• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2005 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define LOG_TAG "Parcel"
18 //#define LOG_NDEBUG 0
19 
20 #include <errno.h>
21 #include <fcntl.h>
22 #include <inttypes.h>
23 #include <linux/sched.h>
24 #include <pthread.h>
25 #include <stdint.h>
26 #include <stdio.h>
27 #include <stdlib.h>
28 #include <sys/mman.h>
29 #include <sys/stat.h>
30 #include <sys/types.h>
31 #include <sys/resource.h>
32 #include <unistd.h>
33 
34 #include <binder/Binder.h>
35 #include <binder/BpBinder.h>
36 #include <binder/IPCThreadState.h>
37 #include <binder/Parcel.h>
38 #include <binder/ProcessState.h>
39 #include <binder/Stability.h>
40 #include <binder/Status.h>
41 #include <binder/TextOutput.h>
42 
43 #include <cutils/ashmem.h>
44 #include <cutils/compiler.h>
45 #include <utils/Flattenable.h>
46 #include <utils/Log.h>
47 #include <utils/String16.h>
48 #include <utils/String8.h>
49 #include <utils/misc.h>
50 
51 #include "RpcState.h"
52 #include "Static.h"
53 #include "Utils.h"
54 #include "binder_module.h"
55 
56 #define LOG_REFS(...)
57 //#define LOG_REFS(...) ALOG(LOG_DEBUG, LOG_TAG, __VA_ARGS__)
58 #define LOG_ALLOC(...)
59 //#define LOG_ALLOC(...) ALOG(LOG_DEBUG, LOG_TAG, __VA_ARGS__)
60 
61 // ---------------------------------------------------------------------------
62 
63 // This macro should never be used at runtime, as a too large value
64 // of s could cause an integer overflow. Instead, you should always
65 // use the wrapper function pad_size()
66 #define PAD_SIZE_UNSAFE(s) (((s)+3)&~3)
67 
pad_size(size_t s)68 static size_t pad_size(size_t s) {
69     if (s > (std::numeric_limits<size_t>::max() - 3)) {
70         LOG_ALWAYS_FATAL("pad size too big %zu", s);
71     }
72     return PAD_SIZE_UNSAFE(s);
73 }
74 
75 // Note: must be kept in sync with android/os/StrictMode.java's PENALTY_GATHER
76 #define STRICT_MODE_PENALTY_GATHER (1 << 31)
77 
78 namespace android {
79 
80 // many things compile this into prebuilts on the stack
81 #ifdef __LP64__
82 static_assert(sizeof(Parcel) == 120);
83 #else
84 static_assert(sizeof(Parcel) == 60);
85 #endif
86 
87 static std::atomic<size_t> gParcelGlobalAllocCount;
88 static std::atomic<size_t> gParcelGlobalAllocSize;
89 
90 static size_t gMaxFds = 0;
91 
92 // Maximum size of a blob to transfer in-place.
93 static const size_t BLOB_INPLACE_LIMIT = 16 * 1024;
94 
95 enum {
96     BLOB_INPLACE = 0,
97     BLOB_ASHMEM_IMMUTABLE = 1,
98     BLOB_ASHMEM_MUTABLE = 2,
99 };
100 
acquire_object(const sp<ProcessState> & proc,const flat_binder_object & obj,const void * who,size_t * outAshmemSize)101 static void acquire_object(const sp<ProcessState>& proc,
102     const flat_binder_object& obj, const void* who, size_t* outAshmemSize)
103 {
104     switch (obj.hdr.type) {
105         case BINDER_TYPE_BINDER:
106             if (obj.binder) {
107                 LOG_REFS("Parcel %p acquiring reference on local %p", who, obj.cookie);
108                 reinterpret_cast<IBinder*>(obj.cookie)->incStrong(who);
109             }
110             return;
111         case BINDER_TYPE_HANDLE: {
112             const sp<IBinder> b = proc->getStrongProxyForHandle(obj.handle);
113             if (b != nullptr) {
114                 LOG_REFS("Parcel %p acquiring reference on remote %p", who, b.get());
115                 b->incStrong(who);
116             }
117             return;
118         }
119         case BINDER_TYPE_FD: {
120             if ((obj.cookie != 0) && (outAshmemSize != nullptr) && ashmem_valid(obj.handle)) {
121                 // If we own an ashmem fd, keep track of how much memory it refers to.
122                 int size = ashmem_get_size_region(obj.handle);
123                 if (size > 0) {
124                     *outAshmemSize += size;
125                 }
126             }
127             return;
128         }
129     }
130 
131     ALOGD("Invalid object type 0x%08x", obj.hdr.type);
132 }
133 
release_object(const sp<ProcessState> & proc,const flat_binder_object & obj,const void * who,size_t * outAshmemSize)134 static void release_object(const sp<ProcessState>& proc,
135     const flat_binder_object& obj, const void* who, size_t* outAshmemSize)
136 {
137     switch (obj.hdr.type) {
138         case BINDER_TYPE_BINDER:
139             if (obj.binder) {
140                 LOG_REFS("Parcel %p releasing reference on local %p", who, obj.cookie);
141                 reinterpret_cast<IBinder*>(obj.cookie)->decStrong(who);
142             }
143             return;
144         case BINDER_TYPE_HANDLE: {
145             const sp<IBinder> b = proc->getStrongProxyForHandle(obj.handle);
146             if (b != nullptr) {
147                 LOG_REFS("Parcel %p releasing reference on remote %p", who, b.get());
148                 b->decStrong(who);
149             }
150             return;
151         }
152         case BINDER_TYPE_FD: {
153             if (obj.cookie != 0) { // owned
154                 if ((outAshmemSize != nullptr) && ashmem_valid(obj.handle)) {
155                     int size = ashmem_get_size_region(obj.handle);
156                     if (size > 0) {
157                         // ashmem size might have changed since last time it was accounted for, e.g.
158                         // in acquire_object(). Value of *outAshmemSize is not critical since we are
159                         // releasing the object anyway. Check for integer overflow condition.
160                         *outAshmemSize -= std::min(*outAshmemSize, static_cast<size_t>(size));
161                     }
162                 }
163 
164                 close(obj.handle);
165             }
166             return;
167         }
168     }
169 
170     ALOGE("Invalid object type 0x%08x", obj.hdr.type);
171 }
172 
finishFlattenBinder(const sp<IBinder> & binder)173 status_t Parcel::finishFlattenBinder(const sp<IBinder>& binder)
174 {
175     internal::Stability::tryMarkCompilationUnit(binder.get());
176     auto category = internal::Stability::getCategory(binder.get());
177     return writeInt32(category.repr());
178 }
179 
finishUnflattenBinder(const sp<IBinder> & binder,sp<IBinder> * out) const180 status_t Parcel::finishUnflattenBinder(
181     const sp<IBinder>& binder, sp<IBinder>* out) const
182 {
183     int32_t stability;
184     status_t status = readInt32(&stability);
185     if (status != OK) return status;
186 
187     status = internal::Stability::setRepr(binder.get(), stability, true /*log*/);
188     if (status != OK) return status;
189 
190     *out = binder;
191     return OK;
192 }
193 
schedPolicyMask(int policy,int priority)194 static constexpr inline int schedPolicyMask(int policy, int priority) {
195     return (priority & FLAT_BINDER_FLAG_PRIORITY_MASK) | ((policy & 3) << FLAT_BINDER_FLAG_SCHED_POLICY_SHIFT);
196 }
197 
flattenBinder(const sp<IBinder> & binder)198 status_t Parcel::flattenBinder(const sp<IBinder>& binder)
199 {
200     if (isForRpc()) {
201         if (binder) {
202             status_t status = writeInt32(1); // non-null
203             if (status != OK) return status;
204             RpcAddress address = RpcAddress::zero();
205             status = mSession->state()->onBinderLeaving(mSession, binder, &address);
206             if (status != OK) return status;
207             status = address.writeToParcel(this);
208             if (status != OK) return status;
209         } else {
210             status_t status = writeInt32(0); // null
211             if (status != OK) return status;
212         }
213         return finishFlattenBinder(binder);
214     }
215 
216     flat_binder_object obj;
217     obj.flags = FLAT_BINDER_FLAG_ACCEPTS_FDS;
218 
219     int schedBits = 0;
220     if (!IPCThreadState::self()->backgroundSchedulingDisabled()) {
221         schedBits = schedPolicyMask(SCHED_NORMAL, 19);
222     }
223 
224     if (binder != nullptr) {
225         BBinder *local = binder->localBinder();
226         if (!local) {
227             BpBinder *proxy = binder->remoteBinder();
228             if (proxy == nullptr) {
229                 ALOGE("null proxy");
230             } else {
231                 if (proxy->isRpcBinder()) {
232                     ALOGE("Sending a socket binder over RPC is prohibited");
233                     return INVALID_OPERATION;
234                 }
235             }
236             const int32_t handle = proxy ? proxy->getPrivateAccessorForId().binderHandle() : 0;
237             obj.hdr.type = BINDER_TYPE_HANDLE;
238             obj.binder = 0; /* Don't pass uninitialized stack data to a remote process */
239             obj.handle = handle;
240             obj.cookie = 0;
241         } else {
242             int policy = local->getMinSchedulerPolicy();
243             int priority = local->getMinSchedulerPriority();
244 
245             if (policy != 0 || priority != 0) {
246                 // override value, since it is set explicitly
247                 schedBits = schedPolicyMask(policy, priority);
248             }
249             if (local->isRequestingSid()) {
250                 obj.flags |= FLAT_BINDER_FLAG_TXN_SECURITY_CTX;
251             }
252             if (local->isInheritRt()) {
253                 obj.flags |= FLAT_BINDER_FLAG_INHERIT_RT;
254             }
255             obj.hdr.type = BINDER_TYPE_BINDER;
256             obj.binder = reinterpret_cast<uintptr_t>(local->getWeakRefs());
257             obj.cookie = reinterpret_cast<uintptr_t>(local);
258         }
259     } else {
260         obj.hdr.type = BINDER_TYPE_BINDER;
261         obj.binder = 0;
262         obj.cookie = 0;
263     }
264 
265     obj.flags |= schedBits;
266 
267     status_t status = writeObject(obj, false);
268     if (status != OK) return status;
269 
270     return finishFlattenBinder(binder);
271 }
272 
unflattenBinder(sp<IBinder> * out) const273 status_t Parcel::unflattenBinder(sp<IBinder>* out) const
274 {
275     if (isForRpc()) {
276         LOG_ALWAYS_FATAL_IF(mSession == nullptr, "RpcSession required to read from remote parcel");
277 
278         int32_t isNull;
279         status_t status = readInt32(&isNull);
280         if (status != OK) return status;
281 
282         sp<IBinder> binder;
283 
284         if (isNull & 1) {
285             auto addr = RpcAddress::zero();
286             status_t status = addr.readFromParcel(*this);
287             if (status != OK) return status;
288             binder = mSession->state()->onBinderEntering(mSession, addr);
289         }
290 
291         return finishUnflattenBinder(binder, out);
292     }
293 
294     const flat_binder_object* flat = readObject(false);
295 
296     if (flat) {
297         switch (flat->hdr.type) {
298             case BINDER_TYPE_BINDER: {
299                 sp<IBinder> binder =
300                         sp<IBinder>::fromExisting(reinterpret_cast<IBinder*>(flat->cookie));
301                 return finishUnflattenBinder(binder, out);
302             }
303             case BINDER_TYPE_HANDLE: {
304                 sp<IBinder> binder =
305                     ProcessState::self()->getStrongProxyForHandle(flat->handle);
306                 return finishUnflattenBinder(binder, out);
307             }
308         }
309     }
310     return BAD_TYPE;
311 }
312 
313 // ---------------------------------------------------------------------------
314 
Parcel()315 Parcel::Parcel()
316 {
317     LOG_ALLOC("Parcel %p: constructing", this);
318     initState();
319 }
320 
~Parcel()321 Parcel::~Parcel()
322 {
323     freeDataNoInit();
324     LOG_ALLOC("Parcel %p: destroyed", this);
325 }
326 
getGlobalAllocSize()327 size_t Parcel::getGlobalAllocSize() {
328     return gParcelGlobalAllocSize.load();
329 }
330 
getGlobalAllocCount()331 size_t Parcel::getGlobalAllocCount() {
332     return gParcelGlobalAllocCount.load();
333 }
334 
data() const335 const uint8_t* Parcel::data() const
336 {
337     return mData;
338 }
339 
dataSize() const340 size_t Parcel::dataSize() const
341 {
342     return (mDataSize > mDataPos ? mDataSize : mDataPos);
343 }
344 
dataAvail() const345 size_t Parcel::dataAvail() const
346 {
347     size_t result = dataSize() - dataPosition();
348     if (result > INT32_MAX) {
349         LOG_ALWAYS_FATAL("result too big: %zu", result);
350     }
351     return result;
352 }
353 
dataPosition() const354 size_t Parcel::dataPosition() const
355 {
356     return mDataPos;
357 }
358 
dataCapacity() const359 size_t Parcel::dataCapacity() const
360 {
361     return mDataCapacity;
362 }
363 
setDataSize(size_t size)364 status_t Parcel::setDataSize(size_t size)
365 {
366     if (size > INT32_MAX) {
367         // don't accept size_t values which may have come from an
368         // inadvertent conversion from a negative int.
