfTemplate = Name.find('<', StartOfTemplate) + 1;
166
167 return Name.substr(0, StartOfTemplate - 1);
168 }
169
getDIENames(const DWARFDie & Die,AttributesInfo & Info,OffsetsStringPool & StringPool,bool StripTemplate)170 bool DWARFLinker::DIECloner::getDIENames(const DWARFDie &Die,
171 AttributesInfo &Info,
172 OffsetsStringPool &StringPool,
173 bool StripTemplate) {
174 // This function will be called on DIEs having low_pcs and
175 // ranges. As getting the name might be more expansive, filter out
176 // blocks directly.
177 if (Die.getTag() == dwarf::DW_TAG_lexical_block)
178 return false;
179
180 if (!Info.MangledName)
181 if (const char *MangledName = Die.getLinkageName())
182 Info.MangledName = StringPool.getEntry(MangledName);
183
184 if (!Info.Name)
185 if (const char *Name = Die.getShortName())
186 Info.Name = StringPool.getEntry(Name);
187
188 if (!Info.MangledName)
189 Info.MangledName = Info.Name;
190
191 if (StripTemplate && Info.Name && Info.MangledName != Info.Name) {
192 StringRef Name = Info.Name.getString();
193 if (Optional<StringRef> StrippedName = StripTemplateParameters(Name))
194 Info.NameWithoutTemplate = StringPool.getEntry(*StrippedName);
195 }
196
197 return Info.Name || Info.MangledName;
198 }
199
200 /// Resolve the relative path to a build artifact referenced by DWARF by
201 /// applying DW_AT_comp_dir.
resolveRelativeObjectPath(SmallVectorImpl<char> & Buf,DWARFDie CU)202 static void resolveRelativeObjectPath(SmallVectorImpl<char> &Buf, DWARFDie CU) {
203 sys::path::append(Buf, dwarf::toString(CU.find(dwarf::DW_AT_comp_dir), ""));
204 }
205
206 /// Collect references to parseable Swift interfaces in imported
207 /// DW_TAG_module blocks.
analyzeImportedModule(const DWARFDie & DIE,CompileUnit & CU,swiftInterfacesMap * ParseableSwiftInterfaces,std::function<void (const Twine &,const DWARFDie &)> ReportWarning)208 static void analyzeImportedModule(
209 const DWARFDie &DIE, CompileUnit &CU,
210 swiftInterfacesMap *ParseableSwiftInterfaces,
211 std::function<void(const Twine &, const DWARFDie &)> ReportWarning) {
212 if (CU.getLanguage() != dwarf::DW_LANG_Swift)
213 return;
214
215 if (!ParseableSwiftInterfaces)
216 return;
217
218 StringRef Path = dwarf::toStringRef(DIE.find(dwarf::DW_AT_LLVM_include_path));
219 if (!Path.endswith(".swiftinterface"))
220 return;
221 // Don't track interfaces that are part of the SDK.
222 StringRef SysRoot = dwarf::toStringRef(DIE.find(dwarf::DW_AT_LLVM_sysroot));
223 if (SysRoot.empty())
224 SysRoot = CU.getSysRoot();
225 if (!SysRoot.empty() && Path.startswith(SysRoot))
226 return;
227 if (Optional<DWARFFormValue> Val = DIE.find(dwarf::DW_AT_name))
228 if (Optional<const char *> Name = Val->getAsCString()) {
229 auto &Entry = (*ParseableSwiftInterfaces)[*Name];
230 // The prepend path is applied later when copying.
231 DWARFDie CUDie = CU.getOrigUnit().getUnitDIE();
232 SmallString<128> ResolvedPath;
233 if (sys::path::is_relative(Path))
234 resolveRelativeObjectPath(ResolvedPath, CUDie);
235 sys::path::append(ResolvedPath, Path);
236 if (!Entry.empty() && Entry != ResolvedPath)
237 ReportWarning(
238 Twine("Conflicting parseable interfaces for Swift Module ") +
239 *Name + ": " + Entry + " and " + Path,
240 DIE);
241 Entry = std::string(ResolvedPath.str());
242 }
243 }
244
245 /// The distinct types of work performed by the work loop in
246 /// analyzeContextInfo.
247 enum class ContextWorklistItemType : uint8_t {
248 AnalyzeContextInfo,
249 UpdateChildPruning,
250 UpdatePruning,
251 };
252
253 /// This class represents an item in the work list. The type defines what kind
254 /// of work needs to be performed when processing the current item. Everything
255 /// but the Type and Die fields are optional based on the type.
256 struct ContextWorklistItem {
257 DWARFDie Die;
258 unsigned ParentIdx;
259 union {
260 CompileUnit::DIEInfo *OtherInfo;
261 DeclContext *Context;
262 };
263 ContextWorklistItemType Type;
264 bool InImportedModule;
265
ContextWorklistItemllvm::ContextWorklistItem266 ContextWorklistItem(DWARFDie Die, ContextWorklistItemType T,
267 CompileUnit::DIEInfo *OtherInfo = nullptr)
268 : Die(Die), ParentIdx(0), OtherInfo(OtherInfo), Type(T),
269 InImportedModule(false) {}
270
ContextWorklistItemllvm::ContextWorklistItem271 ContextWorklistItem(DWARFDie Die, DeclContext *Context, unsigned ParentIdx,
272 bool InImportedModule)
273 : Die(Die), ParentIdx(ParentIdx), Context(Context),
274 Type(ContextWorklistItemType::AnalyzeContextInfo),
275 InImportedModule(InImportedModule) {}
276 };
277
updatePruning(const DWARFDie & Die,CompileUnit & CU,uint64_t ModulesEndOffset)278 static bool updatePruning(const DWARFDie &Die, CompileUnit &CU,
279 uint64_t ModulesEndOffset) {
280 CompileUnit::DIEInfo &Info = CU.getInfo(Die);
281
282 // Prune this DIE if it is either a forward declaration inside a
283 // DW_TAG_module or a DW_TAG_module that contains nothing but
284 // forward declarations.
285 Info.Prune &= (Die.getTag() == dwarf::DW_TAG_module) ||
286 (isTypeTag(Die.getTag()) &&
287 dwarf::toUnsigned(Die.find(dwarf::DW_AT_declaration), 0));
288
289 // Only prune forward declarations inside a DW_TAG_module for which a
290 // definition exists elsewhere.
291 if (ModulesEndOffset == 0)
292 Info.Prune &= Info.Ctxt && Info.Ctxt->getCanonicalDIEOffset();
293 else
294 Info.Prune &= Info.Ctxt && Info.Ctxt->getCanonicalDIEOffset() > 0 &&
295 Info.Ctxt->getCanonicalDIEOffset() <= ModulesEndOffset;
296
297 return Info.Prune;
298 }
299
updateChildPruning(const DWARFDie & Die,CompileUnit & CU,CompileUnit::DIEInfo & ChildInfo)300 static void updateChildPruning(const DWARFDie &Die, CompileUnit &CU,
301 CompileUnit::DIEInfo &ChildInfo) {
302 CompileUnit::DIEInfo &Info = CU.getInfo(Die);
303 Info.Prune &= ChildInfo.Prune;
304 }
305
306 /// Recursive helper to build the global DeclContext information and
307 /// gather the child->parent relationships in the original compile unit.
308 ///
309 /// This function uses the same work list approach as lookForDIEsToKeep.
310 ///
311 /// \return true when this DIE and all of its children are only
312 /// forward declarations to types defined in external clang modules
313 /// (i.e., forward declarations that are children of a DW_TAG_module).
analyzeContextInfo(const DWARFDie & DIE,unsigned ParentIdx,CompileUnit & CU,DeclContext * CurrentDeclContext,UniquingStringPool & StringPool,DeclContextTree & Contexts,uint64_t ModulesEndOffset,swiftInterfacesMap * ParseableSwiftInterfaces,std::function<void (const Twine &,const DWARFDie &)> ReportWarning,bool InImportedModule=false)314 static bool analyzeContextInfo(
315 const DWARFDie &DIE, unsigned ParentIdx, CompileUnit &CU,
316 DeclContext *CurrentDeclContext, UniquingStringPool &StringPool,
317 DeclContextTree &Contexts, uint64_t ModulesEndOffset,
318 swiftInterfacesMap *ParseableSwiftInterfaces,
319 std::function<void(const Twine &, const DWARFDie &)> ReportWarning,
320 bool InImportedModule = false) {
321 // LIFO work list.
322 std::vector<ContextWorklistItem> Worklist;
323 Worklist.emplace_back(DIE, CurrentDeclContext, ParentIdx, InImportedModule);
324
325 while (!Worklist.empty()) {
326 ContextWorklistItem Current = Worklist.back();
327 Worklist.pop_back();
328
329 switch (Current.Type) {
330 case ContextWorklistItemType::UpdatePruning:
331 updatePruning(Current.Die, CU, ModulesEndOffset);
332 continue;
333 case ContextWorklistItemType::UpdateChildPruning:
334 updateChildPruning(Current.Die, CU, *Current.OtherInfo);
335 continue;
336 case ContextWorklistItemType::AnalyzeContextInfo:
337 break;
338 }
339
340 unsigned Idx = CU.getOrigUnit().getDIEIndex(Current.Die);
341 CompileUnit::DIEInfo &Info = CU.getInfo(Idx);
342
343 // Clang imposes an ODR on modules(!) regardless of the language:
344 // "The module-id should consist of only a single identifier,
345 // which provides the name of the module being defined. Each
346 // module shall have a single definition."
347 //
348 // This does not extend to the types inside the modules:
349 // "[I]n C, this implies that if two structs are defined in
350 // different submodules with the same name, those two types are
351 // distinct types (but may be compatible types if their
352 // definitions match)."
353 //
354 // We treat non-C++ modules like namespaces for this reason.
355 if (Current.Die.getTag() == dwarf::DW_TAG_module &&
356 Current.ParentIdx == 0 &&
357 dwarf::toString(Current.Die.find(dwarf::DW_AT_name), "") !=
358 CU.getClangModuleName()) {
359 Current.InImportedModule = true;
360 analyzeImportedModule(Current.Die, CU, ParseableSwiftInterfaces,
361 ReportWarning);
362 }
363
364 Info.ParentIdx = Current.ParentIdx;
365 bool InClangModule = CU.isClangModule() || Current.InImportedModule;
366 if (CU.hasODR() || InClangModule) {
367 if (Current.Context) {
368 auto PtrInvalidPair = Contexts.getChildDeclContext(
369 *Current.Context, Current.Die, CU, StringPool, InClangModule);
370 Current.Context = PtrInvalidPair.getPointer();
371 Info.Ctxt =
372 PtrInvalidPair.getInt() ? nullptr : PtrInvalidPair.getPointer();
373 if (Info.Ctxt)
374 Info.Ctxt->setDefinedInClangModule(InClangModule);
375 } else
376 Info.Ctxt = Current.Context = nullptr;
377 }
378
379 Info.Prune = Current.InImportedModule;
380 // Add children in reverse order to the worklist to effectively process
381 // them in order.
382 Worklist.emplace_back(Current.Die, ContextWorklistItemType::UpdatePruning);
383 for (auto Child : reverse(Current.Die.children())) {
384 CompileUnit::DIEInfo &ChildInfo = CU.getInfo(Child);
385 Worklist.emplace_back(
386 Current.Die, ContextWorklistItemType::UpdateChildPruning, &ChildInfo);
387 Worklist.emplace_back(Child, Current.Context, Idx,
388 Current.InImportedModule);
389 }
390 }
391
392 return CU.getInfo(DIE).Prune;
393 }
394
dieNeedsChildrenToBeMeaningful(uint32_t Tag)395 static bool dieNeedsChildrenToBeMeaningful(uint32_t Tag) {
396 switch (Tag) {
397 default:
398 return false;
399 case dwarf::DW_TAG_class_type:
400 case dwarf::DW_TAG_common_block:
401 case dwarf::DW_TAG_lexical_block:
402 case dwarf::DW_TAG_structure_type:
403 case dwarf::DW_TAG_subprogram:
404 case dwarf::DW_TAG_subroutine_type:
405 case dwarf::DW_TAG_union_type:
406 return true;
407 }
408 llvm_unreachable("Invalid Tag");
409 }
410
cleanupAuxiliarryData(LinkContext & Context)411 void DWARFLinker::cleanupAuxiliarryData(LinkContext &Context) {
412 Context.clear();
413
414 for (auto I = DIEBlocks.begin(), E = DIEBlocks.end(); I != E; ++I)
415 (*I)->~DIEBlock();
416 for (auto I = DIELocs.begin(), E = DIELocs.end(); I != E; ++I)
417 (*I)->~DIELoc();
418
419 DIEBlocks.clear();
420 DIELocs.clear();
421 DIEAlloc.Reset();
422 }
423
424 /// Get the starting and ending (exclusive) offset for the
425 /// attribute with index \p Idx descibed by \p Abbrev. \p Offset is
426 /// supposed to point to the position of the first attribute described
427 /// by \p Abbrev.
428 /// \return [StartOffset, EndOffset) as a pair.
429 static std::pair<uint64_t, uint64_t>
getAttributeOffsets(const DWARFAbbreviationDeclaration * Abbrev,unsigned Idx,uint64_t Offset,const DWARFUnit & Unit)430 getAttributeOffsets(const DWARFAbbreviationDeclaration *Abbrev, unsigned Idx,
431 uint64_t Offset, const DWARFUnit &Unit) {
432 DataExtractor Data = Unit.getDebugInfoExtractor();
433
434 for (unsigned I = 0; I < Idx; ++I)
435 DWARFFormValue::skipValue(Abbrev->getFormByIndex(I), Data, &Offset,
436 Unit.getFormParams());
437
438 uint64_t End = Offset;
439 DWARFFormValue::skipValue(Abbrev->getFormByIndex(Idx), Data, &End,
440 Unit.getFormParams());
441
442 return std::make_pair(Offset, End);
443 }
444
445 /// Check if a variable describing DIE should be kept.
446 /// \returns updated TraversalFlags.
shouldKeepVariableDIE(AddressesMap & RelocMgr,const DWARFDie & DIE,CompileUnit & Unit,CompileUnit::DIEInfo & MyInfo,unsigned Flags)447 unsigned DWARFLinker::shouldKeepVariableDIE(AddressesMap &RelocMgr,
448 const DWARFDie &DIE,
449 CompileUnit &Unit,
450 CompileUnit::DIEInfo &MyInfo,
451 unsigned Flags) {
452 const auto *Abbrev = DIE.getAbbreviationDeclarationPtr();
453
454 // Global variables with constant value can always be kept.
455 if (!(Flags & TF_InFunctionScope) &&
456 Abbrev->findAttributeIndex(dwarf::DW_AT_const_value)) {
457 MyInfo.InDebugMap = true;
458 return Flags | TF_Keep;
459 }
460
461 Optional<uint32_t> LocationIdx =
462 Abbrev->findAttributeIndex(dwarf::DW_AT_location);
463 if (!LocationIdx)
464 return Flags;
465
466 uint64_t Offset = DIE.getOffset() + getULEB128Size(Abbrev->getCode());
467 const DWARFUnit &OrigUnit = Unit.getOrigUnit();
468 uint64_t LocationOffset, LocationEndOffset;
469 std::tie(LocationOffset, LocationEndOffset) =
470 getAttributeOffsets(Abbrev, *LocationIdx, Offset, OrigUnit);
471
472 // See if there is a relocation to a valid debug map entry inside
473 // this variable's location. The order is important here. We want to
474 // always check if the variable has a valid relocation, so that the
475 // DIEInfo is filled. However, we don't want a static variable in a
476 // function to force us to keep the enclosing function.
477 if (!RelocMgr.hasValidRelocationAt(LocationOffset, LocationEndOffset,
478 MyInfo) ||
479 (Flags & TF_InFunctionScope))
480 return Flags;
481
482 if (Options.Verbose) {
483 outs() << "Keeping variable DIE:";
484 DIDumpOptions DumpOpts;
485 DumpOpts.ChildRecurseDepth = 0;
486 DumpOpts.Verbose = Options.Verbose;
487 DIE.dump(outs(), 8 /* Indent */, DumpOpts);
488 }
489
490 return Flags | TF_Keep;
491 }
492
493 /// Check if a function describing DIE should be kept.
