1 //=== RecordLayoutBuilder.cpp - Helper class for building record layouts ---==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "clang/AST/ASTContext.h"
10 #include "clang/AST/ASTDiagnostic.h"
11 #include "clang/AST/Attr.h"
12 #include "clang/AST/CXXInheritance.h"
13 #include "clang/AST/Decl.h"
14 #include "clang/AST/DeclCXX.h"
15 #include "clang/AST/DeclObjC.h"
16 #include "clang/AST/Expr.h"
17 #include "clang/AST/VTableBuilder.h"
18 #include "clang/AST/RecordLayout.h"
19 #include "clang/Basic/TargetInfo.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/Support/Format.h"
22 #include "llvm/Support/MathExtras.h"
23
24 using namespace clang;
25
26 namespace {
27
28 /// BaseSubobjectInfo - Represents a single base subobject in a complete class.
29 /// For a class hierarchy like
30 ///
31 /// class A { };
32 /// class B : A { };
33 /// class C : A, B { };
34 ///
35 /// The BaseSubobjectInfo graph for C will have three BaseSubobjectInfo
36 /// instances, one for B and two for A.
37 ///
38 /// If a base is virtual, it will only have one BaseSubobjectInfo allocated.
39 struct BaseSubobjectInfo {
40 /// Class - The class for this base info.
41 const CXXRecordDecl *Class;
42
43 /// IsVirtual - Whether the BaseInfo represents a virtual base or not.
44 bool IsVirtual;
45
46 /// Bases - Information about the base subobjects.
47 SmallVector<BaseSubobjectInfo*, 4> Bases;
48
49 /// PrimaryVirtualBaseInfo - Holds the base info for the primary virtual base
50 /// of this base info (if one exists).
51 BaseSubobjectInfo *PrimaryVirtualBaseInfo;
52
53 // FIXME: Document.
54 const BaseSubobjectInfo *Derived;
55 };
56
57 /// Externally provided layout. Typically used when the AST source, such
58 /// as DWARF, lacks all the information that was available at compile time, such
59 /// as alignment attributes on fields and pragmas in effect.
60 struct ExternalLayout {
ExternalLayout__anonb7f8836c0111::ExternalLayout61 ExternalLayout() : Size(0), Align(0) {}
62
63 /// Overall record size in bits.
64 uint64_t Size;
65
66 /// Overall record alignment in bits.
67 uint64_t Align;
68
69 /// Record field offsets in bits.
70 llvm::DenseMap<const FieldDecl *, uint64_t> FieldOffsets;
71
72 /// Direct, non-virtual base offsets.
73 llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsets;
74
75 /// Virtual base offsets.
76 llvm::DenseMap<const CXXRecordDecl *, CharUnits> VirtualBaseOffsets;
77
78 /// Get the offset of the given field. The external source must provide
79 /// entries for all fields in the record.
getExternalFieldOffset__anonb7f8836c0111::ExternalLayout80 uint64_t getExternalFieldOffset(const FieldDecl *FD) {
81 assert(FieldOffsets.count(FD) &&
82 "Field does not have an external offset");
83 return FieldOffsets[FD];
84 }
85
getExternalNVBaseOffset__anonb7f8836c0111::ExternalLayout86 bool getExternalNVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) {
87 auto Known = BaseOffsets.find(RD);
88 if (Known == BaseOffsets.end())
89 return false;
90 BaseOffset = Known->second;
91 return true;
92 }
93
getExternalVBaseOffset__anonb7f8836c0111::ExternalLayout94 bool getExternalVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) {
95 auto Known = VirtualBaseOffsets.find(RD);
96 if (Known == VirtualBaseOffsets.end())
97 return false;
98 BaseOffset = Known->second;
99 return true;
100 }
101 };
102
103 /// EmptySubobjectMap - Keeps track of which empty subobjects exist at different
104 /// offsets while laying out a C++ class.
105 class EmptySubobjectMap {
106 const ASTContext &Context;
107 uint64_t CharWidth;
108
109 /// Class - The class whose empty entries we're keeping track of.
110 const CXXRecordDecl *Class;
111
112 /// EmptyClassOffsets - A map from offsets to empty record decls.
113 typedef llvm::TinyPtrVector<const CXXRecordDecl *> ClassVectorTy;
114 typedef llvm::DenseMap<CharUnits, ClassVectorTy> EmptyClassOffsetsMapTy;
115 EmptyClassOffsetsMapTy EmptyClassOffsets;
116
117 /// MaxEmptyClassOffset - The highest offset known to contain an empty
118 /// base subobject.
119 CharUnits MaxEmptyClassOffset;
120
121 /// ComputeEmptySubobjectSizes - Compute the size of the largest base or
122 /// member subobject that is empty.
123 void ComputeEmptySubobjectSizes();
124
125 void AddSubobjectAtOffset(const CXXRecordDecl *RD, CharUnits Offset);
126
127 void UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
128 CharUnits Offset, bool PlacingEmptyBase);
129
130 void UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD,
131 const CXXRecordDecl *Class, CharUnits Offset,
132 bool PlacingOverlappingField);
133 void UpdateEmptyFieldSubobjects(const FieldDecl *FD, CharUnits Offset,
134 bool PlacingOverlappingField);
135
136 /// AnyEmptySubobjectsBeyondOffset - Returns whether there are any empty
137 /// subobjects beyond the given offset.
AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const138 bool AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const {
139 return Offset <= MaxEmptyClassOffset;
140 }
141
142 CharUnits
getFieldOffset(const ASTRecordLayout & Layout,unsigned FieldNo) const143 getFieldOffset(const ASTRecordLayout &Layout, unsigned FieldNo) const {
144 uint64_t FieldOffset = Layout.getFieldOffset(FieldNo);
145 assert(FieldOffset % CharWidth == 0 &&
146 "Field offset not at char boundary!");
147
148 return Context.toCharUnitsFromBits(FieldOffset);
149 }
150
151 protected:
152 bool CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
153 CharUnits Offset) const;
154
155 bool CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
156 CharUnits Offset);
157
158 bool CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
159 const CXXRecordDecl *Class,
160 CharUnits Offset) const;
161 bool CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
162 CharUnits Offset) const;
163
164 public:
165 /// This holds the size of the largest empty subobject (either a base
166 /// or a member). Will be zero if the record being built doesn't contain
167 /// any empty classes.
168 CharUnits SizeOfLargestEmptySubobject;
169
EmptySubobjectMap(const ASTContext & Context,const CXXRecordDecl * Class)170 EmptySubobjectMap(const ASTContext &Context, const CXXRecordDecl *Class)
171 : Context(Context), CharWidth(Context.getCharWidth()), Class(Class) {
172 ComputeEmptySubobjectSizes();
173 }
174
175 /// CanPlaceBaseAtOffset - Return whether the given base class can be placed
176 /// at the given offset.
177 /// Returns false if placing the record will result in two components
178 /// (direct or indirect) of the same type having the same offset.
179 bool CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
180 CharUnits Offset);
181
182 /// CanPlaceFieldAtOffset - Return whether a field can be placed at the given
183 /// offset.
184 bool CanPlaceFieldAtOffset(const FieldDecl *FD, CharUnits Offset);
185 };
186
ComputeEmptySubobjectSizes()187 void EmptySubobjectMap::ComputeEmptySubobjectSizes() {
188 // Check the bases.
189 for (const CXXBaseSpecifier &Base : Class->bases()) {
190 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
191
192 CharUnits EmptySize;
193 const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
194 if (BaseDecl->isEmpty()) {
195 // If the class decl is empty, get its size.
196 EmptySize = Layout.getSize();
197 } else {
198 // Otherwise, we get the largest empty subobject for the decl.
199 EmptySize = Layout.getSizeOfLargestEmptySubobject();
200 }
201
202 if (EmptySize > SizeOfLargestEmptySubobject)
203 SizeOfLargestEmptySubobject = EmptySize;
204 }
205
206 // Check the fields.
207 for (const FieldDecl *FD : Class->fields()) {
208 const RecordType *RT =
209 Context.getBaseElementType(FD->getType())->getAs<RecordType>();
210
211 // We only care about record types.
212 if (!RT)
213 continue;
214
215 CharUnits EmptySize;
216 const CXXRecordDecl *MemberDecl = RT->getAsCXXRecordDecl();
217 const ASTRecordLayout &Layout = Context.getASTRecordLayout(MemberDecl);
218 if (MemberDecl->isEmpty()) {
219 // If the class decl is empty, get its size.
220 EmptySize = Layout.getSize();
221 } else {
222 // Otherwise, we get the largest empty subobject for the decl.
223 EmptySize = Layout.getSizeOfLargestEmptySubobject();
224 }
225
226 if (EmptySize > SizeOfLargestEmptySubobject)
227 SizeOfLargestEmptySubobject = EmptySize;
228 }
229 }
230
231 bool
CanPlaceSubobjectAtOffset(const CXXRecordDecl * RD,CharUnits Offset) const232 EmptySubobjectMap::CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
233 CharUnits Offset) const {
234 // We only need to check empty bases.
235 if (!RD->isEmpty())
236 return true;
237
238 EmptyClassOffsetsMapTy::const_iterator I = EmptyClassOffsets.find(Offset);
239 if (I == EmptyClassOffsets.end())
240 return true;
241
242 const ClassVectorTy &Classes = I->second;
243 if (llvm::find(Classes, RD) == Classes.end())
244 return true;
245
246 // There is already an empty class of the same type at this offset.
247 return false;
248 }
249
AddSubobjectAtOffset(const CXXRecordDecl * RD,CharUnits Offset)250 void EmptySubobjectMap::AddSubobjectAtOffset(const CXXRecordDecl *RD,
251 CharUnits Offset) {
252 // We only care about empty bases.
253 if (!RD->isEmpty())
254 return;
255
256 // If we have empty structures inside a union, we can assign both
257 // the same offset. Just avoid pushing them twice in the list.
258 ClassVectorTy &Classes = EmptyClassOffsets[Offset];
259 if (llvm::is_contained(Classes, RD))
260 return;
261
262 Classes.push_back(RD);
263
264 // Update the empty class offset.
265 if (Offset > MaxEmptyClassOffset)
266 MaxEmptyClassOffset = Offset;
267 }
268
269 bool
CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo * Info,CharUnits Offset)270 EmptySubobjectMap::CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
271 CharUnits Offset) {
272 // We don't have to keep looking past the maximum offset that's known to
273 // contain an empty class.
274 if (!AnyEmptySubobjectsBeyondOffset(Offset))
275 return true;
276
277 if (!CanPlaceSubobjectAtOffset(Info->Class, Offset))
278 return false;
279
280 // Traverse all non-virtual bases.
281 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
282 for (const BaseSubobjectInfo *Base : Info->Bases) {
283 if (Base->IsVirtual)
284 continue;
285
286 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
287
288 if (!CanPlaceBaseSubobjectAtOffset(Base, BaseOffset))
289 return false;
290 }
291
292 if (Info->PrimaryVirtualBaseInfo) {
293 BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
294
295 if (Info == PrimaryVirtualBaseInfo->Derived) {
296 if (!CanPlaceBaseSubobjectAtOffset(PrimaryVirtualBaseInfo, Offset))
297 return false;
298 }
299 }
300
301 // Traverse all member variables.
302 unsigned FieldNo = 0;
303 for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
304 E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
305 if (I->isBitField())
306 continue;
307
308 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
309 if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
310 return false;
311 }
312
313 return true;
314 }
315
UpdateEmptyBaseSubobjects(const BaseSubobjectInfo * Info,CharUnits Offset,bool PlacingEmptyBase)316 void EmptySubobjectMap::UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
317 CharUnits Offset,
318 bool PlacingEmptyBase) {
319 if (!PlacingEmptyBase && Offset >= SizeOfLargestEmptySubobject) {
320 // We know that the only empty subobjects that can conflict with empty
321 // subobject of non-empty bases, are empty bases that can be placed at
322 // offset zero. Because of this, we only need to keep track of empty base
323 // subobjects with offsets less than the size of the largest empty
324 // subobject for our class.
325 return;
326 }
327
328 AddSubobjectAtOffset(Info->Class, Offset);
329
330 // Traverse all non-virtual bases.
331 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
332 for (const BaseSubobjectInfo *Base : Info->Bases) {
333 if (Base->IsVirtual)
334 continue;
335
336 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
337 UpdateEmptyBaseSubobjects(Base, BaseOffset, PlacingEmptyBase);
338 }
339
340 if (Info->PrimaryVirtualBaseInfo) {
341 BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
342
343 if (Info == PrimaryVirtualBaseInfo->Derived)
344 UpdateEmptyBaseSubobjects(PrimaryVirtualBaseInfo, Offset,
345 PlacingEmptyBase);
346 }
347
348 // Traverse all member variables.
349 unsigned FieldNo = 0;
350 for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
351 E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
352 if (I->isBitField())
353 continue;
354
355 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
356 UpdateEmptyFieldSubobjects(*I, FieldOffset, PlacingEmptyBase);
357 }
358 }
359
CanPlaceBaseAtOffset(const BaseSubobjectInfo * Info,CharUnits Offset)360 bool EmptySubobjectMap::CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
361 CharUnits Offset) {
362 // If we know this class doesn't have any empty subobjects we don't need to
363 // bother checking.
364 if (SizeOfLargestEmptySubobject.isZero())
365 return true;
366
367 if (!CanPlaceBaseSubobjectAtOffset(Info, Offset))
368 return false;
369
370 // We are able to place the base at this offset. Make sure to update the
371 // empty base subobject map.
372 UpdateEmptyBaseSubobjects(Info, Offset, Info->Class->isEmpty());
373 return true;
374 }
375
376 bool
CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl * RD,const CXXRecordDecl * Class,CharUnits Offset) const377 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
378 const CXXRecordDecl *Class,
379 CharUnits Offset) const {
380 // We don't have to keep looking past the maximum offset that's known to
381 // contain an empty class.
382 if (!AnyEmptySubobjectsBeyondOffset(Offset))
383 return true;
384
385 if (!CanPlaceSubobjectAtOffset(RD, Offset))
386 return false;
387
388 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
389
390 // Traverse all non-virtual bases.
391 for (const CXXBaseSpecifier &Base : RD->bases()) {
392 if (Base.isVirtual())
393 continue;
394
395 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
396
397 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
398 if (!CanPlaceFieldSubobjectAtOffset(BaseDecl, Class, BaseOffset))
399 return false;
400 }
401
402 if (RD == Class) {
403 // This is the most derived class, traverse virtual bases as well.
404 for (const CXXBaseSpecifier &Base : RD->vbases()) {
405 const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl();
406
407 CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
408 if (!CanPlaceFieldSubobjectAtOffset(VBaseDecl, Class, VBaseOffset))
409 return false;
410 }
411 }
412
413 // Traverse all member variables.
414 unsigned FieldNo = 0;
415 for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
416 I != E; ++I, ++FieldNo) {
417 if (I->isBitField())
418 continue;
419
420 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
421
422 if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
423 return false;
424 }
425
426 return true;
427 }
428
429 bool
CanPlaceFieldSubobjectAtOffset(const FieldDecl * FD,CharUnits Offset) const430 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
431 CharUnits Offset) const {
432 // We don't have to keep looking past the maximum offset that's known to
433 // contain an empty class.
434 if (!AnyEmptySubobjectsBeyondOffset(Offset))
435 return true;
436
437 QualType T = FD->getType();
438 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
439 return CanPlaceFieldSubobjectAtOffset(RD, RD, Offset);
440
441 // If we have an array type we need to look at every element.
442 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
443 QualType ElemTy = Context.getBaseElementType(AT);
444 const RecordType *RT = ElemTy->getAs<RecordType>();
445 if (!RT)
446 return true;
447
448 const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
449 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
450
451 uint64_t NumElements = Context.getConstantArrayElementCount(AT);
452 CharUnits ElementOffset = Offset;
453 for (uint64_t I = 0; I != NumElements; ++I) {
454 // We don't have to keep looking past the maximum offset that's known to
455 // contain an empty class.
456 if (!AnyEmptySubobjectsBeyondOffset(ElementOffset))
457 return true;
458
459 if (!CanPlaceFieldSubobjectAtOffset(RD, RD, ElementOffset))
460 return false;
461
462 ElementOffset += Layout.getSize();
463 }
464 }
465
466 return true;
467 }
468
469 bool
CanPlaceFieldAtOffset(const FieldDecl * FD,CharUnits Offset)470 EmptySubobjectMap::CanPlaceFieldAtOffset(const FieldDecl *FD,
471 CharUnits Offset) {
472 if (!CanPlaceFieldSubobjectAtOffset(FD, Offset))
473 return false;
474
475 // We are able to place the member variable at this offset.
476 // Make sure to update the empty field subobject map.
477 UpdateEmptyFieldSubobjects(FD, Offset, FD->hasAttr<NoUniqueAddressAttr>());
478 return true;
479 }
480
UpdateEmptyFieldSubobjects(const CXXRecordDecl * RD,const CXXRecordDecl * Class,CharUnits Offset,bool PlacingOverlappingField)481 void EmptySubobjectMap::UpdateEmptyFieldSubobjects(
482 const CXXRecordDecl *RD, const CXXRecordDecl *Class, CharUnits Offset,
483 bool PlacingOverlappingField) {
484 // We know that the only empty subobjects that can conflict with empty
485 // field subobjects are subobjects of empty bases and potentially-overlapping
486 // fields that can be placed at offset zero. Because of this, we only need to
487 // keep track of empty field subobjects with offsets less than the size of
488 // the largest empty subobject for our class.
489 //
490 // (Proof: we will only consider placing a subobject at offset zero or at
491 // >= the current dsize. The only cases where the earlier subobject can be
492 // placed beyond the end of dsize is if it's an empty base or a
493 // potentially-overlapping field.)
494 if (!PlacingOverlappingField && Offset >= SizeOfLargestEmptySubobject)
495 return;
496
497 AddSubobjectAtOffset(RD, Offset);
498
499 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
500
501 // Traverse all non-virtual bases.
502 for (const CXXBaseSpecifier &Base : RD->bases()) {
503 if (Base.isVirtual())
504 continue;
505
506 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
507
508 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
509 UpdateEmptyFieldSubobjects(BaseDecl, Class, BaseOffset,
510 PlacingOverlappingField);
511 }
512
513 if (RD == Class) {
514 // This is the most derived class, traverse virtual bases as well.
515 for (const CXXBaseSpecifier &Base : RD->vbases()) {
516 const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl();
517
518 CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
519 UpdateEmptyFieldSubobjects(VBaseDecl, Class, VBaseOffset,
520 PlacingOverlappingField);
521 }
522 }
523
524 // Traverse all member variables.
525 unsigned FieldNo = 0;
526 for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
527 I != E; ++I, ++FieldNo) {
528 if (I->isBitField())
529 continue;
530
531 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
532
533 UpdateEmptyFieldSubobjects(*I, FieldOffset, PlacingOverlappingField);
534 }
535 }
536
UpdateEmptyFieldSubobjects(const FieldDecl * FD,CharUnits Offset,bool PlacingOverlappingField)537 void EmptySubobjectMap::UpdateEmptyFieldSubobjects(
538 const FieldDecl *FD, CharUnits Offset, bool PlacingOverlappingField) {
539 QualType T = FD->getType();
540 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
541 UpdateEmptyFieldSubobjects(RD, RD, Offset, PlacingOverlappingField);
542 return;
543 }
544
545 // If we have an array type we need to update every element.
546 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
547 QualType ElemTy = Context.getBaseElementType(AT);
548 const RecordType *RT = ElemTy->getAs<RecordType>();
549 if (!RT)
550 return;
551
552 const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
553 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
554
555 uint64_t NumElements = Context.getConstantArrayElementCount(AT);
556 CharUnits ElementOffset = Offset;
557
558 for (uint64_t I = 0; I != NumElements; ++I) {
559 // We know that the only empty subobjects that can conflict with empty
560 // field subobjects are subobjects of empty bases that can be placed at
561 // offset zero. Because of this, we only need to keep track of empty field
562 // subobjects with offsets less than the size of the largest empty
563 // subobject for our class.
564 if (!PlacingOverlappingField &&
565 ElementOffset >= SizeOfLargestEmptySubobject)
566 return;
567
568 UpdateEmptyFieldSubobjects(RD, RD, ElementOffset,
569 PlacingOverlappingField);
570 ElementOffset += Layout.getSize();
571 }
572 }
573 }
574
575 typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> ClassSetTy;
576
577 class ItaniumRecordLayoutBuilder {
578 protected:
579 // FIXME: Remove this and make the appropriate fields public.
