• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides a simple and efficient mechanism for performing general
10 // tree-based pattern matches on the LLVM IR. The power of these routines is
11 // that it allows you to write concise patterns that are expressive and easy to
12 // understand. The other major advantage of this is that it allows you to
13 // trivially capture/bind elements in the pattern to variables. For example,
14 // you can do something like this:
15 //
16 //  Value *Exp = ...
17 //  Value *X, *Y;  ConstantInt *C1, *C2;      // (X & C1) | (Y & C2)
18 //  if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)),
19 //                      m_And(m_Value(Y), m_ConstantInt(C2))))) {
20 //    ... Pattern is matched and variables are bound ...
21 //  }
22 //
23 // This is primarily useful to things like the instruction combiner, but can
24 // also be useful for static analysis tools or code generators.
25 //
26 //===----------------------------------------------------------------------===//
27 
28 #ifndef LLVM_IR_PATTERNMATCH_H
29 #define LLVM_IR_PATTERNMATCH_H
30 
31 #include "llvm/ADT/APFloat.h"
32 #include "llvm/ADT/APInt.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/InstrTypes.h"
37 #include "llvm/IR/Instruction.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/Operator.h"
42 #include "llvm/IR/Value.h"
43 #include "llvm/Support/Casting.h"
44 #include <cstdint>
45 
46 namespace llvm {
47 namespace PatternMatch {
48 
match(Val * V,const Pattern & P)49 template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) {
50   return const_cast<Pattern &>(P).match(V);
51 }
52 
match(ArrayRef<int> Mask,const Pattern & P)53 template <typename Pattern> bool match(ArrayRef<int> Mask, const Pattern &P) {
54   return const_cast<Pattern &>(P).match(Mask);
55 }
56 
57 template <typename SubPattern_t> struct OneUse_match {
58   SubPattern_t SubPattern;
59 
OneUse_matchOneUse_match60   OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {}
61 
matchOneUse_match62   template <typename OpTy> bool match(OpTy *V) {
63     return V->hasOneUse() && SubPattern.match(V);
64   }
65 };
66 
m_OneUse(const T & SubPattern)67 template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) {
68   return SubPattern;
69 }
70 
71 template <typename Class> struct class_match {
matchclass_match72   template <typename ITy> bool match(ITy *V) { return isa<Class>(V); }
73 };
74 
75 /// Match an arbitrary value and ignore it.
m_Value()76 inline class_match<Value> m_Value() { return class_match<Value>(); }
77 
78 /// Match an arbitrary unary operation and ignore it.
m_UnOp()79 inline class_match<UnaryOperator> m_UnOp() {
80   return class_match<UnaryOperator>();
81 }
82 
83 /// Match an arbitrary binary operation and ignore it.
m_BinOp()84 inline class_match<BinaryOperator> m_BinOp() {
85   return class_match<BinaryOperator>();
86 }
87 
88 /// Matches any compare instruction and ignore it.
m_Cmp()89 inline class_match<CmpInst> m_Cmp() { return class_match<CmpInst>(); }
90 
91 /// Match an arbitrary ConstantInt and ignore it.
m_ConstantInt()92 inline class_match<ConstantInt> m_ConstantInt() {
93   return class_match<ConstantInt>();
94 }
95 
96 /// Match an arbitrary undef constant.
m_Undef()97 inline class_match<UndefValue> m_Undef() { return class_match<UndefValue>(); }
98 
99 /// Match an arbitrary poison constant.
m_Poison()100 inline class_match<PoisonValue> m_Poison() { return class_match<PoisonValue>(); }
101 
102 /// Match an arbitrary Constant and ignore it.
m_Constant()103 inline class_match<Constant> m_Constant() { return class_match<Constant>(); }
104 
105 /// Match an arbitrary basic block value and ignore it.
m_BasicBlock()106 inline class_match<BasicBlock> m_BasicBlock() {
107   return class_match<BasicBlock>();
108 }
109 
110 /// Inverting matcher
111 template <typename Ty> struct match_unless {
112   Ty M;
113 
match_unlessmatch_unless114   match_unless(const Ty &Matcher) : M(Matcher) {}
115 
matchmatch_unless116   template <typename ITy> bool match(ITy *V) { return !M.match(V); }
117 };
118 
119 /// Match if the inner matcher does *NOT* match.
m_Unless(const Ty & M)120 template <typename Ty> inline match_unless<Ty> m_Unless(const Ty &M) {
121   return match_unless<Ty>(M);
122 }
123 
124 /// Matching combinators
125 template <typename LTy, typename RTy> struct match_combine_or {
126   LTy L;
127   RTy R;
128 
match_combine_ormatch_combine_or129   match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
130 
matchmatch_combine_or131   template <typename ITy> bool match(ITy *V) {
132     if (L.match(V))
133       return true;
134     if (R.match(V))
135       return true;
136     return false;
137   }
138 };
139 
140 template <typename LTy, typename RTy> struct match_combine_and {
141   LTy L;
142   RTy R;
143 
match_combine_andmatch_combine_and144   match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
145 
matchmatch_combine_and146   template <typename ITy> bool match(ITy *V) {
147     if (L.match(V))
148       if (R.match(V))
149         return true;
150     return false;
151   }
152 };
153 
154 /// Combine two pattern matchers matching L || R
155 template <typename LTy, typename RTy>
m_CombineOr(const LTy & L,const RTy & R)156 inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
157   return match_combine_or<LTy, RTy>(L, R);
158 }
159 
160 /// Combine two pattern matchers matching L && R
161 template <typename LTy, typename RTy>
m_CombineAnd(const LTy & L,const RTy & R)162 inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) {
163   return match_combine_and<LTy, RTy>(L, R);
164 }
165 
166 struct apint_match {
167   const APInt *&Res;
168   bool AllowUndef;
169 
apint_matchapint_match170   apint_match(const APInt *&Res, bool AllowUndef)
171     : Res(Res), AllowUndef(AllowUndef) {}
172 
matchapint_match173   template <typename ITy> bool match(ITy *V) {
174     if (auto *CI = dyn_cast<ConstantInt>(V)) {
175       Res = &CI->getValue();
176       return true;
177     }
178     if (V->getType()->isVectorTy())
179       if (const auto *C = dyn_cast<Constant>(V))
180         if (auto *CI = dyn_cast_or_null<ConstantInt>(
181                 C->getSplatValue(AllowUndef))) {
182           Res = &CI->getValue();
183           return true;
184         }
185     return false;
186   }
187 };
188 // Either constexpr if or renaming ConstantFP::getValueAPF to
189 // ConstantFP::getValue is needed to do it via single template
190 // function for both apint/apfloat.
191 struct apfloat_match {
192   const APFloat *&Res;
193   bool AllowUndef;
194 
apfloat_matchapfloat_match195   apfloat_match(const APFloat *&Res, bool AllowUndef)
196       : Res(Res), AllowUndef(AllowUndef) {}
197 
matchapfloat_match198   template <typename ITy> bool match(ITy *V) {
199     if (auto *CI = dyn_cast<ConstantFP>(V)) {
200       Res = &CI->getValueAPF();
201       return true;
202     }
203     if (V->getType()->isVectorTy())
204       if (const auto *C = dyn_cast<Constant>(V))
205         if (auto *CI = dyn_cast_or_null<ConstantFP>(
206                 C->getSplatValue(AllowUndef))) {
207           Res = &CI->getValueAPF();
208           return true;
209         }
210     return false;
211   }
212 };
213 
214 /// Match a ConstantInt or splatted ConstantVector, binding the
215 /// specified pointer to the contained APInt.
m_APInt(const APInt * & Res)216 inline apint_match m_APInt(const APInt *&Res) {
217   // Forbid undefs by default to maintain previous behavior.
218   return apint_match(Res, /* AllowUndef */ false);
219 }
220 
221 /// Match APInt while allowing undefs in splat vector constants.
m_APIntAllowUndef(const APInt * & Res)222 inline apint_match m_APIntAllowUndef(const APInt *&Res) {
223   return apint_match(Res, /* AllowUndef */ true);
224 }
225 
226 /// Match APInt while forbidding undefs in splat vector constants.
m_APIntForbidUndef(const APInt * & Res)227 inline apint_match m_APIntForbidUndef(const APInt *&Res) {
228   return apint_match(Res, /* AllowUndef */ false);
229 }
230 
231 /// Match a ConstantFP or splatted ConstantVector, binding the
232 /// specified pointer to the contained APFloat.
m_APFloat(const APFloat * & Res)233 inline apfloat_match m_APFloat(const APFloat *&Res) {
234   // Forbid undefs by default to maintain previous behavior.
235   return apfloat_match(Res, /* AllowUndef */ false);
236 }
237 
238 /// Match APFloat while allowing undefs in splat vector constants.
m_APFloatAllowUndef(const APFloat * & Res)239 inline apfloat_match m_APFloatAllowUndef(const APFloat *&Res) {
240   return apfloat_match(Res, /* AllowUndef */ true);
241 }
242 
243 /// Match APFloat while forbidding undefs in splat vector constants.
m_APFloatForbidUndef(const APFloat * & Res)244 inline apfloat_match m_APFloatForbidUndef(const APFloat *&Res) {
245   return apfloat_match(Res, /* AllowUndef */ false);
246 }
247 
248 template <int64_t Val> struct constantint_match {
matchconstantint_match249   template <typename ITy> bool match(ITy *V) {
250     if (const auto *CI = dyn_cast<ConstantInt>(V)) {
251       const APInt &CIV = CI->getValue();
252       if (Val >= 0)
253         return CIV == static_cast<uint64_t>(Val);
254       // If Val is negative, and CI is shorter than it, truncate to the right
255       // number of bits.  If it is larger, then we have to sign extend.  Just
256       // compare their negated values.
257       return -CIV == -Val;
258     }
259     return false;
260   }
261 };
262 
263 /// Match a ConstantInt with a specific value.
m_ConstantInt()264 template <int64_t Val> inline constantint_match<Val> m_ConstantInt() {
265   return constantint_match<Val>();
266 }
267 
268 /// This helper class is used to match constant scalars, vector splats,
269 /// and fixed width vectors that satisfy a specified predicate.
270 /// For fixed width vector constants, undefined elements are ignored.
271 template <typename Predicate, typename ConstantVal>
272 struct cstval_pred_ty : public Predicate {
matchcstval_pred_ty273   template <typename ITy> bool match(ITy *V) {
274     if (const auto *CV = dyn_cast<ConstantVal>(V))
275       return this->isValue(CV->getValue());
276     if (const auto *VTy = dyn_cast<VectorType>(V->getType())) {
277       if (const auto *C = dyn_cast<Constant>(V)) {
278         if (const auto *CV = dyn_cast_or_null<ConstantVal>(C->getSplatValue()))
279           return this->isValue(CV->getValue());
280 
281         // Number of elements of a scalable vector unknown at compile time
282         auto *FVTy = dyn_cast<FixedVectorType>(VTy);
283         if (!FVTy)
284           return false;
285 
286         // Non-splat vector constant: check each element for a match.
287         unsigned NumElts = FVTy->getNumElements();
288         assert(NumElts != 0 && "Constant vector with no elements?");
289         bool HasNonUndefElements = false;
290         for (unsigned i = 0; i != NumElts; ++i) {
291           Constant *Elt = C->getAggregateElement(i);
292           if (!Elt)
293             return false;
294           if (isa<UndefValue>(Elt))
295             continue;
296           auto *CV = dyn_cast<ConstantVal>(Elt);
297           if (!CV || !this->isValue(CV->getValue()))
298             return false;
299           HasNonUndefElements = true;
300         }
301         return HasNonUndefElements;
302       }
303     }
304     return false;
305   }
306 };
307 
308 /// specialization of cstval_pred_ty for ConstantInt
309 template <typename Predicate>
310 using cst_pred_ty = cstval_pred_ty<Predicate, ConstantInt>;
311 
312 /// specialization of cstval_pred_ty for ConstantFP
313 template <typename Predicate>
314 using cstfp_pred_ty = cstval_pred_ty<Predicate, ConstantFP>;
315 
316 /// This helper class is used to match scalar and vector constants that
317 /// satisfy a specified predicate, and bind them to an APInt.
318 template <typename Predicate> struct api_pred_ty : public Predicate {
319   const APInt *&Res;
320 
api_pred_tyapi_pred_ty321   api_pred_ty(const APInt *&R) : Res(R) {}
322 
matchapi_pred_ty323   template <typename ITy> bool match(ITy *V) {
324     if (const auto *CI = dyn_cast<ConstantInt>(V))
325       if (this->isValue(CI->getValue())) {
326         Res = &CI->getValue();
327         return true;
328       }
329     if (V->getType()->isVectorTy())
330       if (const auto *C = dyn_cast<Constant>(V))
331         if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
332           if (this->isValue(CI->getValue())) {
333             Res = &CI->getValue();
334             return true;
335           }
336 
337     return false;
338   }
339 };
340 
341 /// This helper class is used to match scalar and vector constants that
342 /// satisfy a specified predicate, and bind them to an APFloat.