494 /// \returns updated TraversalFlags.
shouldKeepSubprogramDIE(AddressesMap & RelocMgr,RangesTy & Ranges,const DWARFDie & DIE,const DWARFFile & File,CompileUnit & Unit,CompileUnit::DIEInfo & MyInfo,unsigned Flags)495 unsigned DWARFLinker::shouldKeepSubprogramDIE(
496 AddressesMap &RelocMgr, RangesTy &Ranges, const DWARFDie &DIE,
497 const DWARFFile &File, CompileUnit &Unit, CompileUnit::DIEInfo &MyInfo,
498 unsigned Flags) {
499 const auto *Abbrev = DIE.getAbbreviationDeclarationPtr();
500
501 Flags |= TF_InFunctionScope;
502
503 Optional<uint32_t> LowPcIdx = Abbrev->findAttributeIndex(dwarf::DW_AT_low_pc);
504 if (!LowPcIdx)
505 return Flags;
506
507 uint64_t Offset = DIE.getOffset() + getULEB128Size(Abbrev->getCode());
508 DWARFUnit &OrigUnit = Unit.getOrigUnit();
509 uint64_t LowPcOffset, LowPcEndOffset;
510 std::tie(LowPcOffset, LowPcEndOffset) =
511 getAttributeOffsets(Abbrev, *LowPcIdx, Offset, OrigUnit);
512
513 auto LowPc = dwarf::toAddress(DIE.find(dwarf::DW_AT_low_pc));
514 assert(LowPc.hasValue() && "low_pc attribute is not an address.");
515 if (!LowPc ||
516 !RelocMgr.hasValidRelocationAt(LowPcOffset, LowPcEndOffset, MyInfo))
517 return Flags;
518
519 if (Options.Verbose) {
520 outs() << "Keeping subprogram DIE:";
521 DIDumpOptions DumpOpts;
522 DumpOpts.ChildRecurseDepth = 0;
523 DumpOpts.Verbose = Options.Verbose;
524 DIE.dump(outs(), 8 /* Indent */, DumpOpts);
525 }
526
527 if (DIE.getTag() == dwarf::DW_TAG_label) {
528 if (Unit.hasLabelAt(*LowPc))
529 return Flags;
530 // FIXME: dsymutil-classic compat. dsymutil-classic doesn't consider labels
531 // that don't fall into the CU's aranges. This is wrong IMO. Debug info
532 // generation bugs aside, this is really wrong in the case of labels, where
533 // a label marking the end of a function will have a PC == CU's high_pc.
534 if (dwarf::toAddress(OrigUnit.getUnitDIE().find(dwarf::DW_AT_high_pc))
535 .getValueOr(UINT64_MAX) <= LowPc)
536 return Flags;
537 Unit.addLabelLowPc(*LowPc, MyInfo.AddrAdjust);
538 return Flags | TF_Keep;
539 }
540
541 Flags |= TF_Keep;
542
543 Optional<uint64_t> HighPc = DIE.getHighPC(*LowPc);
544 if (!HighPc) {
545 reportWarning("Function without high_pc. Range will be discarded.\n", File,
546 &DIE);
547 return Flags;
548 }
549
550 // Replace the debug map range with a more accurate one.
551 Ranges[*LowPc] = ObjFileAddressRange(*HighPc, MyInfo.AddrAdjust);
552 Unit.addFunctionRange(*LowPc, *HighPc, MyInfo.AddrAdjust);
553 return Flags;
554 }
555
556 /// Check if a DIE should be kept.
557 /// \returns updated TraversalFlags.
shouldKeepDIE(AddressesMap & RelocMgr,RangesTy & Ranges,const DWARFDie & DIE,const DWARFFile & File,CompileUnit & Unit,CompileUnit::DIEInfo & MyInfo,unsigned Flags)558 unsigned DWARFLinker::shouldKeepDIE(AddressesMap &RelocMgr, RangesTy &Ranges,
559 const DWARFDie &DIE, const DWARFFile &File,
560 CompileUnit &Unit,
561 CompileUnit::DIEInfo &MyInfo,
562 unsigned Flags) {
563 switch (DIE.getTag()) {
564 case dwarf::DW_TAG_constant:
565 case dwarf::DW_TAG_variable:
566 return shouldKeepVariableDIE(RelocMgr, DIE, Unit, MyInfo, Flags);
567 case dwarf::DW_TAG_subprogram:
568 case dwarf::DW_TAG_label:
569 return shouldKeepSubprogramDIE(RelocMgr, Ranges, DIE, File, Unit, MyInfo,
570 Flags);
571 case dwarf::DW_TAG_base_type:
572 // DWARF Expressions may reference basic types, but scanning them
573 // is expensive. Basic types are tiny, so just keep all of them.
574 case dwarf::DW_TAG_imported_module:
575 case dwarf::DW_TAG_imported_declaration:
576 case dwarf::DW_TAG_imported_unit:
577 // We always want to keep these.
578 return Flags | TF_Keep;
579 default:
580 break;
581 }
582
583 return Flags;
584 }
585
586 /// Helper that updates the completeness of the current DIE based on the
587 /// completeness of one of its children. It depends on the incompleteness of
588 /// the children already being computed.
updateChildIncompleteness(const DWARFDie & Die,CompileUnit & CU,CompileUnit::DIEInfo & ChildInfo)589 static void updateChildIncompleteness(const DWARFDie &Die, CompileUnit &CU,
590 CompileUnit::DIEInfo &ChildInfo) {
591 switch (Die.getTag()) {
592 case dwarf::DW_TAG_structure_type:
593 case dwarf::DW_TAG_class_type:
594 break;
595 default:
596 return;
597 }
598
599 CompileUnit::DIEInfo &MyInfo = CU.getInfo(Die);
600
601 if (ChildInfo.Incomplete || ChildInfo.Prune)
602 MyInfo.Incomplete = true;
603 }
604
605 /// Helper that updates the completeness of the current DIE based on the
606 /// completeness of the DIEs it references. It depends on the incompleteness of
607 /// the referenced DIE already being computed.
updateRefIncompleteness(const DWARFDie & Die,CompileUnit & CU,CompileUnit::DIEInfo & RefInfo)608 static void updateRefIncompleteness(const DWARFDie &Die, CompileUnit &CU,
609 CompileUnit::DIEInfo &RefInfo) {
610 switch (Die.getTag()) {
611 case dwarf::DW_TAG_typedef:
612 case dwarf::DW_TAG_member:
613 case dwarf::DW_TAG_reference_type:
614 case dwarf::DW_TAG_ptr_to_member_type:
615 case dwarf::DW_TAG_pointer_type:
616 break;
617 default:
618 return;
619 }
620
621 CompileUnit::DIEInfo &MyInfo = CU.getInfo(Die);
622
623 if (MyInfo.Incomplete)
624 return;
625
626 if (RefInfo.Incomplete)
627 MyInfo.Incomplete = true;
628 }
629
630 /// Look at the children of the given DIE and decide whether they should be
631 /// kept.
lookForChildDIEsToKeep(const DWARFDie & Die,CompileUnit & CU,unsigned Flags,SmallVectorImpl<WorklistItem> & Worklist)632 void DWARFLinker::lookForChildDIEsToKeep(
633 const DWARFDie &Die, CompileUnit &CU, unsigned Flags,
634 SmallVectorImpl<WorklistItem> &Worklist) {
635 // The TF_ParentWalk flag tells us that we are currently walking up the
636 // parent chain of a required DIE, and we don't want to mark all the children
637 // of the parents as kept (consider for example a DW_TAG_namespace node in
638 // the parent chain). There are however a set of DIE types for which we want
639 // to ignore that directive and still walk their children.
640 if (dieNeedsChildrenToBeMeaningful(Die.getTag()))
641 Flags &= ~DWARFLinker::TF_ParentWalk;
642
643 // We're finished if this DIE has no children or we're walking the parent
644 // chain.
645 if (!Die.hasChildren() || (Flags & DWARFLinker::TF_ParentWalk))
646 return;
647
648 // Add children in reverse order to the worklist to effectively process them
649 // in order.
650 for (auto Child : reverse(Die.children())) {
651 // Add a worklist item before every child to calculate incompleteness right
652 // after the current child is processed.
653 CompileUnit::DIEInfo &ChildInfo = CU.getInfo(Child);
654 Worklist.emplace_back(Die, CU, WorklistItemType::UpdateChildIncompleteness,
655 &ChildInfo);
656 Worklist.emplace_back(Child, CU, Flags);
657 }
658 }
659
660 /// Look at DIEs referenced by the given DIE and decide whether they should be
661 /// kept. All DIEs referenced though attributes should be kept.
lookForRefDIEsToKeep(const DWARFDie & Die,CompileUnit & CU,unsigned Flags,const UnitListTy & Units,const DWARFFile & File,SmallVectorImpl<WorklistItem> & Worklist)662 void DWARFLinker::lookForRefDIEsToKeep(
663 const DWARFDie &Die, CompileUnit &CU, unsigned Flags,
664 const UnitListTy &Units, const DWARFFile &File,
665 SmallVectorImpl<WorklistItem> &Worklist) {
666 bool UseOdr = (Flags & DWARFLinker::TF_DependencyWalk)
667 ? (Flags & DWARFLinker::TF_ODR)
668 : CU.hasODR();
669 DWARFUnit &Unit = CU.getOrigUnit();
670 DWARFDataExtractor Data = Unit.getDebugInfoExtractor();
671 const auto *Abbrev = Die.getAbbreviationDeclarationPtr();
672 uint64_t Offset = Die.getOffset() + getULEB128Size(Abbrev->getCode());
673
674 SmallVector<std::pair<DWARFDie, CompileUnit &>, 4> ReferencedDIEs;
675 for (const auto &AttrSpec : Abbrev->attributes()) {
676 DWARFFormValue Val(AttrSpec.Form);
677 if (!Val.isFormClass(DWARFFormValue::FC_Reference) ||
678 AttrSpec.Attr == dwarf::DW_AT_sibling) {
679 DWARFFormValue::skipValue(AttrSpec.Form, Data, &Offset,
680 Unit.getFormParams());
681 continue;
682 }
683
684 Val.extractValue(Data, &Offset, Unit.getFormParams(), &Unit);
685 CompileUnit *ReferencedCU;
686 if (auto RefDie =
687 resolveDIEReference(File, Units, Val, Die, ReferencedCU)) {
688 CompileUnit::DIEInfo &Info = ReferencedCU->getInfo(RefDie);
689 bool IsModuleRef = Info.Ctxt && Info.Ctxt->getCanonicalDIEOffset() &&
690 Info.Ctxt->isDefinedInClangModule();
691 // If the referenced DIE has a DeclContext that has already been
692 // emitted, then do not keep the one in this CU. We'll link to
693 // the canonical DIE in cloneDieReferenceAttribute.
694 //
695 // FIXME: compatibility with dsymutil-classic. UseODR shouldn't
696 // be necessary and could be advantageously replaced by
697 // ReferencedCU->hasODR() && CU.hasODR().
698 //
699 // FIXME: compatibility with dsymutil-classic. There is no
700 // reason not to unique ref_addr references.
701 if (AttrSpec.Form != dwarf::DW_FORM_ref_addr && (UseOdr || IsModuleRef) &&
702 Info.Ctxt &&
703 Info.Ctxt != ReferencedCU->getInfo(Info.ParentIdx).Ctxt &&
704 Info.Ctxt->getCanonicalDIEOffset() && isODRAttribute(AttrSpec.Attr))
705 continue;
706
707 // Keep a module forward declaration if there is no definition.
708 if (!(isODRAttribute(AttrSpec.Attr) && Info.Ctxt &&
709 Info.Ctxt->getCanonicalDIEOffset()))
710 Info.Prune = false;
711 ReferencedDIEs.emplace_back(RefDie, *ReferencedCU);
712 }
713 }
714
715 unsigned ODRFlag = UseOdr ? DWARFLinker::TF_ODR : 0;
716
717 // Add referenced DIEs in reverse order to the worklist to effectively
718 // process them in order.
719 for (auto &P : reverse(ReferencedDIEs)) {
720 // Add a worklist item before every child to calculate incompleteness right
721 // after the current child is processed.
722 CompileUnit::DIEInfo &Info = P.second.getInfo(P.first);
723 Worklist.emplace_back(Die, CU, WorklistItemType::UpdateRefIncompleteness,
724 &Info);
725 Worklist.emplace_back(P.first, P.second,
726 DWARFLinker::TF_Keep |
727 DWARFLinker::TF_DependencyWalk | ODRFlag);
728 }
729 }
730
731 /// Look at the parent of the given DIE and decide whether they should be kept.
lookForParentDIEsToKeep(unsigned AncestorIdx,CompileUnit & CU,unsigned Flags,SmallVectorImpl<WorklistItem> & Worklist)732 void DWARFLinker::lookForParentDIEsToKeep(
733 unsigned AncestorIdx, CompileUnit &CU, unsigned Flags,
734 SmallVectorImpl<WorklistItem> &Worklist) {
735 // Stop if we encounter an ancestor that's already marked as kept.
736 if (CU.getInfo(AncestorIdx).Keep)
737 return;
738
739 DWARFUnit &Unit = CU.getOrigUnit();
740 DWARFDie ParentDIE = Unit.getDIEAtIndex(AncestorIdx);
741 Worklist.emplace_back(CU.getInfo(AncestorIdx).ParentIdx, CU, Flags);
742 Worklist.emplace_back(ParentDIE, CU, Flags);
743 }
744
745 /// Recursively walk the \p DIE tree and look for DIEs to keep. Store that
746 /// information in \p CU's DIEInfo.
747 ///
748 /// This function is the entry point of the DIE selection algorithm. It is
749 /// expected to walk the DIE tree in file order and (though the mediation of
750 /// its helper) call hasValidRelocation() on each DIE that might be a 'root
751 /// DIE' (See DwarfLinker class comment).
752 ///
753 /// While walking the dependencies of root DIEs, this function is also called,
754 /// but during these dependency walks the file order is not respected. The
755 /// TF_DependencyWalk flag tells us which kind of traversal we are currently
756 /// doing.
757 ///
758 /// The recursive algorithm is implemented iteratively as a work list because
759 /// very deep recursion could exhaust the stack for large projects. The work
760 /// list acts as a scheduler for different types of work that need to be
761 /// performed.
762 ///
763 /// The recursive nature of the algorithm is simulated by running the "main"
764 /// algorithm (LookForDIEsToKeep) followed by either looking at more DIEs
765 /// (LookForChildDIEsToKeep, LookForRefDIEsToKeep, LookForParentDIEsToKeep) or
766 /// fixing up a computed property (UpdateChildIncompleteness,
767 /// UpdateRefIncompleteness).
768 ///
769 /// The return value indicates whether the DIE is incomplete.
lookForDIEsToKeep(AddressesMap & AddressesMap,RangesTy & Ranges,const UnitListTy & Units,const DWARFDie & Die,const DWARFFile & File,CompileUnit & Cu,unsigned Flags)770 void DWARFLinker::lookForDIEsToKeep(AddressesMap &AddressesMap,
771 RangesTy &Ranges, const UnitListTy &Units,
772 const DWARFDie &Die, const DWARFFile &File,
773 CompileUnit &Cu, unsigned Flags) {
774 // LIFO work list.
775 SmallVector<WorklistItem, 4> Worklist;
776 Worklist.emplace_back(Die, Cu, Flags);
777
778 while (!Worklist.empty()) {
779 WorklistItem Current = Worklist.back();
780 Worklist.pop_back();
781
782 // Look at the worklist type to decide what kind of work to perform.