580 friend class clang::ASTContext;
581
582 const ASTContext &Context;
583
584 EmptySubobjectMap *EmptySubobjects;
585
586 /// Size - The current size of the record layout.
587 uint64_t Size;
588
589 /// Alignment - The current alignment of the record layout.
590 CharUnits Alignment;
591
592 /// PreferredAlignment - The preferred alignment of the record layout.
593 CharUnits PreferredAlignment;
594
595 /// The alignment if attribute packed is not used.
596 CharUnits UnpackedAlignment;
597
598 /// \brief The maximum of the alignments of top-level members.
599 CharUnits UnadjustedAlignment;
600
601 SmallVector<uint64_t, 16> FieldOffsets;
602
603 /// Whether the external AST source has provided a layout for this
604 /// record.
605 unsigned UseExternalLayout : 1;
606
607 /// Whether we need to infer alignment, even when we have an
608 /// externally-provided layout.
609 unsigned InferAlignment : 1;
610
611 /// Packed - Whether the record is packed or not.
612 unsigned Packed : 1;
613
614 unsigned IsUnion : 1;
615
616 unsigned IsMac68kAlign : 1;
617
618 unsigned IsMsStruct : 1;
619
620 /// UnfilledBitsInLastUnit - If the last field laid out was a bitfield,
621 /// this contains the number of bits in the last unit that can be used for
622 /// an adjacent bitfield if necessary. The unit in question is usually
623 /// a byte, but larger units are used if IsMsStruct.
624 unsigned char UnfilledBitsInLastUnit;
625
626 /// LastBitfieldStorageUnitSize - If IsMsStruct, represents the size of the
627 /// storage unit of the previous field if it was a bitfield.
628 unsigned char LastBitfieldStorageUnitSize;
629
630 /// MaxFieldAlignment - The maximum allowed field alignment. This is set by
631 /// #pragma pack.
632 CharUnits MaxFieldAlignment;
633
634 /// DataSize - The data size of the record being laid out.
635 uint64_t DataSize;
636
637 CharUnits NonVirtualSize;
638 CharUnits NonVirtualAlignment;
639 CharUnits PreferredNVAlignment;
640
641 /// If we've laid out a field but not included its tail padding in Size yet,
642 /// this is the size up to the end of that field.
643 CharUnits PaddedFieldSize;
644
645 /// PrimaryBase - the primary base class (if one exists) of the class
646 /// we're laying out.
647 const CXXRecordDecl *PrimaryBase;
648
649 /// PrimaryBaseIsVirtual - Whether the primary base of the class we're laying
650 /// out is virtual.
651 bool PrimaryBaseIsVirtual;
652
653 /// HasOwnVFPtr - Whether the class provides its own vtable/vftbl
654 /// pointer, as opposed to inheriting one from a primary base class.
655 bool HasOwnVFPtr;
656
657 /// the flag of field offset changing due to packed attribute.
658 bool HasPackedField;
659
660 /// HandledFirstNonOverlappingEmptyField - An auxiliary field used for AIX.
661 /// When there are OverlappingEmptyFields existing in the aggregate, the
662 /// flag shows if the following first non-empty or empty-but-non-overlapping
663 /// field has been handled, if any.
664 bool HandledFirstNonOverlappingEmptyField;
665
666 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
667
668 /// Bases - base classes and their offsets in the record.
669 BaseOffsetsMapTy Bases;
670
671 // VBases - virtual base classes and their offsets in the record.
672 ASTRecordLayout::VBaseOffsetsMapTy VBases;
673
674 /// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are
675 /// primary base classes for some other direct or indirect base class.
676 CXXIndirectPrimaryBaseSet IndirectPrimaryBases;
677
678 /// FirstNearlyEmptyVBase - The first nearly empty virtual base class in
679 /// inheritance graph order. Used for determining the primary base class.
680 const CXXRecordDecl *FirstNearlyEmptyVBase;
681
682 /// VisitedVirtualBases - A set of all the visited virtual bases, used to
683 /// avoid visiting virtual bases more than once.
684 llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
685
686 /// Valid if UseExternalLayout is true.
687 ExternalLayout External;
688
ItaniumRecordLayoutBuilder(const ASTContext & Context,EmptySubobjectMap * EmptySubobjects)689 ItaniumRecordLayoutBuilder(const ASTContext &Context,
690 EmptySubobjectMap *EmptySubobjects)
691 : Context(Context), EmptySubobjects(EmptySubobjects), Size(0),
692 Alignment(CharUnits::One()), PreferredAlignment(CharUnits::One()),
693 UnpackedAlignment(CharUnits::One()),
694 UnadjustedAlignment(CharUnits::One()), UseExternalLayout(false),
695 InferAlignment(false), Packed(false), IsUnion(false),
696 IsMac68kAlign(false), IsMsStruct(false), UnfilledBitsInLastUnit(0),
697 LastBitfieldStorageUnitSize(0), MaxFieldAlignment(CharUnits::Zero()),
698 DataSize(0), NonVirtualSize(CharUnits::Zero()),
699 NonVirtualAlignment(CharUnits::One()),
700 PreferredNVAlignment(CharUnits::One()),
701 PaddedFieldSize(CharUnits::Zero()), PrimaryBase(nullptr),
702 PrimaryBaseIsVirtual(false), HasOwnVFPtr(false), HasPackedField(false),
703 HandledFirstNonOverlappingEmptyField(false),
704 FirstNearlyEmptyVBase(nullptr) {}
705
706 void Layout(const RecordDecl *D);
707 void Layout(const CXXRecordDecl *D);
708 void Layout(const ObjCInterfaceDecl *D);
709
710 void LayoutFields(const RecordDecl *D);
711 void LayoutField(const FieldDecl *D, bool InsertExtraPadding);
712 void LayoutWideBitField(uint64_t FieldSize, uint64_t StorageUnitSize,
713 bool FieldPacked, const FieldDecl *D);
714 void LayoutBitField(const FieldDecl *D);
715
getCXXABI() const716 TargetCXXABI getCXXABI() const {
717 return Context.getTargetInfo().getCXXABI();
718 }
719
720 /// BaseSubobjectInfoAllocator - Allocator for BaseSubobjectInfo objects.
721 llvm::SpecificBumpPtrAllocator<BaseSubobjectInfo> BaseSubobjectInfoAllocator;
722
723 typedef llvm::DenseMap<const CXXRecordDecl *, BaseSubobjectInfo *>
724 BaseSubobjectInfoMapTy;
725
726 /// VirtualBaseInfo - Map from all the (direct or indirect) virtual bases
727 /// of the class we're laying out to their base subobject info.
728 BaseSubobjectInfoMapTy VirtualBaseInfo;
729
730 /// NonVirtualBaseInfo - Map from all the direct non-virtual bases of the
731 /// class we're laying out to their base subobject info.
732 BaseSubobjectInfoMapTy NonVirtualBaseInfo;
733
734 /// ComputeBaseSubobjectInfo - Compute the base subobject information for the
735 /// bases of the given class.
736 void ComputeBaseSubobjectInfo(const CXXRecordDecl *RD);
737
738 /// ComputeBaseSubobjectInfo - Compute the base subobject information for a
739 /// single class and all of its base classes.
740 BaseSubobjectInfo *ComputeBaseSubobjectInfo(const CXXRecordDecl *RD,
741 bool IsVirtual,
742 BaseSubobjectInfo *Derived);
743
744 /// DeterminePrimaryBase - Determine the primary base of the given class.
745 void DeterminePrimaryBase(const CXXRecordDecl *RD);
746
747 void SelectPrimaryVBase(const CXXRecordDecl *RD);
748
749 void EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign);
750
751 /// LayoutNonVirtualBases - Determines the primary base class (if any) and
752 /// lays it out. Will then proceed to lay out all non-virtual base clasess.
753 void LayoutNonVirtualBases(const CXXRecordDecl *RD);
754
755 /// LayoutNonVirtualBase - Lays out a single non-virtual base.
756 void LayoutNonVirtualBase(const BaseSubobjectInfo *Base);
757
758 void AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info,
759 CharUnits Offset);
760
761 /// LayoutVirtualBases - Lays out all the virtual bases.
762 void LayoutVirtualBases(const CXXRecordDecl *RD,
763 const CXXRecordDecl *MostDerivedClass);
764
765 /// LayoutVirtualBase - Lays out a single virtual base.
766 void LayoutVirtualBase(const BaseSubobjectInfo *Base);
767
768 /// LayoutBase - Will lay out a base and return the offset where it was
769 /// placed, in chars.
770 CharUnits LayoutBase(const BaseSubobjectInfo *Base);
771
772 /// InitializeLayout - Initialize record layout for the given record decl.
773 void InitializeLayout(const Decl *D);
774
775 /// FinishLayout - Finalize record layout. Adjust record size based on the
776 /// alignment.
777 void FinishLayout(const NamedDecl *D);
778
779 void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment,
780 CharUnits PreferredAlignment);
UpdateAlignment(CharUnits NewAlignment,CharUnits UnpackedNewAlignment)781 void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment) {
782 UpdateAlignment(NewAlignment, UnpackedNewAlignment, NewAlignment);
783 }
UpdateAlignment(CharUnits NewAlignment)784 void UpdateAlignment(CharUnits NewAlignment) {
785 UpdateAlignment(NewAlignment, NewAlignment, NewAlignment);
786 }
787
788 /// Retrieve the externally-supplied field offset for the given
789 /// field.
790 ///
791 /// \param Field The field whose offset is being queried.
792 /// \param ComputedOffset The offset that we've computed for this field.
793 uint64_t updateExternalFieldOffset(const FieldDecl *Field,
794 uint64_t ComputedOffset);
795
796 void CheckFieldPadding(uint64_t Offset, uint64_t UnpaddedOffset,
797 uint64_t UnpackedOffset, unsigned UnpackedAlign,
798 bool isPacked, const FieldDecl *D);
799
800 DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID);
801
getSize() const802 CharUnits getSize() const {
803 assert(Size % Context.getCharWidth() == 0);
804 return Context.toCharUnitsFromBits(Size);
805 }
getSizeInBits() const806 uint64_t getSizeInBits() const { return Size; }
807
setSize(CharUnits NewSize)808 void setSize(CharUnits NewSize) { Size = Context.toBits(NewSize); }
setSize(uint64_t NewSize)809 void setSize(uint64_t NewSize) { Size = NewSize; }
810
getAligment() const811 CharUnits getAligment() const { return Alignment; }
812
getDataSize() const813 CharUnits getDataSize() const {
814 assert(DataSize % Context.getCharWidth() == 0);
815 return Context.toCharUnitsFromBits(DataSize);
816 }
getDataSizeInBits() const817 uint64_t getDataSizeInBits() const { return DataSize; }
818
setDataSize(CharUnits NewSize)819 void setDataSize(CharUnits NewSize) { DataSize = Context.toBits(NewSize); }
setDataSize(uint64_t NewSize)820 void setDataSize(uint64_t NewSize) { DataSize = NewSize; }
821
822 ItaniumRecordLayoutBuilder(const ItaniumRecordLayoutBuilder &) = delete;
823 void operator=(const ItaniumRecordLayoutBuilder &) = delete;
824 };
825 } // end anonymous namespace
826
SelectPrimaryVBase(const CXXRecordDecl * RD)827 void ItaniumRecordLayoutBuilder::SelectPrimaryVBase(const CXXRecordDecl *RD) {
828 for (const auto &I : RD->bases()) {
829 assert(!I.getType()->isDependentType() &&
830 "Cannot layout class with dependent bases.");
831
832 const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
833
834 // Check if this is a nearly empty virtual base.
835 if (I.isVirtual() && Context.isNearlyEmpty(Base)) {
836 // If it's not an indirect primary base, then we've found our primary
837 // base.
838 if (!IndirectPrimaryBases.count(Base)) {
839 PrimaryBase = Base;
840 PrimaryBaseIsVirtual = true;
841 return;
842 }
843
844 // Is this the first nearly empty virtual base?
845 if (!FirstNearlyEmptyVBase)
846 FirstNearlyEmptyVBase = Base;
847 }
848
849 SelectPrimaryVBase(Base);
850 if (PrimaryBase)
851 return;
852 }
853 }
854
855 /// DeterminePrimaryBase - Determine the primary base of the given class.
DeterminePrimaryBase(const CXXRecordDecl * RD)856 void ItaniumRecordLayoutBuilder::DeterminePrimaryBase(const CXXRecordDecl *RD) {
857 // If the class isn't dynamic, it won't have a primary base.
858 if (!RD->isDynamicClass())
859 return;
860
861 // Compute all the primary virtual bases for all of our direct and
862 // indirect bases, and record all their primary virtual base classes.
863 RD->getIndirectPrimaryBases(IndirectPrimaryBases);
864
865 // If the record has a dynamic base class, attempt to choose a primary base
866 // class. It is the first (in direct base class order) non-virtual dynamic
867 // base class, if one exists.
868 for (const auto &I : RD->bases()) {
869 // Ignore virtual bases.
870 if (I.isVirtual())
871 continue;
872
873 const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
874
875 if (Base->isDynamicClass()) {
876 // We found it.
877 PrimaryBase = Base;
878 PrimaryBaseIsVirtual = false;
879 return;
880 }
881 }
882
883 // Under the Itanium ABI, if there is no non-virtual primary base class,
884 // try to compute the primary virtual base. The primary virtual base is
885 // the first nearly empty virtual base that is not an indirect primary
886 // virtual base class, if one exists.
887 if (RD->getNumVBases() != 0) {
888 SelectPrimaryVBase(RD);
889 if (PrimaryBase)
890 return;
891 }
892
893 // Otherwise, it is the first indirect primary base class, if one exists.
894 if (FirstNearlyEmptyVBase) {
895 PrimaryBase = FirstNearlyEmptyVBase;
896 PrimaryBaseIsVirtual = true;
897 return;
898 }
899
900 assert(!PrimaryBase && "Should not get here with a primary base!");
901 }
902
ComputeBaseSubobjectInfo(const CXXRecordDecl * RD,bool IsVirtual,BaseSubobjectInfo * Derived)903 BaseSubobjectInfo *ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo(
904 const CXXRecordDecl *RD, bool IsVirtual, BaseSubobjectInfo *Derived) {
905 BaseSubobjectInfo *Info;
906
907 if (IsVirtual) {
908 // Check if we already have info about this virtual base.
909 BaseSubobjectInfo *&InfoSlot = VirtualBaseInfo[RD];
910 if (InfoSlot) {
911 assert(InfoSlot->Class == RD && "Wrong class for virtual base info!");
912 return InfoSlot;
913 }
914
915 // We don't, create it.
916 InfoSlot = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
917 Info = InfoSlot;
918 } else {
919 Info = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
920 }
921
922 Info->Class = RD;
923 Info->IsVirtual = IsVirtual;
924 Info->Derived = nullptr;
925 Info->PrimaryVirtualBaseInfo = nullptr;
926
927 const CXXRecordDecl *PrimaryVirtualBase = nullptr;
928 BaseSubobjectInfo *PrimaryVirtualBaseInfo = nullptr;
929
930 // Check if this base has a primary virtual base.
931 if (RD->getNumVBases()) {
932 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
933 if (Layout.isPrimaryBaseVirtual()) {
934 // This base does have a primary virtual base.
935 PrimaryVirtualBase = Layout.getPrimaryBase();
936 assert(PrimaryVirtualBase && "Didn't have a primary virtual base!");
937
938 // Now check if we have base subobject info about this primary base.
939 PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
940
941 if (PrimaryVirtualBaseInfo) {
942 if (PrimaryVirtualBaseInfo->Derived) {
943 // We did have info about this primary base, and it turns out that it
944 // has already been claimed as a primary virtual base for another
945 // base.
946 PrimaryVirtualBase = nullptr;
947 } else {
948 // We can claim this base as our primary base.
949 Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
950 PrimaryVirtualBaseInfo->Derived = Info;
951 }
952 }
953 }
954 }
955
956 // Now go through all direct bases.
957 for (const auto &I : RD->bases()) {
958 bool IsVirtual = I.isVirtual();
959
960 const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
961
962 Info->Bases.push_back(ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, Info));
963 }
964
965 if (PrimaryVirtualBase && !PrimaryVirtualBaseInfo) {
966 // Traversing the bases must have created the base info for our primary
967 // virtual base.
968 PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
969 assert(PrimaryVirtualBaseInfo &&
970 "Did not create a primary virtual base!");
971
972 // Claim the primary virtual base as our primary virtual base.
973 Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
974 PrimaryVirtualBaseInfo->Derived = Info;
975 }
976
977 return Info;
978 }
979
ComputeBaseSubobjectInfo(const CXXRecordDecl * RD)980 void ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo(
981 const CXXRecordDecl *RD) {
982 for (const auto &I : RD->bases()) {
983 bool IsVirtual = I.isVirtual();
984
985 const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
986
987 // Compute the base subobject info for this base.
988 BaseSubobjectInfo *Info = ComputeBaseSubobjectInfo(BaseDecl, IsVirtual,
989 nullptr);
990
991 if (IsVirtual) {
992 // ComputeBaseInfo has already added this base for us.
993 assert(VirtualBaseInfo.count(BaseDecl) &&
994 "Did not add virtual base!");
995 } else {
996 // Add the base info to the map of non-virtual bases.
997 assert(!NonVirtualBaseInfo.count(BaseDecl) &&
998 "Non-virtual base already exists!");
999 NonVirtualBaseInfo.insert(std::make_pair(BaseDecl, Info));
1000 }
1001 }
1002 }
1003
EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign)1004 void ItaniumRecordLayoutBuilder::EnsureVTablePointerAlignment(
1005 CharUnits UnpackedBaseAlign) {
1006 CharUnits BaseAlign = Packed ? CharUnits::One() : UnpackedBaseAlign;
1007
1008 // The maximum field alignment overrides base align.
1009 if (!MaxFieldAlignment.isZero()) {
1010 BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
1011 UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
1012 }
1013
1014 // Round up the current record size to pointer alignment.
1015 setSize(getSize().alignTo(BaseAlign));
1016
1017 // Update the alignment.
1018 UpdateAlignment(BaseAlign, UnpackedBaseAlign, BaseAlign);
1019 }
1020
LayoutNonVirtualBases(const CXXRecordDecl * RD)1021 void ItaniumRecordLayoutBuilder::LayoutNonVirtualBases(
1022 const CXXRecordDecl *RD) {
1023 // Then, determine the primary base class.
1024 DeterminePrimaryBase(RD);
1025
1026 // Compute base subobject info.
1027 ComputeBaseSubobjectInfo(RD);
1028
1029 // If we have a primary base class, lay it out.
1030 if (PrimaryBase) {
1031 if (PrimaryBaseIsVirtual) {
1032 // If the primary virtual base was a primary virtual base of some other
1033 // base class we'll have to steal it.
1034 BaseSubobjectInfo *PrimaryBaseInfo = VirtualBaseInfo.lookup(PrimaryBase);
1035 PrimaryBaseInfo->Derived = nullptr;
1036
1037 // We have a virtual primary base, insert it as an indirect primary base.
1038 IndirectPrimaryBases.insert(PrimaryBase);
1039
1040 assert(!VisitedVirtualBases.count(PrimaryBase) &&
1041 "vbase already visited!");
1042 VisitedVirtualBases.insert(PrimaryBase);
1043
1044 LayoutVirtualBase(PrimaryBaseInfo);
1045 } else {
1046 BaseSubobjectInfo *PrimaryBaseInfo =
1047 NonVirtualBaseInfo.lookup(PrimaryBase);
1048 assert(PrimaryBaseInfo &&
1049 "Did not find base info for non-virtual primary base!");
1050
1051 LayoutNonVirtualBase(PrimaryBaseInfo);
1052 }
1053
1054 // If this class needs a vtable/vf-table and didn't get one from a
1055 // primary base, add it in now.
