• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines vectorizer utilities.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/VectorUtils.h"
14 #include "llvm/ADT/EquivalenceClasses.h"
15 #include "llvm/Analysis/DemandedBits.h"
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/Analysis/LoopIterator.h"
18 #include "llvm/Analysis/ScalarEvolution.h"
19 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/GetElementPtrTypeIterator.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/IR/Value.h"
27 #include "llvm/Support/CommandLine.h"
28 
29 #define DEBUG_TYPE "vectorutils"
30 
31 using namespace llvm;
32 using namespace llvm::PatternMatch;
33 
34 /// Maximum factor for an interleaved memory access.
35 static cl::opt<unsigned> MaxInterleaveGroupFactor(
36     "max-interleave-group-factor", cl::Hidden,
37     cl::desc("Maximum factor for an interleaved access group (default = 8)"),
38     cl::init(8));
39 
40 /// Return true if all of the intrinsic's arguments and return type are scalars
41 /// for the scalar form of the intrinsic, and vectors for the vector form of the
42 /// intrinsic (except operands that are marked as always being scalar by
43 /// hasVectorInstrinsicScalarOpd).
isTriviallyVectorizable(Intrinsic::ID ID)44 bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) {
45   switch (ID) {
46   case Intrinsic::abs:   // Begin integer bit-manipulation.
47   case Intrinsic::bswap:
48   case Intrinsic::bitreverse:
49   case Intrinsic::ctpop:
50   case Intrinsic::ctlz:
51   case Intrinsic::cttz:
52   case Intrinsic::fshl:
53   case Intrinsic::fshr:
54   case Intrinsic::smax:
55   case Intrinsic::smin:
56   case Intrinsic::umax:
57   case Intrinsic::umin:
58   case Intrinsic::sadd_sat:
59   case Intrinsic::ssub_sat:
60   case Intrinsic::uadd_sat:
61   case Intrinsic::usub_sat:
62   case Intrinsic::smul_fix:
63   case Intrinsic::smul_fix_sat:
64   case Intrinsic::umul_fix:
65   case Intrinsic::umul_fix_sat:
66   case Intrinsic::sqrt: // Begin floating-point.
67   case Intrinsic::sin:
68   case Intrinsic::cos:
69   case Intrinsic::exp:
70   case Intrinsic::exp2:
71   case Intrinsic::log:
72   case Intrinsic::log10:
73   case Intrinsic::log2:
74   case Intrinsic::fabs:
75   case Intrinsic::minnum:
76   case Intrinsic::maxnum:
77   case Intrinsic::minimum:
78   case Intrinsic::maximum:
79   case Intrinsic::copysign:
80   case Intrinsic::floor:
81   case Intrinsic::ceil:
82   case Intrinsic::trunc:
83   case Intrinsic::rint:
84   case Intrinsic::nearbyint:
85   case Intrinsic::round:
86   case Intrinsic::roundeven:
87   case Intrinsic::pow:
88   case Intrinsic::fma:
89   case Intrinsic::fmuladd:
90   case Intrinsic::powi:
91   case Intrinsic::canonicalize:
92     return true;
93   default:
94     return false;
95   }
96 }
97 
98 /// Identifies if the vector form of the intrinsic has a scalar operand.
hasVectorInstrinsicScalarOpd(Intrinsic::ID ID,unsigned ScalarOpdIdx)99 bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID,
100                                         unsigned ScalarOpdIdx) {
101   switch (ID) {
102   case Intrinsic::abs:
103   case Intrinsic::ctlz:
104   case Intrinsic::cttz:
105   case Intrinsic::powi:
106     return (ScalarOpdIdx == 1);
107   case Intrinsic::smul_fix:
108   case Intrinsic::smul_fix_sat:
109   case Intrinsic::umul_fix:
110   case Intrinsic::umul_fix_sat:
111     return (ScalarOpdIdx == 2);
112   default:
113     return false;
114   }
115 }
116 
117 /// Returns intrinsic ID for call.
118 /// For the input call instruction it finds mapping intrinsic and returns
119 /// its ID, in case it does not found it return not_intrinsic.
getVectorIntrinsicIDForCall(const CallInst * CI,const TargetLibraryInfo * TLI)120 Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI,
121                                                 const TargetLibraryInfo *TLI) {
122   Intrinsic::ID ID = getIntrinsicForCallSite(*CI, TLI);
123   if (ID == Intrinsic::not_intrinsic)
124     return Intrinsic::not_intrinsic;
125 
126   if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
127       ID == Intrinsic::lifetime_end || ID == Intrinsic::assume ||
128       ID == Intrinsic::sideeffect || ID == Intrinsic::pseudoprobe)
129     return ID;
130   return Intrinsic::not_intrinsic;
131 }
132 
133 /// Find the operand of the GEP that should be checked for consecutive
134 /// stores. This ignores trailing indices that have no effect on the final
135 /// pointer.
getGEPInductionOperand(const GetElementPtrInst * Gep)136 unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) {
137   const DataLayout &DL = Gep->getModule()->getDataLayout();
138   unsigned LastOperand = Gep->getNumOperands() - 1;
139   TypeSize GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType());
140 
141   // Walk backwards and try to peel off zeros.
142   while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
143     // Find the type we're currently indexing into.
144     gep_type_iterator GEPTI = gep_type_begin(Gep);
145     std::advance(GEPTI, LastOperand - 2);
146 
147     // If it's a type with the same allocation size as the result of the GEP we
148     // can peel off the zero index.
149     if (DL.getTypeAllocSize(GEPTI.getIndexedType()) != GEPAllocSize)
150       break;
151     --LastOperand;
152   }
153 
154   return LastOperand;
155 }
156 
157 /// If the argument is a GEP, then returns the operand identified by
158 /// getGEPInductionOperand. However, if there is some other non-loop-invariant
159 /// operand, it returns that instead.
stripGetElementPtr(Value * Ptr,ScalarEvolution * SE,Loop * Lp)160 Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
161   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
162   if (!GEP)
163     return Ptr;
164 
165   unsigned InductionOperand = getGEPInductionOperand(GEP);
166 
167   // Check that all of the gep indices are uniform except for our induction
168   // operand.
169   for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
170     if (i != InductionOperand &&
171         !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
172       return Ptr;
173   return GEP->getOperand(InductionOperand);
174 }
175 
176 /// If a value has only one user that is a CastInst, return it.
getUniqueCastUse(Value * Ptr,Loop * Lp,Type * Ty)177 Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
178   Value *UniqueCast = nullptr;
179   for (User *U : Ptr->users()) {
180     CastInst *CI = dyn_cast<CastInst>(U);
181     if (CI && CI->getType() == Ty) {
182       if (!UniqueCast)
183         UniqueCast = CI;
184       else
185         return nullptr;
186     }
187   }
188   return UniqueCast;
189 }
190 
191 /// Get the stride of a pointer access in a loop. Looks for symbolic
192 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
getStrideFromPointer(Value * Ptr,ScalarEvolution * SE,Loop * Lp)193 Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
194   auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
195   if (!PtrTy || PtrTy->isAggregateType())
196     return nullptr;
197 
198   // Try to remove a gep instruction to make the pointer (actually index at this
199   // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the
200   // pointer, otherwise, we are analyzing the index.
