1 //! Parsing interface for parsing a token stream into a syntax tree node.
2 //!
3 //! Parsing in Syn is built on parser functions that take in a [`ParseStream`]
4 //! and produce a [`Result<T>`] where `T` is some syntax tree node. Underlying
5 //! these parser functions is a lower level mechanism built around the
6 //! [`Cursor`] type. `Cursor` is a cheaply copyable cursor over a range of
7 //! tokens in a token stream.
8 //!
9 //! [`Result<T>`]: Result
10 //! [`Cursor`]: crate::buffer::Cursor
11 //!
12 //! # Example
13 //!
14 //! Here is a snippet of parsing code to get a feel for the style of the
15 //! library. We define data structures for a subset of Rust syntax including
16 //! enums (not shown) and structs, then provide implementations of the [`Parse`]
17 //! trait to parse these syntax tree data structures from a token stream.
18 //!
19 //! Once `Parse` impls have been defined, they can be called conveniently from a
20 //! procedural macro through [`parse_macro_input!`] as shown at the bottom of
21 //! the snippet. If the caller provides syntactically invalid input to the
22 //! procedural macro, they will receive a helpful compiler error message
23 //! pointing out the exact token that triggered the failure to parse.
24 //!
25 //! [`parse_macro_input!`]: crate::parse_macro_input!
26 //!
27 //! ```
28 //! # extern crate proc_macro;
29 //! #
30 //! use proc_macro::TokenStream;
31 //! use syn::{braced, parse_macro_input, token, Field, Ident, Result, Token};
32 //! use syn::parse::{Parse, ParseStream};
33 //! use syn::punctuated::Punctuated;
34 //!
35 //! enum Item {
36 //! Struct(ItemStruct),
37 //! Enum(ItemEnum),
38 //! }
39 //!
40 //! struct ItemStruct {
41 //! struct_token: Token![struct],
42 //! ident: Ident,
43 //! brace_token: token::Brace,
44 //! fields: Punctuated<Field, Token![,]>,
45 //! }
46 //! #
47 //! # enum ItemEnum {}
48 //!
49 //! impl Parse for Item {
50 //! fn parse(input: ParseStream) -> Result<Self> {
51 //! let lookahead = input.lookahead1();
52 //! if lookahead.peek(Token![struct]) {
53 //! input.parse().map(Item::Struct)
54 //! } else if lookahead.peek(Token![enum]) {
55 //! input.parse().map(Item::Enum)
56 //! } else {
57 //! Err(lookahead.error())
58 //! }
59 //! }
60 //! }
61 //!
62 //! impl Parse for ItemStruct {
63 //! fn parse(input: ParseStream) -> Result<Self> {
64 //! let content;
65 //! Ok(ItemStruct {
66 //! struct_token: input.parse()?,
67 //! ident: input.parse()?,
68 //! brace_token: braced!(content in input),
69 //! fields: content.parse_terminated(Field::parse_named)?,
70 //! })
71 //! }
72 //! }
73 //! #
74 //! # impl Parse for ItemEnum {
75 //! # fn parse(input: ParseStream) -> Result<Self> {
76 //! # unimplemented!()
77 //! # }
78 //! # }
79 //!
80 //! # const IGNORE: &str = stringify! {
81 //! #[proc_macro]
82 //! # };
83 //! pub fn my_macro(tokens: TokenStream) -> TokenStream {
84 //! let input = parse_macro_input!(tokens as Item);
85 //!
86 //! /* ... */
87 //! # "".parse().unwrap()
88 //! }
89 //! ```
90 //!
91 //! # The `syn::parse*` functions
92 //!
93 //! The [`syn::parse`], [`syn::parse2`], and [`syn::parse_str`] functions serve
94 //! as an entry point for parsing syntax tree nodes that can be parsed in an
95 //! obvious default way. These functions can return any syntax tree node that
96 //! implements the [`Parse`] trait, which includes most types in Syn.
97 //!
98 //! [`syn::parse`]: crate::parse()
99 //! [`syn::parse2`]: crate::parse2()
100 //! [`syn::parse_str`]: crate::parse_str()
101 //!
102 //! ```
103 //! use syn::Type;
104 //!
105 //! # fn run_parser() -> syn::Result<()> {
106 //! let t: Type = syn::parse_str("std::collections::HashMap<String, Value>")?;
107 //! # Ok(())
108 //! # }
109 //! #
110 //! # run_parser().unwrap();
111 //! ```
112 //!
113 //! The [`parse_quote!`] macro also uses this approach.
114 //!
115 //! [`parse_quote!`]: crate::parse_quote!
116 //!
117 //! # The `Parser` trait
118 //!
119 //! Some types can be parsed in several ways depending on context. For example
120 //! an [`Attribute`] can be either "outer" like `#[...]` or "inner" like
121 //! `#![...]` and parsing the wrong one would be a bug. Similarly [`Punctuated`]
122 //! may or may not allow trailing punctuation, and parsing it the wrong way
123 //! would either reject valid input or accept invalid input.
124 //!
125 //! [`Attribute`]: crate::Attribute
126 //! [`Punctuated`]: crate::punctuated
127 //!
128 //! The `Parse` trait is not implemented in these cases because there is no good
129 //! behavior to consider the default.
130 //!
131 //! ```compile_fail
132 //! # extern crate proc_macro;
133 //! #
134 //! # use syn::punctuated::Punctuated;
135 //! # use syn::{PathSegment, Result, Token};
136 //! #
137 //! # fn f(tokens: proc_macro::TokenStream) -> Result<()> {
138 //! #
139 //! // Can't parse `Punctuated` without knowing whether trailing punctuation
140 //! // should be allowed in this context.
141 //! let path: Punctuated<PathSegment, Token![::]> = syn::parse(tokens)?;
142 //! #
143 //! # Ok(())
144 //! # }
145 //! ```
146 //!
147 //! In these cases the types provide a choice of parser functions rather than a
148 //! single `Parse` implementation, and those parser functions can be invoked
149 //! through the [`Parser`] trait.
150 //!
151 //!
152 //! ```
153 //! # extern crate proc_macro;
154 //! #
155 //! use proc_macro::TokenStream;
156 //! use syn::parse::Parser;
157 //! use syn::punctuated::Punctuated;
158 //! use syn::{Attribute, Expr, PathSegment, Result, Token};
159 //!
160 //! fn call_some_parser_methods(input: TokenStream) -> Result<()> {
161 //! // Parse a nonempty sequence of path segments separated by `::` punctuation
162 //! // with no trailing punctuation.