1056 } else if (RD->isDynamicClass()) {
1057 assert(DataSize == 0 && "Vtable pointer must be at offset zero!");
1058 CharUnits PtrWidth =
1059 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
1060 CharUnits PtrAlign =
1061 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
1062 EnsureVTablePointerAlignment(PtrAlign);
1063 HasOwnVFPtr = true;
1064
1065 assert(!IsUnion && "Unions cannot be dynamic classes.");
1066 HandledFirstNonOverlappingEmptyField = true;
1067
1068 setSize(getSize() + PtrWidth);
1069 setDataSize(getSize());
1070 }
1071
1072 // Now lay out the non-virtual bases.
1073 for (const auto &I : RD->bases()) {
1074
1075 // Ignore virtual bases.
1076 if (I.isVirtual())
1077 continue;
1078
1079 const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
1080
1081 // Skip the primary base, because we've already laid it out. The
1082 // !PrimaryBaseIsVirtual check is required because we might have a
1083 // non-virtual base of the same type as a primary virtual base.
1084 if (BaseDecl == PrimaryBase && !PrimaryBaseIsVirtual)
1085 continue;
1086
1087 // Lay out the base.
1088 BaseSubobjectInfo *BaseInfo = NonVirtualBaseInfo.lookup(BaseDecl);
1089 assert(BaseInfo && "Did not find base info for non-virtual base!");
1090
1091 LayoutNonVirtualBase(BaseInfo);
1092 }
1093 }
1094
LayoutNonVirtualBase(const BaseSubobjectInfo * Base)1095 void ItaniumRecordLayoutBuilder::LayoutNonVirtualBase(
1096 const BaseSubobjectInfo *Base) {
1097 // Layout the base.
1098 CharUnits Offset = LayoutBase(Base);
1099
1100 // Add its base class offset.
1101 assert(!Bases.count(Base->Class) && "base offset already exists!");
1102 Bases.insert(std::make_pair(Base->Class, Offset));
1103
1104 AddPrimaryVirtualBaseOffsets(Base, Offset);
1105 }
1106
AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo * Info,CharUnits Offset)1107 void ItaniumRecordLayoutBuilder::AddPrimaryVirtualBaseOffsets(
1108 const BaseSubobjectInfo *Info, CharUnits Offset) {
1109 // This base isn't interesting, it has no virtual bases.
1110 if (!Info->Class->getNumVBases())
1111 return;
1112
1113 // First, check if we have a virtual primary base to add offsets for.
1114 if (Info->PrimaryVirtualBaseInfo) {
1115 assert(Info->PrimaryVirtualBaseInfo->IsVirtual &&
1116 "Primary virtual base is not virtual!");
1117 if (Info->PrimaryVirtualBaseInfo->Derived == Info) {
1118 // Add the offset.
1119 assert(!VBases.count(Info->PrimaryVirtualBaseInfo->Class) &&
1120 "primary vbase offset already exists!");
1121 VBases.insert(std::make_pair(Info->PrimaryVirtualBaseInfo->Class,
1122 ASTRecordLayout::VBaseInfo(Offset, false)));
1123
1124 // Traverse the primary virtual base.
1125 AddPrimaryVirtualBaseOffsets(Info->PrimaryVirtualBaseInfo, Offset);
1126 }
1127 }
1128
1129 // Now go through all direct non-virtual bases.
1130 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
1131 for (const BaseSubobjectInfo *Base : Info->Bases) {
1132 if (Base->IsVirtual)
1133 continue;
1134
1135 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
1136 AddPrimaryVirtualBaseOffsets(Base, BaseOffset);
1137 }
1138 }
1139
LayoutVirtualBases(const CXXRecordDecl * RD,const CXXRecordDecl * MostDerivedClass)1140 void ItaniumRecordLayoutBuilder::LayoutVirtualBases(
1141 const CXXRecordDecl *RD, const CXXRecordDecl *MostDerivedClass) {
1142 const CXXRecordDecl *PrimaryBase;
1143 bool PrimaryBaseIsVirtual;
1144
1145 if (MostDerivedClass == RD) {
1146 PrimaryBase = this->PrimaryBase;
1147 PrimaryBaseIsVirtual = this->PrimaryBaseIsVirtual;
1148 } else {
1149 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1150 PrimaryBase = Layout.getPrimaryBase();
1151 PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
1152 }
1153
1154 for (const CXXBaseSpecifier &Base : RD->bases()) {
1155 assert(!Base.getType()->isDependentType() &&
1156 "Cannot layout class with dependent bases.");
1157
1158 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1159
1160 if (Base.isVirtual()) {
1161 if (PrimaryBase != BaseDecl || !PrimaryBaseIsVirtual) {
1162 bool IndirectPrimaryBase = IndirectPrimaryBases.count(BaseDecl);
1163
1164 // Only lay out the virtual base if it's not an indirect primary base.
1165 if (!IndirectPrimaryBase) {
1166 // Only visit virtual bases once.
1167 if (!VisitedVirtualBases.insert(BaseDecl).second)
1168 continue;
1169
1170 const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl);
1171 assert(BaseInfo && "Did not find virtual base info!");
1172 LayoutVirtualBase(BaseInfo);
1173 }
1174 }
1175 }
1176
1177 if (!BaseDecl->getNumVBases()) {
1178 // This base isn't interesting since it doesn't have any virtual bases.
1179 continue;
1180 }
1181
1182 LayoutVirtualBases(BaseDecl, MostDerivedClass);
1183 }
1184 }
1185
LayoutVirtualBase(const BaseSubobjectInfo * Base)1186 void ItaniumRecordLayoutBuilder::LayoutVirtualBase(
1187 const BaseSubobjectInfo *Base) {
1188 assert(!Base->Derived && "Trying to lay out a primary virtual base!");
1189
1190 // Layout the base.
1191 CharUnits Offset = LayoutBase(Base);
1192
1193 // Add its base class offset.
1194 assert(!VBases.count(Base->Class) && "vbase offset already exists!");
1195 VBases.insert(std::make_pair(Base->Class,
1196 ASTRecordLayout::VBaseInfo(Offset, false)));
1197
1198 AddPrimaryVirtualBaseOffsets(Base, Offset);
1199 }
1200
1201 CharUnits
LayoutBase(const BaseSubobjectInfo * Base)1202 ItaniumRecordLayoutBuilder::LayoutBase(const BaseSubobjectInfo *Base) {
1203 assert(!IsUnion && "Unions cannot have base classes.");
1204
1205 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base->Class);
1206 CharUnits Offset;
1207
1208 // Query the external layout to see if it provides an offset.
1209 bool HasExternalLayout = false;
1210 if (UseExternalLayout) {
1211 if (Base->IsVirtual)
1212 HasExternalLayout = External.getExternalVBaseOffset(Base->Class, Offset);
1213 else
1214 HasExternalLayout = External.getExternalNVBaseOffset(Base->Class, Offset);
1215 }
1216
1217 auto getBaseOrPreferredBaseAlignFromUnpacked = [&](CharUnits UnpackedAlign) {
1218 // Clang <= 6 incorrectly applied the 'packed' attribute to base classes.
1219 // Per GCC's documentation, it only applies to non-static data members.
1220 return (Packed && ((Context.getLangOpts().getClangABICompat() <=
1221 LangOptions::ClangABI::Ver6) ||
1222 Context.getTargetInfo().getTriple().isPS4() ||
1223 Context.getTargetInfo().getTriple().isOSAIX()))
1224 ? CharUnits::One()
1225 : UnpackedAlign;
1226 };
1227
1228 CharUnits UnpackedBaseAlign = Layout.getNonVirtualAlignment();
1229 CharUnits UnpackedPreferredBaseAlign = Layout.getPreferredNVAlignment();
1230 CharUnits BaseAlign =
1231 getBaseOrPreferredBaseAlignFromUnpacked(UnpackedBaseAlign);
1232 CharUnits PreferredBaseAlign =
1233 getBaseOrPreferredBaseAlignFromUnpacked(UnpackedPreferredBaseAlign);
1234
1235 const bool DefaultsToAIXPowerAlignment =
1236 Context.getTargetInfo().defaultsToAIXPowerAlignment();
1237 if (DefaultsToAIXPowerAlignment) {
1238 // AIX `power` alignment does not apply the preferred alignment for
1239 // non-union classes if the source of the alignment (the current base in
1240 // this context) follows introduction of the first subobject with
1241 // exclusively allocated space or zero-extent array.
1242 if (!Base->Class->isEmpty() && !HandledFirstNonOverlappingEmptyField) {
1243 // By handling a base class that is not empty, we're handling the
1244 // "first (inherited) member".
1245 HandledFirstNonOverlappingEmptyField = true;
1246 } else {
1247 UnpackedPreferredBaseAlign = UnpackedBaseAlign;
1248 PreferredBaseAlign = BaseAlign;
1249 }
1250 }
1251
1252 CharUnits UnpackedAlignTo = !DefaultsToAIXPowerAlignment
1253 ? UnpackedBaseAlign
1254 : UnpackedPreferredBaseAlign;
1255 // If we have an empty base class, try to place it at offset 0.
1256 if (Base->Class->isEmpty() &&
1257 (!HasExternalLayout || Offset == CharUnits::Zero()) &&
1258 EmptySubobjects->CanPlaceBaseAtOffset(Base, CharUnits::Zero())) {
1259 setSize(std::max(getSize(), Layout.getSize()));
1260 UpdateAlignment(BaseAlign, UnpackedAlignTo, PreferredBaseAlign);
1261
1262 return CharUnits::Zero();
1263 }
1264
1265 // The maximum field alignment overrides the base align/(AIX-only) preferred
1266 // base align.
1267 if (!MaxFieldAlignment.isZero()) {
1268 BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
1269 PreferredBaseAlign = std::min(PreferredBaseAlign, MaxFieldAlignment);
1270 UnpackedAlignTo = std::min(UnpackedAlignTo, MaxFieldAlignment);
1271 }
1272
1273 CharUnits AlignTo =
1274 !DefaultsToAIXPowerAlignment ? BaseAlign : PreferredBaseAlign;
1275 if (!HasExternalLayout) {
1276 // Round up the current record size to the base's alignment boundary.
1277 Offset = getDataSize().alignTo(AlignTo);
1278
1279 // Try to place the base.
1280 while (!EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset))
1281 Offset += AlignTo;
1282 } else {
1283 bool Allowed = EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset);
1284 (void)Allowed;
1285 assert(Allowed && "Base subobject externally placed at overlapping offset");
1286
1287 if (InferAlignment && Offset < getDataSize().alignTo(AlignTo)) {
1288 // The externally-supplied base offset is before the base offset we
1289 // computed. Assume that the structure is packed.
1290 Alignment = CharUnits::One();
1291 InferAlignment = false;
1292 }
1293 }
1294
1295 if (!Base->Class->isEmpty()) {
1296 // Update the data size.
1297 setDataSize(Offset + Layout.getNonVirtualSize());
1298
1299 setSize(std::max(getSize(), getDataSize()));
1300 } else
1301 setSize(std::max(getSize(), Offset + Layout.getSize()));
1302
1303 // Remember max struct/class alignment.
1304 UpdateAlignment(BaseAlign, UnpackedAlignTo, PreferredBaseAlign);
1305
1306 return Offset;
1307 }
1308
InitializeLayout(const Decl * D)1309 void ItaniumRecordLayoutBuilder::InitializeLayout(const Decl *D) {
1310 if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
1311 IsUnion = RD->isUnion();
1312 IsMsStruct = RD->isMsStruct(Context);
1313 }
1314
1315 Packed = D->hasAttr<PackedAttr>();
1316 HandledFirstNonOverlappingEmptyField =
1317 !Context.getTargetInfo().defaultsToAIXPowerAlignment();
1318
1319 // Honor the default struct packing maximum alignment flag.
1320 if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) {
1321 MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
1322 }
1323
1324 // mac68k alignment supersedes maximum field alignment and attribute aligned,
1325 // and forces all structures to have 2-byte alignment. The IBM docs on it
1326 // allude to additional (more complicated) semantics, especially with regard
1327 // to bit-fields, but gcc appears not to follow that.
1328 if (D->hasAttr<AlignMac68kAttr>()) {
1329 IsMac68kAlign = true;
1330 MaxFieldAlignment = CharUnits::fromQuantity(2);
1331 Alignment = CharUnits::fromQuantity(2);
1332 PreferredAlignment = CharUnits::fromQuantity(2);
1333 } else {
1334 if (const MaxFieldAlignmentAttr *MFAA = D->getAttr<MaxFieldAlignmentAttr>())
1335 MaxFieldAlignment = Context.toCharUnitsFromBits(MFAA->getAlignment());
1336
1337 if (unsigned MaxAlign = D->getMaxAlignment())
1338 UpdateAlignment(Context.toCharUnitsFromBits(MaxAlign));
1339 }
1340
1341 // If there is an external AST source, ask it for the various offsets.
1342 if (const RecordDecl *RD = dyn_cast<RecordDecl>(D))
1343 if (ExternalASTSource *Source = Context.getExternalSource()) {
1344 UseExternalLayout = Source->layoutRecordType(
1345 RD, External.Size, External.Align, External.FieldOffsets,
1346 External.BaseOffsets, External.VirtualBaseOffsets);
1347
1348 // Update based on external alignment.
1349 if (UseExternalLayout) {
1350 if (External.Align > 0) {
1351 Alignment = Context.toCharUnitsFromBits(External.Align);
1352 PreferredAlignment = Context.toCharUnitsFromBits(External.Align);
1353 } else {
1354 // The external source didn't have alignment information; infer it.
1355 InferAlignment = true;
1356 }
1357 }
1358 }
1359 }
1360
Layout(const RecordDecl * D)1361 void ItaniumRecordLayoutBuilder::Layout(const RecordDecl *D) {
1362 InitializeLayout(D);
1363 LayoutFields(D);
1364
1365 // Finally, round the size of the total struct up to the alignment of the
1366 // struct itself.
1367 FinishLayout(D);
1368 }
1369
Layout(const CXXRecordDecl * RD)1370 void ItaniumRecordLayoutBuilder::Layout(const CXXRecordDecl *RD) {
1371 InitializeLayout(RD);
1372
1373 // Lay out the vtable and the non-virtual bases.
1374 LayoutNonVirtualBases(RD);
1375
1376 LayoutFields(RD);
1377
1378 NonVirtualSize = Context.toCharUnitsFromBits(
1379 llvm::alignTo(getSizeInBits(), Context.getTargetInfo().getCharAlign()));
1380 NonVirtualAlignment = Alignment;
1381 PreferredNVAlignment = PreferredAlignment;
1382
1383 // Lay out the virtual bases and add the primary virtual base offsets.
1384 LayoutVirtualBases(RD, RD);
1385
1386 // Finally, round the size of the total struct up to the alignment
1387 // of the struct itself.
1388 FinishLayout(RD);
1389
1390 #ifndef NDEBUG
1391 // Check that we have base offsets for all bases.
1392 for (const CXXBaseSpecifier &Base : RD->bases()) {
1393 if (Base.isVirtual())
1394 continue;
1395
1396 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1397
1398 assert(Bases.count(BaseDecl) && "Did not find base offset!");
1399 }
1400
1401 // And all virtual bases.
1402 for (const CXXBaseSpecifier &Base : RD->vbases()) {
1403 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1404
1405 assert(VBases.count(BaseDecl) && "Did not find base offset!");
1406 }
1407 #endif
1408 }
1409
Layout(const ObjCInterfaceDecl * D)1410 void ItaniumRecordLayoutBuilder::Layout(const ObjCInterfaceDecl *D) {
1411 if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
1412 const ASTRecordLayout &SL = Context.getASTObjCInterfaceLayout(SD);
1413
1414 UpdateAlignment(SL.getAlignment());
1415
1416 // We start laying out ivars not at the end of the superclass
1417 // structure, but at the next byte following the last field.
1418 setDataSize(SL.getDataSize());
1419 setSize(getDataSize());
1420 }
1421
1422 InitializeLayout(D);
1423 // Layout each ivar sequentially.
1424 for (const ObjCIvarDecl *IVD = D->all_declared_ivar_begin(); IVD;
1425 IVD = IVD->getNextIvar())
1426 LayoutField(IVD, false);
1427
1428 // Finally, round the size of the total struct up to the alignment of the
1429 // struct itself.
1430 FinishLayout(D);
1431 }
1432
LayoutFields(const RecordDecl * D)1433 void ItaniumRecordLayoutBuilder::LayoutFields(const RecordDecl *D) {
1434 // Layout each field, for now, just sequentially, respecting alignment. In
1435 // the future, this will need to be tweakable by targets.
1436 bool InsertExtraPadding = D->mayInsertExtraPadding(/*EmitRemark=*/true);
1437 bool HasFlexibleArrayMember = D->hasFlexibleArrayMember();
1438 for (auto I = D->field_begin(), End = D->field_end(); I != End; ++I) {
1439 auto Next(I);
1440 ++Next;
1441 LayoutField(*I,
1442 InsertExtraPadding && (Next != End || !HasFlexibleArrayMember));
1443 }
1444 }
1445
1446 // Rounds the specified size to have it a multiple of the char size.
1447 static uint64_t
roundUpSizeToCharAlignment(uint64_t Size,const ASTContext & Context)1448 roundUpSizeToCharAlignment(uint64_t Size,
1449 const ASTContext &Context) {
1450 uint64_t CharAlignment = Context.getTargetInfo().getCharAlign();
1451 return llvm::alignTo(Size, CharAlignment);
1452 }
1453
LayoutWideBitField(uint64_t FieldSize,uint64_t StorageUnitSize,bool FieldPacked,const FieldDecl * D)1454 void ItaniumRecordLayoutBuilder::LayoutWideBitField(uint64_t FieldSize,
1455 uint64_t StorageUnitSize,
1456 bool FieldPacked,
1457 const FieldDecl *D) {
1458 assert(Context.getLangOpts().CPlusPlus &&
1459 "Can only have wide bit-fields in C++!");
1460
1461 // Itanium C++ ABI 2.4:
1462 // If sizeof(T)*8 < n, let T' be the largest integral POD type with
1463 // sizeof(T')*8 <= n.
1464
1465 QualType IntegralPODTypes[] = {
1466 Context.UnsignedCharTy, Context.UnsignedShortTy, Context.UnsignedIntTy,
1467 Context.UnsignedLongTy, Context.UnsignedLongLongTy
1468 };
1469
1470 QualType Type;
1471 for (const QualType &QT : IntegralPODTypes) {
1472 uint64_t Size = Context.getTypeSize(QT);
1473
1474 if (Size > FieldSize)
1475 break;
1476
1477 Type = QT;
1478 }
1479 assert(!Type.isNull() && "Did not find a type!");
1480
1481 CharUnits TypeAlign = Context.getTypeAlignInChars(Type);
1482
1483 // We're not going to use any of the unfilled bits in the last byte.
1484 UnfilledBitsInLastUnit = 0;
1485 LastBitfieldStorageUnitSize = 0;
1486
1487 uint64_t FieldOffset;
1488 uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
1489
1490 if (IsUnion) {
1491 uint64_t RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize,
1492 Context);
1493 setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize));
1494 FieldOffset = 0;
1495 } else {
1496 // The bitfield is allocated starting at the next offset aligned
1497 // appropriately for T', with length n bits.
1498 FieldOffset = llvm::alignTo(getDataSizeInBits(), Context.toBits(TypeAlign));
1499
1500 uint64_t NewSizeInBits = FieldOffset + FieldSize;
1501
1502 setDataSize(
1503 llvm::alignTo(NewSizeInBits, Context.getTargetInfo().getCharAlign()));
1504 UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
1505 }
1506
1507 // Place this field at the current location.
1508 FieldOffsets.push_back(FieldOffset);
1509
1510 CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, FieldOffset,
1511 Context.toBits(TypeAlign), FieldPacked, D);
1512
1513 // Update the size.
1514 setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1515
1516 // Remember max struct/class alignment.
1517 UpdateAlignment(TypeAlign);
1518 }
1519
LayoutBitField(const FieldDecl * D)1520 void ItaniumRecordLayoutBuilder::LayoutBitField(const FieldDecl *D) {
1521 bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
1522 uint64_t FieldSize = D->getBitWidthValue(Context);
1523 TypeInfo FieldInfo = Context.getTypeInfo(D->getType());
1524 uint64_t StorageUnitSize = FieldInfo.Width;
1525 unsigned FieldAlign = FieldInfo.Align;
1526
1527 // UnfilledBitsInLastUnit is the difference between the end of the
1528 // last allocated bitfield (i.e. the first bit offset available for
1529 // bitfields) and the end of the current data size in bits (i.e. the
1530 // first bit offset available for non-bitfields). The current data
1531 // size in bits is always a multiple of the char size; additionally,
1532 // for ms_struct records it's also a multiple of the
1533 // LastBitfieldStorageUnitSize (if set).
