• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //=== RecordLayoutBuilder.cpp - Helper class for building record layouts ---==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "clang/AST/ASTContext.h"
10 #include "clang/AST/ASTDiagnostic.h"
11 #include "clang/AST/Attr.h"
12 #include "clang/AST/CXXInheritance.h"
13 #include "clang/AST/Decl.h"
14 #include "clang/AST/DeclCXX.h"
15 #include "clang/AST/DeclObjC.h"
16 #include "clang/AST/Expr.h"
17 #include "clang/AST/VTableBuilder.h"
18 #include "clang/AST/RecordLayout.h"
19 #include "clang/Basic/TargetInfo.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/Support/Format.h"
22 #include "llvm/Support/MathExtras.h"
23 
24 using namespace clang;
25 
26 namespace {
27 
28 /// BaseSubobjectInfo - Represents a single base subobject in a complete class.
29 /// For a class hierarchy like
30 ///
31 /// class A { };
32 /// class B : A { };
33 /// class C : A, B { };
34 ///
35 /// The BaseSubobjectInfo graph for C will have three BaseSubobjectInfo
36 /// instances, one for B and two for A.
37 ///
38 /// If a base is virtual, it will only have one BaseSubobjectInfo allocated.
39 struct BaseSubobjectInfo {
40   /// Class - The class for this base info.
41   const CXXRecordDecl *Class;
42 
43   /// IsVirtual - Whether the BaseInfo represents a virtual base or not.
44   bool IsVirtual;
45 
46   /// Bases - Information about the base subobjects.
47   SmallVector<BaseSubobjectInfo*, 4> Bases;
48 
49   /// PrimaryVirtualBaseInfo - Holds the base info for the primary virtual base
50   /// of this base info (if one exists).
51   BaseSubobjectInfo *PrimaryVirtualBaseInfo;
52 
53   // FIXME: Document.
54   const BaseSubobjectInfo *Derived;
55 };
56 
57 /// Externally provided layout. Typically used when the AST source, such
58 /// as DWARF, lacks all the information that was available at compile time, such
59 /// as alignment attributes on fields and pragmas in effect.
60 struct ExternalLayout {
ExternalLayout__anonb7f8836c0111::ExternalLayout61   ExternalLayout() : Size(0), Align(0) {}
62 
63   /// Overall record size in bits.
64   uint64_t Size;
65 
66   /// Overall record alignment in bits.
67   uint64_t Align;
68 
69   /// Record field offsets in bits.
70   llvm::DenseMap<const FieldDecl *, uint64_t> FieldOffsets;
71 
72   /// Direct, non-virtual base offsets.
73   llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsets;
74 
75   /// Virtual base offsets.
76   llvm::DenseMap<const CXXRecordDecl *, CharUnits> VirtualBaseOffsets;
77 
78   /// Get the offset of the given field. The external source must provide
79   /// entries for all fields in the record.
getExternalFieldOffset__anonb7f8836c0111::ExternalLayout80   uint64_t getExternalFieldOffset(const FieldDecl *FD) {
81     assert(FieldOffsets.count(FD) &&
82            "Field does not have an external offset");
83     return FieldOffsets[FD];
84   }
85 
getExternalNVBaseOffset__anonb7f8836c0111::ExternalLayout86   bool getExternalNVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) {
87     auto Known = BaseOffsets.find(RD);
88     if (Known == BaseOffsets.end())
89       return false;
90     BaseOffset = Known->second;
91     return true;
92   }
93 
getExternalVBaseOffset__anonb7f8836c0111::ExternalLayout94   bool getExternalVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) {
95     auto Known = VirtualBaseOffsets.find(RD);
96     if (Known == VirtualBaseOffsets.end())
97       return false;
98     BaseOffset = Known->second;
99     return true;
100   }
101 };
102 
103 /// EmptySubobjectMap - Keeps track of which empty subobjects exist at different
104 /// offsets while laying out a C++ class.
105 class EmptySubobjectMap {
106   const ASTContext &Context;
107   uint64_t CharWidth;
108 
109   /// Class - The class whose empty entries we're keeping track of.
110   const CXXRecordDecl *Class;
111 
112   /// EmptyClassOffsets - A map from offsets to empty record decls.
113   typedef llvm::TinyPtrVector<const CXXRecordDecl *> ClassVectorTy;
114   typedef llvm::DenseMap<CharUnits, ClassVectorTy> EmptyClassOffsetsMapTy;
115   EmptyClassOffsetsMapTy EmptyClassOffsets;
116 
117   /// MaxEmptyClassOffset - The highest offset known to contain an empty
118   /// base subobject.
119   CharUnits MaxEmptyClassOffset;
120 
121   /// ComputeEmptySubobjectSizes - Compute the size of the largest base or
122   /// member subobject that is empty.
123   void ComputeEmptySubobjectSizes();
124 
125   void AddSubobjectAtOffset(const CXXRecordDecl *RD, CharUnits Offset);
126 
127   void UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
128                                  CharUnits Offset, bool PlacingEmptyBase);
129 
130   void UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD,
131                                   const CXXRecordDecl *Class, CharUnits Offset,
132                                   bool PlacingOverlappingField);
133   void UpdateEmptyFieldSubobjects(const FieldDecl *FD, CharUnits Offset,
134                                   bool PlacingOverlappingField);
135 
136   /// AnyEmptySubobjectsBeyondOffset - Returns whether there are any empty
137   /// subobjects beyond the given offset.
AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const138   bool AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const {
139     return Offset <= MaxEmptyClassOffset;
140   }
141 
142   CharUnits
getFieldOffset(const ASTRecordLayout & Layout,unsigned FieldNo) const143   getFieldOffset(const ASTRecordLayout &Layout, unsigned FieldNo) const {
144     uint64_t FieldOffset = Layout.getFieldOffset(FieldNo);
145     assert(FieldOffset % CharWidth == 0 &&
146            "Field offset not at char boundary!");
147 
148     return Context.toCharUnitsFromBits(FieldOffset);
149   }
150 
151 protected:
152   bool CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
153                                  CharUnits Offset) const;
154 
155   bool CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
156                                      CharUnits Offset);
157 
158   bool CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
159                                       const CXXRecordDecl *Class,
160                                       CharUnits Offset) const;
161   bool CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
162                                       CharUnits Offset) const;
163 
164 public:
165   /// This holds the size of the largest empty subobject (either a base
166   /// or a member). Will be zero if the record being built doesn't contain
167   /// any empty classes.
168   CharUnits SizeOfLargestEmptySubobject;
169 
EmptySubobjectMap(const ASTContext & Context,const CXXRecordDecl * Class)170   EmptySubobjectMap(const ASTContext &Context, const CXXRecordDecl *Class)
171   : Context(Context), CharWidth(Context.getCharWidth()), Class(Class) {
172       ComputeEmptySubobjectSizes();
173   }
174 
175   /// CanPlaceBaseAtOffset - Return whether the given base class can be placed
176   /// at the given offset.
177   /// Returns false if placing the record will result in two components
178   /// (direct or indirect) of the same type having the same offset.
179   bool CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
180                             CharUnits Offset);
181 
182   /// CanPlaceFieldAtOffset - Return whether a field can be placed at the given
183   /// offset.
184   bool CanPlaceFieldAtOffset(const FieldDecl *FD, CharUnits Offset);
185 };
186 
ComputeEmptySubobjectSizes()187 void EmptySubobjectMap::ComputeEmptySubobjectSizes() {
188   // Check the bases.
189   for (const CXXBaseSpecifier &Base : Class->bases()) {
190     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
191 
192     CharUnits EmptySize;
193     const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
194     if (BaseDecl->isEmpty()) {
195       // If the class decl is empty, get its size.
196       EmptySize = Layout.getSize();
197     } else {
198       // Otherwise, we get the largest empty subobject for the decl.
199       EmptySize = Layout.getSizeOfLargestEmptySubobject();
200     }
201 
202     if (EmptySize > SizeOfLargestEmptySubobject)
203       SizeOfLargestEmptySubobject = EmptySize;
204   }
205 
206   // Check the fields.
207   for (const FieldDecl *FD : Class->fields()) {
208     const RecordType *RT =
209         Context.getBaseElementType(FD->getType())->getAs<RecordType>();
210 
211     // We only care about record types.
212     if (!RT)
213       continue;
214 
215     CharUnits EmptySize;
216     const CXXRecordDecl *MemberDecl = RT->getAsCXXRecordDecl();
217     const ASTRecordLayout &Layout = Context.getASTRecordLayout(MemberDecl);
218     if (MemberDecl->isEmpty()) {
219       // If the class decl is empty, get its size.
220       EmptySize = Layout.getSize();
221     } else {
222       // Otherwise, we get the largest empty subobject for the decl.
223       EmptySize = Layout.getSizeOfLargestEmptySubobject();
224     }
225 
226     if (EmptySize > SizeOfLargestEmptySubobject)
227       SizeOfLargestEmptySubobject = EmptySize;
228   }
229 }
230 
231 bool
CanPlaceSubobjectAtOffset(const CXXRecordDecl * RD,CharUnits Offset) const232 EmptySubobjectMap::CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
233                                              CharUnits Offset) const {
234   // We only need to check empty bases.
235   if (!RD->isEmpty())
236     return true;
237 
238   EmptyClassOffsetsMapTy::const_iterator I = EmptyClassOffsets.find(Offset);
239   if (I == EmptyClassOffsets.end())
240     return true;
241 
242   const ClassVectorTy &Classes = I->second;
243   if (llvm::find(Classes, RD) == Classes.end())
244     return true;
245 
246   // There is already an empty class of the same type at this offset.
247   return false;
248 }
249 
AddSubobjectAtOffset(const CXXRecordDecl * RD,CharUnits Offset)250 void EmptySubobjectMap::AddSubobjectAtOffset(const CXXRecordDecl *RD,
251                                              CharUnits Offset) {
252   // We only care about empty bases.
253   if (!RD->isEmpty())
254     return;
255 
256   // If we have empty structures inside a union, we can assign both
257   // the same offset. Just avoid pushing them twice in the list.
258   ClassVectorTy &Classes = EmptyClassOffsets[Offset];
259   if (llvm::is_contained(Classes, RD))
260     return;
261 
262   Classes.push_back(RD);
263 
264   // Update the empty class offset.
265   if (Offset > MaxEmptyClassOffset)
266     MaxEmptyClassOffset = Offset;
267 }
268 
269 bool
CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo * Info,CharUnits Offset)270 EmptySubobjectMap::CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
271                                                  CharUnits Offset) {
272   // We don't have to keep looking past the maximum offset that's known to
273   // contain an empty class.
274   if (!AnyEmptySubobjectsBeyondOffset(Offset))
275     return true;
276 
277   if (!CanPlaceSubobjectAtOffset(Info->Class, Offset))
278     return false;
279 
280   // Traverse all non-virtual bases.
281   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
282   for (const BaseSubobjectInfo *Base : Info->Bases) {
283     if (Base->IsVirtual)
284       continue;
285 
286     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
287 
288     if (!CanPlaceBaseSubobjectAtOffset(Base, BaseOffset))
289       return false;
290   }
291 
292   if (Info->PrimaryVirtualBaseInfo) {
293     BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
294 
295     if (Info == PrimaryVirtualBaseInfo->Derived) {
296       if (!CanPlaceBaseSubobjectAtOffset(PrimaryVirtualBaseInfo, Offset))
297         return false;
298     }
299   }
300 
301   // Traverse all member variables.
302   unsigned FieldNo = 0;
303   for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
304        E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
305     if (I->isBitField())
306       continue;
307 
308     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
309     if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
310       return false;
311   }
312 
313   return true;
314 }
315 
UpdateEmptyBaseSubobjects(const BaseSubobjectInfo * Info,CharUnits Offset,bool PlacingEmptyBase)316 void EmptySubobjectMap::UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
317                                                   CharUnits Offset,
318                                                   bool PlacingEmptyBase) {
319   if (!PlacingEmptyBase && Offset >= SizeOfLargestEmptySubobject) {
320     // We know that the only empty subobjects that can conflict with empty
321     // subobject of non-empty bases, are empty bases that can be placed at
322     // offset zero. Because of this, we only need to keep track of empty base
323     // subobjects with offsets less than the size of the largest empty
324     // subobject for our class.
325     return;
326   }
327 
328   AddSubobjectAtOffset(Info->Class, Offset);
329 
330   // Traverse all non-virtual bases.
331   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
332   for (const BaseSubobjectInfo *Base : Info->Bases) {
333     if (Base->IsVirtual)
334       continue;
335 
336     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
337     UpdateEmptyBaseSubobjects(Base, BaseOffset, PlacingEmptyBase);
338   }
339 
340   if (Info->PrimaryVirtualBaseInfo) {
341     BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
342 
343     if (Info == PrimaryVirtualBaseInfo->Derived)
344       UpdateEmptyBaseSubobjects(PrimaryVirtualBaseInfo, Offset,
345                                 PlacingEmptyBase);
346   }
347 
348   // Traverse all member variables.
349   unsigned FieldNo = 0;
350   for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
351        E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
352     if (I->isBitField())
353       continue;
354 
355     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
356     UpdateEmptyFieldSubobjects(*I, FieldOffset, PlacingEmptyBase);
357   }
358 }
359 
CanPlaceBaseAtOffset(const BaseSubobjectInfo * Info,CharUnits Offset)360 bool EmptySubobjectMap::CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
361                                              CharUnits Offset) {
362   // If we know this class doesn't have any empty subobjects we don't need to
363   // bother checking.
364   if (SizeOfLargestEmptySubobject.isZero())
365     return true;
366 
367   if (!CanPlaceBaseSubobjectAtOffset(Info, Offset))
368     return false;
369 
370   // We are able to place the base at this offset. Make sure to update the
371   // empty base subobject map.
372   UpdateEmptyBaseSubobjects(Info, Offset, Info->Class->isEmpty());
373   return true;
374 }
375 
376 bool
CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl * RD,const CXXRecordDecl * Class,CharUnits Offset) const377 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
378                                                   const CXXRecordDecl *Class,
379                                                   CharUnits Offset) const {
380   // We don't have to keep looking past the maximum offset that's known to
381   // contain an empty class.
382   if (!AnyEmptySubobjectsBeyondOffset(Offset))
383     return true;
384 
385   if (!CanPlaceSubobjectAtOffset(RD, Offset))
386     return false;
387 
388   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
389 
390   // Traverse all non-virtual bases.
391   for (const CXXBaseSpecifier &Base : RD->bases()) {
392     if (Base.isVirtual())
393       continue;
394 
395     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
396 
397     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
398     if (!CanPlaceFieldSubobjectAtOffset(BaseDecl, Class, BaseOffset))
399       return false;
400   }
401 
402   if (RD == Class) {
403     // This is the most derived class, traverse virtual bases as well.
404     for (const CXXBaseSpecifier &Base : RD->vbases()) {
405       const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl();
406 
407       CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
408       if (!CanPlaceFieldSubobjectAtOffset(VBaseDecl, Class, VBaseOffset))
409         return false;
410     }
411   }
412 
413   // Traverse all member variables.
414   unsigned FieldNo = 0;
415   for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
416        I != E; ++I, ++FieldNo) {
417     if (I->isBitField())
418       continue;
419 
420     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
421 
422     if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
423       return false;
424   }
425 
426   return true;
427 }
428 
429 bool
CanPlaceFieldSubobjectAtOffset(const FieldDecl * FD,CharUnits Offset) const430 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
431                                                   CharUnits Offset) const {
432   // We don't have to keep looking past the maximum offset that's known to
433   // contain an empty class.
434   if (!AnyEmptySubobjectsBeyondOffset(Offset))
435     return true;
436 
437   QualType T = FD->getType();
438   if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
439     return CanPlaceFieldSubobjectAtOffset(RD, RD, Offset);
440 
441   // If we have an array type we need to look at every element.
442   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
443     QualType ElemTy = Context.getBaseElementType(AT);
444     const RecordType *RT = ElemTy->getAs<RecordType>();
445     if (!RT)
446       return true;
447 
448     const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
449     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
450 
451     uint64_t NumElements = Context.getConstantArrayElementCount(AT);
452     CharUnits ElementOffset = Offset;
453     for (uint64_t I = 0; I != NumElements; ++I) {
454       // We don't have to keep looking past the maximum offset that's known to
455       // contain an empty class.
456       if (!AnyEmptySubobjectsBeyondOffset(ElementOffset))
457         return true;
458 
459       if (!CanPlaceFieldSubobjectAtOffset(RD, RD, ElementOffset))
460         return false;
461 
462       ElementOffset += Layout.getSize();
463     }
464   }
465 
466   return true;
467 }
468 
469 bool
CanPlaceFieldAtOffset(const FieldDecl * FD,CharUnits Offset)470 EmptySubobjectMap::CanPlaceFieldAtOffset(const FieldDecl *FD,
471                                          CharUnits Offset) {
472   if (!CanPlaceFieldSubobjectAtOffset(FD, Offset))
473     return false;
474 
475   // We are able to place the member variable at this offset.
476   // Make sure to update the empty field subobject map.
477   UpdateEmptyFieldSubobjects(FD, Offset, FD->hasAttr<NoUniqueAddressAttr>());
478   return true;
479 }
480 
UpdateEmptyFieldSubobjects(const CXXRecordDecl * RD,const CXXRecordDecl * Class,CharUnits Offset,bool PlacingOverlappingField)481 void EmptySubobjectMap::UpdateEmptyFieldSubobjects(
482     const CXXRecordDecl *RD, const CXXRecordDecl *Class, CharUnits Offset,
483     bool PlacingOverlappingField) {
484   // We know that the only empty subobjects that can conflict with empty
485   // field subobjects are subobjects of empty bases and potentially-overlapping
486   // fields that can be placed at offset zero. Because of this, we only need to
487   // keep track of empty field subobjects with offsets less than the size of
488   // the largest empty subobject for our class.
489   //
490   // (Proof: we will only consider placing a subobject at offset zero or at
491   // >= the current dsize. The only cases where the earlier subobject can be
492   // placed beyond the end of dsize is if it's an empty base or a
493   // potentially-overlapping field.)
494   if (!PlacingOverlappingField && Offset >= SizeOfLargestEmptySubobject)
495     return;
496 
497   AddSubobjectAtOffset(RD, Offset);
498 
499   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
500 
501   // Traverse all non-virtual bases.
502   for (const CXXBaseSpecifier &Base : RD->bases()) {
503     if (Base.isVirtual())
504       continue;
505 
506     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
507 
508     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
509     UpdateEmptyFieldSubobjects(BaseDecl, Class, BaseOffset,
510                                PlacingOverlappingField);
511   }
512 
513   if (RD == Class) {
514     // This is the most derived class, traverse virtual bases as well.
515     for (const CXXBaseSpecifier &Base : RD->vbases()) {
516       const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl();
517 
518       CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
519       UpdateEmptyFieldSubobjects(VBaseDecl, Class, VBaseOffset,
520                                  PlacingOverlappingField);
521     }
522   }
523 
524   // Traverse all member variables.
525   unsigned FieldNo = 0;
526   for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
527        I != E; ++I, ++FieldNo) {
528     if (I->isBitField())
529       continue;
530 
531     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
532 
533     UpdateEmptyFieldSubobjects(*I, FieldOffset, PlacingOverlappingField);
534   }
535 }
536 
UpdateEmptyFieldSubobjects(const FieldDecl * FD,CharUnits Offset,bool PlacingOverlappingField)537 void EmptySubobjectMap::UpdateEmptyFieldSubobjects(
538     const FieldDecl *FD, CharUnits Offset, bool PlacingOverlappingField) {
539   QualType T = FD->getType();
540   if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
541     UpdateEmptyFieldSubobjects(RD, RD, Offset, PlacingOverlappingField);
542     return;
543   }
544 
545   // If we have an array type we need to update every element.
546   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
547     QualType ElemTy = Context.getBaseElementType(AT);
548     const RecordType *RT = ElemTy->getAs<RecordType>();
549     if (!RT)
550       return;
551 
552     const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
553     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
554 
555     uint64_t NumElements = Context.getConstantArrayElementCount(AT);
556     CharUnits ElementOffset = Offset;
557 
558     for (uint64_t I = 0; I != NumElements; ++I) {
559       // We know that the only empty subobjects that can conflict with empty
560       // field subobjects are subobjects of empty bases that can be placed at
561       // offset zero. Because of this, we only need to keep track of empty field
562       // subobjects with offsets less than the size of the largest empty
563       // subobject for our class.