369         return BAD_VALUE;
370     }
371 
372     status_t err;
373     err = continueWrite(size);
374     if (err == NO_ERROR) {
375         mDataSize = size;
376         ALOGV("setDataSize Setting data size of %p to %zu", this, mDataSize);
377     }
378     return err;
379 }
380 
setDataPosition(size_t pos) const381 void Parcel::setDataPosition(size_t pos) const
382 {
383     if (pos > INT32_MAX) {
384         // don't accept size_t values which may have come from an
385         // inadvertent conversion from a negative int.
386         LOG_ALWAYS_FATAL("pos too big: %zu", pos);
387     }
388 
389     mDataPos = pos;
390     mNextObjectHint = 0;
391     mObjectsSorted = false;
392 }
393 
setDataCapacity(size_t size)394 status_t Parcel::setDataCapacity(size_t size)
395 {
396     if (size > INT32_MAX) {
397         // don't accept size_t values which may have come from an
398         // inadvertent conversion from a negative int.
399         return BAD_VALUE;
400     }
401 
402     if (size > mDataCapacity) return continueWrite(size);
403     return NO_ERROR;
404 }
405 
setData(const uint8_t * buffer,size_t len)406 status_t Parcel::setData(const uint8_t* buffer, size_t len)
407 {
408     if (len > INT32_MAX) {
409         // don't accept size_t values which may have come from an
410         // inadvertent conversion from a negative int.
411         return BAD_VALUE;
412     }
413 
414     status_t err = restartWrite(len);
415     if (err == NO_ERROR) {
416         memcpy(const_cast<uint8_t*>(data()), buffer, len);
417         mDataSize = len;
418         mFdsKnown = false;
419     }
420     return err;
421 }
422 
appendFrom(const Parcel * parcel,size_t offset,size_t len)423 status_t Parcel::appendFrom(const Parcel *parcel, size_t offset, size_t len)
424 {
425     if (parcel->isForRpc() != isForRpc()) {
426         ALOGE("Cannot append Parcel of one format to another.");
427         return BAD_TYPE;
428     }
429 
430     status_t err;
431     const uint8_t *data = parcel->mData;
432     const binder_size_t *objects = parcel->mObjects;
433     size_t size = parcel->mObjectsSize;
434     int startPos = mDataPos;
435     int firstIndex = -1, lastIndex = -2;
436 
437     if (len == 0) {
438         return NO_ERROR;
439     }
440 
441     if (len > INT32_MAX) {
442         // don't accept size_t values which may have come from an
443         // inadvertent conversion from a negative int.
444         return BAD_VALUE;
445     }
446 
447     // range checks against the source parcel size
448     if ((offset > parcel->mDataSize)
449             || (len > parcel->mDataSize)
450             || (offset + len > parcel->mDataSize)) {
451         return BAD_VALUE;
452     }
453 
454     // Count objects in range
455     for (int i = 0; i < (int) size; i++) {
456         size_t off = objects[i];
457         if ((off >= offset) && (off + sizeof(flat_binder_object) <= offset + len)) {
458             if (firstIndex == -1) {
459                 firstIndex = i;
460             }
461             lastIndex = i;
462         }
463     }
464     int numObjects = lastIndex - firstIndex + 1;
465 
466     if ((mDataSize+len) > mDataCapacity) {
467         // grow data
468         err = growData(len);
469         if (err != NO_ERROR) {
470             return err;
471         }
472     }
473 
474     // append data
475     memcpy(mData + mDataPos, data + offset, len);
476     mDataPos += len;
477     mDataSize += len;
478 
479     err = NO_ERROR;
480 
481     if (numObjects > 0) {
482         const sp<ProcessState> proc(ProcessState::self());
483         // grow objects
484         if (mObjectsCapacity < mObjectsSize + numObjects) {
485             if ((size_t) numObjects > SIZE_MAX - mObjectsSize) return NO_MEMORY; // overflow
486             if (mObjectsSize + numObjects > SIZE_MAX / 3) return NO_MEMORY; // overflow
487             size_t newSize = ((mObjectsSize + numObjects)*3)/2;
488             if (newSize > SIZE_MAX / sizeof(binder_size_t)) return NO_MEMORY; // overflow
489             binder_size_t *objects =
490                 (binder_size_t*)realloc(mObjects, newSize*sizeof(binder_size_t));
491             if (objects == (binder_size_t*)nullptr) {
492                 return NO_MEMORY;
493             }
494             mObjects = objects;
495             mObjectsCapacity = newSize;
496         }
497 
498         // append and acquire objects
499         int idx = mObjectsSize;
500         for (int i = firstIndex; i <= lastIndex; i++) {
501             size_t off = objects[i] - offset + startPos;
502             mObjects[idx++] = off;
503             mObjectsSize++;
504 
505             flat_binder_object* flat
506                 = reinterpret_cast<flat_binder_object*>(mData + off);
507             acquire_object(proc, *flat, this, &mOpenAshmemSize);
508 
509             if (flat->hdr.type == BINDER_TYPE_FD) {
510                 // If this is a file descriptor, we need to dup it so the
511                 // new Parcel now owns its own fd, and can declare that we
512                 // officially know we have fds.
513                 flat->handle = fcntl(flat->handle, F_DUPFD_CLOEXEC, 0);
514                 flat->cookie = 1;
515                 mHasFds = mFdsKnown = true;
516                 if (!mAllowFds) {
517                     err = FDS_NOT_ALLOWED;
518                 }
519             }
520         }
521     }
522 
523     return err;
524 }
525 
compareData(const Parcel & other)526 int Parcel::compareData(const Parcel& other) {
527     size_t size = dataSize();
528     if (size != other.dataSize()) {
529         return size < other.dataSize() ? -1 : 1;
530     }
531     return memcmp(data(), other.data(), size);
532 }
533 
allowFds() const534 bool Parcel::allowFds() const
535 {
536     return mAllowFds;
537 }
538 
pushAllowFds(bool allowFds)539 bool Parcel::pushAllowFds(bool allowFds)
540 {
541     const bool origValue = mAllowFds;
542     if (!allowFds) {
543         mAllowFds = false;
544     }
545     return origValue;
546 }
547 
restoreAllowFds(bool lastValue)548 void Parcel::restoreAllowFds(bool lastValue)
549 {
550     mAllowFds = lastValue;
551 }
552 
hasFileDescriptors() const553 bool Parcel::hasFileDescriptors() const
554 {
555     if (!mFdsKnown) {
556         scanForFds();
557     }
558     return mHasFds;
559 }
560 
markSensitive() const561 void Parcel::markSensitive() const
562 {
563     mDeallocZero = true;
564 }
565 
markForBinder(const sp<IBinder> & binder)566 void Parcel::markForBinder(const sp<IBinder>& binder) {
567     LOG_ALWAYS_FATAL_IF(mData != nullptr, "format must be set before data is written");
568 
569     if (binder && binder->remoteBinder() && binder->remoteBinder()->isRpcBinder()) {
570         markForRpc(binder->remoteBinder()->getPrivateAccessorForId().rpcSession());
571     }
572 }
573 
markForRpc(const sp<RpcSession> & session)574 void Parcel::markForRpc(const sp<RpcSession>& session) {
575     LOG_ALWAYS_FATAL_IF(mData != nullptr && mOwner == nullptr,
576                         "format must be set before data is written OR on IPC data");
577 
578     LOG_ALWAYS_FATAL_IF(session == nullptr, "markForRpc requires session");
579     mSession = session;
580 }
581 
isForRpc() const582 bool Parcel::isForRpc() const {
583     return mSession != nullptr;
584 }
585 
updateWorkSourceRequestHeaderPosition() const586 void Parcel::updateWorkSourceRequestHeaderPosition() const {
587     // Only update the request headers once. We only want to point
588     // to the first headers read/written.
589     if (!mRequestHeaderPresent) {
590         mWorkSourceRequestHeaderPosition = dataPosition();
591         mRequestHeaderPresent = true;
592     }
593 }
594 
595 #if defined(__ANDROID_VNDK__)
596 constexpr int32_t kHeader = B_PACK_CHARS('V', 'N', 'D', 'R');
597 #else
598 constexpr int32_t kHeader = B_PACK_CHARS('S', 'Y', 'S', 'T');
599 #endif
600 
601 // Write RPC headers.  (previously just the interface token)
writeInterfaceToken(const String16 & interface)602 status_t Parcel::writeInterfaceToken(const String16& interface)
603 {
604     return writeInterfaceToken(interface.string(), interface.size());
605 }
606 
writeInterfaceToken(const char16_t * str,size_t len)607 status_t Parcel::writeInterfaceToken(const char16_t* str, size_t len) {
608     if (CC_LIKELY(!isForRpc())) {
609         const IPCThreadState* threadState = IPCThreadState::self();
610         writeInt32(threadState->getStrictModePolicy() | STRICT_MODE_PENALTY_GATHER);
611         updateWorkSourceRequestHeaderPosition();
612         writeInt32(threadState->shouldPropagateWorkSource() ? threadState->getCallingWorkSourceUid()
613                                                             : IPCThreadState::kUnsetWorkSource);
614         writeInt32(kHeader);
615     }
616 
617     // currently the interface identification token is just its name as a string
618     return writeString16(str, len);
619 }
620 
replaceCallingWorkSourceUid(uid_t uid)621 bool Parcel::replaceCallingWorkSourceUid(uid_t uid)
622 {
623     if (!mRequestHeaderPresent) {
624         return false;
625     }
626 
627     const size_t initialPosition = dataPosition();
628     setDataPosition(mWorkSourceRequestHeaderPosition);
629     status_t err = writeInt32(uid);
630     setDataPosition(initialPosition);
631     return err == NO_ERROR;
632 }
633 
readCallingWorkSourceUid() const634 uid_t Parcel::readCallingWorkSourceUid() const
635 {
636     if (!mRequestHeaderPresent) {
637         return IPCThreadState::kUnsetWorkSource;
638     }
639 
640     const size_t initialPosition = dataPosition();
641     setDataPosition(mWorkSourceRequestHeaderPosition);
642     uid_t uid = readInt32();
643     setDataPosition(initialPosition);
644     return uid;
645 }
646 
checkInterface(IBinder * binder) const647 bool Parcel::checkInterface(IBinder* binder) const
648 {
649     return enforceInterface(binder->getInterfaceDescriptor());
650 }
651 
enforceInterface(const String16 & interface,IPCThreadState * threadState) const652 bool Parcel::enforceInterface(const String16& interface,
653                               IPCThreadState* threadState) const
654 {
655     return enforceInterface(interface.string(), interface.size(), threadState);
656 }
657 
enforceInterface(const char16_t * interface,size_t len,IPCThreadState * threadState) const658 bool Parcel::enforceInterface(const char16_t* interface,
659                               size_t len,
660                               IPCThreadState* threadState) const
661 {
662     if (CC_LIKELY(!isForRpc())) {
663         // StrictModePolicy.
664         int32_t strictPolicy = readInt32();
665         if (threadState == nullptr) {
666             threadState = IPCThreadState::self();
667         }
668         if ((threadState->getLastTransactionBinderFlags() & IBinder::FLAG_ONEWAY) != 0) {
669             // For one-way calls, the callee is running entirely
670             // disconnected from the caller, so disable StrictMode entirely.
671             // Not only does disk/network usage not impact the caller, but
672             // there's no way to communicate back violations anyway.
673             threadState->setStrictModePolicy(0);
674         } else {
675             threadState->setStrictModePolicy(strictPolicy);
676         }
677         // WorkSource.