163 //! let tokens = input.clone();
164 //! let parser = Punctuated::<PathSegment, Token![::]>::parse_separated_nonempty;
165 //! let _path = parser.parse(tokens)?;
166 //!
167 //! // Parse a possibly empty sequence of expressions terminated by commas with
168 //! // an optional trailing punctuation.
169 //! let tokens = input.clone();
170 //! let parser = Punctuated::<Expr, Token![,]>::parse_terminated;
171 //! let _args = parser.parse(tokens)?;
172 //!
173 //! // Parse zero or more outer attributes but not inner attributes.
174 //! let tokens = input.clone();
175 //! let parser = Attribute::parse_outer;
176 //! let _attrs = parser.parse(tokens)?;
177 //!
178 //! Ok(())
179 //! }
180 //! ```
181 //!
182 //! ---
183 //!
184 //! *This module is available only if Syn is built with the `"parsing"` feature.*
185
186 #[path = "discouraged.rs"]
187 pub mod discouraged;
188
189 use crate::buffer::{Cursor, TokenBuffer};
190 use crate::error;
191 use crate::lookahead;
192 #[cfg(all(
193 not(all(target_arch = "wasm32", any(target_os = "unknown", target_os = "wasi"))),
194 feature = "proc-macro"
195 ))]
196 use crate::proc_macro;
197 use crate::punctuated::Punctuated;
198 use crate::token::Token;
199 use proc_macro2::{self, Delimiter, Group, Literal, Punct, Span, TokenStream, TokenTree};
200 use std::cell::Cell;
201 use std::fmt::{self, Debug, Display};
202 use std::marker::PhantomData;
203 use std::mem;
204 use std::ops::Deref;
205 use std::rc::Rc;
206 use std::str::FromStr;
207
208 pub use crate::error::{Error, Result};
209 pub use crate::lookahead::{Lookahead1, Peek};
210
211 /// Parsing interface implemented by all types that can be parsed in a default
212 /// way from a token stream.
213 ///
214 /// Refer to the [module documentation] for details about implementing and using
215 /// the `Parse` trait.
216 ///
217 /// [module documentation]: self
218 pub trait Parse: Sized {
parse(input: ParseStream) -> Result<Self>219 fn parse(input: ParseStream) -> Result<Self>;
220 }
221
222 /// Input to a Syn parser function.
223 ///
224 /// See the methods of this type under the documentation of [`ParseBuffer`]. For
225 /// an overview of parsing in Syn, refer to the [module documentation].
226 ///
227 /// [module documentation]: self
228 pub type ParseStream<'a> = &'a ParseBuffer<'a>;
229
230 /// Cursor position within a buffered token stream.
231 ///
232 /// This type is more commonly used through the type alias [`ParseStream`] which
233 /// is an alias for `&ParseBuffer`.
234 ///
235 /// `ParseStream` is the input type for all parser functions in Syn. They have
236 /// the signature `fn(ParseStream) -> Result<T>`.
237 ///
238 /// ## Calling a parser function
239 ///
240 /// There is no public way to construct a `ParseBuffer`. Instead, if you are
241 /// looking to invoke a parser function that requires `ParseStream` as input,
242 /// you will need to go through one of the public parsing entry points.
243 ///
244 /// - The [`parse_macro_input!`] macro if parsing input of a procedural macro;
245 /// - One of [the `syn::parse*` functions][syn-parse]; or
246 /// - A method of the [`Parser`] trait.
247 ///
248 /// [syn-parse]: self#the-synparse-functions
249 pub struct ParseBuffer<'a> {
250 scope: Span,
251 // Instead of Cell<Cursor<'a>> so that ParseBuffer<'a> is covariant in 'a.
252 // The rest of the code in this module needs to be careful that only a
253 // cursor derived from this `cell` is ever assigned to this `cell`.
254 //
255 // Cell<Cursor<'a>> cannot be covariant in 'a because then we could take a
256 // ParseBuffer<'a>, upcast to ParseBuffer<'short> for some lifetime shorter
257 // than 'a, and then assign a Cursor<'short> into the Cell.
258 //
259 // By extension, it would not be safe to expose an API that accepts a
260 // Cursor<'a> and trusts that it lives as long as the cursor currently in
261 // the cell.
262 cell: Cell<Cursor<'static>>,
263 marker: PhantomData<Cursor<'a>>,
264 unexpected: Cell<Option<Rc<Cell<Unexpected>>>>,
265 }
266
267 impl<'a> Drop for ParseBuffer<'a> {
drop(&mut self)268 fn drop(&mut self) {
269 if let Some(unexpected_span) = span_of_unexpected_ignoring_nones(self.cursor()) {
270 let (inner, old_span) = inner_unexpected(self);
271 if old_span.is_none() {
272 inner.set(Unexpected::Some(unexpected_span));
273 }
274 }
275 }
276 }
277
278 impl<'a> Display for ParseBuffer<'a> {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result279 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
280 Display::fmt(&self.cursor().token_stream(), f)
281 }
282 }
283
284 impl<'a> Debug for ParseBuffer<'a> {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result285 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
286 Debug::fmt(&self.cursor().token_stream(), f)
287 }
288 }
289
290 /// Cursor state associated with speculative parsing.
291 ///
292 /// This type is the input of the closure provided to [`ParseStream::step`].
293 ///
294 /// [`ParseStream::step`]: ParseBuffer::step
295 ///
296 /// # Example
297 ///
298 /// ```
299 /// use proc_macro2::TokenTree;
300 /// use syn::Result;
301 /// use syn::parse::ParseStream;
302 ///
303 /// // This function advances the stream past the next occurrence of `@`. If
304 /// // no `@` is present in the stream, the stream position is unchanged and
305 /// // an error is returned.
306 /// fn skip_past_next_at(input: ParseStream) -> Result<()> {
307 /// input.step(|cursor| {
308 /// let mut rest = *cursor;
309 /// while let Some((tt, next)) = rest.token_tree() {
310 /// match &tt {
311 /// TokenTree::Punct(punct) if punct.as_char() == '@' => {
312 /// return Ok(((), next));
313 /// }
314 /// _ => rest = next,
315 /// }
316 /// }
317 /// Err(cursor.error("no `@` was found after this point"))
318 /// })
319 /// }
320 /// #
321 /// # fn remainder_after_skipping_past_next_at(
322 /// # input: ParseStream,
323 /// # ) -> Result<proc_macro2::TokenStream> {
324 /// # skip_past_next_at(input)?;
325 /// # input.parse()
326 /// # }
327 /// #
328 /// # use syn::parse::Parser;
329 /// # let remainder = remainder_after_skipping_past_next_at
330 /// # .parse_str("a @ b c")
331 /// # .unwrap();
332 /// # assert_eq!(remainder.to_string(), "b c");
333 /// ```
334 pub struct StepCursor<'c, 'a> {
335 scope: Span,
336 // This field is covariant in 'c.