783 switch (Current.Type) {
784 case WorklistItemType::UpdateChildIncompleteness:
785 updateChildIncompleteness(Current.Die, Current.CU, *Current.OtherInfo);
786 continue;
787 case WorklistItemType::UpdateRefIncompleteness:
788 updateRefIncompleteness(Current.Die, Current.CU, *Current.OtherInfo);
789 continue;
790 case WorklistItemType::LookForChildDIEsToKeep:
791 lookForChildDIEsToKeep(Current.Die, Current.CU, Current.Flags, Worklist);
792 continue;
793 case WorklistItemType::LookForRefDIEsToKeep:
794 lookForRefDIEsToKeep(Current.Die, Current.CU, Current.Flags, Units, File,
795 Worklist);
796 continue;
797 case WorklistItemType::LookForParentDIEsToKeep:
798 lookForParentDIEsToKeep(Current.AncestorIdx, Current.CU, Current.Flags,
799 Worklist);
800 continue;
801 case WorklistItemType::LookForDIEsToKeep:
802 break;
803 }
804
805 unsigned Idx = Current.CU.getOrigUnit().getDIEIndex(Current.Die);
806 CompileUnit::DIEInfo &MyInfo = Current.CU.getInfo(Idx);
807
808 if (MyInfo.Prune)
809 continue;
810
811 // If the Keep flag is set, we are marking a required DIE's dependencies.
812 // If our target is already marked as kept, we're all set.
813 bool AlreadyKept = MyInfo.Keep;
814 if ((Current.Flags & TF_DependencyWalk) && AlreadyKept)
815 continue;
816
817 // We must not call shouldKeepDIE while called from keepDIEAndDependencies,
818 // because it would screw up the relocation finding logic.
819 if (!(Current.Flags & TF_DependencyWalk))
820 Current.Flags = shouldKeepDIE(AddressesMap, Ranges, Current.Die, File,
821 Current.CU, MyInfo, Current.Flags);
822
823 // Finish by looking for child DIEs. Because of the LIFO worklist we need
824 // to schedule that work before any subsequent items are added to the
825 // worklist.
826 Worklist.emplace_back(Current.Die, Current.CU, Current.Flags,
827 WorklistItemType::LookForChildDIEsToKeep);
828
829 if (AlreadyKept || !(Current.Flags & TF_Keep))
830 continue;
831
832 // If it is a newly kept DIE mark it as well as all its dependencies as
833 // kept.
834 MyInfo.Keep = true;
835
836 // We're looking for incomplete types.
837 MyInfo.Incomplete =
838 Current.Die.getTag() != dwarf::DW_TAG_subprogram &&
839 Current.Die.getTag() != dwarf::DW_TAG_member &&
840 dwarf::toUnsigned(Current.Die.find(dwarf::DW_AT_declaration), 0);
841
842 // After looking at the parent chain, look for referenced DIEs. Because of
843 // the LIFO worklist we need to schedule that work before any subsequent
844 // items are added to the worklist.
845 Worklist.emplace_back(Current.Die, Current.CU, Current.Flags,
846 WorklistItemType::LookForRefDIEsToKeep);
847
848 bool UseOdr = (Current.Flags & TF_DependencyWalk) ? (Current.Flags & TF_ODR)
849 : Current.CU.hasODR();
850 unsigned ODRFlag = UseOdr ? TF_ODR : 0;
851 unsigned ParFlags = TF_ParentWalk | TF_Keep | TF_DependencyWalk | ODRFlag;
852
853 // Now schedule the parent walk.
854 Worklist.emplace_back(MyInfo.ParentIdx, Current.CU, ParFlags);
855 }
856 }
857
858 /// Assign an abbreviation number to \p Abbrev.
859 ///
860 /// Our DIEs get freed after every DebugMapObject has been processed,
861 /// thus the FoldingSet we use to unique DIEAbbrevs cannot refer to
862 /// the instances hold by the DIEs. When we encounter an abbreviation
863 /// that we don't know, we create a permanent copy of it.
assignAbbrev(DIEAbbrev & Abbrev)864 void DWARFLinker::assignAbbrev(DIEAbbrev &Abbrev) {
865 // Check the set for priors.
866 FoldingSetNodeID ID;
867 Abbrev.Profile(ID);
868 void *InsertToken;
869 DIEAbbrev *InSet = AbbreviationsSet.FindNodeOrInsertPos(ID, InsertToken);
870
871 // If it's newly added.
872 if (InSet) {
873 // Assign existing abbreviation number.
874 Abbrev.setNumber(InSet->getNumber());
875 } else {
876 // Add to abbreviation list.
877 Abbreviations.push_back(
878 std::make_unique<DIEAbbrev>(Abbrev.getTag(), Abbrev.hasChildren()));
879 for (const auto &Attr : Abbrev.getData())
880 Abbreviations.back()->AddAttribute(Attr.getAttribute(), Attr.getForm());
881 AbbreviationsSet.InsertNode(Abbreviations.back().get(), InsertToken);
882 // Assign the unique abbreviation number.
883 Abbrev.setNumber(Abbreviations.size());
884 Abbreviations.back()->setNumber(Abbreviations.size());
885 }
886 }
887
cloneStringAttribute(DIE & Die,AttributeSpec AttrSpec,const DWARFFormValue & Val,const DWARFUnit & U,OffsetsStringPool & StringPool,AttributesInfo & Info)888 unsigned DWARFLinker::DIECloner::cloneStringAttribute(
889 DIE &Die, AttributeSpec AttrSpec, const DWARFFormValue &Val,
890 const DWARFUnit &U, OffsetsStringPool &StringPool, AttributesInfo &Info) {
891 // Switch everything to out of line strings.
892 const char *String = *Val.getAsCString();
893 auto StringEntry = StringPool.getEntry(String);
894
895 // Update attributes info.
896 if (AttrSpec.Attr == dwarf::DW_AT_name)
897 Info.Name = StringEntry;
898 else if (AttrSpec.Attr == dwarf::DW_AT_MIPS_linkage_name ||
899 AttrSpec.Attr == dwarf::DW_AT_linkage_name)
900 Info.MangledName = StringEntry;
901
902 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), dwarf::DW_FORM_strp,
903 DIEInteger(StringEntry.getOffset()));
904
905 return 4;
906 }
907
cloneDieReferenceAttribute(DIE & Die,const DWARFDie & InputDIE,AttributeSpec AttrSpec,unsigned AttrSize,const DWARFFormValue & Val,const DWARFFile & File,CompileUnit & Unit)908 unsigned DWARFLinker::DIECloner::cloneDieReferenceAttribute(
909 DIE &Die, const DWARFDie &InputDIE, AttributeSpec AttrSpec,
910 unsigned AttrSize, const DWARFFormValue &Val, const DWARFFile &File,
911 CompileUnit &Unit) {
912 const DWARFUnit &U = Unit.getOrigUnit();
913 uint64_t Ref = *Val.getAsReference();
914
915 DIE *NewRefDie = nullptr;
916 CompileUnit *RefUnit = nullptr;
917 DeclContext *Ctxt = nullptr;
918
919 DWARFDie RefDie =
920 Linker.resolveDIEReference(File, CompileUnits, Val, InputDIE, RefUnit);
921
922 // If the referenced DIE is not found, drop the attribute.
923 if (!RefDie || AttrSpec.Attr == dwarf::DW_AT_sibling)
924 return 0;
925
926 CompileUnit::DIEInfo &RefInfo = RefUnit->getInfo(RefDie);
927
928 // If we already have emitted an equivalent DeclContext, just point
929 // at it.
930 if (isODRAttribute(AttrSpec.Attr)) {
931 Ctxt = RefInfo.Ctxt;
932 if (Ctxt && Ctxt->getCanonicalDIEOffset()) {
933 DIEInteger Attr(Ctxt->getCanonicalDIEOffset());
934 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
935 dwarf::DW_FORM_ref_addr, Attr);
936 return U.getRefAddrByteSize();
937 }
938 }
939
940 if (!RefInfo.Clone) {
941 assert(Ref > InputDIE.getOffset());
942 // We haven't cloned this DIE yet. Just create an empty one and
943 // store it. It'll get really cloned when we process it.
944 RefInfo.Clone = DIE::get(DIEAlloc, dwarf::Tag(RefDie.getTag()));
945 }
946 NewRefDie = RefInfo.Clone;
947
948 if (AttrSpec.Form == dwarf::DW_FORM_ref_addr ||
949 (Unit.hasODR() && isODRAttribute(AttrSpec.Attr))) {
950 // We cannot currently rely on a DIEEntry to emit ref_addr
951 // references, because the implementation calls back to DwarfDebug
952 // to find the unit offset. (We don't have a DwarfDebug)
953 // FIXME: we should be able to design DIEEntry reliance on
954 // DwarfDebug away.
955 uint64_t Attr;
956 if (Ref < InputDIE.getOffset()) {
957 // We must have already cloned that DIE.
958 uint32_t NewRefOffset =
959 RefUnit->getStartOffset() + NewRefDie->getOffset();
960 Attr = NewRefOffset;
961 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
962 dwarf::DW_FORM_ref_addr, DIEInteger(Attr));
963 } else {
964 // A forward reference. Note and fixup later.
965 Attr = 0xBADDEF;
966 Unit.noteForwardReference(
967 NewRefDie, RefUnit, Ctxt,
968 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
969 dwarf::DW_FORM_ref_addr, DIEInteger(Attr)));
970 }
971 return U.getRefAddrByteSize();
972 }
973
974 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
975 dwarf::Form(AttrSpec.Form), DIEEntry(*NewRefDie));
976
977 return AttrSize;
978 }
979
cloneExpression(DataExtractor & Data,DWARFExpression Expression,const DWARFFile & File,CompileUnit & Unit,SmallVectorImpl<uint8_t> & OutputBuffer)980 void DWARFLinker::DIECloner::cloneExpression(
981 DataExtractor &Data, DWARFExpression Expression, const DWARFFile &File,
982 CompileUnit &Unit, SmallVectorImpl<uint8_t> &OutputBuffer) {
983 using Encoding = DWARFExpression::Operation::Encoding;
984
985 uint64_t OpOffset = 0;
986 for (auto &Op : Expression) {
987 auto Description = Op.getDescription();
988 // DW_OP_const_type is variable-length and has 3
989 // operands. DWARFExpression thus far only supports 2.
990 auto Op0 = Description.Op[0];
991 auto Op1 = Description.Op[1];
992 if ((Op0 == Encoding::BaseTypeRef && Op1 != Encoding::SizeNA) ||
993 (Op1 == Encoding::BaseTypeRef && Op0 != Encoding::Size1))
994 Linker.reportWarning("Unsupported DW_OP encoding.", File);
995
996 if ((Op0 == Encoding::BaseTypeRef && Op1 == Encoding::SizeNA) ||
997 (Op1 == Encoding::BaseTypeRef && Op0 == Encoding::Size1)) {
998 // This code assumes that the other non-typeref operand fits into 1 byte.
999 assert(OpOffset < Op.getEndOffset());
1000 uint32_t ULEBsize = Op.getEndOffset() - OpOffset - 1;
1001 assert(ULEBsize <= 16);
1002
1003 // Copy over the operation.
1004 OutputBuffer.push_back(Op.getCode());
1005 uint64_t RefOffset;
1006 if (Op1 == Encoding::SizeNA) {
1007 RefOffset = Op.getRawOperand(0);
1008 } else {
1009 OutputBuffer.push_back(Op.getRawOperand(0));
1010 RefOffset = Op.getRawOperand(1);
1011 }
1012 uint32_t Offset = 0;
1013 // Look up the base type. For DW_OP_convert, the operand may be 0 to
1014 // instead indicate the generic type. The same holds for
1015 // DW_OP_reinterpret, which is currently not supported.
1016 if (RefOffset > 0 || Op.getCode() != dwarf::DW_OP_convert) {
1017 auto RefDie = Unit.getOrigUnit().getDIEForOffset(RefOffset);
1018 CompileUnit::DIEInfo &Info = Unit.getInfo(RefDie);
1019 if (DIE *Clone = Info.Clone)
1020 Offset = Clone->getOffset();
1021 else
1022 Linker.reportWarning(
1023 "base type ref doesn't point to DW_TAG_base_type.", File);
1024 }
1025 uint8_t ULEB[16];
1026 unsigned RealSize = encodeULEB128(Offset, ULEB, ULEBsize);
1027 if (RealSize > ULEBsize) {
1028 // Emit the generic type as a fallback.
1029 RealSize = encodeULEB128(0, ULEB, ULEBsize);
1030 Linker.reportWarning("base type ref doesn't fit.", File);
1031 }
1032 assert(RealSize == ULEBsize && "padding failed");
1033 ArrayRef<uint8_t> ULEBbytes(ULEB, ULEBsize);
1034 OutputBuffer.append(ULEBbytes.begin(), ULEBbytes.end());
1035 } else {
1036 // Copy over everything else unmodified.
1037 StringRef Bytes = Data.getData().slice(OpOffset, Op.getEndOffset());
1038 OutputBuffer.append(Bytes.begin(), Bytes.end());
1039 }
1040 OpOffset = Op.getEndOffset();
1041 }
1042 }
1043
cloneBlockAttribute(DIE & Die,const DWARFFile & File,CompileUnit & Unit,AttributeSpec AttrSpec,const DWARFFormValue & Val,unsigned AttrSize,bool IsLittleEndian)1044 unsigned DWARFLinker::DIECloner::cloneBlockAttribute(
1045 DIE &Die, const DWARFFile &File, CompileUnit &Unit, AttributeSpec AttrSpec,
1046 const DWARFFormValue &Val, unsigned AttrSize, bool IsLittleEndian) {
1047 DIEValueList *Attr;
1048 DIEValue Value;
1049 DIELoc *Loc = nullptr;
1050 DIEBlock *Block = nullptr;
1051 if (AttrSpec.Form == dwarf::DW_FORM_exprloc) {
1052 Loc = new (DIEAlloc) DIELoc;
1053 Linker.DIELocs.push_back(Loc);
1054 } else {
1055 Block = new (DIEAlloc) DIEBlock;
1056 Linker.DIEBlocks.push_back(Block);
1057 }
1058 Attr = Loc ? static_cast<DIEValueList *>(Loc)
1059 : static_cast<DIEValueList *>(Block);
1060
1061 if (Loc)
1062 Value = DIEValue(dwarf::Attribute(AttrSpec.Attr),
1063 dwarf::Form(AttrSpec.Form), Loc);
1064 else
1065 Value = DIEValue(dwarf::Attribute(AttrSpec.Attr),
1066 dwarf::Form(AttrSpec.Form), Block);
1067
1068 // If the block is a DWARF Expression, clone it into the temporary
1069 // buffer using cloneExpression(), otherwise copy the data directly.
1070 SmallVector<uint8_t, 32> Buffer;
1071 ArrayRef<uint8_t> Bytes = *Val.getAsBlock();
1072 if (DWARFAttribute::mayHaveLocationDescription(AttrSpec.Attr) &&
1073 (Val.isFormClass(DWARFFormValue::FC_Block) ||
1074 Val.isFormClass(DWARFFormValue::FC_Exprloc))) {
1075 DWARFUnit &OrigUnit = Unit.getOrigUnit();
1076 DataExtractor Data(StringRef((const char *)Bytes.data(), Bytes.size()),
1077 IsLittleEndian, OrigUnit.getAddressByteSize());
1078 DWARFExpression Expr(Data, OrigUnit.getAddressByteSize(),
1079 OrigUnit.getFormParams().Format);
1080 cloneExpression(Data, Expr, File, Unit, Buffer);
1081 Bytes = Buffer;
1082 }
1083 for (auto Byte : Bytes)
1084 Attr->addValue(DIEAlloc, static_cast<dwarf::Attribute>(0),
1085 dwarf::DW_FORM_data1, DIEInteger(Byte));
1086
1087 // FIXME: If DIEBlock and DIELoc just reuses the Size field of
1088 // the DIE class, this "if" could be replaced by
1089 // Attr->setSize(Bytes.size()).