564       if (!PlacingOverlappingField &&
565           ElementOffset >= SizeOfLargestEmptySubobject)
566         return;
567 
568       UpdateEmptyFieldSubobjects(RD, RD, ElementOffset,
569                                  PlacingOverlappingField);
570       ElementOffset += Layout.getSize();
571     }
572   }
573 }
574 
575 typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> ClassSetTy;
576 
577 class ItaniumRecordLayoutBuilder {
578 protected:
579   // FIXME: Remove this and make the appropriate fields public.
580   friend class clang::ASTContext;
581 
582   const ASTContext &Context;
583 
584   EmptySubobjectMap *EmptySubobjects;
585 
586   /// Size - The current size of the record layout.
587   uint64_t Size;
588 
589   /// Alignment - The current alignment of the record layout.
590   CharUnits Alignment;
591 
592   /// PreferredAlignment - The preferred alignment of the record layout.
593   CharUnits PreferredAlignment;
594 
595   /// The alignment if attribute packed is not used.
596   CharUnits UnpackedAlignment;
597 
598   /// \brief The maximum of the alignments of top-level members.
599   CharUnits UnadjustedAlignment;
600 
601   SmallVector<uint64_t, 16> FieldOffsets;
602 
603   /// Whether the external AST source has provided a layout for this
604   /// record.
605   unsigned UseExternalLayout : 1;
606 
607   /// Whether we need to infer alignment, even when we have an
608   /// externally-provided layout.
609   unsigned InferAlignment : 1;
610 
611   /// Packed - Whether the record is packed or not.
612   unsigned Packed : 1;
613 
614   unsigned IsUnion : 1;
615 
616   unsigned IsMac68kAlign : 1;
617 
618   unsigned IsMsStruct : 1;
619 
620   /// UnfilledBitsInLastUnit - If the last field laid out was a bitfield,
621   /// this contains the number of bits in the last unit that can be used for
622   /// an adjacent bitfield if necessary.  The unit in question is usually
623   /// a byte, but larger units are used if IsMsStruct.
624   unsigned char UnfilledBitsInLastUnit;
625 
626   /// LastBitfieldStorageUnitSize - If IsMsStruct, represents the size of the
627   /// storage unit of the previous field if it was a bitfield.
628   unsigned char LastBitfieldStorageUnitSize;
629 
630   /// MaxFieldAlignment - The maximum allowed field alignment. This is set by
631   /// #pragma pack.
632   CharUnits MaxFieldAlignment;
633 
634   /// DataSize - The data size of the record being laid out.
635   uint64_t DataSize;
636 
637   CharUnits NonVirtualSize;
638   CharUnits NonVirtualAlignment;
639   CharUnits PreferredNVAlignment;
640 
641   /// If we've laid out a field but not included its tail padding in Size yet,
642   /// this is the size up to the end of that field.
643   CharUnits PaddedFieldSize;
644 
645   /// PrimaryBase - the primary base class (if one exists) of the class
646   /// we're laying out.
647   const CXXRecordDecl *PrimaryBase;
648 
649   /// PrimaryBaseIsVirtual - Whether the primary base of the class we're laying
650   /// out is virtual.
651   bool PrimaryBaseIsVirtual;
652 
653   /// HasOwnVFPtr - Whether the class provides its own vtable/vftbl
654   /// pointer, as opposed to inheriting one from a primary base class.
655   bool HasOwnVFPtr;
656 
657   /// the flag of field offset changing due to packed attribute.
658   bool HasPackedField;
659 
660   /// HandledFirstNonOverlappingEmptyField - An auxiliary field used for AIX.
661   /// When there are OverlappingEmptyFields existing in the aggregate, the
662   /// flag shows if the following first non-empty or empty-but-non-overlapping
663   /// field has been handled, if any.
664   bool HandledFirstNonOverlappingEmptyField;
665 
666   typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
667 
668   /// Bases - base classes and their offsets in the record.
669   BaseOffsetsMapTy Bases;
670 
671   // VBases - virtual base classes and their offsets in the record.
672   ASTRecordLayout::VBaseOffsetsMapTy VBases;
673 
674   /// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are
675   /// primary base classes for some other direct or indirect base class.
676   CXXIndirectPrimaryBaseSet IndirectPrimaryBases;
677 
678   /// FirstNearlyEmptyVBase - The first nearly empty virtual base class in
679   /// inheritance graph order. Used for determining the primary base class.
680   const CXXRecordDecl *FirstNearlyEmptyVBase;
681 
682   /// VisitedVirtualBases - A set of all the visited virtual bases, used to
683   /// avoid visiting virtual bases more than once.
684   llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
685 
686   /// Valid if UseExternalLayout is true.
687   ExternalLayout External;
688 
ItaniumRecordLayoutBuilder(const ASTContext & Context,EmptySubobjectMap * EmptySubobjects)689   ItaniumRecordLayoutBuilder(const ASTContext &Context,
690                              EmptySubobjectMap *EmptySubobjects)
691       : Context(Context), EmptySubobjects(EmptySubobjects), Size(0),
692         Alignment(CharUnits::One()), PreferredAlignment(CharUnits::One()),
693         UnpackedAlignment(CharUnits::One()),
694         UnadjustedAlignment(CharUnits::One()), UseExternalLayout(false),
695         InferAlignment(false), Packed(false), IsUnion(false),
696         IsMac68kAlign(false), IsMsStruct(false), UnfilledBitsInLastUnit(0),
697         LastBitfieldStorageUnitSize(0), MaxFieldAlignment(CharUnits::Zero()),
698         DataSize(0), NonVirtualSize(CharUnits::Zero()),
699         NonVirtualAlignment(CharUnits::One()),
700         PreferredNVAlignment(CharUnits::One()),
701         PaddedFieldSize(CharUnits::Zero()), PrimaryBase(nullptr),
702         PrimaryBaseIsVirtual(false), HasOwnVFPtr(false), HasPackedField(false),
703         HandledFirstNonOverlappingEmptyField(false),
704         FirstNearlyEmptyVBase(nullptr) {}
705 
706   void Layout(const RecordDecl *D);
707   void Layout(const CXXRecordDecl *D);
708   void Layout(const ObjCInterfaceDecl *D);
709 
710   void LayoutFields(const RecordDecl *D);
711   void LayoutField(const FieldDecl *D, bool InsertExtraPadding);
712   void LayoutWideBitField(uint64_t FieldSize, uint64_t StorageUnitSize,
713                           bool FieldPacked, const FieldDecl *D);
714   void LayoutBitField(const FieldDecl *D);
715 
getCXXABI() const716   TargetCXXABI getCXXABI() const {
717     return Context.getTargetInfo().getCXXABI();
718   }
719 
720   /// BaseSubobjectInfoAllocator - Allocator for BaseSubobjectInfo objects.
721   llvm::SpecificBumpPtrAllocator<BaseSubobjectInfo> BaseSubobjectInfoAllocator;
722 
723   typedef llvm::DenseMap<const CXXRecordDecl *, BaseSubobjectInfo *>
724     BaseSubobjectInfoMapTy;
725 
726   /// VirtualBaseInfo - Map from all the (direct or indirect) virtual bases
727   /// of the class we're laying out to their base subobject info.
728   BaseSubobjectInfoMapTy VirtualBaseInfo;
729 
730   /// NonVirtualBaseInfo - Map from all the direct non-virtual bases of the
731   /// class we're laying out to their base subobject info.
732   BaseSubobjectInfoMapTy NonVirtualBaseInfo;
733 
734   /// ComputeBaseSubobjectInfo - Compute the base subobject information for the
735   /// bases of the given class.
736   void ComputeBaseSubobjectInfo(const CXXRecordDecl *RD);
737 
738   /// ComputeBaseSubobjectInfo - Compute the base subobject information for a
739   /// single class and all of its base classes.
740   BaseSubobjectInfo *ComputeBaseSubobjectInfo(const CXXRecordDecl *RD,
741                                               bool IsVirtual,
742                                               BaseSubobjectInfo *Derived);
743 
744   /// DeterminePrimaryBase - Determine the primary base of the given class.
745   void DeterminePrimaryBase(const CXXRecordDecl *RD);
746 
747   void SelectPrimaryVBase(const CXXRecordDecl *RD);
748 
749   void EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign);
750 
751   /// LayoutNonVirtualBases - Determines the primary base class (if any) and
752   /// lays it out. Will then proceed to lay out all non-virtual base clasess.
753   void LayoutNonVirtualBases(const CXXRecordDecl *RD);
754 
755   /// LayoutNonVirtualBase - Lays out a single non-virtual base.
756   void LayoutNonVirtualBase(const BaseSubobjectInfo *Base);
757 
758   void AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info,
759                                     CharUnits Offset);
760 
761   /// LayoutVirtualBases - Lays out all the virtual bases.
762   void LayoutVirtualBases(const CXXRecordDecl *RD,
763                           const CXXRecordDecl *MostDerivedClass);
764 
765   /// LayoutVirtualBase - Lays out a single virtual base.
766   void LayoutVirtualBase(const BaseSubobjectInfo *Base);
767 
768   /// LayoutBase - Will lay out a base and return the offset where it was
769   /// placed, in chars.
770   CharUnits LayoutBase(const BaseSubobjectInfo *Base);
771 
772   /// InitializeLayout - Initialize record layout for the given record decl.
773   void InitializeLayout(const Decl *D);
774 
775   /// FinishLayout - Finalize record layout. Adjust record size based on the
776   /// alignment.
777   void FinishLayout(const NamedDecl *D);
778 
779   void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment,
780                        CharUnits PreferredAlignment);
UpdateAlignment(CharUnits NewAlignment,CharUnits UnpackedNewAlignment)781   void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment) {
782     UpdateAlignment(NewAlignment, UnpackedNewAlignment, NewAlignment);
783   }
UpdateAlignment(CharUnits NewAlignment)784   void UpdateAlignment(CharUnits NewAlignment) {
785     UpdateAlignment(NewAlignment, NewAlignment, NewAlignment);
786   }
787 
788   /// Retrieve the externally-supplied field offset for the given
789   /// field.
790   ///
791   /// \param Field The field whose offset is being queried.
792   /// \param ComputedOffset The offset that we've computed for this field.
793   uint64_t updateExternalFieldOffset(const FieldDecl *Field,
794                                      uint64_t ComputedOffset);
795 
796   void CheckFieldPadding(uint64_t Offset, uint64_t UnpaddedOffset,
797                           uint64_t UnpackedOffset, unsigned UnpackedAlign,
798                           bool isPacked, const FieldDecl *D);
799 
800   DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID);
801 
getSize() const802   CharUnits getSize() const {
803     assert(Size % Context.getCharWidth() == 0);
804     return Context.toCharUnitsFromBits(Size);
805   }
getSizeInBits() const806   uint64_t getSizeInBits() const { return Size; }
807 
setSize(CharUnits NewSize)808   void setSize(CharUnits NewSize) { Size = Context.toBits(NewSize); }
setSize(uint64_t NewSize)809   void setSize(uint64_t NewSize) { Size = NewSize; }
810 
getAligment() const811   CharUnits getAligment() const { return Alignment; }
812 
getDataSize() const813   CharUnits getDataSize() const {
814     assert(DataSize % Context.getCharWidth() == 0);
815     return Context.toCharUnitsFromBits(DataSize);
816   }
getDataSizeInBits() const817   uint64_t getDataSizeInBits() const { return DataSize; }
818 
setDataSize(CharUnits NewSize)819   void setDataSize(CharUnits NewSize) { DataSize = Context.toBits(NewSize); }
setDataSize(uint64_t NewSize)820   void setDataSize(uint64_t NewSize) { DataSize = NewSize; }
821 
822   ItaniumRecordLayoutBuilder(const ItaniumRecordLayoutBuilder &) = delete;
823   void operator=(const ItaniumRecordLayoutBuilder &) = delete;
824 };
825 } // end anonymous namespace
826 
SelectPrimaryVBase(const CXXRecordDecl * RD)827 void ItaniumRecordLayoutBuilder::SelectPrimaryVBase(const CXXRecordDecl *RD) {
828   for (const auto &I : RD->bases()) {
829     assert(!I.getType()->isDependentType() &&
830            "Cannot layout class with dependent bases.");
831 
832     const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
833 
834     // Check if this is a nearly empty virtual base.
835     if (I.isVirtual() && Context.isNearlyEmpty(Base)) {
836       // If it's not an indirect primary base, then we've found our primary
837       // base.
838       if (!IndirectPrimaryBases.count(Base)) {
839         PrimaryBase = Base;
840         PrimaryBaseIsVirtual = true;
841         return;
842       }
843 
844       // Is this the first nearly empty virtual base?
845       if (!FirstNearlyEmptyVBase)
846         FirstNearlyEmptyVBase = Base;
847     }
848 
849     SelectPrimaryVBase(Base);
850     if (PrimaryBase)
851       return;
852   }
853 }
854 
855 /// DeterminePrimaryBase - Determine the primary base of the given class.
DeterminePrimaryBase(const CXXRecordDecl * RD)856 void ItaniumRecordLayoutBuilder::DeterminePrimaryBase(const CXXRecordDecl *RD) {
857   // If the class isn't dynamic, it won't have a primary base.
858   if (!RD->isDynamicClass())
859     return;
860 
861   // Compute all the primary virtual bases for all of our direct and
862   // indirect bases, and record all their primary virtual base classes.
863   RD->getIndirectPrimaryBases(IndirectPrimaryBases);
864 
865   // If the record has a dynamic base class, attempt to choose a primary base
866   // class. It is the first (in direct base class order) non-virtual dynamic
867   // base class, if one exists.
868   for (const auto &I : RD->bases()) {
869     // Ignore virtual bases.
870     if (I.isVirtual())
871       continue;
872 
873     const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
874 
875     if (Base->isDynamicClass()) {
876       // We found it.
877       PrimaryBase = Base;
878       PrimaryBaseIsVirtual = false;
879       return;
880     }
881   }
882 
883   // Under the Itanium ABI, if there is no non-virtual primary base class,
884   // try to compute the primary virtual base.  The primary virtual base is
885   // the first nearly empty virtual base that is not an indirect primary
886   // virtual base class, if one exists.
887   if (RD->getNumVBases() != 0) {
888     SelectPrimaryVBase(RD);
889     if (PrimaryBase)
890       return;
891   }
892 
893   // Otherwise, it is the first indirect primary base class, if one exists.
894   if (FirstNearlyEmptyVBase) {
895     PrimaryBase = FirstNearlyEmptyVBase;
896     PrimaryBaseIsVirtual = true;
897     return;
898   }
899 
900   assert(!PrimaryBase && "Should not get here with a primary base!");
901 }
902 
ComputeBaseSubobjectInfo(const CXXRecordDecl * RD,bool IsVirtual,BaseSubobjectInfo * Derived)903 BaseSubobjectInfo *ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo(
904     const CXXRecordDecl *RD, bool IsVirtual, BaseSubobjectInfo *Derived) {
905   BaseSubobjectInfo *Info;
906 
907   if (IsVirtual) {
908     // Check if we already have info about this virtual base.
909     BaseSubobjectInfo *&InfoSlot = VirtualBaseInfo[RD];
910     if (InfoSlot) {
911       assert(InfoSlot->Class == RD && "Wrong class for virtual base info!");
912       return InfoSlot;
913     }
914 
915     // We don't, create it.
916     InfoSlot = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
917     Info = InfoSlot;
918   } else {
919     Info = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
920   }
921 
922   Info->Class = RD;
923   Info->IsVirtual = IsVirtual;
924   Info->Derived = nullptr;
925   Info->PrimaryVirtualBaseInfo = nullptr;
926 
927   const CXXRecordDecl *PrimaryVirtualBase = nullptr;
928   BaseSubobjectInfo *PrimaryVirtualBaseInfo = nullptr;
929 
930   // Check if this base has a primary virtual base.
931   if (RD->getNumVBases()) {
932     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
933     if (Layout.isPrimaryBaseVirtual()) {
934       // This base does have a primary virtual base.
935       PrimaryVirtualBase = Layout.getPrimaryBase();
936       assert(PrimaryVirtualBase && "Didn't have a primary virtual base!");
937 
938       // Now check if we have base subobject info about this primary base.
939       PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
940 
941       if (PrimaryVirtualBaseInfo) {
942         if (PrimaryVirtualBaseInfo->Derived) {
943           // We did have info about this primary base, and it turns out that it
944           // has already been claimed as a primary virtual base for another
945           // base.
946           PrimaryVirtualBase = nullptr;
947         } else {
948           // We can claim this base as our primary base.
949           Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
950           PrimaryVirtualBaseInfo->Derived = Info;
951         }
952       }
953     }
954   }
955 
956   // Now go through all direct bases.
957   for (const auto &I : RD->bases()) {
958     bool IsVirtual = I.isVirtual();
959 
960     const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
961 
962     Info->Bases.push_back(ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, Info));
963   }
964 
965   if (PrimaryVirtualBase && !PrimaryVirtualBaseInfo) {
966     // Traversing the bases must have created the base info for our primary
967     // virtual base.
968     PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
969     assert(PrimaryVirtualBaseInfo &&
970            "Did not create a primary virtual base!");
971 
972     // Claim the primary virtual base as our primary virtual base.
973     Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
974     PrimaryVirtualBaseInfo->Derived = Info;
975   }
976 
977   return Info;
978 }
979 
ComputeBaseSubobjectInfo(const CXXRecordDecl * RD)980 void ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo(
981     const CXXRecordDecl *RD) {
982   for (const auto &I : RD->bases()) {
983     bool IsVirtual = I.isVirtual();
984 
985     const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
986 
987     // Compute the base subobject info for this base.
988     BaseSubobjectInfo *Info = ComputeBaseSubobjectInfo(BaseDecl, IsVirtual,
989                                                        nullptr);
990 
991     if (IsVirtual) {
992       // ComputeBaseInfo has already added this base for us.
993       assert(VirtualBaseInfo.count(BaseDecl) &&
994              "Did not add virtual base!");
995     } else {
996       // Add the base info to the map of non-virtual bases.
997       assert(!NonVirtualBaseInfo.count(BaseDecl) &&
998              "Non-virtual base already exists!");
999       NonVirtualBaseInfo.insert(std::make_pair(BaseDecl, Info));
1000     }
1001   }
1002 }
1003 
EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign)1004 void ItaniumRecordLayoutBuilder::EnsureVTablePointerAlignment(
1005     CharUnits UnpackedBaseAlign) {
1006   CharUnits BaseAlign = Packed ? CharUnits::One() : UnpackedBaseAlign;
1007 
1008   // The maximum field alignment overrides base align.
1009   if (!MaxFieldAlignment.isZero()) {
1010     BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
1011     UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
1012   }
1013 
1014   // Round up the current record size to pointer alignment.
1015   setSize(getSize().alignTo(BaseAlign));
1016 
1017   // Update the alignment.
1018   UpdateAlignment(BaseAlign, UnpackedBaseAlign, BaseAlign);
1019 }
1020 
LayoutNonVirtualBases(const CXXRecordDecl * RD)1021 void ItaniumRecordLayoutBuilder::LayoutNonVirtualBases(
1022     const CXXRecordDecl *RD) {
1023   // Then, determine the primary base class.
1024   DeterminePrimaryBase(RD);
1025 
1026   // Compute base subobject info.
1027   ComputeBaseSubobjectInfo(RD);
1028 
1029   // If we have a primary base class, lay it out.
1030   if (PrimaryBase) {
1031     if (PrimaryBaseIsVirtual) {
1032       // If the primary virtual base was a primary virtual base of some other
1033       // base class we'll have to steal it.
1034       BaseSubobjectInfo *PrimaryBaseInfo = VirtualBaseInfo.lookup(PrimaryBase);
1035       PrimaryBaseInfo->Derived = nullptr;
1036 
1037       // We have a virtual primary base, insert it as an indirect primary base.
1038       IndirectPrimaryBases.insert(PrimaryBase);
1039 
1040       assert(!VisitedVirtualBases.count(PrimaryBase) &&
1041              "vbase already visited!");
1042       VisitedVirtualBases.insert(PrimaryBase);
1043 
1044       LayoutVirtualBase(PrimaryBaseInfo);
1045     } else {
1046       BaseSubobjectInfo *PrimaryBaseInfo =
1047         NonVirtualBaseInfo.lookup(PrimaryBase);
1048       assert(PrimaryBaseInfo &&
1049              "Did not find base info for non-virtual primary base!");
1050 
1051       LayoutNonVirtualBase(PrimaryBaseInfo);
1052     }
1053 
1054   // If this class needs a vtable/vf-table and didn't get one from a
1055   // primary base, add it in now.