343 /// Undefs are allowed in splat vector constants.
344 template <typename Predicate> struct apf_pred_ty : public Predicate {
345   const APFloat *&Res;
346 
apf_pred_tyapf_pred_ty347   apf_pred_ty(const APFloat *&R) : Res(R) {}
348 
matchapf_pred_ty349   template <typename ITy> bool match(ITy *V) {
350     if (const auto *CI = dyn_cast<ConstantFP>(V))
351       if (this->isValue(CI->getValue())) {
352         Res = &CI->getValue();
353         return true;
354       }
355     if (V->getType()->isVectorTy())
356       if (const auto *C = dyn_cast<Constant>(V))
357         if (auto *CI = dyn_cast_or_null<ConstantFP>(
358                 C->getSplatValue(/* AllowUndef */ true)))
359           if (this->isValue(CI->getValue())) {
360             Res = &CI->getValue();
361             return true;
362           }
363 
364     return false;
365   }
366 };
367 
368 ///////////////////////////////////////////////////////////////////////////////
369 //
370 // Encapsulate constant value queries for use in templated predicate matchers.
371 // This allows checking if constants match using compound predicates and works
372 // with vector constants, possibly with relaxed constraints. For example, ignore
373 // undef values.
374 //
375 ///////////////////////////////////////////////////////////////////////////////
376 
377 struct is_any_apint {
isValueis_any_apint378   bool isValue(const APInt &C) { return true; }
379 };
380 /// Match an integer or vector with any integral constant.
381 /// For vectors, this includes constants with undefined elements.
m_AnyIntegralConstant()382 inline cst_pred_ty<is_any_apint> m_AnyIntegralConstant() {
383   return cst_pred_ty<is_any_apint>();
384 }
385 
386 struct is_all_ones {
isValueis_all_ones387   bool isValue(const APInt &C) { return C.isAllOnesValue(); }
388 };
389 /// Match an integer or vector with all bits set.
390 /// For vectors, this includes constants with undefined elements.
m_AllOnes()391 inline cst_pred_ty<is_all_ones> m_AllOnes() {
392   return cst_pred_ty<is_all_ones>();
393 }
394 
395 struct is_maxsignedvalue {
isValueis_maxsignedvalue396   bool isValue(const APInt &C) { return C.isMaxSignedValue(); }
397 };
398 /// Match an integer or vector with values having all bits except for the high
399 /// bit set (0x7f...).
400 /// For vectors, this includes constants with undefined elements.
m_MaxSignedValue()401 inline cst_pred_ty<is_maxsignedvalue> m_MaxSignedValue() {
402   return cst_pred_ty<is_maxsignedvalue>();
403 }
m_MaxSignedValue(const APInt * & V)404 inline api_pred_ty<is_maxsignedvalue> m_MaxSignedValue(const APInt *&V) {
405   return V;
406 }
407 
408 struct is_negative {
isValueis_negative409   bool isValue(const APInt &C) { return C.isNegative(); }
410 };
411 /// Match an integer or vector of negative values.
412 /// For vectors, this includes constants with undefined elements.
m_Negative()413 inline cst_pred_ty<is_negative> m_Negative() {
414   return cst_pred_ty<is_negative>();
415 }
m_Negative(const APInt * & V)416 inline api_pred_ty<is_negative> m_Negative(const APInt *&V) {
417   return V;
418 }
419 
420 struct is_nonnegative {
isValueis_nonnegative421   bool isValue(const APInt &C) { return C.isNonNegative(); }
422 };
423 /// Match an integer or vector of non-negative values.
424 /// For vectors, this includes constants with undefined elements.
m_NonNegative()425 inline cst_pred_ty<is_nonnegative> m_NonNegative() {
426   return cst_pred_ty<is_nonnegative>();
427 }
m_NonNegative(const APInt * & V)428 inline api_pred_ty<is_nonnegative> m_NonNegative(const APInt *&V) {
429   return V;
430 }
431 
432 struct is_strictlypositive {
isValueis_strictlypositive433   bool isValue(const APInt &C) { return C.isStrictlyPositive(); }
434 };
435 /// Match an integer or vector of strictly positive values.
436 /// For vectors, this includes constants with undefined elements.
m_StrictlyPositive()437 inline cst_pred_ty<is_strictlypositive> m_StrictlyPositive() {
438   return cst_pred_ty<is_strictlypositive>();
439 }
m_StrictlyPositive(const APInt * & V)440 inline api_pred_ty<is_strictlypositive> m_StrictlyPositive(const APInt *&V) {
441   return V;
442 }
443 
444 struct is_nonpositive {
isValueis_nonpositive445   bool isValue(const APInt &C) { return C.isNonPositive(); }
446 };
447 /// Match an integer or vector of non-positive values.
448 /// For vectors, this includes constants with undefined elements.
m_NonPositive()449 inline cst_pred_ty<is_nonpositive> m_NonPositive() {
450   return cst_pred_ty<is_nonpositive>();
451 }
m_NonPositive(const APInt * & V)452 inline api_pred_ty<is_nonpositive> m_NonPositive(const APInt *&V) { return V; }
453 
454 struct is_one {
isValueis_one455   bool isValue(const APInt &C) { return C.isOneValue(); }
456 };
457 /// Match an integer 1 or a vector with all elements equal to 1.
458 /// For vectors, this includes constants with undefined elements.
m_One()459 inline cst_pred_ty<is_one> m_One() {
460   return cst_pred_ty<is_one>();
461 }
462 
463 struct is_zero_int {
isValueis_zero_int464   bool isValue(const APInt &C) { return C.isNullValue(); }
465 };
466 /// Match an integer 0 or a vector with all elements equal to 0.
467 /// For vectors, this includes constants with undefined elements.
m_ZeroInt()468 inline cst_pred_ty<is_zero_int> m_ZeroInt() {
469   return cst_pred_ty<is_zero_int>();
470 }
471 
472 struct is_zero {
matchis_zero473   template <typename ITy> bool match(ITy *V) {
474     auto *C = dyn_cast<Constant>(V);
475     // FIXME: this should be able to do something for scalable vectors
476     return C && (C->isNullValue() || cst_pred_ty<is_zero_int>().match(C));
477   }
478 };
479 /// Match any null constant or a vector with all elements equal to 0.
480 /// For vectors, this includes constants with undefined elements.
m_Zero()481 inline is_zero m_Zero() {
482   return is_zero();
483 }
484 
485 struct is_power2 {
isValueis_power2486   bool isValue(const APInt &C) { return C.isPowerOf2(); }
487 };
488 /// Match an integer or vector power-of-2.
489 /// For vectors, this includes constants with undefined elements.
m_Power2()490 inline cst_pred_ty<is_power2> m_Power2() {
491   return cst_pred_ty<is_power2>();
492 }
m_Power2(const APInt * & V)493 inline api_pred_ty<is_power2> m_Power2(const APInt *&V) {
494   return V;
495 }
496 
497 struct is_negated_power2 {
isValueis_negated_power2498   bool isValue(const APInt &C) { return (-C).isPowerOf2(); }
499 };
500 /// Match a integer or vector negated power-of-2.
501 /// For vectors, this includes constants with undefined elements.
m_NegatedPower2()502 inline cst_pred_ty<is_negated_power2> m_NegatedPower2() {
503   return cst_pred_ty<is_negated_power2>();
504 }
m_NegatedPower2(const APInt * & V)505 inline api_pred_ty<is_negated_power2> m_NegatedPower2(const APInt *&V) {
506   return V;
507 }
508 
509 struct is_power2_or_zero {
isValueis_power2_or_zero510   bool isValue(const APInt &C) { return !C || C.isPowerOf2(); }
511 };
512 /// Match an integer or vector of 0 or power-of-2 values.
513 /// For vectors, this includes constants with undefined elements.
m_Power2OrZero()514 inline cst_pred_ty<is_power2_or_zero> m_Power2OrZero() {
515   return cst_pred_ty<is_power2_or_zero>();
516 }
m_Power2OrZero(const APInt * & V)517 inline api_pred_ty<is_power2_or_zero> m_Power2OrZero(const APInt *&V) {
518   return V;
519 }
520 
521 struct is_sign_mask {
isValueis_sign_mask522   bool isValue(const APInt &C) { return C.isSignMask(); }
523 };
524 /// Match an integer or vector with only the sign bit(s) set.
525 /// For vectors, this includes constants with undefined elements.
m_SignMask()526 inline cst_pred_ty<is_sign_mask> m_SignMask() {
527   return cst_pred_ty<is_sign_mask>();
528 }
529 
530 struct is_lowbit_mask {
isValueis_lowbit_mask531   bool isValue(const APInt &C) { return C.isMask(); }
532 };
533 /// Match an integer or vector with only the low bit(s) set.
534 /// For vectors, this includes constants with undefined elements.
m_LowBitMask()535 inline cst_pred_ty<is_lowbit_mask> m_LowBitMask() {
536   return cst_pred_ty<is_lowbit_mask>();
537 }
538 
539 struct icmp_pred_with_threshold {
540   ICmpInst::Predicate Pred;
541   const APInt *Thr;
isValueicmp_pred_with_threshold542   bool isValue(const APInt &C) {
543     switch (Pred) {
544     case ICmpInst::Predicate::ICMP_EQ:
545       return C.eq(*Thr);
546     case ICmpInst::Predicate::ICMP_NE:
547       return C.ne(*Thr);
548     case ICmpInst::Predicate::ICMP_UGT:
549       return C.ugt(*Thr);
550     case ICmpInst::Predicate::ICMP_UGE:
551       return C.uge(*Thr);
552     case ICmpInst::Predicate::ICMP_ULT:
553       return C.ult(*Thr);
554     case ICmpInst::Predicate::ICMP_ULE:
555       return C.ule(*Thr);
556     case ICmpInst::Predicate::ICMP_SGT:
557       return C.sgt(*Thr);
558     case ICmpInst::Predicate::ICMP_SGE:
559       return C.sge(*Thr);
560     case ICmpInst::Predicate::ICMP_SLT:
561       return C.slt(*Thr);
562     case ICmpInst::Predicate::ICMP_SLE:
563       return C.sle(*Thr);
564     default:
565       llvm_unreachable("Unhandled ICmp predicate");
566     }
567   }
568 };
569 /// Match an integer or vector with every element comparing 'pred' (eg/ne/...)
570 /// to Threshold. For vectors, this includes constants with undefined elements.
571 inline cst_pred_ty<icmp_pred_with_threshold>
m_SpecificInt_ICMP(ICmpInst::Predicate Predicate,const APInt & Threshold)572 m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold) {
573   cst_pred_ty<icmp_pred_with_threshold> P;
574   P.Pred = Predicate;
575   P.Thr = &Threshold;
576   return P;
577 }
578 
579 struct is_nan {
isValueis_nan580   bool isValue(const APFloat &C) { return C.isNaN(); }
581 };
582 /// Match an arbitrary NaN constant. This includes quiet and signalling nans.
583 /// For vectors, this includes constants with undefined elements.
m_NaN()584 inline cstfp_pred_ty<is_nan> m_NaN() {
585   return cstfp_pred_ty<is_nan>();
586 }
587 
588 struct is_nonnan {
isValueis_nonnan589   bool isValue(const APFloat &C) { return !C.isNaN(); }
590 };
591 /// Match a non-NaN FP constant.
592 /// For vectors, this includes constants with undefined elements.
m_NonNaN()593 inline cstfp_pred_ty<is_nonnan> m_NonNaN() {
594   return cstfp_pred_ty<is_nonnan>();
595 }
596 
597 struct is_inf {
isValueis_inf598   bool isValue(const APFloat &C) { return C.isInfinity(); }
599 };
600 /// Match a positive or negative infinity FP constant.
601 /// For vectors, this includes constants with undefined elements.
m_Inf()602 inline cstfp_pred_ty<is_inf> m_Inf() {
603   return cstfp_pred_ty<is_inf>();
604 }
605 
606 struct is_noninf {
isValueis_noninf607   bool isValue(const APFloat &C) { return !C.isInfinity(); }
608 };
609 /// Match a non-infinity FP constant, i.e. finite or NaN.
610 /// For vectors, this includes constants with undefined elements.
m_NonInf()611 inline cstfp_pred_ty<is_noninf> m_NonInf() {
612   return cstfp_pred_ty<is_noninf>();
613 }
614 
615 struct is_finite {
isValueis_finite616   bool isValue(const APFloat &C) { return C.isFinite(); }
617 };
618 /// Match a finite FP constant, i.e. not infinity or NaN.