1090 if (Loc)
1091 Loc->setSize(Bytes.size());
1092 else
1093 Block->setSize(Bytes.size());
1094
1095 Die.addValue(DIEAlloc, Value);
1096 return AttrSize;
1097 }
1098
cloneAddressAttribute(DIE & Die,AttributeSpec AttrSpec,const DWARFFormValue & Val,const CompileUnit & Unit,AttributesInfo & Info)1099 unsigned DWARFLinker::DIECloner::cloneAddressAttribute(
1100 DIE &Die, AttributeSpec AttrSpec, const DWARFFormValue &Val,
1101 const CompileUnit &Unit, AttributesInfo &Info) {
1102 uint64_t Addr = *Val.getAsAddress();
1103
1104 if (LLVM_UNLIKELY(Linker.Options.Update)) {
1105 if (AttrSpec.Attr == dwarf::DW_AT_low_pc)
1106 Info.HasLowPc = true;
1107 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
1108 dwarf::Form(AttrSpec.Form), DIEInteger(Addr));
1109 return Unit.getOrigUnit().getAddressByteSize();
1110 }
1111
1112 if (AttrSpec.Attr == dwarf::DW_AT_low_pc) {
1113 if (Die.getTag() == dwarf::DW_TAG_inlined_subroutine ||
1114 Die.getTag() == dwarf::DW_TAG_lexical_block)
1115 // The low_pc of a block or inline subroutine might get
1116 // relocated because it happens to match the low_pc of the
1117 // enclosing subprogram. To prevent issues with that, always use
1118 // the low_pc from the input DIE if relocations have been applied.
1119 Addr = (Info.OrigLowPc != std::numeric_limits<uint64_t>::max()
1120 ? Info.OrigLowPc
1121 : Addr) +
1122 Info.PCOffset;
1123 else if (Die.getTag() == dwarf::DW_TAG_compile_unit) {
1124 Addr = Unit.getLowPc();
1125 if (Addr == std::numeric_limits<uint64_t>::max())
1126 return 0;
1127 }
1128 Info.HasLowPc = true;
1129 } else if (AttrSpec.Attr == dwarf::DW_AT_high_pc) {
1130 if (Die.getTag() == dwarf::DW_TAG_compile_unit) {
1131 if (uint64_t HighPc = Unit.getHighPc())
1132 Addr = HighPc;
1133 else
1134 return 0;
1135 } else
1136 // If we have a high_pc recorded for the input DIE, use
1137 // it. Otherwise (when no relocations where applied) just use the
1138 // one we just decoded.
1139 Addr = (Info.OrigHighPc ? Info.OrigHighPc : Addr) + Info.PCOffset;
1140 } else if (AttrSpec.Attr == dwarf::DW_AT_call_return_pc) {
1141 // Relocate a return PC address within a call site entry.
1142 if (Die.getTag() == dwarf::DW_TAG_call_site)
1143 Addr = (Info.OrigCallReturnPc ? Info.OrigCallReturnPc : Addr) +
1144 Info.PCOffset;
1145 } else if (AttrSpec.Attr == dwarf::DW_AT_call_pc) {
1146 // Relocate the address of a branch instruction within a call site entry.
1147 if (Die.getTag() == dwarf::DW_TAG_call_site)
1148 Addr = (Info.OrigCallPc ? Info.OrigCallPc : Addr) + Info.PCOffset;
1149 }
1150
1151 Die.addValue(DIEAlloc, static_cast<dwarf::Attribute>(AttrSpec.Attr),
1152 static_cast<dwarf::Form>(AttrSpec.Form), DIEInteger(Addr));
1153 return Unit.getOrigUnit().getAddressByteSize();
1154 }
1155
cloneScalarAttribute(DIE & Die,const DWARFDie & InputDIE,const DWARFFile & File,CompileUnit & Unit,AttributeSpec AttrSpec,const DWARFFormValue & Val,unsigned AttrSize,AttributesInfo & Info)1156 unsigned DWARFLinker::DIECloner::cloneScalarAttribute(
1157 DIE &Die, const DWARFDie &InputDIE, const DWARFFile &File,
1158 CompileUnit &Unit, AttributeSpec AttrSpec, const DWARFFormValue &Val,
1159 unsigned AttrSize, AttributesInfo &Info) {
1160 uint64_t Value;
1161
1162 if (LLVM_UNLIKELY(Linker.Options.Update)) {
1163 if (auto OptionalValue = Val.getAsUnsignedConstant())
1164 Value = *OptionalValue;
1165 else if (auto OptionalValue = Val.getAsSignedConstant())
1166 Value = *OptionalValue;
1167 else if (auto OptionalValue = Val.getAsSectionOffset())
1168 Value = *OptionalValue;
1169 else {
1170 Linker.reportWarning(
1171 "Unsupported scalar attribute form. Dropping attribute.", File,
1172 &InputDIE);
1173 return 0;
1174 }
1175 if (AttrSpec.Attr == dwarf::DW_AT_declaration && Value)
1176 Info.IsDeclaration = true;
1177 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
1178 dwarf::Form(AttrSpec.Form), DIEInteger(Value));
1179 return AttrSize;
1180 }
1181
1182 if (AttrSpec.Attr == dwarf::DW_AT_high_pc &&
1183 Die.getTag() == dwarf::DW_TAG_compile_unit) {
1184 if (Unit.getLowPc() == -1ULL)
1185 return 0;
1186 // Dwarf >= 4 high_pc is an size, not an address.
1187 Value = Unit.getHighPc() - Unit.getLowPc();
1188 } else if (AttrSpec.Form == dwarf::DW_FORM_sec_offset)
1189 Value = *Val.getAsSectionOffset();
1190 else if (AttrSpec.Form == dwarf::DW_FORM_sdata)
1191 Value = *Val.getAsSignedConstant();
1192 else if (auto OptionalValue = Val.getAsUnsignedConstant())
1193 Value = *OptionalValue;
1194 else {
1195 Linker.reportWarning(
1196 "Unsupported scalar attribute form. Dropping attribute.", File,
1197 &InputDIE);
1198 return 0;
1199 }
1200 PatchLocation Patch =
1201 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
1202 dwarf::Form(AttrSpec.Form), DIEInteger(Value));
1203 if (AttrSpec.Attr == dwarf::DW_AT_ranges) {
1204 Unit.noteRangeAttribute(Die, Patch);
1205 Info.HasRanges = true;
1206 }
1207
1208 // A more generic way to check for location attributes would be
1209 // nice, but it's very unlikely that any other attribute needs a
1210 // location list.
1211 // FIXME: use DWARFAttribute::mayHaveLocationDescription().
1212 else if (AttrSpec.Attr == dwarf::DW_AT_location ||
1213 AttrSpec.Attr == dwarf::DW_AT_frame_base) {
1214 Unit.noteLocationAttribute(Patch, Info.PCOffset);
1215 } else if (AttrSpec.Attr == dwarf::DW_AT_declaration && Value)
1216 Info.IsDeclaration = true;
1217
1218 return AttrSize;
1219 }
1220
1221 /// Clone \p InputDIE's attribute described by \p AttrSpec with
1222 /// value \p Val, and add it to \p Die.
1223 /// \returns the size of the cloned attribute.
cloneAttribute(DIE & Die,const DWARFDie & InputDIE,const DWARFFile & File,CompileUnit & Unit,OffsetsStringPool & StringPool,const DWARFFormValue & Val,const AttributeSpec AttrSpec,unsigned AttrSize,AttributesInfo & Info,bool IsLittleEndian)1224 unsigned DWARFLinker::DIECloner::cloneAttribute(
1225 DIE &Die, const DWARFDie &InputDIE, const DWARFFile &File,
1226 CompileUnit &Unit, OffsetsStringPool &StringPool, const DWARFFormValue &Val,
1227 const AttributeSpec AttrSpec, unsigned AttrSize, AttributesInfo &Info,
1228 bool IsLittleEndian) {
1229 const DWARFUnit &U = Unit.getOrigUnit();
1230
1231 switch (AttrSpec.Form) {
1232 case dwarf::DW_FORM_strp:
1233 case dwarf::DW_FORM_string:
1234 return cloneStringAttribute(Die, AttrSpec, Val, U, StringPool, Info);
1235 case dwarf::DW_FORM_ref_addr:
1236 case dwarf::DW_FORM_ref1:
1237 case dwarf::DW_FORM_ref2:
1238 case dwarf::DW_FORM_ref4:
1239 case dwarf::DW_FORM_ref8:
1240 return cloneDieReferenceAttribute(Die, InputDIE, AttrSpec, AttrSize, Val,
1241 File, Unit);
1242 case dwarf::DW_FORM_block:
1243 case dwarf::DW_FORM_block1:
1244 case dwarf::DW_FORM_block2:
1245 case dwarf::DW_FORM_block4:
1246 case dwarf::DW_FORM_exprloc:
1247 return cloneBlockAttribute(Die, File, Unit, AttrSpec, Val, AttrSize,
1248 IsLittleEndian);
1249 case dwarf::DW_FORM_addr:
1250 return cloneAddressAttribute(Die, AttrSpec, Val, Unit, Info);
1251 case dwarf::DW_FORM_data1:
1252 case dwarf::DW_FORM_data2:
1253 case dwarf::DW_FORM_data4:
1254 case dwarf::DW_FORM_data8:
1255 case dwarf::DW_FORM_udata:
1256 case dwarf::DW_FORM_sdata:
1257 case dwarf::DW_FORM_sec_offset:
1258 case dwarf::DW_FORM_flag:
1259 case dwarf::DW_FORM_flag_present:
1260 return cloneScalarAttribute(Die, InputDIE, File, Unit, AttrSpec, Val,
1261 AttrSize, Info);
1262 default:
1263 Linker.reportWarning(
1264 "Unsupported attribute form in cloneAttribute. Dropping.", File,
1265 &InputDIE);
1266 }
1267
1268 return 0;
1269 }
1270
isObjCSelector(StringRef Name)1271 static bool isObjCSelector(StringRef Name) {
1272 return Name.size() > 2 && (Name[0] == '-' || Name[0] == '+') &&
1273 (Name[1] == '[');
1274 }
1275
addObjCAccelerator(CompileUnit & Unit,const DIE * Die,DwarfStringPoolEntryRef Name,OffsetsStringPool & StringPool,bool SkipPubSection)1276 void DWARFLinker::DIECloner::addObjCAccelerator(CompileUnit &Unit,
1277 const DIE *Die,
1278 DwarfStringPoolEntryRef Name,
1279 OffsetsStringPool &StringPool,
1280 bool SkipPubSection) {
1281 assert(isObjCSelector(Name.getString()) && "not an objc selector");
1282 // Objective C method or class function.
1283 // "- [Class(Category) selector :withArg ...]"
1284 StringRef ClassNameStart(Name.getString().drop_front(2));
1285 size_t FirstSpace = ClassNameStart.find(' ');
1286 if (FirstSpace == StringRef::npos)
1287 return;
1288
1289 StringRef SelectorStart(ClassNameStart.data() + FirstSpace + 1);
1290 if (!SelectorStart.size())
1291 return;
1292
1293 StringRef Selector(SelectorStart.data(), SelectorStart.size() - 1);
1294 Unit.addNameAccelerator(Die, StringPool.getEntry(Selector), SkipPubSection);
1295
1296 // Add an entry for the class name that points to this
1297 // method/class function.
1298 StringRef ClassName(ClassNameStart.data(), FirstSpace);
1299 Unit.addObjCAccelerator(Die, StringPool.getEntry(ClassName), SkipPubSection);
1300
1301 if (ClassName[ClassName.size() - 1] == ')') {
1302 size_t OpenParens = ClassName.find('(');
1303 if (OpenParens != StringRef::npos) {
1304 StringRef ClassNameNoCategory(ClassName.data(), OpenParens);
1305 Unit.addObjCAccelerator(Die, StringPool.getEntry(ClassNameNoCategory),
1306 SkipPubSection);
1307
1308 std::string MethodNameNoCategory(Name.getString().data(), OpenParens + 2);
1309 // FIXME: The missing space here may be a bug, but
1310 // dsymutil-classic also does it this way.
1311 MethodNameNoCategory.append(std::string(SelectorStart));
1312 Unit.addNameAccelerator(Die, StringPool.getEntry(MethodNameNoCategory),
1313 SkipPubSection);
1314 }
1315 }
1316 }
1317
1318 static bool
shouldSkipAttribute(DWARFAbbreviationDeclaration::AttributeSpec AttrSpec,uint16_t Tag,bool InDebugMap,bool SkipPC,bool InFunctionScope)1319 shouldSkipAttribute(DWARFAbbreviationDeclaration::AttributeSpec AttrSpec,
1320 uint16_t Tag, bool InDebugMap, bool SkipPC,
1321 bool InFunctionScope) {
1322 switch (AttrSpec.Attr) {
1323 default:
1324 return false;
1325 case dwarf::DW_AT_low_pc:
1326 case dwarf::DW_AT_high_pc:
1327 case dwarf::DW_AT_ranges:
1328 return SkipPC;
1329 case dwarf::DW_AT_location:
1330 case dwarf::DW_AT_frame_base:
1331 // FIXME: for some reason dsymutil-classic keeps the location attributes
1332 // when they are of block type (i.e. not location lists). This is totally
1333 // wrong for globals where we will keep a wrong address. It is mostly
1334 // harmless for locals, but there is no point in keeping these anyway when
1335 // the function wasn't linked.
1336 return (SkipPC || (!InFunctionScope && Tag == dwarf::DW_TAG_variable &&
1337 !InDebugMap)) &&
1338 !DWARFFormValue(AttrSpec.Form).isFormClass(DWARFFormValue::FC_Block);
1339 }
1340 }
1341
cloneDIE(const DWARFDie & InputDIE,const DWARFFile & File,CompileUnit & Unit,OffsetsStringPool & StringPool,int64_t PCOffset,uint32_t OutOffset,unsigned Flags,bool IsLittleEndian,DIE * Die)1342 DIE *DWARFLinker::DIECloner::cloneDIE(const DWARFDie &InputDIE,
1343 const DWARFFile &File, CompileUnit &Unit,
1344 OffsetsStringPool &StringPool,
1345 int64_t PCOffset, uint32_t OutOffset,
1346 unsigned Flags, bool IsLittleEndian,
1347 DIE *Die) {
1348 DWARFUnit &U = Unit.getOrigUnit();
1349 unsigned Idx = U.getDIEIndex(InputDIE);
1350 CompileUnit::DIEInfo &Info = Unit.getInfo(Idx);
1351
1352 // Should the DIE appear in the output?
1353 if (!Unit.getInfo(Idx).Keep)
1354 return nullptr;
1355
1356 uint64_t Offset = InputDIE.getOffset();
1357 assert(!(Die && Info.Clone) && "Can't supply a DIE and a cloned DIE");
1358 if (!Die) {
1359 // The DIE might have been already created by a forward reference
1360 // (see cloneDieReferenceAttribute()).
1361 if (!Info.Clone)
1362 Info.Clone = DIE::get(DIEAlloc, dwarf::Tag(InputDIE.getTag()));
1363 Die = Info.Clone;
1364 }
1365
1366 assert(Die->getTag() == InputDIE.getTag());
1367 Die->setOffset(OutOffset);
1368 if ((Unit.hasODR() || Unit.isClangModule()) && !Info.Incomplete &&
1369 Die->getTag() != dwarf::DW_TAG_namespace && Info.Ctxt &&
1370 Info.Ctxt != Unit.getInfo(Info.ParentIdx).Ctxt &&
1371 !Info.Ctxt->getCanonicalDIEOffset()) {
1372 // We are about to emit a DIE that is the root of its own valid
1373 // DeclContext tree. Make the current offset the canonical offset
1374 // for this context.
1375 Info.Ctxt->setCanonicalDIEOffset(OutOffset + Unit.getStartOffset());
1376 }
1377
1378 // Extract and clone every attribute.
1379 DWARFDataExtractor Data = U.getDebugInfoExtractor();
1380 // Point to the next DIE (generally there is always at least a NULL
1381 // entry after the current one). If this is a lone
1382 // DW_TAG_compile_unit without any children, point to the next unit.
1383 uint64_t NextOffset = (Idx + 1 < U.getNumDIEs())
1384 ? U.getDIEAtIndex(Idx + 1).getOffset()
1385 : U.getNextUnitOffset();
1386 AttributesInfo AttrInfo;
1387
1388 // We could copy the data only if we need to apply a relocation to it. After
1389 // testing, it seems there is no performance downside to doing the copy
1390 // unconditionally, and it makes the code simpler.
