• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2019 Valve Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Rhys Perry (pendingchaos02@gmail.com)
25  *
26  */
27 
28 #include <map>
29 
30 #include "aco_ir.h"
31 #include "aco_builder.h"
32 #include <algorithm>
33 
34 
35 namespace aco {
36 
37 struct ssa_state {
38    bool checked_preds_for_uniform;
39    bool all_preds_uniform;
40 
41    bool needs_init;
42    uint64_t cur_undef_operands;
43 
44    unsigned phi_block_idx;
45    unsigned loop_nest_depth;
46    std::map<unsigned, unsigned> writes;
47    std::vector<Operand> latest;
48    std::vector<bool> visited;
49 };
50 
get_ssa(Program * program,unsigned block_idx,ssa_state * state,bool before_write)51 Operand get_ssa(Program *program, unsigned block_idx, ssa_state *state, bool before_write)
52 {
53    if (!before_write) {
54       auto it = state->writes.find(block_idx);
55       if (it != state->writes.end())
56          return Operand(Temp(it->second, program->lane_mask));
57       if (state->visited[block_idx])
58          return state->latest[block_idx];
59    }
60 
61    state->visited[block_idx] = true;
62 
63    Block& block = program->blocks[block_idx];
64    size_t pred = block.linear_preds.size();
65    if (pred == 0 || block.loop_nest_depth < state->loop_nest_depth) {
66       return Operand(program->lane_mask);
67    } else if (block.loop_nest_depth > state->loop_nest_depth) {
68       Operand op = get_ssa(program, block_idx - 1, state, false);
69       state->latest[block_idx] = op;
70       return op;
71    } else if (pred == 1 || block.kind & block_kind_loop_exit) {
72       Operand op = get_ssa(program, block.linear_preds[0], state, false);
73       state->latest[block_idx] = op;
74       return op;
75    } else if (block.kind & block_kind_loop_header &&
76               !(program->blocks[state->phi_block_idx].kind & block_kind_loop_exit)) {
77       return Operand(program->lane_mask);
78    } else {
79       Temp res = Temp(program->allocateTmp(program->lane_mask));
80       state->latest[block_idx] = Operand(res);
81 
82       Operand *const ops = (Operand *)alloca(pred * sizeof(Operand));
83       for (unsigned i = 0; i < pred; i++)
84          ops[i] = get_ssa(program, block.linear_preds[i], state, false);
85 
86       bool all_undef = true;
87       for (unsigned i = 0; i < pred; i++)
88          all_undef = all_undef && ops[i].isUndefined();
89       if (all_undef) {
90          state->latest[block_idx] = ops[0];
91          return ops[0];
92       }
93 
94       aco_ptr<Pseudo_instruction> phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, pred, 1)};
95       for (unsigned i = 0; i < pred; i++)
96          phi->operands[i] = ops[i];
97       phi->definitions[0] = Definition(res);
98       block.instructions.emplace(block.instructions.begin(), std::move(phi));
99 
100       return Operand(res);
101    }
102 }
103 
insert_before_logical_end(Block * block,aco_ptr<Instruction> instr)104 void insert_before_logical_end(Block *block, aco_ptr<Instruction> instr)
105 {
106    auto IsLogicalEnd = [] (const aco_ptr<Instruction>& instr) -> bool {
107       return instr->opcode == aco_opcode::p_logical_end;
108    };
109    auto it = std::find_if(block->instructions.crbegin(), block->instructions.crend(), IsLogicalEnd);
110 
111    if (it == block->instructions.crend()) {
112       assert(block->instructions.back()->format == Format::PSEUDO_BRANCH);
113       block->instructions.insert(std::prev(block->instructions.end()), std::move(instr));
114    } else {
115       block->instructions.insert(std::prev(it.base()), std::move(instr));
116    }
117 }
118 
build_merge_code(Program * program,Block * block,Definition dst,Operand prev,Operand cur)119 void build_merge_code(Program *program, Block *block, Definition dst, Operand prev, Operand cur)
120 {
121    Builder bld(program);