619 /// For vectors, this includes constants with undefined elements.
m_Finite()620 inline cstfp_pred_ty<is_finite> m_Finite() {
621   return cstfp_pred_ty<is_finite>();
622 }
m_Finite(const APFloat * & V)623 inline apf_pred_ty<is_finite> m_Finite(const APFloat *&V) { return V; }
624 
625 struct is_finitenonzero {
isValueis_finitenonzero626   bool isValue(const APFloat &C) { return C.isFiniteNonZero(); }
627 };
628 /// Match a finite non-zero FP constant.
629 /// For vectors, this includes constants with undefined elements.
m_FiniteNonZero()630 inline cstfp_pred_ty<is_finitenonzero> m_FiniteNonZero() {
631   return cstfp_pred_ty<is_finitenonzero>();
632 }
m_FiniteNonZero(const APFloat * & V)633 inline apf_pred_ty<is_finitenonzero> m_FiniteNonZero(const APFloat *&V) {
634   return V;
635 }
636 
637 struct is_any_zero_fp {
isValueis_any_zero_fp638   bool isValue(const APFloat &C) { return C.isZero(); }
639 };
640 /// Match a floating-point negative zero or positive zero.
641 /// For vectors, this includes constants with undefined elements.
m_AnyZeroFP()642 inline cstfp_pred_ty<is_any_zero_fp> m_AnyZeroFP() {
643   return cstfp_pred_ty<is_any_zero_fp>();
644 }
645 
646 struct is_pos_zero_fp {
isValueis_pos_zero_fp647   bool isValue(const APFloat &C) { return C.isPosZero(); }
648 };
649 /// Match a floating-point positive zero.
650 /// For vectors, this includes constants with undefined elements.
m_PosZeroFP()651 inline cstfp_pred_ty<is_pos_zero_fp> m_PosZeroFP() {
652   return cstfp_pred_ty<is_pos_zero_fp>();
653 }
654 
655 struct is_neg_zero_fp {
isValueis_neg_zero_fp656   bool isValue(const APFloat &C) { return C.isNegZero(); }
657 };
658 /// Match a floating-point negative zero.
659 /// For vectors, this includes constants with undefined elements.
m_NegZeroFP()660 inline cstfp_pred_ty<is_neg_zero_fp> m_NegZeroFP() {
661   return cstfp_pred_ty<is_neg_zero_fp>();
662 }
663 
664 struct is_non_zero_fp {
isValueis_non_zero_fp665   bool isValue(const APFloat &C) { return C.isNonZero(); }
666 };
667 /// Match a floating-point non-zero.
668 /// For vectors, this includes constants with undefined elements.
m_NonZeroFP()669 inline cstfp_pred_ty<is_non_zero_fp> m_NonZeroFP() {
670   return cstfp_pred_ty<is_non_zero_fp>();
671 }
672 
673 ///////////////////////////////////////////////////////////////////////////////
674 
675 template <typename Class> struct bind_ty {
676   Class *&VR;
677 
bind_tybind_ty678   bind_ty(Class *&V) : VR(V) {}
679 
matchbind_ty680   template <typename ITy> bool match(ITy *V) {
681     if (auto *CV = dyn_cast<Class>(V)) {
682       VR = CV;
683       return true;
684     }
685     return false;
686   }
687 };
688 
689 /// Match a value, capturing it if we match.
m_Value(Value * & V)690 inline bind_ty<Value> m_Value(Value *&V) { return V; }
m_Value(const Value * & V)691 inline bind_ty<const Value> m_Value(const Value *&V) { return V; }
692 
693 /// Match an instruction, capturing it if we match.
m_Instruction(Instruction * & I)694 inline bind_ty<Instruction> m_Instruction(Instruction *&I) { return I; }
695 /// Match a unary operator, capturing it if we match.
m_UnOp(UnaryOperator * & I)696 inline bind_ty<UnaryOperator> m_UnOp(UnaryOperator *&I) { return I; }
697 /// Match a binary operator, capturing it if we match.
m_BinOp(BinaryOperator * & I)698 inline bind_ty<BinaryOperator> m_BinOp(BinaryOperator *&I) { return I; }
699 /// Match a with overflow intrinsic, capturing it if we match.
m_WithOverflowInst(WithOverflowInst * & I)700 inline bind_ty<WithOverflowInst> m_WithOverflowInst(WithOverflowInst *&I) { return I; }
701 
702 /// Match a ConstantInt, capturing the value if we match.
m_ConstantInt(ConstantInt * & CI)703 inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; }
704 
705 /// Match a Constant, capturing the value if we match.
m_Constant(Constant * & C)706 inline bind_ty<Constant> m_Constant(Constant *&C) { return C; }
707 
708 /// Match a ConstantFP, capturing the value if we match.
m_ConstantFP(ConstantFP * & C)709 inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; }
710 
711 /// Match a basic block value, capturing it if we match.
m_BasicBlock(BasicBlock * & V)712 inline bind_ty<BasicBlock> m_BasicBlock(BasicBlock *&V) { return V; }
m_BasicBlock(const BasicBlock * & V)713 inline bind_ty<const BasicBlock> m_BasicBlock(const BasicBlock *&V) {
714   return V;
715 }
716 
717 /// Match a specified Value*.
718 struct specificval_ty {
719   const Value *Val;
720 
specificval_tyspecificval_ty721   specificval_ty(const Value *V) : Val(V) {}
722 
matchspecificval_ty723   template <typename ITy> bool match(ITy *V) { return V == Val; }
724 };
725 
726 /// Match if we have a specific specified value.
m_Specific(const Value * V)727 inline specificval_ty m_Specific(const Value *V) { return V; }
728 
729 /// Stores a reference to the Value *, not the Value * itself,
730 /// thus can be used in commutative matchers.
731 template <typename Class> struct deferredval_ty {
732   Class *const &Val;
733 
deferredval_tydeferredval_ty734   deferredval_ty(Class *const &V) : Val(V) {}
735 
matchdeferredval_ty736   template <typename ITy> bool match(ITy *const V) { return V == Val; }
737 };
738 
739 /// A commutative-friendly version of m_Specific().
m_Deferred(Value * const & V)740 inline deferredval_ty<Value> m_Deferred(Value *const &V) { return V; }
m_Deferred(const Value * const & V)741 inline deferredval_ty<const Value> m_Deferred(const Value *const &V) {
742   return V;
743 }
744 
745 /// Match a specified floating point value or vector of all elements of
746 /// that value.
747 struct specific_fpval {
748   double Val;
749 
specific_fpvalspecific_fpval750   specific_fpval(double V) : Val(V) {}
751 
matchspecific_fpval752   template <typename ITy> bool match(ITy *V) {
753     if (const auto *CFP = dyn_cast<ConstantFP>(V))
754       return CFP->isExactlyValue(Val);
755     if (V->getType()->isVectorTy())
756       if (const auto *C = dyn_cast<Constant>(V))
757         if (auto *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
758           return CFP->isExactlyValue(Val);
759     return false;
760   }
761 };
762 
763 /// Match a specific floating point value or vector with all elements
764 /// equal to the value.
m_SpecificFP(double V)765 inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); }
766 
767 /// Match a float 1.0 or vector with all elements equal to 1.0.
m_FPOne()768 inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); }
769 
770 struct bind_const_intval_ty {
771   uint64_t &VR;
772 
bind_const_intval_tybind_const_intval_ty773   bind_const_intval_ty(uint64_t &V) : VR(V) {}
774 
matchbind_const_intval_ty775   template <typename ITy> bool match(ITy *V) {
776     if (const auto *CV = dyn_cast<ConstantInt>(V))
777       if (CV->getValue().ule(UINT64_MAX)) {
778         VR = CV->getZExtValue();
779         return true;
780       }
781     return false;
782   }
783 };
784 
785 /// Match a specified integer value or vector of all elements of that
786 /// value.
787 template <bool AllowUndefs>
788 struct specific_intval {
789   APInt Val;
790 
specific_intvalspecific_intval791   specific_intval(APInt V) : Val(std::move(V)) {}
792 
matchspecific_intval793   template <typename ITy> bool match(ITy *V) {
794     const auto *CI = dyn_cast<ConstantInt>(V);
795     if (!CI && V->getType()->isVectorTy())
796       if (const auto *C = dyn_cast<Constant>(V))
797         CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue(AllowUndefs));
798 
799     return CI && APInt::isSameValue(CI->getValue(), Val);
800   }
801 };
802 
803 /// Match a specific integer value or vector with all elements equal to
804 /// the value.
m_SpecificInt(APInt V)805 inline specific_intval<false> m_SpecificInt(APInt V) {
806   return specific_intval<false>(std::move(V));
807 }
808 
m_SpecificInt(uint64_t V)809 inline specific_intval<false> m_SpecificInt(uint64_t V) {
810   return m_SpecificInt(APInt(64, V));
811 }
812 
m_SpecificIntAllowUndef(APInt V)813 inline specific_intval<true> m_SpecificIntAllowUndef(APInt V) {
814   return specific_intval<true>(std::move(V));
815 }
816 
m_SpecificIntAllowUndef(uint64_t V)817 inline specific_intval<true> m_SpecificIntAllowUndef(uint64_t V) {
818   return m_SpecificIntAllowUndef(APInt(64, V));
819 }
820 
821 /// Match a ConstantInt and bind to its value.  This does not match
822 /// ConstantInts wider than 64-bits.
m_ConstantInt(uint64_t & V)823 inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; }
824 
825 /// Match a specified basic block value.
826 struct specific_bbval {
827   BasicBlock *Val;
828 
specific_bbvalspecific_bbval829   specific_bbval(BasicBlock *Val) : Val(Val) {}
830 
matchspecific_bbval831   template <typename ITy> bool match(ITy *V) {
832     const auto *BB = dyn_cast<BasicBlock>(V);
833     return BB && BB == Val;
834   }
835 };
836 
837 /// Match a specific basic block value.
m_SpecificBB(BasicBlock * BB)838 inline specific_bbval m_SpecificBB(BasicBlock *BB) {
839   return specific_bbval(BB);
840 }
841 
842 /// A commutative-friendly version of m_Specific().
m_Deferred(BasicBlock * const & BB)843 inline deferredval_ty<BasicBlock> m_Deferred(BasicBlock *const &BB) {
844   return BB;
845 }
846 inline deferredval_ty<const BasicBlock>
m_Deferred(const BasicBlock * const & BB)847 m_Deferred(const BasicBlock *const &BB) {
848   return BB;
849 }
850 
851 //===----------------------------------------------------------------------===//
852 // Matcher for any binary operator.
853 //
854 template <typename LHS_t, typename RHS_t, bool Commutable = false>
855 struct AnyBinaryOp_match {
856   LHS_t L;
857   RHS_t R;
858 
859   // The evaluation order is always stable, regardless of Commutability.
860   // The LHS is always matched first.
AnyBinaryOp_matchAnyBinaryOp_match861   AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
862 
matchAnyBinaryOp_match863   template <typename OpTy> bool match(OpTy *V) {
864     if (auto *I = dyn_cast<BinaryOperator>(V))
865       return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
866              (Commutable && L.match(I->getOperand(1)) &&
867               R.match(I->getOperand(0)));
868     return false;
869   }
870 };
871 
872 template <typename LHS, typename RHS>
m_BinOp(const LHS & L,const RHS & R)873 inline AnyBinaryOp_match<LHS, RHS> m_BinOp(const LHS &L, const RHS &R) {
874   return AnyBinaryOp_match<LHS, RHS>(L, R);
875 }
876 
877 //===----------------------------------------------------------------------===//
878 // Matcher for any unary operator.
879 // TODO fuse unary, binary matcher into n-ary matcher
880 //
881 template <typename OP_t> struct AnyUnaryOp_match {
882   OP_t X;
883 
AnyUnaryOp_matchAnyUnaryOp_match884   AnyUnaryOp_match(const OP_t &X) : X(X) {}
885 
matchAnyUnaryOp_match886   template <typename OpTy> bool match(OpTy *V) {
887     if (auto *I = dyn_cast<UnaryOperator>(V))
888       return X.match(I->getOperand(0));
889     return false;
890   }
891 };
892 
m_UnOp(const OP_t & X)893 template <typename OP_t> inline AnyUnaryOp_match<OP_t> m_UnOp(const OP_t &X) {
894   return AnyUnaryOp_match<OP_t>(X);
895 }
896 
897 //===----------------------------------------------------------------------===//
898 // Matchers for specific binary operators.
899 //
900 
901 template <typename LHS_t, typename RHS_t, unsigned Opcode,
902           bool Commutable = false>
903 struct BinaryOp_match {
904   LHS_t L;
905   RHS_t R;
906 
907   // The evaluation order is always stable, regardless of Commutability.