201   Value *OrigPtr = Ptr;
202 
203   // The size of the pointer access.
204   int64_t PtrAccessSize = 1;
205 
206   Ptr = stripGetElementPtr(Ptr, SE, Lp);
207   const SCEV *V = SE->getSCEV(Ptr);
208 
209   if (Ptr != OrigPtr)
210     // Strip off casts.
211     while (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(V))
212       V = C->getOperand();
213 
214   const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
215   if (!S)
216     return nullptr;
217 
218   V = S->getStepRecurrence(*SE);
219   if (!V)
220     return nullptr;
221 
222   // Strip off the size of access multiplication if we are still analyzing the
223   // pointer.
224   if (OrigPtr == Ptr) {
225     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
226       if (M->getOperand(0)->getSCEVType() != scConstant)
227         return nullptr;
228 
229       const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt();
230 
231       // Huge step value - give up.
232       if (APStepVal.getBitWidth() > 64)
233         return nullptr;
234 
235       int64_t StepVal = APStepVal.getSExtValue();
236       if (PtrAccessSize != StepVal)
237         return nullptr;
238       V = M->getOperand(1);
239     }
240   }
241 
242   // Strip off casts.
243   Type *StripedOffRecurrenceCast = nullptr;
244   if (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(V)) {
245     StripedOffRecurrenceCast = C->getType();
246     V = C->getOperand();
247   }
248 
249   // Look for the loop invariant symbolic value.
250   const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
251   if (!U)
252     return nullptr;
253 
254   Value *Stride = U->getValue();
255   if (!Lp->isLoopInvariant(Stride))
256     return nullptr;
257 
258   // If we have stripped off the recurrence cast we have to make sure that we
259   // return the value that is used in this loop so that we can replace it later.
260   if (StripedOffRecurrenceCast)
261     Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
262 
263   return Stride;
264 }
265 
266 /// Given a vector and an element number, see if the scalar value is
267 /// already around as a register, for example if it were inserted then extracted
268 /// from the vector.
findScalarElement(Value * V,unsigned EltNo)269 Value *llvm::findScalarElement(Value *V, unsigned EltNo) {
270   assert(V->getType()->isVectorTy() && "Not looking at a vector?");
271   VectorType *VTy = cast<VectorType>(V->getType());
272   // For fixed-length vector, return undef for out of range access.
273   if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) {
274     unsigned Width = FVTy->getNumElements();
275     if (EltNo >= Width)
276       return UndefValue::get(FVTy->getElementType());
277   }
278 
279   if (Constant *C = dyn_cast<Constant>(V))
280     return C->getAggregateElement(EltNo);
281 
282   if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
283     // If this is an insert to a variable element, we don't know what it is.
284     if (!isa<ConstantInt>(III->getOperand(2)))
285       return nullptr;
286     unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
287 
288     // If this is an insert to the element we are looking for, return the
289     // inserted value.
290     if (EltNo == IIElt)
291       return III->getOperand(1);
292 
293     // Guard against infinite loop on malformed, unreachable IR.
294     if (III == III->getOperand(0))
295       return nullptr;
296 
297     // Otherwise, the insertelement doesn't modify the value, recurse on its
298     // vector input.
299     return findScalarElement(III->getOperand(0), EltNo);
300   }
301 
302   ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V);
303   // Restrict the following transformation to fixed-length vector.
304   if (SVI && isa<FixedVectorType>(SVI->getType())) {
305     unsigned LHSWidth =
306         cast<FixedVectorType>(SVI->getOperand(0)->getType())->getNumElements();
307     int InEl = SVI->getMaskValue(EltNo);
308     if (InEl < 0)
309       return UndefValue::get(VTy->getElementType());
310     if (InEl < (int)LHSWidth)
311       return findScalarElement(SVI->getOperand(0), InEl);
312     return findScalarElement(SVI->getOperand(1), InEl - LHSWidth);
313   }
314 
315   // Extract a value from a vector add operation with a constant zero.
316   // TODO: Use getBinOpIdentity() to generalize this.
317   Value *Val; Constant *C;
318   if (match(V, m_Add(m_Value(Val), m_Constant(C))))
319     if (Constant *Elt = C->getAggregateElement(EltNo))
320       if (Elt->isNullValue())
321         return findScalarElement(Val, EltNo);
322 
323   // Otherwise, we don't know.
324   return nullptr;
325 }
326 
getSplatIndex(ArrayRef<int> Mask)327 int llvm::getSplatIndex(ArrayRef<int> Mask) {
328   int SplatIndex = -1;
329   for (int M : Mask) {
330     // Ignore invalid (undefined) mask elements.
331     if (M < 0)
332       continue;
333 
334     // There can be only 1 non-negative mask element value if this is a splat.
335     if (SplatIndex != -1 && SplatIndex != M)
336       return -1;
337 
338     // Initialize the splat index to the 1st non-negative mask element.
339     SplatIndex = M;
340   }
341   assert((SplatIndex == -1 || SplatIndex >= 0) && "Negative index?");
342   return SplatIndex;
343 }
344 
345 /// Get splat value if the input is a splat vector or return nullptr.
346 /// This function is not fully general. It checks only 2 cases:
347 /// the input value is (1) a splat constant vector or (2) a sequence
348 /// of instructions that broadcasts a scalar at element 0.
getSplatValue(const Value * V)349 Value *llvm::getSplatValue(const Value *V) {
350   if (isa<VectorType>(V->getType()))
351     if (auto *C = dyn_cast<Constant>(V))
352       return C->getSplatValue();
353 
354   // shuf (inselt ?, Splat, 0), ?, <0, undef, 0, ...>
355   Value *Splat;
356   if (match(V,
357             m_Shuffle(m_InsertElt(m_Value(), m_Value(Splat), m_ZeroInt()),
358                       m_Value(), m_ZeroMask())))
359     return Splat;
360 
361   return nullptr;
362 }
363 
isSplatValue(const Value * V,int Index,unsigned Depth)364 bool llvm::isSplatValue(const Value *V, int Index, unsigned Depth) {
365   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
366 
367   if (isa<VectorType>(V->getType())) {
368     if (isa<UndefValue>(V))
369       return true;
370     // FIXME: We can allow undefs, but if Index was specified, we may want to
371     //        check that the constant is defined at that index.
372     if (auto *C = dyn_cast<Constant>(V))
373       return C->getSplatValue() != nullptr;
374   }
375 
376   if (auto *Shuf = dyn_cast<ShuffleVectorInst>(V)) {
377     // FIXME: We can safely allow undefs here. If Index was specified, we will
378     //        check that the mask elt is defined at the required index.
379     if (!is_splat(Shuf->getShuffleMask()))
380       return false;
381 
382     // Match any index.
383     if (Index == -1)
384       return true;
385 
386     // Match a specific element. The mask should be defined at and match the
387     // specified index.