1056   } else if (RD->isDynamicClass()) {
1057     assert(DataSize == 0 && "Vtable pointer must be at offset zero!");
1058     CharUnits PtrWidth =
1059       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
1060     CharUnits PtrAlign =
1061       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
1062     EnsureVTablePointerAlignment(PtrAlign);
1063     HasOwnVFPtr = true;
1064 
1065     assert(!IsUnion && "Unions cannot be dynamic classes.");
1066     HandledFirstNonOverlappingEmptyField = true;
1067 
1068     setSize(getSize() + PtrWidth);
1069     setDataSize(getSize());
1070   }
1071 
1072   // Now lay out the non-virtual bases.
1073   for (const auto &I : RD->bases()) {
1074 
1075     // Ignore virtual bases.
1076     if (I.isVirtual())
1077       continue;
1078 
1079     const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
1080 
1081     // Skip the primary base, because we've already laid it out.  The
1082     // !PrimaryBaseIsVirtual check is required because we might have a
1083     // non-virtual base of the same type as a primary virtual base.
1084     if (BaseDecl == PrimaryBase && !PrimaryBaseIsVirtual)
1085       continue;
1086 
1087     // Lay out the base.
1088     BaseSubobjectInfo *BaseInfo = NonVirtualBaseInfo.lookup(BaseDecl);
1089     assert(BaseInfo && "Did not find base info for non-virtual base!");
1090 
1091     LayoutNonVirtualBase(BaseInfo);
1092   }
1093 }
1094 
LayoutNonVirtualBase(const BaseSubobjectInfo * Base)1095 void ItaniumRecordLayoutBuilder::LayoutNonVirtualBase(
1096     const BaseSubobjectInfo *Base) {
1097   // Layout the base.
1098   CharUnits Offset = LayoutBase(Base);
1099 
1100   // Add its base class offset.
1101   assert(!Bases.count(Base->Class) && "base offset already exists!");
1102   Bases.insert(std::make_pair(Base->Class, Offset));
1103 
1104   AddPrimaryVirtualBaseOffsets(Base, Offset);
1105 }
1106 
AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo * Info,CharUnits Offset)1107 void ItaniumRecordLayoutBuilder::AddPrimaryVirtualBaseOffsets(
1108     const BaseSubobjectInfo *Info, CharUnits Offset) {
1109   // This base isn't interesting, it has no virtual bases.
1110   if (!Info->Class->getNumVBases())
1111     return;
1112 
1113   // First, check if we have a virtual primary base to add offsets for.
1114   if (Info->PrimaryVirtualBaseInfo) {
1115     assert(Info->PrimaryVirtualBaseInfo->IsVirtual &&
1116            "Primary virtual base is not virtual!");
1117     if (Info->PrimaryVirtualBaseInfo->Derived == Info) {
1118       // Add the offset.
1119       assert(!VBases.count(Info->PrimaryVirtualBaseInfo->Class) &&
1120              "primary vbase offset already exists!");
1121       VBases.insert(std::make_pair(Info->PrimaryVirtualBaseInfo->Class,
1122                                    ASTRecordLayout::VBaseInfo(Offset, false)));
1123 
1124       // Traverse the primary virtual base.
1125       AddPrimaryVirtualBaseOffsets(Info->PrimaryVirtualBaseInfo, Offset);
1126     }
1127   }
1128 
1129   // Now go through all direct non-virtual bases.
1130   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
1131   for (const BaseSubobjectInfo *Base : Info->Bases) {
1132     if (Base->IsVirtual)
1133       continue;
1134 
1135     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
1136     AddPrimaryVirtualBaseOffsets(Base, BaseOffset);
1137   }
1138 }
1139 
LayoutVirtualBases(const CXXRecordDecl * RD,const CXXRecordDecl * MostDerivedClass)1140 void ItaniumRecordLayoutBuilder::LayoutVirtualBases(
1141     const CXXRecordDecl *RD, const CXXRecordDecl *MostDerivedClass) {
1142   const CXXRecordDecl *PrimaryBase;
1143   bool PrimaryBaseIsVirtual;
1144 
1145   if (MostDerivedClass == RD) {
1146     PrimaryBase = this->PrimaryBase;
1147     PrimaryBaseIsVirtual = this->PrimaryBaseIsVirtual;
1148   } else {
1149     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1150     PrimaryBase = Layout.getPrimaryBase();
1151     PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
1152   }
1153 
1154   for (const CXXBaseSpecifier &Base : RD->bases()) {
1155     assert(!Base.getType()->isDependentType() &&
1156            "Cannot layout class with dependent bases.");
1157 
1158     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1159 
1160     if (Base.isVirtual()) {
1161       if (PrimaryBase != BaseDecl || !PrimaryBaseIsVirtual) {
1162         bool IndirectPrimaryBase = IndirectPrimaryBases.count(BaseDecl);
1163 
1164         // Only lay out the virtual base if it's not an indirect primary base.
1165         if (!IndirectPrimaryBase) {
1166           // Only visit virtual bases once.
1167           if (!VisitedVirtualBases.insert(BaseDecl).second)
1168             continue;
1169 
1170           const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl);
1171           assert(BaseInfo && "Did not find virtual base info!");
1172           LayoutVirtualBase(BaseInfo);
1173         }
1174       }
1175     }
1176 
1177     if (!BaseDecl->getNumVBases()) {
1178       // This base isn't interesting since it doesn't have any virtual bases.
1179       continue;
1180     }
1181 
1182     LayoutVirtualBases(BaseDecl, MostDerivedClass);
1183   }
1184 }
1185 
LayoutVirtualBase(const BaseSubobjectInfo * Base)1186 void ItaniumRecordLayoutBuilder::LayoutVirtualBase(
1187     const BaseSubobjectInfo *Base) {
1188   assert(!Base->Derived && "Trying to lay out a primary virtual base!");
1189 
1190   // Layout the base.
1191   CharUnits Offset = LayoutBase(Base);
1192 
1193   // Add its base class offset.
1194   assert(!VBases.count(Base->Class) && "vbase offset already exists!");
1195   VBases.insert(std::make_pair(Base->Class,
1196                        ASTRecordLayout::VBaseInfo(Offset, false)));
1197 
1198   AddPrimaryVirtualBaseOffsets(Base, Offset);
1199 }
1200 
1201 CharUnits
LayoutBase(const BaseSubobjectInfo * Base)1202 ItaniumRecordLayoutBuilder::LayoutBase(const BaseSubobjectInfo *Base) {
1203   assert(!IsUnion && "Unions cannot have base classes.");
1204 
1205   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base->Class);
1206   CharUnits Offset;
1207 
1208   // Query the external layout to see if it provides an offset.
1209   bool HasExternalLayout = false;
1210   if (UseExternalLayout) {
1211     if (Base->IsVirtual)
1212       HasExternalLayout = External.getExternalVBaseOffset(Base->Class, Offset);
1213     else
1214       HasExternalLayout = External.getExternalNVBaseOffset(Base->Class, Offset);
1215   }
1216 
1217   auto getBaseOrPreferredBaseAlignFromUnpacked = [&](CharUnits UnpackedAlign) {
1218     // Clang <= 6 incorrectly applied the 'packed' attribute to base classes.
1219     // Per GCC's documentation, it only applies to non-static data members.
1220     return (Packed && ((Context.getLangOpts().getClangABICompat() <=
1221                         LangOptions::ClangABI::Ver6) ||
1222                        Context.getTargetInfo().getTriple().isPS4() ||
1223                        Context.getTargetInfo().getTriple().isOSAIX()))
1224                ? CharUnits::One()
1225                : UnpackedAlign;
1226   };
1227 
1228   CharUnits UnpackedBaseAlign = Layout.getNonVirtualAlignment();
1229   CharUnits UnpackedPreferredBaseAlign = Layout.getPreferredNVAlignment();
1230   CharUnits BaseAlign =
1231       getBaseOrPreferredBaseAlignFromUnpacked(UnpackedBaseAlign);
1232   CharUnits PreferredBaseAlign =
1233       getBaseOrPreferredBaseAlignFromUnpacked(UnpackedPreferredBaseAlign);
1234 
1235   const bool DefaultsToAIXPowerAlignment =
1236       Context.getTargetInfo().defaultsToAIXPowerAlignment();
1237   if (DefaultsToAIXPowerAlignment) {
1238     // AIX `power` alignment does not apply the preferred alignment for
1239     // non-union classes if the source of the alignment (the current base in
1240     // this context) follows introduction of the first subobject with
1241     // exclusively allocated space or zero-extent array.
1242     if (!Base->Class->isEmpty() && !HandledFirstNonOverlappingEmptyField) {
1243       // By handling a base class that is not empty, we're handling the
1244       // "first (inherited) member".
1245       HandledFirstNonOverlappingEmptyField = true;
1246     } else {
1247       UnpackedPreferredBaseAlign = UnpackedBaseAlign;
1248       PreferredBaseAlign = BaseAlign;
1249     }
1250   }
1251 
1252   CharUnits UnpackedAlignTo = !DefaultsToAIXPowerAlignment
1253                                   ? UnpackedBaseAlign
1254                                   : UnpackedPreferredBaseAlign;
1255   // If we have an empty base class, try to place it at offset 0.
1256   if (Base->Class->isEmpty() &&
1257       (!HasExternalLayout || Offset == CharUnits::Zero()) &&
1258       EmptySubobjects->CanPlaceBaseAtOffset(Base, CharUnits::Zero())) {
1259     setSize(std::max(getSize(), Layout.getSize()));
1260     UpdateAlignment(BaseAlign, UnpackedAlignTo, PreferredBaseAlign);
1261 
1262     return CharUnits::Zero();
1263   }
1264 
1265   // The maximum field alignment overrides the base align/(AIX-only) preferred
1266   // base align.
1267   if (!MaxFieldAlignment.isZero()) {
1268     BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
1269     PreferredBaseAlign = std::min(PreferredBaseAlign, MaxFieldAlignment);
1270     UnpackedAlignTo = std::min(UnpackedAlignTo, MaxFieldAlignment);
1271   }
1272 
1273   CharUnits AlignTo =
1274       !DefaultsToAIXPowerAlignment ? BaseAlign : PreferredBaseAlign;
1275   if (!HasExternalLayout) {
1276     // Round up the current record size to the base's alignment boundary.
1277     Offset = getDataSize().alignTo(AlignTo);
1278 
1279     // Try to place the base.
1280     while (!EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset))
1281       Offset += AlignTo;
1282   } else {
1283     bool Allowed = EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset);
1284     (void)Allowed;
1285     assert(Allowed && "Base subobject externally placed at overlapping offset");
1286 
1287     if (InferAlignment && Offset < getDataSize().alignTo(AlignTo)) {
1288       // The externally-supplied base offset is before the base offset we
1289       // computed. Assume that the structure is packed.
1290       Alignment = CharUnits::One();
1291       InferAlignment = false;
1292     }
1293   }
1294 
1295   if (!Base->Class->isEmpty()) {
1296     // Update the data size.
1297     setDataSize(Offset + Layout.getNonVirtualSize());
1298 
1299     setSize(std::max(getSize(), getDataSize()));
1300   } else
1301     setSize(std::max(getSize(), Offset + Layout.getSize()));
1302 
1303   // Remember max struct/class alignment.
1304   UpdateAlignment(BaseAlign, UnpackedAlignTo, PreferredBaseAlign);
1305 
1306   return Offset;
1307 }
1308 
InitializeLayout(const Decl * D)1309 void ItaniumRecordLayoutBuilder::InitializeLayout(const Decl *D) {
1310   if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
1311     IsUnion = RD->isUnion();
1312     IsMsStruct = RD->isMsStruct(Context);
1313   }
1314 
1315   Packed = D->hasAttr<PackedAttr>();
1316   HandledFirstNonOverlappingEmptyField =
1317       !Context.getTargetInfo().defaultsToAIXPowerAlignment();
1318 
1319   // Honor the default struct packing maximum alignment flag.
1320   if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) {
1321     MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
1322   }
1323 
1324   // mac68k alignment supersedes maximum field alignment and attribute aligned,
1325   // and forces all structures to have 2-byte alignment. The IBM docs on it
1326   // allude to additional (more complicated) semantics, especially with regard
1327   // to bit-fields, but gcc appears not to follow that.
1328   if (D->hasAttr<AlignMac68kAttr>()) {
1329     IsMac68kAlign = true;
1330     MaxFieldAlignment = CharUnits::fromQuantity(2);
1331     Alignment = CharUnits::fromQuantity(2);
1332     PreferredAlignment = CharUnits::fromQuantity(2);
1333   } else {
1334     if (const MaxFieldAlignmentAttr *MFAA = D->getAttr<MaxFieldAlignmentAttr>())
1335       MaxFieldAlignment = Context.toCharUnitsFromBits(MFAA->getAlignment());
1336 
1337     if (unsigned MaxAlign = D->getMaxAlignment())
1338       UpdateAlignment(Context.toCharUnitsFromBits(MaxAlign));
1339   }
1340 
1341   // If there is an external AST source, ask it for the various offsets.
1342   if (const RecordDecl *RD = dyn_cast<RecordDecl>(D))
1343     if (ExternalASTSource *Source = Context.getExternalSource()) {
1344       UseExternalLayout = Source->layoutRecordType(
1345           RD, External.Size, External.Align, External.FieldOffsets,
1346           External.BaseOffsets, External.VirtualBaseOffsets);
1347 
1348       // Update based on external alignment.
1349       if (UseExternalLayout) {
1350         if (External.Align > 0) {
1351           Alignment = Context.toCharUnitsFromBits(External.Align);
1352           PreferredAlignment = Context.toCharUnitsFromBits(External.Align);
1353         } else {
1354           // The external source didn't have alignment information; infer it.
1355           InferAlignment = true;
1356         }
1357       }
1358     }
1359 }
1360 
Layout(const RecordDecl * D)1361 void ItaniumRecordLayoutBuilder::Layout(const RecordDecl *D) {
1362   InitializeLayout(D);
1363   LayoutFields(D);
1364 
1365   // Finally, round the size of the total struct up to the alignment of the
1366   // struct itself.
1367   FinishLayout(D);
1368 }
1369 
Layout(const CXXRecordDecl * RD)1370 void ItaniumRecordLayoutBuilder::Layout(const CXXRecordDecl *RD) {
1371   InitializeLayout(RD);
1372 
1373   // Lay out the vtable and the non-virtual bases.
1374   LayoutNonVirtualBases(RD);
1375 
1376   LayoutFields(RD);
1377 
1378   NonVirtualSize = Context.toCharUnitsFromBits(
1379       llvm::alignTo(getSizeInBits(), Context.getTargetInfo().getCharAlign()));
1380   NonVirtualAlignment = Alignment;
1381   PreferredNVAlignment = PreferredAlignment;
1382 
1383   // Lay out the virtual bases and add the primary virtual base offsets.
1384   LayoutVirtualBases(RD, RD);
1385 
1386   // Finally, round the size of the total struct up to the alignment
1387   // of the struct itself.
1388   FinishLayout(RD);
1389 
1390 #ifndef NDEBUG
1391   // Check that we have base offsets for all bases.
1392   for (const CXXBaseSpecifier &Base : RD->bases()) {
1393     if (Base.isVirtual())
1394       continue;
1395 
1396     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1397 
1398     assert(Bases.count(BaseDecl) && "Did not find base offset!");
1399   }
1400 
1401   // And all virtual bases.
1402   for (const CXXBaseSpecifier &Base : RD->vbases()) {
1403     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1404 
1405     assert(VBases.count(BaseDecl) && "Did not find base offset!");
1406   }
1407 #endif
1408 }
1409 
Layout(const ObjCInterfaceDecl * D)1410 void ItaniumRecordLayoutBuilder::Layout(const ObjCInterfaceDecl *D) {
1411   if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
1412     const ASTRecordLayout &SL = Context.getASTObjCInterfaceLayout(SD);
1413 
1414     UpdateAlignment(SL.getAlignment());
1415 
1416     // We start laying out ivars not at the end of the superclass
1417     // structure, but at the next byte following the last field.
1418     setDataSize(SL.getDataSize());
1419     setSize(getDataSize());
1420   }
1421 
1422   InitializeLayout(D);
1423   // Layout each ivar sequentially.
1424   for (const ObjCIvarDecl *IVD = D->all_declared_ivar_begin(); IVD;
1425        IVD = IVD->getNextIvar())
1426     LayoutField(IVD, false);
1427 
1428   // Finally, round the size of the total struct up to the alignment of the
1429   // struct itself.
1430   FinishLayout(D);
1431 }
1432 
LayoutFields(const RecordDecl * D)1433 void ItaniumRecordLayoutBuilder::LayoutFields(const RecordDecl *D) {
1434   // Layout each field, for now, just sequentially, respecting alignment.  In
1435   // the future, this will need to be tweakable by targets.
1436   bool InsertExtraPadding = D->mayInsertExtraPadding(/*EmitRemark=*/true);
1437   bool HasFlexibleArrayMember = D->hasFlexibleArrayMember();
1438   for (auto I = D->field_begin(), End = D->field_end(); I != End; ++I) {
1439     auto Next(I);
1440     ++Next;
1441     LayoutField(*I,
1442                 InsertExtraPadding && (Next != End || !HasFlexibleArrayMember));
1443   }
1444 }
1445 
1446 // Rounds the specified size to have it a multiple of the char size.
1447 static uint64_t
roundUpSizeToCharAlignment(uint64_t Size,const ASTContext & Context)1448 roundUpSizeToCharAlignment(uint64_t Size,
1449                            const ASTContext &Context) {
1450   uint64_t CharAlignment = Context.getTargetInfo().getCharAlign();
1451   return llvm::alignTo(Size, CharAlignment);
1452 }
1453 
LayoutWideBitField(uint64_t FieldSize,uint64_t StorageUnitSize,bool FieldPacked,const FieldDecl * D)1454 void ItaniumRecordLayoutBuilder::LayoutWideBitField(uint64_t FieldSize,
1455                                                     uint64_t StorageUnitSize,
1456                                                     bool FieldPacked,
1457                                                     const FieldDecl *D) {
1458   assert(Context.getLangOpts().CPlusPlus &&
1459          "Can only have wide bit-fields in C++!");
1460 
1461   // Itanium C++ ABI 2.4:
1462   //   If sizeof(T)*8 < n, let T' be the largest integral POD type with
1463   //   sizeof(T')*8 <= n.
1464 
1465   QualType IntegralPODTypes[] = {
1466     Context.UnsignedCharTy, Context.UnsignedShortTy, Context.UnsignedIntTy,
1467     Context.UnsignedLongTy, Context.UnsignedLongLongTy
1468   };
1469 
1470   QualType Type;
1471   for (const QualType &QT : IntegralPODTypes) {
1472     uint64_t Size = Context.getTypeSize(QT);
1473 
1474     if (Size > FieldSize)
1475       break;
1476 
1477     Type = QT;
1478   }
1479   assert(!Type.isNull() && "Did not find a type!");
1480 
1481   CharUnits TypeAlign = Context.getTypeAlignInChars(Type);
1482 
1483   // We're not going to use any of the unfilled bits in the last byte.
1484   UnfilledBitsInLastUnit = 0;
1485   LastBitfieldStorageUnitSize = 0;
1486 
1487   uint64_t FieldOffset;
1488   uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
1489 
1490   if (IsUnion) {
1491     uint64_t RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize,
1492                                                            Context);
1493     setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize));
1494     FieldOffset = 0;
1495   } else {
1496     // The bitfield is allocated starting at the next offset aligned
1497     // appropriately for T', with length n bits.
1498     FieldOffset = llvm::alignTo(getDataSizeInBits(), Context.toBits(TypeAlign));
1499 
1500     uint64_t NewSizeInBits = FieldOffset + FieldSize;
1501 
1502     setDataSize(
1503         llvm::alignTo(NewSizeInBits, Context.getTargetInfo().getCharAlign()));
1504     UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
1505   }
1506 
1507   // Place this field at the current location.
1508   FieldOffsets.push_back(FieldOffset);
1509 
1510   CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, FieldOffset,
1511                     Context.toBits(TypeAlign), FieldPacked, D);
1512 
1513   // Update the size.
1514   setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1515 
1516   // Remember max struct/class alignment.
1517   UpdateAlignment(TypeAlign);
1518 }
1519 
LayoutBitField(const FieldDecl * D)1520 void ItaniumRecordLayoutBuilder::LayoutBitField(const FieldDecl *D) {
1521   bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
1522   uint64_t FieldSize = D->getBitWidthValue(Context);
1523   TypeInfo FieldInfo = Context.getTypeInfo(D->getType());
1524   uint64_t StorageUnitSize = FieldInfo.Width;
1525   unsigned FieldAlign = FieldInfo.Align;
1526 
1527   // UnfilledBitsInLastUnit is the difference between the end of the
1528   // last allocated bitfield (i.e. the first bit offset available for
1529   // bitfields) and the end of the current data size in bits (i.e. the
1530   // first bit offset available for non-bitfields).  The current data
1531   // size in bits is always a multiple of the char size; additionally,
1532   // for ms_struct records it's also a multiple of the
1533   // LastBitfieldStorageUnitSize (if set).