908   // The LHS is always matched first.
BinaryOp_matchBinaryOp_match909   BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
910 
matchBinaryOp_match911   template <typename OpTy> bool match(OpTy *V) {
912     if (V->getValueID() == Value::InstructionVal + Opcode) {
913       auto *I = cast<BinaryOperator>(V);
914       return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
915              (Commutable && L.match(I->getOperand(1)) &&
916               R.match(I->getOperand(0)));
917     }
918     if (auto *CE = dyn_cast<ConstantExpr>(V))
919       return CE->getOpcode() == Opcode &&
920              ((L.match(CE->getOperand(0)) && R.match(CE->getOperand(1))) ||
921               (Commutable && L.match(CE->getOperand(1)) &&
922                R.match(CE->getOperand(0))));
923     return false;
924   }
925 };
926 
927 template <typename LHS, typename RHS>
m_Add(const LHS & L,const RHS & R)928 inline BinaryOp_match<LHS, RHS, Instruction::Add> m_Add(const LHS &L,
929                                                         const RHS &R) {
930   return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R);
931 }
932 
933 template <typename LHS, typename RHS>
m_FAdd(const LHS & L,const RHS & R)934 inline BinaryOp_match<LHS, RHS, Instruction::FAdd> m_FAdd(const LHS &L,
935                                                           const RHS &R) {
936   return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R);
937 }
938 
939 template <typename LHS, typename RHS>
m_Sub(const LHS & L,const RHS & R)940 inline BinaryOp_match<LHS, RHS, Instruction::Sub> m_Sub(const LHS &L,
941                                                         const RHS &R) {
942   return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R);
943 }
944 
945 template <typename LHS, typename RHS>
m_FSub(const LHS & L,const RHS & R)946 inline BinaryOp_match<LHS, RHS, Instruction::FSub> m_FSub(const LHS &L,
947                                                           const RHS &R) {
948   return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R);
949 }
950 
951 template <typename Op_t> struct FNeg_match {
952   Op_t X;
953 
FNeg_matchFNeg_match954   FNeg_match(const Op_t &Op) : X(Op) {}
matchFNeg_match955   template <typename OpTy> bool match(OpTy *V) {
956     auto *FPMO = dyn_cast<FPMathOperator>(V);
957     if (!FPMO) return false;
958 
959     if (FPMO->getOpcode() == Instruction::FNeg)
960       return X.match(FPMO->getOperand(0));
961 
962     if (FPMO->getOpcode() == Instruction::FSub) {
963       if (FPMO->hasNoSignedZeros()) {
964         // With 'nsz', any zero goes.
965         if (!cstfp_pred_ty<is_any_zero_fp>().match(FPMO->getOperand(0)))
966           return false;
967       } else {
968         // Without 'nsz', we need fsub -0.0, X exactly.
969         if (!cstfp_pred_ty<is_neg_zero_fp>().match(FPMO->getOperand(0)))
970           return false;
971       }
972 
973       return X.match(FPMO->getOperand(1));
974     }
975 
976     return false;
977   }
978 };
979 
980 /// Match 'fneg X' as 'fsub -0.0, X'.
981 template <typename OpTy>
982 inline FNeg_match<OpTy>
m_FNeg(const OpTy & X)983 m_FNeg(const OpTy &X) {
984   return FNeg_match<OpTy>(X);
985 }
986 
987 /// Match 'fneg X' as 'fsub +-0.0, X'.
988 template <typename RHS>
989 inline BinaryOp_match<cstfp_pred_ty<is_any_zero_fp>, RHS, Instruction::FSub>
m_FNegNSZ(const RHS & X)990 m_FNegNSZ(const RHS &X) {
991   return m_FSub(m_AnyZeroFP(), X);
992 }
993 
994 template <typename LHS, typename RHS>
m_Mul(const LHS & L,const RHS & R)995 inline BinaryOp_match<LHS, RHS, Instruction::Mul> m_Mul(const LHS &L,
996                                                         const RHS &R) {
997   return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R);
998 }
999 
1000 template <typename LHS, typename RHS>
m_FMul(const LHS & L,const RHS & R)1001 inline BinaryOp_match<LHS, RHS, Instruction::FMul> m_FMul(const LHS &L,
1002                                                           const RHS &R) {
1003   return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R);
1004 }
1005 
1006 template <typename LHS, typename RHS>
m_UDiv(const LHS & L,const RHS & R)1007 inline BinaryOp_match<LHS, RHS, Instruction::UDiv> m_UDiv(const LHS &L,
1008                                                           const RHS &R) {
1009   return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R);
1010 }
1011 
1012 template <typename LHS, typename RHS>
m_SDiv(const LHS & L,const RHS & R)1013 inline BinaryOp_match<LHS, RHS, Instruction::SDiv> m_SDiv(const LHS &L,
1014                                                           const RHS &R) {
1015   return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R);
1016 }
1017 
1018 template <typename LHS, typename RHS>
m_FDiv(const LHS & L,const RHS & R)1019 inline BinaryOp_match<LHS, RHS, Instruction::FDiv> m_FDiv(const LHS &L,
1020                                                           const RHS &R) {
1021   return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R);
1022 }
1023 
1024 template <typename LHS, typename RHS>
m_URem(const LHS & L,const RHS & R)1025 inline BinaryOp_match<LHS, RHS, Instruction::URem> m_URem(const LHS &L,
1026                                                           const RHS &R) {
1027   return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R);
1028 }
1029 
1030 template <typename LHS, typename RHS>
m_SRem(const LHS & L,const RHS & R)1031 inline BinaryOp_match<LHS, RHS, Instruction::SRem> m_SRem(const LHS &L,
1032                                                           const RHS &R) {
1033   return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R);
1034 }
1035 
1036 template <typename LHS, typename RHS>
m_FRem(const LHS & L,const RHS & R)1037 inline BinaryOp_match<LHS, RHS, Instruction::FRem> m_FRem(const LHS &L,
1038                                                           const RHS &R) {
1039   return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R);
1040 }
1041 
1042 template <typename LHS, typename RHS>
m_And(const LHS & L,const RHS & R)1043 inline BinaryOp_match<LHS, RHS, Instruction::And> m_And(const LHS &L,
1044                                                         const RHS &R) {
1045   return BinaryOp_match<LHS, RHS, Instruction::And>(L, R);
1046 }
1047 
1048 template <typename LHS, typename RHS>
m_Or(const LHS & L,const RHS & R)1049 inline BinaryOp_match<LHS, RHS, Instruction::Or> m_Or(const LHS &L,
1050                                                       const RHS &R) {
1051   return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R);
1052 }
1053 
1054 template <typename LHS, typename RHS>
m_Xor(const LHS & L,const RHS & R)1055 inline BinaryOp_match<LHS, RHS, Instruction::Xor> m_Xor(const LHS &L,
1056                                                         const RHS &R) {
1057   return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R);
1058 }
1059 
1060 template <typename LHS, typename RHS>
m_Shl(const LHS & L,const RHS & R)1061 inline BinaryOp_match<LHS, RHS, Instruction::Shl> m_Shl(const LHS &L,
1062                                                         const RHS &R) {
1063   return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R);
1064 }
1065 
1066 template <typename LHS, typename RHS>
m_LShr(const LHS & L,const RHS & R)1067 inline BinaryOp_match<LHS, RHS, Instruction::LShr> m_LShr(const LHS &L,
1068                                                           const RHS &R) {
1069   return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R);
1070 }
1071 
1072 template <typename LHS, typename RHS>
m_AShr(const LHS & L,const RHS & R)1073 inline BinaryOp_match<LHS, RHS, Instruction::AShr> m_AShr(const LHS &L,
1074                                                           const RHS &R) {
1075   return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R);
1076 }
1077 
1078 template <typename LHS_t, typename RHS_t, unsigned Opcode,
1079           unsigned WrapFlags = 0>
1080 struct OverflowingBinaryOp_match {
1081   LHS_t L;
1082   RHS_t R;
1083 
OverflowingBinaryOp_matchOverflowingBinaryOp_match1084   OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS)
1085       : L(LHS), R(RHS) {}
1086 
matchOverflowingBinaryOp_match1087   template <typename OpTy> bool match(OpTy *V) {
1088     if (auto *Op = dyn_cast<OverflowingBinaryOperator>(V)) {
1089       if (Op->getOpcode() != Opcode)
1090         return false;
1091       if (WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap &&
1092           !Op->hasNoUnsignedWrap())
1093         return false;
1094       if (WrapFlags & OverflowingBinaryOperator::NoSignedWrap &&
1095           !Op->hasNoSignedWrap())
1096         return false;
1097       return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1));
1098     }
1099     return false;
1100   }
1101 };
1102 
1103 template <typename LHS, typename RHS>
1104 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1105                                  OverflowingBinaryOperator::NoSignedWrap>
m_NSWAdd(const LHS & L,const RHS & R)1106 m_NSWAdd(const LHS &L, const RHS &R) {
1107   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1108                                    OverflowingBinaryOperator::NoSignedWrap>(
1109       L, R);
1110 }
1111 template <typename LHS, typename RHS>
1112 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1113                                  OverflowingBinaryOperator::NoSignedWrap>
m_NSWSub(const LHS & L,const RHS & R)1114 m_NSWSub(const LHS &L, const RHS &R) {
1115   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1116                                    OverflowingBinaryOperator::NoSignedWrap>(
1117       L, R);
1118 }
1119 template <typename LHS, typename RHS>
1120 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1121                                  OverflowingBinaryOperator::NoSignedWrap>
m_NSWMul(const LHS & L,const RHS & R)1122 m_NSWMul(const LHS &L, const RHS &R) {
1123   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1124                                    OverflowingBinaryOperator::NoSignedWrap>(
1125       L, R);
1126 }
1127 template <typename LHS, typename RHS>
1128 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1129                                  OverflowingBinaryOperator::NoSignedWrap>
m_NSWShl(const LHS & L,const RHS & R)1130 m_NSWShl(const LHS &L, const RHS &R) {
1131   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1132                                    OverflowingBinaryOperator::NoSignedWrap>(
1133       L, R);
1134 }
1135 
1136 template <typename LHS, typename RHS>
1137 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1138                                  OverflowingBinaryOperator::NoUnsignedWrap>
m_NUWAdd(const LHS & L,const RHS & R)1139 m_NUWAdd(const LHS &L, const RHS &R) {
1140   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1141                                    OverflowingBinaryOperator::NoUnsignedWrap>(
1142       L, R);
1143 }
1144 template <typename LHS, typename RHS>
1145 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1146                                  OverflowingBinaryOperator::NoUnsignedWrap>
m_NUWSub(const LHS & L,const RHS & R)1147 m_NUWSub(const LHS &L, const RHS &R) {
1148   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1149                                    OverflowingBinaryOperator::NoUnsignedWrap>(
1150       L, R);
1151 }
1152 template <typename LHS, typename RHS>
1153 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1154                                  OverflowingBinaryOperator::NoUnsignedWrap>
m_NUWMul(const LHS & L,const RHS & R)1155 m_NUWMul(const LHS &L, const RHS &R) {
1156   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1157                                    OverflowingBinaryOperator::NoUnsignedWrap>(
1158       L, R);
1159 }
1160 template <typename LHS, typename RHS>
1161 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1162                                  OverflowingBinaryOperator::NoUnsignedWrap>
m_NUWShl(const LHS & L,const RHS & R)1163 m_NUWShl(const LHS &L, const RHS &R) {
1164   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1165                                    OverflowingBinaryOperator::NoUnsignedWrap>(
1166       L, R);
1167 }
1168 
1169 //===----------------------------------------------------------------------===//
1170 // Class that matches a group of binary opcodes.