1391 SmallString<40> DIECopy(Data.getData().substr(Offset, NextOffset - Offset));
1392 Data =
1393 DWARFDataExtractor(DIECopy, Data.isLittleEndian(), Data.getAddressSize());
1394
1395 // Modify the copy with relocated addresses.
1396 if (ObjFile.Addresses->areRelocationsResolved() &&
1397 ObjFile.Addresses->applyValidRelocs(DIECopy, Offset,
1398 Data.isLittleEndian())) {
1399 // If we applied relocations, we store the value of high_pc that was
1400 // potentially stored in the input DIE. If high_pc is an address
1401 // (Dwarf version == 2), then it might have been relocated to a
1402 // totally unrelated value (because the end address in the object
1403 // file might be start address of another function which got moved
1404 // independently by the linker). The computation of the actual
1405 // high_pc value is done in cloneAddressAttribute().
1406 AttrInfo.OrigHighPc =
1407 dwarf::toAddress(InputDIE.find(dwarf::DW_AT_high_pc), 0);
1408 // Also store the low_pc. It might get relocated in an
1409 // inline_subprogram that happens at the beginning of its
1410 // inlining function.
1411 AttrInfo.OrigLowPc = dwarf::toAddress(InputDIE.find(dwarf::DW_AT_low_pc),
1412 std::numeric_limits<uint64_t>::max());
1413 AttrInfo.OrigCallReturnPc =
1414 dwarf::toAddress(InputDIE.find(dwarf::DW_AT_call_return_pc), 0);
1415 AttrInfo.OrigCallPc =
1416 dwarf::toAddress(InputDIE.find(dwarf::DW_AT_call_pc), 0);
1417 }
1418
1419 // Reset the Offset to 0 as we will be working on the local copy of
1420 // the data.
1421 Offset = 0;
1422
1423 const auto *Abbrev = InputDIE.getAbbreviationDeclarationPtr();
1424 Offset += getULEB128Size(Abbrev->getCode());
1425
1426 // We are entering a subprogram. Get and propagate the PCOffset.
1427 if (Die->getTag() == dwarf::DW_TAG_subprogram)
1428 PCOffset = Info.AddrAdjust;
1429 AttrInfo.PCOffset = PCOffset;
1430
1431 if (Abbrev->getTag() == dwarf::DW_TAG_subprogram) {
1432 Flags |= TF_InFunctionScope;
1433 if (!Info.InDebugMap && LLVM_LIKELY(!Update))
1434 Flags |= TF_SkipPC;
1435 }
1436
1437 bool Copied = false;
1438 for (const auto &AttrSpec : Abbrev->attributes()) {
1439 if (LLVM_LIKELY(!Update) &&
1440 shouldSkipAttribute(AttrSpec, Die->getTag(), Info.InDebugMap,
1441 Flags & TF_SkipPC, Flags & TF_InFunctionScope)) {
1442 DWARFFormValue::skipValue(AttrSpec.Form, Data, &Offset,
1443 U.getFormParams());
1444 // FIXME: dsymutil-classic keeps the old abbreviation around
1445 // even if it's not used. We can remove this (and the copyAbbrev
1446 // helper) as soon as bit-for-bit compatibility is not a goal anymore.
1447 if (!Copied) {
1448 copyAbbrev(*InputDIE.getAbbreviationDeclarationPtr(), Unit.hasODR());
1449 Copied = true;
1450 }
1451 continue;
1452 }
1453
1454 DWARFFormValue Val(AttrSpec.Form);
1455 uint64_t AttrSize = Offset;
1456 Val.extractValue(Data, &Offset, U.getFormParams(), &U);
1457 AttrSize = Offset - AttrSize;
1458
1459 OutOffset += cloneAttribute(*Die, InputDIE, File, Unit, StringPool, Val,
1460 AttrSpec, AttrSize, AttrInfo, IsLittleEndian);
1461 }
1462
1463 // Look for accelerator entries.
1464 uint16_t Tag = InputDIE.getTag();
1465 // FIXME: This is slightly wrong. An inline_subroutine without a
1466 // low_pc, but with AT_ranges might be interesting to get into the
1467 // accelerator tables too. For now stick with dsymutil's behavior.
1468 if ((Info.InDebugMap || AttrInfo.HasLowPc || AttrInfo.HasRanges) &&
1469 Tag != dwarf::DW_TAG_compile_unit &&
1470 getDIENames(InputDIE, AttrInfo, StringPool,
1471 Tag != dwarf::DW_TAG_inlined_subroutine)) {
1472 if (AttrInfo.MangledName && AttrInfo.MangledName != AttrInfo.Name)
1473 Unit.addNameAccelerator(Die, AttrInfo.MangledName,
1474 Tag == dwarf::DW_TAG_inlined_subroutine);
1475 if (AttrInfo.Name) {
1476 if (AttrInfo.NameWithoutTemplate)
1477 Unit.addNameAccelerator(Die, AttrInfo.NameWithoutTemplate,
1478 /* SkipPubSection */ true);
1479 Unit.addNameAccelerator(Die, AttrInfo.Name,
1480 Tag == dwarf::DW_TAG_inlined_subroutine);
1481 }
1482 if (AttrInfo.Name && isObjCSelector(AttrInfo.Name.getString()))
1483 addObjCAccelerator(Unit, Die, AttrInfo.Name, StringPool,
1484 /* SkipPubSection =*/true);
1485
1486 } else if (Tag == dwarf::DW_TAG_namespace) {
1487 if (!AttrInfo.Name)
1488 AttrInfo.Name = StringPool.getEntry("(anonymous namespace)");
1489 Unit.addNamespaceAccelerator(Die, AttrInfo.Name);
1490 } else if (isTypeTag(Tag) && !AttrInfo.IsDeclaration &&
1491 getDIENames(InputDIE, AttrInfo, StringPool) && AttrInfo.Name &&
1492 AttrInfo.Name.getString()[0]) {
1493 uint32_t Hash = hashFullyQualifiedName(InputDIE, Unit, File);
1494 uint64_t RuntimeLang =
1495 dwarf::toUnsigned(InputDIE.find(dwarf::DW_AT_APPLE_runtime_class))
1496 .getValueOr(0);
1497 bool ObjCClassIsImplementation =
1498 (RuntimeLang == dwarf::DW_LANG_ObjC ||
1499 RuntimeLang == dwarf::DW_LANG_ObjC_plus_plus) &&
1500 dwarf::toUnsigned(InputDIE.find(dwarf::DW_AT_APPLE_objc_complete_type))
1501 .getValueOr(0);
1502 Unit.addTypeAccelerator(Die, AttrInfo.Name, ObjCClassIsImplementation,
1503 Hash);
1504 }
1505
1506 // Determine whether there are any children that we want to keep.
1507 bool HasChildren = false;
1508 for (auto Child : InputDIE.children()) {
1509 unsigned Idx = U.getDIEIndex(Child);
1510 if (Unit.getInfo(Idx).Keep) {
1511 HasChildren = true;
1512 break;
1513 }
1514 }
1515
1516 DIEAbbrev NewAbbrev = Die->generateAbbrev();
1517 if (HasChildren)
1518 NewAbbrev.setChildrenFlag(dwarf::DW_CHILDREN_yes);
1519 // Assign a permanent abbrev number
1520 Linker.assignAbbrev(NewAbbrev);
1521 Die->setAbbrevNumber(NewAbbrev.getNumber());
1522
1523 // Add the size of the abbreviation number to the output offset.
1524 OutOffset += getULEB128Size(Die->getAbbrevNumber());
1525
1526 if (!HasChildren) {
1527 // Update our size.
1528 Die->setSize(OutOffset - Die->getOffset());
1529 return Die;
1530 }
1531
1532 // Recursively clone children.
1533 for (auto Child : InputDIE.children()) {
1534 if (DIE *Clone = cloneDIE(Child, File, Unit, StringPool, PCOffset,
1535 OutOffset, Flags, IsLittleEndian)) {
1536 Die->addChild(Clone);
1537 OutOffset = Clone->getOffset() + Clone->getSize();
1538 }
1539 }
1540
1541 // Account for the end of children marker.
1542 OutOffset += sizeof(int8_t);
1543 // Update our size.
1544 Die->setSize(OutOffset - Die->getOffset());
1545 return Die;
1546 }
1547
1548 /// Patch the input object file relevant debug_ranges entries
1549 /// and emit them in the output file. Update the relevant attributes
1550 /// to point at the new entries.
patchRangesForUnit(const CompileUnit & Unit,DWARFContext & OrigDwarf,const DWARFFile & File) const1551 void DWARFLinker::patchRangesForUnit(const CompileUnit &Unit,
1552 DWARFContext &OrigDwarf,
1553 const DWARFFile &File) const {
1554 DWARFDebugRangeList RangeList;
1555 const auto &FunctionRanges = Unit.getFunctionRanges();
1556 unsigned AddressSize = Unit.getOrigUnit().getAddressByteSize();
1557 DWARFDataExtractor RangeExtractor(OrigDwarf.getDWARFObj(),
1558 OrigDwarf.getDWARFObj().getRangesSection(),
1559 OrigDwarf.isLittleEndian(), AddressSize);
1560 auto InvalidRange = FunctionRanges.end(), CurrRange = InvalidRange;
1561 DWARFUnit &OrigUnit = Unit.getOrigUnit();
1562 auto OrigUnitDie = OrigUnit.getUnitDIE(false);
1563 uint64_t OrigLowPc =
1564 dwarf::toAddress(OrigUnitDie.find(dwarf::DW_AT_low_pc), -1ULL);
1565 // Ranges addresses are based on the unit's low_pc. Compute the
1566 // offset we need to apply to adapt to the new unit's low_pc.
1567 int64_t UnitPcOffset = 0;
1568 if (OrigLowPc != -1ULL)
1569 UnitPcOffset = int64_t(OrigLowPc) - Unit.getLowPc();
1570
1571 for (const auto &RangeAttribute : Unit.getRangesAttributes()) {
1572 uint64_t Offset = RangeAttribute.get();
1573 RangeAttribute.set(TheDwarfEmitter->getRangesSectionSize());
1574 if (Error E = RangeList.extract(RangeExtractor, &Offset)) {
1575 llvm::consumeError(std::move(E));
1576 reportWarning("invalid range list ignored.", File);
1577 RangeList.clear();
1578 }
1579 const auto &Entries = RangeList.getEntries();
1580 if (!Entries.empty()) {
1581 const DWARFDebugRangeList::RangeListEntry &First = Entries.front();
1582
1583 if (CurrRange == InvalidRange ||
1584 First.StartAddress + OrigLowPc < CurrRange.start() ||
1585 First.StartAddress + OrigLowPc >= CurrRange.stop()) {
1586 CurrRange = FunctionRanges.find(First.StartAddress + OrigLowPc);
1587 if (CurrRange == InvalidRange ||
1588 CurrRange.start() > First.StartAddress + OrigLowPc) {
1589 reportWarning("no mapping for range.", File);
1590 continue;
1591 }
1592 }
1593 }
1594
1595 TheDwarfEmitter->emitRangesEntries(UnitPcOffset, OrigLowPc, CurrRange,
1596 Entries, AddressSize);
1597 }
1598 }
1599
1600 /// Generate the debug_aranges entries for \p Unit and if the
1601 /// unit has a DW_AT_ranges attribute, also emit the debug_ranges
1602 /// contribution for this attribute.
1603 /// FIXME: this could actually be done right in patchRangesForUnit,
1604 /// but for the sake of initial bit-for-bit compatibility with legacy
1605 /// dsymutil, we have to do it in a delayed pass.
generateUnitRanges(CompileUnit & Unit) const1606 void DWARFLinker::generateUnitRanges(CompileUnit &Unit) const {
1607 auto Attr = Unit.getUnitRangesAttribute();
1608 if (Attr)
1609 Attr->set(TheDwarfEmitter->getRangesSectionSize());
1610 TheDwarfEmitter->emitUnitRangesEntries(Unit, static_cast<bool>(Attr));
1611 }
1612
1613 /// Insert the new line info sequence \p Seq into the current
1614 /// set of already linked line info \p Rows.
insertLineSequence(std::vector<DWARFDebugLine::Row> & Seq,std::vector<DWARFDebugLine::Row> & Rows)1615 static void insertLineSequence(std::vector<DWARFDebugLine::Row> &Seq,
1616 std::vector<DWARFDebugLine::Row> &Rows) {
1617 if (Seq.empty())
1618 return;
1619
1620 if (!Rows.empty() && Rows.back().Address < Seq.front().Address) {
1621 Rows.insert(Rows.end(), Seq.begin(), Seq.end());
1622 Seq.clear();
1623 return;
1624 }
1625
1626 object::SectionedAddress Front = Seq.front().Address;
1627 auto InsertPoint = partition_point(
1628 Rows, [=](const DWARFDebugLine::Row &O) { return O.Address < Front; });
1629
1630 // FIXME: this only removes the unneeded end_sequence if the
1631 // sequences have been inserted in order. Using a global sort like
1632 // described in patchLineTableForUnit() and delaying the end_sequene
1633 // elimination to emitLineTableForUnit() we can get rid of all of them.
1634 if (InsertPoint != Rows.end() && InsertPoint->Address == Front &&
1635 InsertPoint->EndSequence) {
1636 *InsertPoint = Seq.front();
1637 Rows.insert(InsertPoint + 1, Seq.begin() + 1, Seq.end());
1638 } else {
1639 Rows.insert(InsertPoint, Seq.begin(), Seq.end());
1640 }
1641
1642 Seq.clear();
1643 }
1644
patchStmtList(DIE & Die,DIEInteger Offset)1645 static void patchStmtList(DIE &Die, DIEInteger Offset) {
1646 for (auto &V : Die.values())
1647 if (V.getAttribute() == dwarf::DW_AT_stmt_list) {
1648 V = DIEValue(V.getAttribute(), V.getForm(), Offset);
1649 return;
1650 }
1651
1652 llvm_unreachable("Didn't find DW_AT_stmt_list in cloned DIE!");
1653 }
1654
1655 /// Extract the line table for \p Unit from \p OrigDwarf, and
1656 /// recreate a relocated version of these for the address ranges that
1657 /// are present in the binary.
patchLineTableForUnit(CompileUnit & Unit,DWARFContext & OrigDwarf,const DWARFFile & File)1658 void DWARFLinker::patchLineTableForUnit(CompileUnit &Unit,
1659 DWARFContext &OrigDwarf,
1660 const DWARFFile &File) {
1661 DWARFDie CUDie = Unit.getOrigUnit().getUnitDIE();
1662 auto StmtList = dwarf::toSectionOffset(CUDie.find(dwarf::DW_AT_stmt_list));
1663 if (!StmtList)
1664 return;
1665
1666 // Update the cloned DW_AT_stmt_list with the correct debug_line offset.
1667 if (auto *OutputDIE = Unit.getOutputUnitDIE())
1668 patchStmtList(*OutputDIE,
1669 DIEInteger(TheDwarfEmitter->getLineSectionSize()));
1670
1671 RangesTy &Ranges = File.Addresses->getValidAddressRanges();
1672
1673 // Parse the original line info for the unit.
1674 DWARFDebugLine::LineTable LineTable;
1675 uint64_t StmtOffset = *StmtList;
1676 DWARFDataExtractor LineExtractor(
1677 OrigDwarf.getDWARFObj(), OrigDwarf.getDWARFObj().getLineSection(),
1678 OrigDwarf.isLittleEndian(), Unit.getOrigUnit().getAddressByteSize());
1679 if (needToTranslateStrings())
1680 return TheDwarfEmitter->translateLineTable(LineExtractor, StmtOffset);
1681
1682 if (Error Err =
1683 LineTable.parse(LineExtractor, &StmtOffset, OrigDwarf,
1684 &Unit.getOrigUnit(), OrigDwarf.getWarningHandler()))
1685 OrigDwarf.getWarningHandler()(std::move(Err));
1686
1687 // This vector is the output line table.