1534 
1535   // The struct-layout algorithm is dictated by the platform ABI,
1536   // which in principle could use almost any rules it likes.  In
1537   // practice, UNIXy targets tend to inherit the algorithm described
1538   // in the System V generic ABI.  The basic bitfield layout rule in
1539   // System V is to place bitfields at the next available bit offset
1540   // where the entire bitfield would fit in an aligned storage unit of
1541   // the declared type; it's okay if an earlier or later non-bitfield
1542   // is allocated in the same storage unit.  However, some targets
1543   // (those that !useBitFieldTypeAlignment(), e.g. ARM APCS) don't
1544   // require this storage unit to be aligned, and therefore always put
1545   // the bitfield at the next available bit offset.
1546 
1547   // ms_struct basically requests a complete replacement of the
1548   // platform ABI's struct-layout algorithm, with the high-level goal
1549   // of duplicating MSVC's layout.  For non-bitfields, this follows
1550   // the standard algorithm.  The basic bitfield layout rule is to
1551   // allocate an entire unit of the bitfield's declared type
1552   // (e.g. 'unsigned long'), then parcel it up among successive
1553   // bitfields whose declared types have the same size, making a new
1554   // unit as soon as the last can no longer store the whole value.
1555   // Since it completely replaces the platform ABI's algorithm,
1556   // settings like !useBitFieldTypeAlignment() do not apply.
1557 
1558   // A zero-width bitfield forces the use of a new storage unit for
1559   // later bitfields.  In general, this occurs by rounding up the
1560   // current size of the struct as if the algorithm were about to
1561   // place a non-bitfield of the field's formal type.  Usually this
1562   // does not change the alignment of the struct itself, but it does
1563   // on some targets (those that useZeroLengthBitfieldAlignment(),
1564   // e.g. ARM).  In ms_struct layout, zero-width bitfields are
1565   // ignored unless they follow a non-zero-width bitfield.
1566 
1567   // A field alignment restriction (e.g. from #pragma pack) or
1568   // specification (e.g. from __attribute__((aligned))) changes the
1569   // formal alignment of the field.  For System V, this alters the
1570   // required alignment of the notional storage unit that must contain
1571   // the bitfield.  For ms_struct, this only affects the placement of
1572   // new storage units.  In both cases, the effect of #pragma pack is
1573   // ignored on zero-width bitfields.
1574 
1575   // On System V, a packed field (e.g. from #pragma pack or
1576   // __attribute__((packed))) always uses the next available bit
1577   // offset.
1578 
1579   // In an ms_struct struct, the alignment of a fundamental type is
1580   // always equal to its size.  This is necessary in order to mimic
1581   // the i386 alignment rules on targets which might not fully align
1582   // all types (e.g. Darwin PPC32, where alignof(long long) == 4).
1583 
1584   // First, some simple bookkeeping to perform for ms_struct structs.
1585   if (IsMsStruct) {
1586     // The field alignment for integer types is always the size.
1587     FieldAlign = StorageUnitSize;
1588 
1589     // If the previous field was not a bitfield, or was a bitfield
1590     // with a different storage unit size, or if this field doesn't fit into
1591     // the current storage unit, we're done with that storage unit.
1592     if (LastBitfieldStorageUnitSize != StorageUnitSize ||
1593         UnfilledBitsInLastUnit < FieldSize) {
1594       // Also, ignore zero-length bitfields after non-bitfields.
1595       if (!LastBitfieldStorageUnitSize && !FieldSize)
1596         FieldAlign = 1;
1597 
1598       UnfilledBitsInLastUnit = 0;
1599       LastBitfieldStorageUnitSize = 0;
1600     }
1601   }
1602 
1603   // If the field is wider than its declared type, it follows
1604   // different rules in all cases.
1605   if (FieldSize > StorageUnitSize) {
1606     LayoutWideBitField(FieldSize, StorageUnitSize, FieldPacked, D);
1607     return;
1608   }
1609 
1610   // Compute the next available bit offset.
1611   uint64_t FieldOffset =
1612     IsUnion ? 0 : (getDataSizeInBits() - UnfilledBitsInLastUnit);
1613 
1614   // Handle targets that don't honor bitfield type alignment.
1615   if (!IsMsStruct && !Context.getTargetInfo().useBitFieldTypeAlignment()) {
1616     // Some such targets do honor it on zero-width bitfields.
1617     if (FieldSize == 0 &&
1618         Context.getTargetInfo().useZeroLengthBitfieldAlignment()) {
1619       // The alignment to round up to is the max of the field's natural
1620       // alignment and a target-specific fixed value (sometimes zero).
1621       unsigned ZeroLengthBitfieldBoundary =
1622         Context.getTargetInfo().getZeroLengthBitfieldBoundary();
1623       FieldAlign = std::max(FieldAlign, ZeroLengthBitfieldBoundary);
1624 
1625     // If that doesn't apply, just ignore the field alignment.
1626     } else {
1627       FieldAlign = 1;
1628     }
1629   }
1630 
1631   // Remember the alignment we would have used if the field were not packed.
1632   unsigned UnpackedFieldAlign = FieldAlign;
1633 
1634   // Ignore the field alignment if the field is packed unless it has zero-size.
1635   if (!IsMsStruct && FieldPacked && FieldSize != 0)
1636     FieldAlign = 1;
1637 
1638   // But, if there's an 'aligned' attribute on the field, honor that.
1639   unsigned ExplicitFieldAlign = D->getMaxAlignment();
1640   if (ExplicitFieldAlign) {
1641     FieldAlign = std::max(FieldAlign, ExplicitFieldAlign);
1642     UnpackedFieldAlign = std::max(UnpackedFieldAlign, ExplicitFieldAlign);
1643   }
1644 
1645   // But, if there's a #pragma pack in play, that takes precedent over
1646   // even the 'aligned' attribute, for non-zero-width bitfields.
1647   unsigned MaxFieldAlignmentInBits = Context.toBits(MaxFieldAlignment);
1648   if (!MaxFieldAlignment.isZero() && FieldSize) {
1649     UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits);
1650     if (FieldPacked)
1651       FieldAlign = UnpackedFieldAlign;
1652     else
1653       FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits);
1654   }
1655 
1656   // But, ms_struct just ignores all of that in unions, even explicit
1657   // alignment attributes.
1658   if (IsMsStruct && IsUnion) {
1659     FieldAlign = UnpackedFieldAlign = 1;
1660   }
1661 
1662   // For purposes of diagnostics, we're going to simultaneously
1663   // compute the field offsets that we would have used if we weren't
1664   // adding any alignment padding or if the field weren't packed.
1665   uint64_t UnpaddedFieldOffset = FieldOffset;
1666   uint64_t UnpackedFieldOffset = FieldOffset;
1667 
1668   // Check if we need to add padding to fit the bitfield within an
1669   // allocation unit with the right size and alignment.  The rules are
1670   // somewhat different here for ms_struct structs.
1671   if (IsMsStruct) {
1672     // If it's not a zero-width bitfield, and we can fit the bitfield
1673     // into the active storage unit (and we haven't already decided to
1674     // start a new storage unit), just do so, regardless of any other
1675     // other consideration.  Otherwise, round up to the right alignment.
1676     if (FieldSize == 0 || FieldSize > UnfilledBitsInLastUnit) {
1677       FieldOffset = llvm::alignTo(FieldOffset, FieldAlign);
1678       UnpackedFieldOffset =
1679           llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign);
1680       UnfilledBitsInLastUnit = 0;
1681     }
1682 
1683   } else {
1684     // #pragma pack, with any value, suppresses the insertion of padding.
1685     bool AllowPadding = MaxFieldAlignment.isZero();
1686 
1687     // Compute the real offset.
1688     if (FieldSize == 0 ||
1689         (AllowPadding &&
1690          (FieldOffset & (FieldAlign - 1)) + FieldSize > StorageUnitSize)) {
1691       FieldOffset = llvm::alignTo(FieldOffset, FieldAlign);
1692     } else if (ExplicitFieldAlign &&
1693                (MaxFieldAlignmentInBits == 0 ||
1694                 ExplicitFieldAlign <= MaxFieldAlignmentInBits) &&
1695                Context.getTargetInfo().useExplicitBitFieldAlignment()) {
1696       // TODO: figure it out what needs to be done on targets that don't honor
1697       // bit-field type alignment like ARM APCS ABI.
1698       FieldOffset = llvm::alignTo(FieldOffset, ExplicitFieldAlign);
1699     }
1700 
1701     // Repeat the computation for diagnostic purposes.
1702     if (FieldSize == 0 ||
1703         (AllowPadding &&
1704          (UnpackedFieldOffset & (UnpackedFieldAlign - 1)) + FieldSize >
1705              StorageUnitSize))
1706       UnpackedFieldOffset =
1707           llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign);
1708     else if (ExplicitFieldAlign &&
1709              (MaxFieldAlignmentInBits == 0 ||
1710               ExplicitFieldAlign <= MaxFieldAlignmentInBits) &&
1711              Context.getTargetInfo().useExplicitBitFieldAlignment())
1712       UnpackedFieldOffset =
1713           llvm::alignTo(UnpackedFieldOffset, ExplicitFieldAlign);
1714   }
1715 
1716   // If we're using external layout, give the external layout a chance
1717   // to override this information.
1718   if (UseExternalLayout)
1719     FieldOffset = updateExternalFieldOffset(D, FieldOffset);
1720 
1721   // Okay, place the bitfield at the calculated offset.
1722   FieldOffsets.push_back(FieldOffset);
1723 
1724   // Bookkeeping:
1725 
1726   // Anonymous members don't affect the overall record alignment,
1727   // except on targets where they do.
1728   if (!IsMsStruct &&
1729       !Context.getTargetInfo().useZeroLengthBitfieldAlignment() &&
1730       !D->getIdentifier())
1731     FieldAlign = UnpackedFieldAlign = 1;
1732 
1733   // Diagnose differences in layout due to padding or packing.
1734   if (!UseExternalLayout)
1735     CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, UnpackedFieldOffset,
1736                       UnpackedFieldAlign, FieldPacked, D);
1737 
1738   // Update DataSize to include the last byte containing (part of) the bitfield.
1739 
1740   // For unions, this is just a max operation, as usual.
1741   if (IsUnion) {
1742     // For ms_struct, allocate the entire storage unit --- unless this
1743     // is a zero-width bitfield, in which case just use a size of 1.
1744     uint64_t RoundedFieldSize;
1745     if (IsMsStruct) {
1746       RoundedFieldSize = (FieldSize ? StorageUnitSize
1747                                     : Context.getTargetInfo().getCharWidth());
1748 
1749       // Otherwise, allocate just the number of bytes required to store
1750       // the bitfield.
1751     } else {
1752       RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize, Context);
1753     }
1754     setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize));
1755 
1756   // For non-zero-width bitfields in ms_struct structs, allocate a new
1757   // storage unit if necessary.
1758   } else if (IsMsStruct && FieldSize) {
1759     // We should have cleared UnfilledBitsInLastUnit in every case
1760     // where we changed storage units.
1761     if (!UnfilledBitsInLastUnit) {
1762       setDataSize(FieldOffset + StorageUnitSize);
1763       UnfilledBitsInLastUnit = StorageUnitSize;
1764     }
1765     UnfilledBitsInLastUnit -= FieldSize;
1766     LastBitfieldStorageUnitSize = StorageUnitSize;
1767 
1768     // Otherwise, bump the data size up to include the bitfield,
1769     // including padding up to char alignment, and then remember how
1770     // bits we didn't use.
1771   } else {
1772     uint64_t NewSizeInBits = FieldOffset + FieldSize;
1773     uint64_t CharAlignment = Context.getTargetInfo().getCharAlign();
1774     setDataSize(llvm::alignTo(NewSizeInBits, CharAlignment));
1775     UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
1776 
1777     // The only time we can get here for an ms_struct is if this is a
1778     // zero-width bitfield, which doesn't count as anything for the
1779     // purposes of unfilled bits.
1780     LastBitfieldStorageUnitSize = 0;
1781   }
1782 
1783   // Update the size.
1784   setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1785 
1786   // Remember max struct/class alignment.
1787   UnadjustedAlignment =
1788       std::max(UnadjustedAlignment, Context.toCharUnitsFromBits(FieldAlign));
1789   UpdateAlignment(Context.toCharUnitsFromBits(FieldAlign),
1790                   Context.toCharUnitsFromBits(UnpackedFieldAlign));
1791 }
1792 
LayoutField(const FieldDecl * D,bool InsertExtraPadding)1793 void ItaniumRecordLayoutBuilder::LayoutField(const FieldDecl *D,
1794                                              bool InsertExtraPadding) {
1795   auto *FieldClass = D->getType()->getAsCXXRecordDecl();
1796   bool PotentiallyOverlapping = D->hasAttr<NoUniqueAddressAttr>() && FieldClass;
1797   bool IsOverlappingEmptyField =
1798       PotentiallyOverlapping && FieldClass->isEmpty();
1799 
1800   CharUnits FieldOffset =
1801       (IsUnion || IsOverlappingEmptyField) ? CharUnits::Zero() : getDataSize();
1802 
1803   const bool DefaultsToAIXPowerAlignment =
1804       Context.getTargetInfo().defaultsToAIXPowerAlignment();
1805   bool FoundFirstNonOverlappingEmptyFieldForAIX = false;
1806   if (DefaultsToAIXPowerAlignment && !HandledFirstNonOverlappingEmptyField) {
1807     assert(FieldOffset == CharUnits::Zero() &&
1808            "The first non-overlapping empty field should have been handled.");
1809 
1810     if (!IsOverlappingEmptyField) {
1811       FoundFirstNonOverlappingEmptyFieldForAIX = true;
1812 
1813       // We're going to handle the "first member" based on
1814       // `FoundFirstNonOverlappingEmptyFieldForAIX` during the current
1815       // invocation of this function; record it as handled for future
1816       // invocations (except for unions, because the current field does not
1817       // represent all "firsts").
1818       HandledFirstNonOverlappingEmptyField = !IsUnion;
1819     }
1820   }
1821 
1822   if (D->isBitField()) {
1823     LayoutBitField(D);
1824     return;
1825   }
1826 
1827   uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
1828   // Reset the unfilled bits.
1829   UnfilledBitsInLastUnit = 0;
1830   LastBitfieldStorageUnitSize = 0;
1831 
1832   bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
1833 
1834   bool AlignIsRequired = false;
1835   CharUnits FieldSize;
1836   CharUnits FieldAlign;
1837   // The amount of this class's dsize occupied by the field.
1838   // This is equal to FieldSize unless we're permitted to pack
1839   // into the field's tail padding.
1840   CharUnits EffectiveFieldSize;
1841 
1842   auto setDeclInfo = [&](bool IsIncompleteArrayType) {
1843     auto TI = Context.getTypeInfoInChars(D->getType());
1844     FieldAlign = TI.Align;
1845     // Flexible array members don't have any size, but they have to be
1846     // aligned appropriately for their element type.
1847     EffectiveFieldSize = FieldSize =
1848         IsIncompleteArrayType ? CharUnits::Zero() : TI.Width;
1849     AlignIsRequired = TI.AlignIsRequired;
1850   };
1851 
1852   if (D->getType()->isIncompleteArrayType()) {
1853     setDeclInfo(true /* IsIncompleteArrayType */);
1854   } else if (const ReferenceType *RT = D->getType()->getAs<ReferenceType>()) {
1855     unsigned AS = Context.getTargetAddressSpace(RT->getPointeeType());
1856     EffectiveFieldSize = FieldSize = Context.toCharUnitsFromBits(
1857         Context.getTargetInfo().getPointerWidth(AS));
1858     FieldAlign = Context.toCharUnitsFromBits(
1859         Context.getTargetInfo().getPointerAlign(AS));
1860   } else {
1861     setDeclInfo(false /* IsIncompleteArrayType */);
1862 
1863     // A potentially-overlapping field occupies its dsize or nvsize, whichever
1864     // is larger.
1865     if (PotentiallyOverlapping) {
1866       const ASTRecordLayout &Layout = Context.getASTRecordLayout(FieldClass);
1867       EffectiveFieldSize =
1868           std::max(Layout.getNonVirtualSize(), Layout.getDataSize());
1869     }
1870 
1871     if (IsMsStruct) {
1872       // If MS bitfield layout is required, figure out what type is being
1873       // laid out and align the field to the width of that type.
1874 
1875       // Resolve all typedefs down to their base type and round up the field
1876       // alignment if necessary.
1877       QualType T = Context.getBaseElementType(D->getType());
1878       if (const BuiltinType *BTy = T->getAs<BuiltinType>()) {
1879         CharUnits TypeSize = Context.getTypeSizeInChars(BTy);
1880 
1881         if (!llvm::isPowerOf2_64(TypeSize.getQuantity())) {
1882           assert(
1883               !Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment() &&
1884               "Non PowerOf2 size in MSVC mode");
1885           // Base types with sizes that aren't a power of two don't work
1886           // with the layout rules for MS structs. This isn't an issue in
1887           // MSVC itself since there are no such base data types there.
1888           // On e.g. x86_32 mingw and linux, long double is 12 bytes though.
1889           // Any structs involving that data type obviously can't be ABI
1890           // compatible with MSVC regardless of how it is laid out.
1891 
1892           // Since ms_struct can be mass enabled (via a pragma or via the
1893           // -mms-bitfields command line parameter), this can trigger for
1894           // structs that don't actually need MSVC compatibility, so we
1895           // need to be able to sidestep the ms_struct layout for these types.
1896 
1897           // Since the combination of -mms-bitfields together with structs
1898           // like max_align_t (which contains a long double) for mingw is
1899           // quite comon (and GCC handles it silently), just handle it
1900           // silently there. For other targets that have ms_struct enabled
1901           // (most probably via a pragma or attribute), trigger a diagnostic
1902           // that defaults to an error.
1903           if (!Context.getTargetInfo().getTriple().isWindowsGNUEnvironment())
1904             Diag(D->getLocation(), diag::warn_npot_ms_struct);
1905         }
1906         if (TypeSize > FieldAlign &&
1907             llvm::isPowerOf2_64(TypeSize.getQuantity()))
1908           FieldAlign = TypeSize;
1909       }
1910     }
1911   }
1912 
1913   // The AIX `power` alignment rules apply the natural alignment of the
1914   // "first member" if it is of a floating-point data type (or is an aggregate
1915   // whose recursively "first" member or element is such a type). The alignment
1916   // associated with these types for subsequent members use an alignment value
1917   // where the floating-point data type is considered to have 4-byte alignment.
1918   //
1919   // For the purposes of the foregoing: vtable pointers, non-empty base classes,
1920   // and zero-width bit-fields count as prior members; members of empty class
1921   // types marked `no_unique_address` are not considered to be prior members.
1922   CharUnits PreferredAlign = FieldAlign;
1923   if (DefaultsToAIXPowerAlignment && !AlignIsRequired &&
1924       FoundFirstNonOverlappingEmptyFieldForAIX) {
1925     auto performBuiltinTypeAlignmentUpgrade = [&](const BuiltinType *BTy) {
1926       if (BTy->getKind() == BuiltinType::Double ||
1927           BTy->getKind() == BuiltinType::LongDouble) {
1928         assert(PreferredAlign == CharUnits::fromQuantity(4) &&
1929                "No need to upgrade the alignment value.");
1930         PreferredAlign = CharUnits::fromQuantity(8);
1931       }
1932     };
1933 
1934     const Type *Ty = D->getType()->getBaseElementTypeUnsafe();
1935     if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
1936       performBuiltinTypeAlignmentUpgrade(CTy->getElementType()->castAs<BuiltinType>());
1937     } else if (const BuiltinType *BTy = Ty->getAs<BuiltinType>()) {
1938       performBuiltinTypeAlignmentUpgrade(BTy);
1939     } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
1940       const RecordDecl *RD = RT->getDecl();
1941       assert(RD && "Expected non-null RecordDecl.");
1942       const ASTRecordLayout &FieldRecord = Context.getASTRecordLayout(RD);
1943       PreferredAlign = FieldRecord.getPreferredAlignment();
1944     }
1945   }
1946 
1947   // The align if the field is not packed. This is to check if the attribute
1948   // was unnecessary (-Wpacked).