1171 //
1172 template <typename LHS_t, typename RHS_t, typename Predicate>
1173 struct BinOpPred_match : Predicate {
1174   LHS_t L;
1175   RHS_t R;
1176 
BinOpPred_matchBinOpPred_match1177   BinOpPred_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
1178 
matchBinOpPred_match1179   template <typename OpTy> bool match(OpTy *V) {
1180     if (auto *I = dyn_cast<Instruction>(V))
1181       return this->isOpType(I->getOpcode()) && L.match(I->getOperand(0)) &&
1182              R.match(I->getOperand(1));
1183     if (auto *CE = dyn_cast<ConstantExpr>(V))
1184       return this->isOpType(CE->getOpcode()) && L.match(CE->getOperand(0)) &&
1185              R.match(CE->getOperand(1));
1186     return false;
1187   }
1188 };
1189 
1190 struct is_shift_op {
isOpTypeis_shift_op1191   bool isOpType(unsigned Opcode) { return Instruction::isShift(Opcode); }
1192 };
1193 
1194 struct is_right_shift_op {
isOpTypeis_right_shift_op1195   bool isOpType(unsigned Opcode) {
1196     return Opcode == Instruction::LShr || Opcode == Instruction::AShr;
1197   }
1198 };
1199 
1200 struct is_logical_shift_op {
isOpTypeis_logical_shift_op1201   bool isOpType(unsigned Opcode) {
1202     return Opcode == Instruction::LShr || Opcode == Instruction::Shl;
1203   }
1204 };
1205 
1206 struct is_bitwiselogic_op {
isOpTypeis_bitwiselogic_op1207   bool isOpType(unsigned Opcode) {
1208     return Instruction::isBitwiseLogicOp(Opcode);
1209   }
1210 };
1211 
1212 struct is_idiv_op {
isOpTypeis_idiv_op1213   bool isOpType(unsigned Opcode) {
1214     return Opcode == Instruction::SDiv || Opcode == Instruction::UDiv;
1215   }
1216 };
1217 
1218 struct is_irem_op {
isOpTypeis_irem_op1219   bool isOpType(unsigned Opcode) {
1220     return Opcode == Instruction::SRem || Opcode == Instruction::URem;
1221   }
1222 };
1223 
1224 /// Matches shift operations.
1225 template <typename LHS, typename RHS>
m_Shift(const LHS & L,const RHS & R)1226 inline BinOpPred_match<LHS, RHS, is_shift_op> m_Shift(const LHS &L,
1227                                                       const RHS &R) {
1228   return BinOpPred_match<LHS, RHS, is_shift_op>(L, R);
1229 }
1230 
1231 /// Matches logical shift operations.
1232 template <typename LHS, typename RHS>
m_Shr(const LHS & L,const RHS & R)1233 inline BinOpPred_match<LHS, RHS, is_right_shift_op> m_Shr(const LHS &L,
1234                                                           const RHS &R) {
1235   return BinOpPred_match<LHS, RHS, is_right_shift_op>(L, R);
1236 }
1237 
1238 /// Matches logical shift operations.
1239 template <typename LHS, typename RHS>
1240 inline BinOpPred_match<LHS, RHS, is_logical_shift_op>
m_LogicalShift(const LHS & L,const RHS & R)1241 m_LogicalShift(const LHS &L, const RHS &R) {
1242   return BinOpPred_match<LHS, RHS, is_logical_shift_op>(L, R);
1243 }
1244 
1245 /// Matches bitwise logic operations.
1246 template <typename LHS, typename RHS>
1247 inline BinOpPred_match<LHS, RHS, is_bitwiselogic_op>
m_BitwiseLogic(const LHS & L,const RHS & R)1248 m_BitwiseLogic(const LHS &L, const RHS &R) {
1249   return BinOpPred_match<LHS, RHS, is_bitwiselogic_op>(L, R);
1250 }
1251 
1252 /// Matches integer division operations.
1253 template <typename LHS, typename RHS>
m_IDiv(const LHS & L,const RHS & R)1254 inline BinOpPred_match<LHS, RHS, is_idiv_op> m_IDiv(const LHS &L,
1255                                                     const RHS &R) {
1256   return BinOpPred_match<LHS, RHS, is_idiv_op>(L, R);
1257 }
1258 
1259 /// Matches integer remainder operations.
1260 template <typename LHS, typename RHS>
m_IRem(const LHS & L,const RHS & R)1261 inline BinOpPred_match<LHS, RHS, is_irem_op> m_IRem(const LHS &L,
1262                                                     const RHS &R) {
1263   return BinOpPred_match<LHS, RHS, is_irem_op>(L, R);
1264 }
1265 
1266 //===----------------------------------------------------------------------===//
1267 // Class that matches exact binary ops.
1268 //
1269 template <typename SubPattern_t> struct Exact_match {
1270   SubPattern_t SubPattern;
1271 
Exact_matchExact_match1272   Exact_match(const SubPattern_t &SP) : SubPattern(SP) {}
1273 
matchExact_match1274   template <typename OpTy> bool match(OpTy *V) {
1275     if (auto *PEO = dyn_cast<PossiblyExactOperator>(V))
1276       return PEO->isExact() && SubPattern.match(V);
1277     return false;
1278   }
1279 };
1280 
m_Exact(const T & SubPattern)1281 template <typename T> inline Exact_match<T> m_Exact(const T &SubPattern) {
1282   return SubPattern;
1283 }
1284 
1285 //===----------------------------------------------------------------------===//
1286 // Matchers for CmpInst classes
1287 //
1288 
1289 template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy,
1290           bool Commutable = false>
1291 struct CmpClass_match {
1292   PredicateTy &Predicate;
1293   LHS_t L;
1294   RHS_t R;
1295 
1296   // The evaluation order is always stable, regardless of Commutability.
1297   // The LHS is always matched first.
CmpClass_matchCmpClass_match1298   CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS)
1299       : Predicate(Pred), L(LHS), R(RHS) {}
1300 
matchCmpClass_match1301   template <typename OpTy> bool match(OpTy *V) {
1302     if (auto *I = dyn_cast<Class>(V)) {
1303       if (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) {
1304         Predicate = I->getPredicate();
1305         return true;
1306       } else if (Commutable && L.match(I->getOperand(1)) &&
1307            R.match(I->getOperand(0))) {
1308         Predicate = I->getSwappedPredicate();
1309         return true;
1310       }
1311     }
1312     return false;
1313   }
1314 };
1315 
1316 template <typename LHS, typename RHS>
1317 inline CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>
m_Cmp(CmpInst::Predicate & Pred,const LHS & L,const RHS & R)1318 m_Cmp(CmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1319   return CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>(Pred, L, R);
1320 }
1321 
1322 template <typename LHS, typename RHS>
1323 inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>
m_ICmp(ICmpInst::Predicate & Pred,const LHS & L,const RHS & R)1324 m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1325   return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>(Pred, L, R);
1326 }
1327 
1328 template <typename LHS, typename RHS>
1329 inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>
m_FCmp(FCmpInst::Predicate & Pred,const LHS & L,const RHS & R)1330 m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1331   return CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>(Pred, L, R);
1332 }
1333 
1334 //===----------------------------------------------------------------------===//
1335 // Matchers for instructions with a given opcode and number of operands.
1336 //
1337 
1338 /// Matches instructions with Opcode and three operands.
1339 template <typename T0, unsigned Opcode> struct OneOps_match {
1340   T0 Op1;
1341 
OneOps_matchOneOps_match1342   OneOps_match(const T0 &Op1) : Op1(Op1) {}
1343 
matchOneOps_match1344   template <typename OpTy> bool match(OpTy *V) {
1345     if (V->getValueID() == Value::InstructionVal + Opcode) {
1346       auto *I = cast<Instruction>(V);
1347       return Op1.match(I->getOperand(0));
1348     }
1349     return false;
1350   }
1351 };
1352 
1353 /// Matches instructions with Opcode and three operands.
1354 template <typename T0, typename T1, unsigned Opcode> struct TwoOps_match {
1355   T0 Op1;
1356   T1 Op2;
1357 
TwoOps_matchTwoOps_match1358   TwoOps_match(const T0 &Op1, const T1 &Op2) : Op1(Op1), Op2(Op2) {}
1359 
matchTwoOps_match1360   template <typename OpTy> bool match(OpTy *V) {
1361     if (V->getValueID() == Value::InstructionVal + Opcode) {
1362       auto *I = cast<Instruction>(V);
1363       return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1));
1364     }
1365     return false;
1366   }
1367 };
1368 
1369 /// Matches instructions with Opcode and three operands.
1370 template <typename T0, typename T1, typename T2, unsigned Opcode>
1371 struct ThreeOps_match {
1372   T0 Op1;
1373   T1 Op2;
1374   T2 Op3;
1375 
ThreeOps_matchThreeOps_match1376   ThreeOps_match(const T0 &Op1, const T1 &Op2, const T2 &Op3)
1377       : Op1(Op1), Op2(Op2), Op3(Op3) {}
1378 
matchThreeOps_match1379   template <typename OpTy> bool match(OpTy *V) {
1380     if (V->getValueID() == Value::InstructionVal + Opcode) {
1381       auto *I = cast<Instruction>(V);
1382       return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) &&
1383              Op3.match(I->getOperand(2));
1384     }
1385     return false;
1386   }
1387 };
1388 
1389 /// Matches SelectInst.
1390 template <typename Cond, typename LHS, typename RHS>
1391 inline ThreeOps_match<Cond, LHS, RHS, Instruction::Select>
m_Select(const Cond & C,const LHS & L,const RHS & R)1392 m_Select(const Cond &C, const LHS &L, const RHS &R) {
1393   return ThreeOps_match<Cond, LHS, RHS, Instruction::Select>(C, L, R);
1394 }
1395 
1396 /// This matches a select of two constants, e.g.:
1397 /// m_SelectCst<-1, 0>(m_Value(V))
1398 template <int64_t L, int64_t R, typename Cond>
1399 inline ThreeOps_match<Cond, constantint_match<L>, constantint_match<R>,
1400                       Instruction::Select>
m_SelectCst(const Cond & C)1401 m_SelectCst(const Cond &C) {
1402   return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>());
1403 }
1404 
1405 /// Matches FreezeInst.
1406 template <typename OpTy>
m_Freeze(const OpTy & Op)1407 inline OneOps_match<OpTy, Instruction::Freeze> m_Freeze(const OpTy &Op) {
1408   return OneOps_match<OpTy, Instruction::Freeze>(Op);
1409 }
1410 
1411 /// Matches InsertElementInst.
1412 template <typename Val_t, typename Elt_t, typename Idx_t>
1413 inline ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>
m_InsertElt(const Val_t & Val,const Elt_t & Elt,const Idx_t & Idx)1414 m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx) {
1415   return ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>(
1416       Val, Elt, Idx);
1417 }
1418 
1419 /// Matches ExtractElementInst.
1420 template <typename Val_t, typename Idx_t>
1421 inline TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>
m_ExtractElt(const Val_t & Val,const Idx_t & Idx)1422 m_ExtractElt(const Val_t &Val, const Idx_t &Idx) {
1423   return TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>(Val, Idx);
1424 }
1425 
1426 /// Matches shuffle.
1427 template <typename T0, typename T1, typename T2> struct Shuffle_match {
1428   T0 Op1;
1429   T1 Op2;
1430   T2 Mask;
1431 
Shuffle_matchShuffle_match1432   Shuffle_match(const T0 &Op1, const T1 &Op2, const T2 &Mask)
1433       : Op1(Op1), Op2(Op2), Mask(Mask) {}
1434 
matchShuffle_match1435   template <typename OpTy> bool match(OpTy *V) {
1436     if (auto *I = dyn_cast<ShuffleVectorInst>(V)) {
1437       return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) &&
1438              Mask.match(I->getShuffleMask());
1439     }
1440     return false;
1441   }
1442 };
1443 
1444 struct m_Mask {
1445   ArrayRef<int> &MaskRef;
m_Maskm_Mask1446   m_Mask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {}
matchm_Mask1447   bool match(ArrayRef<int> Mask) {
1448     MaskRef = Mask;
1449     return true;
1450   }
1451 };
1452 
1453 struct m_ZeroMask {
matchm_ZeroMask1454   bool match(ArrayRef<int> Mask) {
1455     return all_of(Mask, [](int Elem) { return Elem == 0 || Elem == -1; });
1456   }
1457 };
1458 
1459 struct m_SpecificMask {
1460   ArrayRef<int> &MaskRef;
m_SpecificMaskm_SpecificMask1461   m_SpecificMask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {}
matchm_SpecificMask1462   bool match(ArrayRef<int> Mask) { return MaskRef == Mask; }
1463 };
1464 
1465 struct m_SplatOrUndefMask {
1466   int &SplatIndex;
m_SplatOrUndefMaskm_SplatOrUndefMask1467   m_SplatOrUndefMask(int &SplatIndex) : SplatIndex(SplatIndex) {}
matchm_SplatOrUndefMask1468   bool match(ArrayRef<int> Mask) {
1469     auto First = find_if(Mask, [](int Elem) { return Elem != -1; });
1470     if (First == Mask.end())
1471       return false;
1472     SplatIndex = *First;
1473     return all_of(Mask,
1474                   [First](int Elem) { return Elem == *First || Elem == -1; });
1475   }
1476 };
1477 
1478 /// Matches ShuffleVectorInst independently of mask value.
1479 template <typename V1_t, typename V2_t>
1480 inline TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector>
m_Shuffle(const V1_t & v1,const V2_t & v2)1481 m_Shuffle(const V1_t &v1, const V2_t &v2) {
1482   return TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector>(v1, v2);
1483 }
1484 
1485 template <typename V1_t, typename V2_t, typename Mask_t>
1486 inline Shuffle_match<V1_t, V2_t, Mask_t>
m_Shuffle(const V1_t & v1,const V2_t & v2,const Mask_t & mask)1487 m_Shuffle(const V1_t &v1, const V2_t &v2, const Mask_t &mask) {
1488   return Shuffle_match<V1_t, V2_t, Mask_t>(v1, v2, mask);
1489 }
1490 
1491 /// Matches LoadInst.