337 cursor: Cursor<'c>,
338 // This field is contravariant in 'c. Together these make StepCursor
339 // invariant in 'c. Also covariant in 'a. The user cannot cast 'c to a
340 // different lifetime but can upcast into a StepCursor with a shorter
341 // lifetime 'a.
342 //
343 // As long as we only ever construct a StepCursor for which 'c outlives 'a,
344 // this means if ever a StepCursor<'c, 'a> exists we are guaranteed that 'c
345 // outlives 'a.
346 marker: PhantomData<fn(Cursor<'c>) -> Cursor<'a>>,
347 }
348
349 impl<'c, 'a> Deref for StepCursor<'c, 'a> {
350 type Target = Cursor<'c>;
351
deref(&self) -> &Self::Target352 fn deref(&self) -> &Self::Target {
353 &self.cursor
354 }
355 }
356
357 impl<'c, 'a> Copy for StepCursor<'c, 'a> {}
358
359 impl<'c, 'a> Clone for StepCursor<'c, 'a> {
clone(&self) -> Self360 fn clone(&self) -> Self {
361 *self
362 }
363 }
364
365 impl<'c, 'a> StepCursor<'c, 'a> {
366 /// Triggers an error at the current position of the parse stream.
367 ///
368 /// The `ParseStream::step` invocation will return this same error without
369 /// advancing the stream state.
error<T: Display>(self, message: T) -> Error370 pub fn error<T: Display>(self, message: T) -> Error {
371 error::new_at(self.scope, self.cursor, message)
372 }
373 }
374
advance_step_cursor<'c, 'a>(proof: StepCursor<'c, 'a>, to: Cursor<'c>) -> Cursor<'a>375 pub(crate) fn advance_step_cursor<'c, 'a>(proof: StepCursor<'c, 'a>, to: Cursor<'c>) -> Cursor<'a> {
376 // Refer to the comments within the StepCursor definition. We use the
377 // fact that a StepCursor<'c, 'a> exists as proof that 'c outlives 'a.
378 // Cursor is covariant in its lifetime parameter so we can cast a
379 // Cursor<'c> to one with the shorter lifetime Cursor<'a>.
380 let _ = proof;
381 unsafe { mem::transmute::<Cursor<'c>, Cursor<'a>>(to) }
382 }
383
new_parse_buffer( scope: Span, cursor: Cursor, unexpected: Rc<Cell<Unexpected>>, ) -> ParseBuffer384 pub(crate) fn new_parse_buffer(
385 scope: Span,
386 cursor: Cursor,
387 unexpected: Rc<Cell<Unexpected>>,
388 ) -> ParseBuffer {
389 ParseBuffer {
390 scope,
391 // See comment on `cell` in the struct definition.
392 cell: Cell::new(unsafe { mem::transmute::<Cursor, Cursor<'static>>(cursor) }),
393 marker: PhantomData,
394 unexpected: Cell::new(Some(unexpected)),
395 }
396 }
397
398 pub(crate) enum Unexpected {
399 None,
400 Some(Span),
401 Chain(Rc<Cell<Unexpected>>),
402 }
403
404 impl Default for Unexpected {
default() -> Self405 fn default() -> Self {
406 Unexpected::None
407 }
408 }
409
410 impl Clone for Unexpected {
clone(&self) -> Self411 fn clone(&self) -> Self {
412 match self {
413 Unexpected::None => Unexpected::None,
414 Unexpected::Some(span) => Unexpected::Some(*span),
415 Unexpected::Chain(next) => Unexpected::Chain(next.clone()),
416 }
417 }
418 }
419
420 // We call this on Cell<Unexpected> and Cell<Option<T>> where temporarily
421 // swapping in a None is cheap.
cell_clone<T: Default + Clone>(cell: &Cell<T>) -> T422 fn cell_clone<T: Default + Clone>(cell: &Cell<T>) -> T {
423 let prev = cell.take();
424 let ret = prev.clone();
425 cell.set(prev);
426 ret
427 }
428
inner_unexpected(buffer: &ParseBuffer) -> (Rc<Cell<Unexpected>>, Option<Span>)429 fn inner_unexpected(buffer: &ParseBuffer) -> (Rc<Cell<Unexpected>>, Option<Span>) {
430 let mut unexpected = get_unexpected(buffer);
431 loop {
432 match cell_clone(&unexpected) {
433 Unexpected::None => return (unexpected, None),
434 Unexpected::Some(span) => return (unexpected, Some(span)),
435 Unexpected::Chain(next) => unexpected = next,
436 }
437 }
438 }
439
get_unexpected(buffer: &ParseBuffer) -> Rc<Cell<Unexpected>>440 pub(crate) fn get_unexpected(buffer: &ParseBuffer) -> Rc<Cell<Unexpected>> {
441 cell_clone(&buffer.unexpected).unwrap()
442 }
443
span_of_unexpected_ignoring_nones(mut cursor: Cursor) -> Option<Span>444 fn span_of_unexpected_ignoring_nones(mut cursor: Cursor) -> Option<Span> {
445 if cursor.eof() {
446 return None;
447 }
448 while let Some((inner, _span, rest)) = cursor.group(Delimiter::None) {
449 if let Some(unexpected) = span_of_unexpected_ignoring_nones(inner) {
450 return Some(unexpected);
451 }
452 cursor = rest;
453 }
454 if cursor.eof() {
455 None
456 } else {
457 Some(cursor.span())
458 }
459 }
460
461 impl<'a> ParseBuffer<'a> {
462 /// Parses a syntax tree node of type `T`, advancing the position of our
463 /// parse stream past it.
parse<T: Parse>(&self) -> Result<T>464 pub fn parse<T: Parse>(&self) -> Result<T> {
465 T::parse(self)
466 }
467
468 /// Calls the given parser function to parse a syntax tree node of type `T`
469 /// from this stream.
470 ///
471 /// # Example
472 ///
473 /// The parser below invokes [`Attribute::parse_outer`] to parse a vector of
474 /// zero or more outer attributes.
475 ///
476 /// [`Attribute::parse_outer`]: crate::Attribute::parse_outer
477 ///
478 /// ```
479 /// use syn::{Attribute, Ident, Result, Token};
480 /// use syn::parse::{Parse, ParseStream};
481 ///
482 /// // Parses a unit struct with attributes.