388     return Shuf->getMaskValue(Index) == Index;
389   }
390 
391   // The remaining tests are all recursive, so bail out if we hit the limit.
392   if (Depth++ == MaxAnalysisRecursionDepth)
393     return false;
394 
395   // If both operands of a binop are splats, the result is a splat.
396   Value *X, *Y, *Z;
397   if (match(V, m_BinOp(m_Value(X), m_Value(Y))))
398     return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth);
399 
400   // If all operands of a select are splats, the result is a splat.
401   if (match(V, m_Select(m_Value(X), m_Value(Y), m_Value(Z))))
402     return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth) &&
403            isSplatValue(Z, Index, Depth);
404 
405   // TODO: Add support for unary ops (fneg), casts, intrinsics (overflow ops).
406 
407   return false;
408 }
409 
narrowShuffleMaskElts(int Scale,ArrayRef<int> Mask,SmallVectorImpl<int> & ScaledMask)410 void llvm::narrowShuffleMaskElts(int Scale, ArrayRef<int> Mask,
411                                  SmallVectorImpl<int> &ScaledMask) {
412   assert(Scale > 0 && "Unexpected scaling factor");
413 
414   // Fast-path: if no scaling, then it is just a copy.
415   if (Scale == 1) {
416     ScaledMask.assign(Mask.begin(), Mask.end());
417     return;
418   }
419 
420   ScaledMask.clear();
421   for (int MaskElt : Mask) {
422     if (MaskElt >= 0) {
423       assert(((uint64_t)Scale * MaskElt + (Scale - 1)) <= INT32_MAX &&
424              "Overflowed 32-bits");
425     }
426     for (int SliceElt = 0; SliceElt != Scale; ++SliceElt)
427       ScaledMask.push_back(MaskElt < 0 ? MaskElt : Scale * MaskElt + SliceElt);
428   }
429 }
430 
widenShuffleMaskElts(int Scale,ArrayRef<int> Mask,SmallVectorImpl<int> & ScaledMask)431 bool llvm::widenShuffleMaskElts(int Scale, ArrayRef<int> Mask,
432                                 SmallVectorImpl<int> &ScaledMask) {
433   assert(Scale > 0 && "Unexpected scaling factor");
434 
435   // Fast-path: if no scaling, then it is just a copy.
436   if (Scale == 1) {
437     ScaledMask.assign(Mask.begin(), Mask.end());
438     return true;
439   }
440 
441   // We must map the original elements down evenly to a type with less elements.
442   int NumElts = Mask.size();
443   if (NumElts % Scale != 0)
444     return false;
445 
446   ScaledMask.clear();
447   ScaledMask.reserve(NumElts / Scale);
448 
449   // Step through the input mask by splitting into Scale-sized slices.
450   do {
451     ArrayRef<int> MaskSlice = Mask.take_front(Scale);
452     assert((int)MaskSlice.size() == Scale && "Expected Scale-sized slice.");
453 
454     // The first element of the slice determines how we evaluate this slice.
455     int SliceFront = MaskSlice.front();
456     if (SliceFront < 0) {
457       // Negative values (undef or other "sentinel" values) must be equal across
458       // the entire slice.
459       if (!is_splat(MaskSlice))
460         return false;
461       ScaledMask.push_back(SliceFront);
462     } else {
463       // A positive mask element must be cleanly divisible.
464       if (SliceFront % Scale != 0)
465         return false;
466       // Elements of the slice must be consecutive.
467       for (int i = 1; i < Scale; ++i)
468         if (MaskSlice[i] != SliceFront + i)
469           return false;
470       ScaledMask.push_back(SliceFront / Scale);
471     }
472     Mask = Mask.drop_front(Scale);
473   } while (!Mask.empty());
474 
475   assert((int)ScaledMask.size() * Scale == NumElts && "Unexpected scaled mask");
476 
477   // All elements of the original mask can be scaled down to map to the elements
478   // of a mask with wider elements.
479   return true;
480 }
481 
482 MapVector<Instruction *, uint64_t>
computeMinimumValueSizes(ArrayRef<BasicBlock * > Blocks,DemandedBits & DB,const TargetTransformInfo * TTI)483 llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB,
484                                const TargetTransformInfo *TTI) {
485 
486   // DemandedBits will give us every value's live-out bits. But we want
487   // to ensure no extra casts would need to be inserted, so every DAG
488   // of connected values must have the same minimum bitwidth.
489   EquivalenceClasses<Value *> ECs;
490   SmallVector<Value *, 16> Worklist;
491   SmallPtrSet<Value *, 4> Roots;
492   SmallPtrSet<Value *, 16> Visited;
493   DenseMap<Value *, uint64_t> DBits;
494   SmallPtrSet<Instruction *, 4> InstructionSet;
495   MapVector<Instruction *, uint64_t> MinBWs;
496 
497   // Determine the roots. We work bottom-up, from truncs or icmps.
498   bool SeenExtFromIllegalType = false;
499   for (auto *BB : Blocks)
500     for (auto &I : *BB) {
501       InstructionSet.insert(&I);
502 
503       if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) &&
504           !TTI->isTypeLegal(I.getOperand(0)->getType()))
505         SeenExtFromIllegalType = true;
506 
507       // Only deal with non-vector integers up to 64-bits wide.
508       if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) &&
509           !I.getType()->isVectorTy() &&
510           I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) {
511         // Don't make work for ourselves. If we know the loaded type is legal,
512         // don't add it to the worklist.
513         if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType()))
514           continue;
515 
516         Worklist.push_back(&I);
517         Roots.insert(&I);
518       }
519     }
520   // Early exit.
521   if (Worklist.empty() || (TTI && !SeenExtFromIllegalType))
522     return MinBWs;
523 
524   // Now proceed breadth-first, unioning values together.
525   while (!Worklist.empty()) {
526     Value *Val = Worklist.pop_back_val();
527     Value *Leader = ECs.getOrInsertLeaderValue(Val);
528 
529     if (Visited.count(Val))
530       continue;
531     Visited.insert(Val);
532 
533     // Non-instructions terminate a chain successfully.
534     if (!isa<Instruction>(Val))
535       continue;
536     Instruction *I = cast<Instruction>(Val);
537 
538     // If we encounter a type that is larger than 64 bits, we can't represent
539     // it so bail out.
540     if (DB.getDemandedBits(I).getBitWidth() > 64)
541       return MapVector<Instruction *, uint64_t>();
542 
543     uint64_t V = DB.getDemandedBits(I).getZExtValue();
544     DBits[Leader] |= V;
545     DBits[I] = V;
546 
547     // Casts, loads and instructions outside of our range terminate a chain
548     // successfully.
549     if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) ||
550         !InstructionSet.count(I))
551       continue;
552 
553     // Unsafe casts terminate a chain unsuccessfully. We can't do anything
554     // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to
555     // transform anything that relies on them.