1492 template <typename OpTy>
m_Load(const OpTy & Op)1493 inline OneOps_match<OpTy, Instruction::Load> m_Load(const OpTy &Op) {
1494   return OneOps_match<OpTy, Instruction::Load>(Op);
1495 }
1496 
1497 /// Matches StoreInst.
1498 template <typename ValueOpTy, typename PointerOpTy>
1499 inline TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>
m_Store(const ValueOpTy & ValueOp,const PointerOpTy & PointerOp)1500 m_Store(const ValueOpTy &ValueOp, const PointerOpTy &PointerOp) {
1501   return TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>(ValueOp,
1502                                                                   PointerOp);
1503 }
1504 
1505 //===----------------------------------------------------------------------===//
1506 // Matchers for CastInst classes
1507 //
1508 
1509 template <typename Op_t, unsigned Opcode> struct CastClass_match {
1510   Op_t Op;
1511 
CastClass_matchCastClass_match1512   CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {}
1513 
matchCastClass_match1514   template <typename OpTy> bool match(OpTy *V) {
1515     if (auto *O = dyn_cast<Operator>(V))
1516       return O->getOpcode() == Opcode && Op.match(O->getOperand(0));
1517     return false;
1518   }
1519 };
1520 
1521 /// Matches BitCast.
1522 template <typename OpTy>
m_BitCast(const OpTy & Op)1523 inline CastClass_match<OpTy, Instruction::BitCast> m_BitCast(const OpTy &Op) {
1524   return CastClass_match<OpTy, Instruction::BitCast>(Op);
1525 }
1526 
1527 /// Matches PtrToInt.
1528 template <typename OpTy>
m_PtrToInt(const OpTy & Op)1529 inline CastClass_match<OpTy, Instruction::PtrToInt> m_PtrToInt(const OpTy &Op) {
1530   return CastClass_match<OpTy, Instruction::PtrToInt>(Op);
1531 }
1532 
1533 /// Matches IntToPtr.
1534 template <typename OpTy>
m_IntToPtr(const OpTy & Op)1535 inline CastClass_match<OpTy, Instruction::IntToPtr> m_IntToPtr(const OpTy &Op) {
1536   return CastClass_match<OpTy, Instruction::IntToPtr>(Op);
1537 }
1538 
1539 /// Matches Trunc.
1540 template <typename OpTy>
m_Trunc(const OpTy & Op)1541 inline CastClass_match<OpTy, Instruction::Trunc> m_Trunc(const OpTy &Op) {
1542   return CastClass_match<OpTy, Instruction::Trunc>(Op);
1543 }
1544 
1545 template <typename OpTy>
1546 inline match_combine_or<CastClass_match<OpTy, Instruction::Trunc>, OpTy>
m_TruncOrSelf(const OpTy & Op)1547 m_TruncOrSelf(const OpTy &Op) {
1548   return m_CombineOr(m_Trunc(Op), Op);
1549 }
1550 
1551 /// Matches SExt.
1552 template <typename OpTy>
m_SExt(const OpTy & Op)1553 inline CastClass_match<OpTy, Instruction::SExt> m_SExt(const OpTy &Op) {
1554   return CastClass_match<OpTy, Instruction::SExt>(Op);
1555 }
1556 
1557 /// Matches ZExt.
1558 template <typename OpTy>
m_ZExt(const OpTy & Op)1559 inline CastClass_match<OpTy, Instruction::ZExt> m_ZExt(const OpTy &Op) {
1560   return CastClass_match<OpTy, Instruction::ZExt>(Op);
1561 }
1562 
1563 template <typename OpTy>
1564 inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>, OpTy>
m_ZExtOrSelf(const OpTy & Op)1565 m_ZExtOrSelf(const OpTy &Op) {
1566   return m_CombineOr(m_ZExt(Op), Op);
1567 }
1568 
1569 template <typename OpTy>
1570 inline match_combine_or<CastClass_match<OpTy, Instruction::SExt>, OpTy>
m_SExtOrSelf(const OpTy & Op)1571 m_SExtOrSelf(const OpTy &Op) {
1572   return m_CombineOr(m_SExt(Op), Op);
1573 }
1574 
1575 template <typename OpTy>
1576 inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>,
1577                         CastClass_match<OpTy, Instruction::SExt>>
m_ZExtOrSExt(const OpTy & Op)1578 m_ZExtOrSExt(const OpTy &Op) {
1579   return m_CombineOr(m_ZExt(Op), m_SExt(Op));
1580 }
1581 
1582 template <typename OpTy>
1583 inline match_combine_or<
1584     match_combine_or<CastClass_match<OpTy, Instruction::ZExt>,
1585                      CastClass_match<OpTy, Instruction::SExt>>,
1586     OpTy>
m_ZExtOrSExtOrSelf(const OpTy & Op)1587 m_ZExtOrSExtOrSelf(const OpTy &Op) {
1588   return m_CombineOr(m_ZExtOrSExt(Op), Op);
1589 }
1590 
1591 template <typename OpTy>
m_UIToFP(const OpTy & Op)1592 inline CastClass_match<OpTy, Instruction::UIToFP> m_UIToFP(const OpTy &Op) {
1593   return CastClass_match<OpTy, Instruction::UIToFP>(Op);
1594 }
1595 
1596 template <typename OpTy>
m_SIToFP(const OpTy & Op)1597 inline CastClass_match<OpTy, Instruction::SIToFP> m_SIToFP(const OpTy &Op) {
1598   return CastClass_match<OpTy, Instruction::SIToFP>(Op);
1599 }
1600 
1601 template <typename OpTy>
m_FPToUI(const OpTy & Op)1602 inline CastClass_match<OpTy, Instruction::FPToUI> m_FPToUI(const OpTy &Op) {
1603   return CastClass_match<OpTy, Instruction::FPToUI>(Op);
1604 }
1605 
1606 template <typename OpTy>
m_FPToSI(const OpTy & Op)1607 inline CastClass_match<OpTy, Instruction::FPToSI> m_FPToSI(const OpTy &Op) {
1608   return CastClass_match<OpTy, Instruction::FPToSI>(Op);
1609 }
1610 
1611 template <typename OpTy>
m_FPTrunc(const OpTy & Op)1612 inline CastClass_match<OpTy, Instruction::FPTrunc> m_FPTrunc(const OpTy &Op) {
1613   return CastClass_match<OpTy, Instruction::FPTrunc>(Op);
1614 }
1615 
1616 template <typename OpTy>
m_FPExt(const OpTy & Op)1617 inline CastClass_match<OpTy, Instruction::FPExt> m_FPExt(const OpTy &Op) {
1618   return CastClass_match<OpTy, Instruction::FPExt>(Op);
1619 }
1620 
1621 //===----------------------------------------------------------------------===//
1622 // Matchers for control flow.
1623 //
1624 
1625 struct br_match {
1626   BasicBlock *&Succ;
1627 
br_matchbr_match1628   br_match(BasicBlock *&Succ) : Succ(Succ) {}
1629 
matchbr_match1630   template <typename OpTy> bool match(OpTy *V) {
1631     if (auto *BI = dyn_cast<BranchInst>(V))
1632       if (BI->isUnconditional()) {
1633         Succ = BI->getSuccessor(0);
1634         return true;
1635       }
1636     return false;
1637   }
1638 };
1639 
m_UnconditionalBr(BasicBlock * & Succ)1640 inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); }
1641 
1642 template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t>
1643 struct brc_match {
1644   Cond_t Cond;
1645   TrueBlock_t T;
1646   FalseBlock_t F;
1647 
brc_matchbrc_match1648   brc_match(const Cond_t &C, const TrueBlock_t &t, const FalseBlock_t &f)
1649       : Cond(C), T(t), F(f) {}
1650 
matchbrc_match1651   template <typename OpTy> bool match(OpTy *V) {
1652     if (auto *BI = dyn_cast<BranchInst>(V))
1653       if (BI->isConditional() && Cond.match(BI->getCondition()))
1654         return T.match(BI->getSuccessor(0)) && F.match(BI->getSuccessor(1));
1655     return false;
1656   }
1657 };
1658 
1659 template <typename Cond_t>
1660 inline brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>
m_Br(const Cond_t & C,BasicBlock * & T,BasicBlock * & F)1661 m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) {
1662   return brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>(
1663       C, m_BasicBlock(T), m_BasicBlock(F));
1664 }
1665 
1666 template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t>
1667 inline brc_match<Cond_t, TrueBlock_t, FalseBlock_t>
m_Br(const Cond_t & C,const TrueBlock_t & T,const FalseBlock_t & F)1668 m_Br(const Cond_t &C, const TrueBlock_t &T, const FalseBlock_t &F) {
1669   return brc_match<Cond_t, TrueBlock_t, FalseBlock_t>(C, T, F);
1670 }
1671 
1672 //===----------------------------------------------------------------------===//
1673 // Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y).
1674 //
1675 
1676 template <typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t,
1677           bool Commutable = false>
1678 struct MaxMin_match {
1679   LHS_t L;
1680   RHS_t R;
1681 
1682   // The evaluation order is always stable, regardless of Commutability.
1683   // The LHS is always matched first.
MaxMin_matchMaxMin_match1684   MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
1685 
matchMaxMin_match1686   template <typename OpTy> bool match(OpTy *V) {
1687     if (auto *II = dyn_cast<IntrinsicInst>(V)) {
1688       Intrinsic::ID IID = II->getIntrinsicID();
1689       if ((IID == Intrinsic::smax && Pred_t::match(ICmpInst::ICMP_SGT)) ||
1690           (IID == Intrinsic::smin && Pred_t::match(ICmpInst::ICMP_SLT)) ||
1691           (IID == Intrinsic::umax && Pred_t::match(ICmpInst::ICMP_UGT)) ||
1692           (IID == Intrinsic::umin && Pred_t::match(ICmpInst::ICMP_ULT))) {
1693         Value *LHS = II->getOperand(0), *RHS = II->getOperand(1);
1694         return (L.match(LHS) && R.match(RHS)) ||
1695                (Commutable && L.match(RHS) && R.match(LHS));
1696       }
1697     }
1698     // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x".
1699     auto *SI = dyn_cast<SelectInst>(V);
1700     if (!SI)
1701       return false;
1702     auto *Cmp = dyn_cast<CmpInst_t>(SI->getCondition());
1703     if (!Cmp)
1704       return false;
1705     // At this point we have a select conditioned on a comparison.  Check that
1706     // it is the values returned by the select that are being compared.
1707     Value *TrueVal = SI->getTrueValue();
1708     Value *FalseVal = SI->getFalseValue();
1709     Value *LHS = Cmp->getOperand(0);
1710     Value *RHS = Cmp->getOperand(1);
1711     if ((TrueVal != LHS || FalseVal != RHS) &&
1712         (TrueVal != RHS || FalseVal != LHS))
1713       return false;
1714     typename CmpInst_t::Predicate Pred =
1715         LHS == TrueVal ? Cmp->getPredicate() : Cmp->getInversePredicate();
1716     // Does "(x pred y) ? x : y" represent the desired max/min operation?
1717     if (!Pred_t::match(Pred))
1718       return false;
1719     // It does!  Bind the operands.
1720     return (L.match(LHS) && R.match(RHS)) ||
1721            (Commutable && L.match(RHS) && R.match(LHS));
1722   }
1723 };
1724 
1725 /// Helper class for identifying signed max predicates.
1726 struct smax_pred_ty {
matchsmax_pred_ty1727   static bool match(ICmpInst::Predicate Pred) {
1728     return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE;
1729   }
1730 };
1731 
1732 /// Helper class for identifying signed min predicates.
1733 struct smin_pred_ty {
matchsmin_pred_ty1734   static bool match(ICmpInst::Predicate Pred) {
1735     return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE;
1736   }
1737 };
1738 
1739 /// Helper class for identifying unsigned max predicates.
1740 struct umax_pred_ty {
matchumax_pred_ty1741   static bool match(ICmpInst::Predicate Pred) {
1742     return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE;
1743   }
1744 };
1745 
1746 /// Helper class for identifying unsigned min predicates.
1747 struct umin_pred_ty {
matchumin_pred_ty1748   static bool match(ICmpInst::Predicate Pred) {
1749     return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE;
1750   }
1751 };
1752 
1753 /// Helper class for identifying ordered max predicates.