483 /// //
484 /// // #[path = "s.tmpl"]
485 /// // struct S;
486 /// struct UnitStruct {
487 /// attrs: Vec<Attribute>,
488 /// struct_token: Token![struct],
489 /// name: Ident,
490 /// semi_token: Token![;],
491 /// }
492 ///
493 /// impl Parse for UnitStruct {
494 /// fn parse(input: ParseStream) -> Result<Self> {
495 /// Ok(UnitStruct {
496 /// attrs: input.call(Attribute::parse_outer)?,
497 /// struct_token: input.parse()?,
498 /// name: input.parse()?,
499 /// semi_token: input.parse()?,
500 /// })
501 /// }
502 /// }
503 /// ```
call<T>(&self, function: fn(ParseStream) -> Result<T>) -> Result<T>504 pub fn call<T>(&self, function: fn(ParseStream) -> Result<T>) -> Result<T> {
505 function(self)
506 }
507
508 /// Looks at the next token in the parse stream to determine whether it
509 /// matches the requested type of token.
510 ///
511 /// Does not advance the position of the parse stream.
512 ///
513 /// # Syntax
514 ///
515 /// Note that this method does not use turbofish syntax. Pass the peek type
516 /// inside of parentheses.
517 ///
518 /// - `input.peek(Token![struct])`
519 /// - `input.peek(Token![==])`
520 /// - `input.peek(Ident)` *(does not accept keywords)*
521 /// - `input.peek(Ident::peek_any)`
522 /// - `input.peek(Lifetime)`
523 /// - `input.peek(token::Brace)`
524 ///
525 /// # Example
526 ///
527 /// In this example we finish parsing the list of supertraits when the next
528 /// token in the input is either `where` or an opening curly brace.
529 ///
530 /// ```
531 /// use syn::{braced, token, Generics, Ident, Result, Token, TypeParamBound};
532 /// use syn::parse::{Parse, ParseStream};
533 /// use syn::punctuated::Punctuated;
534 ///
535 /// // Parses a trait definition containing no associated items.
536 /// //
537 /// // trait Marker<'de, T>: A + B<'de> where Box<T>: Clone {}
538 /// struct MarkerTrait {
539 /// trait_token: Token![trait],
540 /// ident: Ident,
541 /// generics: Generics,
542 /// colon_token: Option<Token![:]>,
543 /// supertraits: Punctuated<TypeParamBound, Token![+]>,
544 /// brace_token: token::Brace,
545 /// }
546 ///
547 /// impl Parse for MarkerTrait {
548 /// fn parse(input: ParseStream) -> Result<Self> {
549 /// let trait_token: Token![trait] = input.parse()?;
550 /// let ident: Ident = input.parse()?;
551 /// let mut generics: Generics = input.parse()?;
552 /// let colon_token: Option<Token![:]> = input.parse()?;
553 ///
554 /// let mut supertraits = Punctuated::new();
555 /// if colon_token.is_some() {
556 /// loop {
557 /// supertraits.push_value(input.parse()?);
558 /// if input.peek(Token![where]) || input.peek(token::Brace) {
559 /// break;
560 /// }
561 /// supertraits.push_punct(input.parse()?);
562 /// }
563 /// }
564 ///
565 /// generics.where_clause = input.parse()?;
566 /// let content;
567 /// let empty_brace_token = braced!(content in input);
568 ///
569 /// Ok(MarkerTrait {
570 /// trait_token,
571 /// ident,
572 /// generics,
573 /// colon_token,
574 /// supertraits,
575 /// brace_token: empty_brace_token,
576 /// })
577 /// }
578 /// }
579 /// ```
peek<T: Peek>(&self, token: T) -> bool580 pub fn peek<T: Peek>(&self, token: T) -> bool {
581 let _ = token;
582 T::Token::peek(self.cursor())
583 }
584
585 /// Looks at the second-next token in the parse stream.
586 ///
587 /// This is commonly useful as a way to implement contextual keywords.
588 ///
589 /// # Example
590 ///
591 /// This example needs to use `peek2` because the symbol `union` is not a
592 /// keyword in Rust. We can't use just `peek` and decide to parse a union if
593 /// the very next token is `union`, because someone is free to write a `mod
594 /// union` and a macro invocation that looks like `union::some_macro! { ...
595 /// }`. In other words `union` is a contextual keyword.
596 ///
597 /// ```
598 /// use syn::{Ident, ItemUnion, Macro, Result, Token};
599 /// use syn::parse::{Parse, ParseStream};
600 ///
601 /// // Parses either a union or a macro invocation.
602 /// enum UnionOrMacro {
603 /// // union MaybeUninit<T> { uninit: (), value: T }
604 /// Union(ItemUnion),
605 /// // lazy_static! { ... }
606 /// Macro(Macro),
607 /// }
608 ///
609 /// impl Parse for UnionOrMacro {
610 /// fn parse(input: ParseStream) -> Result<Self> {
611 /// if input.peek(Token![union]) && input.peek2(Ident) {
612 /// input.parse().map(UnionOrMacro::Union)
613 /// } else {
614 /// input.parse().map(UnionOrMacro::Macro)
615 /// }
616 /// }
617 /// }
618 /// ```
peek2<T: Peek>(&self, token: T) -> bool619 pub fn peek2<T: Peek>(&self, token: T) -> bool {
620 fn peek2(buffer: &ParseBuffer, peek: fn(Cursor) -> bool) -> bool {
621 if let Some(group) = buffer.cursor().group(Delimiter::None) {
622 if group.0.skip().map_or(false, peek) {
623 return true;
624 }
625 }
626 buffer.cursor().skip().map_or(false, peek)
627 }
628
629 let _ = token;
630 peek2(self, T::Token::peek)
631 }
632
633 /// Looks at the third-next token in the parse stream.
peek3<T: Peek>(&self, token: T) -> bool634 pub fn peek3<T: Peek>(&self, token: T) -> bool {
635 fn peek3(buffer: &ParseBuffer, peek: fn(Cursor) -> bool) -> bool {
636 if let Some(group) = buffer.cursor().group(Delimiter::None) {
637 if group.0.skip().and_then(Cursor::skip).map_or(false, peek) {
638 return true;
639 }
640 }
641 buffer
642 .cursor()
643 .skip()
644 .and_then(Cursor::skip)
645 .map_or(false, peek)
646 }
647
648 let _ = token;
649 peek3(self, T::Token::peek)
650 }
651
652 /// Parses zero or more occurrences of `T` separated by punctuation of type
653 /// `P`, with optional trailing punctuation.