556     if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) ||
557         !I->getType()->isIntegerTy()) {
558       DBits[Leader] |= ~0ULL;
559       continue;
560     }
561 
562     // We don't modify the types of PHIs. Reductions will already have been
563     // truncated if possible, and inductions' sizes will have been chosen by
564     // indvars.
565     if (isa<PHINode>(I))
566       continue;
567 
568     if (DBits[Leader] == ~0ULL)
569       // All bits demanded, no point continuing.
570       continue;
571 
572     for (Value *O : cast<User>(I)->operands()) {
573       ECs.unionSets(Leader, O);
574       Worklist.push_back(O);
575     }
576   }
577 
578   // Now we've discovered all values, walk them to see if there are
579   // any users we didn't see. If there are, we can't optimize that
580   // chain.
581   for (auto &I : DBits)
582     for (auto *U : I.first->users())
583       if (U->getType()->isIntegerTy() && DBits.count(U) == 0)
584         DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL;
585 
586   for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) {
587     uint64_t LeaderDemandedBits = 0;
588     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
589       LeaderDemandedBits |= DBits[*MI];
590 
591     uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) -
592                      llvm::countLeadingZeros(LeaderDemandedBits);
593     // Round up to a power of 2
594     if (!isPowerOf2_64((uint64_t)MinBW))
595       MinBW = NextPowerOf2(MinBW);
596 
597     // We don't modify the types of PHIs. Reductions will already have been
598     // truncated if possible, and inductions' sizes will have been chosen by
599     // indvars.
600     // If we are required to shrink a PHI, abandon this entire equivalence class.
601     bool Abort = false;
602     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
603       if (isa<PHINode>(*MI) && MinBW < (*MI)->getType()->getScalarSizeInBits()) {
604         Abort = true;
605         break;
606       }
607     if (Abort)
608       continue;
609 
610     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) {
611       if (!isa<Instruction>(*MI))
612         continue;
613       Type *Ty = (*MI)->getType();
614       if (Roots.count(*MI))
615         Ty = cast<Instruction>(*MI)->getOperand(0)->getType();
616       if (MinBW < Ty->getScalarSizeInBits())
617         MinBWs[cast<Instruction>(*MI)] = MinBW;
618     }
619   }
620 
621   return MinBWs;
622 }
623 
624 /// Add all access groups in @p AccGroups to @p List.
625 template <typename ListT>
addToAccessGroupList(ListT & List,MDNode * AccGroups)626 static void addToAccessGroupList(ListT &List, MDNode *AccGroups) {
627   // Interpret an access group as a list containing itself.
628   if (AccGroups->getNumOperands() == 0) {
629     assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group");
630     List.insert(AccGroups);
631     return;
632   }
633 
634   for (auto &AccGroupListOp : AccGroups->operands()) {
635     auto *Item = cast<MDNode>(AccGroupListOp.get());
636     assert(isValidAsAccessGroup(Item) && "List item must be an access group");
637     List.insert(Item);
638   }
639 }
640 
uniteAccessGroups(MDNode * AccGroups1,MDNode * AccGroups2)641 MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) {
642   if (!AccGroups1)
643     return AccGroups2;
644   if (!AccGroups2)
645     return AccGroups1;
646   if (AccGroups1 == AccGroups2)
647     return AccGroups1;
648 
649   SmallSetVector<Metadata *, 4> Union;
650   addToAccessGroupList(Union, AccGroups1);
651   addToAccessGroupList(Union, AccGroups2);
652 
653   if (Union.size() == 0)
654     return nullptr;
655   if (Union.size() == 1)
656     return cast<MDNode>(Union.front());
657 
658   LLVMContext &Ctx = AccGroups1->getContext();
659   return MDNode::get(Ctx, Union.getArrayRef());
660 }
661 
intersectAccessGroups(const Instruction * Inst1,const Instruction * Inst2)662 MDNode *llvm::intersectAccessGroups(const Instruction *Inst1,
663                                     const Instruction *Inst2) {
664   bool MayAccessMem1 = Inst1->mayReadOrWriteMemory();
665   bool MayAccessMem2 = Inst2->mayReadOrWriteMemory();
666 
667   if (!MayAccessMem1 && !MayAccessMem2)
668     return nullptr;
669   if (!MayAccessMem1)
670     return Inst2->getMetadata(LLVMContext::MD_access_group);
671   if (!MayAccessMem2)
672     return Inst1->getMetadata(LLVMContext::MD_access_group);
673 
674   MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group);
675   MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group);
676   if (!MD1 || !MD2)
677     return nullptr;
678   if (MD1 == MD2)
679     return MD1;
680 
681   // Use set for scalable 'contains' check.
682   SmallPtrSet<Metadata *, 4> AccGroupSet2;
683   addToAccessGroupList(AccGroupSet2, MD2);
684 
685   SmallVector<Metadata *, 4> Intersection;
686   if (MD1->getNumOperands() == 0) {
687     assert(isValidAsAccessGroup(MD1) && "Node must be an access group");
688     if (AccGroupSet2.count(MD1))
689       Intersection.push_back(MD1);
690   } else {
691     for (const MDOperand &Node : MD1->operands()) {
692       auto *Item = cast<MDNode>(Node.get());
693       assert(isValidAsAccessGroup(Item) && "List item must be an access group");
694       if (AccGroupSet2.count(Item))
695         Intersection.push_back(Item);
696     }
697   }
698 
699   if (Intersection.size() == 0)
700     return nullptr;
701   if (Intersection.size() == 1)
702     return cast<MDNode>(Intersection.front());
703 
704   LLVMContext &Ctx = Inst1->getContext();
705   return MDNode::get(Ctx, Intersection);
706 }
707 
708 /// \returns \p I after propagating metadata from \p VL.
propagateMetadata(Instruction * Inst,ArrayRef<Value * > VL)709 Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) {
710   Instruction *I0 = cast<Instruction>(VL[0]);
711   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
712   I0->getAllMetadataOtherThanDebugLoc(Metadata);
713 
714   for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
715                     LLVMContext::MD_noalias, LLVMContext::MD_fpmath,
716                     LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load,
717                     LLVMContext::MD_access_group}) {
718     MDNode *MD = I0->getMetadata(Kind);
719 
720     for (int J = 1, E = VL.size(); MD && J != E; ++J) {
721       const Instruction *IJ = cast<Instruction>(VL[J]);
722       MDNode *IMD = IJ->getMetadata(Kind);
723       switch (Kind) {
724       case LLVMContext::MD_tbaa:
725         MD = MDNode::getMostGenericTBAA(MD, IMD);
726         break;
727       case LLVMContext::MD_alias_scope:
728         MD = MDNode::getMostGenericAliasScope(MD, IMD);
729         break;
730       case LLVMContext::MD_fpmath:
731         MD = MDNode::getMostGenericFPMath(MD, IMD);
732         break;
733       case LLVMContext::MD_noalias:
734       case LLVMContext::MD_nontemporal:
735       case LLVMContext::MD_invariant_load:
736         MD = MDNode::intersect(MD, IMD);
737         break;
738       case LLVMContext::MD_access_group:
739         MD = intersectAccessGroups(Inst, IJ);
740         break;
741       default:
742         llvm_unreachable("unhandled metadata");
743       }
744     }
745 
746     Inst->setMetadata(Kind, MD);
747   }
748 
749   return Inst;
750 }
751 
752 Constant *
createBitMaskForGaps(IRBuilderBase & Builder,unsigned VF,const InterleaveGroup<Instruction> & Group)753 llvm::createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF,
754                            const InterleaveGroup<Instruction> &Group) {
755   // All 1's means mask is not needed.