1754 struct ofmax_pred_ty {
matchofmax_pred_ty1755   static bool match(FCmpInst::Predicate Pred) {
1756     return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE;
1757   }
1758 };
1759 
1760 /// Helper class for identifying ordered min predicates.
1761 struct ofmin_pred_ty {
matchofmin_pred_ty1762   static bool match(FCmpInst::Predicate Pred) {
1763     return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE;
1764   }
1765 };
1766 
1767 /// Helper class for identifying unordered max predicates.
1768 struct ufmax_pred_ty {
matchufmax_pred_ty1769   static bool match(FCmpInst::Predicate Pred) {
1770     return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE;
1771   }
1772 };
1773 
1774 /// Helper class for identifying unordered min predicates.
1775 struct ufmin_pred_ty {
matchufmin_pred_ty1776   static bool match(FCmpInst::Predicate Pred) {
1777     return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE;
1778   }
1779 };
1780 
1781 template <typename LHS, typename RHS>
m_SMax(const LHS & L,const RHS & R)1782 inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty> m_SMax(const LHS &L,
1783                                                              const RHS &R) {
1784   return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R);
1785 }
1786 
1787 template <typename LHS, typename RHS>
m_SMin(const LHS & L,const RHS & R)1788 inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty> m_SMin(const LHS &L,
1789                                                              const RHS &R) {
1790   return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R);
1791 }
1792 
1793 template <typename LHS, typename RHS>
m_UMax(const LHS & L,const RHS & R)1794 inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty> m_UMax(const LHS &L,
1795                                                              const RHS &R) {
1796   return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R);
1797 }
1798 
1799 template <typename LHS, typename RHS>
m_UMin(const LHS & L,const RHS & R)1800 inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty> m_UMin(const LHS &L,
1801                                                              const RHS &R) {
1802   return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R);
1803 }
1804 
1805 template <typename LHS, typename RHS>
1806 inline match_combine_or<
1807     match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>,
1808                      MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>>,
1809     match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>,
1810                      MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>>>
m_MaxOrMin(const LHS & L,const RHS & R)1811 m_MaxOrMin(const LHS &L, const RHS &R) {
1812   return m_CombineOr(m_CombineOr(m_SMax(L, R), m_SMin(L, R)),
1813                      m_CombineOr(m_UMax(L, R), m_UMin(L, R)));
1814 }
1815 
1816 /// Match an 'ordered' floating point maximum function.
1817 /// Floating point has one special value 'NaN'. Therefore, there is no total
1818 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1819 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1820 /// semantics. In the presence of 'NaN' we have to preserve the original
1821 /// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate.
1822 ///
1823 ///                         max(L, R)  iff L and R are not NaN
1824 ///  m_OrdFMax(L, R) =      R          iff L or R are NaN
1825 template <typename LHS, typename RHS>
m_OrdFMax(const LHS & L,const RHS & R)1826 inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty> m_OrdFMax(const LHS &L,
1827                                                                  const RHS &R) {
1828   return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R);
1829 }
1830 
1831 /// Match an 'ordered' floating point minimum function.
1832 /// Floating point has one special value 'NaN'. Therefore, there is no total
1833 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1834 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1835 /// semantics. In the presence of 'NaN' we have to preserve the original
1836 /// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate.
1837 ///
1838 ///                         min(L, R)  iff L and R are not NaN
1839 ///  m_OrdFMin(L, R) =      R          iff L or R are NaN
1840 template <typename LHS, typename RHS>
m_OrdFMin(const LHS & L,const RHS & R)1841 inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty> m_OrdFMin(const LHS &L,
1842                                                                  const RHS &R) {
1843   return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R);
1844 }
1845 
1846 /// Match an 'unordered' floating point maximum function.
1847 /// Floating point has one special value 'NaN'. Therefore, there is no total
1848 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1849 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1850 /// semantics. In the presence of 'NaN' we have to preserve the original
1851 /// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate.
1852 ///
1853 ///                         max(L, R)  iff L and R are not NaN
1854 ///  m_UnordFMax(L, R) =    L          iff L or R are NaN
1855 template <typename LHS, typename RHS>
1856 inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>
m_UnordFMax(const LHS & L,const RHS & R)1857 m_UnordFMax(const LHS &L, const RHS &R) {
1858   return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R);
1859 }
1860 
1861 /// Match an 'unordered' floating point minimum function.
1862 /// Floating point has one special value 'NaN'. Therefore, there is no total
1863 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1864 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1865 /// semantics. In the presence of 'NaN' we have to preserve the original
1866 /// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate.
1867 ///
1868 ///                          min(L, R)  iff L and R are not NaN
1869 ///  m_UnordFMin(L, R) =     L          iff L or R are NaN
1870 template <typename LHS, typename RHS>
1871 inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>
m_UnordFMin(const LHS & L,const RHS & R)1872 m_UnordFMin(const LHS &L, const RHS &R) {
1873   return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R);
1874 }
1875 
1876 //===----------------------------------------------------------------------===//
1877 // Matchers for overflow check patterns: e.g. (a + b) u< a, (a ^ -1) <u b
1878 // Note that S might be matched to other instructions than AddInst.
1879 //
1880 
1881 template <typename LHS_t, typename RHS_t, typename Sum_t>
1882 struct UAddWithOverflow_match {
1883   LHS_t L;
1884   RHS_t R;
1885   Sum_t S;
1886 
UAddWithOverflow_matchUAddWithOverflow_match1887   UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S)
1888       : L(L), R(R), S(S) {}
1889 
matchUAddWithOverflow_match1890   template <typename OpTy> bool match(OpTy *V) {
1891     Value *ICmpLHS, *ICmpRHS;
1892     ICmpInst::Predicate Pred;
1893     if (!m_ICmp(Pred, m_Value(ICmpLHS), m_Value(ICmpRHS)).match(V))
1894       return false;
1895 
1896     Value *AddLHS, *AddRHS;
1897     auto AddExpr = m_Add(m_Value(AddLHS), m_Value(AddRHS));
1898 
1899     // (a + b) u< a, (a + b) u< b
1900     if (Pred == ICmpInst::ICMP_ULT)
1901       if (AddExpr.match(ICmpLHS) && (ICmpRHS == AddLHS || ICmpRHS == AddRHS))
1902         return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
1903 
1904     // a >u (a + b), b >u (a + b)
1905     if (Pred == ICmpInst::ICMP_UGT)
1906       if (AddExpr.match(ICmpRHS) && (ICmpLHS == AddLHS || ICmpLHS == AddRHS))
1907         return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
1908 
1909     Value *Op1;
1910     auto XorExpr = m_OneUse(m_Xor(m_Value(Op1), m_AllOnes()));
1911     // (a ^ -1) <u b
1912     if (Pred == ICmpInst::ICMP_ULT) {
1913       if (XorExpr.match(ICmpLHS))
1914         return L.match(Op1) && R.match(ICmpRHS) && S.match(ICmpLHS);
1915     }
1916     //  b > u (a ^ -1)
1917     if (Pred == ICmpInst::ICMP_UGT) {
1918       if (XorExpr.match(ICmpRHS))
1919         return L.match(Op1) && R.match(ICmpLHS) && S.match(ICmpRHS);
1920     }
1921 
1922     // Match special-case for increment-by-1.
1923     if (Pred == ICmpInst::ICMP_EQ) {
1924       // (a + 1) == 0
1925       // (1 + a) == 0
1926       if (AddExpr.match(ICmpLHS) && m_ZeroInt().match(ICmpRHS) &&
1927           (m_One().match(AddLHS) || m_One().match(AddRHS)))
1928         return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
1929       // 0 == (a + 1)
1930       // 0 == (1 + a)
1931       if (m_ZeroInt().match(ICmpLHS) && AddExpr.match(ICmpRHS) &&
1932           (m_One().match(AddLHS) || m_One().match(AddRHS)))
1933         return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
1934     }
1935 
1936     return false;
1937   }
1938 };
1939 
1940 /// Match an icmp instruction checking for unsigned overflow on addition.
1941 ///
1942 /// S is matched to the addition whose result is being checked for overflow, and
1943 /// L and R are matched to the LHS and RHS of S.
1944 template <typename LHS_t, typename RHS_t, typename Sum_t>
1945 UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>
m_UAddWithOverflow(const LHS_t & L,const RHS_t & R,const Sum_t & S)1946 m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S) {
1947   return UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>(L, R, S);
1948 }
1949 
1950 template <typename Opnd_t> struct Argument_match {
1951   unsigned OpI;
1952   Opnd_t Val;
1953 
Argument_matchArgument_match1954   Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {}
1955 
matchArgument_match1956   template <typename OpTy> bool match(OpTy *V) {
1957     // FIXME: Should likely be switched to use `CallBase`.
1958     if (const auto *CI = dyn_cast<CallInst>(V))
1959       return Val.match(CI->getArgOperand(OpI));
1960     return false;
1961   }
1962 };
1963 
1964 /// Match an argument.
1965 template <unsigned OpI, typename Opnd_t>
m_Argument(const Opnd_t & Op)1966 inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) {
1967   return Argument_match<Opnd_t>(OpI, Op);
1968 }
1969 
1970 /// Intrinsic matchers.
1971 struct IntrinsicID_match {
1972   unsigned ID;
1973 
IntrinsicID_matchIntrinsicID_match1974   IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {}
1975 
matchIntrinsicID_match1976   template <typename OpTy> bool match(OpTy *V) {
1977     if (const auto *CI = dyn_cast<CallInst>(V))
1978       if (const auto *F = CI->getCalledFunction())
1979         return F->getIntrinsicID() == ID;
1980     return false;
1981   }
1982 };
1983 
1984 /// Intrinsic matches are combinations of ID matchers, and argument
1985 /// matchers. Higher arity matcher are defined recursively in terms of and-ing
1986 /// them with lower arity matchers. Here's some convenient typedefs for up to
1987 /// several arguments, and more can be added as needed
1988 template <typename T0 = void, typename T1 = void, typename T2 = void,
1989           typename T3 = void, typename T4 = void, typename T5 = void,
1990           typename T6 = void, typename T7 = void, typename T8 = void,
1991           typename T9 = void, typename T10 = void>
1992 struct m_Intrinsic_Ty;
1993 template <typename T0> struct m_Intrinsic_Ty<T0> {
1994   using Ty = match_combine_and<IntrinsicID_match, Argument_match<T0>>;
1995 };
1996 template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> {
1997   using Ty =
1998       match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, Argument_match<T1>>;
1999 };
2000 template <typename T0, typename T1, typename T2>
2001 struct m_Intrinsic_Ty<T0, T1, T2> {
2002   using Ty =
2003       match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty,
2004                         Argument_match<T2>>;
2005 };
2006 template <typename T0, typename T1, typename T2, typename T3>
2007 struct m_Intrinsic_Ty<T0, T1, T2, T3> {
2008   using Ty =
2009       match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty,
2010                         Argument_match<T3>>;
2011 };
2012 
2013 template <typename T0, typename T1, typename T2, typename T3, typename T4>
2014 struct m_Intrinsic_Ty<T0, T1, T2, T3, T4> {
2015   using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty,
2016                                Argument_match<T4>>;
2017 };
2018 
2019 template <typename T0, typename T1, typename T2, typename T3, typename T4, typename T5>
2020 struct m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5> {
2021   using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty,
2022                                Argument_match<T5>>;
2023 };
2024 
2025 /// Match intrinsic calls like this:
2026 /// m_Intrinsic<Intrinsic::fabs>(m_Value(X))
2027 template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() {
2028   return IntrinsicID_match(IntrID);
2029 }
2030 
2031 template <Intrinsic::ID IntrID, typename T0>
2032 inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) {
2033   return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0));
2034 }
2035 
2036 template <Intrinsic::ID IntrID, typename T0, typename T1>
2037 inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0,
2038                                                        const T1 &Op1) {
2039   return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1));
2040 }
2041 
2042 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2>
2043 inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty
2044 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) {
2045   return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2));
2046 }
2047 
2048 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
2049           typename T3>
2050 inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty
2051 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) {
2052   return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3));
2053 }
2054 
2055 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
2056           typename T3, typename T4>
2057 inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty
2058 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3,
2059             const T4 &Op4) {
2060   return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3),
2061                       m_Argument<4>(Op4));
2062 }
2063 
2064 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
2065           typename T3, typename T4, typename T5>
2066 inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5>::Ty
2067 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3,
2068             const T4 &Op4, const T5 &Op5) {
2069   return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3, Op4),
2070                       m_Argument<5>(Op5));
2071 }
2072 
2073 // Helper intrinsic matching specializations.
