• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""Test configs for pad."""
16from __future__ import absolute_import
17from __future__ import division
18from __future__ import print_function
19
20import numpy as np
21import tensorflow.compat.v1 as tf
22from tensorflow.lite.testing.zip_test_utils import create_tensor_data
23from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests
24from tensorflow.lite.testing.zip_test_utils import register_make_test_function
25
26
27@register_make_test_function()
28def make_pad_tests(options):
29  """Make a set of tests to do pad."""
30
31  # TODO(nupurgarg): Add test for tf.uint8.
32  test_parameters = [
33      # 4D:
34      {
35          "dtype": [tf.int32, tf.int64, tf.float32],
36          "input_shape": [[1, 1, 2, 1], [2, 1, 1, 1]],
37          "paddings": [[[0, 0], [0, 1], [2, 3], [0, 0]],
38                       [[0, 1], [0, 0], [0, 0], [2, 3]]],
39          "constant_paddings": [True, False],
40          "fully_quantize": [False],
41          "quant_16x8": [False]
42      },
43      # 2D:
44      {
45          "dtype": [tf.int32, tf.int64, tf.float32],
46          "input_shape": [[1, 2]],
47          "paddings": [[[0, 1], [2, 3]]],
48          "constant_paddings": [True, False],
49          "fully_quantize": [False],
50          "quant_16x8": [False]
51      },
52      # 1D:
53      {
54          "dtype": [tf.int32],
55          "input_shape": [[1]],
56          "paddings": [[[1, 2]]],
57          "constant_paddings": [False],
58          "fully_quantize": [False],
59          "quant_16x8": [False]
60      },
61      # 4D:
62      {
63          "dtype": [tf.float32],
64          "input_shape": [[1, 1, 2, 1], [2, 1, 1, 1]],
65          "paddings": [[[0, 0], [0, 1], [2, 3], [0, 0]],
66                       [[0, 1], [0, 0], [0, 0], [2, 3]],
67                       [[0, 0], [0, 0], [0, 0], [0, 0]]],
68          "constant_paddings": [True],
69          "fully_quantize": [True],
70          "quant_16x8": [False, True]
71      },
72      # 2D:
73      {
74          "dtype": [tf.float32],
75          "input_shape": [[1, 2]],
76          "paddings": [[[0, 1], [2, 3]]],
77          "constant_paddings": [True],
78          "fully_quantize": [True],
79          "quant_16x8": [False, True],
80      },
81      # 1D:
82      {
83          "dtype": [tf.float32],
84          "input_shape": [[1]],
85          "paddings": [[[1, 2]]],
86          "constant_paddings": [True],
87          "fully_quantize": [True],
88          "quant_16x8": [False, True],
89      },
90  ]
91
92  def build_graph(parameters):
93    """Build a pad graph given `parameters`."""
94    input_tensor = tf.compat.v1.placeholder(
95        dtype=parameters["dtype"],
96        name="input",
97        shape=parameters["input_shape"])
98
99    # Get paddings as either a placeholder or constants.
100    if parameters["constant_paddings"]:
101      paddings = parameters["paddings"]
102      input_tensors = [input_tensor]
103    else:
104      shape = [len(parameters["paddings"]), 2]
105      paddings = tf.compat.v1.placeholder(
106          dtype=tf.int32, name="padding", shape=shape)
107      input_tensors = [input_tensor, paddings]
108
109    out = tf.pad(input_tensor, paddings=paddings)
110    return input_tensors, [out]
111
112  def build_inputs(parameters, sess, inputs, outputs):
113    """Build inputs for pad op."""
114
115    values = [
116        create_tensor_data(
117            parameters["dtype"],
118            parameters["input_shape"],
119            min_value=-1,
120            max_value=1)
121    ]
122    if not parameters["constant_paddings"]:
123      values.append(np.array(parameters["paddings"]))
124    return values, sess.run(outputs, feed_dict=dict(zip(inputs, values)))
125
126  make_zip_of_tests(options, test_parameters, build_graph, build_inputs)
127