678         updateWorkSourceRequestHeaderPosition();
679         int32_t workSource = readInt32();
680         threadState->setCallingWorkSourceUidWithoutPropagation(workSource);
681         // vendor header
682         int32_t header = readInt32();
683         if (header != kHeader) {
684             ALOGE("Expecting header 0x%x but found 0x%x. Mixing copies of libbinder?", kHeader,
685                   header);
686             return false;
687         }
688     }
689 
690     // Interface descriptor.
691     size_t parcel_interface_len;
692     const char16_t* parcel_interface = readString16Inplace(&parcel_interface_len);
693     if (len == parcel_interface_len &&
694             (!len || !memcmp(parcel_interface, interface, len * sizeof (char16_t)))) {
695         return true;
696     } else {
697         ALOGW("**** enforceInterface() expected '%s' but read '%s'",
698               String8(interface, len).string(),
699               String8(parcel_interface, parcel_interface_len).string());
700         return false;
701     }
702 }
703 
objectsCount() const704 size_t Parcel::objectsCount() const
705 {
706     return mObjectsSize;
707 }
708 
errorCheck() const709 status_t Parcel::errorCheck() const
710 {
711     return mError;
712 }
713 
setError(status_t err)714 void Parcel::setError(status_t err)
715 {
716     mError = err;
717 }
718 
finishWrite(size_t len)719 status_t Parcel::finishWrite(size_t len)
720 {
721     if (len > INT32_MAX) {
722         // don't accept size_t values which may have come from an
723         // inadvertent conversion from a negative int.
724         return BAD_VALUE;
725     }
726 
727     //printf("Finish write of %d\n", len);
728     mDataPos += len;
729     ALOGV("finishWrite Setting data pos of %p to %zu", this, mDataPos);
730     if (mDataPos > mDataSize) {
731         mDataSize = mDataPos;
732         ALOGV("finishWrite Setting data size of %p to %zu", this, mDataSize);
733     }
734     //printf("New pos=%d, size=%d\n", mDataPos, mDataSize);
735     return NO_ERROR;
736 }
737 
writeUnpadded(const void * data,size_t len)738 status_t Parcel::writeUnpadded(const void* data, size_t len)
739 {
740     if (len > INT32_MAX) {
741         // don't accept size_t values which may have come from an
742         // inadvertent conversion from a negative int.
743         return BAD_VALUE;
744     }
745 
746     size_t end = mDataPos + len;
747     if (end < mDataPos) {
748         // integer overflow
749         return BAD_VALUE;
750     }
751 
752     if (end <= mDataCapacity) {
753 restart_write:
754         memcpy(mData+mDataPos, data, len);
755         return finishWrite(len);
756     }
757 
758     status_t err = growData(len);
759     if (err == NO_ERROR) goto restart_write;
760     return err;
761 }
762 
write(const void * data,size_t len)763 status_t Parcel::write(const void* data, size_t len)
764 {
765     if (len > INT32_MAX) {
766         // don't accept size_t values which may have come from an
767         // inadvertent conversion from a negative int.
768         return BAD_VALUE;
769     }
770 
771     void* const d = writeInplace(len);
772     if (d) {
773         memcpy(d, data, len);
774         return NO_ERROR;
775     }
776     return mError;
777 }
778 
writeInplace(size_t len)779 void* Parcel::writeInplace(size_t len)
780 {
781     if (len > INT32_MAX) {
782         // don't accept size_t values which may have come from an
783         // inadvertent conversion from a negative int.
784         return nullptr;
785     }
786 
787     const size_t padded = pad_size(len);
788 
789     // sanity check for integer overflow
790     if (mDataPos+padded < mDataPos) {
791         return nullptr;
792     }
793 
794     if ((mDataPos+padded) <= mDataCapacity) {
795 restart_write:
796         //printf("Writing %ld bytes, padded to %ld\n", len, padded);
797         uint8_t* const data = mData+mDataPos;
798 
799         // Need to pad at end?
800         if (padded != len) {
801 #if BYTE_ORDER == BIG_ENDIAN
802             static const uint32_t mask[4] = {
803                 0x00000000, 0xffffff00, 0xffff0000, 0xff000000
804             };
805 #endif
806 #if BYTE_ORDER == LITTLE_ENDIAN
807             static const uint32_t mask[4] = {
808                 0x00000000, 0x00ffffff, 0x0000ffff, 0x000000ff
809             };
810 #endif
811             //printf("Applying pad mask: %p to %p\n", (void*)mask[padded-len],
812             //    *reinterpret_cast<void**>(data+padded-4));
813             *reinterpret_cast<uint32_t*>(data+padded-4) &= mask[padded-len];
814         }
815 
816         finishWrite(padded);
817         return data;
818     }
819 
820     status_t err = growData(padded);
821     if (err == NO_ERROR) goto restart_write;
822     return nullptr;
823 }
824 
writeUtf8AsUtf16(const std::string & str)825 status_t Parcel::writeUtf8AsUtf16(const std::string& str) {
826     const uint8_t* strData = (uint8_t*)str.data();
827     const size_t strLen= str.length();
828     const ssize_t utf16Len = utf8_to_utf16_length(strData, strLen);
829     if (utf16Len < 0 || utf16Len > std::numeric_limits<int32_t>::max()) {
830         return BAD_VALUE;
831     }
832 
833     status_t err = writeInt32(utf16Len);
834     if (err) {
835         return err;
836     }
837 
838     // Allocate enough bytes to hold our converted string and its terminating NULL.
839     void* dst = writeInplace((utf16Len + 1) * sizeof(char16_t));
840     if (!dst) {
841         return NO_MEMORY;
842     }
843 
844     utf8_to_utf16(strData, strLen, (char16_t*)dst, (size_t) utf16Len + 1);
845 
846     return NO_ERROR;
847 }
848 
849 
writeUtf8AsUtf16(const std::optional<std::string> & str)850 status_t Parcel::writeUtf8AsUtf16(const std::optional<std::string>& str) { return writeData(str); }
writeUtf8AsUtf16(const std::unique_ptr<std::string> & str)851 status_t Parcel::writeUtf8AsUtf16(const std::unique_ptr<std::string>& str) { return writeData(str); }
852 
writeString16(const std::optional<String16> & str)853 status_t Parcel::writeString16(const std::optional<String16>& str) { return writeData(str); }
writeString16(const std::unique_ptr<String16> & str)854 status_t Parcel::writeString16(const std::unique_ptr<String16>& str) { return writeData(str); }
855 
writeByteVector(const std::vector<int8_t> & val)856 status_t Parcel::writeByteVector(const std::vector<int8_t>& val) { return writeData(val); }
writeByteVector(const std::optional<std::vector<int8_t>> & val)857 status_t Parcel::writeByteVector(const std::optional<std::vector<int8_t>>& val) { return writeData(val); }
writeByteVector(const std::unique_ptr<std::vector<int8_t>> & val)858 status_t Parcel::writeByteVector(const std::unique_ptr<std::vector<int8_t>>& val) { return writeData(val); }
writeByteVector(const std::vector<uint8_t> & val)859 status_t Parcel::writeByteVector(const std::vector<uint8_t>& val) { return writeData(val); }
writeByteVector(const std::optional<std::vector<uint8_t>> & val)860 status_t Parcel::writeByteVector(const std::optional<std::vector<uint8_t>>& val) { return writeData(val); }
writeByteVector(const std::unique_ptr<std::vector<uint8_t>> & val)861 status_t Parcel::writeByteVector(const std::unique_ptr<std::vector<uint8_t>>& val){ return writeData(val); }
writeInt32Vector(const std::vector<int32_t> & val)862 status_t Parcel::writeInt32Vector(const std::vector<int32_t>& val) { return writeData(val); }
writeInt32Vector(const std::optional<std::vector<int32_t>> & val)863 status_t Parcel::writeInt32Vector(const std::optional<std::vector<int32_t>>& val) { return writeData(val); }
writeInt32Vector(const std::unique_ptr<std::vector<int32_t>> & val)864 status_t Parcel::writeInt32Vector(const std::unique_ptr<std::vector<int32_t>>& val) { return writeData(val); }
writeInt64Vector(const std::vector<int64_t> & val)865 status_t Parcel::writeInt64Vector(const std::vector<int64_t>& val) { return writeData(val); }
writeInt64Vector(const std::optional<std::vector<int64_t>> & val)866 status_t Parcel::writeInt64Vector(const std::optional<std::vector<int64_t>>& val) { return writeData(val); }
writeInt64Vector(const std::unique_ptr<std::vector<int64_t>> & val)867 status_t Parcel::writeInt64Vector(const std::unique_ptr<std::vector<int64_t>>& val) { return writeData(val); }
writeUint64Vector(const std::vector<uint64_t> & val)868 status_t Parcel::writeUint64Vector(const std::vector<uint64_t>& val) { return writeData(val); }
writeUint64Vector(const std::optional<std::vector<uint64_t>> & val)869 status_t Parcel::writeUint64Vector(const std::optional<std::vector<uint64_t>>& val) { return writeData(val); }
writeUint64Vector(const std::unique_ptr<std::vector<uint64_t>> & val)870 status_t Parcel::writeUint64Vector(const std::unique_ptr<std::vector<uint64_t>>& val) { return writeData(val); }
writeFloatVector(const std::vector<float> & val)871 status_t Parcel::writeFloatVector(const std::vector<float>& val) { return writeData(val); }
writeFloatVector(const std::optional<std::vector<float>> & val)872 status_t Parcel::writeFloatVector(const std::optional<std::vector<float>>& val) { return writeData(val); }
writeFloatVector(const std::unique_ptr<std::vector<float>> & val)873 status_t Parcel::writeFloatVector(const std::unique_ptr<std::vector<float>>& val) { return writeData(val); }
writeDoubleVector(const std::vector<double> & val)874 status_t Parcel::writeDoubleVector(const std::vector<double>& val) { return writeData(val); }
writeDoubleVector(const std::optional<std::vector<double>> & val)875 status_t Parcel::writeDoubleVector(const std::optional<std::vector<double>>& val) { return writeData(val); }
writeDoubleVector(const std::unique_ptr<std::vector<double>> & val)876 status_t Parcel::writeDoubleVector(const std::unique_ptr<std::vector<double>>& val) { return writeData(val); }
writeBoolVector(const std::vector<bool> & val)877 status_t Parcel::writeBoolVector(const std::vector<bool>& val) { return writeData(val); }
writeBoolVector(const std::optional<std::vector<bool>> & val)878 status_t Parcel::writeBoolVector(const std::optional<std::vector<bool>>& val) { return writeData(val); }
writeBoolVector(const std::unique_ptr<std::vector<bool>> & val)879 status_t Parcel::writeBoolVector(const std::unique_ptr<std::vector<bool>>& val) { return writeData(val); }
writeCharVector(const std::vector<char16_t> & val)880 status_t Parcel::writeCharVector(const std::vector<char16_t>& val) { return writeData(val); }
writeCharVector(const std::optional<std::vector<char16_t>> & val)881 status_t Parcel::writeCharVector(const std::optional<std::vector<char16_t>>& val) { return writeData(val); }
writeCharVector(const std::unique_ptr<std::vector<char16_t>> & val)882 status_t Parcel::writeCharVector(const std::unique_ptr<std::vector<char16_t>>& val) { return writeData(val); }
883 
writeString16Vector(const std::vector<String16> & val)884 status_t Parcel::writeString16Vector(const std::vector<String16>& val) { return writeData(val); }
writeString16Vector(const std::optional<std::vector<std::optional<String16>>> & val)885 status_t Parcel::writeString16Vector(
886         const std::optional<std::vector<std::optional<String16>>>& val) { return writeData(val); }