1949   CharUnits UnpackedFieldAlign =
1950       !DefaultsToAIXPowerAlignment ? FieldAlign : PreferredAlign;
1951   CharUnits UnpackedFieldOffset = FieldOffset;
1952 
1953   if (FieldPacked) {
1954     FieldAlign = CharUnits::One();
1955     PreferredAlign = CharUnits::One();
1956   }
1957   CharUnits MaxAlignmentInChars =
1958       Context.toCharUnitsFromBits(D->getMaxAlignment());
1959   FieldAlign = std::max(FieldAlign, MaxAlignmentInChars);
1960   PreferredAlign = std::max(PreferredAlign, MaxAlignmentInChars);
1961   UnpackedFieldAlign = std::max(UnpackedFieldAlign, MaxAlignmentInChars);
1962 
1963   // The maximum field alignment overrides the aligned attribute.
1964   if (!MaxFieldAlignment.isZero()) {
1965     FieldAlign = std::min(FieldAlign, MaxFieldAlignment);
1966     PreferredAlign = std::min(PreferredAlign, MaxFieldAlignment);
1967     UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignment);
1968   }
1969 
1970   CharUnits AlignTo =
1971       !DefaultsToAIXPowerAlignment ? FieldAlign : PreferredAlign;
1972   // Round up the current record size to the field's alignment boundary.
1973   FieldOffset = FieldOffset.alignTo(AlignTo);
1974   UnpackedFieldOffset = UnpackedFieldOffset.alignTo(UnpackedFieldAlign);
1975 
1976   if (UseExternalLayout) {
1977     FieldOffset = Context.toCharUnitsFromBits(
1978         updateExternalFieldOffset(D, Context.toBits(FieldOffset)));
1979 
1980     if (!IsUnion && EmptySubobjects) {
1981       // Record the fact that we're placing a field at this offset.
1982       bool Allowed = EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset);
1983       (void)Allowed;
1984       assert(Allowed && "Externally-placed field cannot be placed here");
1985     }
1986   } else {
1987     if (!IsUnion && EmptySubobjects) {
1988       // Check if we can place the field at this offset.
1989       while (!EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset)) {
1990         // We couldn't place the field at the offset. Try again at a new offset.
1991         // We try offset 0 (for an empty field) and then dsize(C) onwards.
1992         if (FieldOffset == CharUnits::Zero() &&
1993             getDataSize() != CharUnits::Zero())
1994           FieldOffset = getDataSize().alignTo(AlignTo);
1995         else
1996           FieldOffset += AlignTo;
1997       }
1998     }
1999   }
2000 
2001   // Place this field at the current location.
2002   FieldOffsets.push_back(Context.toBits(FieldOffset));
2003 
2004   if (!UseExternalLayout)
2005     CheckFieldPadding(Context.toBits(FieldOffset), UnpaddedFieldOffset,
2006                       Context.toBits(UnpackedFieldOffset),
2007                       Context.toBits(UnpackedFieldAlign), FieldPacked, D);
2008 
2009   if (InsertExtraPadding) {
2010     CharUnits ASanAlignment = CharUnits::fromQuantity(8);
2011     CharUnits ExtraSizeForAsan = ASanAlignment;
2012     if (FieldSize % ASanAlignment)
2013       ExtraSizeForAsan +=
2014           ASanAlignment - CharUnits::fromQuantity(FieldSize % ASanAlignment);
2015     EffectiveFieldSize = FieldSize = FieldSize + ExtraSizeForAsan;
2016   }
2017 
2018   // Reserve space for this field.
2019   if (!IsOverlappingEmptyField) {
2020     uint64_t EffectiveFieldSizeInBits = Context.toBits(EffectiveFieldSize);
2021     if (IsUnion)
2022       setDataSize(std::max(getDataSizeInBits(), EffectiveFieldSizeInBits));
2023     else
2024       setDataSize(FieldOffset + EffectiveFieldSize);
2025 
2026     PaddedFieldSize = std::max(PaddedFieldSize, FieldOffset + FieldSize);
2027     setSize(std::max(getSizeInBits(), getDataSizeInBits()));
2028   } else {
2029     setSize(std::max(getSizeInBits(),
2030                      (uint64_t)Context.toBits(FieldOffset + FieldSize)));
2031   }
2032 
2033   // Remember max struct/class ABI-specified alignment.
2034   UnadjustedAlignment = std::max(UnadjustedAlignment, FieldAlign);
2035   UpdateAlignment(FieldAlign, UnpackedFieldAlign, PreferredAlign);
2036 }
2037 
FinishLayout(const NamedDecl * D)2038 void ItaniumRecordLayoutBuilder::FinishLayout(const NamedDecl *D) {
2039   // In C++, records cannot be of size 0.
2040   if (Context.getLangOpts().CPlusPlus && getSizeInBits() == 0) {
2041     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
2042       // Compatibility with gcc requires a class (pod or non-pod)
2043       // which is not empty but of size 0; such as having fields of
2044       // array of zero-length, remains of Size 0
2045       if (RD->isEmpty())
2046         setSize(CharUnits::One());
2047     }
2048     else
2049       setSize(CharUnits::One());
2050   }
2051 
2052   // If we have any remaining field tail padding, include that in the overall
2053   // size.
2054   setSize(std::max(getSizeInBits(), (uint64_t)Context.toBits(PaddedFieldSize)));
2055 
2056   // Finally, round the size of the record up to the alignment of the
2057   // record itself.
2058   uint64_t UnpaddedSize = getSizeInBits() - UnfilledBitsInLastUnit;
2059   uint64_t UnpackedSizeInBits =
2060       llvm::alignTo(getSizeInBits(), Context.toBits(UnpackedAlignment));
2061 
2062   uint64_t RoundedSize = llvm::alignTo(
2063       getSizeInBits(),
2064       Context.toBits(!Context.getTargetInfo().defaultsToAIXPowerAlignment()
2065                          ? Alignment
2066                          : PreferredAlignment));
2067 
2068   if (UseExternalLayout) {
2069     // If we're inferring alignment, and the external size is smaller than
2070     // our size after we've rounded up to alignment, conservatively set the
2071     // alignment to 1.
2072     if (InferAlignment && External.Size < RoundedSize) {
2073       Alignment = CharUnits::One();
2074       PreferredAlignment = CharUnits::One();
2075       InferAlignment = false;
2076     }
2077     setSize(External.Size);
2078     return;
2079   }
2080 
2081   // Set the size to the final size.
2082   setSize(RoundedSize);
2083 
2084   unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
2085   if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
2086     // Warn if padding was introduced to the struct/class/union.
2087     if (getSizeInBits() > UnpaddedSize) {
2088       unsigned PadSize = getSizeInBits() - UnpaddedSize;
2089       bool InBits = true;
2090       if (PadSize % CharBitNum == 0) {
2091         PadSize = PadSize / CharBitNum;
2092         InBits = false;
2093       }
2094       Diag(RD->getLocation(), diag::warn_padded_struct_size)
2095           << Context.getTypeDeclType(RD)
2096           << PadSize
2097           << (InBits ? 1 : 0); // (byte|bit)
2098     }
2099 
2100     // Warn if we packed it unnecessarily, when the unpacked alignment is not
2101     // greater than the one after packing, the size in bits doesn't change and
2102     // the offset of each field is identical.
2103     if (Packed && UnpackedAlignment <= Alignment &&
2104         UnpackedSizeInBits == getSizeInBits() && !HasPackedField)
2105       Diag(D->getLocation(), diag::warn_unnecessary_packed)
2106           << Context.getTypeDeclType(RD);
2107   }
2108 }
2109 
UpdateAlignment(CharUnits NewAlignment,CharUnits UnpackedNewAlignment,CharUnits PreferredNewAlignment)2110 void ItaniumRecordLayoutBuilder::UpdateAlignment(
2111     CharUnits NewAlignment, CharUnits UnpackedNewAlignment,
2112     CharUnits PreferredNewAlignment) {
2113   // The alignment is not modified when using 'mac68k' alignment or when
2114   // we have an externally-supplied layout that also provides overall alignment.
2115   if (IsMac68kAlign || (UseExternalLayout && !InferAlignment))
2116     return;
2117 
2118   if (NewAlignment > Alignment) {
2119     assert(llvm::isPowerOf2_64(NewAlignment.getQuantity()) &&
2120            "Alignment not a power of 2");
2121     Alignment = NewAlignment;
2122   }
2123 
2124   if (UnpackedNewAlignment > UnpackedAlignment) {
2125     assert(llvm::isPowerOf2_64(UnpackedNewAlignment.getQuantity()) &&
2126            "Alignment not a power of 2");
2127     UnpackedAlignment = UnpackedNewAlignment;
2128   }
2129 
2130   if (PreferredNewAlignment > PreferredAlignment) {
2131     assert(llvm::isPowerOf2_64(PreferredNewAlignment.getQuantity()) &&
2132            "Alignment not a power of 2");
2133     PreferredAlignment = PreferredNewAlignment;
2134   }
2135 }
2136 
2137 uint64_t
updateExternalFieldOffset(const FieldDecl * Field,uint64_t ComputedOffset)2138 ItaniumRecordLayoutBuilder::updateExternalFieldOffset(const FieldDecl *Field,
2139                                                       uint64_t ComputedOffset) {
2140   uint64_t ExternalFieldOffset = External.getExternalFieldOffset(Field);
2141 
2142   if (InferAlignment && ExternalFieldOffset < ComputedOffset) {
2143     // The externally-supplied field offset is before the field offset we
2144     // computed. Assume that the structure is packed.
2145     Alignment = CharUnits::One();
2146     PreferredAlignment = CharUnits::One();
2147     InferAlignment = false;
2148   }
2149 
2150   // Use the externally-supplied field offset.
2151   return ExternalFieldOffset;
2152 }
2153 
2154 /// Get diagnostic %select index for tag kind for
2155 /// field padding diagnostic message.
2156 /// WARNING: Indexes apply to particular diagnostics only!
2157 ///
2158 /// \returns diagnostic %select index.
getPaddingDiagFromTagKind(TagTypeKind Tag)2159 static unsigned getPaddingDiagFromTagKind(TagTypeKind Tag) {
2160   switch (Tag) {
2161   case TTK_Struct: return 0;
2162   case TTK_Interface: return 1;
2163   case TTK_Class: return 2;
2164   default: llvm_unreachable("Invalid tag kind for field padding diagnostic!");
2165   }
2166 }
2167 
CheckFieldPadding(uint64_t Offset,uint64_t UnpaddedOffset,uint64_t UnpackedOffset,unsigned UnpackedAlign,bool isPacked,const FieldDecl * D)2168 void ItaniumRecordLayoutBuilder::CheckFieldPadding(
2169     uint64_t Offset, uint64_t UnpaddedOffset, uint64_t UnpackedOffset,
2170     unsigned UnpackedAlign, bool isPacked, const FieldDecl *D) {
2171   // We let objc ivars without warning, objc interfaces generally are not used
2172   // for padding tricks.
2173   if (isa<ObjCIvarDecl>(D))
2174     return;
2175 
2176   // Don't warn about structs created without a SourceLocation.  This can
2177   // be done by clients of the AST, such as codegen.
2178   if (D->getLocation().isInvalid())
2179     return;
2180 
2181   unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
2182 
2183   // Warn if padding was introduced to the struct/class.
2184   if (!IsUnion && Offset > UnpaddedOffset) {
2185     unsigned PadSize = Offset - UnpaddedOffset;
2186     bool InBits = true;
2187     if (PadSize % CharBitNum == 0) {
2188       PadSize = PadSize / CharBitNum;
2189       InBits = false;
2190     }
2191     if (D->getIdentifier())
2192       Diag(D->getLocation(), diag::warn_padded_struct_field)
2193           << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
2194           << Context.getTypeDeclType(D->getParent())
2195           << PadSize
2196           << (InBits ? 1 : 0) // (byte|bit)
2197           << D->getIdentifier();
2198     else
2199       Diag(D->getLocation(), diag::warn_padded_struct_anon_field)
2200           << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
2201           << Context.getTypeDeclType(D->getParent())
2202           << PadSize
2203           << (InBits ? 1 : 0); // (byte|bit)
2204  }
2205  if (isPacked && Offset != UnpackedOffset) {
2206    HasPackedField = true;
2207  }
2208 }
2209 
computeKeyFunction(ASTContext & Context,const CXXRecordDecl * RD)2210 static const CXXMethodDecl *computeKeyFunction(ASTContext &Context,
2211                                                const CXXRecordDecl *RD) {
2212   // If a class isn't polymorphic it doesn't have a key function.
2213   if (!RD->isPolymorphic())
2214     return nullptr;
2215 
2216   // A class that is not externally visible doesn't have a key function. (Or
2217   // at least, there's no point to assigning a key function to such a class;
2218   // this doesn't affect the ABI.)
2219   if (!RD->isExternallyVisible())
2220     return nullptr;
2221 
2222   // Template instantiations don't have key functions per Itanium C++ ABI 5.2.6.
2223   // Same behavior as GCC.
2224   TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
2225   if (TSK == TSK_ImplicitInstantiation ||
2226       TSK == TSK_ExplicitInstantiationDeclaration ||
2227       TSK == TSK_ExplicitInstantiationDefinition)
2228     return nullptr;
2229 
2230   bool allowInlineFunctions =
2231     Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline();
2232 
2233   for (const CXXMethodDecl *MD : RD->methods()) {
2234     if (!MD->isVirtual())
2235       continue;
2236 
2237     if (MD->isPure())
2238       continue;
2239 
2240     // Ignore implicit member functions, they are always marked as inline, but
2241     // they don't have a body until they're defined.
2242     if (MD->isImplicit())
2243       continue;
2244 
2245     if (MD->isInlineSpecified() || MD->isConstexpr())
2246       continue;
2247 
2248     if (MD->hasInlineBody())
2249       continue;
2250 
2251     // Ignore inline deleted or defaulted functions.
2252     if (!MD->isUserProvided())
2253       continue;
2254 
2255     // In certain ABIs, ignore functions with out-of-line inline definitions.
2256     if (!allowInlineFunctions) {
2257       const FunctionDecl *Def;
2258       if (MD->hasBody(Def) && Def->isInlineSpecified())
2259         continue;
2260     }
2261 
2262     if (Context.getLangOpts().CUDA) {
2263       // While compiler may see key method in this TU, during CUDA
2264       // compilation we should ignore methods that are not accessible
2265       // on this side of compilation.
2266       if (Context.getLangOpts().CUDAIsDevice) {
2267         // In device mode ignore methods without __device__ attribute.
2268         if (!MD->hasAttr<CUDADeviceAttr>())
2269           continue;
2270       } else {
2271         // In host mode ignore __device__-only methods.
2272         if (!MD->hasAttr<CUDAHostAttr>() && MD->hasAttr<CUDADeviceAttr>())
2273           continue;
2274       }
2275     }
2276 
2277     // If the key function is dllimport but the class isn't, then the class has
2278     // no key function. The DLL that exports the key function won't export the
2279     // vtable in this case.
2280     if (MD->hasAttr<DLLImportAttr>() && !RD->hasAttr<DLLImportAttr>())
2281       return nullptr;
2282 
2283     // We found it.
2284     return MD;
2285   }
2286 
2287   return nullptr;
2288 }
2289 
Diag(SourceLocation Loc,unsigned DiagID)2290 DiagnosticBuilder ItaniumRecordLayoutBuilder::Diag(SourceLocation Loc,
2291                                                    unsigned DiagID) {
2292   return Context.getDiagnostics().Report(Loc, DiagID);
2293 }
2294 
2295 /// Does the target C++ ABI require us to skip over the tail-padding
2296 /// of the given class (considering it as a base class) when allocating
2297 /// objects?
mustSkipTailPadding(TargetCXXABI ABI,const CXXRecordDecl * RD)2298 static bool mustSkipTailPadding(TargetCXXABI ABI, const CXXRecordDecl *RD) {
2299   switch (ABI.getTailPaddingUseRules()) {
2300   case TargetCXXABI::AlwaysUseTailPadding:
2301     return false;
2302 
2303   case TargetCXXABI::UseTailPaddingUnlessPOD03:
2304     // FIXME: To the extent that this is meant to cover the Itanium ABI
2305     // rules, we should implement the restrictions about over-sized
2306     // bitfields:
2307     //
2308     // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#POD :
2309     //   In general, a type is considered a POD for the purposes of
2310     //   layout if it is a POD type (in the sense of ISO C++
2311     //   [basic.types]). However, a POD-struct or POD-union (in the
2312     //   sense of ISO C++ [class]) with a bitfield member whose
2313     //   declared width is wider than the declared type of the
2314     //   bitfield is not a POD for the purpose of layout.  Similarly,
2315     //   an array type is not a POD for the purpose of layout if the
2316     //   element type of the array is not a POD for the purpose of
2317     //   layout.
2318     //
2319     //   Where references to the ISO C++ are made in this paragraph,
2320     //   the Technical Corrigendum 1 version of the standard is
2321     //   intended.
2322     return RD->isPOD();
2323 
2324   case TargetCXXABI::UseTailPaddingUnlessPOD11:
2325     // This is equivalent to RD->getTypeForDecl().isCXX11PODType(),
2326     // but with a lot of abstraction penalty stripped off.  This does
2327     // assume that these properties are set correctly even in C++98
2328     // mode; fortunately, that is true because we want to assign
2329     // consistently semantics to the type-traits intrinsics (or at
2330     // least as many of them as possible).
2331     return RD->isTrivial() && RD->isCXX11StandardLayout();
2332   }
2333 
2334   llvm_unreachable("bad tail-padding use kind");
2335 }
2336 
isMsLayout(const ASTContext & Context)2337 static bool isMsLayout(const ASTContext &Context) {
2338   return Context.getTargetInfo().getCXXABI().isMicrosoft();
2339 }
2340 
2341 // This section contains an implementation of struct layout that is, up to the
2342 // included tests, compatible with cl.exe (2013).  The layout produced is
2343 // significantly different than those produced by the Itanium ABI.  Here we note
2344 // the most important differences.
2345 //
2346 // * The alignment of bitfields in unions is ignored when computing the
2347 //   alignment of the union.
2348 // * The existence of zero-width bitfield that occurs after anything other than
2349 //   a non-zero length bitfield is ignored.
2350 // * There is no explicit primary base for the purposes of layout.  All bases
2351 //   with vfptrs are laid out first, followed by all bases without vfptrs.
2352 // * The Itanium equivalent vtable pointers are split into a vfptr (virtual
2353 //   function pointer) and a vbptr (virtual base pointer).  They can each be
2354 //   shared with a, non-virtual bases. These bases need not be the same.  vfptrs
2355 //   always occur at offset 0.  vbptrs can occur at an arbitrary offset and are
2356 //   placed after the lexicographically last non-virtual base.  This placement
2357 //   is always before fields but can be in the middle of the non-virtual bases
2358 //   due to the two-pass layout scheme for non-virtual-bases.
2359 // * Virtual bases sometimes require a 'vtordisp' field that is laid out before
2360 //   the virtual base and is used in conjunction with virtual overrides during
2361 //   construction and destruction.  This is always a 4 byte value and is used as
2362 //   an alternative to constructor vtables.
2363 // * vtordisps are allocated in a block of memory with size and alignment equal
2364 //   to the alignment of the completed structure (before applying __declspec(
2365 //   align())).  The vtordisp always occur at the end of the allocation block,
2366 //   immediately prior to the virtual base.
2367 // * vfptrs are injected after all bases and fields have been laid out.  In
2368 //   order to guarantee proper alignment of all fields, the vfptr injection
2369 //   pushes all bases and fields back by the alignment imposed by those bases
2370 //   and fields.  This can potentially add a significant amount of padding.
2371 //   vfptrs are always injected at offset 0.
2372 // * vbptrs are injected after all bases and fields have been laid out.  In
2373 //   order to guarantee proper alignment of all fields, the vfptr injection
2374 //   pushes all bases and fields back by the alignment imposed by those bases
2375 //   and fields.  This can potentially add a significant amount of padding.
2376 //   vbptrs are injected immediately after the last non-virtual base as
2377 //   lexicographically ordered in the code.  If this site isn't pointer aligned
2378 //   the vbptr is placed at the next properly aligned location.  Enough padding
2379 //   is added to guarantee a fit.
2380 // * The last zero sized non-virtual base can be placed at the end of the
2381 //   struct (potentially aliasing another object), or may alias with the first
2382 //   field, even if they are of the same type.
2383 // * The last zero size virtual base may be placed at the end of the struct
2384 //   potentially aliasing another object.