1534
1535 // The struct-layout algorithm is dictated by the platform ABI,
1536 // which in principle could use almost any rules it likes. In
1537 // practice, UNIXy targets tend to inherit the algorithm described
1538 // in the System V generic ABI. The basic bitfield layout rule in
1539 // System V is to place bitfields at the next available bit offset
1540 // where the entire bitfield would fit in an aligned storage unit of
1541 // the declared type; it's okay if an earlier or later non-bitfield
1542 // is allocated in the same storage unit. However, some targets
1543 // (those that !useBitFieldTypeAlignment(), e.g. ARM APCS) don't
1544 // require this storage unit to be aligned, and therefore always put
1545 // the bitfield at the next available bit offset.
1546
1547 // ms_struct basically requests a complete replacement of the
1548 // platform ABI's struct-layout algorithm, with the high-level goal
1549 // of duplicating MSVC's layout. For non-bitfields, this follows
1550 // the standard algorithm. The basic bitfield layout rule is to
1551 // allocate an entire unit of the bitfield's declared type
1552 // (e.g. 'unsigned long'), then parcel it up among successive
1553 // bitfields whose declared types have the same size, making a new
1554 // unit as soon as the last can no longer store the whole value.
1555 // Since it completely replaces the platform ABI's algorithm,
1556 // settings like !useBitFieldTypeAlignment() do not apply.
1557
1558 // A zero-width bitfield forces the use of a new storage unit for
1559 // later bitfields. In general, this occurs by rounding up the
1560 // current size of the struct as if the algorithm were about to
1561 // place a non-bitfield of the field's formal type. Usually this
1562 // does not change the alignment of the struct itself, but it does
1563 // on some targets (those that useZeroLengthBitfieldAlignment(),
1564 // e.g. ARM). In ms_struct layout, zero-width bitfields are
1565 // ignored unless they follow a non-zero-width bitfield.
1566
1567 // A field alignment restriction (e.g. from #pragma pack) or
1568 // specification (e.g. from __attribute__((aligned))) changes the
1569 // formal alignment of the field. For System V, this alters the
1570 // required alignment of the notional storage unit that must contain
1571 // the bitfield. For ms_struct, this only affects the placement of
1572 // new storage units. In both cases, the effect of #pragma pack is
1573 // ignored on zero-width bitfields.
1574
1575 // On System V, a packed field (e.g. from #pragma pack or
1576 // __attribute__((packed))) always uses the next available bit
1577 // offset.
1578
1579 // In an ms_struct struct, the alignment of a fundamental type is
1580 // always equal to its size. This is necessary in order to mimic
1581 // the i386 alignment rules on targets which might not fully align
1582 // all types (e.g. Darwin PPC32, where alignof(long long) == 4).
1583
1584 // First, some simple bookkeeping to perform for ms_struct structs.
1585 if (IsMsStruct) {
1586 // The field alignment for integer types is always the size.
1587 FieldAlign = StorageUnitSize;
1588
1589 // If the previous field was not a bitfield, or was a bitfield
1590 // with a different storage unit size, or if this field doesn't fit into
1591 // the current storage unit, we're done with that storage unit.
1592 if (LastBitfieldStorageUnitSize != StorageUnitSize ||
1593 UnfilledBitsInLastUnit < FieldSize) {
1594 // Also, ignore zero-length bitfields after non-bitfields.
1595 if (!LastBitfieldStorageUnitSize && !FieldSize)
1596 FieldAlign = 1;
1597
1598 UnfilledBitsInLastUnit = 0;
1599 LastBitfieldStorageUnitSize = 0;
1600 }
1601 }
1602
1603 // If the field is wider than its declared type, it follows
1604 // different rules in all cases.
1605 if (FieldSize > StorageUnitSize) {
1606 LayoutWideBitField(FieldSize, StorageUnitSize, FieldPacked, D);
1607 return;
1608 }
1609
1610 // Compute the next available bit offset.
1611 uint64_t FieldOffset =
1612 IsUnion ? 0 : (getDataSizeInBits() - UnfilledBitsInLastUnit);
1613
1614 // Handle targets that don't honor bitfield type alignment.
1615 if (!IsMsStruct && !Context.getTargetInfo().useBitFieldTypeAlignment()) {
1616 // Some such targets do honor it on zero-width bitfields.
1617 if (FieldSize == 0 &&
1618 Context.getTargetInfo().useZeroLengthBitfieldAlignment()) {
1619 // The alignment to round up to is the max of the field's natural
1620 // alignment and a target-specific fixed value (sometimes zero).
1621 unsigned ZeroLengthBitfieldBoundary =
1622 Context.getTargetInfo().getZeroLengthBitfieldBoundary();
1623 FieldAlign = std::max(FieldAlign, ZeroLengthBitfieldBoundary);
1624
1625 // If that doesn't apply, just ignore the field alignment.
1626 } else {
1627 FieldAlign = 1;
1628 }
1629 }
1630
1631 // Remember the alignment we would have used if the field were not packed.
1632 unsigned UnpackedFieldAlign = FieldAlign;
1633
1634 // Ignore the field alignment if the field is packed unless it has zero-size.
1635 if (!IsMsStruct && FieldPacked && FieldSize != 0)
1636 FieldAlign = 1;
1637
1638 // But, if there's an 'aligned' attribute on the field, honor that.
1639 unsigned ExplicitFieldAlign = D->getMaxAlignment();
1640 if (ExplicitFieldAlign) {
1641 FieldAlign = std::max(FieldAlign, ExplicitFieldAlign);
1642 UnpackedFieldAlign = std::max(UnpackedFieldAlign, ExplicitFieldAlign);
1643 }
1644
1645 // But, if there's a #pragma pack in play, that takes precedent over
1646 // even the 'aligned' attribute, for non-zero-width bitfields.
1647 unsigned MaxFieldAlignmentInBits = Context.toBits(MaxFieldAlignment);
1648 if (!MaxFieldAlignment.isZero() && FieldSize) {
1649 UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits);
1650 if (FieldPacked)
1651 FieldAlign = UnpackedFieldAlign;
1652 else
1653 FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits);
1654 }
1655
1656 // But, ms_struct just ignores all of that in unions, even explicit
1657 // alignment attributes.
1658 if (IsMsStruct && IsUnion) {
1659 FieldAlign = UnpackedFieldAlign = 1;
1660 }
1661
1662 // For purposes of diagnostics, we're going to simultaneously
1663 // compute the field offsets that we would have used if we weren't
1664 // adding any alignment padding or if the field weren't packed.
1665 uint64_t UnpaddedFieldOffset = FieldOffset;
1666 uint64_t UnpackedFieldOffset = FieldOffset;
1667
1668 // Check if we need to add padding to fit the bitfield within an
1669 // allocation unit with the right size and alignment. The rules are
1670 // somewhat different here for ms_struct structs.
1671 if (IsMsStruct) {
1672 // If it's not a zero-width bitfield, and we can fit the bitfield
1673 // into the active storage unit (and we haven't already decided to
1674 // start a new storage unit), just do so, regardless of any other
1675 // other consideration. Otherwise, round up to the right alignment.
1676 if (FieldSize == 0 || FieldSize > UnfilledBitsInLastUnit) {
1677 FieldOffset = llvm::alignTo(FieldOffset, FieldAlign);
1678 UnpackedFieldOffset =
1679 llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign);
1680 UnfilledBitsInLastUnit = 0;
1681 }
1682
1683 } else {
1684 // #pragma pack, with any value, suppresses the insertion of padding.
1685 bool AllowPadding = MaxFieldAlignment.isZero();
1686
1687 // Compute the real offset.
1688 if (FieldSize == 0 ||
1689 (AllowPadding &&
1690 (FieldOffset & (FieldAlign - 1)) + FieldSize > StorageUnitSize)) {
1691 FieldOffset = llvm::alignTo(FieldOffset, FieldAlign);
1692 } else if (ExplicitFieldAlign &&
1693 (MaxFieldAlignmentInBits == 0 ||
1694 ExplicitFieldAlign <= MaxFieldAlignmentInBits) &&
1695 Context.getTargetInfo().useExplicitBitFieldAlignment()) {
1696 // TODO: figure it out what needs to be done on targets that don't honor
1697 // bit-field type alignment like ARM APCS ABI.
1698 FieldOffset = llvm::alignTo(FieldOffset, ExplicitFieldAlign);
1699 }
1700
1701 // Repeat the computation for diagnostic purposes.
1702 if (FieldSize == 0 ||
1703 (AllowPadding &&
1704 (UnpackedFieldOffset & (UnpackedFieldAlign - 1)) + FieldSize >
1705 StorageUnitSize))
1706 UnpackedFieldOffset =
1707 llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign);
1708 else if (ExplicitFieldAlign &&
1709 (MaxFieldAlignmentInBits == 0 ||
1710 ExplicitFieldAlign <= MaxFieldAlignmentInBits) &&
1711 Context.getTargetInfo().useExplicitBitFieldAlignment())
1712 UnpackedFieldOffset =
1713 llvm::alignTo(UnpackedFieldOffset, ExplicitFieldAlign);
1714 }
1715
1716 // If we're using external layout, give the external layout a chance
1717 // to override this information.
1718 if (UseExternalLayout)
1719 FieldOffset = updateExternalFieldOffset(D, FieldOffset);
1720
1721 // Okay, place the bitfield at the calculated offset.
1722 FieldOffsets.push_back(FieldOffset);
1723
1724 // Bookkeeping:
1725
1726 // Anonymous members don't affect the overall record alignment,
1727 // except on targets where they do.
1728 if (!IsMsStruct &&
1729 !Context.getTargetInfo().useZeroLengthBitfieldAlignment() &&
1730 !D->getIdentifier())
1731 FieldAlign = UnpackedFieldAlign = 1;
1732
1733 // Diagnose differences in layout due to padding or packing.
1734 if (!UseExternalLayout)
1735 CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, UnpackedFieldOffset,
1736 UnpackedFieldAlign, FieldPacked, D);
1737
1738 // Update DataSize to include the last byte containing (part of) the bitfield.
1739
1740 // For unions, this is just a max operation, as usual.
1741 if (IsUnion) {
1742 // For ms_struct, allocate the entire storage unit --- unless this
1743 // is a zero-width bitfield, in which case just use a size of 1.
1744 uint64_t RoundedFieldSize;
1745 if (IsMsStruct) {
1746 RoundedFieldSize = (FieldSize ? StorageUnitSize
1747 : Context.getTargetInfo().getCharWidth());
1748
1749 // Otherwise, allocate just the number of bytes required to store
1750 // the bitfield.
1751 } else {
1752 RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize, Context);
1753 }
1754 setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize));
1755
1756 // For non-zero-width bitfields in ms_struct structs, allocate a new
1757 // storage unit if necessary.
1758 } else if (IsMsStruct && FieldSize) {
1759 // We should have cleared UnfilledBitsInLastUnit in every case
1760 // where we changed storage units.
1761 if (!UnfilledBitsInLastUnit) {
1762 setDataSize(FieldOffset + StorageUnitSize);
1763 UnfilledBitsInLastUnit = StorageUnitSize;
1764 }
1765 UnfilledBitsInLastUnit -= FieldSize;
1766 LastBitfieldStorageUnitSize = StorageUnitSize;
1767
1768 // Otherwise, bump the data size up to include the bitfield,
1769 // including padding up to char alignment, and then remember how
1770 // bits we didn't use.
1771 } else {
1772 uint64_t NewSizeInBits = FieldOffset + FieldSize;
1773 uint64_t CharAlignment = Context.getTargetInfo().getCharAlign();
1774 setDataSize(llvm::alignTo(NewSizeInBits, CharAlignment));
1775 UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
1776
1777 // The only time we can get here for an ms_struct is if this is a
1778 // zero-width bitfield, which doesn't count as anything for the
1779 // purposes of unfilled bits.
1780 LastBitfieldStorageUnitSize = 0;
1781 }
1782
1783 // Update the size.
1784 setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1785
1786 // Remember max struct/class alignment.
1787 UnadjustedAlignment =
1788 std::max(UnadjustedAlignment, Context.toCharUnitsFromBits(FieldAlign));
1789 UpdateAlignment(Context.toCharUnitsFromBits(FieldAlign),
1790 Context.toCharUnitsFromBits(UnpackedFieldAlign));
1791 }
1792
LayoutField(const FieldDecl * D,bool InsertExtraPadding)1793 void ItaniumRecordLayoutBuilder::LayoutField(const FieldDecl *D,
1794 bool InsertExtraPadding) {
1795 auto *FieldClass = D->getType()->getAsCXXRecordDecl();
1796 bool PotentiallyOverlapping = D->hasAttr<NoUniqueAddressAttr>() && FieldClass;
1797 bool IsOverlappingEmptyField =
1798 PotentiallyOverlapping && FieldClass->isEmpty();
1799
1800 CharUnits FieldOffset =
1801 (IsUnion || IsOverlappingEmptyField) ? CharUnits::Zero() : getDataSize();
1802
1803 const bool DefaultsToAIXPowerAlignment =
1804 Context.getTargetInfo().defaultsToAIXPowerAlignment();
1805 bool FoundFirstNonOverlappingEmptyFieldForAIX = false;
1806 if (DefaultsToAIXPowerAlignment && !HandledFirstNonOverlappingEmptyField) {
1807 assert(FieldOffset == CharUnits::Zero() &&
1808 "The first non-overlapping empty field should have been handled.");
1809
1810 if (!IsOverlappingEmptyField) {
1811 FoundFirstNonOverlappingEmptyFieldForAIX = true;
1812
1813 // We're going to handle the "first member" based on
1814 // `FoundFirstNonOverlappingEmptyFieldForAIX` during the current
1815 // invocation of this function; record it as handled for future
1816 // invocations (except for unions, because the current field does not
1817 // represent all "firsts").
1818 HandledFirstNonOverlappingEmptyField = !IsUnion;
1819 }
1820 }
1821
1822 if (D->isBitField()) {
1823 LayoutBitField(D);
1824 return;
1825 }
1826
1827 uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
1828 // Reset the unfilled bits.
1829 UnfilledBitsInLastUnit = 0;
1830 LastBitfieldStorageUnitSize = 0;
1831
1832 bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
1833
1834 bool AlignIsRequired = false;
1835 CharUnits FieldSize;
1836 CharUnits FieldAlign;
1837 // The amount of this class's dsize occupied by the field.
1838 // This is equal to FieldSize unless we're permitted to pack
1839 // into the field's tail padding.
1840 CharUnits EffectiveFieldSize;
1841
1842 auto setDeclInfo = [&](bool IsIncompleteArrayType) {
1843 auto TI = Context.getTypeInfoInChars(D->getType());
1844 FieldAlign = TI.Align;
1845 // Flexible array members don't have any size, but they have to be
1846 // aligned appropriately for their element type.
1847 EffectiveFieldSize = FieldSize =
1848 IsIncompleteArrayType ? CharUnits::Zero() : TI.Width;
1849 AlignIsRequired = TI.AlignIsRequired;
1850 };
1851
1852 if (D->getType()->isIncompleteArrayType()) {
1853 setDeclInfo(true /* IsIncompleteArrayType */);
1854 } else if (const ReferenceType *RT = D->getType()->getAs<ReferenceType>()) {
1855 unsigned AS = Context.getTargetAddressSpace(RT->getPointeeType());
1856 EffectiveFieldSize = FieldSize = Context.toCharUnitsFromBits(
1857 Context.getTargetInfo().getPointerWidth(AS));
1858 FieldAlign = Context.toCharUnitsFromBits(
1859 Context.getTargetInfo().getPointerAlign(AS));
1860 } else {
1861 setDeclInfo(false /* IsIncompleteArrayType */);
1862
1863 // A potentially-overlapping field occupies its dsize or nvsize, whichever
1864 // is larger.
1865 if (PotentiallyOverlapping) {
1866 const ASTRecordLayout &Layout = Context.getASTRecordLayout(FieldClass);
1867 EffectiveFieldSize =
1868 std::max(Layout.getNonVirtualSize(), Layout.getDataSize());
1869 }
1870
1871 if (IsMsStruct) {
1872 // If MS bitfield layout is required, figure out what type is being
1873 // laid out and align the field to the width of that type.
1874
1875 // Resolve all typedefs down to their base type and round up the field
1876 // alignment if necessary.
1877 QualType T = Context.getBaseElementType(D->getType());
1878 if (const BuiltinType *BTy = T->getAs<BuiltinType>()) {
1879 CharUnits TypeSize = Context.getTypeSizeInChars(BTy);
1880
1881 if (!llvm::isPowerOf2_64(TypeSize.getQuantity())) {
1882 assert(
1883 !Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment() &&
1884 "Non PowerOf2 size in MSVC mode");
1885 // Base types with sizes that aren't a power of two don't work
1886 // with the layout rules for MS structs. This isn't an issue in
1887 // MSVC itself since there are no such base data types there.
1888 // On e.g. x86_32 mingw and linux, long double is 12 bytes though.
1889 // Any structs involving that data type obviously can't be ABI
1890 // compatible with MSVC regardless of how it is laid out.
1891
1892 // Since ms_struct can be mass enabled (via a pragma or via the
1893 // -mms-bitfields command line parameter), this can trigger for
1894 // structs that don't actually need MSVC compatibility, so we
1895 // need to be able to sidestep the ms_struct layout for these types.
1896
1897 // Since the combination of -mms-bitfields together with structs
1898 // like max_align_t (which contains a long double) for mingw is
1899 // quite comon (and GCC handles it silently), just handle it
1900 // silently there. For other targets that have ms_struct enabled
1901 // (most probably via a pragma or attribute), trigger a diagnostic
1902 // that defaults to an error.
1903 if (!Context.getTargetInfo().getTriple().isWindowsGNUEnvironment())
1904 Diag(D->getLocation(), diag::warn_npot_ms_struct);
1905 }
1906 if (TypeSize > FieldAlign &&
1907 llvm::isPowerOf2_64(TypeSize.getQuantity()))
1908 FieldAlign = TypeSize;
1909 }
1910 }
1911 }
1912
1913 // The AIX `power` alignment rules apply the natural alignment of the
1914 // "first member" if it is of a floating-point data type (or is an aggregate
1915 // whose recursively "first" member or element is such a type). The alignment
1916 // associated with these types for subsequent members use an alignment value
1917 // where the floating-point data type is considered to have 4-byte alignment.
1918 //
1919 // For the purposes of the foregoing: vtable pointers, non-empty base classes,
1920 // and zero-width bit-fields count as prior members; members of empty class
1921 // types marked `no_unique_address` are not considered to be prior members.
1922 CharUnits PreferredAlign = FieldAlign;
1923 if (DefaultsToAIXPowerAlignment && !AlignIsRequired &&
1924 FoundFirstNonOverlappingEmptyFieldForAIX) {
1925 auto performBuiltinTypeAlignmentUpgrade = [&](const BuiltinType *BTy) {
1926 if (BTy->getKind() == BuiltinType::Double ||
1927 BTy->getKind() == BuiltinType::LongDouble) {
1928 assert(PreferredAlign == CharUnits::fromQuantity(4) &&
1929 "No need to upgrade the alignment value.");
1930 PreferredAlign = CharUnits::fromQuantity(8);
1931 }
1932 };
1933
1934 const Type *Ty = D->getType()->getBaseElementTypeUnsafe();
1935 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
1936 performBuiltinTypeAlignmentUpgrade(CTy->getElementType()->castAs<BuiltinType>());
1937 } else if (const BuiltinType *BTy = Ty->getAs<BuiltinType>()) {
1938 performBuiltinTypeAlignmentUpgrade(BTy);
1939 } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
1940 const RecordDecl *RD = RT->getDecl();
1941 assert(RD && "Expected non-null RecordDecl.");
1942 const ASTRecordLayout &FieldRecord = Context.getASTRecordLayout(RD);
1943 PreferredAlign = FieldRecord.getPreferredAlignment();
1944 }
1945 }
1946
1947 // The align if the field is not packed. This is to check if the attribute
1948 // was unnecessary (-Wpacked).