1688 std::vector<DWARFDebugLine::Row> NewRows;
1689 NewRows.reserve(LineTable.Rows.size());
1690
1691 // Current sequence of rows being extracted, before being inserted
1692 // in NewRows.
1693 std::vector<DWARFDebugLine::Row> Seq;
1694 const auto &FunctionRanges = Unit.getFunctionRanges();
1695 auto InvalidRange = FunctionRanges.end(), CurrRange = InvalidRange;
1696
1697 // FIXME: This logic is meant to generate exactly the same output as
1698 // Darwin's classic dsymutil. There is a nicer way to implement this
1699 // by simply putting all the relocated line info in NewRows and simply
1700 // sorting NewRows before passing it to emitLineTableForUnit. This
1701 // should be correct as sequences for a function should stay
1702 // together in the sorted output. There are a few corner cases that
1703 // look suspicious though, and that required to implement the logic
1704 // this way. Revisit that once initial validation is finished.
1705
1706 // Iterate over the object file line info and extract the sequences
1707 // that correspond to linked functions.
1708 for (auto &Row : LineTable.Rows) {
1709 // Check whether we stepped out of the range. The range is
1710 // half-open, but consider accept the end address of the range if
1711 // it is marked as end_sequence in the input (because in that
1712 // case, the relocation offset is accurate and that entry won't
1713 // serve as the start of another function).
1714 if (CurrRange == InvalidRange || Row.Address.Address < CurrRange.start() ||
1715 Row.Address.Address > CurrRange.stop() ||
1716 (Row.Address.Address == CurrRange.stop() && !Row.EndSequence)) {
1717 // We just stepped out of a known range. Insert a end_sequence
1718 // corresponding to the end of the range.
1719 uint64_t StopAddress = CurrRange != InvalidRange
1720 ? CurrRange.stop() + CurrRange.value()
1721 : -1ULL;
1722 CurrRange = FunctionRanges.find(Row.Address.Address);
1723 bool CurrRangeValid =
1724 CurrRange != InvalidRange && CurrRange.start() <= Row.Address.Address;
1725 if (!CurrRangeValid) {
1726 CurrRange = InvalidRange;
1727 if (StopAddress != -1ULL) {
1728 // Try harder by looking in the Address ranges map.
1729 // There are corner cases where this finds a
1730 // valid entry. It's unclear if this is right or wrong, but
1731 // for now do as dsymutil.
1732 // FIXME: Understand exactly what cases this addresses and
1733 // potentially remove it along with the Ranges map.
1734 auto Range = Ranges.lower_bound(Row.Address.Address);
1735 if (Range != Ranges.begin() && Range != Ranges.end())
1736 --Range;
1737
1738 if (Range != Ranges.end() && Range->first <= Row.Address.Address &&
1739 Range->second.HighPC >= Row.Address.Address) {
1740 StopAddress = Row.Address.Address + Range->second.Offset;
1741 }
1742 }
1743 }
1744 if (StopAddress != -1ULL && !Seq.empty()) {
1745 // Insert end sequence row with the computed end address, but
1746 // the same line as the previous one.
1747 auto NextLine = Seq.back();
1748 NextLine.Address.Address = StopAddress;
1749 NextLine.EndSequence = 1;
1750 NextLine.PrologueEnd = 0;
1751 NextLine.BasicBlock = 0;
1752 NextLine.EpilogueBegin = 0;
1753 Seq.push_back(NextLine);
1754 insertLineSequence(Seq, NewRows);
1755 }
1756
1757 if (!CurrRangeValid)
1758 continue;
1759 }
1760
1761 // Ignore empty sequences.
1762 if (Row.EndSequence && Seq.empty())
1763 continue;
1764
1765 // Relocate row address and add it to the current sequence.
1766 Row.Address.Address += CurrRange.value();
1767 Seq.emplace_back(Row);
1768
1769 if (Row.EndSequence)
1770 insertLineSequence(Seq, NewRows);
1771 }
1772
1773 // Finished extracting, now emit the line tables.
1774 // FIXME: LLVM hard-codes its prologue values. We just copy the
1775 // prologue over and that works because we act as both producer and
1776 // consumer. It would be nicer to have a real configurable line
1777 // table emitter.
1778 if (LineTable.Prologue.getVersion() < 2 ||
1779 LineTable.Prologue.getVersion() > 5 ||
1780 LineTable.Prologue.DefaultIsStmt != DWARF2_LINE_DEFAULT_IS_STMT ||
1781 LineTable.Prologue.OpcodeBase > 13)
1782 reportWarning("line table parameters mismatch. Cannot emit.", File);
1783 else {
1784 uint32_t PrologueEnd = *StmtList + 10 + LineTable.Prologue.PrologueLength;
1785 // DWARF v5 has an extra 2 bytes of information before the header_length
1786 // field.
1787 if (LineTable.Prologue.getVersion() == 5)
1788 PrologueEnd += 2;
1789 StringRef LineData = OrigDwarf.getDWARFObj().getLineSection().Data;
1790 MCDwarfLineTableParams Params;
1791 Params.DWARF2LineOpcodeBase = LineTable.Prologue.OpcodeBase;
1792 Params.DWARF2LineBase = LineTable.Prologue.LineBase;
1793 Params.DWARF2LineRange = LineTable.Prologue.LineRange;
1794 TheDwarfEmitter->emitLineTableForUnit(
1795 Params, LineData.slice(*StmtList + 4, PrologueEnd),
1796 LineTable.Prologue.MinInstLength, NewRows,
1797 Unit.getOrigUnit().getAddressByteSize());
1798 }
1799 }
1800
emitAcceleratorEntriesForUnit(CompileUnit & Unit)1801 void DWARFLinker::emitAcceleratorEntriesForUnit(CompileUnit &Unit) {
1802 switch (Options.TheAccelTableKind) {
1803 case AccelTableKind::Apple:
1804 emitAppleAcceleratorEntriesForUnit(Unit);
1805 break;
1806 case AccelTableKind::Dwarf:
1807 emitDwarfAcceleratorEntriesForUnit(Unit);
1808 break;
1809 case AccelTableKind::Default:
1810 llvm_unreachable("The default must be updated to a concrete value.");
1811 break;
1812 }
1813 }
1814
emitAppleAcceleratorEntriesForUnit(CompileUnit & Unit)1815 void DWARFLinker::emitAppleAcceleratorEntriesForUnit(CompileUnit &Unit) {
1816 // Add namespaces.
1817 for (const auto &Namespace : Unit.getNamespaces())
1818 AppleNamespaces.addName(Namespace.Name,
1819 Namespace.Die->getOffset() + Unit.getStartOffset());
1820
1821 /// Add names.
1822 TheDwarfEmitter->emitPubNamesForUnit(Unit);
1823 for (const auto &Pubname : Unit.getPubnames())
1824 AppleNames.addName(Pubname.Name,
1825 Pubname.Die->getOffset() + Unit.getStartOffset());
1826
1827 /// Add types.
1828 TheDwarfEmitter->emitPubTypesForUnit(Unit);
1829 for (const auto &Pubtype : Unit.getPubtypes())
1830 AppleTypes.addName(
1831 Pubtype.Name, Pubtype.Die->getOffset() + Unit.getStartOffset(),
1832 Pubtype.Die->getTag(),
1833 Pubtype.ObjcClassImplementation ? dwarf::DW_FLAG_type_implementation
1834 : 0,
1835 Pubtype.QualifiedNameHash);
1836
1837 /// Add ObjC names.
1838 for (const auto &ObjC : Unit.getObjC())
1839 AppleObjc.addName(ObjC.Name, ObjC.Die->getOffset() + Unit.getStartOffset());
1840 }
1841
emitDwarfAcceleratorEntriesForUnit(CompileUnit & Unit)1842 void DWARFLinker::emitDwarfAcceleratorEntriesForUnit(CompileUnit &Unit) {
1843 for (const auto &Namespace : Unit.getNamespaces())
1844 DebugNames.addName(Namespace.Name, Namespace.Die->getOffset(),
1845 Namespace.Die->getTag(), Unit.getUniqueID());
1846 for (const auto &Pubname : Unit.getPubnames())
1847 DebugNames.addName(Pubname.Name, Pubname.Die->getOffset(),
1848 Pubname.Die->getTag(), Unit.getUniqueID());
1849 for (const auto &Pubtype : Unit.getPubtypes())
1850 DebugNames.addName(Pubtype.Name, Pubtype.Die->getOffset(),
1851 Pubtype.Die->getTag(), Unit.getUniqueID());
1852 }
1853
1854 /// Read the frame info stored in the object, and emit the
1855 /// patched frame descriptions for the resulting file.
1856 ///
1857 /// This is actually pretty easy as the data of the CIEs and FDEs can
1858 /// be considered as black boxes and moved as is. The only thing to do
1859 /// is to patch the addresses in the headers.
patchFrameInfoForObject(const DWARFFile & File,RangesTy & Ranges,DWARFContext & OrigDwarf,unsigned AddrSize)1860 void DWARFLinker::patchFrameInfoForObject(const DWARFFile &File,
1861 RangesTy &Ranges,
1862 DWARFContext &OrigDwarf,
1863 unsigned AddrSize) {
1864 StringRef FrameData = OrigDwarf.getDWARFObj().getFrameSection().Data;
1865 if (FrameData.empty())
1866 return;
1867
1868 DataExtractor Data(FrameData, OrigDwarf.isLittleEndian(), 0);
1869 uint64_t InputOffset = 0;
1870
1871 // Store the data of the CIEs defined in this object, keyed by their
1872 // offsets.
1873 DenseMap<uint64_t, StringRef> LocalCIES;
1874
1875 while (Data.isValidOffset(InputOffset)) {
1876 uint64_t EntryOffset = InputOffset;
1877 uint32_t InitialLength = Data.getU32(&InputOffset);
1878 if (InitialLength == 0xFFFFFFFF)
1879 return reportWarning("Dwarf64 bits no supported", File);
1880
1881 uint32_t CIEId = Data.getU32(&InputOffset);
1882 if (CIEId == 0xFFFFFFFF) {
1883 // This is a CIE, store it.
1884 StringRef CIEData = FrameData.substr(EntryOffset, InitialLength + 4);
1885 LocalCIES[EntryOffset] = CIEData;
1886 // The -4 is to account for the CIEId we just read.
1887 InputOffset += InitialLength - 4;
1888 continue;
1889 }
1890
1891 uint32_t Loc = Data.getUnsigned(&InputOffset, AddrSize);
1892
1893 // Some compilers seem to emit frame info that doesn't start at
1894 // the function entry point, thus we can't just lookup the address
1895 // in the debug map. Use the AddressInfo's range map to see if the FDE
1896 // describes something that we can relocate.
1897 auto Range = Ranges.upper_bound(Loc);
1898 if (Range != Ranges.begin())
1899 --Range;
1900 if (Range == Ranges.end() || Range->first > Loc ||
1901 Range->second.HighPC <= Loc) {
1902 // The +4 is to account for the size of the InitialLength field itself.
1903 InputOffset = EntryOffset + InitialLength + 4;
1904 continue;
1905 }
1906
1907 // This is an FDE, and we have a mapping.
1908 // Have we already emitted a corresponding CIE?
1909 StringRef CIEData = LocalCIES[CIEId];
1910 if (CIEData.empty())
1911 return reportWarning("Inconsistent debug_frame content. Dropping.", File);
1912
1913 // Look if we already emitted a CIE that corresponds to the
1914 // referenced one (the CIE data is the key of that lookup).
1915 auto IteratorInserted = EmittedCIEs.insert(
1916 std::make_pair(CIEData, TheDwarfEmitter->getFrameSectionSize()));
1917 // If there is no CIE yet for this ID, emit it.
1918 if (IteratorInserted.second ||
1919 // FIXME: dsymutil-classic only caches the last used CIE for
1920 // reuse. Mimic that behavior for now. Just removing that
1921 // second half of the condition and the LastCIEOffset variable
1922 // makes the code DTRT.
1923 LastCIEOffset != IteratorInserted.first->getValue()) {
1924 LastCIEOffset = TheDwarfEmitter->getFrameSectionSize();
1925 IteratorInserted.first->getValue() = LastCIEOffset;
1926 TheDwarfEmitter->emitCIE(CIEData);
1927 }
1928
1929 // Emit the FDE with updated address and CIE pointer.
1930 // (4 + AddrSize) is the size of the CIEId + initial_location
1931 // fields that will get reconstructed by emitFDE().
1932 unsigned FDERemainingBytes = InitialLength - (4 + AddrSize);
1933 TheDwarfEmitter->emitFDE(IteratorInserted.first->getValue(), AddrSize,
1934 Loc + Range->second.Offset,
1935 FrameData.substr(InputOffset, FDERemainingBytes));
1936 InputOffset += FDERemainingBytes;
1937 }
1938 }
1939
copyAbbrev(const DWARFAbbreviationDeclaration & Abbrev,bool HasODR)1940 void DWARFLinker::DIECloner::copyAbbrev(
1941 const DWARFAbbreviationDeclaration &Abbrev, bool HasODR) {
1942 DIEAbbrev Copy(dwarf::Tag(Abbrev.getTag()),
1943 dwarf::Form(Abbrev.hasChildren()));
1944
1945 for (const auto &Attr : Abbrev.attributes()) {
1946 uint16_t Form = Attr.Form;
1947 if (HasODR && isODRAttribute(Attr.Attr))
1948 Form = dwarf::DW_FORM_ref_addr;
1949 Copy.AddAttribute(dwarf::Attribute(Attr.Attr), dwarf::Form(Form));
1950 }
1951
1952 Linker.assignAbbrev(Copy);
1953 }
1954
hashFullyQualifiedName(DWARFDie DIE,CompileUnit & U,const DWARFFile & File,int ChildRecurseDepth)1955 uint32_t DWARFLinker::DIECloner::hashFullyQualifiedName(DWARFDie DIE,
1956 CompileUnit &U,
1957 const DWARFFile &File,
1958 int ChildRecurseDepth) {
1959 const char *Name = nullptr;
1960 DWARFUnit *OrigUnit = &U.getOrigUnit();
1961 CompileUnit *CU = &U;
1962 Optional<DWARFFormValue> Ref;
1963
1964 while (1) {
1965 if (const char *CurrentName = DIE.getName(DINameKind::ShortName))
1966 Name = CurrentName;
1967
1968 if (!(Ref = DIE.find(dwarf::DW_AT_specification)) &&
1969 !(Ref = DIE.find(dwarf::DW_AT_abstract_origin)))
1970 break;
1971
1972 if (!Ref->isFormClass(DWARFFormValue::FC_Reference))
1973 break;
1974
1975 CompileUnit *RefCU;
1976 if (auto RefDIE =
1977 Linker.resolveDIEReference(File, CompileUnits, *Ref, DIE, RefCU)) {
1978 CU = RefCU;
1979 OrigUnit = &RefCU->getOrigUnit();
1980 DIE = RefDIE;
1981 }
1982 }
1983
1984 unsigned Idx = OrigUnit->getDIEIndex(DIE);
1985 if (!Name && DIE.getTag() == dwarf::DW_TAG_namespace)
1986 Name = "(anonymous namespace)";
1987
1988 if (CU->getInfo(Idx).ParentIdx == 0 ||
1989 // FIXME: dsymutil-classic compatibility. Ignore modules.