writeString16Vector(const std::unique_ptr<std::vector<std::unique_ptr<String16>>> & val)887 status_t Parcel::writeString16Vector(
888         const std::unique_ptr<std::vector<std::unique_ptr<String16>>>& val) { return writeData(val); }
writeUtf8VectorAsUtf16Vector(const std::optional<std::vector<std::optional<std::string>>> & val)889 status_t Parcel::writeUtf8VectorAsUtf16Vector(
890                         const std::optional<std::vector<std::optional<std::string>>>& val) { return writeData(val); }
writeUtf8VectorAsUtf16Vector(const std::unique_ptr<std::vector<std::unique_ptr<std::string>>> & val)891 status_t Parcel::writeUtf8VectorAsUtf16Vector(
892                         const std::unique_ptr<std::vector<std::unique_ptr<std::string>>>& val) { return writeData(val); }
writeUtf8VectorAsUtf16Vector(const std::vector<std::string> & val)893 status_t Parcel::writeUtf8VectorAsUtf16Vector(const std::vector<std::string>& val) { return writeData(val); }
894 
writeUniqueFileDescriptorVector(const std::vector<base::unique_fd> & val)895 status_t Parcel::writeUniqueFileDescriptorVector(const std::vector<base::unique_fd>& val) { return writeData(val); }
writeUniqueFileDescriptorVector(const std::optional<std::vector<base::unique_fd>> & val)896 status_t Parcel::writeUniqueFileDescriptorVector(const std::optional<std::vector<base::unique_fd>>& val) { return writeData(val); }
writeUniqueFileDescriptorVector(const std::unique_ptr<std::vector<base::unique_fd>> & val)897 status_t Parcel::writeUniqueFileDescriptorVector(const std::unique_ptr<std::vector<base::unique_fd>>& val) { return writeData(val); }
898 
writeStrongBinderVector(const std::vector<sp<IBinder>> & val)899 status_t Parcel::writeStrongBinderVector(const std::vector<sp<IBinder>>& val) { return writeData(val); }
writeStrongBinderVector(const std::optional<std::vector<sp<IBinder>>> & val)900 status_t Parcel::writeStrongBinderVector(const std::optional<std::vector<sp<IBinder>>>& val) { return writeData(val); }
writeStrongBinderVector(const std::unique_ptr<std::vector<sp<IBinder>>> & val)901 status_t Parcel::writeStrongBinderVector(const std::unique_ptr<std::vector<sp<IBinder>>>& val) { return writeData(val); }
902 
writeParcelable(const Parcelable & parcelable)903 status_t Parcel::writeParcelable(const Parcelable& parcelable) { return writeData(parcelable); }
904 
readUtf8FromUtf16(std::optional<std::string> * str) const905 status_t Parcel::readUtf8FromUtf16(std::optional<std::string>* str) const { return readData(str); }
readUtf8FromUtf16(std::unique_ptr<std::string> * str) const906 status_t Parcel::readUtf8FromUtf16(std::unique_ptr<std::string>* str) const { return readData(str); }
907 
readString16(std::optional<String16> * pArg) const908 status_t Parcel::readString16(std::optional<String16>* pArg) const { return readData(pArg); }
readString16(std::unique_ptr<String16> * pArg) const909 status_t Parcel::readString16(std::unique_ptr<String16>* pArg) const { return readData(pArg); }
910 
readByteVector(std::vector<int8_t> * val) const911 status_t Parcel::readByteVector(std::vector<int8_t>* val) const { return readData(val); }
readByteVector(std::vector<uint8_t> * val) const912 status_t Parcel::readByteVector(std::vector<uint8_t>* val) const { return readData(val); }
readByteVector(std::optional<std::vector<int8_t>> * val) const913 status_t Parcel::readByteVector(std::optional<std::vector<int8_t>>* val) const { return readData(val); }
readByteVector(std::unique_ptr<std::vector<int8_t>> * val) const914 status_t Parcel::readByteVector(std::unique_ptr<std::vector<int8_t>>* val) const { return readData(val); }
readByteVector(std::optional<std::vector<uint8_t>> * val) const915 status_t Parcel::readByteVector(std::optional<std::vector<uint8_t>>* val) const { return readData(val); }
readByteVector(std::unique_ptr<std::vector<uint8_t>> * val) const916 status_t Parcel::readByteVector(std::unique_ptr<std::vector<uint8_t>>* val) const { return readData(val); }
readInt32Vector(std::optional<std::vector<int32_t>> * val) const917 status_t Parcel::readInt32Vector(std::optional<std::vector<int32_t>>* val) const { return readData(val); }
readInt32Vector(std::unique_ptr<std::vector<int32_t>> * val) const918 status_t Parcel::readInt32Vector(std::unique_ptr<std::vector<int32_t>>* val) const { return readData(val); }
readInt32Vector(std::vector<int32_t> * val) const919 status_t Parcel::readInt32Vector(std::vector<int32_t>* val) const { return readData(val); }
readInt64Vector(std::optional<std::vector<int64_t>> * val) const920 status_t Parcel::readInt64Vector(std::optional<std::vector<int64_t>>* val) const { return readData(val); }
readInt64Vector(std::unique_ptr<std::vector<int64_t>> * val) const921 status_t Parcel::readInt64Vector(std::unique_ptr<std::vector<int64_t>>* val) const { return readData(val); }
readInt64Vector(std::vector<int64_t> * val) const922 status_t Parcel::readInt64Vector(std::vector<int64_t>* val) const { return readData(val); }
readUint64Vector(std::optional<std::vector<uint64_t>> * val) const923 status_t Parcel::readUint64Vector(std::optional<std::vector<uint64_t>>* val) const { return readData(val); }
readUint64Vector(std::unique_ptr<std::vector<uint64_t>> * val) const924 status_t Parcel::readUint64Vector(std::unique_ptr<std::vector<uint64_t>>* val) const { return readData(val); }
readUint64Vector(std::vector<uint64_t> * val) const925 status_t Parcel::readUint64Vector(std::vector<uint64_t>* val) const { return readData(val); }
readFloatVector(std::optional<std::vector<float>> * val) const926 status_t Parcel::readFloatVector(std::optional<std::vector<float>>* val) const { return readData(val); }
readFloatVector(std::unique_ptr<std::vector<float>> * val) const927 status_t Parcel::readFloatVector(std::unique_ptr<std::vector<float>>* val) const { return readData(val); }
readFloatVector(std::vector<float> * val) const928 status_t Parcel::readFloatVector(std::vector<float>* val) const { return readData(val); }
readDoubleVector(std::optional<std::vector<double>> * val) const929 status_t Parcel::readDoubleVector(std::optional<std::vector<double>>* val) const { return readData(val); }
readDoubleVector(std::unique_ptr<std::vector<double>> * val) const930 status_t Parcel::readDoubleVector(std::unique_ptr<std::vector<double>>* val) const { return readData(val); }
readDoubleVector(std::vector<double> * val) const931 status_t Parcel::readDoubleVector(std::vector<double>* val) const { return readData(val); }
readBoolVector(std::optional<std::vector<bool>> * val) const932 status_t Parcel::readBoolVector(std::optional<std::vector<bool>>* val) const { return readData(val); }
readBoolVector(std::unique_ptr<std::vector<bool>> * val) const933 status_t Parcel::readBoolVector(std::unique_ptr<std::vector<bool>>* val) const { return readData(val); }
readBoolVector(std::vector<bool> * val) const934 status_t Parcel::readBoolVector(std::vector<bool>* val) const { return readData(val); }
readCharVector(std::optional<std::vector<char16_t>> * val) const935 status_t Parcel::readCharVector(std::optional<std::vector<char16_t>>* val) const { return readData(val); }
readCharVector(std::unique_ptr<std::vector<char16_t>> * val) const936 status_t Parcel::readCharVector(std::unique_ptr<std::vector<char16_t>>* val) const { return readData(val); }
readCharVector(std::vector<char16_t> * val) const937 status_t Parcel::readCharVector(std::vector<char16_t>* val) const { return readData(val); }
938 
readString16Vector(std::optional<std::vector<std::optional<String16>>> * val) const939 status_t Parcel::readString16Vector(
940         std::optional<std::vector<std::optional<String16>>>* val) const { return readData(val); }
readString16Vector(std::unique_ptr<std::vector<std::unique_ptr<String16>>> * val) const941 status_t Parcel::readString16Vector(
942         std::unique_ptr<std::vector<std::unique_ptr<String16>>>* val) const { return readData(val); }
readString16Vector(std::vector<String16> * val) const943 status_t Parcel::readString16Vector(std::vector<String16>* val) const { return readData(val); }
readUtf8VectorFromUtf16Vector(std::optional<std::vector<std::optional<std::string>>> * val) const944 status_t Parcel::readUtf8VectorFromUtf16Vector(
945         std::optional<std::vector<std::optional<std::string>>>* val) const { return readData(val); }
readUtf8VectorFromUtf16Vector(std::unique_ptr<std::vector<std::unique_ptr<std::string>>> * val) const946 status_t Parcel::readUtf8VectorFromUtf16Vector(
947         std::unique_ptr<std::vector<std::unique_ptr<std::string>>>* val) const { return readData(val); }
readUtf8VectorFromUtf16Vector(std::vector<std::string> * val) const948 status_t Parcel::readUtf8VectorFromUtf16Vector(std::vector<std::string>* val) const { return readData(val); }
949 
readUniqueFileDescriptorVector(std::optional<std::vector<base::unique_fd>> * val) const950 status_t Parcel::readUniqueFileDescriptorVector(std::optional<std::vector<base::unique_fd>>* val) const { return readData(val); }
readUniqueFileDescriptorVector(std::unique_ptr<std::vector<base::unique_fd>> * val) const951 status_t Parcel::readUniqueFileDescriptorVector(std::unique_ptr<std::vector<base::unique_fd>>* val) const { return readData(val); }
readUniqueFileDescriptorVector(std::vector<base::unique_fd> * val) const952 status_t Parcel::readUniqueFileDescriptorVector(std::vector<base::unique_fd>* val) const { return readData(val); }
953 
readStrongBinderVector(std::optional<std::vector<sp<IBinder>>> * val) const954 status_t Parcel::readStrongBinderVector(std::optional<std::vector<sp<IBinder>>>* val) const { return readData(val); }
readStrongBinderVector(std::unique_ptr<std::vector<sp<IBinder>>> * val) const955 status_t Parcel::readStrongBinderVector(std::unique_ptr<std::vector<sp<IBinder>>>* val) const { return readData(val); }
readStrongBinderVector(std::vector<sp<IBinder>> * val) const956 status_t Parcel::readStrongBinderVector(std::vector<sp<IBinder>>* val) const { return readData(val); }
957 
readParcelable(Parcelable * parcelable) const958 status_t Parcel::readParcelable(Parcelable* parcelable) const { return readData(parcelable); }
959 
writeInt32(int32_t val)960 status_t Parcel::writeInt32(int32_t val)
961 {
962     return writeAligned(val);
963 }
964 
writeUint32(uint32_t val)965 status_t Parcel::writeUint32(uint32_t val)
966 {
967     return writeAligned(val);
968 }
969 
writeInt32Array(size_t len,const int32_t * val)970 status_t Parcel::writeInt32Array(size_t len, const int32_t *val) {
971     if (len > INT32_MAX) {
972         // don't accept size_t values which may have come from an
973         // inadvertent conversion from a negative int.
974         return BAD_VALUE;
975     }
976 
977     if (!val) {
978         return writeInt32(-1);
979     }
980     status_t ret = writeInt32(static_cast<uint32_t>(len));
981     if (ret == NO_ERROR) {
982         ret = write(val, len * sizeof(*val));
983     }
984     return ret;
985 }
writeByteArray(size_t len,const uint8_t * val)986 status_t Parcel::writeByteArray(size_t len, const uint8_t *val) {
987     if (len > INT32_MAX) {
988         // don't accept size_t values which may have come from an
989         // inadvertent conversion from a negative int.