756   if (Group.getNumMembers() == Group.getFactor())
757     return nullptr;
758 
759   // TODO: support reversed access.
760   assert(!Group.isReverse() && "Reversed group not supported.");
761 
762   SmallVector<Constant *, 16> Mask;
763   for (unsigned i = 0; i < VF; i++)
764     for (unsigned j = 0; j < Group.getFactor(); ++j) {
765       unsigned HasMember = Group.getMember(j) ? 1 : 0;
766       Mask.push_back(Builder.getInt1(HasMember));
767     }
768 
769   return ConstantVector::get(Mask);
770 }
771 
772 llvm::SmallVector<int, 16>
createReplicatedMask(unsigned ReplicationFactor,unsigned VF)773 llvm::createReplicatedMask(unsigned ReplicationFactor, unsigned VF) {
774   SmallVector<int, 16> MaskVec;
775   for (unsigned i = 0; i < VF; i++)
776     for (unsigned j = 0; j < ReplicationFactor; j++)
777       MaskVec.push_back(i);
778 
779   return MaskVec;
780 }
781 
createInterleaveMask(unsigned VF,unsigned NumVecs)782 llvm::SmallVector<int, 16> llvm::createInterleaveMask(unsigned VF,
783                                                       unsigned NumVecs) {
784   SmallVector<int, 16> Mask;
785   for (unsigned i = 0; i < VF; i++)
786     for (unsigned j = 0; j < NumVecs; j++)
787       Mask.push_back(j * VF + i);
788 
789   return Mask;
790 }
791 
792 llvm::SmallVector<int, 16>
createStrideMask(unsigned Start,unsigned Stride,unsigned VF)793 llvm::createStrideMask(unsigned Start, unsigned Stride, unsigned VF) {
794   SmallVector<int, 16> Mask;
795   for (unsigned i = 0; i < VF; i++)
796     Mask.push_back(Start + i * Stride);
797 
798   return Mask;
799 }
800 
createSequentialMask(unsigned Start,unsigned NumInts,unsigned NumUndefs)801 llvm::SmallVector<int, 16> llvm::createSequentialMask(unsigned Start,
802                                                       unsigned NumInts,
803                                                       unsigned NumUndefs) {
804   SmallVector<int, 16> Mask;
805   for (unsigned i = 0; i < NumInts; i++)
806     Mask.push_back(Start + i);
807 
808   for (unsigned i = 0; i < NumUndefs; i++)
809     Mask.push_back(-1);
810 
811   return Mask;
812 }
813 
814 /// A helper function for concatenating vectors. This function concatenates two
815 /// vectors having the same element type. If the second vector has fewer
816 /// elements than the first, it is padded with undefs.
concatenateTwoVectors(IRBuilderBase & Builder,Value * V1,Value * V2)817 static Value *concatenateTwoVectors(IRBuilderBase &Builder, Value *V1,
818                                     Value *V2) {
819   VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType());
820   VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType());
821   assert(VecTy1 && VecTy2 &&
822          VecTy1->getScalarType() == VecTy2->getScalarType() &&
823          "Expect two vectors with the same element type");
824 
825   unsigned NumElts1 = cast<FixedVectorType>(VecTy1)->getNumElements();
826   unsigned NumElts2 = cast<FixedVectorType>(VecTy2)->getNumElements();
827   assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements");
828 
829   if (NumElts1 > NumElts2) {
830     // Extend with UNDEFs.
831     V2 = Builder.CreateShuffleVector(
832         V2, UndefValue::get(VecTy2),
833         createSequentialMask(0, NumElts2, NumElts1 - NumElts2));
834   }
835 
836   return Builder.CreateShuffleVector(
837       V1, V2, createSequentialMask(0, NumElts1 + NumElts2, 0));
838 }
839 
concatenateVectors(IRBuilderBase & Builder,ArrayRef<Value * > Vecs)840 Value *llvm::concatenateVectors(IRBuilderBase &Builder,
841                                 ArrayRef<Value *> Vecs) {
842   unsigned NumVecs = Vecs.size();
843   assert(NumVecs > 1 && "Should be at least two vectors");
844 
845   SmallVector<Value *, 8> ResList;
846   ResList.append(Vecs.begin(), Vecs.end());
847   do {
848     SmallVector<Value *, 8> TmpList;
849     for (unsigned i = 0; i < NumVecs - 1; i += 2) {
850       Value *V0 = ResList[i], *V1 = ResList[i + 1];
851       assert((V0->getType() == V1->getType() || i == NumVecs - 2) &&
852              "Only the last vector may have a different type");
853 
854       TmpList.push_back(concatenateTwoVectors(Builder, V0, V1));
855     }
856 
857     // Push the last vector if the total number of vectors is odd.
858     if (NumVecs % 2 != 0)
859       TmpList.push_back(ResList[NumVecs - 1]);
860 
861     ResList = TmpList;
862     NumVecs = ResList.size();
863   } while (NumVecs > 1);
864 
865   return ResList[0];
866 }
867 
maskIsAllZeroOrUndef(Value * Mask)868 bool llvm::maskIsAllZeroOrUndef(Value *Mask) {
869   assert(isa<VectorType>(Mask->getType()) &&
870          isa<IntegerType>(Mask->getType()->getScalarType()) &&
871          cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
872              1 &&
873          "Mask must be a vector of i1");
874 
875   auto *ConstMask = dyn_cast<Constant>(Mask);
876   if (!ConstMask)
877     return false;
878   if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask))
879     return true;
880   if (isa<ScalableVectorType>(ConstMask->getType()))
881     return false;
882   for (unsigned
883            I = 0,
884            E = cast<FixedVectorType>(ConstMask->getType())->getNumElements();
885        I != E; ++I) {
886     if (auto *MaskElt = ConstMask->getAggregateElement(I))
887       if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt))
888         continue;
889     return false;
890   }
891   return true;
892 }
893 
894 
maskIsAllOneOrUndef(Value * Mask)895 bool llvm::maskIsAllOneOrUndef(Value *Mask) {
896   assert(isa<VectorType>(Mask->getType()) &&
897          isa<IntegerType>(Mask->getType()->getScalarType()) &&
898          cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
899              1 &&
900          "Mask must be a vector of i1");
901 
902   auto *ConstMask = dyn_cast<Constant>(Mask);
903   if (!ConstMask)
904     return false;
905   if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask))
906     return true;
907   if (isa<ScalableVectorType>(ConstMask->getType()))
908     return false;
909   for (unsigned
910            I = 0,
911            E = cast<FixedVectorType>(ConstMask->getType())->getNumElements();
912        I != E; ++I) {
913     if (auto *MaskElt = ConstMask->getAggregateElement(I))
914       if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt))
915         continue;
916     return false;
917   }
918   return true;
919 }
920 
921 /// TODO: This is a lot like known bits, but for
922 /// vectors.  Is there something we can common this with?