1990 CU->getOrigUnit().getDIEAtIndex(CU->getInfo(Idx).ParentIdx).getTag() ==
1991 dwarf::DW_TAG_module)
1992 return djbHash(Name ? Name : "", djbHash(ChildRecurseDepth ? "" : "::"));
1993
1994 DWARFDie Die = OrigUnit->getDIEAtIndex(CU->getInfo(Idx).ParentIdx);
1995 return djbHash(
1996 (Name ? Name : ""),
1997 djbHash((Name ? "::" : ""),
1998 hashFullyQualifiedName(Die, *CU, File, ++ChildRecurseDepth)));
1999 }
2000
getDwoId(const DWARFDie & CUDie,const DWARFUnit & Unit)2001 static uint64_t getDwoId(const DWARFDie &CUDie, const DWARFUnit &Unit) {
2002 auto DwoId = dwarf::toUnsigned(
2003 CUDie.find({dwarf::DW_AT_dwo_id, dwarf::DW_AT_GNU_dwo_id}));
2004 if (DwoId)
2005 return *DwoId;
2006 return 0;
2007 }
2008
remapPath(StringRef Path,const objectPrefixMap & ObjectPrefixMap)2009 static std::string remapPath(StringRef Path,
2010 const objectPrefixMap &ObjectPrefixMap) {
2011 if (ObjectPrefixMap.empty())
2012 return Path.str();
2013
2014 SmallString<256> p = Path;
2015 for (const auto &Entry : ObjectPrefixMap)
2016 if (llvm::sys::path::replace_path_prefix(p, Entry.first, Entry.second))
2017 break;
2018 return p.str().str();
2019 }
2020
registerModuleReference(DWARFDie CUDie,const DWARFUnit & Unit,const DWARFFile & File,OffsetsStringPool & StringPool,UniquingStringPool & UniquingStringPool,DeclContextTree & ODRContexts,uint64_t ModulesEndOffset,unsigned & UnitID,bool IsLittleEndian,unsigned Indent,bool Quiet)2021 bool DWARFLinker::registerModuleReference(
2022 DWARFDie CUDie, const DWARFUnit &Unit, const DWARFFile &File,
2023 OffsetsStringPool &StringPool, UniquingStringPool &UniquingStringPool,
2024 DeclContextTree &ODRContexts, uint64_t ModulesEndOffset, unsigned &UnitID,
2025 bool IsLittleEndian, unsigned Indent, bool Quiet) {
2026 std::string PCMfile = dwarf::toString(
2027 CUDie.find({dwarf::DW_AT_dwo_name, dwarf::DW_AT_GNU_dwo_name}), "");
2028 if (PCMfile.empty())
2029 return false;
2030 if (Options.ObjectPrefixMap)
2031 PCMfile = remapPath(PCMfile, *Options.ObjectPrefixMap);
2032
2033 // Clang module DWARF skeleton CUs abuse this for the path to the module.
2034 uint64_t DwoId = getDwoId(CUDie, Unit);
2035
2036 std::string Name = dwarf::toString(CUDie.find(dwarf::DW_AT_name), "");
2037 if (Name.empty()) {
2038 if (!Quiet)
2039 reportWarning("Anonymous module skeleton CU for " + PCMfile, File);
2040 return true;
2041 }
2042
2043 if (!Quiet && Options.Verbose) {
2044 outs().indent(Indent);
2045 outs() << "Found clang module reference " << PCMfile;
2046 }
2047
2048 auto Cached = ClangModules.find(PCMfile);
2049 if (Cached != ClangModules.end()) {
2050 // FIXME: Until PR27449 (https://llvm.org/bugs/show_bug.cgi?id=27449) is
2051 // fixed in clang, only warn about DWO_id mismatches in verbose mode.
2052 // ASTFileSignatures will change randomly when a module is rebuilt.
2053 if (!Quiet && Options.Verbose && (Cached->second != DwoId))
2054 reportWarning(Twine("hash mismatch: this object file was built against a "
2055 "different version of the module ") +
2056 PCMfile,
2057 File);
2058 if (!Quiet && Options.Verbose)
2059 outs() << " [cached].\n";
2060 return true;
2061 }
2062 if (!Quiet && Options.Verbose)
2063 outs() << " ...\n";
2064
2065 // Cyclic dependencies are disallowed by Clang, but we still
2066 // shouldn't run into an infinite loop, so mark it as processed now.
2067 ClangModules.insert({PCMfile, DwoId});
2068
2069 if (Error E =
2070 loadClangModule(CUDie, PCMfile, Name, DwoId, File, StringPool,
2071 UniquingStringPool, ODRContexts, ModulesEndOffset,
2072 UnitID, IsLittleEndian, Indent + 2, Quiet)) {
2073 consumeError(std::move(E));
2074 return false;
2075 }
2076 return true;
2077 }
2078
loadClangModule(DWARFDie CUDie,StringRef Filename,StringRef ModuleName,uint64_t DwoId,const DWARFFile & File,OffsetsStringPool & StringPool,UniquingStringPool & UniquingStringPool,DeclContextTree & ODRContexts,uint64_t ModulesEndOffset,unsigned & UnitID,bool IsLittleEndian,unsigned Indent,bool Quiet)2079 Error DWARFLinker::loadClangModule(
2080 DWARFDie CUDie, StringRef Filename, StringRef ModuleName, uint64_t DwoId,
2081 const DWARFFile &File, OffsetsStringPool &StringPool,
2082 UniquingStringPool &UniquingStringPool, DeclContextTree &ODRContexts,
2083 uint64_t ModulesEndOffset, unsigned &UnitID, bool IsLittleEndian,
2084 unsigned Indent, bool Quiet) {
2085 /// Using a SmallString<0> because loadClangModule() is recursive.
2086 SmallString<0> Path(Options.PrependPath);
2087 if (sys::path::is_relative(Filename))
2088 resolveRelativeObjectPath(Path, CUDie);
2089 sys::path::append(Path, Filename);
2090 // Don't use the cached binary holder because we have no thread-safety
2091 // guarantee and the lifetime is limited.
2092
2093 if (Options.ObjFileLoader == nullptr)
2094 return Error::success();
2095
2096 auto ErrOrObj = Options.ObjFileLoader(File.FileName, Path);
2097 if (!ErrOrObj)
2098 return Error::success();
2099
2100 std::unique_ptr<CompileUnit> Unit;
2101
2102 for (const auto &CU : ErrOrObj->Dwarf->compile_units()) {
2103 updateDwarfVersion(CU->getVersion());
2104 // Recursively get all modules imported by this one.
2105 auto CUDie = CU->getUnitDIE(false);
2106 if (!CUDie)
2107 continue;
2108 if (!registerModuleReference(
2109 CUDie, *CU, File, StringPool, UniquingStringPool, ODRContexts,
2110 ModulesEndOffset, UnitID, IsLittleEndian, Indent, Quiet)) {
2111 if (Unit) {
2112 std::string Err =
2113 (Filename +
2114 ": Clang modules are expected to have exactly 1 compile unit.\n")
2115 .str();
2116 reportError(Err, File);
2117 return make_error<StringError>(Err, inconvertibleErrorCode());
2118 }
2119 // FIXME: Until PR27449 (https://llvm.org/bugs/show_bug.cgi?id=27449) is
2120 // fixed in clang, only warn about DWO_id mismatches in verbose mode.
2121 // ASTFileSignatures will change randomly when a module is rebuilt.
2122 uint64_t PCMDwoId = getDwoId(CUDie, *CU);
2123 if (PCMDwoId != DwoId) {
2124 if (!Quiet && Options.Verbose)
2125 reportWarning(
2126 Twine("hash mismatch: this object file was built against a "
2127 "different version of the module ") +
2128 Filename,
2129 File);
2130 // Update the cache entry with the DwoId of the module loaded from disk.
2131 ClangModules[Filename] = PCMDwoId;
2132 }
2133
2134 // Add this module.
2135 Unit = std::make_unique<CompileUnit>(*CU, UnitID++, !Options.NoODR,
2136 ModuleName);
2137 Unit->setHasInterestingContent();
2138 analyzeContextInfo(CUDie, 0, *Unit, &ODRContexts.getRoot(),
2139 UniquingStringPool, ODRContexts, ModulesEndOffset,
2140 Options.ParseableSwiftInterfaces,
2141 [&](const Twine &Warning, const DWARFDie &DIE) {
2142 reportWarning(Warning, File, &DIE);
2143 });
2144 // Keep everything.
2145 Unit->markEverythingAsKept();
2146 }
2147 }
2148 if (!Unit->getOrigUnit().getUnitDIE().hasChildren())
2149 return Error::success();
2150 if (!Quiet && Options.Verbose) {
2151 outs().indent(Indent);
2152 outs() << "cloning .debug_info from " << Filename << "\n";
2153 }
2154
2155 UnitListTy CompileUnits;
2156 CompileUnits.push_back(std::move(Unit));
2157 assert(TheDwarfEmitter);
2158 DIECloner(*this, TheDwarfEmitter, *ErrOrObj, DIEAlloc, CompileUnits,
2159 Options.Update)
2160 .cloneAllCompileUnits(*(ErrOrObj->Dwarf), File, StringPool,
2161 IsLittleEndian);
2162 return Error::success();
2163 }
2164
cloneAllCompileUnits(DWARFContext & DwarfContext,const DWARFFile & File,OffsetsStringPool & StringPool,bool IsLittleEndian)2165 uint64_t DWARFLinker::DIECloner::cloneAllCompileUnits(
2166 DWARFContext &DwarfContext, const DWARFFile &File,
2167 OffsetsStringPool &StringPool, bool IsLittleEndian) {
2168 uint64_t OutputDebugInfoSize =
2169 Linker.Options.NoOutput ? 0 : Emitter->getDebugInfoSectionSize();
2170 const uint64_t StartOutputDebugInfoSize = OutputDebugInfoSize;
2171
2172 for (auto &CurrentUnit : CompileUnits) {
2173 auto InputDIE = CurrentUnit->getOrigUnit().getUnitDIE();
2174 CurrentUnit->setStartOffset(OutputDebugInfoSize);
2175 if (!InputDIE) {
2176 OutputDebugInfoSize = CurrentUnit->computeNextUnitOffset();
2177 continue;
2178 }
2179 if (CurrentUnit->getInfo(0).Keep) {
2180 // Clone the InputDIE into your Unit DIE in our compile unit since it
2181 // already has a DIE inside of it.
2182 CurrentUnit->createOutputDIE();
2183 cloneDIE(InputDIE, File, *CurrentUnit, StringPool, 0 /* PC offset */,
2184 11 /* Unit Header size */, 0, IsLittleEndian,
2185 CurrentUnit->getOutputUnitDIE());
2186 }
2187
2188 OutputDebugInfoSize = CurrentUnit->computeNextUnitOffset();
2189
2190 if (!Linker.Options.NoOutput) {
2191 assert(Emitter);
2192
2193 if (LLVM_LIKELY(!Linker.Options.Update) ||
2194 Linker.needToTranslateStrings())
2195 Linker.patchLineTableForUnit(*CurrentUnit, DwarfContext, File);
2196
2197 Linker.emitAcceleratorEntriesForUnit(*CurrentUnit);
2198
2199 if (LLVM_UNLIKELY(Linker.Options.Update))
2200 continue;
2201
2202 Linker.patchRangesForUnit(*CurrentUnit, DwarfContext, File);
2203 auto ProcessExpr = [&](StringRef Bytes,
2204 SmallVectorImpl<uint8_t> &Buffer) {
2205 DWARFUnit &OrigUnit = CurrentUnit->getOrigUnit();
2206 DataExtractor Data(Bytes, IsLittleEndian,
2207 OrigUnit.getAddressByteSize());
2208 cloneExpression(Data,
2209 DWARFExpression(Data, OrigUnit.getAddressByteSize(),
2210 OrigUnit.getFormParams().Format),
2211 File, *CurrentUnit, Buffer);
2212 };
2213 Emitter->emitLocationsForUnit(*CurrentUnit, DwarfContext, ProcessExpr);
2214 }
2215 }
2216
2217 if (!Linker.Options.NoOutput) {
2218 assert(Emitter);
2219 // Emit all the compile unit's debug information.
2220 for (auto &CurrentUnit : CompileUnits) {
2221 if (LLVM_LIKELY(!Linker.Options.Update))
2222 Linker.generateUnitRanges(*CurrentUnit);
2223
2224 CurrentUnit->fixupForwardReferences();
2225
2226 if (!CurrentUnit->getOutputUnitDIE())
2227 continue;
2228
2229 assert(Emitter->getDebugInfoSectionSize() ==
2230 CurrentUnit->getStartOffset());
2231 Emitter->emitCompileUnitHeader(*CurrentUnit);
2232 Emitter->emitDIE(*CurrentUnit->getOutputUnitDIE());
2233 assert(Emitter->getDebugInfoSectionSize() ==
2234 CurrentUnit->computeNextUnitOffset());
2235 }
2236 }
2237
2238 return OutputDebugInfoSize - StartOutputDebugInfoSize;
2239 }
2240
updateAccelKind(DWARFContext & Dwarf)2241 void DWARFLinker::updateAccelKind(DWARFContext &Dwarf) {
2242 if (Options.TheAccelTableKind != AccelTableKind::Default)
2243 return;
2244
2245 auto &DwarfObj = Dwarf.getDWARFObj();
2246
2247 if (!AtLeastOneDwarfAccelTable &&
2248 (!DwarfObj.getAppleNamesSection().Data.empty() ||
2249 !DwarfObj.getAppleTypesSection().Data.empty() ||
2250 !DwarfObj.getAppleNamespacesSection().Data.empty() ||
2251 !DwarfObj.getAppleObjCSection().Data.empty())) {
2252 AtLeastOneAppleAccelTable = true;
2253 }
2254
2255 if (!AtLeastOneDwarfAccelTable && !DwarfObj.getNamesSection().Data.empty()) {
2256 AtLeastOneDwarfAccelTable = true;
2257 }
2258 }
2259
emitPaperTrailWarnings(const DWARFFile & File,OffsetsStringPool & StringPool)2260 bool DWARFLinker::emitPaperTrailWarnings(const DWARFFile &File,
2261 OffsetsStringPool &StringPool) {
2262
2263 if (File.Warnings.empty())
2264 return false;
2265
2266 DIE *CUDie = DIE::get(DIEAlloc, dwarf::DW_TAG_compile_unit);
2267 CUDie->setOffset(11);
2268 StringRef Producer;
2269 StringRef WarningHeader;
2270
2271 switch (DwarfLinkerClientID) {
2272 case DwarfLinkerClient::Dsymutil:
2273 Producer = StringPool.internString("dsymutil");
2274 WarningHeader = "dsymutil_warning";
2275 break;
2276
2277 default:
2278 Producer = StringPool.internString("dwarfopt");
2279 WarningHeader = "dwarfopt_warning";
2280 break;
2281 }
2282
2283 StringRef FileName = StringPool.internString(File.FileName);
2284 CUDie->addValue(DIEAlloc, dwarf::DW_AT_producer, dwarf::DW_FORM_strp,
2285 DIEInteger(StringPool.getStringOffset(Producer)));
2286 DIEBlock *String = new (DIEAlloc) DIEBlock();
2287 DIEBlocks.push_back(String);
2288 for (auto &C : FileName)
2289 String->addValue(DIEAlloc, dwarf::Attribute(0), dwarf::DW_FORM_data1,
2290 DIEInteger(C));
2291 String->addValue(DIEAlloc, dwarf::Attribute(0), dwarf::DW_FORM_data1,
2292 DIEInteger(0));
2293
2294 CUDie->addValue(DIEAlloc, dwarf::DW_AT_name, dwarf::DW_FORM_string, String);
2295 for (const auto &Warning : File.Warnings) {
2296 DIE &ConstDie = CUDie->addChild(DIE::get(DIEAlloc, dwarf::DW_TAG_constant));
2297 ConstDie.addValue(DIEAlloc, dwarf::DW_AT_name, dwarf::DW_FORM_strp,
2298 DIEInteger(StringPool.getStringOffset(WarningHeader)));
2299 ConstDie.addValue(DIEAlloc, dwarf::DW_AT_artificial, dwarf::DW_FORM_flag,
2300 DIEInteger(1));
2301 ConstDie.addValue(DIEAlloc, dwarf::DW_AT_const_value, dwarf::DW_FORM_strp,
2302 DIEInteger(StringPool.getStringOffset(Warning)));
2303 }
2304 unsigned Size = 4 /* FORM_strp */ + FileName.size() + 1 +
2305 File.Warnings.size() * (4 + 1 + 4) + 1 /* End of children */;
2306 DIEAbbrev Abbrev = CUDie->generateAbbrev();
2307 assignAbbrev(Abbrev);
2308 CUDie->setAbbrevNumber(Abbrev.getNumber());
2309 Size += getULEB128Size(Abbrev.getNumber());
2310 // Abbreviation ordering needed for classic compatibility.