654 ///
655 /// Parsing continues until the end of this parse stream. The entire content
656 /// of this parse stream must consist of `T` and `P`.
657 ///
658 /// # Example
659 ///
660 /// ```
661 /// # use quote::quote;
662 /// #
663 /// use syn::{parenthesized, token, Ident, Result, Token, Type};
664 /// use syn::parse::{Parse, ParseStream};
665 /// use syn::punctuated::Punctuated;
666 ///
667 /// // Parse a simplified tuple struct syntax like:
668 /// //
669 /// // struct S(A, B);
670 /// struct TupleStruct {
671 /// struct_token: Token![struct],
672 /// ident: Ident,
673 /// paren_token: token::Paren,
674 /// fields: Punctuated<Type, Token![,]>,
675 /// semi_token: Token![;],
676 /// }
677 ///
678 /// impl Parse for TupleStruct {
679 /// fn parse(input: ParseStream) -> Result<Self> {
680 /// let content;
681 /// Ok(TupleStruct {
682 /// struct_token: input.parse()?,
683 /// ident: input.parse()?,
684 /// paren_token: parenthesized!(content in input),
685 /// fields: content.parse_terminated(Type::parse)?,
686 /// semi_token: input.parse()?,
687 /// })
688 /// }
689 /// }
690 /// #
691 /// # let input = quote! {
692 /// # struct S(A, B);
693 /// # };
694 /// # syn::parse2::<TupleStruct>(input).unwrap();
695 /// ```
parse_terminated<T, P: Parse>( &self, parser: fn(ParseStream) -> Result<T>, ) -> Result<Punctuated<T, P>>696 pub fn parse_terminated<T, P: Parse>(
697 &self,
698 parser: fn(ParseStream) -> Result<T>,
699 ) -> Result<Punctuated<T, P>> {
700 Punctuated::parse_terminated_with(self, parser)
701 }
702
703 /// Returns whether there are tokens remaining in this stream.
704 ///
705 /// This method returns true at the end of the content of a set of
706 /// delimiters, as well as at the very end of the complete macro input.
707 ///
708 /// # Example
709 ///
710 /// ```
711 /// use syn::{braced, token, Ident, Item, Result, Token};
712 /// use syn::parse::{Parse, ParseStream};
713 ///
714 /// // Parses a Rust `mod m { ... }` containing zero or more items.
715 /// struct Mod {
716 /// mod_token: Token![mod],
717 /// name: Ident,
718 /// brace_token: token::Brace,
719 /// items: Vec<Item>,
720 /// }
721 ///
722 /// impl Parse for Mod {
723 /// fn parse(input: ParseStream) -> Result<Self> {
724 /// let content;
725 /// Ok(Mod {
726 /// mod_token: input.parse()?,
727 /// name: input.parse()?,
728 /// brace_token: braced!(content in input),
729 /// items: {
730 /// let mut items = Vec::new();
731 /// while !content.is_empty() {
732 /// items.push(content.parse()?);
733 /// }
734 /// items
735 /// },
736 /// })
737 /// }
738 /// }
739 /// ```
is_empty(&self) -> bool740 pub fn is_empty(&self) -> bool {
741 self.cursor().eof()
742 }
743
744 /// Constructs a helper for peeking at the next token in this stream and
745 /// building an error message if it is not one of a set of expected tokens.
746 ///
747 /// # Example
748 ///
749 /// ```
750 /// use syn::{ConstParam, Ident, Lifetime, LifetimeDef, Result, Token, TypeParam};
751 /// use syn::parse::{Parse, ParseStream};
752 ///
753 /// // A generic parameter, a single one of the comma-separated elements inside
754 /// // angle brackets in:
755 /// //
756 /// // fn f<T: Clone, 'a, 'b: 'a, const N: usize>() { ... }
757 /// //
758 /// // On invalid input, lookahead gives us a reasonable error message.
759 /// //
760 /// // error: expected one of: identifier, lifetime, `const`
761 /// // |
762 /// // 5 | fn f<!Sized>() {}
763 /// // | ^
764 /// enum GenericParam {
765 /// Type(TypeParam),
766 /// Lifetime(LifetimeDef),
767 /// Const(ConstParam),
768 /// }
769 ///
770 /// impl Parse for GenericParam {
771 /// fn parse(input: ParseStream) -> Result<Self> {
772 /// let lookahead = input.lookahead1();
773 /// if lookahead.peek(Ident) {
774 /// input.parse().map(GenericParam::Type)
775 /// } else if lookahead.peek(Lifetime) {
776 /// input.parse().map(GenericParam::Lifetime)
777 /// } else if lookahead.peek(Token![const]) {
778 /// input.parse().map(GenericParam::Const)
779 /// } else {
780 /// Err(lookahead.error())
781 /// }
782 /// }
783 /// }
784 /// ```
lookahead1(&self) -> Lookahead1<'a>785 pub fn lookahead1(&self) -> Lookahead1<'a> {
786 lookahead::new(self.scope, self.cursor())
787 }
788
789 /// Forks a parse stream so that parsing tokens out of either the original
790 /// or the fork does not advance the position of the other.
791 ///
792 /// # Performance
793 ///
794 /// Forking a parse stream is a cheap fixed amount of work and does not
795 /// involve copying token buffers. Where you might hit performance problems
796 /// is if your macro ends up parsing a large amount of content more than
797 /// once.
798 ///
799 /// ```
800 /// # use syn::{Expr, Result};
801 /// # use syn::parse::ParseStream;
802 /// #
803 /// # fn bad(input: ParseStream) -> Result<Expr> {
804 /// // Do not do this.
805 /// if input.fork().parse::<Expr>().is_ok() {
806 /// return input.parse::<Expr>();
807 /// }
808 /// # unimplemented!()
809 /// # }
810 /// ```
811 ///
812 /// As a rule, avoid parsing an unbounded amount of tokens out of a forked
813 /// parse stream. Only use a fork when the amount of work performed against
814 /// the fork is small and bounded.
815 ///
816 /// When complex speculative parsing against the forked stream is
817 /// unavoidable, use [`parse::discouraged::Speculative`] to advance the
818 /// original stream once the fork's parse is determined to have been
819 /// successful.
820 ///
821 /// For a lower level way to perform speculative parsing at the token level,
822 /// consider using [`ParseStream::step`] instead.
823 ///
824 /// [`parse::discouraged::Speculative`]: discouraged::Speculative
825 /// [`ParseStream::step`]: ParseBuffer::step
826 ///
827 /// # Example
828 ///
829 /// The parse implementation shown here parses possibly restricted `pub`
830 /// visibilities.
