1# Copyright 2019 The TensorFlow Authors. All Rights Reserved. 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================== 15"""Test configs for where.""" 16from __future__ import absolute_import 17from __future__ import division 18from __future__ import print_function 19 20import tensorflow.compat.v1 as tf 21from tensorflow.lite.testing.zip_test_utils import create_tensor_data 22from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests 23from tensorflow.lite.testing.zip_test_utils import register_make_test_function 24 25 26@register_make_test_function() 27def make_where_tests(options): 28 """Make a set of tests to do where.""" 29 30 test_parameters = [ 31 { 32 "input_dtype": [tf.float32, tf.int32], 33 "input_shape_set": [([1, 2, 3, 4], [1, 2, 3, 4]),], 34 "use_where_v2": [False, True], 35 "fully_quantize": [False], 36 }, 37 { 38 "input_dtype": [tf.float32, tf.int32], 39 "input_shape_set": [([], []),], 40 "use_where_v2": [], 41 "fully_quantize": [False], 42 }, 43 { 44 "input_dtype": [tf.float32], 45 "input_shape_set": [([1, 2, 3, 4], [1, 2, 3, 4]), ([], []),], 46 "use_where_v2": [False, True], 47 "fully_quantize": [True], 48 }, 49 ] 50 51 # High dimension broadcasting support in MLIR converter. 52 if options.use_experimental_converter: 53 test_parameters = test_parameters + [ 54 { 55 "input_dtype": [tf.float32, tf.int32], 56 "input_shape_set": [([8, 7, 6, 5, 4, 3, 2, 1], [4, 3, 2, 1]),], 57 "use_where_v2": [True], 58 "fully_quantize": [False], 59 }, 60 { 61 "input_dtype": [tf.float32], 62 "input_shape_set": [([8, 7, 6, 5, 4, 3, 2, 1], [4, 3, 2, 1]),], 63 "use_where_v2": [True], 64 "fully_quantize": [True], 65 }, 66 ] 67 68 def build_graph(parameters): 69 """Build the where op testing graph.""" 70 input_value1 = tf.compat.v1.placeholder( 71 dtype=parameters["input_dtype"], 72 name="input2", 73 shape=parameters["input_shape_set"][0]) 74 input_value2 = tf.compat.v1.placeholder( 75 dtype=parameters["input_dtype"], 76 name="input3", 77 shape=parameters["input_shape_set"][1]) 78 less = tf.less(input_value1, input_value2) 79 where = tf.where_v2 if parameters["use_where_v2"] else tf.where 80 out = where(less, input_value1, input_value2) 81 return [input_value1, input_value2], [out] 82 83 def build_inputs(parameters, sess, inputs, outputs): 84 input_value1 = create_tensor_data(parameters["input_dtype"], 85 parameters["input_shape_set"][0], 86 min_value=-1, max_value=1) 87 input_value2 = create_tensor_data(parameters["input_dtype"], 88 parameters["input_shape_set"][1], 89 min_value=-1, max_value=1) 90 return [input_value1, input_value2], sess.run( 91 outputs, feed_dict=dict(zip(inputs, [input_value1, input_value2]))) 92 93 make_zip_of_tests(options, test_parameters, build_graph, build_inputs) 94