possiblyDemandedEltsInMask(Value * Mask)923 APInt llvm::possiblyDemandedEltsInMask(Value *Mask) {
924   assert(isa<FixedVectorType>(Mask->getType()) &&
925          isa<IntegerType>(Mask->getType()->getScalarType()) &&
926          cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
927              1 &&
928          "Mask must be a fixed width vector of i1");
929 
930   const unsigned VWidth =
931       cast<FixedVectorType>(Mask->getType())->getNumElements();
932   APInt DemandedElts = APInt::getAllOnesValue(VWidth);
933   if (auto *CV = dyn_cast<ConstantVector>(Mask))
934     for (unsigned i = 0; i < VWidth; i++)
935       if (CV->getAggregateElement(i)->isNullValue())
936         DemandedElts.clearBit(i);
937   return DemandedElts;
938 }
939 
isStrided(int Stride)940 bool InterleavedAccessInfo::isStrided(int Stride) {
941   unsigned Factor = std::abs(Stride);
942   return Factor >= 2 && Factor <= MaxInterleaveGroupFactor;
943 }
944 
collectConstStrideAccesses(MapVector<Instruction *,StrideDescriptor> & AccessStrideInfo,const ValueToValueMap & Strides)945 void InterleavedAccessInfo::collectConstStrideAccesses(
946     MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
947     const ValueToValueMap &Strides) {
948   auto &DL = TheLoop->getHeader()->getModule()->getDataLayout();
949 
950   // Since it's desired that the load/store instructions be maintained in
951   // "program order" for the interleaved access analysis, we have to visit the
952   // blocks in the loop in reverse postorder (i.e., in a topological order).
953   // Such an ordering will ensure that any load/store that may be executed
954   // before a second load/store will precede the second load/store in
955   // AccessStrideInfo.
956   LoopBlocksDFS DFS(TheLoop);
957   DFS.perform(LI);
958   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO()))
959     for (auto &I : *BB) {
960       auto *LI = dyn_cast<LoadInst>(&I);
961       auto *SI = dyn_cast<StoreInst>(&I);
962       if (!LI && !SI)
963         continue;
964 
965       Value *Ptr = getLoadStorePointerOperand(&I);
966       // We don't check wrapping here because we don't know yet if Ptr will be
967       // part of a full group or a group with gaps. Checking wrapping for all
968       // pointers (even those that end up in groups with no gaps) will be overly
969       // conservative. For full groups, wrapping should be ok since if we would
970       // wrap around the address space we would do a memory access at nullptr
971       // even without the transformation. The wrapping checks are therefore
972       // deferred until after we've formed the interleaved groups.
973       int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides,
974                                     /*Assume=*/true, /*ShouldCheckWrap=*/false);
975 
976       const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
977       PointerType *PtrTy = cast<PointerType>(Ptr->getType());
978       uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
979       AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size,
980                                               getLoadStoreAlignment(&I));
981     }
982 }
983 
984 // Analyze interleaved accesses and collect them into interleaved load and
985 // store groups.
986 //
987 // When generating code for an interleaved load group, we effectively hoist all
988 // loads in the group to the location of the first load in program order. When
989 // generating code for an interleaved store group, we sink all stores to the
990 // location of the last store. This code motion can change the order of load
991 // and store instructions and may break dependences.
992 //
993 // The code generation strategy mentioned above ensures that we won't violate
994 // any write-after-read (WAR) dependences.
995 //
996 // E.g., for the WAR dependence:  a = A[i];      // (1)
997 //                                A[i] = b;      // (2)
998 //
999 // The store group of (2) is always inserted at or below (2), and the load
1000 // group of (1) is always inserted at or above (1). Thus, the instructions will
1001 // never be reordered. All other dependences are checked to ensure the
1002 // correctness of the instruction reordering.
1003 //
1004 // The algorithm visits all memory accesses in the loop in bottom-up program
1005 // order. Program order is established by traversing the blocks in the loop in
1006 // reverse postorder when collecting the accesses.
1007 //
1008 // We visit the memory accesses in bottom-up order because it can simplify the
1009 // construction of store groups in the presence of write-after-write (WAW)
1010 // dependences.
1011 //
1012 // E.g., for the WAW dependence:  A[i] = a;      // (1)
1013 //                                A[i] = b;      // (2)
1014 //                                A[i + 1] = c;  // (3)
1015 //
1016 // We will first create a store group with (3) and (2). (1) can't be added to
1017 // this group because it and (2) are dependent. However, (1) can be grouped
1018 // with other accesses that may precede it in program order. Note that a
1019 // bottom-up order does not imply that WAW dependences should not be checked.
analyzeInterleaving(bool EnablePredicatedInterleavedMemAccesses)1020 void InterleavedAccessInfo::analyzeInterleaving(
1021                                  bool EnablePredicatedInterleavedMemAccesses) {
1022   LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n");
1023   const ValueToValueMap &Strides = LAI->getSymbolicStrides();
1024 
1025   // Holds all accesses with a constant stride.
1026   MapVector<Instruction *, StrideDescriptor> AccessStrideInfo;
1027   collectConstStrideAccesses(AccessStrideInfo, Strides);
1028 
1029   if (AccessStrideInfo.empty())
1030     return;
1031 
1032   // Collect the dependences in the loop.
1033   collectDependences();
1034 
1035   // Holds all interleaved store groups temporarily.
1036   SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups;
1037   // Holds all interleaved load groups temporarily.
1038   SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups;
1039 
1040   // Search in bottom-up program order for pairs of accesses (A and B) that can
1041   // form interleaved load or store groups. In the algorithm below, access A
1042   // precedes access B in program order. We initialize a group for B in the
1043   // outer loop of the algorithm, and then in the inner loop, we attempt to
1044   // insert each A into B's group if:
1045   //
1046   //  1. A and B have the same stride,
1047   //  2. A and B have the same memory object size, and
1048   //  3. A belongs in B's group according to its distance from B.
1049   //
1050   // Special care is taken to ensure group formation will not break any
1051   // dependences.
1052   for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend();
1053        BI != E; ++BI) {
1054     Instruction *B = BI->first;
1055     StrideDescriptor DesB = BI->second;
1056 
1057     // Initialize a group for B if it has an allowable stride. Even if we don't
1058     // create a group for B, we continue with the bottom-up algorithm to ensure
1059     // we don't break any of B's dependences.