831 ///
832 /// - `pub`
833 /// - `pub(crate)`
834 /// - `pub(self)`
835 /// - `pub(super)`
836 /// - `pub(in some::path)`
837 ///
838 /// To handle the case of visibilities inside of tuple structs, the parser
839 /// needs to distinguish parentheses that specify visibility restrictions
840 /// from parentheses that form part of a tuple type.
841 ///
842 /// ```
843 /// # struct A;
844 /// # struct B;
845 /// # struct C;
846 /// #
847 /// struct S(pub(crate) A, pub (B, C));
848 /// ```
849 ///
850 /// In this example input the first tuple struct element of `S` has
851 /// `pub(crate)` visibility while the second tuple struct element has `pub`
852 /// visibility; the parentheses around `(B, C)` are part of the type rather
853 /// than part of a visibility restriction.
854 ///
855 /// The parser uses a forked parse stream to check the first token inside of
856 /// parentheses after the `pub` keyword. This is a small bounded amount of
857 /// work performed against the forked parse stream.
858 ///
859 /// ```
860 /// use syn::{parenthesized, token, Ident, Path, Result, Token};
861 /// use syn::ext::IdentExt;
862 /// use syn::parse::{Parse, ParseStream};
863 ///
864 /// struct PubVisibility {
865 /// pub_token: Token![pub],
866 /// restricted: Option<Restricted>,
867 /// }
868 ///
869 /// struct Restricted {
870 /// paren_token: token::Paren,
871 /// in_token: Option<Token![in]>,
872 /// path: Path,
873 /// }
874 ///
875 /// impl Parse for PubVisibility {
876 /// fn parse(input: ParseStream) -> Result<Self> {
877 /// let pub_token: Token![pub] = input.parse()?;
878 ///
879 /// if input.peek(token::Paren) {
880 /// let ahead = input.fork();
881 /// let mut content;
882 /// parenthesized!(content in ahead);
883 ///
884 /// if content.peek(Token![crate])
885 /// || content.peek(Token![self])
886 /// || content.peek(Token![super])
887 /// {
888 /// return Ok(PubVisibility {
889 /// pub_token,
890 /// restricted: Some(Restricted {
891 /// paren_token: parenthesized!(content in input),
892 /// in_token: None,
893 /// path: Path::from(content.call(Ident::parse_any)?),
894 /// }),
895 /// });
896 /// } else if content.peek(Token![in]) {
897 /// return Ok(PubVisibility {
898 /// pub_token,
899 /// restricted: Some(Restricted {
900 /// paren_token: parenthesized!(content in input),
901 /// in_token: Some(content.parse()?),
902 /// path: content.call(Path::parse_mod_style)?,
903 /// }),
904 /// });
905 /// }
906 /// }
907 ///
908 /// Ok(PubVisibility {
909 /// pub_token,
910 /// restricted: None,
911 /// })
912 /// }
913 /// }
914 /// ```
fork(&self) -> Self915 pub fn fork(&self) -> Self {
916 ParseBuffer {
917 scope: self.scope,
918 cell: self.cell.clone(),
919 marker: PhantomData,
920 // Not the parent's unexpected. Nothing cares whether the clone
921 // parses all the way unless we `advance_to`.
922 unexpected: Cell::new(Some(Rc::new(Cell::new(Unexpected::None)))),
923 }
924 }
925
926 /// Triggers an error at the current position of the parse stream.
927 ///
928 /// # Example
929 ///
930 /// ```
931 /// use syn::{Expr, Result, Token};
932 /// use syn::parse::{Parse, ParseStream};
933 ///
934 /// // Some kind of loop: `while` or `for` or `loop`.
935 /// struct Loop {
936 /// expr: Expr,
937 /// }
938 ///
939 /// impl Parse for Loop {
940 /// fn parse(input: ParseStream) -> Result<Self> {
941 /// if input.peek(Token![while])
942 /// || input.peek(Token![for])
943 /// || input.peek(Token![loop])
944 /// {
945 /// Ok(Loop {
946 /// expr: input.parse()?,
947 /// })
948 /// } else {
949 /// Err(input.error("expected some kind of loop"))
950 /// }
951 /// }
952 /// }
953 /// ```
error<T: Display>(&self, message: T) -> Error954 pub fn error<T: Display>(&self, message: T) -> Error {
955 error::new_at(self.scope, self.cursor(), message)
956 }
957
958 /// Speculatively parses tokens from this parse stream, advancing the
959 /// position of this stream only if parsing succeeds.
960 ///
961 /// This is a powerful low-level API used for defining the `Parse` impls of
962 /// the basic built-in token types. It is not something that will be used
963 /// widely outside of the Syn codebase.
964 ///
965 /// # Example
966 ///
967 /// ```
968 /// use proc_macro2::TokenTree;
969 /// use syn::Result;
970 /// use syn::parse::ParseStream;
971 ///
972 /// // This function advances the stream past the next occurrence of `@`. If
973 /// // no `@` is present in the stream, the stream position is unchanged and
974 /// // an error is returned.
975 /// fn skip_past_next_at(input: ParseStream) -> Result<()> {
976 /// input.step(|cursor| {
977 /// let mut rest = *cursor;
978 /// while let Some((tt, next)) = rest.token_tree() {
979 /// match &tt {
980 /// TokenTree::Punct(punct) if punct.as_char() == '@' => {
981 /// return Ok(((), next));
982 /// }
983 /// _ => rest = next,
984 /// }
985 /// }
986 /// Err(cursor.error("no `@` was found after this point"))
987 /// })
988 /// }
989 /// #
990 /// # fn remainder_after_skipping_past_next_at(
991 /// # input: ParseStream,
992 /// # ) -> Result<proc_macro2::TokenStream> {
993 /// # skip_past_next_at(input)?;
994 /// # input.parse()
995 /// # }
996 /// #
997 /// # use syn::parse::Parser;
998 /// # let remainder = remainder_after_skipping_past_next_at
999 /// # .parse_str("a @ b c")
1000 /// # .unwrap();
1001 /// # assert_eq!(remainder.to_string(), "b c");
1002 /// ```
step<F, R>(&self, function: F) -> Result<R> where F: for<'c> FnOnce(StepCursor<'c, 'a>) -> Result<(R, Cursor<'c>)>,1003 pub fn step<F, R>(&self, function: F) -> Result<R>
1004 where
1005 F: for<'c> FnOnce(StepCursor<'c, 'a>) -> Result<(R, Cursor<'c>)>,
1006 {
1007 // Since the user's function is required to work for any 'c, we know
1008 // that the Cursor<'c> they return is either derived from the input
1009 // StepCursor<'c, 'a> or from a Cursor<'static>.