1949 CharUnits UnpackedFieldAlign =
1950 !DefaultsToAIXPowerAlignment ? FieldAlign : PreferredAlign;
1951 CharUnits UnpackedFieldOffset = FieldOffset;
1952
1953 if (FieldPacked) {
1954 FieldAlign = CharUnits::One();
1955 PreferredAlign = CharUnits::One();
1956 }
1957 CharUnits MaxAlignmentInChars =
1958 Context.toCharUnitsFromBits(D->getMaxAlignment());
1959 FieldAlign = std::max(FieldAlign, MaxAlignmentInChars);
1960 PreferredAlign = std::max(PreferredAlign, MaxAlignmentInChars);
1961 UnpackedFieldAlign = std::max(UnpackedFieldAlign, MaxAlignmentInChars);
1962
1963 // The maximum field alignment overrides the aligned attribute.
1964 if (!MaxFieldAlignment.isZero()) {
1965 FieldAlign = std::min(FieldAlign, MaxFieldAlignment);
1966 PreferredAlign = std::min(PreferredAlign, MaxFieldAlignment);
1967 UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignment);
1968 }
1969
1970 CharUnits AlignTo =
1971 !DefaultsToAIXPowerAlignment ? FieldAlign : PreferredAlign;
1972 // Round up the current record size to the field's alignment boundary.
1973 FieldOffset = FieldOffset.alignTo(AlignTo);
1974 UnpackedFieldOffset = UnpackedFieldOffset.alignTo(UnpackedFieldAlign);
1975
1976 if (UseExternalLayout) {
1977 FieldOffset = Context.toCharUnitsFromBits(
1978 updateExternalFieldOffset(D, Context.toBits(FieldOffset)));
1979
1980 if (!IsUnion && EmptySubobjects) {
1981 // Record the fact that we're placing a field at this offset.
1982 bool Allowed = EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset);
1983 (void)Allowed;
1984 assert(Allowed && "Externally-placed field cannot be placed here");
1985 }
1986 } else {
1987 if (!IsUnion && EmptySubobjects) {
1988 // Check if we can place the field at this offset.
1989 while (!EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset)) {
1990 // We couldn't place the field at the offset. Try again at a new offset.
1991 // We try offset 0 (for an empty field) and then dsize(C) onwards.
1992 if (FieldOffset == CharUnits::Zero() &&
1993 getDataSize() != CharUnits::Zero())
1994 FieldOffset = getDataSize().alignTo(AlignTo);
1995 else
1996 FieldOffset += AlignTo;
1997 }
1998 }
1999 }
2000
2001 // Place this field at the current location.
2002 FieldOffsets.push_back(Context.toBits(FieldOffset));
2003
2004 if (!UseExternalLayout)
2005 CheckFieldPadding(Context.toBits(FieldOffset), UnpaddedFieldOffset,
2006 Context.toBits(UnpackedFieldOffset),
2007 Context.toBits(UnpackedFieldAlign), FieldPacked, D);
2008
2009 if (InsertExtraPadding) {
2010 CharUnits ASanAlignment = CharUnits::fromQuantity(8);
2011 CharUnits ExtraSizeForAsan = ASanAlignment;
2012 if (FieldSize % ASanAlignment)
2013 ExtraSizeForAsan +=
2014 ASanAlignment - CharUnits::fromQuantity(FieldSize % ASanAlignment);
2015 EffectiveFieldSize = FieldSize = FieldSize + ExtraSizeForAsan;
2016 }
2017
2018 // Reserve space for this field.
2019 if (!IsOverlappingEmptyField) {
2020 uint64_t EffectiveFieldSizeInBits = Context.toBits(EffectiveFieldSize);
2021 if (IsUnion)
2022 setDataSize(std::max(getDataSizeInBits(), EffectiveFieldSizeInBits));
2023 else
2024 setDataSize(FieldOffset + EffectiveFieldSize);
2025
2026 PaddedFieldSize = std::max(PaddedFieldSize, FieldOffset + FieldSize);
2027 setSize(std::max(getSizeInBits(), getDataSizeInBits()));
2028 } else {
2029 setSize(std::max(getSizeInBits(),
2030 (uint64_t)Context.toBits(FieldOffset + FieldSize)));
2031 }
2032
2033 // Remember max struct/class ABI-specified alignment.
2034 UnadjustedAlignment = std::max(UnadjustedAlignment, FieldAlign);
2035 UpdateAlignment(FieldAlign, UnpackedFieldAlign, PreferredAlign);
2036 }
2037
FinishLayout(const NamedDecl * D)2038 void ItaniumRecordLayoutBuilder::FinishLayout(const NamedDecl *D) {
2039 // In C++, records cannot be of size 0.
2040 if (Context.getLangOpts().CPlusPlus && getSizeInBits() == 0) {
2041 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
2042 // Compatibility with gcc requires a class (pod or non-pod)
2043 // which is not empty but of size 0; such as having fields of
2044 // array of zero-length, remains of Size 0
2045 if (RD->isEmpty())
2046 setSize(CharUnits::One());
2047 }
2048 else
2049 setSize(CharUnits::One());
2050 }
2051
2052 // If we have any remaining field tail padding, include that in the overall
2053 // size.
2054 setSize(std::max(getSizeInBits(), (uint64_t)Context.toBits(PaddedFieldSize)));
2055
2056 // Finally, round the size of the record up to the alignment of the
2057 // record itself.
2058 uint64_t UnpaddedSize = getSizeInBits() - UnfilledBitsInLastUnit;
2059 uint64_t UnpackedSizeInBits =
2060 llvm::alignTo(getSizeInBits(), Context.toBits(UnpackedAlignment));
2061
2062 uint64_t RoundedSize = llvm::alignTo(
2063 getSizeInBits(),
2064 Context.toBits(!Context.getTargetInfo().defaultsToAIXPowerAlignment()
2065 ? Alignment
2066 : PreferredAlignment));
2067
2068 if (UseExternalLayout) {
2069 // If we're inferring alignment, and the external size is smaller than
2070 // our size after we've rounded up to alignment, conservatively set the
2071 // alignment to 1.
2072 if (InferAlignment && External.Size < RoundedSize) {
2073 Alignment = CharUnits::One();
2074 PreferredAlignment = CharUnits::One();
2075 InferAlignment = false;
2076 }
2077 setSize(External.Size);
2078 return;
2079 }
2080
2081 // Set the size to the final size.
2082 setSize(RoundedSize);
2083
2084 unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
2085 if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
2086 // Warn if padding was introduced to the struct/class/union.
2087 if (getSizeInBits() > UnpaddedSize) {
2088 unsigned PadSize = getSizeInBits() - UnpaddedSize;
2089 bool InBits = true;
2090 if (PadSize % CharBitNum == 0) {
2091 PadSize = PadSize / CharBitNum;
2092 InBits = false;
2093 }
2094 Diag(RD->getLocation(), diag::warn_padded_struct_size)
2095 << Context.getTypeDeclType(RD)
2096 << PadSize
2097 << (InBits ? 1 : 0); // (byte|bit)
2098 }
2099
2100 // Warn if we packed it unnecessarily, when the unpacked alignment is not
2101 // greater than the one after packing, the size in bits doesn't change and
2102 // the offset of each field is identical.
2103 if (Packed && UnpackedAlignment <= Alignment &&
2104 UnpackedSizeInBits == getSizeInBits() && !HasPackedField)
2105 Diag(D->getLocation(), diag::warn_unnecessary_packed)
2106 << Context.getTypeDeclType(RD);
2107 }
2108 }
2109
UpdateAlignment(CharUnits NewAlignment,CharUnits UnpackedNewAlignment,CharUnits PreferredNewAlignment)2110 void ItaniumRecordLayoutBuilder::UpdateAlignment(
2111 CharUnits NewAlignment, CharUnits UnpackedNewAlignment,
2112 CharUnits PreferredNewAlignment) {
2113 // The alignment is not modified when using 'mac68k' alignment or when
2114 // we have an externally-supplied layout that also provides overall alignment.
2115 if (IsMac68kAlign || (UseExternalLayout && !InferAlignment))
2116 return;
2117
2118 if (NewAlignment > Alignment) {
2119 assert(llvm::isPowerOf2_64(NewAlignment.getQuantity()) &&
2120 "Alignment not a power of 2");
2121 Alignment = NewAlignment;
2122 }
2123
2124 if (UnpackedNewAlignment > UnpackedAlignment) {
2125 assert(llvm::isPowerOf2_64(UnpackedNewAlignment.getQuantity()) &&
2126 "Alignment not a power of 2");
2127 UnpackedAlignment = UnpackedNewAlignment;
2128 }
2129
2130 if (PreferredNewAlignment > PreferredAlignment) {
2131 assert(llvm::isPowerOf2_64(PreferredNewAlignment.getQuantity()) &&
2132 "Alignment not a power of 2");
2133 PreferredAlignment = PreferredNewAlignment;
2134 }
2135 }
2136
2137 uint64_t
updateExternalFieldOffset(const FieldDecl * Field,uint64_t ComputedOffset)2138 ItaniumRecordLayoutBuilder::updateExternalFieldOffset(const FieldDecl *Field,
2139 uint64_t ComputedOffset) {
2140 uint64_t ExternalFieldOffset = External.getExternalFieldOffset(Field);
2141
2142 if (InferAlignment && ExternalFieldOffset < ComputedOffset) {
2143 // The externally-supplied field offset is before the field offset we
2144 // computed. Assume that the structure is packed.
2145 Alignment = CharUnits::One();
2146 PreferredAlignment = CharUnits::One();
2147 InferAlignment = false;
2148 }
2149
2150 // Use the externally-supplied field offset.
2151 return ExternalFieldOffset;
2152 }
2153
2154 /// Get diagnostic %select index for tag kind for
2155 /// field padding diagnostic message.
2156 /// WARNING: Indexes apply to particular diagnostics only!
2157 ///
2158 /// \returns diagnostic %select index.
getPaddingDiagFromTagKind(TagTypeKind Tag)2159 static unsigned getPaddingDiagFromTagKind(TagTypeKind Tag) {
2160 switch (Tag) {
2161 case TTK_Struct: return 0;
2162 case TTK_Interface: return 1;
2163 case TTK_Class: return 2;
2164 default: llvm_unreachable("Invalid tag kind for field padding diagnostic!");
2165 }
2166 }
2167
CheckFieldPadding(uint64_t Offset,uint64_t UnpaddedOffset,uint64_t UnpackedOffset,unsigned UnpackedAlign,bool isPacked,const FieldDecl * D)2168 void ItaniumRecordLayoutBuilder::CheckFieldPadding(
2169 uint64_t Offset, uint64_t UnpaddedOffset, uint64_t UnpackedOffset,
2170 unsigned UnpackedAlign, bool isPacked, const FieldDecl *D) {
2171 // We let objc ivars without warning, objc interfaces generally are not used
2172 // for padding tricks.
2173 if (isa<ObjCIvarDecl>(D))
2174 return;
2175
2176 // Don't warn about structs created without a SourceLocation. This can
2177 // be done by clients of the AST, such as codegen.
2178 if (D->getLocation().isInvalid())
2179 return;
2180
2181 unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
2182
2183 // Warn if padding was introduced to the struct/class.
2184 if (!IsUnion && Offset > UnpaddedOffset) {
2185 unsigned PadSize = Offset - UnpaddedOffset;
2186 bool InBits = true;
2187 if (PadSize % CharBitNum == 0) {
2188 PadSize = PadSize / CharBitNum;
2189 InBits = false;
2190 }
2191 if (D->getIdentifier())
2192 Diag(D->getLocation(), diag::warn_padded_struct_field)
2193 << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
2194 << Context.getTypeDeclType(D->getParent())
2195 << PadSize
2196 << (InBits ? 1 : 0) // (byte|bit)
2197 << D->getIdentifier();
2198 else
2199 Diag(D->getLocation(), diag::warn_padded_struct_anon_field)
2200 << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
2201 << Context.getTypeDeclType(D->getParent())
2202 << PadSize
2203 << (InBits ? 1 : 0); // (byte|bit)
2204 }
2205 if (isPacked && Offset != UnpackedOffset) {
2206 HasPackedField = true;
2207 }
2208 }
2209
computeKeyFunction(ASTContext & Context,const CXXRecordDecl * RD)2210 static const CXXMethodDecl *computeKeyFunction(ASTContext &Context,
2211 const CXXRecordDecl *RD) {
2212 // If a class isn't polymorphic it doesn't have a key function.
2213 if (!RD->isPolymorphic())
2214 return nullptr;
2215
2216 // A class that is not externally visible doesn't have a key function. (Or
2217 // at least, there's no point to assigning a key function to such a class;
2218 // this doesn't affect the ABI.)
2219 if (!RD->isExternallyVisible())
2220 return nullptr;
2221
2222 // Template instantiations don't have key functions per Itanium C++ ABI 5.2.6.
2223 // Same behavior as GCC.
2224 TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
2225 if (TSK == TSK_ImplicitInstantiation ||
2226 TSK == TSK_ExplicitInstantiationDeclaration ||
2227 TSK == TSK_ExplicitInstantiationDefinition)
2228 return nullptr;
2229
2230 bool allowInlineFunctions =
2231 Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline();
2232
2233 for (const CXXMethodDecl *MD : RD->methods()) {
2234 if (!MD->isVirtual())
2235 continue;
2236
2237 if (MD->isPure())
2238 continue;
2239
2240 // Ignore implicit member functions, they are always marked as inline, but
2241 // they don't have a body until they're defined.
2242 if (MD->isImplicit())
2243 continue;
2244
2245 if (MD->isInlineSpecified() || MD->isConstexpr())
2246 continue;
2247
2248 if (MD->hasInlineBody())
2249 continue;
2250
2251 // Ignore inline deleted or defaulted functions.
2252 if (!MD->isUserProvided())
2253 continue;
2254
2255 // In certain ABIs, ignore functions with out-of-line inline definitions.
2256 if (!allowInlineFunctions) {
2257 const FunctionDecl *Def;
2258 if (MD->hasBody(Def) && Def->isInlineSpecified())
2259 continue;
2260 }
2261
2262 if (Context.getLangOpts().CUDA) {
2263 // While compiler may see key method in this TU, during CUDA
2264 // compilation we should ignore methods that are not accessible
2265 // on this side of compilation.
2266 if (Context.getLangOpts().CUDAIsDevice) {
2267 // In device mode ignore methods without __device__ attribute.
2268 if (!MD->hasAttr<CUDADeviceAttr>())
2269 continue;
2270 } else {
2271 // In host mode ignore __device__-only methods.
2272 if (!MD->hasAttr<CUDAHostAttr>() && MD->hasAttr<CUDADeviceAttr>())
2273 continue;
2274 }
2275 }
2276
2277 // If the key function is dllimport but the class isn't, then the class has
2278 // no key function. The DLL that exports the key function won't export the
2279 // vtable in this case.
2280 if (MD->hasAttr<DLLImportAttr>() && !RD->hasAttr<DLLImportAttr>())
2281 return nullptr;
2282
2283 // We found it.
2284 return MD;
2285 }
2286
2287 return nullptr;
2288 }
2289
Diag(SourceLocation Loc,unsigned DiagID)2290 DiagnosticBuilder ItaniumRecordLayoutBuilder::Diag(SourceLocation Loc,
2291 unsigned DiagID) {
2292 return Context.getDiagnostics().Report(Loc, DiagID);
2293 }
2294
2295 /// Does the target C++ ABI require us to skip over the tail-padding
2296 /// of the given class (considering it as a base class) when allocating
2297 /// objects?
mustSkipTailPadding(TargetCXXABI ABI,const CXXRecordDecl * RD)2298 static bool mustSkipTailPadding(TargetCXXABI ABI, const CXXRecordDecl *RD) {
2299 switch (ABI.getTailPaddingUseRules()) {
2300 case TargetCXXABI::AlwaysUseTailPadding:
2301 return false;
2302
2303 case TargetCXXABI::UseTailPaddingUnlessPOD03:
2304 // FIXME: To the extent that this is meant to cover the Itanium ABI
2305 // rules, we should implement the restrictions about over-sized
2306 // bitfields:
2307 //
2308 // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#POD :
2309 // In general, a type is considered a POD for the purposes of
2310 // layout if it is a POD type (in the sense of ISO C++
2311 // [basic.types]). However, a POD-struct or POD-union (in the
2312 // sense of ISO C++ [class]) with a bitfield member whose
2313 // declared width is wider than the declared type of the
2314 // bitfield is not a POD for the purpose of layout. Similarly,
2315 // an array type is not a POD for the purpose of layout if the
2316 // element type of the array is not a POD for the purpose of
2317 // layout.
2318 //
2319 // Where references to the ISO C++ are made in this paragraph,
2320 // the Technical Corrigendum 1 version of the standard is
2321 // intended.
2322 return RD->isPOD();
2323
2324 case TargetCXXABI::UseTailPaddingUnlessPOD11:
2325 // This is equivalent to RD->getTypeForDecl().isCXX11PODType(),
2326 // but with a lot of abstraction penalty stripped off. This does
2327 // assume that these properties are set correctly even in C++98
2328 // mode; fortunately, that is true because we want to assign
2329 // consistently semantics to the type-traits intrinsics (or at
2330 // least as many of them as possible).
2331 return RD->isTrivial() && RD->isCXX11StandardLayout();
2332 }
2333
2334 llvm_unreachable("bad tail-padding use kind");
2335 }
2336
isMsLayout(const ASTContext & Context)2337 static bool isMsLayout(const ASTContext &Context) {
2338 return Context.getTargetInfo().getCXXABI().isMicrosoft();
2339 }
2340
2341 // This section contains an implementation of struct layout that is, up to the
2342 // included tests, compatible with cl.exe (2013). The layout produced is
2343 // significantly different than those produced by the Itanium ABI. Here we note
2344 // the most important differences.
2345 //
2346 // * The alignment of bitfields in unions is ignored when computing the
2347 // alignment of the union.
2348 // * The existence of zero-width bitfield that occurs after anything other than
2349 // a non-zero length bitfield is ignored.
2350 // * There is no explicit primary base for the purposes of layout. All bases
2351 // with vfptrs are laid out first, followed by all bases without vfptrs.
2352 // * The Itanium equivalent vtable pointers are split into a vfptr (virtual
2353 // function pointer) and a vbptr (virtual base pointer). They can each be
2354 // shared with a, non-virtual bases. These bases need not be the same. vfptrs
2355 // always occur at offset 0. vbptrs can occur at an arbitrary offset and are
2356 // placed after the lexicographically last non-virtual base. This placement
2357 // is always before fields but can be in the middle of the non-virtual bases
2358 // due to the two-pass layout scheme for non-virtual-bases.
2359 // * Virtual bases sometimes require a 'vtordisp' field that is laid out before
2360 // the virtual base and is used in conjunction with virtual overrides during
2361 // construction and destruction. This is always a 4 byte value and is used as
2362 // an alternative to constructor vtables.
2363 // * vtordisps are allocated in a block of memory with size and alignment equal
2364 // to the alignment of the completed structure (before applying __declspec(
2365 // align())). The vtordisp always occur at the end of the allocation block,
2366 // immediately prior to the virtual base.
2367 // * vfptrs are injected after all bases and fields have been laid out. In
2368 // order to guarantee proper alignment of all fields, the vfptr injection
2369 // pushes all bases and fields back by the alignment imposed by those bases
2370 // and fields. This can potentially add a significant amount of padding.
2371 // vfptrs are always injected at offset 0.
2372 // * vbptrs are injected after all bases and fields have been laid out. In
2373 // order to guarantee proper alignment of all fields, the vfptr injection
2374 // pushes all bases and fields back by the alignment imposed by those bases
2375 // and fields. This can potentially add a significant amount of padding.
2376 // vbptrs are injected immediately after the last non-virtual base as
2377 // lexicographically ordered in the code. If this site isn't pointer aligned
2378 // the vbptr is placed at the next properly aligned location. Enough padding
2379 // is added to guarantee a fit.
2380 // * The last zero sized non-virtual base can be placed at the end of the
2381 // struct (potentially aliasing another object), or may alias with the first
2382 // field, even if they are of the same type.
2383 // * The last zero size virtual base may be placed at the end of the struct
2384 // potentially aliasing another object.
2385 // * The ABI attempts to avoid aliasing of zero sized bases by adding padding
2386 // between bases or vbases with specific properties. The criteria for
2387 // additional padding between two bases is that the first base is zero sized
2388 // or ends with a zero sized subobject and the second base is zero sized or
2389 // trails with a zero sized base or field (sharing of vfptrs can reorder the
2390 // layout of the so the leading base is not always the first one declared).