1060     InterleaveGroup<Instruction> *Group = nullptr;
1061     if (isStrided(DesB.Stride) &&
1062         (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) {
1063       Group = getInterleaveGroup(B);
1064       if (!Group) {
1065         LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B
1066                           << '\n');
1067         Group = createInterleaveGroup(B, DesB.Stride, DesB.Alignment);
1068       }
1069       if (B->mayWriteToMemory())
1070         StoreGroups.insert(Group);
1071       else
1072         LoadGroups.insert(Group);
1073     }
1074 
1075     for (auto AI = std::next(BI); AI != E; ++AI) {
1076       Instruction *A = AI->first;
1077       StrideDescriptor DesA = AI->second;
1078 
1079       // Our code motion strategy implies that we can't have dependences
1080       // between accesses in an interleaved group and other accesses located
1081       // between the first and last member of the group. Note that this also
1082       // means that a group can't have more than one member at a given offset.
1083       // The accesses in a group can have dependences with other accesses, but
1084       // we must ensure we don't extend the boundaries of the group such that
1085       // we encompass those dependent accesses.
1086       //
1087       // For example, assume we have the sequence of accesses shown below in a
1088       // stride-2 loop:
1089       //
1090       //  (1, 2) is a group | A[i]   = a;  // (1)
1091       //                    | A[i-1] = b;  // (2) |
1092       //                      A[i-3] = c;  // (3)
1093       //                      A[i]   = d;  // (4) | (2, 4) is not a group
1094       //
1095       // Because accesses (2) and (3) are dependent, we can group (2) with (1)
1096       // but not with (4). If we did, the dependent access (3) would be within
1097       // the boundaries of the (2, 4) group.
1098       if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) {
1099         // If a dependence exists and A is already in a group, we know that A
1100         // must be a store since A precedes B and WAR dependences are allowed.
1101         // Thus, A would be sunk below B. We release A's group to prevent this
1102         // illegal code motion. A will then be free to form another group with
1103         // instructions that precede it.
1104         if (isInterleaved(A)) {
1105           InterleaveGroup<Instruction> *StoreGroup = getInterleaveGroup(A);
1106 
1107           LLVM_DEBUG(dbgs() << "LV: Invalidated store group due to "
1108                                "dependence between " << *A << " and "<< *B << '\n');
1109 
1110           StoreGroups.remove(StoreGroup);
1111           releaseGroup(StoreGroup);
1112         }
1113 
1114         // If a dependence exists and A is not already in a group (or it was
1115         // and we just released it), B might be hoisted above A (if B is a
1116         // load) or another store might be sunk below A (if B is a store). In
1117         // either case, we can't add additional instructions to B's group. B
1118         // will only form a group with instructions that it precedes.
1119         break;
1120       }
1121 
1122       // At this point, we've checked for illegal code motion. If either A or B
1123       // isn't strided, there's nothing left to do.
1124       if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride))
1125         continue;
1126 
1127       // Ignore A if it's already in a group or isn't the same kind of memory
1128       // operation as B.
1129       // Note that mayReadFromMemory() isn't mutually exclusive to
1130       // mayWriteToMemory in the case of atomic loads. We shouldn't see those
1131       // here, canVectorizeMemory() should have returned false - except for the
1132       // case we asked for optimization remarks.
1133       if (isInterleaved(A) ||
1134           (A->mayReadFromMemory() != B->mayReadFromMemory()) ||
1135           (A->mayWriteToMemory() != B->mayWriteToMemory()))
1136         continue;
1137 
1138       // Check rules 1 and 2. Ignore A if its stride or size is different from
1139       // that of B.
1140       if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size)
1141         continue;
1142 
1143       // Ignore A if the memory object of A and B don't belong to the same
1144       // address space
1145       if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B))
1146         continue;
1147 
1148       // Calculate the distance from A to B.
1149       const SCEVConstant *DistToB = dyn_cast<SCEVConstant>(
1150           PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev));
1151       if (!DistToB)
1152         continue;
1153       int64_t DistanceToB = DistToB->getAPInt().getSExtValue();
1154 
1155       // Check rule 3. Ignore A if its distance to B is not a multiple of the
1156       // size.
1157       if (DistanceToB % static_cast<int64_t>(DesB.Size))
1158         continue;
1159 
1160       // All members of a predicated interleave-group must have the same predicate,
1161       // and currently must reside in the same BB.
1162       BasicBlock *BlockA = A->getParent();
1163       BasicBlock *BlockB = B->getParent();
1164       if ((isPredicated(BlockA) || isPredicated(BlockB)) &&
1165           (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB))
1166         continue;
1167 
1168       // The index of A is the index of B plus A's distance to B in multiples
1169       // of the size.
1170       int IndexA =
1171           Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size);
1172 
1173       // Try to insert A into B's group.
1174       if (Group->insertMember(A, IndexA, DesA.Alignment)) {
1175         LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n'
1176                           << "    into the interleave group with" << *B
1177                           << '\n');
1178         InterleaveGroupMap[A] = Group;
1179 
1180         // Set the first load in program order as the insert position.
1181         if (A->mayReadFromMemory())
1182           Group->setInsertPos(A);
1183       }
1184     } // Iteration over A accesses.
1185   }   // Iteration over B accesses.
1186 
1187   // Remove interleaved store groups with gaps.
1188   for (auto *Group : StoreGroups)
1189     if (Group->getNumMembers() != Group->getFactor()) {
1190       LLVM_DEBUG(
1191           dbgs() << "LV: Invalidate candidate interleaved store group due "
1192                     "to gaps.\n");
1193       releaseGroup(Group);
1194     }
1195   // Remove interleaved groups with gaps (currently only loads) whose memory
1196   // accesses may wrap around. We have to revisit the getPtrStride analysis,
1197   // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does
1198   // not check wrapping (see documentation there).
1199   // FORNOW we use Assume=false;
1200   // TODO: Change to Assume=true but making sure we don't exceed the threshold
1201   // of runtime SCEV assumptions checks (thereby potentially failing to
1202   // vectorize altogether).
1203   // Additional optional optimizations:
1204   // TODO: If we are peeling the loop and we know that the first pointer doesn't
1205   // wrap then we can deduce that all pointers in the group don't wrap.
1206   // This means that we can forcefully peel the loop in order to only have to
1207   // check the first pointer for no-wrap. When we'll change to use Assume=true
1208   // we'll only need at most one runtime check per interleaved group.
1209   for (auto *Group : LoadGroups) {
1210     // Case 1: A full group. Can Skip the checks; For full groups, if the wide
1211     // load would wrap around the address space we would do a memory access at
1212     // nullptr even without the transformation.
1213     if (Group->getNumMembers() == Group->getFactor())
1214       continue;
1215 
1216     // Case 2: If first and last members of the group don't wrap this implies
1217     // that all the pointers in the group don't wrap.
1218     // So we check only group member 0 (which is always guaranteed to exist),
1219     // and group member Factor - 1; If the latter doesn't exist we rely on
1220     // peeling (if it is a non-reversed accsess -- see Case 3).