1010 //
1011 // It would not be legal to write this function without the invariant
1012 // lifetime 'c in StepCursor<'c, 'a>. If this function were written only
1013 // in terms of 'a, the user could take our ParseBuffer<'a>, upcast it to
1014 // a ParseBuffer<'short> which some shorter lifetime than 'a, invoke
1015 // `step` on their ParseBuffer<'short> with a closure that returns
1016 // Cursor<'short>, and we would wrongly write that Cursor<'short> into
1017 // the Cell intended to hold Cursor<'a>.
1018 //
1019 // In some cases it may be necessary for R to contain a Cursor<'a>.
1020 // Within Syn we solve this using `advance_step_cursor` which uses the
1021 // existence of a StepCursor<'c, 'a> as proof that it is safe to cast
1022 // from Cursor<'c> to Cursor<'a>. If needed outside of Syn, it would be
1023 // safe to expose that API as a method on StepCursor.
1024 let (node, rest) = function(StepCursor {
1025 scope: self.scope,
1026 cursor: self.cell.get(),
1027 marker: PhantomData,
1028 })?;
1029 self.cell.set(rest);
1030 Ok(node)
1031 }
1032
1033 /// Returns the `Span` of the next token in the parse stream, or
1034 /// `Span::call_site()` if this parse stream has completely exhausted its
1035 /// input `TokenStream`.
span(&self) -> Span1036 pub fn span(&self) -> Span {
1037 let cursor = self.cursor();
1038 if cursor.eof() {
1039 self.scope
1040 } else {
1041 crate::buffer::open_span_of_group(cursor)
1042 }
1043 }
1044
1045 /// Provides low-level access to the token representation underlying this
1046 /// parse stream.
1047 ///
1048 /// Cursors are immutable so no operations you perform against the cursor
1049 /// will affect the state of this parse stream.
cursor(&self) -> Cursor<'a>1050 pub fn cursor(&self) -> Cursor<'a> {
1051 self.cell.get()
1052 }
1053
check_unexpected(&self) -> Result<()>1054 fn check_unexpected(&self) -> Result<()> {
1055 match inner_unexpected(self).1 {
1056 Some(span) => Err(Error::new(span, "unexpected token")),
1057 None => Ok(()),
1058 }
1059 }
1060 }
1061
1062 #[cfg_attr(doc_cfg, doc(cfg(feature = "parsing")))]
1063 impl<T: Parse> Parse for Box<T> {
parse(input: ParseStream) -> Result<Self>1064 fn parse(input: ParseStream) -> Result<Self> {
1065 input.parse().map(Box::new)
1066 }
1067 }
1068
1069 #[cfg_attr(doc_cfg, doc(cfg(feature = "parsing")))]
1070 impl<T: Parse + Token> Parse for Option<T> {
parse(input: ParseStream) -> Result<Self>1071 fn parse(input: ParseStream) -> Result<Self> {
1072 if T::peek(input.cursor()) {
1073 Ok(Some(input.parse()?))
1074 } else {
1075 Ok(None)
1076 }
1077 }
1078 }
1079
1080 #[cfg_attr(doc_cfg, doc(cfg(feature = "parsing")))]
1081 impl Parse for TokenStream {
parse(input: ParseStream) -> Result<Self>1082 fn parse(input: ParseStream) -> Result<Self> {
1083 input.step(|cursor| Ok((cursor.token_stream(), Cursor::empty())))
1084 }
1085 }
1086
1087 #[cfg_attr(doc_cfg, doc(cfg(feature = "parsing")))]
1088 impl Parse for TokenTree {
parse(input: ParseStream) -> Result<Self>1089 fn parse(input: ParseStream) -> Result<Self> {
1090 input.step(|cursor| match cursor.token_tree() {
1091 Some((tt, rest)) => Ok((tt, rest)),
1092 None => Err(cursor.error("expected token tree")),
1093 })
1094 }
1095 }
1096
1097 #[cfg_attr(doc_cfg, doc(cfg(feature = "parsing")))]
1098 impl Parse for Group {
parse(input: ParseStream) -> Result<Self>1099 fn parse(input: ParseStream) -> Result<Self> {
1100 input.step(|cursor| {
1101 for delim in &[Delimiter::Parenthesis, Delimiter::Brace, Delimiter::Bracket] {
1102 if let Some((inside, span, rest)) = cursor.group(*delim) {
1103 let mut group = Group::new(*delim, inside.token_stream());
1104 group.set_span(span);
1105 return Ok((group, rest));
1106 }
1107 }
1108 Err(cursor.error("expected group token"))
1109 })
1110 }
1111 }
1112
1113 #[cfg_attr(doc_cfg, doc(cfg(feature = "parsing")))]
1114 impl Parse for Punct {
parse(input: ParseStream) -> Result<Self>1115 fn parse(input: ParseStream) -> Result<Self> {
1116 input.step(|cursor| match cursor.punct() {
1117 Some((punct, rest)) => Ok((punct, rest)),
1118 None => Err(cursor.error("expected punctuation token")),
1119 })
1120 }
1121 }
1122
1123 #[cfg_attr(doc_cfg, doc(cfg(feature = "parsing")))]
1124 impl Parse for Literal {
parse(input: ParseStream) -> Result<Self>1125 fn parse(input: ParseStream) -> Result<Self> {
1126 input.step(|cursor| match cursor.literal() {
1127 Some((literal, rest)) => Ok((literal, rest)),
1128 None => Err(cursor.error("expected literal token")),
1129 })
1130 }
1131 }
1132
1133 /// Parser that can parse Rust tokens into a particular syntax tree node.
1134 ///
1135 /// Refer to the [module documentation] for details about parsing in Syn.
1136 ///
1137 /// [module documentation]: self
1138 ///
1139 /// *This trait is available only if Syn is built with the `"parsing"` feature.*
1140 pub trait Parser: Sized {
1141 type Output;
1142
1143 /// Parse a proc-macro2 token stream into the chosen syntax tree node.
1144 ///
1145 /// This function will check that the input is fully parsed. If there are
1146 /// any unparsed tokens at the end of the stream, an error is returned.
parse2(self, tokens: TokenStream) -> Result<Self::Output>1147 fn parse2(self, tokens: TokenStream) -> Result<Self::Output>;
1148
1149 /// Parse tokens of source code into the chosen syntax tree node.