2391 // This rule does take into account fields that are not records, so padding
2392 // will occur even if the last field is, e.g. an int. The padding added for
2393 // bases is 1 byte. The padding added between vbases depends on the alignment
2394 // of the object but is at least 4 bytes (in both 32 and 64 bit modes).
2395 // * There is no concept of non-virtual alignment, non-virtual alignment and
2396 // alignment are always identical.
2397 // * There is a distinction between alignment and required alignment.
2398 // __declspec(align) changes the required alignment of a struct. This
2399 // alignment is _always_ obeyed, even in the presence of #pragma pack. A
2400 // record inherits required alignment from all of its fields and bases.
2401 // * __declspec(align) on bitfields has the effect of changing the bitfield's
2402 // alignment instead of its required alignment. This is the only known way
2403 // to make the alignment of a struct bigger than 8. Interestingly enough
2404 // this alignment is also immune to the effects of #pragma pack and can be
2405 // used to create structures with large alignment under #pragma pack.
2406 // However, because it does not impact required alignment, such a structure,
2407 // when used as a field or base, will not be aligned if #pragma pack is
2408 // still active at the time of use.
2409 //
2410 // Known incompatibilities:
2411 // * all: #pragma pack between fields in a record
2412 // * 2010 and back: If the last field in a record is a bitfield, every object
2413 // laid out after the record will have extra padding inserted before it. The
2414 // extra padding will have size equal to the size of the storage class of the
2415 // bitfield. 0 sized bitfields don't exhibit this behavior and the extra
2416 // padding can be avoided by adding a 0 sized bitfield after the non-zero-
2417 // sized bitfield.
2418 // * 2012 and back: In 64-bit mode, if the alignment of a record is 16 or
2419 // greater due to __declspec(align()) then a second layout phase occurs after
2420 // The locations of the vf and vb pointers are known. This layout phase
2421 // suffers from the "last field is a bitfield" bug in 2010 and results in
2422 // _every_ field getting padding put in front of it, potentially including the
2423 // vfptr, leaving the vfprt at a non-zero location which results in a fault if
2424 // anything tries to read the vftbl. The second layout phase also treats
2425 // bitfields as separate entities and gives them each storage rather than
2426 // packing them. Additionally, because this phase appears to perform a
2427 // (an unstable) sort on the members before laying them out and because merged
2428 // bitfields have the same address, the bitfields end up in whatever order
2429 // the sort left them in, a behavior we could never hope to replicate.
2430
2431 namespace {
2432 struct MicrosoftRecordLayoutBuilder {
2433 struct ElementInfo {
2434 CharUnits Size;
2435 CharUnits Alignment;
2436 };
2437 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
MicrosoftRecordLayoutBuilder__anonb7f8836c0511::MicrosoftRecordLayoutBuilder2438 MicrosoftRecordLayoutBuilder(const ASTContext &Context) : Context(Context) {}
2439 private:
2440 MicrosoftRecordLayoutBuilder(const MicrosoftRecordLayoutBuilder &) = delete;
2441 void operator=(const MicrosoftRecordLayoutBuilder &) = delete;
2442 public:
2443 void layout(const RecordDecl *RD);
2444 void cxxLayout(const CXXRecordDecl *RD);
2445 /// Initializes size and alignment and honors some flags.
2446 void initializeLayout(const RecordDecl *RD);
2447 /// Initialized C++ layout, compute alignment and virtual alignment and
2448 /// existence of vfptrs and vbptrs. Alignment is needed before the vfptr is
2449 /// laid out.
2450 void initializeCXXLayout(const CXXRecordDecl *RD);
2451 void layoutNonVirtualBases(const CXXRecordDecl *RD);
2452 void layoutNonVirtualBase(const CXXRecordDecl *RD,
2453 const CXXRecordDecl *BaseDecl,
2454 const ASTRecordLayout &BaseLayout,
2455 const ASTRecordLayout *&PreviousBaseLayout);
2456 void injectVFPtr(const CXXRecordDecl *RD);
2457 void injectVBPtr(const CXXRecordDecl *RD);
2458 /// Lays out the fields of the record. Also rounds size up to
2459 /// alignment.
2460 void layoutFields(const RecordDecl *RD);
2461 void layoutField(const FieldDecl *FD);
2462 void layoutBitField(const FieldDecl *FD);
2463 /// Lays out a single zero-width bit-field in the record and handles
2464 /// special cases associated with zero-width bit-fields.
2465 void layoutZeroWidthBitField(const FieldDecl *FD);
2466 void layoutVirtualBases(const CXXRecordDecl *RD);
2467 void finalizeLayout(const RecordDecl *RD);
2468 /// Gets the size and alignment of a base taking pragma pack and
2469 /// __declspec(align) into account.
2470 ElementInfo getAdjustedElementInfo(const ASTRecordLayout &Layout);
2471 /// Gets the size and alignment of a field taking pragma pack and
2472 /// __declspec(align) into account. It also updates RequiredAlignment as a
2473 /// side effect because it is most convenient to do so here.
2474 ElementInfo getAdjustedElementInfo(const FieldDecl *FD);
2475 /// Places a field at an offset in CharUnits.
placeFieldAtOffset__anonb7f8836c0511::MicrosoftRecordLayoutBuilder2476 void placeFieldAtOffset(CharUnits FieldOffset) {
2477 FieldOffsets.push_back(Context.toBits(FieldOffset));
2478 }
2479 /// Places a bitfield at a bit offset.
placeFieldAtBitOffset__anonb7f8836c0511::MicrosoftRecordLayoutBuilder2480 void placeFieldAtBitOffset(uint64_t FieldOffset) {
2481 FieldOffsets.push_back(FieldOffset);
2482 }
2483 /// Compute the set of virtual bases for which vtordisps are required.
2484 void computeVtorDispSet(
2485 llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtorDispSet,
2486 const CXXRecordDecl *RD) const;
2487 const ASTContext &Context;
2488 /// The size of the record being laid out.
2489 CharUnits Size;
2490 /// The non-virtual size of the record layout.
2491 CharUnits NonVirtualSize;
2492 /// The data size of the record layout.
2493 CharUnits DataSize;
2494 /// The current alignment of the record layout.
2495 CharUnits Alignment;
2496 /// The maximum allowed field alignment. This is set by #pragma pack.
2497 CharUnits MaxFieldAlignment;
2498 /// The alignment that this record must obey. This is imposed by
2499 /// __declspec(align()) on the record itself or one of its fields or bases.
2500 CharUnits RequiredAlignment;
2501 /// The size of the allocation of the currently active bitfield.
2502 /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield
2503 /// is true.
2504 CharUnits CurrentBitfieldSize;
2505 /// Offset to the virtual base table pointer (if one exists).
2506 CharUnits VBPtrOffset;
2507 /// Minimum record size possible.
2508 CharUnits MinEmptyStructSize;
2509 /// The size and alignment info of a pointer.
2510 ElementInfo PointerInfo;
2511 /// The primary base class (if one exists).
2512 const CXXRecordDecl *PrimaryBase;
2513 /// The class we share our vb-pointer with.
2514 const CXXRecordDecl *SharedVBPtrBase;
2515 /// The collection of field offsets.
2516 SmallVector<uint64_t, 16> FieldOffsets;
2517 /// Base classes and their offsets in the record.
2518 BaseOffsetsMapTy Bases;
2519 /// virtual base classes and their offsets in the record.
2520 ASTRecordLayout::VBaseOffsetsMapTy VBases;
2521 /// The number of remaining bits in our last bitfield allocation.
2522 /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield is
2523 /// true.
2524 unsigned RemainingBitsInField;
2525 bool IsUnion : 1;
2526 /// True if the last field laid out was a bitfield and was not 0
2527 /// width.
2528 bool LastFieldIsNonZeroWidthBitfield : 1;
2529 /// True if the class has its own vftable pointer.
2530 bool HasOwnVFPtr : 1;
2531 /// True if the class has a vbtable pointer.
2532 bool HasVBPtr : 1;
2533 /// True if the last sub-object within the type is zero sized or the
2534 /// object itself is zero sized. This *does not* count members that are not
2535 /// records. Only used for MS-ABI.
2536 bool EndsWithZeroSizedObject : 1;
2537 /// True if this class is zero sized or first base is zero sized or
2538 /// has this property. Only used for MS-ABI.
2539 bool LeadsWithZeroSizedBase : 1;
2540
2541 /// True if the external AST source provided a layout for this record.
2542 bool UseExternalLayout : 1;
2543
2544 /// The layout provided by the external AST source. Only active if
2545 /// UseExternalLayout is true.
2546 ExternalLayout External;
2547 };
2548 } // namespace
2549
2550 MicrosoftRecordLayoutBuilder::ElementInfo
getAdjustedElementInfo(const ASTRecordLayout & Layout)2551 MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
2552 const ASTRecordLayout &Layout) {
2553 ElementInfo Info;
2554 Info.Alignment = Layout.getAlignment();
2555 // Respect pragma pack.
2556 if (!MaxFieldAlignment.isZero())
2557 Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
2558 // Track zero-sized subobjects here where it's already available.
2559 EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject();
2560 // Respect required alignment, this is necessary because we may have adjusted
2561 // the alignment in the case of pragam pack. Note that the required alignment
2562 // doesn't actually apply to the struct alignment at this point.
2563 Alignment = std::max(Alignment, Info.Alignment);
2564 RequiredAlignment = std::max(RequiredAlignment, Layout.getRequiredAlignment());
2565 Info.Alignment = std::max(Info.Alignment, Layout.getRequiredAlignment());
2566 Info.Size = Layout.getNonVirtualSize();
2567 return Info;
2568 }
2569
2570 MicrosoftRecordLayoutBuilder::ElementInfo
getAdjustedElementInfo(const FieldDecl * FD)2571 MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
2572 const FieldDecl *FD) {
2573 // Get the alignment of the field type's natural alignment, ignore any
2574 // alignment attributes.
2575 auto TInfo =
2576 Context.getTypeInfoInChars(FD->getType()->getUnqualifiedDesugaredType());
2577 ElementInfo Info{TInfo.Width, TInfo.Align};
2578 // Respect align attributes on the field.
2579 CharUnits FieldRequiredAlignment =
2580 Context.toCharUnitsFromBits(FD->getMaxAlignment());
2581 // Respect align attributes on the type.
2582 if (Context.isAlignmentRequired(FD->getType()))
2583 FieldRequiredAlignment = std::max(
2584 Context.getTypeAlignInChars(FD->getType()), FieldRequiredAlignment);
2585 // Respect attributes applied to subobjects of the field.
2586 if (FD->isBitField())
2587 // For some reason __declspec align impacts alignment rather than required
2588 // alignment when it is applied to bitfields.
2589 Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
2590 else {
2591 if (auto RT =
2592 FD->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
2593 auto const &Layout = Context.getASTRecordLayout(RT->getDecl());
2594 EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject();
2595 FieldRequiredAlignment = std::max(FieldRequiredAlignment,
2596 Layout.getRequiredAlignment());
2597 }
2598 // Capture required alignment as a side-effect.
2599 RequiredAlignment = std::max(RequiredAlignment, FieldRequiredAlignment);
2600 }
2601 // Respect pragma pack, attribute pack and declspec align
2602 if (!MaxFieldAlignment.isZero())
2603 Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
2604 if (FD->hasAttr<PackedAttr>())
2605 Info.Alignment = CharUnits::One();
2606 Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
2607 return Info;
2608 }
2609
layout(const RecordDecl * RD)2610 void MicrosoftRecordLayoutBuilder::layout(const RecordDecl *RD) {
2611 // For C record layout, zero-sized records always have size 4.
2612 MinEmptyStructSize = CharUnits::fromQuantity(4);
2613 initializeLayout(RD);
2614 layoutFields(RD);
2615 DataSize = Size = Size.alignTo(Alignment);
2616 RequiredAlignment = std::max(
2617 RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
2618 finalizeLayout(RD);
2619 }
2620
cxxLayout(const CXXRecordDecl * RD)2621 void MicrosoftRecordLayoutBuilder::cxxLayout(const CXXRecordDecl *RD) {
2622 // The C++ standard says that empty structs have size 1.
2623 MinEmptyStructSize = CharUnits::One();
2624 initializeLayout(RD);
2625 initializeCXXLayout(RD);
2626 layoutNonVirtualBases(RD);
2627 layoutFields(RD);
2628 injectVBPtr(RD);
2629 injectVFPtr(RD);
2630 if (HasOwnVFPtr || (HasVBPtr && !SharedVBPtrBase))
2631 Alignment = std::max(Alignment, PointerInfo.Alignment);
2632 auto RoundingAlignment = Alignment;
2633 if (!MaxFieldAlignment.isZero())
2634 RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
2635 if (!UseExternalLayout)
2636 Size = Size.alignTo(RoundingAlignment);
2637 NonVirtualSize = Size;
2638 RequiredAlignment = std::max(
2639 RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
2640 layoutVirtualBases(RD);
2641 finalizeLayout(RD);
2642 }
2643
initializeLayout(const RecordDecl * RD)2644 void MicrosoftRecordLayoutBuilder::initializeLayout(const RecordDecl *RD) {
2645 IsUnion = RD->isUnion();
2646 Size = CharUnits::Zero();
2647 Alignment = CharUnits::One();
2648 // In 64-bit mode we always perform an alignment step after laying out vbases.
2649 // In 32-bit mode we do not. The check to see if we need to perform alignment
2650 // checks the RequiredAlignment field and performs alignment if it isn't 0.
2651 RequiredAlignment = Context.getTargetInfo().getTriple().isArch64Bit()
2652 ? CharUnits::One()
2653 : CharUnits::Zero();
2654 // Compute the maximum field alignment.
2655 MaxFieldAlignment = CharUnits::Zero();
2656 // Honor the default struct packing maximum alignment flag.
2657 if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct)
2658 MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
2659 // Honor the packing attribute. The MS-ABI ignores pragma pack if its larger
2660 // than the pointer size.
2661 if (const MaxFieldAlignmentAttr *MFAA = RD->getAttr<MaxFieldAlignmentAttr>()){
2662 unsigned PackedAlignment = MFAA->getAlignment();
2663 if (PackedAlignment <= Context.getTargetInfo().getPointerWidth(0))
2664 MaxFieldAlignment = Context.toCharUnitsFromBits(PackedAlignment);
2665 }
2666 // Packed attribute forces max field alignment to be 1.
2667 if (RD->hasAttr<PackedAttr>())
2668 MaxFieldAlignment = CharUnits::One();
2669
2670 // Try to respect the external layout if present.
2671 UseExternalLayout = false;
2672 if (ExternalASTSource *Source = Context.getExternalSource())
2673 UseExternalLayout = Source->layoutRecordType(
2674 RD, External.Size, External.Align, External.FieldOffsets,
2675 External.BaseOffsets, External.VirtualBaseOffsets);
2676 }
2677
2678 void
initializeCXXLayout(const CXXRecordDecl * RD)2679 MicrosoftRecordLayoutBuilder::initializeCXXLayout(const CXXRecordDecl *RD) {
2680 EndsWithZeroSizedObject = false;
2681 LeadsWithZeroSizedBase = false;
2682 HasOwnVFPtr = false;
2683 HasVBPtr = false;
2684 PrimaryBase = nullptr;
2685 SharedVBPtrBase = nullptr;
2686 // Calculate pointer size and alignment. These are used for vfptr and vbprt
2687 // injection.
2688 PointerInfo.Size =
2689 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
2690 PointerInfo.Alignment =
2691 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
2692 // Respect pragma pack.
2693 if (!MaxFieldAlignment.isZero())
2694 PointerInfo.Alignment = std::min(PointerInfo.Alignment, MaxFieldAlignment);
2695 }
2696
2697 void
layoutNonVirtualBases(const CXXRecordDecl * RD)2698 MicrosoftRecordLayoutBuilder::layoutNonVirtualBases(const CXXRecordDecl *RD) {
2699 // The MS-ABI lays out all bases that contain leading vfptrs before it lays
2700 // out any bases that do not contain vfptrs. We implement this as two passes
2701 // over the bases. This approach guarantees that the primary base is laid out
2702 // first. We use these passes to calculate some additional aggregated
2703 // information about the bases, such as required alignment and the presence of
2704 // zero sized members.
2705 const ASTRecordLayout *PreviousBaseLayout = nullptr;
2706 bool HasPolymorphicBaseClass = false;
2707 // Iterate through the bases and lay out the non-virtual ones.
2708 for (const CXXBaseSpecifier &Base : RD->bases()) {
2709 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2710 HasPolymorphicBaseClass |= BaseDecl->isPolymorphic();
2711 const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2712 // Mark and skip virtual bases.
2713 if (Base.isVirtual()) {
2714 HasVBPtr = true;
2715 continue;
2716 }
2717 // Check for a base to share a VBPtr with.
2718 if (!SharedVBPtrBase && BaseLayout.hasVBPtr()) {
2719 SharedVBPtrBase = BaseDecl;
2720 HasVBPtr = true;
2721 }
2722 // Only lay out bases with extendable VFPtrs on the first pass.
2723 if (!BaseLayout.hasExtendableVFPtr())
2724 continue;
2725 // If we don't have a primary base, this one qualifies.
2726 if (!PrimaryBase) {
2727 PrimaryBase = BaseDecl;
2728 LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
2729 }
2730 // Lay out the base.
2731 layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout);
2732 }
2733 // Figure out if we need a fresh VFPtr for this class.
2734 if (RD->isPolymorphic()) {
2735 if (!HasPolymorphicBaseClass)
2736 // This class introduces polymorphism, so we need a vftable to store the
2737 // RTTI information.
2738 HasOwnVFPtr = true;
2739 else if (!PrimaryBase) {
2740 // We have a polymorphic base class but can't extend its vftable. Add a
2741 // new vfptr if we would use any vftable slots.
2742 for (CXXMethodDecl *M : RD->methods()) {
2743 if (MicrosoftVTableContext::hasVtableSlot(M) &&
2744 M->size_overridden_methods() == 0) {
2745 HasOwnVFPtr = true;
2746 break;
2747 }
2748 }
2749 }
2750 }
2751 // If we don't have a primary base then we have a leading object that could
2752 // itself lead with a zero-sized object, something we track.
2753 bool CheckLeadingLayout = !PrimaryBase;
2754 // Iterate through the bases and lay out the non-virtual ones.
2755 for (const CXXBaseSpecifier &Base : RD->bases()) {
2756 if (Base.isVirtual())
2757 continue;
2758 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2759 const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2760 // Only lay out bases without extendable VFPtrs on the second pass.
2761 if (BaseLayout.hasExtendableVFPtr()) {
2762 VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
2763 continue;
2764 }
2765 // If this is the first layout, check to see if it leads with a zero sized
2766 // object. If it does, so do we.
2767 if (CheckLeadingLayout) {
2768 CheckLeadingLayout = false;
2769 LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
2770 }
2771 // Lay out the base.
2772 layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout);
2773 VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
2774 }
2775 // Set our VBPtroffset if we know it at this point.
2776 if (!HasVBPtr)
2777 VBPtrOffset = CharUnits::fromQuantity(-1);
2778 else if (SharedVBPtrBase) {
2779 const ASTRecordLayout &Layout = Context.getASTRecordLayout(SharedVBPtrBase);
2780 VBPtrOffset = Bases[SharedVBPtrBase] + Layout.getVBPtrOffset();
2781 }
2782 }
2783
recordUsesEBO(const RecordDecl * RD)2784 static bool recordUsesEBO(const RecordDecl *RD) {
2785 if (!isa<CXXRecordDecl>(RD))
2786 return false;
2787 if (RD->hasAttr<EmptyBasesAttr>())
2788 return true;
2789 if (auto *LVA = RD->getAttr<LayoutVersionAttr>())
2790 // TODO: Double check with the next version of MSVC.
2791 if (LVA->getVersion() <= LangOptions::MSVC2015)
2792 return false;
2793 // TODO: Some later version of MSVC will change the default behavior of the
2794 // compiler to enable EBO by default. When this happens, we will need an
2795 // additional isCompatibleWithMSVC check.
