• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""Test configs for slice."""
16from __future__ import absolute_import
17from __future__ import division
18from __future__ import print_function
19
20import numpy as np
21import tensorflow.compat.v1 as tf
22from tensorflow.lite.testing.zip_test_utils import create_tensor_data
23from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests
24from tensorflow.lite.testing.zip_test_utils import register_make_test_function
25from tensorflow.lite.testing.zip_test_utils import TF_TYPE_INFO
26
27
28@register_make_test_function()
29def make_slice_tests(options):
30  """Make a set of tests to do slice."""
31
32  # TODO(renjieliu): add test/support for uint8.
33  test_parameters = [
34      # 4-D
35      {
36          "dtype": [tf.float32, tf.int32, tf.int64, tf.string],
37          "index_type": [tf.int32, tf.int64],
38          "input_shape": [[12, 2, 2, 5]],
39          "begin": [[0, 0, 0, 0], [1, 0, 1, 0]],
40          "size": [[8, 2, 2, 3], [11, 2, 1, 5]],
41          "constant_indices": [False],
42          "fully_quantize": [False],
43      },
44      # 5-D
45      {
46          "dtype": [tf.float32],
47          "index_type": [tf.int32],
48          "input_shape": [[6, 2, 2, 2, 5]],
49          "begin": [[0, 0, 0, 0, 0], [0, 1, 0, 1, 0]],
50          "size": [[4, 2, 2, 2, 3], [5, 2, 1, 1, 5]],
51          "constant_indices": [False],
52          "fully_quantize": [False],
53      },
54      # 2-D
55      {
56          "dtype": [tf.float32, tf.int32, tf.int64, tf.string],
57          "index_type": [tf.int32, tf.int64],
58          "input_shape": [[2, 3]],
59          "begin": [[0, 0], [1, 0]],
60          "size": [[2, 3], [2, 2]],
61          "constant_indices": [False],
62          "fully_quantize": [False],
63      },
64      # 4-D with size -1
65      {
66          "dtype": [tf.float32],
67          "index_type": [tf.int32],
68          "input_shape": [[4, 4, 4, 4]],
69          "begin": [[0, 0, 0, 0], [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0],
70                    [0, 0, 0, 1]],
71          "size": [[-1, 1, 1, 1], [1, -1, 1, 1], [1, 1, -1, 1], [1, 1, 1, -1]],
72          "constant_indices": [False, True],
73          "fully_quantize": [False],
74      },
75      # last dimension out of index
76      {
77          "dtype": [tf.float32],
78          "index_type": [tf.int32],
79          "input_shape": [[4, 4, 4]],
80          "begin": [[3, 3, 4]],
81          "size": [[-1, -1, -1]],
82          "constant_indices": [False, True],
83          "fully_quantize": [False],
84      },
85      # 4-D
86      {
87          "dtype": [tf.float32],
88          "index_type": [tf.int32],
89          "input_shape": [[12, 2, 2, 5]],
90          "begin": [[0, 0, 0, 0], [1, 0, 1, 0]],
91          "size": [[8, 2, 2, 3], [11, 2, 1, 5]],
92          "constant_indices": [True],
93          "fully_quantize": [True],
94      },
95      # 2-D
96      {
97          "dtype": [tf.float32],
98          "index_type": [tf.int32],
99          "input_shape": [[2, 3]],
100          "begin": [[0, 0], [1, 0]],
101          "size": [[2, 3], [2, 2]],
102          "constant_indices": [True],
103          "fully_quantize": [True],
104      },
105      # 4-D with size -1
106      {
107          "dtype": [tf.float32],
108          "index_type": [tf.int32],
109          "input_shape": [[4, 4, 4, 4]],
110          "begin": [[0, 0, 0, 0], [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0],
111                    [0, 0, 0, 1]],
112          "size": [[-1, 1, 1, 1], [1, -1, 1, 1], [1, 1, -1, 1], [1, 1, 1, -1]],
113          "constant_indices": [True],
114          "fully_quantize": [True],
115      },
116      {
117          "dtype": [tf.float32],
118          "index_type": [tf.int32],
119          "input_shape": [[1, 4, 4, 4]],
120          "begin": [[0, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]],
121          "size": [[-1, 1, 1, 1], [1, -1, 1, 1], [1, 1, -1, 1], [1, 1, 1, -1]],
122          "constant_indices": [True],
123          "fully_quantize": [True],
124      },
125  ]
126
127  def build_graph(parameters):
128    """Build graph for slice test."""
129    input_tensor = tf.compat.v1.placeholder(
130        dtype=parameters["dtype"],
131        name="input",
132        shape=parameters["input_shape"])
133    if parameters["constant_indices"]:
134      index_type = TF_TYPE_INFO[parameters["index_type"]][0]
135      begin_values = np.array(parameters["begin"]).astype(index_type)
136      size_values = np.array(parameters["size"]).astype(index_type)
137      out = tf.slice(input_tensor, begin_values, size_values)
138      return [input_tensor], [out]
139    else:
140      begin = tf.compat.v1.placeholder(
141          dtype=parameters["index_type"],
142          name="begin",
143          shape=[len(parameters["input_shape"])])
144      size = tf.compat.v1.placeholder(
145          dtype=parameters["index_type"],
146          name="size",
147          shape=[len(parameters["input_shape"])])
148      tensors = [input_tensor, begin, size]
149      out = tf.slice(input_tensor, begin, size)
150      return tensors, [out]
151
152  def build_inputs(parameters, sess, inputs, outputs):
153    """Build inputs for slice test."""
154    input_values = create_tensor_data(
155        parameters["dtype"],
156        parameters["input_shape"],
157        min_value=-1,
158        max_value=1)
159    if parameters["constant_indices"]:
160      return [input_values], sess.run(
161          outputs, feed_dict=dict(zip(inputs, [input_values])))
162    else:
163      index_type = TF_TYPE_INFO[parameters["index_type"]][0]
164      begin_values = np.array(parameters["begin"]).astype(index_type)
165      size_values = np.array(parameters["size"]).astype(index_type)
166      values = [input_values, begin_values, size_values]
167      return values, sess.run(outputs, feed_dict=dict(zip(inputs, values)))
168
169  # Note: Not all [begin x size] permutations are compatible for each grouping
170  # of test_parameters, but for brevity we ignore the failures rather than
171  # separating out each compatible set into separate test_parameters entries.
172  make_zip_of_tests(
173      options,
174      test_parameters,
175      build_graph,
176      build_inputs,
177      expected_tf_failures=29)
178