1150 ///
1151 /// This function will check that the input is fully parsed. If there are
1152 /// any unparsed tokens at the end of the stream, an error is returned.
1153 ///
1154 /// *This method is available only if Syn is built with both the `"parsing"` and
1155 /// `"proc-macro"` features.*
1156 #[cfg(all(
1157 not(all(target_arch = "wasm32", any(target_os = "unknown", target_os = "wasi"))),
1158 feature = "proc-macro"
1159 ))]
parse(self, tokens: proc_macro::TokenStream) -> Result<Self::Output>1160 fn parse(self, tokens: proc_macro::TokenStream) -> Result<Self::Output> {
1161 self.parse2(proc_macro2::TokenStream::from(tokens))
1162 }
1163
1164 /// Parse a string of Rust code into the chosen syntax tree node.
1165 ///
1166 /// This function will check that the input is fully parsed. If there are
1167 /// any unparsed tokens at the end of the string, an error is returned.
1168 ///
1169 /// # Hygiene
1170 ///
1171 /// Every span in the resulting syntax tree will be set to resolve at the
1172 /// macro call site.
parse_str(self, s: &str) -> Result<Self::Output>1173 fn parse_str(self, s: &str) -> Result<Self::Output> {
1174 self.parse2(proc_macro2::TokenStream::from_str(s)?)
1175 }
1176
1177 // Not public API.
1178 #[doc(hidden)]
1179 #[cfg(any(feature = "full", feature = "derive"))]
__parse_scoped(self, scope: Span, tokens: TokenStream) -> Result<Self::Output>1180 fn __parse_scoped(self, scope: Span, tokens: TokenStream) -> Result<Self::Output> {
1181 let _ = scope;
1182 self.parse2(tokens)
1183 }
1184
1185 // Not public API.
1186 #[doc(hidden)]
1187 #[cfg(any(feature = "full", feature = "derive"))]
__parse_stream(self, input: ParseStream) -> Result<Self::Output>1188 fn __parse_stream(self, input: ParseStream) -> Result<Self::Output> {
1189 input.parse().and_then(|tokens| self.parse2(tokens))
1190 }
1191 }
1192
tokens_to_parse_buffer(tokens: &TokenBuffer) -> ParseBuffer1193 fn tokens_to_parse_buffer(tokens: &TokenBuffer) -> ParseBuffer {
1194 let scope = Span::call_site();
1195 let cursor = tokens.begin();
1196 let unexpected = Rc::new(Cell::new(Unexpected::None));
1197 new_parse_buffer(scope, cursor, unexpected)
1198 }
1199
1200 impl<F, T> Parser for F
1201 where
1202 F: FnOnce(ParseStream) -> Result<T>,
1203 {
1204 type Output = T;
1205
parse2(self, tokens: TokenStream) -> Result<T>1206 fn parse2(self, tokens: TokenStream) -> Result<T> {
1207 let buf = TokenBuffer::new2(tokens);
1208 let state = tokens_to_parse_buffer(&buf);
1209 let node = self(&state)?;
1210 state.check_unexpected()?;
1211 if let Some(unexpected_span) = span_of_unexpected_ignoring_nones(state.cursor()) {
1212 Err(Error::new(unexpected_span, "unexpected token"))
1213 } else {
1214 Ok(node)
1215 }
1216 }
1217
1218 #[doc(hidden)]
1219 #[cfg(any(feature = "full", feature = "derive"))]
__parse_scoped(self, scope: Span, tokens: TokenStream) -> Result<Self::Output>1220 fn __parse_scoped(self, scope: Span, tokens: TokenStream) -> Result<Self::Output> {
1221 let buf = TokenBuffer::new2(tokens);
1222 let cursor = buf.begin();
1223 let unexpected = Rc::new(Cell::new(Unexpected::None));
1224 let state = new_parse_buffer(scope, cursor, unexpected);
1225 let node = self(&state)?;
1226 state.check_unexpected()?;
1227 if let Some(unexpected_span) = span_of_unexpected_ignoring_nones(state.cursor()) {
1228 Err(Error::new(unexpected_span, "unexpected token"))
1229 } else {
1230 Ok(node)
1231 }
1232 }
1233
1234 #[doc(hidden)]
1235 #[cfg(any(feature = "full", feature = "derive"))]
__parse_stream(self, input: ParseStream) -> Result<Self::Output>1236 fn __parse_stream(self, input: ParseStream) -> Result<Self::Output> {
1237 self(input)
1238 }
1239 }
1240
1241 #[cfg(any(feature = "full", feature = "derive"))]
parse_scoped<F: Parser>(f: F, scope: Span, tokens: TokenStream) -> Result<F::Output>1242 pub(crate) fn parse_scoped<F: Parser>(f: F, scope: Span, tokens: TokenStream) -> Result<F::Output> {
1243 f.__parse_scoped(scope, tokens)
1244 }
1245
1246 #[cfg(any(feature = "full", feature = "derive"))]
parse_stream<F: Parser>(f: F, input: ParseStream) -> Result<F::Output>1247 pub(crate) fn parse_stream<F: Parser>(f: F, input: ParseStream) -> Result<F::Output> {
1248 f.__parse_stream(input)
1249 }
1250
1251 /// An empty syntax tree node that consumes no tokens when parsed.
1252 ///
1253 /// This is useful for attribute macros that want to ensure they are not
1254 /// provided any attribute args.
1255 ///
1256 /// ```
1257 /// # extern crate proc_macro;
1258 /// #
1259 /// use proc_macro::TokenStream;
1260 /// use syn::parse_macro_input;
1261 /// use syn::parse::Nothing;
1262 ///
1263 /// # const IGNORE: &str = stringify! {
1264 /// #[proc_macro_attribute]
1265 /// # };
1266 /// pub fn my_attr(args: TokenStream, input: TokenStream) -> TokenStream {
1267 /// parse_macro_input!(args as Nothing);
1268 ///
1269 /// /* ... */
1270 /// # "".parse().unwrap()
1271 /// }
1272 /// ```
1273 ///
1274 /// ```text
1275 /// error: unexpected token
1276 /// --> src/main.rs:3:19
1277 /// |
1278 /// 3 | #[my_attr(asdf)]
1279 /// | ^^^^
1280 /// ```
1281 pub struct Nothing;
1282
1283 impl Parse for Nothing {
parse(_input: ParseStream) -> Result<Self>1284 fn parse(_input: ParseStream) -> Result<Self> {
1285 Ok(Nothing)
1286 }
1287 }
1288