990         return BAD_VALUE;
991     }
992 
993     if (!val) {
994         return writeInt32(-1);
995     }
996     status_t ret = writeInt32(static_cast<uint32_t>(len));
997     if (ret == NO_ERROR) {
998         ret = write(val, len * sizeof(*val));
999     }
1000     return ret;
1001 }
1002 
writeBool(bool val)1003 status_t Parcel::writeBool(bool val)
1004 {
1005     return writeInt32(int32_t(val));
1006 }
1007 
writeChar(char16_t val)1008 status_t Parcel::writeChar(char16_t val)
1009 {
1010     return writeInt32(int32_t(val));
1011 }
1012 
writeByte(int8_t val)1013 status_t Parcel::writeByte(int8_t val)
1014 {
1015     return writeInt32(int32_t(val));
1016 }
1017 
writeInt64(int64_t val)1018 status_t Parcel::writeInt64(int64_t val)
1019 {
1020     return writeAligned(val);
1021 }
1022 
writeUint64(uint64_t val)1023 status_t Parcel::writeUint64(uint64_t val)
1024 {
1025     return writeAligned(val);
1026 }
1027 
writePointer(uintptr_t val)1028 status_t Parcel::writePointer(uintptr_t val)
1029 {
1030     return writeAligned<binder_uintptr_t>(val);
1031 }
1032 
writeFloat(float val)1033 status_t Parcel::writeFloat(float val)
1034 {
1035     return writeAligned(val);
1036 }
1037 
1038 #if defined(__mips__) && defined(__mips_hard_float)
1039 
writeDouble(double val)1040 status_t Parcel::writeDouble(double val)
1041 {
1042     union {
1043         double d;
1044         unsigned long long ll;
1045     } u;
1046     u.d = val;
1047     return writeAligned(u.ll);
1048 }
1049 
1050 #else
1051 
writeDouble(double val)1052 status_t Parcel::writeDouble(double val)
1053 {
1054     return writeAligned(val);
1055 }
1056 
1057 #endif
1058 
writeCString(const char * str)1059 status_t Parcel::writeCString(const char* str)
1060 {
1061     return write(str, strlen(str)+1);
1062 }
1063 
writeString8(const String8 & str)1064 status_t Parcel::writeString8(const String8& str)
1065 {
1066     return writeString8(str.string(), str.size());
1067 }
1068 
writeString8(const char * str,size_t len)1069 status_t Parcel::writeString8(const char* str, size_t len)
1070 {
1071     if (str == nullptr) return writeInt32(-1);
1072 
1073     // NOTE: Keep this logic in sync with android_os_Parcel.cpp
1074     status_t err = writeInt32(len);
1075     if (err == NO_ERROR) {
1076         uint8_t* data = (uint8_t*)writeInplace(len+sizeof(char));
1077         if (data) {
1078             memcpy(data, str, len);
1079             *reinterpret_cast<char*>(data+len) = 0;
1080             return NO_ERROR;
1081         }
1082         err = mError;
1083     }
1084     return err;
1085 }
1086 
writeString16(const String16 & str)1087 status_t Parcel::writeString16(const String16& str)
1088 {
1089     return writeString16(str.string(), str.size());
1090 }
1091 
writeString16(const char16_t * str,size_t len)1092 status_t Parcel::writeString16(const char16_t* str, size_t len)
1093 {
1094     if (str == nullptr) return writeInt32(-1);
1095 
1096     // NOTE: Keep this logic in sync with android_os_Parcel.cpp
1097     status_t err = writeInt32(len);
1098     if (err == NO_ERROR) {
1099         len *= sizeof(char16_t);
1100         uint8_t* data = (uint8_t*)writeInplace(len+sizeof(char16_t));
1101         if (data) {
1102             memcpy(data, str, len);
1103             *reinterpret_cast<char16_t*>(data+len) = 0;
1104             return NO_ERROR;
1105         }
1106         err = mError;
1107     }
1108     return err;
1109 }
1110 
writeStrongBinder(const sp<IBinder> & val)1111 status_t Parcel::writeStrongBinder(const sp<IBinder>& val)
1112 {
1113     return flattenBinder(val);
1114 }
1115 
1116 
writeRawNullableParcelable(const Parcelable * parcelable)1117 status_t Parcel::writeRawNullableParcelable(const Parcelable* parcelable) {
1118     if (!parcelable) {
1119         return writeInt32(0);
1120     }
1121 
1122     return writeParcelable(*parcelable);
1123 }
1124 
writeNativeHandle(const native_handle * handle)1125 status_t Parcel::writeNativeHandle(const native_handle* handle)
1126 {
1127     if (!handle || handle->version != sizeof(native_handle))
1128         return BAD_TYPE;
1129 
1130     status_t err;
1131     err = writeInt32(handle->numFds);
1132     if (err != NO_ERROR) return err;
1133 
1134     err = writeInt32(handle->numInts);
1135     if (err != NO_ERROR) return err;
1136 
1137     for (int i=0 ; err==NO_ERROR && i<handle->numFds ; i++)
1138         err = writeDupFileDescriptor(handle->data[i]);
1139 
1140     if (err != NO_ERROR) {
1141         ALOGD("write native handle, write dup fd failed");
1142         return err;
1143     }
1144     err = write(handle->data + handle->numFds, sizeof(int)*handle->numInts);
1145     return err;
1146 }
1147 
writeFileDescriptor(int fd,bool takeOwnership)1148 status_t Parcel::writeFileDescriptor(int fd, bool takeOwnership)
1149 {
1150     if (isForRpc()) {
1151         ALOGE("Cannot write file descriptor to remote binder.");
1152         return BAD_TYPE;
1153     }
1154 
1155     flat_binder_object obj;
1156     obj.hdr.type = BINDER_TYPE_FD;
1157     obj.flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS;
1158     obj.binder = 0; /* Don't pass uninitialized stack data to a remote process */
1159     obj.handle = fd;
1160     obj.cookie = takeOwnership ? 1 : 0;
1161     return writeObject(obj, true);
1162 }
1163 
writeDupFileDescriptor(int fd)1164 status_t Parcel::writeDupFileDescriptor(int fd)
1165 {
1166     int dupFd = fcntl(fd, F_DUPFD_CLOEXEC, 0);
1167     if (dupFd < 0) {
1168         return -errno;
1169     }
1170     status_t err = writeFileDescriptor(dupFd, true /*takeOwnership*/);
1171     if (err != OK) {
1172         close(dupFd);
1173     }
1174     return err;
1175 }
1176 
writeParcelFileDescriptor(int fd,bool takeOwnership)1177 status_t Parcel::writeParcelFileDescriptor(int fd, bool takeOwnership)
1178 {
1179     writeInt32(0);
1180     return writeFileDescriptor(fd, takeOwnership);
1181 }
1182 
writeDupParcelFileDescriptor(int fd)1183 status_t Parcel::writeDupParcelFileDescriptor(int fd)
1184 {
1185     int dupFd = fcntl(fd, F_DUPFD_CLOEXEC, 0);
1186     if (dupFd < 0) {
1187         return -errno;
1188     }
1189     status_t err = writeParcelFileDescriptor(dupFd, true /*takeOwnership*/);
1190     if (err != OK) {
1191         close(dupFd);
1192     }
1193     return err;
1194 }
1195 
writeUniqueFileDescriptor(const base::unique_fd & fd)1196 status_t Parcel::writeUniqueFileDescriptor(const base::unique_fd& fd) {
1197     return writeDupFileDescriptor(fd.get());
1198 }
1199 
writeBlob(size_t len,bool mutableCopy,WritableBlob * outBlob)1200 status_t Parcel::writeBlob(size_t len, bool mutableCopy, WritableBlob* outBlob)
1201 {
1202     if (len > INT32_MAX) {
1203         // don't accept size_t values which may have come from an
1204         // inadvertent conversion from a negative int.
1205         return BAD_VALUE;
1206     }
1207 
1208     status_t status;
1209     if (!mAllowFds || len <= BLOB_INPLACE_LIMIT) {
1210         ALOGV("writeBlob: write in place");
1211         status = writeInt32(BLOB_INPLACE);
1212         if (status) return status;
1213 
1214         void* ptr = writeInplace(len);
1215         if (!ptr) return NO_MEMORY;
1216 
1217         outBlob->init(-1, ptr, len, false);
1218         return NO_ERROR;
1219     }
1220 
1221     ALOGV("writeBlob: write to ashmem");
1222     int fd = ashmem_create_region("Parcel Blob", len);
1223     if (fd < 0) return NO_MEMORY;
1224 
1225     int result = ashmem_set_prot_region(fd, PROT_READ | PROT_WRITE);
1226     if (result < 0) {
1227         status = result;
1228     } else {
1229         void* ptr = ::mmap(nullptr, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
1230         if (ptr == MAP_FAILED) {
1231             status = -errno;
1232         } else {
1233             if (!mutableCopy) {
1234                 result = ashmem_set_prot_region(fd, PROT_READ);
1235             }
1236             if (result < 0) {
1237                 status = result;
1238             } else {
1239                 status = writeInt32(mutableCopy ? BLOB_ASHMEM_MUTABLE : BLOB_ASHMEM_IMMUTABLE);
1240                 if (!status) {
1241                     status = writeFileDescriptor(fd, true /*takeOwnership*/);
1242                     if (!status) {
1243                         outBlob->init(fd, ptr, len, mutableCopy);
1244                         return NO_ERROR;
1245                     }
1246                 }
1247             }
1248         }
1249         ::munmap(ptr, len);
1250     }
1251     ::close(fd);
1252     return status;
1253 }
1254 
writeDupImmutableBlobFileDescriptor(int fd)1255 status_t Parcel::writeDupImmutableBlobFileDescriptor(int fd)
1256 {
1257     // Must match up with what's done in writeBlob.
1258     if (!mAllowFds) return FDS_NOT_ALLOWED;
1259     status_t status = writeInt32(BLOB_ASHMEM_IMMUTABLE);
1260     if (status) return status;
1261     return writeDupFileDescriptor(fd);
1262 }
1263 
write(const FlattenableHelperInterface & val)1264 status_t Parcel::write(const FlattenableHelperInterface& val)
1265 {
1266     status_t err;
1267 
1268     // size if needed
1269     const size_t len = val.getFlattenedSize();
1270     const size_t fd_count = val.getFdCount();
1271 
1272     if ((len > INT32_MAX) || (fd_count >= gMaxFds)) {
1273         // don't accept size_t values which may have come from an
1274         // inadvertent conversion from a negative int.
1275         return BAD_VALUE;
1276     }
1277 
1278     err = this->writeInt32(len);
1279     if (err) return err;
1280 
1281     err = this->writeInt32(fd_count);
1282     if (err) return err;
1283 
1284     // payload
1285     void* const buf = this->writeInplace(len);
1286     if (buf == nullptr)
1287         return BAD_VALUE;
1288 
1289     int* fds = nullptr;
1290     if (fd_count) {
1291         fds = new (std::nothrow) int[fd_count];
1292         if (fds == nullptr) {
1293             ALOGE("write: failed to allocate requested %zu fds", fd_count);
1294             return BAD_VALUE;
1295         }
1296     }
1297 
1298     err = val.flatten(buf, len, fds, fd_count);
1299     for (size_t i=0 ; i<fd_count && err==NO_ERROR ; i++) {
1300         err = this->writeDupFileDescriptor( fds[i] );
1301     }
1302 
1303     if (fd_count) {
1304         delete [] fds;
1305     }
1306 
1307     return err;
1308 }
1309 
writeObject(const flat_binder_object & val,bool nullMetaData)1310 status_t Parcel::writeObject(const flat_binder_object& val, bool nullMetaData)
1311 {
1312     const bool enoughData = (mDataPos+sizeof(val)) <= mDataCapacity;
1313     const bool enoughObjects = mObjectsSize < mObjectsCapacity;
1314     if (enoughData && enoughObjects) {
1315 restart_write:
1316         *reinterpret_cast<flat_binder_object*>(mData+mDataPos) = val;
1317 
1318         // remember if it's a file descriptor
1319         if (val.hdr.type == BINDER_TYPE_FD) {
1320             if (!mAllowFds) {
1321                 // fail before modifying our object index
1322                 return FDS_NOT_ALLOWED;
1323             }
1324             mHasFds = mFdsKnown = true;
1325         }
1326 
1327         // Need to write meta-data?
1328         if (nullMetaData || val.binder != 0) {
1329             mObjects[mObjectsSize] = mDataPos;
1330             acquire_object(ProcessState::self(), val, this, &mOpenAshmemSize);
1331             mObjectsSize++;
1332         }
1333 
1334         return finishWrite(sizeof(flat_binder_object));
1335     }
1336 
1337     if (!enoughData) {
1338         const status_t err = growData(sizeof(val));
1339         if (err != NO_ERROR) return err;
1340     }
1341     if (!enoughObjects) {
1342         if (mObjectsSize > SIZE_MAX - 2) return NO_MEMORY; // overflow
1343         if ((mObjectsSize + 2) > SIZE_MAX / 3) return NO_MEMORY; // overflow
1344         size_t newSize = ((mObjectsSize+2)*3)/2;
1345         if (newSize > SIZE_MAX / sizeof(binder_size_t)) return NO_MEMORY; // overflow
1346         binder_size_t* objects = (binder_size_t*)realloc(mObjects, newSize*sizeof(binder_size_t));
1347         if (objects == nullptr) return NO_MEMORY;
1348         mObjects = objects;
1349         mObjectsCapacity = newSize;
1350     }
1351 
1352     goto restart_write;
1353 }
1354 
writeNoException()1355 status_t Parcel::writeNoException()
1356 {
1357     binder::Status status;
1358     return status.writeToParcel(this);
1359 }
1360 
validateReadData(size_t upperBound) const1361 status_t Parcel::validateReadData(size_t upperBound) const
1362 {
1363     // Don't allow non-object reads on object data
1364     if (mObjectsSorted || mObjectsSize <= 1) {
1365 data_sorted:
1366         // Expect to check only against the next object
1367         if (mNextObjectHint < mObjectsSize && upperBound > mObjects[mNextObjectHint]) {
1368             // For some reason the current read position is greater than the next object
1369             // hint. Iterate until we find the right object
1370             size_t nextObject = mNextObjectHint;
1371             do {
1372                 if (mDataPos < mObjects[nextObject] + sizeof(flat_binder_object)) {
1373                     // Requested info overlaps with an object
1374                     ALOGE("Attempt to read from protected data in Parcel %p", this);
1375                     return PERMISSION_DENIED;
1376                 }
1377                 nextObject++;
1378             } while (nextObject < mObjectsSize && upperBound > mObjects[nextObject]);
1379             mNextObjectHint = nextObject;
1380         }
1381         return NO_ERROR;
1382     }
1383     // Quickly determine if mObjects is sorted.