122 
123    auto IsLogicalEnd = [] (const aco_ptr<Instruction>& instr) -> bool {
124       return instr->opcode == aco_opcode::p_logical_end;
125    };
126    auto it = std::find_if(block->instructions.rbegin(), block->instructions.rend(), IsLogicalEnd);
127    assert(it != block->instructions.rend());
128    bld.reset(&block->instructions, std::prev(it.base()));
129 
130    if (prev.isUndefined()) {
131       bld.copy(dst, cur);
132       return;
133    }
134 
135    bool prev_is_constant = prev.isConstant() && prev.constantValue64(true) + 1u < 2u;
136    bool cur_is_constant = cur.isConstant() && cur.constantValue64(true) + 1u < 2u;
137 
138    if (!prev_is_constant) {
139       if (!cur_is_constant) {
140          Temp tmp1 = bld.tmp(bld.lm), tmp2 = bld.tmp(bld.lm);
141          bld.sop2(Builder::s_andn2, Definition(tmp1), bld.def(s1, scc), prev, Operand(exec, bld.lm));
142          bld.sop2(Builder::s_and, Definition(tmp2), bld.def(s1, scc), cur, Operand(exec, bld.lm));
143          bld.sop2(Builder::s_or, dst, bld.def(s1, scc), tmp1, tmp2);
144       } else if (cur.constantValue64(true)) {
145          bld.sop2(Builder::s_or, dst, bld.def(s1, scc), prev, Operand(exec, bld.lm));
146       } else {
147          bld.sop2(Builder::s_andn2, dst, bld.def(s1, scc), prev, Operand(exec, bld.lm));
148       }
149    } else if (prev.constantValue64(true)) {
150       if (!cur_is_constant)
151          bld.sop2(Builder::s_orn2, dst, bld.def(s1, scc), cur, Operand(exec, bld.lm));
152       else if (cur.constantValue64(true))
153          bld.copy(dst, Operand(UINT32_MAX, bld.lm == s2));
154       else
155          bld.sop1(Builder::s_not, dst, bld.def(s1, scc), Operand(exec, bld.lm));
156    } else {
157       if (!cur_is_constant)
158          bld.sop2(Builder::s_and, dst, bld.def(s1, scc), cur, Operand(exec, bld.lm));
159       else if (cur.constantValue64(true))
160          bld.copy(dst, Operand(exec, bld.lm));
161       else
162          bld.copy(dst, Operand(0u, bld.lm == s2));
163    }
164 }
165 
lower_divergent_bool_phi(Program * program,ssa_state * state,Block * block,aco_ptr<Instruction> & phi)166 void lower_divergent_bool_phi(Program *program, ssa_state *state, Block *block, aco_ptr<Instruction>& phi)
167 {
168    Builder bld(program);
169 
170    if (!state->checked_preds_for_uniform) {
171       state->all_preds_uniform = !(block->kind & block_kind_merge);
172       for (unsigned pred : block->logical_preds)
173          state->all_preds_uniform = state->all_preds_uniform && (program->blocks[pred].kind & block_kind_uniform);
174       state->checked_preds_for_uniform = true;
175    }
176 
177    if (state->all_preds_uniform) {
178       assert(block->logical_preds.size() == block->linear_preds.size());
179       phi->opcode = aco_opcode::p_linear_phi;
180       return;
181    }
182 
183    state->latest.resize(program->blocks.size());
184    state->visited.resize(program->blocks.size());
185 
186    uint64_t undef_operands = 0;
187    for (unsigned i = 0; i < phi->operands.size(); i++)
188       undef_operands |= phi->operands[i].isUndefined() << i;
189 
190    if (state->needs_init || undef_operands != state->cur_undef_operands ||
191        block->logical_preds.size() > 64) {
192       /* this only has to be done once per block unless the set of predecessors
193        * which are undefined changes */
194       state->cur_undef_operands = undef_operands;
195       state->phi_block_idx = block->index;
196       state->loop_nest_depth = block->loop_nest_depth;
197       if (block->kind & block_kind_loop_exit) {
198          state->loop_nest_depth += 1;
199       }
200       state->writes.clear();
201       state->needs_init = false;
202    }
203    std::fill(state->latest.begin(), state->latest.end(), Operand(program->lane_mask));
204    std::fill(state->visited.begin(), state->visited.end(), false);