2796 return false;
2797 }
2798
layoutNonVirtualBase(const CXXRecordDecl * RD,const CXXRecordDecl * BaseDecl,const ASTRecordLayout & BaseLayout,const ASTRecordLayout * & PreviousBaseLayout)2799 void MicrosoftRecordLayoutBuilder::layoutNonVirtualBase(
2800 const CXXRecordDecl *RD,
2801 const CXXRecordDecl *BaseDecl,
2802 const ASTRecordLayout &BaseLayout,
2803 const ASTRecordLayout *&PreviousBaseLayout) {
2804 // Insert padding between two bases if the left first one is zero sized or
2805 // contains a zero sized subobject and the right is zero sized or one leads
2806 // with a zero sized base.
2807 bool MDCUsesEBO = recordUsesEBO(RD);
2808 if (PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() &&
2809 BaseLayout.leadsWithZeroSizedBase() && !MDCUsesEBO)
2810 Size++;
2811 ElementInfo Info = getAdjustedElementInfo(BaseLayout);
2812 CharUnits BaseOffset;
2813
2814 // Respect the external AST source base offset, if present.
2815 bool FoundBase = false;
2816 if (UseExternalLayout) {
2817 FoundBase = External.getExternalNVBaseOffset(BaseDecl, BaseOffset);
2818 if (FoundBase) {
2819 assert(BaseOffset >= Size && "base offset already allocated");
2820 Size = BaseOffset;
2821 }
2822 }
2823
2824 if (!FoundBase) {
2825 if (MDCUsesEBO && BaseDecl->isEmpty()) {
2826 assert(BaseLayout.getNonVirtualSize() == CharUnits::Zero());
2827 BaseOffset = CharUnits::Zero();
2828 } else {
2829 // Otherwise, lay the base out at the end of the MDC.
2830 BaseOffset = Size = Size.alignTo(Info.Alignment);
2831 }
2832 }
2833 Bases.insert(std::make_pair(BaseDecl, BaseOffset));
2834 Size += BaseLayout.getNonVirtualSize();
2835 PreviousBaseLayout = &BaseLayout;
2836 }
2837
layoutFields(const RecordDecl * RD)2838 void MicrosoftRecordLayoutBuilder::layoutFields(const RecordDecl *RD) {
2839 LastFieldIsNonZeroWidthBitfield = false;
2840 for (const FieldDecl *Field : RD->fields())
2841 layoutField(Field);
2842 }
2843
layoutField(const FieldDecl * FD)2844 void MicrosoftRecordLayoutBuilder::layoutField(const FieldDecl *FD) {
2845 if (FD->isBitField()) {
2846 layoutBitField(FD);
2847 return;
2848 }
2849 LastFieldIsNonZeroWidthBitfield = false;
2850 ElementInfo Info = getAdjustedElementInfo(FD);
2851 Alignment = std::max(Alignment, Info.Alignment);
2852 CharUnits FieldOffset;
2853 if (UseExternalLayout)
2854 FieldOffset =
2855 Context.toCharUnitsFromBits(External.getExternalFieldOffset(FD));
2856 else if (IsUnion)
2857 FieldOffset = CharUnits::Zero();
2858 else
2859 FieldOffset = Size.alignTo(Info.Alignment);
2860 placeFieldAtOffset(FieldOffset);
2861 Size = std::max(Size, FieldOffset + Info.Size);
2862 }
2863
layoutBitField(const FieldDecl * FD)2864 void MicrosoftRecordLayoutBuilder::layoutBitField(const FieldDecl *FD) {
2865 unsigned Width = FD->getBitWidthValue(Context);
2866 if (Width == 0) {
2867 layoutZeroWidthBitField(FD);
2868 return;
2869 }
2870 ElementInfo Info = getAdjustedElementInfo(FD);
2871 // Clamp the bitfield to a containable size for the sake of being able
2872 // to lay them out. Sema will throw an error.
2873 if (Width > Context.toBits(Info.Size))
2874 Width = Context.toBits(Info.Size);
2875 // Check to see if this bitfield fits into an existing allocation. Note:
2876 // MSVC refuses to pack bitfields of formal types with different sizes
2877 // into the same allocation.
2878 if (!UseExternalLayout && !IsUnion && LastFieldIsNonZeroWidthBitfield &&
2879 CurrentBitfieldSize == Info.Size && Width <= RemainingBitsInField) {
2880 placeFieldAtBitOffset(Context.toBits(Size) - RemainingBitsInField);
2881 RemainingBitsInField -= Width;
2882 return;
2883 }
2884 LastFieldIsNonZeroWidthBitfield = true;
2885 CurrentBitfieldSize = Info.Size;
2886 if (UseExternalLayout) {
2887 auto FieldBitOffset = External.getExternalFieldOffset(FD);
2888 placeFieldAtBitOffset(FieldBitOffset);
2889 auto NewSize = Context.toCharUnitsFromBits(
2890 llvm::alignDown(FieldBitOffset, Context.toBits(Info.Alignment)) +
2891 Context.toBits(Info.Size));
2892 Size = std::max(Size, NewSize);
2893 Alignment = std::max(Alignment, Info.Alignment);
2894 } else if (IsUnion) {
2895 placeFieldAtOffset(CharUnits::Zero());
2896 Size = std::max(Size, Info.Size);
2897 // TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
2898 } else {
2899 // Allocate a new block of memory and place the bitfield in it.
2900 CharUnits FieldOffset = Size.alignTo(Info.Alignment);
2901 placeFieldAtOffset(FieldOffset);
2902 Size = FieldOffset + Info.Size;
2903 Alignment = std::max(Alignment, Info.Alignment);
2904 RemainingBitsInField = Context.toBits(Info.Size) - Width;
2905 }
2906 }
2907
2908 void
layoutZeroWidthBitField(const FieldDecl * FD)2909 MicrosoftRecordLayoutBuilder::layoutZeroWidthBitField(const FieldDecl *FD) {
2910 // Zero-width bitfields are ignored unless they follow a non-zero-width
2911 // bitfield.
2912 if (!LastFieldIsNonZeroWidthBitfield) {
2913 placeFieldAtOffset(IsUnion ? CharUnits::Zero() : Size);
2914 // TODO: Add a Sema warning that MS ignores alignment for zero
2915 // sized bitfields that occur after zero-size bitfields or non-bitfields.
2916 return;
2917 }
2918 LastFieldIsNonZeroWidthBitfield = false;
2919 ElementInfo Info = getAdjustedElementInfo(FD);
2920 if (IsUnion) {
2921 placeFieldAtOffset(CharUnits::Zero());
2922 Size = std::max(Size, Info.Size);
2923 // TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
2924 } else {
2925 // Round up the current record size to the field's alignment boundary.
2926 CharUnits FieldOffset = Size.alignTo(Info.Alignment);
2927 placeFieldAtOffset(FieldOffset);
2928 Size = FieldOffset;
2929 Alignment = std::max(Alignment, Info.Alignment);
2930 }
2931 }
2932
injectVBPtr(const CXXRecordDecl * RD)2933 void MicrosoftRecordLayoutBuilder::injectVBPtr(const CXXRecordDecl *RD) {
2934 if (!HasVBPtr || SharedVBPtrBase)
2935 return;
2936 // Inject the VBPointer at the injection site.
2937 CharUnits InjectionSite = VBPtrOffset;
2938 // But before we do, make sure it's properly aligned.
2939 VBPtrOffset = VBPtrOffset.alignTo(PointerInfo.Alignment);
2940 // Determine where the first field should be laid out after the vbptr.
2941 CharUnits FieldStart = VBPtrOffset + PointerInfo.Size;
2942 // Shift everything after the vbptr down, unless we're using an external
2943 // layout.
2944 if (UseExternalLayout) {
2945 // It is possible that there were no fields or bases located after vbptr,
2946 // so the size was not adjusted before.
2947 if (Size < FieldStart)
2948 Size = FieldStart;
2949 return;
2950 }
2951 // Make sure that the amount we push the fields back by is a multiple of the
2952 // alignment.
2953 CharUnits Offset = (FieldStart - InjectionSite)
2954 .alignTo(std::max(RequiredAlignment, Alignment));
2955 Size += Offset;
2956 for (uint64_t &FieldOffset : FieldOffsets)
2957 FieldOffset += Context.toBits(Offset);
2958 for (BaseOffsetsMapTy::value_type &Base : Bases)
2959 if (Base.second >= InjectionSite)
2960 Base.second += Offset;
2961 }
2962
injectVFPtr(const CXXRecordDecl * RD)2963 void MicrosoftRecordLayoutBuilder::injectVFPtr(const CXXRecordDecl *RD) {
2964 if (!HasOwnVFPtr)
2965 return;
2966 // Make sure that the amount we push the struct back by is a multiple of the
2967 // alignment.
2968 CharUnits Offset =
2969 PointerInfo.Size.alignTo(std::max(RequiredAlignment, Alignment));
2970 // Push back the vbptr, but increase the size of the object and push back
2971 // regular fields by the offset only if not using external record layout.
2972 if (HasVBPtr)
2973 VBPtrOffset += Offset;
2974
2975 if (UseExternalLayout) {
2976 // The class may have no bases or fields, but still have a vfptr
2977 // (e.g. it's an interface class). The size was not correctly set before
2978 // in this case.
2979 if (FieldOffsets.empty() && Bases.empty())
2980 Size += Offset;
2981 return;
2982 }
2983
2984 Size += Offset;
2985
2986 // If we're using an external layout, the fields offsets have already
2987 // accounted for this adjustment.
2988 for (uint64_t &FieldOffset : FieldOffsets)
2989 FieldOffset += Context.toBits(Offset);
2990 for (BaseOffsetsMapTy::value_type &Base : Bases)
2991 Base.second += Offset;
2992 }
2993
layoutVirtualBases(const CXXRecordDecl * RD)2994 void MicrosoftRecordLayoutBuilder::layoutVirtualBases(const CXXRecordDecl *RD) {
2995 if (!HasVBPtr)
2996 return;
2997 // Vtordisps are always 4 bytes (even in 64-bit mode)
2998 CharUnits VtorDispSize = CharUnits::fromQuantity(4);
2999 CharUnits VtorDispAlignment = VtorDispSize;
3000 // vtordisps respect pragma pack.
3001 if (!MaxFieldAlignment.isZero())
3002 VtorDispAlignment = std::min(VtorDispAlignment, MaxFieldAlignment);
3003 // The alignment of the vtordisp is at least the required alignment of the
3004 // entire record. This requirement may be present to support vtordisp
3005 // injection.
3006 for (const CXXBaseSpecifier &VBase : RD->vbases()) {
3007 const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl();
3008 const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
3009 RequiredAlignment =
3010 std::max(RequiredAlignment, BaseLayout.getRequiredAlignment());
3011 }
3012 VtorDispAlignment = std::max(VtorDispAlignment, RequiredAlignment);
3013 // Compute the vtordisp set.
3014 llvm::SmallPtrSet<const CXXRecordDecl *, 2> HasVtorDispSet;
3015 computeVtorDispSet(HasVtorDispSet, RD);
3016 // Iterate through the virtual bases and lay them out.
3017 const ASTRecordLayout *PreviousBaseLayout = nullptr;
3018 for (const CXXBaseSpecifier &VBase : RD->vbases()) {
3019 const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl();
3020 const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
3021 bool HasVtordisp = HasVtorDispSet.count(BaseDecl) > 0;
3022 // Insert padding between two bases if the left first one is zero sized or
3023 // contains a zero sized subobject and the right is zero sized or one leads
3024 // with a zero sized base. The padding between virtual bases is 4
3025 // bytes (in both 32 and 64 bits modes) and always involves rounding up to
3026 // the required alignment, we don't know why.
3027 if ((PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() &&
3028 BaseLayout.leadsWithZeroSizedBase() && !recordUsesEBO(RD)) ||
3029 HasVtordisp) {
3030 Size = Size.alignTo(VtorDispAlignment) + VtorDispSize;
3031 Alignment = std::max(VtorDispAlignment, Alignment);
3032 }
3033 // Insert the virtual base.
3034 ElementInfo Info = getAdjustedElementInfo(BaseLayout);
3035 CharUnits BaseOffset;
3036
3037 // Respect the external AST source base offset, if present.
3038 if (UseExternalLayout) {
3039 if (!External.getExternalVBaseOffset(BaseDecl, BaseOffset))
3040 BaseOffset = Size;
3041 } else
3042 BaseOffset = Size.alignTo(Info.Alignment);
3043
3044 assert(BaseOffset >= Size && "base offset already allocated");
3045
3046 VBases.insert(std::make_pair(BaseDecl,
3047 ASTRecordLayout::VBaseInfo(BaseOffset, HasVtordisp)));
3048 Size = BaseOffset + BaseLayout.getNonVirtualSize();
3049 PreviousBaseLayout = &BaseLayout;
3050 }
3051 }
3052
finalizeLayout(const RecordDecl * RD)3053 void MicrosoftRecordLayoutBuilder::finalizeLayout(const RecordDecl *RD) {
3054 // Respect required alignment. Note that in 32-bit mode Required alignment
3055 // may be 0 and cause size not to be updated.
3056 DataSize = Size;
3057 if (!RequiredAlignment.isZero()) {
3058 Alignment = std::max(Alignment, RequiredAlignment);
3059 auto RoundingAlignment = Alignment;
3060 if (!MaxFieldAlignment.isZero())
3061 RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
3062 RoundingAlignment = std::max(RoundingAlignment, RequiredAlignment);
3063 Size = Size.alignTo(RoundingAlignment);
3064 }
3065 if (Size.isZero()) {
3066 if (!recordUsesEBO(RD) || !cast<CXXRecordDecl>(RD)->isEmpty()) {
3067 EndsWithZeroSizedObject = true;
3068 LeadsWithZeroSizedBase = true;
3069 }
3070 // Zero-sized structures have size equal to their alignment if a
3071 // __declspec(align) came into play.
3072 if (RequiredAlignment >= MinEmptyStructSize)
3073 Size = Alignment;
3074 else
3075 Size = MinEmptyStructSize;
3076 }
3077
3078 if (UseExternalLayout) {
3079 Size = Context.toCharUnitsFromBits(External.Size);
3080 if (External.Align)
3081 Alignment = Context.toCharUnitsFromBits(External.Align);
3082 }
3083 }
3084
3085 // Recursively walks the non-virtual bases of a class and determines if any of
3086 // them are in the bases with overridden methods set.
3087 static bool
RequiresVtordisp(const llvm::SmallPtrSetImpl<const CXXRecordDecl * > & BasesWithOverriddenMethods,const CXXRecordDecl * RD)3088 RequiresVtordisp(const llvm::SmallPtrSetImpl<const CXXRecordDecl *> &
3089 BasesWithOverriddenMethods,
3090 const CXXRecordDecl *RD) {
3091 if (BasesWithOverriddenMethods.count(RD))
3092 return true;
3093 // If any of a virtual bases non-virtual bases (recursively) requires a
3094 // vtordisp than so does this virtual base.
3095 for (const CXXBaseSpecifier &Base : RD->bases())
3096 if (!Base.isVirtual() &&
3097 RequiresVtordisp(BasesWithOverriddenMethods,
3098 Base.getType()->getAsCXXRecordDecl()))
3099 return true;
3100 return false;
3101 }
3102
computeVtorDispSet(llvm::SmallPtrSetImpl<const CXXRecordDecl * > & HasVtordispSet,const CXXRecordDecl * RD) const3103 void MicrosoftRecordLayoutBuilder::computeVtorDispSet(
3104 llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtordispSet,
3105 const CXXRecordDecl *RD) const {
3106 // /vd2 or #pragma vtordisp(2): Always use vtordisps for virtual bases with
3107 // vftables.
3108 if (RD->getMSVtorDispMode() == MSVtorDispMode::ForVFTable) {
3109 for (const CXXBaseSpecifier &Base : RD->vbases()) {
3110 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
3111 const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
3112 if (Layout.hasExtendableVFPtr())
3113 HasVtordispSet.insert(BaseDecl);
3114 }
3115 return;
3116 }
3117
3118 // If any of our bases need a vtordisp for this type, so do we. Check our
3119 // direct bases for vtordisp requirements.
3120 for (const CXXBaseSpecifier &Base : RD->bases()) {
3121 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
3122 const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
3123 for (const auto &bi : Layout.getVBaseOffsetsMap())
3124 if (bi.second.hasVtorDisp())
3125 HasVtordispSet.insert(bi.first);
3126 }
3127 // We don't introduce any additional vtordisps if either:
3128 // * A user declared constructor or destructor aren't declared.
3129 // * #pragma vtordisp(0) or the /vd0 flag are in use.
3130 if ((!RD->hasUserDeclaredConstructor() && !RD->hasUserDeclaredDestructor()) ||
3131 RD->getMSVtorDispMode() == MSVtorDispMode::Never)
3132 return;
3133 // /vd1 or #pragma vtordisp(1): Try to guess based on whether we think it's
3134 // possible for a partially constructed object with virtual base overrides to
3135 // escape a non-trivial constructor.
3136 assert(RD->getMSVtorDispMode() == MSVtorDispMode::ForVBaseOverride);
3137 // Compute a set of base classes which define methods we override. A virtual
3138 // base in this set will require a vtordisp. A virtual base that transitively
3139 // contains one of these bases as a non-virtual base will also require a
3140 // vtordisp.
3141 llvm::SmallPtrSet<const CXXMethodDecl *, 8> Work;
3142 llvm::SmallPtrSet<const CXXRecordDecl *, 2> BasesWithOverriddenMethods;
3143 // Seed the working set with our non-destructor, non-pure virtual methods.
3144 for (const CXXMethodDecl *MD : RD->methods())
3145 if (MicrosoftVTableContext::hasVtableSlot(MD) &&
3146 !isa<CXXDestructorDecl>(MD) && !MD->isPure())
3147 Work.insert(MD);
3148 while (!Work.empty()) {
3149 const CXXMethodDecl *MD = *Work.begin();
3150 auto MethodRange = MD->overridden_methods();
3151 // If a virtual method has no-overrides it lives in its parent's vtable.
3152 if (MethodRange.begin() == MethodRange.end())
3153 BasesWithOverriddenMethods.insert(MD->getParent());
3154 else
3155 Work.insert(MethodRange.begin(), MethodRange.end());
3156 // We've finished processing this element, remove it from the working set.
3157 Work.erase(MD);
3158 }
3159 // For each of our virtual bases, check if it is in the set of overridden
3160 // bases or if it transitively contains a non-virtual base that is.
3161 for (const CXXBaseSpecifier &Base : RD->vbases()) {
3162 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
3163 if (!HasVtordispSet.count(BaseDecl) &&
3164 RequiresVtordisp(BasesWithOverriddenMethods, BaseDecl))
3165 HasVtordispSet.insert(BaseDecl);
3166 }
3167 }
3168
3169 /// getASTRecordLayout - Get or compute information about the layout of the
3170 /// specified record (struct/union/class), which indicates its size and field
3171 /// position information.
3172 const ASTRecordLayout &
getASTRecordLayout(const RecordDecl * D) const3173 ASTContext::getASTRecordLayout(const RecordDecl *D) const {
3174 // These asserts test different things. A record has a definition
3175 // as soon as we begin to parse the definition. That definition is
3176 // not a complete definition (which is what isDefinition() tests)
3177 // until we *finish* parsing the definition.
3178
3179 if (D->hasExternalLexicalStorage() && !D->getDefinition())
3180 getExternalSource()->CompleteType(const_cast<RecordDecl*>(D));
3181
3182 D = D->getDefinition();
3183 assert(D && "Cannot get layout of forward declarations!");
3184 assert(!D->isInvalidDecl() && "Cannot get layout of invalid decl!");
3185 assert(D->isCompleteDefinition() && "Cannot layout type before complete!");
3186
3187 // Look up this layout, if already laid out, return what we have.
3188 // Note that we can't save a reference to the entry because this function
3189 // is recursive.