2385 // * The ABI attempts to avoid aliasing of zero sized bases by adding padding
2386 //   between bases or vbases with specific properties.  The criteria for
2387 //   additional padding between two bases is that the first base is zero sized
2388 //   or ends with a zero sized subobject and the second base is zero sized or
2389 //   trails with a zero sized base or field (sharing of vfptrs can reorder the
2390 //   layout of the so the leading base is not always the first one declared).
2391 //   This rule does take into account fields that are not records, so padding
2392 //   will occur even if the last field is, e.g. an int. The padding added for
2393 //   bases is 1 byte.  The padding added between vbases depends on the alignment
2394 //   of the object but is at least 4 bytes (in both 32 and 64 bit modes).
2395 // * There is no concept of non-virtual alignment, non-virtual alignment and
2396 //   alignment are always identical.
2397 // * There is a distinction between alignment and required alignment.
2398 //   __declspec(align) changes the required alignment of a struct.  This
2399 //   alignment is _always_ obeyed, even in the presence of #pragma pack. A
2400 //   record inherits required alignment from all of its fields and bases.
2401 // * __declspec(align) on bitfields has the effect of changing the bitfield's
2402 //   alignment instead of its required alignment.  This is the only known way
2403 //   to make the alignment of a struct bigger than 8.  Interestingly enough
2404 //   this alignment is also immune to the effects of #pragma pack and can be
2405 //   used to create structures with large alignment under #pragma pack.
2406 //   However, because it does not impact required alignment, such a structure,
2407 //   when used as a field or base, will not be aligned if #pragma pack is
2408 //   still active at the time of use.
2409 //
2410 // Known incompatibilities:
2411 // * all: #pragma pack between fields in a record
2412 // * 2010 and back: If the last field in a record is a bitfield, every object
2413 //   laid out after the record will have extra padding inserted before it.  The
2414 //   extra padding will have size equal to the size of the storage class of the
2415 //   bitfield.  0 sized bitfields don't exhibit this behavior and the extra
2416 //   padding can be avoided by adding a 0 sized bitfield after the non-zero-
2417 //   sized bitfield.
2418 // * 2012 and back: In 64-bit mode, if the alignment of a record is 16 or
2419 //   greater due to __declspec(align()) then a second layout phase occurs after
2420 //   The locations of the vf and vb pointers are known.  This layout phase
2421 //   suffers from the "last field is a bitfield" bug in 2010 and results in
2422 //   _every_ field getting padding put in front of it, potentially including the
2423 //   vfptr, leaving the vfprt at a non-zero location which results in a fault if
2424 //   anything tries to read the vftbl.  The second layout phase also treats
2425 //   bitfields as separate entities and gives them each storage rather than
2426 //   packing them.  Additionally, because this phase appears to perform a
2427 //   (an unstable) sort on the members before laying them out and because merged
2428 //   bitfields have the same address, the bitfields end up in whatever order
2429 //   the sort left them in, a behavior we could never hope to replicate.
2430 
2431 namespace {
2432 struct MicrosoftRecordLayoutBuilder {
2433   struct ElementInfo {
2434     CharUnits Size;
2435     CharUnits Alignment;
2436   };
2437   typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
MicrosoftRecordLayoutBuilder__anonb7f8836c0511::MicrosoftRecordLayoutBuilder2438   MicrosoftRecordLayoutBuilder(const ASTContext &Context) : Context(Context) {}
2439 private:
2440   MicrosoftRecordLayoutBuilder(const MicrosoftRecordLayoutBuilder &) = delete;
2441   void operator=(const MicrosoftRecordLayoutBuilder &) = delete;
2442 public:
2443   void layout(const RecordDecl *RD);
2444   void cxxLayout(const CXXRecordDecl *RD);
2445   /// Initializes size and alignment and honors some flags.
2446   void initializeLayout(const RecordDecl *RD);
2447   /// Initialized C++ layout, compute alignment and virtual alignment and
2448   /// existence of vfptrs and vbptrs.  Alignment is needed before the vfptr is
2449   /// laid out.
2450   void initializeCXXLayout(const CXXRecordDecl *RD);
2451   void layoutNonVirtualBases(const CXXRecordDecl *RD);
2452   void layoutNonVirtualBase(const CXXRecordDecl *RD,
2453                             const CXXRecordDecl *BaseDecl,
2454                             const ASTRecordLayout &BaseLayout,
2455                             const ASTRecordLayout *&PreviousBaseLayout);
2456   void injectVFPtr(const CXXRecordDecl *RD);
2457   void injectVBPtr(const CXXRecordDecl *RD);
2458   /// Lays out the fields of the record.  Also rounds size up to
2459   /// alignment.
2460   void layoutFields(const RecordDecl *RD);
2461   void layoutField(const FieldDecl *FD);
2462   void layoutBitField(const FieldDecl *FD);
2463   /// Lays out a single zero-width bit-field in the record and handles
2464   /// special cases associated with zero-width bit-fields.
2465   void layoutZeroWidthBitField(const FieldDecl *FD);
2466   void layoutVirtualBases(const CXXRecordDecl *RD);
2467   void finalizeLayout(const RecordDecl *RD);
2468   /// Gets the size and alignment of a base taking pragma pack and
2469   /// __declspec(align) into account.
2470   ElementInfo getAdjustedElementInfo(const ASTRecordLayout &Layout);
2471   /// Gets the size and alignment of a field taking pragma  pack and
2472   /// __declspec(align) into account.  It also updates RequiredAlignment as a
2473   /// side effect because it is most convenient to do so here.
2474   ElementInfo getAdjustedElementInfo(const FieldDecl *FD);
2475   /// Places a field at an offset in CharUnits.
placeFieldAtOffset__anonb7f8836c0511::MicrosoftRecordLayoutBuilder2476   void placeFieldAtOffset(CharUnits FieldOffset) {
2477     FieldOffsets.push_back(Context.toBits(FieldOffset));
2478   }
2479   /// Places a bitfield at a bit offset.
placeFieldAtBitOffset__anonb7f8836c0511::MicrosoftRecordLayoutBuilder2480   void placeFieldAtBitOffset(uint64_t FieldOffset) {
2481     FieldOffsets.push_back(FieldOffset);
2482   }
2483   /// Compute the set of virtual bases for which vtordisps are required.
2484   void computeVtorDispSet(
2485       llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtorDispSet,
2486       const CXXRecordDecl *RD) const;
2487   const ASTContext &Context;
2488   /// The size of the record being laid out.
2489   CharUnits Size;
2490   /// The non-virtual size of the record layout.
2491   CharUnits NonVirtualSize;
2492   /// The data size of the record layout.
2493   CharUnits DataSize;
2494   /// The current alignment of the record layout.
2495   CharUnits Alignment;
2496   /// The maximum allowed field alignment. This is set by #pragma pack.
2497   CharUnits MaxFieldAlignment;
2498   /// The alignment that this record must obey.  This is imposed by
2499   /// __declspec(align()) on the record itself or one of its fields or bases.
2500   CharUnits RequiredAlignment;
2501   /// The size of the allocation of the currently active bitfield.
2502   /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield
2503   /// is true.
2504   CharUnits CurrentBitfieldSize;
2505   /// Offset to the virtual base table pointer (if one exists).
2506   CharUnits VBPtrOffset;
2507   /// Minimum record size possible.
2508   CharUnits MinEmptyStructSize;
2509   /// The size and alignment info of a pointer.
2510   ElementInfo PointerInfo;
2511   /// The primary base class (if one exists).
2512   const CXXRecordDecl *PrimaryBase;
2513   /// The class we share our vb-pointer with.
2514   const CXXRecordDecl *SharedVBPtrBase;
2515   /// The collection of field offsets.
2516   SmallVector<uint64_t, 16> FieldOffsets;
2517   /// Base classes and their offsets in the record.
2518   BaseOffsetsMapTy Bases;
2519   /// virtual base classes and their offsets in the record.
2520   ASTRecordLayout::VBaseOffsetsMapTy VBases;
2521   /// The number of remaining bits in our last bitfield allocation.
2522   /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield is
2523   /// true.
2524   unsigned RemainingBitsInField;
2525   bool IsUnion : 1;
2526   /// True if the last field laid out was a bitfield and was not 0
2527   /// width.
2528   bool LastFieldIsNonZeroWidthBitfield : 1;
2529   /// True if the class has its own vftable pointer.
2530   bool HasOwnVFPtr : 1;
2531   /// True if the class has a vbtable pointer.
2532   bool HasVBPtr : 1;
2533   /// True if the last sub-object within the type is zero sized or the
2534   /// object itself is zero sized.  This *does not* count members that are not
2535   /// records.  Only used for MS-ABI.
2536   bool EndsWithZeroSizedObject : 1;
2537   /// True if this class is zero sized or first base is zero sized or
2538   /// has this property.  Only used for MS-ABI.
2539   bool LeadsWithZeroSizedBase : 1;
2540 
2541   /// True if the external AST source provided a layout for this record.
2542   bool UseExternalLayout : 1;
2543 
2544   /// The layout provided by the external AST source. Only active if
2545   /// UseExternalLayout is true.
2546   ExternalLayout External;
2547 };
2548 } // namespace
2549 
2550 MicrosoftRecordLayoutBuilder::ElementInfo
getAdjustedElementInfo(const ASTRecordLayout & Layout)2551 MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
2552     const ASTRecordLayout &Layout) {
2553   ElementInfo Info;
2554   Info.Alignment = Layout.getAlignment();
2555   // Respect pragma pack.
2556   if (!MaxFieldAlignment.isZero())
2557     Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
2558   // Track zero-sized subobjects here where it's already available.
2559   EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject();
2560   // Respect required alignment, this is necessary because we may have adjusted
2561   // the alignment in the case of pragam pack.  Note that the required alignment
2562   // doesn't actually apply to the struct alignment at this point.
2563   Alignment = std::max(Alignment, Info.Alignment);
2564   RequiredAlignment = std::max(RequiredAlignment, Layout.getRequiredAlignment());
2565   Info.Alignment = std::max(Info.Alignment, Layout.getRequiredAlignment());
2566   Info.Size = Layout.getNonVirtualSize();
2567   return Info;
2568 }
2569 
2570 MicrosoftRecordLayoutBuilder::ElementInfo
getAdjustedElementInfo(const FieldDecl * FD)2571 MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
2572     const FieldDecl *FD) {
2573   // Get the alignment of the field type's natural alignment, ignore any
2574   // alignment attributes.
2575   auto TInfo =
2576       Context.getTypeInfoInChars(FD->getType()->getUnqualifiedDesugaredType());
2577   ElementInfo Info{TInfo.Width, TInfo.Align};
2578   // Respect align attributes on the field.
2579   CharUnits FieldRequiredAlignment =
2580       Context.toCharUnitsFromBits(FD->getMaxAlignment());
2581   // Respect align attributes on the type.
2582   if (Context.isAlignmentRequired(FD->getType()))
2583     FieldRequiredAlignment = std::max(
2584         Context.getTypeAlignInChars(FD->getType()), FieldRequiredAlignment);
2585   // Respect attributes applied to subobjects of the field.
2586   if (FD->isBitField())
2587     // For some reason __declspec align impacts alignment rather than required
2588     // alignment when it is applied to bitfields.
2589     Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
2590   else {
2591     if (auto RT =
2592             FD->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
2593       auto const &Layout = Context.getASTRecordLayout(RT->getDecl());
2594       EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject();
2595       FieldRequiredAlignment = std::max(FieldRequiredAlignment,
2596                                         Layout.getRequiredAlignment());
2597     }
2598     // Capture required alignment as a side-effect.
2599     RequiredAlignment = std::max(RequiredAlignment, FieldRequiredAlignment);
2600   }
2601   // Respect pragma pack, attribute pack and declspec align
2602   if (!MaxFieldAlignment.isZero())
2603     Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
2604   if (FD->hasAttr<PackedAttr>())
2605     Info.Alignment = CharUnits::One();
2606   Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
2607   return Info;
2608 }
2609 
layout(const RecordDecl * RD)2610 void MicrosoftRecordLayoutBuilder::layout(const RecordDecl *RD) {
2611   // For C record layout, zero-sized records always have size 4.
2612   MinEmptyStructSize = CharUnits::fromQuantity(4);
2613   initializeLayout(RD);
2614   layoutFields(RD);
2615   DataSize = Size = Size.alignTo(Alignment);
2616   RequiredAlignment = std::max(
2617       RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
2618   finalizeLayout(RD);
2619 }
2620 
cxxLayout(const CXXRecordDecl * RD)2621 void MicrosoftRecordLayoutBuilder::cxxLayout(const CXXRecordDecl *RD) {
2622   // The C++ standard says that empty structs have size 1.
2623   MinEmptyStructSize = CharUnits::One();
2624   initializeLayout(RD);
2625   initializeCXXLayout(RD);
2626   layoutNonVirtualBases(RD);
2627   layoutFields(RD);
2628   injectVBPtr(RD);
2629   injectVFPtr(RD);
2630   if (HasOwnVFPtr || (HasVBPtr && !SharedVBPtrBase))
2631     Alignment = std::max(Alignment, PointerInfo.Alignment);
2632   auto RoundingAlignment = Alignment;
2633   if (!MaxFieldAlignment.isZero())
2634     RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
2635   if (!UseExternalLayout)
2636     Size = Size.alignTo(RoundingAlignment);
2637   NonVirtualSize = Size;
2638   RequiredAlignment = std::max(
2639       RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
2640   layoutVirtualBases(RD);
2641   finalizeLayout(RD);
2642 }
2643 
initializeLayout(const RecordDecl * RD)2644 void MicrosoftRecordLayoutBuilder::initializeLayout(const RecordDecl *RD) {
2645   IsUnion = RD->isUnion();
2646   Size = CharUnits::Zero();
2647   Alignment = CharUnits::One();
2648   // In 64-bit mode we always perform an alignment step after laying out vbases.
2649   // In 32-bit mode we do not.  The check to see if we need to perform alignment
2650   // checks the RequiredAlignment field and performs alignment if it isn't 0.
2651   RequiredAlignment = Context.getTargetInfo().getTriple().isArch64Bit()
2652                           ? CharUnits::One()
2653                           : CharUnits::Zero();
2654   // Compute the maximum field alignment.
2655   MaxFieldAlignment = CharUnits::Zero();
2656   // Honor the default struct packing maximum alignment flag.
2657   if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct)
2658       MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
2659   // Honor the packing attribute.  The MS-ABI ignores pragma pack if its larger
2660   // than the pointer size.
2661   if (const MaxFieldAlignmentAttr *MFAA = RD->getAttr<MaxFieldAlignmentAttr>()){
2662     unsigned PackedAlignment = MFAA->getAlignment();
2663     if (PackedAlignment <= Context.getTargetInfo().getPointerWidth(0))
2664       MaxFieldAlignment = Context.toCharUnitsFromBits(PackedAlignment);
2665   }
2666   // Packed attribute forces max field alignment to be 1.
2667   if (RD->hasAttr<PackedAttr>())
2668     MaxFieldAlignment = CharUnits::One();
2669 
2670   // Try to respect the external layout if present.
2671   UseExternalLayout = false;
2672   if (ExternalASTSource *Source = Context.getExternalSource())
2673     UseExternalLayout = Source->layoutRecordType(
2674         RD, External.Size, External.Align, External.FieldOffsets,
2675         External.BaseOffsets, External.VirtualBaseOffsets);
2676 }
2677 
2678 void
initializeCXXLayout(const CXXRecordDecl * RD)2679 MicrosoftRecordLayoutBuilder::initializeCXXLayout(const CXXRecordDecl *RD) {
2680   EndsWithZeroSizedObject = false;
2681   LeadsWithZeroSizedBase = false;
2682   HasOwnVFPtr = false;
2683   HasVBPtr = false;
2684   PrimaryBase = nullptr;
2685   SharedVBPtrBase = nullptr;
2686   // Calculate pointer size and alignment.  These are used for vfptr and vbprt
2687   // injection.
2688   PointerInfo.Size =
2689       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
2690   PointerInfo.Alignment =
2691       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
2692   // Respect pragma pack.
2693   if (!MaxFieldAlignment.isZero())
2694     PointerInfo.Alignment = std::min(PointerInfo.Alignment, MaxFieldAlignment);
2695 }
2696 
2697 void
layoutNonVirtualBases(const CXXRecordDecl * RD)2698 MicrosoftRecordLayoutBuilder::layoutNonVirtualBases(const CXXRecordDecl *RD) {
2699   // The MS-ABI lays out all bases that contain leading vfptrs before it lays
2700   // out any bases that do not contain vfptrs.  We implement this as two passes
2701   // over the bases.  This approach guarantees that the primary base is laid out
2702   // first.  We use these passes to calculate some additional aggregated
2703   // information about the bases, such as required alignment and the presence of
2704   // zero sized members.
2705   const ASTRecordLayout *PreviousBaseLayout = nullptr;
2706   bool HasPolymorphicBaseClass = false;
2707   // Iterate through the bases and lay out the non-virtual ones.
2708   for (const CXXBaseSpecifier &Base : RD->bases()) {
2709     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2710     HasPolymorphicBaseClass |= BaseDecl->isPolymorphic();
2711     const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2712     // Mark and skip virtual bases.
2713     if (Base.isVirtual()) {
2714       HasVBPtr = true;
2715       continue;
2716     }
2717     // Check for a base to share a VBPtr with.
2718     if (!SharedVBPtrBase && BaseLayout.hasVBPtr()) {
2719       SharedVBPtrBase = BaseDecl;
2720       HasVBPtr = true;
2721     }
2722     // Only lay out bases with extendable VFPtrs on the first pass.
2723     if (!BaseLayout.hasExtendableVFPtr())
2724       continue;
2725     // If we don't have a primary base, this one qualifies.
2726     if (!PrimaryBase) {
2727       PrimaryBase = BaseDecl;
2728       LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
2729     }
2730     // Lay out the base.
2731     layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout);
2732   }
2733   // Figure out if we need a fresh VFPtr for this class.
2734   if (RD->isPolymorphic()) {
2735     if (!HasPolymorphicBaseClass)
2736       // This class introduces polymorphism, so we need a vftable to store the
2737       // RTTI information.
2738       HasOwnVFPtr = true;
2739     else if (!PrimaryBase) {
2740       // We have a polymorphic base class but can't extend its vftable. Add a
2741       // new vfptr if we would use any vftable slots.
2742       for (CXXMethodDecl *M : RD->methods()) {
2743         if (MicrosoftVTableContext::hasVtableSlot(M) &&
2744             M->size_overridden_methods() == 0) {
2745           HasOwnVFPtr = true;
2746           break;
2747         }
2748       }
2749     }
2750   }
2751   // If we don't have a primary base then we have a leading object that could
2752   // itself lead with a zero-sized object, something we track.
2753   bool CheckLeadingLayout = !PrimaryBase;
2754   // Iterate through the bases and lay out the non-virtual ones.
2755   for (const CXXBaseSpecifier &Base : RD->bases()) {
2756     if (Base.isVirtual())
2757       continue;
2758     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2759     const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2760     // Only lay out bases without extendable VFPtrs on the second pass.
2761     if (BaseLayout.hasExtendableVFPtr()) {
2762       VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
2763       continue;
2764     }
2765     // If this is the first layout, check to see if it leads with a zero sized
2766     // object.  If it does, so do we.
2767     if (CheckLeadingLayout) {
2768       CheckLeadingLayout = false;
2769       LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
2770     }
2771     // Lay out the base.
2772     layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout);
2773     VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
2774   }
2775   // Set our VBPtroffset if we know it at this point.
2776   if (!HasVBPtr)
2777     VBPtrOffset = CharUnits::fromQuantity(-1);
2778   else if (SharedVBPtrBase) {
2779     const ASTRecordLayout &Layout = Context.getASTRecordLayout(SharedVBPtrBase);
2780     VBPtrOffset = Bases[SharedVBPtrBase] + Layout.getVBPtrOffset();
2781   }
2782 }
2783 
recordUsesEBO(const RecordDecl * RD)2784 static bool recordUsesEBO(const RecordDecl *RD) {
2785   if (!isa<CXXRecordDecl>(RD))
2786     return false;
2787   if (RD->hasAttr<EmptyBasesAttr>())
2788     return true;
2789   if (auto *LVA = RD->getAttr<LayoutVersionAttr>())
2790     // TODO: Double check with the next version of MSVC.
2791     if (LVA->getVersion() <= LangOptions::MSVC2015)
2792       return false;
2793   // TODO: Some later version of MSVC will change the default behavior of the
2794   // compiler to enable EBO by default.  When this happens, we will need an
2795   // additional isCompatibleWithMSVC check.