2074 template <typename Opnd0>
2075 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BitReverse(const Opnd0 &Op0) {
2076   return m_Intrinsic<Intrinsic::bitreverse>(Op0);
2077 }
2078 
2079 template <typename Opnd0>
2080 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BSwap(const Opnd0 &Op0) {
2081   return m_Intrinsic<Intrinsic::bswap>(Op0);
2082 }
2083 
2084 template <typename Opnd0>
2085 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FAbs(const Opnd0 &Op0) {
2086   return m_Intrinsic<Intrinsic::fabs>(Op0);
2087 }
2088 
2089 template <typename Opnd0>
2090 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FCanonicalize(const Opnd0 &Op0) {
2091   return m_Intrinsic<Intrinsic::canonicalize>(Op0);
2092 }
2093 
2094 template <typename Opnd0, typename Opnd1>
2095 inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMin(const Opnd0 &Op0,
2096                                                         const Opnd1 &Op1) {
2097   return m_Intrinsic<Intrinsic::minnum>(Op0, Op1);
2098 }
2099 
2100 template <typename Opnd0, typename Opnd1>
2101 inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMax(const Opnd0 &Op0,
2102                                                         const Opnd1 &Op1) {
2103   return m_Intrinsic<Intrinsic::maxnum>(Op0, Op1);
2104 }
2105 
2106 template <typename Opnd0, typename Opnd1, typename Opnd2>
2107 inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty
2108 m_FShl(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) {
2109   return m_Intrinsic<Intrinsic::fshl>(Op0, Op1, Op2);
2110 }
2111 
2112 template <typename Opnd0, typename Opnd1, typename Opnd2>
2113 inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty
2114 m_FShr(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) {
2115   return m_Intrinsic<Intrinsic::fshr>(Op0, Op1, Op2);
2116 }
2117 
2118 //===----------------------------------------------------------------------===//
2119 // Matchers for two-operands operators with the operators in either order
2120 //
2121 
2122 /// Matches a BinaryOperator with LHS and RHS in either order.
2123 template <typename LHS, typename RHS>
2124 inline AnyBinaryOp_match<LHS, RHS, true> m_c_BinOp(const LHS &L, const RHS &R) {
2125   return AnyBinaryOp_match<LHS, RHS, true>(L, R);
2126 }
2127 
2128 /// Matches an ICmp with a predicate over LHS and RHS in either order.
2129 /// Swaps the predicate if operands are commuted.
2130 template <typename LHS, typename RHS>
2131 inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>
2132 m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
2133   return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>(Pred, L,
2134                                                                        R);
2135 }
2136 
2137 /// Matches a Add with LHS and RHS in either order.
2138 template <typename LHS, typename RHS>
2139 inline BinaryOp_match<LHS, RHS, Instruction::Add, true> m_c_Add(const LHS &L,
2140                                                                 const RHS &R) {
2141   return BinaryOp_match<LHS, RHS, Instruction::Add, true>(L, R);
2142 }
2143 
2144 /// Matches a Mul with LHS and RHS in either order.
2145 template <typename LHS, typename RHS>
2146 inline BinaryOp_match<LHS, RHS, Instruction::Mul, true> m_c_Mul(const LHS &L,
2147                                                                 const RHS &R) {
2148   return BinaryOp_match<LHS, RHS, Instruction::Mul, true>(L, R);
2149 }
2150 
2151 /// Matches an And with LHS and RHS in either order.
2152 template <typename LHS, typename RHS>
2153 inline BinaryOp_match<LHS, RHS, Instruction::And, true> m_c_And(const LHS &L,
2154                                                                 const RHS &R) {
2155   return BinaryOp_match<LHS, RHS, Instruction::And, true>(L, R);
2156 }
2157 
2158 /// Matches an Or with LHS and RHS in either order.
2159 template <typename LHS, typename RHS>
2160 inline BinaryOp_match<LHS, RHS, Instruction::Or, true> m_c_Or(const LHS &L,
2161                                                               const RHS &R) {
2162   return BinaryOp_match<LHS, RHS, Instruction::Or, true>(L, R);
2163 }
2164 
2165 /// Matches an Xor with LHS and RHS in either order.
2166 template <typename LHS, typename RHS>
2167 inline BinaryOp_match<LHS, RHS, Instruction::Xor, true> m_c_Xor(const LHS &L,
2168                                                                 const RHS &R) {
2169   return BinaryOp_match<LHS, RHS, Instruction::Xor, true>(L, R);
2170 }
2171 
2172 /// Matches a 'Neg' as 'sub 0, V'.
2173 template <typename ValTy>
2174 inline BinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, Instruction::Sub>
2175 m_Neg(const ValTy &V) {
2176   return m_Sub(m_ZeroInt(), V);
2177 }
2178 
2179 /// Matches a 'Neg' as 'sub nsw 0, V'.
2180 template <typename ValTy>
2181 inline OverflowingBinaryOp_match<cst_pred_ty<is_zero_int>, ValTy,
2182                                  Instruction::Sub,
2183                                  OverflowingBinaryOperator::NoSignedWrap>
2184 m_NSWNeg(const ValTy &V) {
2185   return m_NSWSub(m_ZeroInt(), V);
2186 }
2187 
2188 /// Matches a 'Not' as 'xor V, -1' or 'xor -1, V'.
2189 template <typename ValTy>
2190 inline BinaryOp_match<ValTy, cst_pred_ty<is_all_ones>, Instruction::Xor, true>
2191 m_Not(const ValTy &V) {
2192   return m_c_Xor(V, m_AllOnes());
2193 }
2194 
2195 /// Matches an SMin with LHS and RHS in either order.
2196 template <typename LHS, typename RHS>
2197 inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>
2198 m_c_SMin(const LHS &L, const RHS &R) {
2199   return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>(L, R);
2200 }
2201 /// Matches an SMax with LHS and RHS in either order.
2202 template <typename LHS, typename RHS>
2203 inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>
2204 m_c_SMax(const LHS &L, const RHS &R) {
2205   return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>(L, R);
2206 }
2207 /// Matches a UMin with LHS and RHS in either order.
2208 template <typename LHS, typename RHS>
2209 inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>
2210 m_c_UMin(const LHS &L, const RHS &R) {
2211   return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>(L, R);
2212 }
2213 /// Matches a UMax with LHS and RHS in either order.
2214 template <typename LHS, typename RHS>
2215 inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>
2216 m_c_UMax(const LHS &L, const RHS &R) {
2217   return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>(L, R);
2218 }
2219 
2220 template <typename LHS, typename RHS>
2221 inline match_combine_or<
2222     match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>,
2223                      MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>>,
2224     match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>,
2225                      MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>>>
2226 m_c_MaxOrMin(const LHS &L, const RHS &R) {
2227   return m_CombineOr(m_CombineOr(m_c_SMax(L, R), m_c_SMin(L, R)),
2228                      m_CombineOr(m_c_UMax(L, R), m_c_UMin(L, R)));
2229 }
2230 
2231 /// Matches FAdd with LHS and RHS in either order.
2232 template <typename LHS, typename RHS>
2233 inline BinaryOp_match<LHS, RHS, Instruction::FAdd, true>
2234 m_c_FAdd(const LHS &L, const RHS &R) {
2235   return BinaryOp_match<LHS, RHS, Instruction::FAdd, true>(L, R);
2236 }
2237 
2238 /// Matches FMul with LHS and RHS in either order.
2239 template <typename LHS, typename RHS>
2240 inline BinaryOp_match<LHS, RHS, Instruction::FMul, true>
2241 m_c_FMul(const LHS &L, const RHS &R) {
2242   return BinaryOp_match<LHS, RHS, Instruction::FMul, true>(L, R);
2243 }
2244 
2245 template <typename Opnd_t> struct Signum_match {
2246   Opnd_t Val;
2247   Signum_match(const Opnd_t &V) : Val(V) {}
2248 
2249   template <typename OpTy> bool match(OpTy *V) {
2250     unsigned TypeSize = V->getType()->getScalarSizeInBits();
2251     if (TypeSize == 0)
2252       return false;
2253 
2254     unsigned ShiftWidth = TypeSize - 1;
2255     Value *OpL = nullptr, *OpR = nullptr;
2256 
2257     // This is the representation of signum we match:
2258     //
2259     //  signum(x) == (x >> 63) | (-x >>u 63)
2260     //
2261     // An i1 value is its own signum, so it's correct to match
2262     //
2263     //  signum(x) == (x >> 0)  | (-x >>u 0)
2264     //
2265     // for i1 values.
2266 
2267     auto LHS = m_AShr(m_Value(OpL), m_SpecificInt(ShiftWidth));
2268     auto RHS = m_LShr(m_Neg(m_Value(OpR)), m_SpecificInt(ShiftWidth));
2269     auto Signum = m_Or(LHS, RHS);
2270 
2271     return Signum.match(V) && OpL == OpR && Val.match(OpL);
2272   }
2273 };
2274 
2275 /// Matches a signum pattern.
2276 ///
2277 /// signum(x) =
2278 ///      x >  0  ->  1
2279 ///      x == 0  ->  0
2280 ///      x <  0  -> -1
2281 template <typename Val_t> inline Signum_match<Val_t> m_Signum(const Val_t &V) {
2282   return Signum_match<Val_t>(V);
2283 }
2284 
2285 template <int Ind, typename Opnd_t> struct ExtractValue_match {
2286   Opnd_t Val;
2287   ExtractValue_match(const Opnd_t &V) : Val(V) {}
2288 
2289   template <typename OpTy> bool match(OpTy *V) {
2290     if (auto *I = dyn_cast<ExtractValueInst>(V))
2291       return I->getNumIndices() == 1 && I->getIndices()[0] == Ind &&
2292              Val.match(I->getAggregateOperand());
2293     return false;
2294   }
2295 };
2296 
2297 /// Match a single index ExtractValue instruction.
2298 /// For example m_ExtractValue<1>(...)
2299 template <int Ind, typename Val_t>
2300 inline ExtractValue_match<Ind, Val_t> m_ExtractValue(const Val_t &V) {
2301   return ExtractValue_match<Ind, Val_t>(V);
2302 }
2303 
2304 /// Matcher for a single index InsertValue instruction.
2305 template <int Ind, typename T0, typename T1> struct InsertValue_match {
2306   T0 Op0;
2307   T1 Op1;
2308 
2309   InsertValue_match(const T0 &Op0, const T1 &Op1) : Op0(Op0), Op1(Op1) {}
2310 
2311   template <typename OpTy> bool match(OpTy *V) {
2312     if (auto *I = dyn_cast<InsertValueInst>(V)) {
2313       return Op0.match(I->getOperand(0)) && Op1.match(I->getOperand(1)) &&
2314              I->getNumIndices() == 1 && Ind == I->getIndices()[0];
2315     }
2316     return false;
2317   }
2318 };
2319 
2320 /// Matches a single index InsertValue instruction.
2321 template <int Ind, typename Val_t, typename Elt_t>
2322 inline InsertValue_match<Ind, Val_t, Elt_t> m_InsertValue(const Val_t &Val,
2323                                                           const Elt_t &Elt) {
2324   return InsertValue_match<Ind, Val_t, Elt_t>(Val, Elt);
2325 }
2326 
2327 /// Matches patterns for `vscale`. This can either be a call to `llvm.vscale` or
2328 /// the constant expression
2329 ///  `ptrtoint(gep <vscale x 1 x i8>, <vscale x 1 x i8>* null, i32 1>`
2330 /// under the right conditions determined by DataLayout.
2331 struct VScaleVal_match {
2332 private:
2333   template <typename Base, typename Offset>
2334   inline BinaryOp_match<Base, Offset, Instruction::GetElementPtr>
2335   m_OffsetGep(const Base &B, const Offset &O) {
2336     return BinaryOp_match<Base, Offset, Instruction::GetElementPtr>(B, O);
2337   }
2338 
2339 public:
2340   const DataLayout &DL;
2341   VScaleVal_match(const DataLayout &DL) : DL(DL) {}
2342 
2343   template <typename ITy> bool match(ITy *V) {
2344     if (m_Intrinsic<Intrinsic::vscale>().match(V))
2345       return true;
2346 
2347     if (m_PtrToInt(m_OffsetGep(m_Zero(), m_SpecificInt(1))).match(V)) {
2348       Type *PtrTy = cast<Operator>(V)->getOperand(0)->getType();
2349       auto *DerefTy = PtrTy->getPointerElementType();
2350       if (isa<ScalableVectorType>(DerefTy) &&
2351           DL.getTypeAllocSizeInBits(DerefTy).getKnownMinSize() == 8)
2352         return true;
2353     }
2354 
2355     return false;
2356   }
2357 };
2358 
2359 inline VScaleVal_match m_VScale(const DataLayout &DL) {
2360   return VScaleVal_match(DL);
2361 }
2362 
2363 } // end namespace PatternMatch
2364 } // end namespace llvm
2365 
2366 #endif // LLVM_IR_PATTERNMATCH_H
2367