1221     Value *FirstMemberPtr = getLoadStorePointerOperand(Group->getMember(0));
1222     if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false,
1223                       /*ShouldCheckWrap=*/true)) {
1224       LLVM_DEBUG(
1225           dbgs() << "LV: Invalidate candidate interleaved group due to "
1226                     "first group member potentially pointer-wrapping.\n");
1227       releaseGroup(Group);
1228       continue;
1229     }
1230     Instruction *LastMember = Group->getMember(Group->getFactor() - 1);
1231     if (LastMember) {
1232       Value *LastMemberPtr = getLoadStorePointerOperand(LastMember);
1233       if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false,
1234                         /*ShouldCheckWrap=*/true)) {
1235         LLVM_DEBUG(
1236             dbgs() << "LV: Invalidate candidate interleaved group due to "
1237                       "last group member potentially pointer-wrapping.\n");
1238         releaseGroup(Group);
1239       }
1240     } else {
1241       // Case 3: A non-reversed interleaved load group with gaps: We need
1242       // to execute at least one scalar epilogue iteration. This will ensure
1243       // we don't speculatively access memory out-of-bounds. We only need
1244       // to look for a member at index factor - 1, since every group must have
1245       // a member at index zero.
1246       if (Group->isReverse()) {
1247         LLVM_DEBUG(
1248             dbgs() << "LV: Invalidate candidate interleaved group due to "
1249                       "a reverse access with gaps.\n");
1250         releaseGroup(Group);
1251         continue;
1252       }
1253       LLVM_DEBUG(
1254           dbgs() << "LV: Interleaved group requires epilogue iteration.\n");
1255       RequiresScalarEpilogue = true;
1256     }
1257   }
1258 }
1259 
invalidateGroupsRequiringScalarEpilogue()1260 void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() {
1261   // If no group had triggered the requirement to create an epilogue loop,
1262   // there is nothing to do.
1263   if (!requiresScalarEpilogue())
1264     return;
1265 
1266   bool ReleasedGroup = false;
1267   // Release groups requiring scalar epilogues. Note that this also removes them
1268   // from InterleaveGroups.
1269   for (auto *Group : make_early_inc_range(InterleaveGroups)) {
1270     if (!Group->requiresScalarEpilogue())
1271       continue;
1272     LLVM_DEBUG(
1273         dbgs()
1274         << "LV: Invalidate candidate interleaved group due to gaps that "
1275            "require a scalar epilogue (not allowed under optsize) and cannot "
1276            "be masked (not enabled). \n");
1277     releaseGroup(Group);
1278     ReleasedGroup = true;
1279   }
1280   assert(ReleasedGroup && "At least one group must be invalidated, as a "
1281                           "scalar epilogue was required");
1282   (void)ReleasedGroup;
1283   RequiresScalarEpilogue = false;
1284 }
1285 
1286 template <typename InstT>
addMetadata(InstT * NewInst) const1287 void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const {
1288   llvm_unreachable("addMetadata can only be used for Instruction");
1289 }
1290 
1291 namespace llvm {
1292 template <>
addMetadata(Instruction * NewInst) const1293 void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const {
1294   SmallVector<Value *, 4> VL;
1295   std::transform(Members.begin(), Members.end(), std::back_inserter(VL),
1296                  [](std::pair<int, Instruction *> p) { return p.second; });
1297   propagateMetadata(NewInst, VL);
1298 }
1299 }
1300 
mangleTLIVectorName(StringRef VectorName,StringRef ScalarName,unsigned numArgs,unsigned VF)1301 std::string VFABI::mangleTLIVectorName(StringRef VectorName,
1302                                        StringRef ScalarName, unsigned numArgs,
1303                                        unsigned VF) {
1304   SmallString<256> Buffer;
1305   llvm::raw_svector_ostream Out(Buffer);
1306   Out << "_ZGV" << VFABI::_LLVM_ << "N" << VF;
1307   for (unsigned I = 0; I < numArgs; ++I)
1308     Out << "v";
1309   Out << "_" << ScalarName << "(" << VectorName << ")";
1310   return std::string(Out.str());
1311 }
1312 
getVectorVariantNames(const CallInst & CI,SmallVectorImpl<std::string> & VariantMappings)1313 void VFABI::getVectorVariantNames(
1314     const CallInst &CI, SmallVectorImpl<std::string> &VariantMappings) {
1315   const StringRef S =
1316       CI.getAttribute(AttributeList::FunctionIndex, VFABI::MappingsAttrName)
1317           .getValueAsString();
1318   if (S.empty())
1319     return;
1320 
1321   SmallVector<StringRef, 8> ListAttr;
1322   S.split(ListAttr, ",");
1323 
1324   for (auto &S : SetVector<StringRef>(ListAttr.begin(), ListAttr.end())) {
1325 #ifndef NDEBUG
1326     LLVM_DEBUG(dbgs() << "VFABI: adding mapping '" << S << "'\n");
1327     Optional<VFInfo> Info = VFABI::tryDemangleForVFABI(S, *(CI.getModule()));
1328     assert(Info.hasValue() && "Invalid name for a VFABI variant.");
1329     assert(CI.getModule()->getFunction(Info.getValue().VectorName) &&
1330            "Vector function is missing.");
1331 #endif
1332     VariantMappings.push_back(std::string(S));
1333   }
1334 }
1335 
hasValidParameterList() const1336 bool VFShape::hasValidParameterList() const {
1337   for (unsigned Pos = 0, NumParams = Parameters.size(); Pos < NumParams;
1338        ++Pos) {
1339     assert(Parameters[Pos].ParamPos == Pos && "Broken parameter list.");
1340 
1341     switch (Parameters[Pos].ParamKind) {
1342     default: // Nothing to check.
1343       break;
1344     case VFParamKind::OMP_Linear:
1345     case VFParamKind::OMP_LinearRef:
1346     case VFParamKind::OMP_LinearVal:
1347     case VFParamKind::OMP_LinearUVal:
1348       // Compile time linear steps must be non-zero.
1349       if (Parameters[Pos].LinearStepOrPos == 0)
1350         return false;
1351       break;
1352     case VFParamKind::OMP_LinearPos:
1353     case VFParamKind::OMP_LinearRefPos:
1354     case VFParamKind::OMP_LinearValPos:
1355     case VFParamKind::OMP_LinearUValPos:
1356       // The runtime linear step must be referring to some other
1357       // parameters in the signature.
1358       if (Parameters[Pos].LinearStepOrPos >= int(NumParams))
1359         return false;
1360       // The linear step parameter must be marked as uniform.
1361       if (Parameters[Parameters[Pos].LinearStepOrPos].ParamKind !=
1362           VFParamKind::OMP_Uniform)
1363         return false;
1364       // The linear step parameter can't point at itself.
1365       if (Parameters[Pos].LinearStepOrPos == int(Pos))
1366         return false;
1367       break;
1368     case VFParamKind::GlobalPredicate:
1369       // The global predicate must be the unique. Can be placed anywhere in the
1370       // signature.
1371       for (unsigned NextPos = Pos + 1; NextPos < NumParams; ++NextPos)
1372         if (Parameters[NextPos].ParamKind == VFParamKind::GlobalPredicate)
1373           return false;
1374       break;
1375     }
1376   }
1377   return true;
1378 }
1379