2796   return false;
2797 }
2798 
layoutNonVirtualBase(const CXXRecordDecl * RD,const CXXRecordDecl * BaseDecl,const ASTRecordLayout & BaseLayout,const ASTRecordLayout * & PreviousBaseLayout)2799 void MicrosoftRecordLayoutBuilder::layoutNonVirtualBase(
2800     const CXXRecordDecl *RD,
2801     const CXXRecordDecl *BaseDecl,
2802     const ASTRecordLayout &BaseLayout,
2803     const ASTRecordLayout *&PreviousBaseLayout) {
2804   // Insert padding between two bases if the left first one is zero sized or
2805   // contains a zero sized subobject and the right is zero sized or one leads
2806   // with a zero sized base.
2807   bool MDCUsesEBO = recordUsesEBO(RD);
2808   if (PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() &&
2809       BaseLayout.leadsWithZeroSizedBase() && !MDCUsesEBO)
2810     Size++;
2811   ElementInfo Info = getAdjustedElementInfo(BaseLayout);
2812   CharUnits BaseOffset;
2813 
2814   // Respect the external AST source base offset, if present.
2815   bool FoundBase = false;
2816   if (UseExternalLayout) {
2817     FoundBase = External.getExternalNVBaseOffset(BaseDecl, BaseOffset);
2818     if (FoundBase) {
2819       assert(BaseOffset >= Size && "base offset already allocated");
2820       Size = BaseOffset;
2821     }
2822   }
2823 
2824   if (!FoundBase) {
2825     if (MDCUsesEBO && BaseDecl->isEmpty()) {
2826       assert(BaseLayout.getNonVirtualSize() == CharUnits::Zero());
2827       BaseOffset = CharUnits::Zero();
2828     } else {
2829       // Otherwise, lay the base out at the end of the MDC.
2830       BaseOffset = Size = Size.alignTo(Info.Alignment);
2831     }
2832   }
2833   Bases.insert(std::make_pair(BaseDecl, BaseOffset));
2834   Size += BaseLayout.getNonVirtualSize();
2835   PreviousBaseLayout = &BaseLayout;
2836 }
2837 
layoutFields(const RecordDecl * RD)2838 void MicrosoftRecordLayoutBuilder::layoutFields(const RecordDecl *RD) {
2839   LastFieldIsNonZeroWidthBitfield = false;
2840   for (const FieldDecl *Field : RD->fields())
2841     layoutField(Field);
2842 }
2843 
layoutField(const FieldDecl * FD)2844 void MicrosoftRecordLayoutBuilder::layoutField(const FieldDecl *FD) {
2845   if (FD->isBitField()) {
2846     layoutBitField(FD);
2847     return;
2848   }
2849   LastFieldIsNonZeroWidthBitfield = false;
2850   ElementInfo Info = getAdjustedElementInfo(FD);
2851   Alignment = std::max(Alignment, Info.Alignment);
2852   CharUnits FieldOffset;
2853   if (UseExternalLayout)
2854     FieldOffset =
2855         Context.toCharUnitsFromBits(External.getExternalFieldOffset(FD));
2856   else if (IsUnion)
2857     FieldOffset = CharUnits::Zero();
2858   else
2859     FieldOffset = Size.alignTo(Info.Alignment);
2860   placeFieldAtOffset(FieldOffset);
2861   Size = std::max(Size, FieldOffset + Info.Size);
2862 }
2863 
layoutBitField(const FieldDecl * FD)2864 void MicrosoftRecordLayoutBuilder::layoutBitField(const FieldDecl *FD) {
2865   unsigned Width = FD->getBitWidthValue(Context);
2866   if (Width == 0) {
2867     layoutZeroWidthBitField(FD);
2868     return;
2869   }
2870   ElementInfo Info = getAdjustedElementInfo(FD);
2871   // Clamp the bitfield to a containable size for the sake of being able
2872   // to lay them out.  Sema will throw an error.
2873   if (Width > Context.toBits(Info.Size))
2874     Width = Context.toBits(Info.Size);
2875   // Check to see if this bitfield fits into an existing allocation.  Note:
2876   // MSVC refuses to pack bitfields of formal types with different sizes
2877   // into the same allocation.
2878   if (!UseExternalLayout && !IsUnion && LastFieldIsNonZeroWidthBitfield &&
2879       CurrentBitfieldSize == Info.Size && Width <= RemainingBitsInField) {
2880     placeFieldAtBitOffset(Context.toBits(Size) - RemainingBitsInField);
2881     RemainingBitsInField -= Width;
2882     return;
2883   }
2884   LastFieldIsNonZeroWidthBitfield = true;
2885   CurrentBitfieldSize = Info.Size;
2886   if (UseExternalLayout) {
2887     auto FieldBitOffset = External.getExternalFieldOffset(FD);
2888     placeFieldAtBitOffset(FieldBitOffset);
2889     auto NewSize = Context.toCharUnitsFromBits(
2890         llvm::alignDown(FieldBitOffset, Context.toBits(Info.Alignment)) +
2891         Context.toBits(Info.Size));
2892     Size = std::max(Size, NewSize);
2893     Alignment = std::max(Alignment, Info.Alignment);
2894   } else if (IsUnion) {
2895     placeFieldAtOffset(CharUnits::Zero());
2896     Size = std::max(Size, Info.Size);
2897     // TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
2898   } else {
2899     // Allocate a new block of memory and place the bitfield in it.
2900     CharUnits FieldOffset = Size.alignTo(Info.Alignment);
2901     placeFieldAtOffset(FieldOffset);
2902     Size = FieldOffset + Info.Size;
2903     Alignment = std::max(Alignment, Info.Alignment);
2904     RemainingBitsInField = Context.toBits(Info.Size) - Width;
2905   }
2906 }
2907 
2908 void
layoutZeroWidthBitField(const FieldDecl * FD)2909 MicrosoftRecordLayoutBuilder::layoutZeroWidthBitField(const FieldDecl *FD) {
2910   // Zero-width bitfields are ignored unless they follow a non-zero-width
2911   // bitfield.
2912   if (!LastFieldIsNonZeroWidthBitfield) {
2913     placeFieldAtOffset(IsUnion ? CharUnits::Zero() : Size);
2914     // TODO: Add a Sema warning that MS ignores alignment for zero
2915     // sized bitfields that occur after zero-size bitfields or non-bitfields.
2916     return;
2917   }
2918   LastFieldIsNonZeroWidthBitfield = false;
2919   ElementInfo Info = getAdjustedElementInfo(FD);
2920   if (IsUnion) {
2921     placeFieldAtOffset(CharUnits::Zero());
2922     Size = std::max(Size, Info.Size);
2923     // TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
2924   } else {
2925     // Round up the current record size to the field's alignment boundary.
2926     CharUnits FieldOffset = Size.alignTo(Info.Alignment);
2927     placeFieldAtOffset(FieldOffset);
2928     Size = FieldOffset;
2929     Alignment = std::max(Alignment, Info.Alignment);
2930   }
2931 }
2932 
injectVBPtr(const CXXRecordDecl * RD)2933 void MicrosoftRecordLayoutBuilder::injectVBPtr(const CXXRecordDecl *RD) {
2934   if (!HasVBPtr || SharedVBPtrBase)
2935     return;
2936   // Inject the VBPointer at the injection site.
2937   CharUnits InjectionSite = VBPtrOffset;
2938   // But before we do, make sure it's properly aligned.
2939   VBPtrOffset = VBPtrOffset.alignTo(PointerInfo.Alignment);
2940   // Determine where the first field should be laid out after the vbptr.
2941   CharUnits FieldStart = VBPtrOffset + PointerInfo.Size;
2942   // Shift everything after the vbptr down, unless we're using an external
2943   // layout.
2944   if (UseExternalLayout) {
2945     // It is possible that there were no fields or bases located after vbptr,
2946     // so the size was not adjusted before.
2947     if (Size < FieldStart)
2948       Size = FieldStart;
2949     return;
2950   }
2951   // Make sure that the amount we push the fields back by is a multiple of the
2952   // alignment.
2953   CharUnits Offset = (FieldStart - InjectionSite)
2954                          .alignTo(std::max(RequiredAlignment, Alignment));
2955   Size += Offset;
2956   for (uint64_t &FieldOffset : FieldOffsets)
2957     FieldOffset += Context.toBits(Offset);
2958   for (BaseOffsetsMapTy::value_type &Base : Bases)
2959     if (Base.second >= InjectionSite)
2960       Base.second += Offset;
2961 }
2962 
injectVFPtr(const CXXRecordDecl * RD)2963 void MicrosoftRecordLayoutBuilder::injectVFPtr(const CXXRecordDecl *RD) {
2964   if (!HasOwnVFPtr)
2965     return;
2966   // Make sure that the amount we push the struct back by is a multiple of the
2967   // alignment.
2968   CharUnits Offset =
2969       PointerInfo.Size.alignTo(std::max(RequiredAlignment, Alignment));
2970   // Push back the vbptr, but increase the size of the object and push back
2971   // regular fields by the offset only if not using external record layout.
2972   if (HasVBPtr)
2973     VBPtrOffset += Offset;
2974 
2975   if (UseExternalLayout) {
2976     // The class may have no bases or fields, but still have a vfptr
2977     // (e.g. it's an interface class). The size was not correctly set before
2978     // in this case.
2979     if (FieldOffsets.empty() && Bases.empty())
2980       Size += Offset;
2981     return;
2982   }
2983 
2984   Size += Offset;
2985 
2986   // If we're using an external layout, the fields offsets have already
2987   // accounted for this adjustment.
2988   for (uint64_t &FieldOffset : FieldOffsets)
2989     FieldOffset += Context.toBits(Offset);
2990   for (BaseOffsetsMapTy::value_type &Base : Bases)
2991     Base.second += Offset;
2992 }
2993 
layoutVirtualBases(const CXXRecordDecl * RD)2994 void MicrosoftRecordLayoutBuilder::layoutVirtualBases(const CXXRecordDecl *RD) {
2995   if (!HasVBPtr)
2996     return;
2997   // Vtordisps are always 4 bytes (even in 64-bit mode)
2998   CharUnits VtorDispSize = CharUnits::fromQuantity(4);
2999   CharUnits VtorDispAlignment = VtorDispSize;
3000   // vtordisps respect pragma pack.
3001   if (!MaxFieldAlignment.isZero())
3002     VtorDispAlignment = std::min(VtorDispAlignment, MaxFieldAlignment);
3003   // The alignment of the vtordisp is at least the required alignment of the
3004   // entire record.  This requirement may be present to support vtordisp
3005   // injection.
3006   for (const CXXBaseSpecifier &VBase : RD->vbases()) {
3007     const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl();
3008     const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
3009     RequiredAlignment =
3010         std::max(RequiredAlignment, BaseLayout.getRequiredAlignment());
3011   }
3012   VtorDispAlignment = std::max(VtorDispAlignment, RequiredAlignment);
3013   // Compute the vtordisp set.
3014   llvm::SmallPtrSet<const CXXRecordDecl *, 2> HasVtorDispSet;
3015   computeVtorDispSet(HasVtorDispSet, RD);
3016   // Iterate through the virtual bases and lay them out.
3017   const ASTRecordLayout *PreviousBaseLayout = nullptr;
3018   for (const CXXBaseSpecifier &VBase : RD->vbases()) {
3019     const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl();
3020     const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
3021     bool HasVtordisp = HasVtorDispSet.count(BaseDecl) > 0;
3022     // Insert padding between two bases if the left first one is zero sized or
3023     // contains a zero sized subobject and the right is zero sized or one leads
3024     // with a zero sized base.  The padding between virtual bases is 4
3025     // bytes (in both 32 and 64 bits modes) and always involves rounding up to
3026     // the required alignment, we don't know why.
3027     if ((PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() &&
3028          BaseLayout.leadsWithZeroSizedBase() && !recordUsesEBO(RD)) ||
3029         HasVtordisp) {
3030       Size = Size.alignTo(VtorDispAlignment) + VtorDispSize;
3031       Alignment = std::max(VtorDispAlignment, Alignment);
3032     }
3033     // Insert the virtual base.
3034     ElementInfo Info = getAdjustedElementInfo(BaseLayout);
3035     CharUnits BaseOffset;
3036 
3037     // Respect the external AST source base offset, if present.
3038     if (UseExternalLayout) {
3039       if (!External.getExternalVBaseOffset(BaseDecl, BaseOffset))
3040         BaseOffset = Size;
3041     } else
3042       BaseOffset = Size.alignTo(Info.Alignment);
3043 
3044     assert(BaseOffset >= Size && "base offset already allocated");
3045 
3046     VBases.insert(std::make_pair(BaseDecl,
3047         ASTRecordLayout::VBaseInfo(BaseOffset, HasVtordisp)));
3048     Size = BaseOffset + BaseLayout.getNonVirtualSize();
3049     PreviousBaseLayout = &BaseLayout;
3050   }
3051 }
3052 
finalizeLayout(const RecordDecl * RD)3053 void MicrosoftRecordLayoutBuilder::finalizeLayout(const RecordDecl *RD) {
3054   // Respect required alignment.  Note that in 32-bit mode Required alignment
3055   // may be 0 and cause size not to be updated.
3056   DataSize = Size;
3057   if (!RequiredAlignment.isZero()) {
3058     Alignment = std::max(Alignment, RequiredAlignment);
3059     auto RoundingAlignment = Alignment;
3060     if (!MaxFieldAlignment.isZero())
3061       RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
3062     RoundingAlignment = std::max(RoundingAlignment, RequiredAlignment);
3063     Size = Size.alignTo(RoundingAlignment);
3064   }
3065   if (Size.isZero()) {
3066     if (!recordUsesEBO(RD) || !cast<CXXRecordDecl>(RD)->isEmpty()) {
3067       EndsWithZeroSizedObject = true;
3068       LeadsWithZeroSizedBase = true;
3069     }
3070     // Zero-sized structures have size equal to their alignment if a
3071     // __declspec(align) came into play.
3072     if (RequiredAlignment >= MinEmptyStructSize)
3073       Size = Alignment;
3074     else
3075       Size = MinEmptyStructSize;
3076   }
3077 
3078   if (UseExternalLayout) {
3079     Size = Context.toCharUnitsFromBits(External.Size);
3080     if (External.Align)
3081       Alignment = Context.toCharUnitsFromBits(External.Align);
3082   }
3083 }
3084 
3085 // Recursively walks the non-virtual bases of a class and determines if any of
3086 // them are in the bases with overridden methods set.
3087 static bool
RequiresVtordisp(const llvm::SmallPtrSetImpl<const CXXRecordDecl * > & BasesWithOverriddenMethods,const CXXRecordDecl * RD)3088 RequiresVtordisp(const llvm::SmallPtrSetImpl<const CXXRecordDecl *> &
3089                      BasesWithOverriddenMethods,
3090                  const CXXRecordDecl *RD) {
3091   if (BasesWithOverriddenMethods.count(RD))
3092     return true;
3093   // If any of a virtual bases non-virtual bases (recursively) requires a
3094   // vtordisp than so does this virtual base.
3095   for (const CXXBaseSpecifier &Base : RD->bases())
3096     if (!Base.isVirtual() &&
3097         RequiresVtordisp(BasesWithOverriddenMethods,
3098                          Base.getType()->getAsCXXRecordDecl()))
3099       return true;
3100   return false;
3101 }
3102 
computeVtorDispSet(llvm::SmallPtrSetImpl<const CXXRecordDecl * > & HasVtordispSet,const CXXRecordDecl * RD) const3103 void MicrosoftRecordLayoutBuilder::computeVtorDispSet(
3104     llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtordispSet,
3105     const CXXRecordDecl *RD) const {
3106   // /vd2 or #pragma vtordisp(2): Always use vtordisps for virtual bases with
3107   // vftables.
3108   if (RD->getMSVtorDispMode() == MSVtorDispMode::ForVFTable) {
3109     for (const CXXBaseSpecifier &Base : RD->vbases()) {
3110       const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
3111       const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
3112       if (Layout.hasExtendableVFPtr())
3113         HasVtordispSet.insert(BaseDecl);
3114     }
3115     return;
3116   }
3117 
3118   // If any of our bases need a vtordisp for this type, so do we.  Check our
3119   // direct bases for vtordisp requirements.
3120   for (const CXXBaseSpecifier &Base : RD->bases()) {
3121     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
3122     const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
3123     for (const auto &bi : Layout.getVBaseOffsetsMap())
3124       if (bi.second.hasVtorDisp())
3125         HasVtordispSet.insert(bi.first);
3126   }
3127   // We don't introduce any additional vtordisps if either:
3128   // * A user declared constructor or destructor aren't declared.
3129   // * #pragma vtordisp(0) or the /vd0 flag are in use.
3130   if ((!RD->hasUserDeclaredConstructor() && !RD->hasUserDeclaredDestructor()) ||
3131       RD->getMSVtorDispMode() == MSVtorDispMode::Never)
3132     return;
3133   // /vd1 or #pragma vtordisp(1): Try to guess based on whether we think it's
3134   // possible for a partially constructed object with virtual base overrides to
3135   // escape a non-trivial constructor.
3136   assert(RD->getMSVtorDispMode() == MSVtorDispMode::ForVBaseOverride);
3137   // Compute a set of base classes which define methods we override.  A virtual
3138   // base in this set will require a vtordisp.  A virtual base that transitively
3139   // contains one of these bases as a non-virtual base will also require a
3140   // vtordisp.
3141   llvm::SmallPtrSet<const CXXMethodDecl *, 8> Work;
3142   llvm::SmallPtrSet<const CXXRecordDecl *, 2> BasesWithOverriddenMethods;
3143   // Seed the working set with our non-destructor, non-pure virtual methods.
3144   for (const CXXMethodDecl *MD : RD->methods())
3145     if (MicrosoftVTableContext::hasVtableSlot(MD) &&
3146         !isa<CXXDestructorDecl>(MD) && !MD->isPure())
3147       Work.insert(MD);
3148   while (!Work.empty()) {
3149     const CXXMethodDecl *MD = *Work.begin();
3150     auto MethodRange = MD->overridden_methods();
3151     // If a virtual method has no-overrides it lives in its parent's vtable.
3152     if (MethodRange.begin() == MethodRange.end())
3153       BasesWithOverriddenMethods.insert(MD->getParent());
3154     else
3155       Work.insert(MethodRange.begin(), MethodRange.end());
3156     // We've finished processing this element, remove it from the working set.
3157     Work.erase(MD);
3158   }
3159   // For each of our virtual bases, check if it is in the set of overridden
3160   // bases or if it transitively contains a non-virtual base that is.
3161   for (const CXXBaseSpecifier &Base : RD->vbases()) {
3162     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
3163     if (!HasVtordispSet.count(BaseDecl) &&
3164         RequiresVtordisp(BasesWithOverriddenMethods, BaseDecl))
3165       HasVtordispSet.insert(BaseDecl);
3166   }
3167 }
3168 
3169 /// getASTRecordLayout - Get or compute information about the layout of the
3170 /// specified record (struct/union/class), which indicates its size and field
3171 /// position information.
3172 const ASTRecordLayout &
getASTRecordLayout(const RecordDecl * D) const3173 ASTContext::getASTRecordLayout(const RecordDecl *D) const {
3174   // These asserts test different things.  A record has a definition
3175   // as soon as we begin to parse the definition.  That definition is
3176   // not a complete definition (which is what isDefinition() tests)
3177   // until we *finish* parsing the definition.
3178 
3179   if (D->hasExternalLexicalStorage() && !D->getDefinition())
3180     getExternalSource()->CompleteType(const_cast<RecordDecl*>(D));
3181 
3182   D = D->getDefinition();
3183   assert(D && "Cannot get layout of forward declarations!");
3184   assert(!D->isInvalidDecl() && "Cannot get layout of invalid decl!");
3185   assert(D->isCompleteDefinition() && "Cannot layout type before complete!");
3186 
3187   // Look up this layout, if already laid out, return what we have.
3188   // Note that we can't save a reference to the entry because this function
3189   // is recursive.