1384     binder_size_t* currObj = mObjects + mObjectsSize - 1;
1385     binder_size_t* prevObj = currObj;
1386     while (currObj > mObjects) {
1387         prevObj--;
1388         if(*prevObj > *currObj) {
1389             goto data_unsorted;
1390         }
1391         currObj--;
1392     }
1393     mObjectsSorted = true;
1394     goto data_sorted;
1395 
1396 data_unsorted:
1397     // Insertion Sort mObjects
1398     // Great for mostly sorted lists. If randomly sorted or reverse ordered mObjects become common,
1399     // switch to std::sort(mObjects, mObjects + mObjectsSize);
1400     for (binder_size_t* iter0 = mObjects + 1; iter0 < mObjects + mObjectsSize; iter0++) {
1401         binder_size_t temp = *iter0;
1402         binder_size_t* iter1 = iter0 - 1;
1403         while (iter1 >= mObjects && *iter1 > temp) {
1404             *(iter1 + 1) = *iter1;
1405             iter1--;
1406         }
1407         *(iter1 + 1) = temp;
1408     }
1409     mNextObjectHint = 0;
1410     mObjectsSorted = true;
1411     goto data_sorted;
1412 }
1413 
read(void * outData,size_t len) const1414 status_t Parcel::read(void* outData, size_t len) const
1415 {
1416     if (len > INT32_MAX) {
1417         // don't accept size_t values which may have come from an
1418         // inadvertent conversion from a negative int.
1419         return BAD_VALUE;
1420     }
1421 
1422     if ((mDataPos+pad_size(len)) >= mDataPos && (mDataPos+pad_size(len)) <= mDataSize
1423             && len <= pad_size(len)) {
1424         if (mObjectsSize > 0) {
1425             status_t err = validateReadData(mDataPos + pad_size(len));
1426             if(err != NO_ERROR) {
1427                 // Still increment the data position by the expected length
1428                 mDataPos += pad_size(len);
1429                 ALOGV("read Setting data pos of %p to %zu", this, mDataPos);
1430                 return err;
1431             }
1432         }
1433         memcpy(outData, mData+mDataPos, len);
1434         mDataPos += pad_size(len);
1435         ALOGV("read Setting data pos of %p to %zu", this, mDataPos);
1436         return NO_ERROR;
1437     }
1438     return NOT_ENOUGH_DATA;
1439 }
1440 
readInplace(size_t len) const1441 const void* Parcel::readInplace(size_t len) const
1442 {
1443     if (len > INT32_MAX) {
1444         // don't accept size_t values which may have come from an
1445         // inadvertent conversion from a negative int.
1446         return nullptr;
1447     }
1448 
1449     if ((mDataPos+pad_size(len)) >= mDataPos && (mDataPos+pad_size(len)) <= mDataSize
1450             && len <= pad_size(len)) {
1451         if (mObjectsSize > 0) {
1452             status_t err = validateReadData(mDataPos + pad_size(len));
1453             if(err != NO_ERROR) {
1454                 // Still increment the data position by the expected length
1455                 mDataPos += pad_size(len);
1456                 ALOGV("readInplace Setting data pos of %p to %zu", this, mDataPos);
1457                 return nullptr;
1458             }
1459         }
1460 
1461         const void* data = mData+mDataPos;
1462         mDataPos += pad_size(len);
1463         ALOGV("readInplace Setting data pos of %p to %zu", this, mDataPos);
1464         return data;
1465     }
1466     return nullptr;
1467 }
1468 
1469 template<class T>
readAligned(T * pArg) const1470 status_t Parcel::readAligned(T *pArg) const {
1471     static_assert(PAD_SIZE_UNSAFE(sizeof(T)) == sizeof(T));
1472 
1473     if ((mDataPos+sizeof(T)) <= mDataSize) {
1474         if (mObjectsSize > 0) {
1475             status_t err = validateReadData(mDataPos + sizeof(T));
1476             if(err != NO_ERROR) {
1477                 // Still increment the data position by the expected length
1478                 mDataPos += sizeof(T);
1479                 return err;
1480             }
1481         }
1482 
1483         const void* data = mData+mDataPos;
1484         mDataPos += sizeof(T);
1485         *pArg =  *reinterpret_cast<const T*>(data);
1486         return NO_ERROR;
1487     } else {
1488         return NOT_ENOUGH_DATA;
1489     }
1490 }
1491 
1492 template<class T>
readAligned() const1493 T Parcel::readAligned() const {
1494     T result;
1495     if (readAligned(&result) != NO_ERROR) {
1496         result = 0;
1497     }
1498 
1499     return result;
1500 }
1501 
1502 template<class T>
writeAligned(T val)1503 status_t Parcel::writeAligned(T val) {
1504     static_assert(PAD_SIZE_UNSAFE(sizeof(T)) == sizeof(T));
1505 
1506     if ((mDataPos+sizeof(val)) <= mDataCapacity) {
1507 restart_write:
1508         *reinterpret_cast<T*>(mData+mDataPos) = val;
1509         return finishWrite(sizeof(val));
1510     }
1511 
1512     status_t err = growData(sizeof(val));
1513     if (err == NO_ERROR) goto restart_write;
1514     return err;
1515 }
1516 
readInt32(int32_t * pArg) const1517 status_t Parcel::readInt32(int32_t *pArg) const
1518 {
1519     return readAligned(pArg);
1520 }
1521 
readInt32() const1522 int32_t Parcel::readInt32() const
1523 {
1524     return readAligned<int32_t>();
1525 }
1526 
readUint32(uint32_t * pArg) const1527 status_t Parcel::readUint32(uint32_t *pArg) const
1528 {
1529     return readAligned(pArg);
1530 }
1531 
readUint32() const1532 uint32_t Parcel::readUint32() const
1533 {
1534     return readAligned<uint32_t>();
1535 }
1536 
readInt64(int64_t * pArg) const1537 status_t Parcel::readInt64(int64_t *pArg) const
1538 {
1539     return readAligned(pArg);
1540 }
1541 
1542 
readInt64() const1543 int64_t Parcel::readInt64() const
1544 {
1545     return readAligned<int64_t>();
1546 }
1547 
readUint64(uint64_t * pArg) const1548 status_t Parcel::readUint64(uint64_t *pArg) const
1549 {
1550     return readAligned(pArg);
1551 }
1552 
readUint64() const1553 uint64_t Parcel::readUint64() const
1554 {
1555     return readAligned<uint64_t>();
1556 }
1557 
readPointer(uintptr_t * pArg) const1558 status_t Parcel::readPointer(uintptr_t *pArg) const
1559 {
1560     status_t ret;
1561     binder_uintptr_t ptr;
1562     ret = readAligned(&ptr);
1563     if (!ret)
1564         *pArg = ptr;
1565     return ret;
1566 }
1567 
readPointer() const1568 uintptr_t Parcel::readPointer() const
1569 {
1570     return readAligned<binder_uintptr_t>();
1571 }
1572 
1573 
readFloat(float * pArg) const1574 status_t Parcel::readFloat(float *pArg) const
1575 {
1576     return readAligned(pArg);
1577 }
1578 
1579 
readFloat() const1580 float Parcel::readFloat() const
1581 {
1582     return readAligned<float>();
1583 }
1584 
1585 #if defined(__mips__) && defined(__mips_hard_float)
1586 
readDouble(double * pArg) const1587 status_t Parcel::readDouble(double *pArg) const
1588 {
1589     union {
1590       double d;
1591       unsigned long long ll;
1592     } u;
1593     u.d = 0;
1594     status_t status;
1595     status = readAligned(&u.ll);
1596     *pArg = u.d;
1597     return status;
1598 }
1599 
readDouble() const1600 double Parcel::readDouble() const
1601 {
1602     union {
1603       double d;
1604       unsigned long long ll;
1605     } u;
1606     u.ll = readAligned<unsigned long long>();
1607     return u.d;
1608 }
1609 
1610 #else
1611 
readDouble(double * pArg) const1612 status_t Parcel::readDouble(double *pArg) const
1613 {
1614     return readAligned(pArg);
1615 }
1616 
readDouble() const1617 double Parcel::readDouble() const
1618 {
1619     return readAligned<double>();
1620 }
1621 
1622 #endif
1623 
readBool(bool * pArg) const1624 status_t Parcel::readBool(bool *pArg) const
1625 {
1626     int32_t tmp = 0;
1627     status_t ret = readInt32(&tmp);
1628     *pArg = (tmp != 0);
1629     return ret;
1630 }
1631 
readBool() const1632 bool Parcel::readBool() const
1633 {
1634     return readInt32() != 0;
1635 }
1636 
readChar(char16_t * pArg) const1637 status_t Parcel::readChar(char16_t *pArg) const
1638 {
1639     int32_t tmp = 0;
1640     status_t ret = readInt32(&tmp);
1641     *pArg = char16_t(tmp);
1642     return ret;
1643 }
1644 
readChar() const1645 char16_t Parcel::readChar() const
1646 {
1647     return char16_t(readInt32());
1648 }
1649 
readByte(int8_t * pArg) const1650 status_t Parcel::readByte(int8_t *pArg) const
1651 {
1652     int32_t tmp = 0;
1653     status_t ret = readInt32(&tmp);
1654     *pArg = int8_t(tmp);
1655     return ret;
1656 }
1657 
readByte() const1658 int8_t Parcel::readByte() const
1659 {
1660     return int8_t(readInt32());
1661 }
1662 
readUtf8FromUtf16(std::string * str) const1663 status_t Parcel::readUtf8FromUtf16(std::string* str) const {
1664     size_t utf16Size = 0;
1665     const char16_t* src = readString16Inplace(&utf16Size);
1666     if (!src) {
1667         return UNEXPECTED_NULL;
1668     }
1669 
1670     // Save ourselves the trouble, we're done.
1671     if (utf16Size == 0u) {
1672         str->clear();
1673        return NO_ERROR;
1674     }
1675 
1676     // Allow for closing '\0'
1677     ssize_t utf8Size = utf16_to_utf8_length(src, utf16Size) + 1;
1678     if (utf8Size < 1) {
1679         return BAD_VALUE;
1680     }
1681     // Note that while it is probably safe to assume string::resize keeps a
1682     // spare byte around for the trailing null, we still pass the size including the trailing null
1683     str->resize(utf8Size);
1684     utf16_to_utf8(src, utf16Size, &((*str)[0]), utf8Size);
1685     str->resize(utf8Size - 1);
1686     return NO_ERROR;
1687 }
1688 
readCString() const1689 const char* Parcel::readCString() const
1690 {
1691     if (mDataPos < mDataSize) {
1692         const size_t avail = mDataSize-mDataPos;
1693         const char* str = reinterpret_cast<const char*>(mData+mDataPos);
1694         // is the string's trailing NUL within the parcel's valid bounds?