3190 const ASTRecordLayout *Entry = ASTRecordLayouts[D];
3191 if (Entry) return *Entry;
3192
3193 const ASTRecordLayout *NewEntry = nullptr;
3194
3195 if (isMsLayout(*this)) {
3196 MicrosoftRecordLayoutBuilder Builder(*this);
3197 if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
3198 Builder.cxxLayout(RD);
3199 NewEntry = new (*this) ASTRecordLayout(
3200 *this, Builder.Size, Builder.Alignment, Builder.Alignment,
3201 Builder.Alignment, Builder.RequiredAlignment, Builder.HasOwnVFPtr,
3202 Builder.HasOwnVFPtr || Builder.PrimaryBase, Builder.VBPtrOffset,
3203 Builder.DataSize, Builder.FieldOffsets, Builder.NonVirtualSize,
3204 Builder.Alignment, Builder.Alignment, CharUnits::Zero(),
3205 Builder.PrimaryBase, false, Builder.SharedVBPtrBase,
3206 Builder.EndsWithZeroSizedObject, Builder.LeadsWithZeroSizedBase,
3207 Builder.Bases, Builder.VBases);
3208 } else {
3209 Builder.layout(D);
3210 NewEntry = new (*this) ASTRecordLayout(
3211 *this, Builder.Size, Builder.Alignment, Builder.Alignment,
3212 Builder.Alignment, Builder.RequiredAlignment, Builder.Size,
3213 Builder.FieldOffsets);
3214 }
3215 } else {
3216 if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
3217 EmptySubobjectMap EmptySubobjects(*this, RD);
3218 ItaniumRecordLayoutBuilder Builder(*this, &EmptySubobjects);
3219 Builder.Layout(RD);
3220
3221 // In certain situations, we are allowed to lay out objects in the
3222 // tail-padding of base classes. This is ABI-dependent.
3223 // FIXME: this should be stored in the record layout.
3224 bool skipTailPadding =
3225 mustSkipTailPadding(getTargetInfo().getCXXABI(), RD);
3226
3227 // FIXME: This should be done in FinalizeLayout.
3228 CharUnits DataSize =
3229 skipTailPadding ? Builder.getSize() : Builder.getDataSize();
3230 CharUnits NonVirtualSize =
3231 skipTailPadding ? DataSize : Builder.NonVirtualSize;
3232 NewEntry = new (*this) ASTRecordLayout(
3233 *this, Builder.getSize(), Builder.Alignment,
3234 Builder.PreferredAlignment, Builder.UnadjustedAlignment,
3235 /*RequiredAlignment : used by MS-ABI)*/
3236 Builder.Alignment, Builder.HasOwnVFPtr, RD->isDynamicClass(),
3237 CharUnits::fromQuantity(-1), DataSize, Builder.FieldOffsets,
3238 NonVirtualSize, Builder.NonVirtualAlignment,
3239 Builder.PreferredNVAlignment,
3240 EmptySubobjects.SizeOfLargestEmptySubobject, Builder.PrimaryBase,
3241 Builder.PrimaryBaseIsVirtual, nullptr, false, false, Builder.Bases,
3242 Builder.VBases);
3243 } else {
3244 ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
3245 Builder.Layout(D);
3246
3247 NewEntry = new (*this) ASTRecordLayout(
3248 *this, Builder.getSize(), Builder.Alignment,
3249 Builder.PreferredAlignment, Builder.UnadjustedAlignment,
3250 /*RequiredAlignment : used by MS-ABI)*/
3251 Builder.Alignment, Builder.getSize(), Builder.FieldOffsets);
3252 }
3253 }
3254
3255 ASTRecordLayouts[D] = NewEntry;
3256
3257 if (getLangOpts().DumpRecordLayouts) {
3258 llvm::outs() << "\n*** Dumping AST Record Layout\n";
3259 DumpRecordLayout(D, llvm::outs(), getLangOpts().DumpRecordLayoutsSimple);
3260 }
3261
3262 return *NewEntry;
3263 }
3264
getCurrentKeyFunction(const CXXRecordDecl * RD)3265 const CXXMethodDecl *ASTContext::getCurrentKeyFunction(const CXXRecordDecl *RD) {
3266 if (!getTargetInfo().getCXXABI().hasKeyFunctions())
3267 return nullptr;
3268
3269 assert(RD->getDefinition() && "Cannot get key function for forward decl!");
3270 RD = RD->getDefinition();
3271
3272 // Beware:
3273 // 1) computing the key function might trigger deserialization, which might
3274 // invalidate iterators into KeyFunctions
3275 // 2) 'get' on the LazyDeclPtr might also trigger deserialization and
3276 // invalidate the LazyDeclPtr within the map itself
3277 LazyDeclPtr Entry = KeyFunctions[RD];
3278 const Decl *Result =
3279 Entry ? Entry.get(getExternalSource()) : computeKeyFunction(*this, RD);
3280
3281 // Store it back if it changed.
3282 if (Entry.isOffset() || Entry.isValid() != bool(Result))
3283 KeyFunctions[RD] = const_cast<Decl*>(Result);
3284
3285 return cast_or_null<CXXMethodDecl>(Result);
3286 }
3287
setNonKeyFunction(const CXXMethodDecl * Method)3288 void ASTContext::setNonKeyFunction(const CXXMethodDecl *Method) {
3289 assert(Method == Method->getFirstDecl() &&
3290 "not working with method declaration from class definition");
3291
3292 // Look up the cache entry. Since we're working with the first
3293 // declaration, its parent must be the class definition, which is
3294 // the correct key for the KeyFunctions hash.
3295 const auto &Map = KeyFunctions;
3296 auto I = Map.find(Method->getParent());
3297
3298 // If it's not cached, there's nothing to do.
3299 if (I == Map.end()) return;
3300
3301 // If it is cached, check whether it's the target method, and if so,
3302 // remove it from the cache. Note, the call to 'get' might invalidate
3303 // the iterator and the LazyDeclPtr object within the map.
3304 LazyDeclPtr Ptr = I->second;
3305 if (Ptr.get(getExternalSource()) == Method) {
3306 // FIXME: remember that we did this for module / chained PCH state?
3307 KeyFunctions.erase(Method->getParent());
3308 }
3309 }
3310
getFieldOffset(const ASTContext & C,const FieldDecl * FD)3311 static uint64_t getFieldOffset(const ASTContext &C, const FieldDecl *FD) {
3312 const ASTRecordLayout &Layout = C.getASTRecordLayout(FD->getParent());
3313 return Layout.getFieldOffset(FD->getFieldIndex());
3314 }
3315
getFieldOffset(const ValueDecl * VD) const3316 uint64_t ASTContext::getFieldOffset(const ValueDecl *VD) const {
3317 uint64_t OffsetInBits;
3318 if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) {
3319 OffsetInBits = ::getFieldOffset(*this, FD);
3320 } else {
3321 const IndirectFieldDecl *IFD = cast<IndirectFieldDecl>(VD);
3322
3323 OffsetInBits = 0;
3324 for (const NamedDecl *ND : IFD->chain())
3325 OffsetInBits += ::getFieldOffset(*this, cast<FieldDecl>(ND));
3326 }
3327
3328 return OffsetInBits;
3329 }
3330
lookupFieldBitOffset(const ObjCInterfaceDecl * OID,const ObjCImplementationDecl * ID,const ObjCIvarDecl * Ivar) const3331 uint64_t ASTContext::lookupFieldBitOffset(const ObjCInterfaceDecl *OID,
3332 const ObjCImplementationDecl *ID,
3333 const ObjCIvarDecl *Ivar) const {
3334 const ObjCInterfaceDecl *Container = Ivar->getContainingInterface();
3335
3336 // FIXME: We should eliminate the need to have ObjCImplementationDecl passed
3337 // in here; it should never be necessary because that should be the lexical
3338 // decl context for the ivar.
3339
3340 // If we know have an implementation (and the ivar is in it) then
3341 // look up in the implementation layout.
3342 const ASTRecordLayout *RL;
3343 if (ID && declaresSameEntity(ID->getClassInterface(), Container))
3344 RL = &getASTObjCImplementationLayout(ID);
3345 else
3346 RL = &getASTObjCInterfaceLayout(Container);
3347
3348 // Compute field index.
3349 //
3350 // FIXME: The index here is closely tied to how ASTContext::getObjCLayout is
3351 // implemented. This should be fixed to get the information from the layout
3352 // directly.
3353 unsigned Index = 0;
3354
3355 for (const ObjCIvarDecl *IVD = Container->all_declared_ivar_begin();
3356 IVD; IVD = IVD->getNextIvar()) {
3357 if (Ivar == IVD)
3358 break;
3359 ++Index;
3360 }
3361 assert(Index < RL->getFieldCount() && "Ivar is not inside record layout!");
3362
3363 return RL->getFieldOffset(Index);
3364 }
3365
3366 /// getObjCLayout - Get or compute information about the layout of the
3367 /// given interface.
3368 ///
3369 /// \param Impl - If given, also include the layout of the interface's
3370 /// implementation. This may differ by including synthesized ivars.
3371 const ASTRecordLayout &
getObjCLayout(const ObjCInterfaceDecl * D,const ObjCImplementationDecl * Impl) const3372 ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
3373 const ObjCImplementationDecl *Impl) const {
3374 // Retrieve the definition
3375 if (D->hasExternalLexicalStorage() && !D->getDefinition())
3376 getExternalSource()->CompleteType(const_cast<ObjCInterfaceDecl*>(D));
3377 D = D->getDefinition();
3378 assert(D && !D->isInvalidDecl() && D->isThisDeclarationADefinition() &&
3379 "Invalid interface decl!");
3380
3381 // Look up this layout, if already laid out, return what we have.
3382 const ObjCContainerDecl *Key =
3383 Impl ? (const ObjCContainerDecl*) Impl : (const ObjCContainerDecl*) D;
3384 if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
3385 return *Entry;
3386
3387 // Add in synthesized ivar count if laying out an implementation.
3388 if (Impl) {
3389 unsigned SynthCount = CountNonClassIvars(D);
3390 // If there aren't any synthesized ivars then reuse the interface
3391 // entry. Note we can't cache this because we simply free all
3392 // entries later; however we shouldn't look up implementations
3393 // frequently.
3394 if (SynthCount == 0)
3395 return getObjCLayout(D, nullptr);
3396 }
3397
3398 ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
3399 Builder.Layout(D);
3400
3401 const ASTRecordLayout *NewEntry = new (*this) ASTRecordLayout(
3402 *this, Builder.getSize(), Builder.Alignment, Builder.PreferredAlignment,
3403 Builder.UnadjustedAlignment,
3404 /*RequiredAlignment : used by MS-ABI)*/
3405 Builder.Alignment, Builder.getDataSize(), Builder.FieldOffsets);
3406
3407 ObjCLayouts[Key] = NewEntry;
3408
3409 return *NewEntry;
3410 }
3411
PrintOffset(raw_ostream & OS,CharUnits Offset,unsigned IndentLevel)3412 static void PrintOffset(raw_ostream &OS,
3413 CharUnits Offset, unsigned IndentLevel) {
3414 OS << llvm::format("%10" PRId64 " | ", (int64_t)Offset.getQuantity());
3415 OS.indent(IndentLevel * 2);
3416 }
3417
PrintBitFieldOffset(raw_ostream & OS,CharUnits Offset,unsigned Begin,unsigned Width,unsigned IndentLevel)3418 static void PrintBitFieldOffset(raw_ostream &OS, CharUnits Offset,
3419 unsigned Begin, unsigned Width,
3420 unsigned IndentLevel) {
3421 llvm::SmallString<10> Buffer;
3422 {
3423 llvm::raw_svector_ostream BufferOS(Buffer);
3424 BufferOS << Offset.getQuantity() << ':';
3425 if (Width == 0) {
3426 BufferOS << '-';
3427 } else {
3428 BufferOS << Begin << '-' << (Begin + Width - 1);
3429 }
3430 }
3431
3432 OS << llvm::right_justify(Buffer, 10) << " | ";
3433 OS.indent(IndentLevel * 2);
3434 }
3435
PrintIndentNoOffset(raw_ostream & OS,unsigned IndentLevel)3436 static void PrintIndentNoOffset(raw_ostream &OS, unsigned IndentLevel) {
3437 OS << " | ";
3438 OS.indent(IndentLevel * 2);
3439 }
3440
DumpRecordLayout(raw_ostream & OS,const RecordDecl * RD,const ASTContext & C,CharUnits Offset,unsigned IndentLevel,const char * Description,bool PrintSizeInfo,bool IncludeVirtualBases)3441 static void DumpRecordLayout(raw_ostream &OS, const RecordDecl *RD,
3442 const ASTContext &C,
3443 CharUnits Offset,
3444 unsigned IndentLevel,
3445 const char* Description,
3446 bool PrintSizeInfo,
3447 bool IncludeVirtualBases) {
3448 const ASTRecordLayout &Layout = C.getASTRecordLayout(RD);
3449 auto CXXRD = dyn_cast<CXXRecordDecl>(RD);
3450
3451 PrintOffset(OS, Offset, IndentLevel);
3452 OS << C.getTypeDeclType(const_cast<RecordDecl*>(RD)).getAsString();
3453 if (Description)
3454 OS << ' ' << Description;
3455 if (CXXRD && CXXRD->isEmpty())
3456 OS << " (empty)";
3457 OS << '\n';
3458
3459 IndentLevel++;
3460
3461 // Dump bases.
3462 if (CXXRD) {
3463 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
3464 bool HasOwnVFPtr = Layout.hasOwnVFPtr();
3465 bool HasOwnVBPtr = Layout.hasOwnVBPtr();
3466
3467 // Vtable pointer.
3468 if (CXXRD->isDynamicClass() && !PrimaryBase && !isMsLayout(C)) {
3469 PrintOffset(OS, Offset, IndentLevel);
3470 OS << '(' << *RD << " vtable pointer)\n";
3471 } else if (HasOwnVFPtr) {
3472 PrintOffset(OS, Offset, IndentLevel);
3473 // vfptr (for Microsoft C++ ABI)
3474 OS << '(' << *RD << " vftable pointer)\n";
3475 }
3476
3477 // Collect nvbases.
3478 SmallVector<const CXXRecordDecl *, 4> Bases;
3479 for (const CXXBaseSpecifier &Base : CXXRD->bases()) {
3480 assert(!Base.getType()->isDependentType() &&
3481 "Cannot layout class with dependent bases.");
3482 if (!Base.isVirtual())
3483 Bases.push_back(Base.getType()->getAsCXXRecordDecl());
3484 }
3485
3486 // Sort nvbases by offset.
3487 llvm::stable_sort(
3488 Bases, [&](const CXXRecordDecl *L, const CXXRecordDecl *R) {
3489 return Layout.getBaseClassOffset(L) < Layout.getBaseClassOffset(R);
3490 });
3491
3492 // Dump (non-virtual) bases
3493 for (const CXXRecordDecl *Base : Bases) {
3494 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base);
3495 DumpRecordLayout(OS, Base, C, BaseOffset, IndentLevel,
3496 Base == PrimaryBase ? "(primary base)" : "(base)",
3497 /*PrintSizeInfo=*/false,
3498 /*IncludeVirtualBases=*/false);
3499 }
3500
3501 // vbptr (for Microsoft C++ ABI)
3502 if (HasOwnVBPtr) {
3503 PrintOffset(OS, Offset + Layout.getVBPtrOffset(), IndentLevel);
3504 OS << '(' << *RD << " vbtable pointer)\n";
3505 }
3506 }
3507
3508 // Dump fields.
3509 uint64_t FieldNo = 0;
3510 for (RecordDecl::field_iterator I = RD->field_begin(),
3511 E = RD->field_end(); I != E; ++I, ++FieldNo) {
3512 const FieldDecl &Field = **I;
3513 uint64_t LocalFieldOffsetInBits = Layout.getFieldOffset(FieldNo);
3514 CharUnits FieldOffset =
3515 Offset + C.toCharUnitsFromBits(LocalFieldOffsetInBits);
3516
3517 // Recursively dump fields of record type.
3518 if (auto RT = Field.getType()->getAs<RecordType>()) {
3519 DumpRecordLayout(OS, RT->getDecl(), C, FieldOffset, IndentLevel,
3520 Field.getName().data(),
3521 /*PrintSizeInfo=*/false,
3522 /*IncludeVirtualBases=*/true);
3523 continue;
3524 }
3525
3526 if (Field.isBitField()) {
3527 uint64_t LocalFieldByteOffsetInBits = C.toBits(FieldOffset - Offset);
3528 unsigned Begin = LocalFieldOffsetInBits - LocalFieldByteOffsetInBits;
3529 unsigned Width = Field.getBitWidthValue(C);
3530 PrintBitFieldOffset(OS, FieldOffset, Begin, Width, IndentLevel);
3531 } else {
3532 PrintOffset(OS, FieldOffset, IndentLevel);
3533 }
3534 OS << Field.getType().getAsString() << ' ' << Field << '\n';
3535 }
3536
3537 // Dump virtual bases.
3538 if (CXXRD && IncludeVirtualBases) {
3539 const ASTRecordLayout::VBaseOffsetsMapTy &VtorDisps =
3540 Layout.getVBaseOffsetsMap();
3541
3542 for (const CXXBaseSpecifier &Base : CXXRD->vbases()) {
3543 assert(Base.isVirtual() && "Found non-virtual class!");
3544 const CXXRecordDecl *VBase = Base.getType()->getAsCXXRecordDecl();
3545
3546 CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBase);
3547
3548 if (VtorDisps.find(VBase)->second.hasVtorDisp()) {
3549 PrintOffset(OS, VBaseOffset - CharUnits::fromQuantity(4), IndentLevel);
3550 OS << "(vtordisp for vbase " << *VBase << ")\n";
3551 }
3552
3553 DumpRecordLayout(OS, VBase, C, VBaseOffset, IndentLevel,
3554 VBase == Layout.getPrimaryBase() ?
3555 "(primary virtual base)" : "(virtual base)",
3556 /*PrintSizeInfo=*/false,
3557 /*IncludeVirtualBases=*/false);
3558 }
3559 }
3560
3561 if (!PrintSizeInfo) return;
3562
3563 PrintIndentNoOffset(OS, IndentLevel - 1);
3564 OS << "[sizeof=" << Layout.getSize().getQuantity();
3565 if (CXXRD && !isMsLayout(C))
3566 OS << ", dsize=" << Layout.getDataSize().getQuantity();
3567 OS << ", align=" << Layout.getAlignment().getQuantity();
3568 if (C.getTargetInfo().defaultsToAIXPowerAlignment())
3569 OS << ", preferredalign=" << Layout.getPreferredAlignment().getQuantity();
3570
3571 if (CXXRD) {
3572 OS << ",\n";
3573 PrintIndentNoOffset(OS, IndentLevel - 1);
3574 OS << " nvsize=" << Layout.getNonVirtualSize().getQuantity();
3575 OS << ", nvalign=" << Layout.getNonVirtualAlignment().getQuantity();
3576 if (C.getTargetInfo().defaultsToAIXPowerAlignment())
3577 OS << ", preferrednvalign="
3578 << Layout.getPreferredNVAlignment().getQuantity();
3579 }
3580 OS << "]\n";
3581 }
3582
DumpRecordLayout(const RecordDecl * RD,raw_ostream & OS,bool Simple) const3583 void ASTContext::DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS,
3584 bool Simple) const {
3585 if (!Simple) {
3586 ::DumpRecordLayout(OS, RD, *this, CharUnits(), 0, nullptr,
3587 /*PrintSizeInfo*/ true,
3588 /*IncludeVirtualBases=*/true);
3589 return;
3590 }
3591
3592 // The "simple" format is designed to be parsed by the
3593 // layout-override testing code. There shouldn't be any external
3594 // uses of this format --- when LLDB overrides a layout, it sets up
3595 // the data structures directly --- so feel free to adjust this as
3596 // you like as long as you also update the rudimentary parser for it
3597 // in libFrontend.
3598
3599 const ASTRecordLayout &Info = getASTRecordLayout(RD);
3600 OS << "Type: " << getTypeDeclType(RD).getAsString() << "\n";
3601 OS << "\nLayout: ";
3602 OS << "<ASTRecordLayout\n";
3603 OS << " Size:" << toBits(Info.getSize()) << "\n";
3604 if (!isMsLayout(*this))
3605 OS << " DataSize:" << toBits(Info.getDataSize()) << "\n";
3606 OS << " Alignment:" << toBits(Info.getAlignment()) << "\n";
3607 if (Target->defaultsToAIXPowerAlignment())
3608 OS << " PreferredAlignment:" << toBits(Info.getPreferredAlignment())
3609 << "\n";
3610 OS << " FieldOffsets: [";
3611 for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) {
3612 if (i)
3613 OS << ", ";
3614 OS << Info.getFieldOffset(i);
3615 }
3616 OS << "]>\n";
3617 }
3618