205 
206    for (unsigned i = 0; i < phi->operands.size(); i++) {
207       if (phi->operands[i].isUndefined())
208          continue;
209 
210       state->writes[block->logical_preds[i]] = program->allocateId(program->lane_mask);
211    }
212 
213    bool uniform_merge = block->kind & block_kind_loop_header;
214 
215    for (unsigned i = 0; i < phi->operands.size(); i++) {
216       Block *pred = &program->blocks[block->logical_preds[i]];
217 
218       bool need_get_ssa = !uniform_merge;
219       if (block->kind & block_kind_loop_header && !(pred->kind & block_kind_uniform))
220          uniform_merge = false;
221 
222       if (phi->operands[i].isUndefined())
223          continue;
224 
225       Operand cur(bld.lm);
226       if (need_get_ssa)
227          cur = get_ssa(program, pred->index, state, true);
228       assert(cur.regClass() == bld.lm);
229 
230       Temp new_cur = {state->writes.at(pred->index), program->lane_mask};
231       assert(new_cur.regClass() == bld.lm);
232 
233       if (i == 1 && (block->kind & block_kind_merge) && phi->operands[0].isConstant())
234          cur = phi->operands[0];
235       build_merge_code(program, pred, Definition(new_cur), cur, phi->operands[i]);
236    }
237 
238    unsigned num_preds = block->linear_preds.size();
239    if (phi->operands.size() != num_preds) {
240       Pseudo_instruction* new_phi{create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi, Format::PSEUDO, num_preds, 1)};
241       new_phi->definitions[0] = phi->definitions[0];
242       phi.reset(new_phi);
243    } else {
244       phi->opcode = aco_opcode::p_linear_phi;
245    }
246    assert(phi->operands.size() == num_preds);
247 
248    for (unsigned i = 0; i < num_preds; i++)
249       phi->operands[i] = get_ssa(program, block->linear_preds[i], state, false);
250 
251    return;
252 }
253 
lower_subdword_phis(Program * program,Block * block,aco_ptr<Instruction> & phi)254 void lower_subdword_phis(Program *program, Block *block, aco_ptr<Instruction>& phi)
255 {
256    Builder bld(program);
257    for (unsigned i = 0; i < phi->operands.size(); i++) {
258       if (phi->operands[i].isUndefined())
259          continue;
260       if (phi->operands[i].regClass() == phi->definitions[0].regClass())
261          continue;
262 
263       assert(phi->operands[i].isTemp());
264       Block *pred = &program->blocks[block->logical_preds[i]];
265       Temp phi_src = phi->operands[i].getTemp();
266 
267       assert(phi_src.regClass().type() == RegType::sgpr);
268       Temp tmp = bld.tmp(RegClass(RegType::vgpr, phi_src.size()));
269       insert_before_logical_end(pred, bld.copy(Definition(tmp), phi_src).get_ptr());
270       Temp new_phi_src = bld.tmp(phi->definitions[0].regClass());
271       insert_before_logical_end(pred, bld.pseudo(aco_opcode::p_extract_vector, Definition(new_phi_src), tmp, Operand(0u)).get_ptr());
272 
273       phi->operands[i].setTemp(new_phi_src);
274    }
275    return;
276 }
277 
lower_phis(Program * program)278 void lower_phis(Program* program)
279 {
280    ssa_state state;
281 
282    for (Block& block : program->blocks) {
283       state.checked_preds_for_uniform = false;
284       state.needs_init = true;
285       for (aco_ptr<Instruction>& phi : block.instructions) {
286          if (phi->opcode == aco_opcode::p_phi) {
287             assert(program->wave_size == 64 ? phi->definitions[0].regClass() != s1 : phi->definitions[0].regClass() != s2);
288             if (phi->definitions[0].regClass() == program->lane_mask)
289                lower_divergent_bool_phi(program, &state, &block, phi);
290             else if (phi->definitions[0].regClass().is_subdword())
291                lower_subdword_phis(program, &block, phi);
292          } else if (!is_phi(phi)) {
293             break;
294          }
295       }
296    }
297 }
298 
299 }
300