1695         const char* eos = reinterpret_cast<const char*>(memchr(str, 0, avail));
1696         if (eos) {
1697             const size_t len = eos - str;
1698             mDataPos += pad_size(len+1);
1699             ALOGV("readCString Setting data pos of %p to %zu", this, mDataPos);
1700             return str;
1701         }
1702     }
1703     return nullptr;
1704 }
1705 
readString8() const1706 String8 Parcel::readString8() const
1707 {
1708     size_t len;
1709     const char* str = readString8Inplace(&len);
1710     if (str) return String8(str, len);
1711     ALOGE("Reading a NULL string not supported here.");
1712     return String8();
1713 }
1714 
readString8(String8 * pArg) const1715 status_t Parcel::readString8(String8* pArg) const
1716 {
1717     size_t len;
1718     const char* str = readString8Inplace(&len);
1719     if (str) {
1720         pArg->setTo(str, len);
1721         return 0;
1722     } else {
1723         *pArg = String8();
1724         return UNEXPECTED_NULL;
1725     }
1726 }
1727 
readString8Inplace(size_t * outLen) const1728 const char* Parcel::readString8Inplace(size_t* outLen) const
1729 {
1730     int32_t size = readInt32();
1731     // watch for potential int overflow from size+1
1732     if (size >= 0 && size < INT32_MAX) {
1733         *outLen = size;
1734         const char* str = (const char*)readInplace(size+1);
1735         if (str != nullptr) {
1736             if (str[size] == '\0') {
1737                 return str;
1738             }
1739             android_errorWriteLog(0x534e4554, "172655291");
1740         }
1741     }
1742     *outLen = 0;
1743     return nullptr;
1744 }
1745 
readString16() const1746 String16 Parcel::readString16() const
1747 {
1748     size_t len;
1749     const char16_t* str = readString16Inplace(&len);
1750     if (str) return String16(str, len);
1751     ALOGE("Reading a NULL string not supported here.");
1752     return String16();
1753 }
1754 
1755 
readString16(String16 * pArg) const1756 status_t Parcel::readString16(String16* pArg) const
1757 {
1758     size_t len;
1759     const char16_t* str = readString16Inplace(&len);
1760     if (str) {
1761         pArg->setTo(str, len);
1762         return 0;
1763     } else {
1764         *pArg = String16();
1765         return UNEXPECTED_NULL;
1766     }
1767 }
1768 
readString16Inplace(size_t * outLen) const1769 const char16_t* Parcel::readString16Inplace(size_t* outLen) const
1770 {
1771     int32_t size = readInt32();
1772     // watch for potential int overflow from size+1
1773     if (size >= 0 && size < INT32_MAX) {
1774         *outLen = size;
1775         const char16_t* str = (const char16_t*)readInplace((size+1)*sizeof(char16_t));
1776         if (str != nullptr) {
1777             if (str[size] == u'\0') {
1778                 return str;
1779             }
1780             android_errorWriteLog(0x534e4554, "172655291");
1781         }
1782     }
1783     *outLen = 0;
1784     return nullptr;
1785 }
1786 
readStrongBinder(sp<IBinder> * val) const1787 status_t Parcel::readStrongBinder(sp<IBinder>* val) const
1788 {
1789     status_t status = readNullableStrongBinder(val);
1790     if (status == OK && !val->get()) {
1791         status = UNEXPECTED_NULL;
1792     }
1793     return status;
1794 }
1795 
readNullableStrongBinder(sp<IBinder> * val) const1796 status_t Parcel::readNullableStrongBinder(sp<IBinder>* val) const
1797 {
1798     return unflattenBinder(val);
1799 }
1800 
readStrongBinder() const1801 sp<IBinder> Parcel::readStrongBinder() const
1802 {
1803     sp<IBinder> val;
1804     // Note that a lot of code in Android reads binders by hand with this
1805     // method, and that code has historically been ok with getting nullptr
1806     // back (while ignoring error codes).
1807     readNullableStrongBinder(&val);
1808     return val;
1809 }
1810 
readExceptionCode() const1811 int32_t Parcel::readExceptionCode() const
1812 {
1813     binder::Status status;
1814     status.readFromParcel(*this);
1815     return status.exceptionCode();
1816 }
1817 
readNativeHandle() const1818 native_handle* Parcel::readNativeHandle() const
1819 {
1820     int numFds, numInts;
1821     status_t err;
1822     err = readInt32(&numFds);
1823     if (err != NO_ERROR) return nullptr;
1824     err = readInt32(&numInts);
1825     if (err != NO_ERROR) return nullptr;
1826 
1827     native_handle* h = native_handle_create(numFds, numInts);
1828     if (!h) {
1829         return nullptr;
1830     }
1831 
1832     for (int i=0 ; err==NO_ERROR && i<numFds ; i++) {
1833         h->data[i] = fcntl(readFileDescriptor(), F_DUPFD_CLOEXEC, 0);
1834         if (h->data[i] < 0) {
1835             for (int j = 0; j < i; j++) {
1836                 close(h->data[j]);
1837             }
1838             native_handle_delete(h);
1839             return nullptr;
1840         }
1841     }
1842     err = read(h->data + numFds, sizeof(int)*numInts);
1843     if (err != NO_ERROR) {
1844         native_handle_close(h);
1845         native_handle_delete(h);
1846         h = nullptr;
1847     }
1848     return h;
1849 }
1850 
readFileDescriptor() const1851 int Parcel::readFileDescriptor() const
1852 {
1853     const flat_binder_object* flat = readObject(true);
1854 
1855     if (flat && flat->hdr.type == BINDER_TYPE_FD) {
1856         return flat->handle;
1857     }
1858 
1859     return BAD_TYPE;
1860 }
1861 
readParcelFileDescriptor() const1862 int Parcel::readParcelFileDescriptor() const
1863 {
1864     int32_t hasComm = readInt32();
1865     int fd = readFileDescriptor();
1866     if (hasComm != 0) {
1867         // detach (owned by the binder driver)
1868         int comm = readFileDescriptor();
1869 
1870         // warning: this must be kept in sync with:
1871         // frameworks/base/core/java/android/os/ParcelFileDescriptor.java
1872         enum ParcelFileDescriptorStatus {
1873             DETACHED = 2,
1874         };
1875 
1876 #if BYTE_ORDER == BIG_ENDIAN
1877         const int32_t message = ParcelFileDescriptorStatus::DETACHED;
1878 #endif
1879 #if BYTE_ORDER == LITTLE_ENDIAN
1880         const int32_t message = __builtin_bswap32(ParcelFileDescriptorStatus::DETACHED);
1881 #endif
1882 
1883         ssize_t written = TEMP_FAILURE_RETRY(
1884             ::write(comm, &message, sizeof(message)));
1885 
1886         if (written != sizeof(message)) {
1887             ALOGW("Failed to detach ParcelFileDescriptor written: %zd err: %s",
1888                 written, strerror(errno));
1889             return BAD_TYPE;
1890         }
1891     }
1892     return fd;
1893 }
1894 
readUniqueFileDescriptor(base::unique_fd * val) const1895 status_t Parcel::readUniqueFileDescriptor(base::unique_fd* val) const
1896 {
1897     int got = readFileDescriptor();
1898 
1899     if (got == BAD_TYPE) {
1900         return BAD_TYPE;
1901     }
1902 
1903     val->reset(fcntl(got, F_DUPFD_CLOEXEC, 0));
1904 
1905     if (val->get() < 0) {
1906         return BAD_VALUE;
1907     }
1908 
1909     return OK;
1910 }
1911 
readUniqueParcelFileDescriptor(base::unique_fd * val) const1912 status_t Parcel::readUniqueParcelFileDescriptor(base::unique_fd* val) const
1913 {
1914     int got = readParcelFileDescriptor();
1915 
1916     if (got == BAD_TYPE) {
1917         return BAD_TYPE;
1918     }
1919 
1920     val->reset(fcntl(got, F_DUPFD_CLOEXEC, 0));
1921 
1922     if (val->get() < 0) {
1923         return BAD_VALUE;
1924     }
1925 
1926     return OK;
1927 }
1928 
readBlob(size_t len,ReadableBlob * outBlob) const1929 status_t Parcel::readBlob(size_t len, ReadableBlob* outBlob) const
1930 {
1931     int32_t blobType;
1932     status_t status = readInt32(&blobType);
1933     if (status) return status;
1934 
1935     if (blobType == BLOB_INPLACE) {
1936         ALOGV("readBlob: read in place");
1937         const void* ptr = readInplace(len);
1938         if (!ptr) return BAD_VALUE;
1939 
1940         outBlob->init(-1, const_cast<void*>(ptr), len, false);
1941         return NO_ERROR;
1942     }
1943 
1944     ALOGV("readBlob: read from ashmem");
1945     bool isMutable = (blobType == BLOB_ASHMEM_MUTABLE);
1946     int fd = readFileDescriptor();
1947     if (fd == int(BAD_TYPE)) return BAD_VALUE;
1948 
1949     if (!ashmem_valid(fd)) {
1950         ALOGE("invalid fd");
1951         return BAD_VALUE;
1952     }
1953     int size = ashmem_get_size_region(fd);
1954     if (size < 0 || size_t(size) < len) {
1955         ALOGE("request size %zu does not match fd size %d", len, size);
1956         return BAD_VALUE;
1957     }
1958     void* ptr = ::mmap(nullptr, len, isMutable ? PROT_READ | PROT_WRITE : PROT_READ,
1959             MAP_SHARED, fd, 0);
1960     if (ptr == MAP_FAILED) return NO_MEMORY;
1961 
1962     outBlob->init(fd, ptr, len, isMutable);
1963     return NO_ERROR;
1964 }
1965 
read(FlattenableHelperInterface & val) const1966 status_t Parcel::read(FlattenableHelperInterface& val) const
1967 {
1968     // size
1969     const size_t len = this->readInt32();
1970     const size_t fd_count = this->readInt32();
1971 
1972     if ((len > INT32_MAX) || (fd_count >= gMaxFds)) {
1973         // don't accept size_t values which may have come from an
1974         // inadvertent conversion from a negative int.
1975         return BAD_VALUE;
1976     }
1977 
1978     // payload
1979     void const* const buf = this->readInplace(pad_size(len));
1980     if (buf == nullptr)
1981         return BAD_VALUE;
1982 
1983     int* fds = nullptr;
1984     if (fd_count) {
1985         fds = new (std::nothrow) int[fd_count];
1986         if (fds == nullptr) {
1987             ALOGE("read: failed to allocate requested %zu fds", fd_count);
1988             return BAD_VALUE;
1989         }
1990     }
1991 
1992     status_t err = NO_ERROR;
1993     for (size_t i=0 ; i<fd_count && err==NO_ERROR ; i++) {
1994         int fd = this->readFileDescriptor();
1995         if (fd < 0 || ((fds[i] = fcntl(fd, F_DUPFD_CLOEXEC, 0)) < 0)) {
1996             err = BAD_VALUE;
1997             ALOGE("fcntl(F_DUPFD_CLOEXEC) failed in Parcel::read, i is %zu, fds[i] is %d, fd_count is %zu, error: %s",
1998                   i, fds[i], fd_count, strerror(fd < 0 ? -fd : errno));
1999             // Close all the file descriptors that were dup-ed.
2000             for (size_t j=0; j<i ;j++) {
2001                 close(fds[j]);
2002             }
2003         }
2004     }
2005 
2006     if (err == NO_ERROR) {
2007         err = val.unflatten(buf, len, fds, fd_count);
2008     }
2009 
2010     if (fd_count) {
2011         delete [] fds;
2012     }
2013 
2014     return err;
2015 }
readObject(bool nullMetaData) const2016 const flat_binder_object* Parcel::readObject(bool nullMetaData) const
2017 {
2018     const size_t DPOS = mDataPos;
2019     if ((DPOS+sizeof(flat_binder_object)) <= mDataSize) {
2020         const flat_binder_object* obj
2021                 = reinterpret_cast<const flat_binder_object*>(mData+DPOS);
2022         mDataPos = DPOS + sizeof(flat_binder_object);
2023         if (!nullMetaData && (obj->cookie == 0 && obj->binder == 0)) {
2024             // When transferring a NULL object, we don't write it into
2025             // the object list, so we don't want to check for it when
2026             // reading.
2027             ALOGV("readObject Setting data pos of %p to %zu", this, mDataPos);
2028             return obj;
2029         }
2030 
2031         // Ensure that this object is valid...
2032         binder_size_t* const OBJS = mObjects;
2033         const size_t N = mObjectsSize;
2034         size_t opos = mNextObjectHint;
2035 
2036         if (N > 0) {
2037             ALOGV("Parcel %p looking for obj at %zu, hint=%zu",
2038                  this, DPOS, opos);
2039 
2040             // Start at the current hint position, looking for an object at
2041             // the current data position.
2042             if (opos < N) {
2043                 while (opos < (N-1) && OBJS[opos] < DPOS) {
2044                     opos++;
2045                 }
2046             } else {
2047                 opos = N-1;
2048             }
2049             if (OBJS[opos] == DPOS) {
2050                 // Found it!
2051                 ALOGV("Parcel %p found obj %zu at index %zu with forward search",
2052                      this, DPOS, opos);
2053                 mNextObjectHint = opos+1;
2054                 ALOGV("readObject Setting data pos of %p to %zu", this, mDataPos);
2055                 return obj;
2056             }
2057 
2058             // Look backwards for it...