3190   const ASTRecordLayout *Entry = ASTRecordLayouts[D];
3191   if (Entry) return *Entry;
3192 
3193   const ASTRecordLayout *NewEntry = nullptr;
3194 
3195   if (isMsLayout(*this)) {
3196     MicrosoftRecordLayoutBuilder Builder(*this);
3197     if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
3198       Builder.cxxLayout(RD);
3199       NewEntry = new (*this) ASTRecordLayout(
3200           *this, Builder.Size, Builder.Alignment, Builder.Alignment,
3201           Builder.Alignment, Builder.RequiredAlignment, Builder.HasOwnVFPtr,
3202           Builder.HasOwnVFPtr || Builder.PrimaryBase, Builder.VBPtrOffset,
3203           Builder.DataSize, Builder.FieldOffsets, Builder.NonVirtualSize,
3204           Builder.Alignment, Builder.Alignment, CharUnits::Zero(),
3205           Builder.PrimaryBase, false, Builder.SharedVBPtrBase,
3206           Builder.EndsWithZeroSizedObject, Builder.LeadsWithZeroSizedBase,
3207           Builder.Bases, Builder.VBases);
3208     } else {
3209       Builder.layout(D);
3210       NewEntry = new (*this) ASTRecordLayout(
3211           *this, Builder.Size, Builder.Alignment, Builder.Alignment,
3212           Builder.Alignment, Builder.RequiredAlignment, Builder.Size,
3213           Builder.FieldOffsets);
3214     }
3215   } else {
3216     if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
3217       EmptySubobjectMap EmptySubobjects(*this, RD);
3218       ItaniumRecordLayoutBuilder Builder(*this, &EmptySubobjects);
3219       Builder.Layout(RD);
3220 
3221       // In certain situations, we are allowed to lay out objects in the
3222       // tail-padding of base classes.  This is ABI-dependent.
3223       // FIXME: this should be stored in the record layout.
3224       bool skipTailPadding =
3225           mustSkipTailPadding(getTargetInfo().getCXXABI(), RD);
3226 
3227       // FIXME: This should be done in FinalizeLayout.
3228       CharUnits DataSize =
3229           skipTailPadding ? Builder.getSize() : Builder.getDataSize();
3230       CharUnits NonVirtualSize =
3231           skipTailPadding ? DataSize : Builder.NonVirtualSize;
3232       NewEntry = new (*this) ASTRecordLayout(
3233           *this, Builder.getSize(), Builder.Alignment,
3234           Builder.PreferredAlignment, Builder.UnadjustedAlignment,
3235           /*RequiredAlignment : used by MS-ABI)*/
3236           Builder.Alignment, Builder.HasOwnVFPtr, RD->isDynamicClass(),
3237           CharUnits::fromQuantity(-1), DataSize, Builder.FieldOffsets,
3238           NonVirtualSize, Builder.NonVirtualAlignment,
3239           Builder.PreferredNVAlignment,
3240           EmptySubobjects.SizeOfLargestEmptySubobject, Builder.PrimaryBase,
3241           Builder.PrimaryBaseIsVirtual, nullptr, false, false, Builder.Bases,
3242           Builder.VBases);
3243     } else {
3244       ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
3245       Builder.Layout(D);
3246 
3247       NewEntry = new (*this) ASTRecordLayout(
3248           *this, Builder.getSize(), Builder.Alignment,
3249           Builder.PreferredAlignment, Builder.UnadjustedAlignment,
3250           /*RequiredAlignment : used by MS-ABI)*/
3251           Builder.Alignment, Builder.getSize(), Builder.FieldOffsets);
3252     }
3253   }
3254 
3255   ASTRecordLayouts[D] = NewEntry;
3256 
3257   if (getLangOpts().DumpRecordLayouts) {
3258     llvm::outs() << "\n*** Dumping AST Record Layout\n";
3259     DumpRecordLayout(D, llvm::outs(), getLangOpts().DumpRecordLayoutsSimple);
3260   }
3261 
3262   return *NewEntry;
3263 }
3264 
getCurrentKeyFunction(const CXXRecordDecl * RD)3265 const CXXMethodDecl *ASTContext::getCurrentKeyFunction(const CXXRecordDecl *RD) {
3266   if (!getTargetInfo().getCXXABI().hasKeyFunctions())
3267     return nullptr;
3268 
3269   assert(RD->getDefinition() && "Cannot get key function for forward decl!");
3270   RD = RD->getDefinition();
3271 
3272   // Beware:
3273   //  1) computing the key function might trigger deserialization, which might
3274   //     invalidate iterators into KeyFunctions
3275   //  2) 'get' on the LazyDeclPtr might also trigger deserialization and
3276   //     invalidate the LazyDeclPtr within the map itself
3277   LazyDeclPtr Entry = KeyFunctions[RD];
3278   const Decl *Result =
3279       Entry ? Entry.get(getExternalSource()) : computeKeyFunction(*this, RD);
3280 
3281   // Store it back if it changed.
3282   if (Entry.isOffset() || Entry.isValid() != bool(Result))
3283     KeyFunctions[RD] = const_cast<Decl*>(Result);
3284 
3285   return cast_or_null<CXXMethodDecl>(Result);
3286 }
3287 
setNonKeyFunction(const CXXMethodDecl * Method)3288 void ASTContext::setNonKeyFunction(const CXXMethodDecl *Method) {
3289   assert(Method == Method->getFirstDecl() &&
3290          "not working with method declaration from class definition");
3291 
3292   // Look up the cache entry.  Since we're working with the first
3293   // declaration, its parent must be the class definition, which is
3294   // the correct key for the KeyFunctions hash.
3295   const auto &Map = KeyFunctions;
3296   auto I = Map.find(Method->getParent());
3297 
3298   // If it's not cached, there's nothing to do.
3299   if (I == Map.end()) return;
3300 
3301   // If it is cached, check whether it's the target method, and if so,
3302   // remove it from the cache. Note, the call to 'get' might invalidate
3303   // the iterator and the LazyDeclPtr object within the map.
3304   LazyDeclPtr Ptr = I->second;
3305   if (Ptr.get(getExternalSource()) == Method) {
3306     // FIXME: remember that we did this for module / chained PCH state?
3307     KeyFunctions.erase(Method->getParent());
3308   }
3309 }
3310 
getFieldOffset(const ASTContext & C,const FieldDecl * FD)3311 static uint64_t getFieldOffset(const ASTContext &C, const FieldDecl *FD) {
3312   const ASTRecordLayout &Layout = C.getASTRecordLayout(FD->getParent());
3313   return Layout.getFieldOffset(FD->getFieldIndex());
3314 }
3315 
getFieldOffset(const ValueDecl * VD) const3316 uint64_t ASTContext::getFieldOffset(const ValueDecl *VD) const {
3317   uint64_t OffsetInBits;
3318   if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) {
3319     OffsetInBits = ::getFieldOffset(*this, FD);
3320   } else {
3321     const IndirectFieldDecl *IFD = cast<IndirectFieldDecl>(VD);
3322 
3323     OffsetInBits = 0;
3324     for (const NamedDecl *ND : IFD->chain())
3325       OffsetInBits += ::getFieldOffset(*this, cast<FieldDecl>(ND));
3326   }
3327 
3328   return OffsetInBits;
3329 }
3330 
lookupFieldBitOffset(const ObjCInterfaceDecl * OID,const ObjCImplementationDecl * ID,const ObjCIvarDecl * Ivar) const3331 uint64_t ASTContext::lookupFieldBitOffset(const ObjCInterfaceDecl *OID,
3332                                           const ObjCImplementationDecl *ID,
3333                                           const ObjCIvarDecl *Ivar) const {
3334   const ObjCInterfaceDecl *Container = Ivar->getContainingInterface();
3335 
3336   // FIXME: We should eliminate the need to have ObjCImplementationDecl passed
3337   // in here; it should never be necessary because that should be the lexical
3338   // decl context for the ivar.
3339 
3340   // If we know have an implementation (and the ivar is in it) then
3341   // look up in the implementation layout.
3342   const ASTRecordLayout *RL;
3343   if (ID && declaresSameEntity(ID->getClassInterface(), Container))
3344     RL = &getASTObjCImplementationLayout(ID);
3345   else
3346     RL = &getASTObjCInterfaceLayout(Container);
3347 
3348   // Compute field index.
3349   //
3350   // FIXME: The index here is closely tied to how ASTContext::getObjCLayout is
3351   // implemented. This should be fixed to get the information from the layout
3352   // directly.
3353   unsigned Index = 0;
3354 
3355   for (const ObjCIvarDecl *IVD = Container->all_declared_ivar_begin();
3356        IVD; IVD = IVD->getNextIvar()) {
3357     if (Ivar == IVD)
3358       break;
3359     ++Index;
3360   }
3361   assert(Index < RL->getFieldCount() && "Ivar is not inside record layout!");
3362 
3363   return RL->getFieldOffset(Index);
3364 }
3365 
3366 /// getObjCLayout - Get or compute information about the layout of the
3367 /// given interface.
3368 ///
3369 /// \param Impl - If given, also include the layout of the interface's
3370 /// implementation. This may differ by including synthesized ivars.
3371 const ASTRecordLayout &
getObjCLayout(const ObjCInterfaceDecl * D,const ObjCImplementationDecl * Impl) const3372 ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
3373                           const ObjCImplementationDecl *Impl) const {
3374   // Retrieve the definition
3375   if (D->hasExternalLexicalStorage() && !D->getDefinition())
3376     getExternalSource()->CompleteType(const_cast<ObjCInterfaceDecl*>(D));
3377   D = D->getDefinition();
3378   assert(D && !D->isInvalidDecl() && D->isThisDeclarationADefinition() &&
3379          "Invalid interface decl!");
3380 
3381   // Look up this layout, if already laid out, return what we have.
3382   const ObjCContainerDecl *Key =
3383     Impl ? (const ObjCContainerDecl*) Impl : (const ObjCContainerDecl*) D;
3384   if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
3385     return *Entry;
3386 
3387   // Add in synthesized ivar count if laying out an implementation.
3388   if (Impl) {
3389     unsigned SynthCount = CountNonClassIvars(D);
3390     // If there aren't any synthesized ivars then reuse the interface
3391     // entry. Note we can't cache this because we simply free all
3392     // entries later; however we shouldn't look up implementations
3393     // frequently.
3394     if (SynthCount == 0)
3395       return getObjCLayout(D, nullptr);
3396   }
3397 
3398   ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
3399   Builder.Layout(D);
3400 
3401   const ASTRecordLayout *NewEntry = new (*this) ASTRecordLayout(
3402       *this, Builder.getSize(), Builder.Alignment, Builder.PreferredAlignment,
3403       Builder.UnadjustedAlignment,
3404       /*RequiredAlignment : used by MS-ABI)*/
3405       Builder.Alignment, Builder.getDataSize(), Builder.FieldOffsets);
3406 
3407   ObjCLayouts[Key] = NewEntry;
3408 
3409   return *NewEntry;
3410 }
3411 
PrintOffset(raw_ostream & OS,CharUnits Offset,unsigned IndentLevel)3412 static void PrintOffset(raw_ostream &OS,
3413                         CharUnits Offset, unsigned IndentLevel) {
3414   OS << llvm::format("%10" PRId64 " | ", (int64_t)Offset.getQuantity());
3415   OS.indent(IndentLevel * 2);
3416 }
3417 
PrintBitFieldOffset(raw_ostream & OS,CharUnits Offset,unsigned Begin,unsigned Width,unsigned IndentLevel)3418 static void PrintBitFieldOffset(raw_ostream &OS, CharUnits Offset,
3419                                 unsigned Begin, unsigned Width,
3420                                 unsigned IndentLevel) {
3421   llvm::SmallString<10> Buffer;
3422   {
3423     llvm::raw_svector_ostream BufferOS(Buffer);
3424     BufferOS << Offset.getQuantity() << ':';
3425     if (Width == 0) {
3426       BufferOS << '-';
3427     } else {
3428       BufferOS << Begin << '-' << (Begin + Width - 1);
3429     }
3430   }
3431 
3432   OS << llvm::right_justify(Buffer, 10) << " | ";
3433   OS.indent(IndentLevel * 2);
3434 }
3435 
PrintIndentNoOffset(raw_ostream & OS,unsigned IndentLevel)3436 static void PrintIndentNoOffset(raw_ostream &OS, unsigned IndentLevel) {
3437   OS << "           | ";
3438   OS.indent(IndentLevel * 2);
3439 }
3440 
DumpRecordLayout(raw_ostream & OS,const RecordDecl * RD,const ASTContext & C,CharUnits Offset,unsigned IndentLevel,const char * Description,bool PrintSizeInfo,bool IncludeVirtualBases)3441 static void DumpRecordLayout(raw_ostream &OS, const RecordDecl *RD,
3442                              const ASTContext &C,
3443                              CharUnits Offset,
3444                              unsigned IndentLevel,
3445                              const char* Description,
3446                              bool PrintSizeInfo,
3447                              bool IncludeVirtualBases) {
3448   const ASTRecordLayout &Layout = C.getASTRecordLayout(RD);
3449   auto CXXRD = dyn_cast<CXXRecordDecl>(RD);
3450 
3451   PrintOffset(OS, Offset, IndentLevel);
3452   OS << C.getTypeDeclType(const_cast<RecordDecl*>(RD)).getAsString();
3453   if (Description)
3454     OS << ' ' << Description;
3455   if (CXXRD && CXXRD->isEmpty())
3456     OS << " (empty)";
3457   OS << '\n';
3458 
3459   IndentLevel++;
3460 
3461   // Dump bases.
3462   if (CXXRD) {
3463     const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
3464     bool HasOwnVFPtr = Layout.hasOwnVFPtr();
3465     bool HasOwnVBPtr = Layout.hasOwnVBPtr();
3466 
3467     // Vtable pointer.
3468     if (CXXRD->isDynamicClass() && !PrimaryBase && !isMsLayout(C)) {
3469       PrintOffset(OS, Offset, IndentLevel);
3470       OS << '(' << *RD << " vtable pointer)\n";
3471     } else if (HasOwnVFPtr) {
3472       PrintOffset(OS, Offset, IndentLevel);
3473       // vfptr (for Microsoft C++ ABI)
3474       OS << '(' << *RD << " vftable pointer)\n";
3475     }
3476 
3477     // Collect nvbases.
3478     SmallVector<const CXXRecordDecl *, 4> Bases;
3479     for (const CXXBaseSpecifier &Base : CXXRD->bases()) {
3480       assert(!Base.getType()->isDependentType() &&
3481              "Cannot layout class with dependent bases.");
3482       if (!Base.isVirtual())
3483         Bases.push_back(Base.getType()->getAsCXXRecordDecl());
3484     }
3485 
3486     // Sort nvbases by offset.
3487     llvm::stable_sort(
3488         Bases, [&](const CXXRecordDecl *L, const CXXRecordDecl *R) {
3489           return Layout.getBaseClassOffset(L) < Layout.getBaseClassOffset(R);
3490         });
3491 
3492     // Dump (non-virtual) bases
3493     for (const CXXRecordDecl *Base : Bases) {
3494       CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base);
3495       DumpRecordLayout(OS, Base, C, BaseOffset, IndentLevel,
3496                        Base == PrimaryBase ? "(primary base)" : "(base)",
3497                        /*PrintSizeInfo=*/false,
3498                        /*IncludeVirtualBases=*/false);
3499     }
3500 
3501     // vbptr (for Microsoft C++ ABI)
3502     if (HasOwnVBPtr) {
3503       PrintOffset(OS, Offset + Layout.getVBPtrOffset(), IndentLevel);
3504       OS << '(' << *RD << " vbtable pointer)\n";
3505     }
3506   }
3507 
3508   // Dump fields.
3509   uint64_t FieldNo = 0;
3510   for (RecordDecl::field_iterator I = RD->field_begin(),
3511          E = RD->field_end(); I != E; ++I, ++FieldNo) {
3512     const FieldDecl &Field = **I;
3513     uint64_t LocalFieldOffsetInBits = Layout.getFieldOffset(FieldNo);
3514     CharUnits FieldOffset =
3515       Offset + C.toCharUnitsFromBits(LocalFieldOffsetInBits);
3516 
3517     // Recursively dump fields of record type.
3518     if (auto RT = Field.getType()->getAs<RecordType>()) {
3519       DumpRecordLayout(OS, RT->getDecl(), C, FieldOffset, IndentLevel,
3520                        Field.getName().data(),
3521                        /*PrintSizeInfo=*/false,
3522                        /*IncludeVirtualBases=*/true);
3523       continue;
3524     }
3525 
3526     if (Field.isBitField()) {
3527       uint64_t LocalFieldByteOffsetInBits = C.toBits(FieldOffset - Offset);
3528       unsigned Begin = LocalFieldOffsetInBits - LocalFieldByteOffsetInBits;
3529       unsigned Width = Field.getBitWidthValue(C);
3530       PrintBitFieldOffset(OS, FieldOffset, Begin, Width, IndentLevel);
3531     } else {
3532       PrintOffset(OS, FieldOffset, IndentLevel);
3533     }
3534     OS << Field.getType().getAsString() << ' ' << Field << '\n';
3535   }
3536 
3537   // Dump virtual bases.
3538   if (CXXRD && IncludeVirtualBases) {
3539     const ASTRecordLayout::VBaseOffsetsMapTy &VtorDisps =
3540       Layout.getVBaseOffsetsMap();
3541 
3542     for (const CXXBaseSpecifier &Base : CXXRD->vbases()) {
3543       assert(Base.isVirtual() && "Found non-virtual class!");
3544       const CXXRecordDecl *VBase = Base.getType()->getAsCXXRecordDecl();
3545 
3546       CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBase);
3547 
3548       if (VtorDisps.find(VBase)->second.hasVtorDisp()) {
3549         PrintOffset(OS, VBaseOffset - CharUnits::fromQuantity(4), IndentLevel);
3550         OS << "(vtordisp for vbase " << *VBase << ")\n";
3551       }
3552 
3553       DumpRecordLayout(OS, VBase, C, VBaseOffset, IndentLevel,
3554                        VBase == Layout.getPrimaryBase() ?
3555                          "(primary virtual base)" : "(virtual base)",
3556                        /*PrintSizeInfo=*/false,
3557                        /*IncludeVirtualBases=*/false);
3558     }
3559   }
3560 
3561   if (!PrintSizeInfo) return;
3562 
3563   PrintIndentNoOffset(OS, IndentLevel - 1);
3564   OS << "[sizeof=" << Layout.getSize().getQuantity();
3565   if (CXXRD && !isMsLayout(C))
3566     OS << ", dsize=" << Layout.getDataSize().getQuantity();
3567   OS << ", align=" << Layout.getAlignment().getQuantity();
3568   if (C.getTargetInfo().defaultsToAIXPowerAlignment())
3569     OS << ", preferredalign=" << Layout.getPreferredAlignment().getQuantity();
3570 
3571   if (CXXRD) {
3572     OS << ",\n";
3573     PrintIndentNoOffset(OS, IndentLevel - 1);
3574     OS << " nvsize=" << Layout.getNonVirtualSize().getQuantity();
3575     OS << ", nvalign=" << Layout.getNonVirtualAlignment().getQuantity();
3576     if (C.getTargetInfo().defaultsToAIXPowerAlignment())
3577       OS << ", preferrednvalign="
3578          << Layout.getPreferredNVAlignment().getQuantity();
3579   }
3580   OS << "]\n";
3581 }
3582 
DumpRecordLayout(const RecordDecl * RD,raw_ostream & OS,bool Simple) const3583 void ASTContext::DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS,
3584                                   bool Simple) const {
3585   if (!Simple) {
3586     ::DumpRecordLayout(OS, RD, *this, CharUnits(), 0, nullptr,
3587                        /*PrintSizeInfo*/ true,
3588                        /*IncludeVirtualBases=*/true);
3589     return;
3590   }
3591 
3592   // The "simple" format is designed to be parsed by the
3593   // layout-override testing code.  There shouldn't be any external
3594   // uses of this format --- when LLDB overrides a layout, it sets up
3595   // the data structures directly --- so feel free to adjust this as
3596   // you like as long as you also update the rudimentary parser for it
3597   // in libFrontend.
3598 
3599   const ASTRecordLayout &Info = getASTRecordLayout(RD);
3600   OS << "Type: " << getTypeDeclType(RD).getAsString() << "\n";
3601   OS << "\nLayout: ";
3602   OS << "<ASTRecordLayout\n";
3603   OS << "  Size:" << toBits(Info.getSize()) << "\n";
3604   if (!isMsLayout(*this))
3605     OS << "  DataSize:" << toBits(Info.getDataSize()) << "\n";
3606   OS << "  Alignment:" << toBits(Info.getAlignment()) << "\n";
3607   if (Target->defaultsToAIXPowerAlignment())
3608     OS << "  PreferredAlignment:" << toBits(Info.getPreferredAlignment())
3609        << "\n";
3610   OS << "  FieldOffsets: [";
3611   for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) {
3612     if (i)
3613       OS << ", ";
3614     OS << Info.getFieldOffset(i);
3615   }
3616   OS << "]>\n";
3617 }
3618