2311 for (auto &Child : CUDie->children()) {
2312 Abbrev = Child.generateAbbrev();
2313 assignAbbrev(Abbrev);
2314 Child.setAbbrevNumber(Abbrev.getNumber());
2315 Size += getULEB128Size(Abbrev.getNumber());
2316 }
2317 CUDie->setSize(Size);
2318 TheDwarfEmitter->emitPaperTrailWarningsDie(*CUDie);
2319
2320 return true;
2321 }
2322
copyInvariantDebugSection(DWARFContext & Dwarf)2323 void DWARFLinker::copyInvariantDebugSection(DWARFContext &Dwarf) {
2324 if (!needToTranslateStrings())
2325 TheDwarfEmitter->emitSectionContents(
2326 Dwarf.getDWARFObj().getLineSection().Data, "debug_line");
2327 TheDwarfEmitter->emitSectionContents(Dwarf.getDWARFObj().getLocSection().Data,
2328 "debug_loc");
2329 TheDwarfEmitter->emitSectionContents(
2330 Dwarf.getDWARFObj().getRangesSection().Data, "debug_ranges");
2331 TheDwarfEmitter->emitSectionContents(
2332 Dwarf.getDWARFObj().getFrameSection().Data, "debug_frame");
2333 TheDwarfEmitter->emitSectionContents(Dwarf.getDWARFObj().getArangesSection(),
2334 "debug_aranges");
2335 }
2336
addObjectFile(DWARFFile & File)2337 void DWARFLinker::addObjectFile(DWARFFile &File) {
2338 ObjectContexts.emplace_back(LinkContext(File));
2339
2340 if (ObjectContexts.back().File.Dwarf)
2341 updateAccelKind(*ObjectContexts.back().File.Dwarf);
2342 }
2343
link()2344 bool DWARFLinker::link() {
2345 assert(Options.NoOutput || TheDwarfEmitter);
2346
2347 // A unique ID that identifies each compile unit.
2348 unsigned UnitID = 0;
2349
2350 // First populate the data structure we need for each iteration of the
2351 // parallel loop.
2352 unsigned NumObjects = ObjectContexts.size();
2353
2354 // This Dwarf string pool which is only used for uniquing. This one should
2355 // never be used for offsets as its not thread-safe or predictable.
2356 UniquingStringPool UniquingStringPool(nullptr, true);
2357
2358 // This Dwarf string pool which is used for emission. It must be used
2359 // serially as the order of calling getStringOffset matters for
2360 // reproducibility.
2361 OffsetsStringPool OffsetsStringPool(StringsTranslator, true);
2362
2363 // ODR Contexts for the optimize.
2364 DeclContextTree ODRContexts;
2365
2366 // If we haven't decided on an accelerator table kind yet, we base ourselves
2367 // on the DWARF we have seen so far. At this point we haven't pulled in debug
2368 // information from modules yet, so it is technically possible that they
2369 // would affect the decision. However, as they're built with the same
2370 // compiler and flags, it is safe to assume that they will follow the
2371 // decision made here.
2372 if (Options.TheAccelTableKind == AccelTableKind::Default) {
2373 if (AtLeastOneDwarfAccelTable && !AtLeastOneAppleAccelTable)
2374 Options.TheAccelTableKind = AccelTableKind::Dwarf;
2375 else
2376 Options.TheAccelTableKind = AccelTableKind::Apple;
2377 }
2378
2379 for (LinkContext &OptContext : ObjectContexts) {
2380 if (Options.Verbose) {
2381 if (DwarfLinkerClientID == DwarfLinkerClient::Dsymutil)
2382 outs() << "DEBUG MAP OBJECT: " << OptContext.File.FileName << "\n";
2383 else
2384 outs() << "OBJECT FILE: " << OptContext.File.FileName << "\n";
2385 }
2386
2387 if (emitPaperTrailWarnings(OptContext.File, OffsetsStringPool))
2388 continue;
2389
2390 if (!OptContext.File.Dwarf)
2391 continue;
2392 // Look for relocations that correspond to address map entries.
2393
2394 // there was findvalidrelocations previously ... probably we need to gather
2395 // info here
2396 if (LLVM_LIKELY(!Options.Update) &&
2397 !OptContext.File.Addresses->hasValidRelocs()) {
2398 if (Options.Verbose)
2399 outs() << "No valid relocations found. Skipping.\n";
2400
2401 // Set "Skip" flag as a signal to other loops that we should not
2402 // process this iteration.
2403 OptContext.Skip = true;
2404 continue;
2405 }
2406
2407 // Setup access to the debug info.
2408 if (!OptContext.File.Dwarf)
2409 continue;
2410
2411 // In a first phase, just read in the debug info and load all clang modules.
2412 OptContext.CompileUnits.reserve(
2413 OptContext.File.Dwarf->getNumCompileUnits());
2414
2415 for (const auto &CU : OptContext.File.Dwarf->compile_units()) {
2416 updateDwarfVersion(CU->getVersion());
2417 auto CUDie = CU->getUnitDIE(false);
2418 if (Options.Verbose) {
2419 outs() << "Input compilation unit:";
2420 DIDumpOptions DumpOpts;
2421 DumpOpts.ChildRecurseDepth = 0;
2422 DumpOpts.Verbose = Options.Verbose;
2423 CUDie.dump(outs(), 0, DumpOpts);
2424 }
2425 if (CUDie && !LLVM_UNLIKELY(Options.Update))
2426 registerModuleReference(CUDie, *CU, OptContext.File, OffsetsStringPool,
2427 UniquingStringPool, ODRContexts, 0, UnitID,
2428 OptContext.File.Dwarf->isLittleEndian());
2429 }
2430 }
2431
2432 // If we haven't seen any CUs, pick an arbitrary valid Dwarf version anyway.
2433 if (MaxDwarfVersion == 0)
2434 MaxDwarfVersion = 3;
2435
2436 // At this point we know how much data we have emitted. We use this value to
2437 // compare canonical DIE offsets in analyzeContextInfo to see if a definition
2438 // is already emitted, without being affected by canonical die offsets set
2439 // later. This prevents undeterminism when analyze and clone execute
2440 // concurrently, as clone set the canonical DIE offset and analyze reads it.
2441 const uint64_t ModulesEndOffset =
2442 Options.NoOutput ? 0 : TheDwarfEmitter->getDebugInfoSectionSize();
2443
2444 // These variables manage the list of processed object files.
2445 // The mutex and condition variable are to ensure that this is thread safe.
2446 std::mutex ProcessedFilesMutex;
2447 std::condition_variable ProcessedFilesConditionVariable;
2448 BitVector ProcessedFiles(NumObjects, false);
2449
2450 // Analyzing the context info is particularly expensive so it is executed in
2451 // parallel with emitting the previous compile unit.
2452 auto AnalyzeLambda = [&](size_t I) {
2453 auto &Context = ObjectContexts[I];
2454
2455 if (Context.Skip || !Context.File.Dwarf)
2456 return;
2457
2458 for (const auto &CU : Context.File.Dwarf->compile_units()) {
2459 updateDwarfVersion(CU->getVersion());
2460 // The !registerModuleReference() condition effectively skips
2461 // over fully resolved skeleton units. This second pass of
2462 // registerModuleReferences doesn't do any new work, but it
2463 // will collect top-level errors, which are suppressed. Module
2464 // warnings were already displayed in the first iteration.
2465 bool Quiet = true;
2466 auto CUDie = CU->getUnitDIE(false);
2467 if (!CUDie || LLVM_UNLIKELY(Options.Update) ||
2468 !registerModuleReference(CUDie, *CU, Context.File, OffsetsStringPool,
2469 UniquingStringPool, ODRContexts,
2470 ModulesEndOffset, UnitID, Quiet)) {
2471 Context.CompileUnits.push_back(std::make_unique<CompileUnit>(
2472 *CU, UnitID++, !Options.NoODR && !Options.Update, ""));
2473 }
2474 }
2475
2476 // Now build the DIE parent links that we will use during the next phase.
2477 for (auto &CurrentUnit : Context.CompileUnits) {
2478 auto CUDie = CurrentUnit->getOrigUnit().getUnitDIE();
2479 if (!CUDie)
2480 continue;
2481 analyzeContextInfo(CurrentUnit->getOrigUnit().getUnitDIE(), 0,
2482 *CurrentUnit, &ODRContexts.getRoot(),
2483 UniquingStringPool, ODRContexts, ModulesEndOffset,
2484 Options.ParseableSwiftInterfaces,
2485 [&](const Twine &Warning, const DWARFDie &DIE) {
2486 reportWarning(Warning, Context.File, &DIE);
2487 });
2488 }
2489 };
2490
2491 // For each object file map how many bytes were emitted.
2492 StringMap<DebugInfoSize> SizeByObject;
2493
2494 // And then the remaining work in serial again.
2495 // Note, although this loop runs in serial, it can run in parallel with
2496 // the analyzeContextInfo loop so long as we process files with indices >=
2497 // than those processed by analyzeContextInfo.
2498 auto CloneLambda = [&](size_t I) {
2499 auto &OptContext = ObjectContexts[I];
2500 if (OptContext.Skip || !OptContext.File.Dwarf)
2501 return;
2502
2503 // Then mark all the DIEs that need to be present in the generated output
2504 // and collect some information about them.
2505 // Note that this loop can not be merged with the previous one because
2506 // cross-cu references require the ParentIdx to be setup for every CU in
2507 // the object file before calling this.
2508 if (LLVM_UNLIKELY(Options.Update)) {
2509 for (auto &CurrentUnit : OptContext.CompileUnits)
2510 CurrentUnit->markEverythingAsKept();
2511 copyInvariantDebugSection(*OptContext.File.Dwarf);
2512 } else {
2513 for (auto &CurrentUnit : OptContext.CompileUnits)
2514 lookForDIEsToKeep(*OptContext.File.Addresses,
2515 OptContext.File.Addresses->getValidAddressRanges(),
2516 OptContext.CompileUnits,
2517 CurrentUnit->getOrigUnit().getUnitDIE(),
2518 OptContext.File, *CurrentUnit, 0);
2519 }
2520
2521 // The calls to applyValidRelocs inside cloneDIE will walk the reloc
2522 // array again (in the same way findValidRelocsInDebugInfo() did). We
2523 // need to reset the NextValidReloc index to the beginning.
2524 if (OptContext.File.Addresses->hasValidRelocs() ||
2525 LLVM_UNLIKELY(Options.Update)) {
2526 SizeByObject[OptContext.File.FileName].Input =
2527 getDebugInfoSize(*OptContext.File.Dwarf);
2528 SizeByObject[OptContext.File.FileName].Output =
2529 DIECloner(*this, TheDwarfEmitter, OptContext.File, DIEAlloc,
2530 OptContext.CompileUnits, Options.Update)
2531 .cloneAllCompileUnits(*OptContext.File.Dwarf, OptContext.File,
2532 OffsetsStringPool,
2533 OptContext.File.Dwarf->isLittleEndian());
2534 }
2535 if (!Options.NoOutput && !OptContext.CompileUnits.empty() &&
2536 LLVM_LIKELY(!Options.Update))
2537 patchFrameInfoForObject(
2538 OptContext.File, OptContext.File.Addresses->getValidAddressRanges(),
2539 *OptContext.File.Dwarf,
2540 OptContext.CompileUnits[0]->getOrigUnit().getAddressByteSize());
2541
2542 // Clean-up before starting working on the next object.
2543 cleanupAuxiliarryData(OptContext);
2544 };
2545
2546 auto EmitLambda = [&]() {
2547 // Emit everything that's global.
2548 if (!Options.NoOutput) {
2549 TheDwarfEmitter->emitAbbrevs(Abbreviations, MaxDwarfVersion);
2550 TheDwarfEmitter->emitStrings(OffsetsStringPool);
2551 switch (Options.TheAccelTableKind) {
2552 case AccelTableKind::Apple:
2553 TheDwarfEmitter->emitAppleNames(AppleNames);
2554 TheDwarfEmitter->emitAppleNamespaces(AppleNamespaces);
2555 TheDwarfEmitter->emitAppleTypes(AppleTypes);
2556 TheDwarfEmitter->emitAppleObjc(AppleObjc);
2557 break;
2558 case AccelTableKind::Dwarf:
2559 TheDwarfEmitter->emitDebugNames(DebugNames);
2560 break;
2561 case AccelTableKind::Default:
2562 llvm_unreachable("Default should have already been resolved.");
2563 break;
2564 }
2565 }
2566 };
2567
2568 auto AnalyzeAll = [&]() {
2569 for (unsigned I = 0, E = NumObjects; I != E; ++I) {
2570 AnalyzeLambda(I);
2571
2572 std::unique_lock<std::mutex> LockGuard(ProcessedFilesMutex);
2573 ProcessedFiles.set(I);
2574 ProcessedFilesConditionVariable.notify_one();
2575 }
2576 };
2577
2578 auto CloneAll = [&]() {
2579 for (unsigned I = 0, E = NumObjects; I != E; ++I) {
2580 {
2581 std::unique_lock<std::mutex> LockGuard(ProcessedFilesMutex);
2582 if (!ProcessedFiles[I]) {
2583 ProcessedFilesConditionVariable.wait(
2584 LockGuard, [&]() { return ProcessedFiles[I]; });
2585 }
2586 }
2587
2588 CloneLambda(I);
2589 }
2590 EmitLambda();
2591 };
2592
2593 // To limit memory usage in the single threaded case, analyze and clone are
2594 // run sequentially so the OptContext is freed after processing each object
2595 // in endDebugObject.
2596 if (Options.Threads == 1) {
2597 for (unsigned I = 0, E = NumObjects; I != E; ++I) {
2598 AnalyzeLambda(I);
2599 CloneLambda(I);
2600 }
2601 EmitLambda();
2602 } else {
2603 ThreadPool Pool(hardware_concurrency(2));
2604 Pool.async(AnalyzeAll);
2605 Pool.async(CloneAll);
2606 Pool.wait();
2607 }
2608
2609 if (Options.Statistics) {
2610 // Create a vector sorted in descending order by output size.
2611 std::vector<std::pair<StringRef, DebugInfoSize>> Sorted;
2612 for (auto &E : SizeByObject)
2613 Sorted.emplace_back(E.first(), E.second);
2614 llvm::sort(Sorted.begin(), Sorted.end(), [](auto &LHS, auto &RHS) {
2615 return LHS.second.Output > RHS.second.Output;
2616 });
2617
2618 auto ComputePercentange = [](int64_t Input, int64_t Output) -> float {
2619 const float Difference = Output - Input;
2620 const float Sum = Input + Output;
2621 if (Sum == 0)
2622 return 0;
2623 return (Difference / (Sum / 2));
2624 };
2625
2626 int64_t InputTotal = 0;
2627 int64_t OutputTotal = 0;
2628 const char *FormatStr = "{0,-45} {1,10}b {2,10}b {3,8:P}\n";
2629
2630 // Print header.
2631 outs() << ".debug_info section size (in bytes)\n";
2632 outs() << "----------------------------------------------------------------"
2633 "---------------\n";
2634 outs() << "Filename Object "
2635 " dSYM Change\n";
2636 outs() << "----------------------------------------------------------------"
2637 "---------------\n";
2638
2639 // Print body.
2640 for (auto &E : Sorted) {
2641 InputTotal += E.second.Input;
2642 OutputTotal += E.second.Output;
2643 llvm::outs() << formatv(
2644 FormatStr, sys::path::filename(E.first).take_back(45), E.second.Input,
2645 E.second.Output, ComputePercentange(E.second.Input, E.second.Output));
2646 }
2647 // Print total and footer.
2648 outs() << "----------------------------------------------------------------"
2649 "---------------\n";
2650 llvm::outs() << formatv(FormatStr, "Total", InputTotal, OutputTotal,
2651 ComputePercentange(InputTotal, OutputTotal));
2652 outs() << "----------------------------------------------------------------"
2653 "---------------\n\n";
2654 }
2655
2656 return true;
2657 }
2658
2659 } // namespace llvm
2660