2059             while (opos > 0 && OBJS[opos] > DPOS) {
2060                 opos--;
2061             }
2062             if (OBJS[opos] == DPOS) {
2063                 // Found it!
2064                 ALOGV("Parcel %p found obj %zu at index %zu with backward search",
2065                      this, DPOS, opos);
2066                 mNextObjectHint = opos+1;
2067                 ALOGV("readObject Setting data pos of %p to %zu", this, mDataPos);
2068                 return obj;
2069             }
2070         }
2071         ALOGW("Attempt to read object from Parcel %p at offset %zu that is not in the object list",
2072              this, DPOS);
2073     }
2074     return nullptr;
2075 }
2076 
closeFileDescriptors()2077 void Parcel::closeFileDescriptors()
2078 {
2079     size_t i = mObjectsSize;
2080     if (i > 0) {
2081         //ALOGI("Closing file descriptors for %zu objects...", i);
2082     }
2083     while (i > 0) {
2084         i--;
2085         const flat_binder_object* flat
2086             = reinterpret_cast<flat_binder_object*>(mData+mObjects[i]);
2087         if (flat->hdr.type == BINDER_TYPE_FD) {
2088             //ALOGI("Closing fd: %ld", flat->handle);
2089             close(flat->handle);
2090         }
2091     }
2092 }
2093 
ipcData() const2094 uintptr_t Parcel::ipcData() const
2095 {
2096     return reinterpret_cast<uintptr_t>(mData);
2097 }
2098 
ipcDataSize() const2099 size_t Parcel::ipcDataSize() const
2100 {
2101     return (mDataSize > mDataPos ? mDataSize : mDataPos);
2102 }
2103 
ipcObjects() const2104 uintptr_t Parcel::ipcObjects() const
2105 {
2106     return reinterpret_cast<uintptr_t>(mObjects);
2107 }
2108 
ipcObjectsCount() const2109 size_t Parcel::ipcObjectsCount() const
2110 {
2111     return mObjectsSize;
2112 }
2113 
ipcSetDataReference(const uint8_t * data,size_t dataSize,const binder_size_t * objects,size_t objectsCount,release_func relFunc)2114 void Parcel::ipcSetDataReference(const uint8_t* data, size_t dataSize,
2115     const binder_size_t* objects, size_t objectsCount, release_func relFunc)
2116 {
2117     // this code uses 'mOwner == nullptr' to understand whether it owns memory
2118     LOG_ALWAYS_FATAL_IF(relFunc == nullptr, "must provide cleanup function");
2119 
2120     freeData();
2121 
2122     mData = const_cast<uint8_t*>(data);
2123     mDataSize = mDataCapacity = dataSize;
2124     mObjects = const_cast<binder_size_t*>(objects);
2125     mObjectsSize = mObjectsCapacity = objectsCount;
2126     mOwner = relFunc;
2127 
2128     binder_size_t minOffset = 0;
2129     for (size_t i = 0; i < mObjectsSize; i++) {
2130         binder_size_t offset = mObjects[i];
2131         if (offset < minOffset) {
2132             ALOGE("%s: bad object offset %" PRIu64 " < %" PRIu64 "\n",
2133                   __func__, (uint64_t)offset, (uint64_t)minOffset);
2134             mObjectsSize = 0;
2135             break;
2136         }
2137         const flat_binder_object* flat
2138             = reinterpret_cast<const flat_binder_object*>(mData + offset);
2139         uint32_t type = flat->hdr.type;
2140         if (!(type == BINDER_TYPE_BINDER || type == BINDER_TYPE_HANDLE ||
2141               type == BINDER_TYPE_FD)) {
2142             // We should never receive other types (eg BINDER_TYPE_FDA) as long as we don't support
2143             // them in libbinder. If we do receive them, it probably means a kernel bug; try to
2144             // recover gracefully by clearing out the objects, and releasing the objects we do
2145             // know about.
2146             android_errorWriteLog(0x534e4554, "135930648");
2147             ALOGE("%s: unsupported type object (%" PRIu32 ") at offset %" PRIu64 "\n",
2148                   __func__, type, (uint64_t)offset);
2149             releaseObjects();
2150             mObjectsSize = 0;
2151             break;
2152         }
2153         minOffset = offset + sizeof(flat_binder_object);
2154     }
2155     scanForFds();
2156 }
2157 
print(TextOutput & to,uint32_t) const2158 void Parcel::print(TextOutput& to, uint32_t /*flags*/) const
2159 {
2160     to << "Parcel(";
2161 
2162     if (errorCheck() != NO_ERROR) {
2163         const status_t err = errorCheck();
2164         to << "Error: " << (void*)(intptr_t)err << " \"" << strerror(-err) << "\"";
2165     } else if (dataSize() > 0) {
2166         const uint8_t* DATA = data();
2167         to << indent << HexDump(DATA, dataSize()) << dedent;
2168         const binder_size_t* OBJS = mObjects;
2169         const size_t N = objectsCount();
2170         for (size_t i=0; i<N; i++) {
2171             const flat_binder_object* flat
2172                 = reinterpret_cast<const flat_binder_object*>(DATA+OBJS[i]);
2173             to << endl << "Object #" << i << " @ " << (void*)OBJS[i] << ": "
2174                 << TypeCode(flat->hdr.type & 0x7f7f7f00)
2175                 << " = " << flat->binder;
2176         }
2177     } else {
2178         to << "NULL";
2179     }
2180 
2181     to << ")";
2182 }
2183 
releaseObjects()2184 void Parcel::releaseObjects()
2185 {
2186     size_t i = mObjectsSize;
2187     if (i == 0) {
2188         return;
2189     }
2190     sp<ProcessState> proc(ProcessState::self());
2191     uint8_t* const data = mData;
2192     binder_size_t* const objects = mObjects;
2193     while (i > 0) {
2194         i--;
2195         const flat_binder_object* flat
2196             = reinterpret_cast<flat_binder_object*>(data+objects[i]);
2197         release_object(proc, *flat, this, &mOpenAshmemSize);
2198     }
2199 }
2200 
acquireObjects()2201 void Parcel::acquireObjects()
2202 {
2203     size_t i = mObjectsSize;
2204     if (i == 0) {
2205         return;
2206     }
2207     const sp<ProcessState> proc(ProcessState::self());
2208     uint8_t* const data = mData;
2209     binder_size_t* const objects = mObjects;
2210     while (i > 0) {
2211         i--;
2212         const flat_binder_object* flat
2213             = reinterpret_cast<flat_binder_object*>(data+objects[i]);
2214         acquire_object(proc, *flat, this, &mOpenAshmemSize);
2215     }
2216 }
2217 
freeData()2218 void Parcel::freeData()
2219 {
2220     freeDataNoInit();
2221     initState();
2222 }
2223 
freeDataNoInit()2224 void Parcel::freeDataNoInit()
2225 {
2226     if (mOwner) {
2227         LOG_ALLOC("Parcel %p: freeing other owner data", this);
2228         //ALOGI("Freeing data ref of %p (pid=%d)", this, getpid());
2229         mOwner(this, mData, mDataSize, mObjects, mObjectsSize);
2230     } else {
2231         LOG_ALLOC("Parcel %p: freeing allocated data", this);
2232         releaseObjects();
2233         if (mData) {
2234             LOG_ALLOC("Parcel %p: freeing with %zu capacity", this, mDataCapacity);
2235             gParcelGlobalAllocSize -= mDataCapacity;
2236             gParcelGlobalAllocCount--;
2237             if (mDeallocZero) {
2238                 zeroMemory(mData, mDataSize);
2239             }
2240             free(mData);
2241         }
2242         if (mObjects) free(mObjects);
2243     }
2244 }
2245 
growData(size_t len)2246 status_t Parcel::growData(size_t len)
2247 {
2248     if (len > INT32_MAX) {
2249         // don't accept size_t values which may have come from an
2250         // inadvertent conversion from a negative int.
2251         return BAD_VALUE;
2252     }
2253 
2254     if (len > SIZE_MAX - mDataSize) return NO_MEMORY; // overflow
2255     if (mDataSize + len > SIZE_MAX / 3) return NO_MEMORY; // overflow
2256     size_t newSize = ((mDataSize+len)*3)/2;
2257     return (newSize <= mDataSize)
2258             ? (status_t) NO_MEMORY
2259             : continueWrite(std::max(newSize, (size_t) 128));
2260 }
2261 
reallocZeroFree(uint8_t * data,size_t oldCapacity,size_t newCapacity,bool zero)2262 static uint8_t* reallocZeroFree(uint8_t* data, size_t oldCapacity, size_t newCapacity, bool zero) {
2263     if (!zero) {
2264         return (uint8_t*)realloc(data, newCapacity);
2265     }
2266     uint8_t* newData = (uint8_t*)malloc(newCapacity);
2267     if (!newData) {
2268         return nullptr;
2269     }
2270 
2271     memcpy(newData, data, std::min(oldCapacity, newCapacity));
2272     zeroMemory(data, oldCapacity);
2273     free(data);
2274     return newData;
2275 }
2276 
restartWrite(size_t desired)2277 status_t Parcel::restartWrite(size_t desired)
2278 {
2279     if (desired > INT32_MAX) {
2280         // don't accept size_t values which may have come from an
2281         // inadvertent conversion from a negative int.
2282         return BAD_VALUE;
2283     }
2284 
2285     if (mOwner) {
2286         freeData();
2287         return continueWrite(desired);
2288     }
2289 
2290     uint8_t* data = reallocZeroFree(mData, mDataCapacity, desired, mDeallocZero);
2291     if (!data && desired > mDataCapacity) {
2292         mError = NO_MEMORY;
2293         return NO_MEMORY;
2294     }
2295 
2296     releaseObjects();
2297 
2298     if (data || desired == 0) {
2299         LOG_ALLOC("Parcel %p: restart from %zu to %zu capacity", this, mDataCapacity, desired);
2300         if (mDataCapacity > desired) {
2301             gParcelGlobalAllocSize -= (mDataCapacity - desired);
2302         } else {
2303             gParcelGlobalAllocSize += (desired - mDataCapacity);
2304         }
2305 
2306         if (!mData) {
2307             gParcelGlobalAllocCount++;
2308         }
2309         mData = data;
2310         mDataCapacity = desired;
2311     }
2312 
2313     mDataSize = mDataPos = 0;
2314     ALOGV("restartWrite Setting data size of %p to %zu", this, mDataSize);
2315     ALOGV("restartWrite Setting data pos of %p to %zu", this, mDataPos);
2316 
2317     free(mObjects);
2318     mObjects = nullptr;
2319     mObjectsSize = mObjectsCapacity = 0;
2320     mNextObjectHint = 0;
2321     mObjectsSorted = false;
2322     mHasFds = false;
2323     mFdsKnown = true;
2324     mAllowFds = true;
2325 
2326     return NO_ERROR;
2327 }
2328 
continueWrite(size_t desired)2329 status_t Parcel::continueWrite(size_t desired)
2330 {
2331     if (desired > INT32_MAX) {
2332         // don't accept size_t values which may have come from an
2333         // inadvertent conversion from a negative int.
2334         return BAD_VALUE;
2335     }
2336 
2337     // If shrinking, first adjust for any objects that appear
2338     // after the new data size.
2339     size_t objectsSize = mObjectsSize;
2340     if (desired < mDataSize) {
2341         if (desired == 0) {
2342             objectsSize = 0;
2343         } else {
2344             while (objectsSize > 0) {
2345                 if (mObjects[objectsSize-1] < desired)
2346                     break;
2347                 objectsSize--;
2348             }
2349         }
2350     }
2351 
2352     if (mOwner) {
2353         // If the size is going to zero, just release the owner's data.
2354         if (desired == 0) {
2355             freeData();
2356             return NO_ERROR;
2357         }
2358 
2359         // If there is a different owner, we need to take
2360         // posession.
2361         uint8_t* data = (uint8_t*)malloc(desired);
2362         if (!data) {
2363             mError = NO_MEMORY;
2364             return NO_MEMORY;
2365         }
2366         binder_size_t* objects = nullptr;
2367 
2368         if (objectsSize) {
2369             objects = (binder_size_t*)calloc(objectsSize, sizeof(binder_size_t));
2370             if (!objects) {
2371                 free(data);
2372 
2373                 mError = NO_MEMORY;
2374                 return NO_MEMORY;
2375             }
2376 
2377             // Little hack to only acquire references on objects
2378             // we will be keeping.
2379             size_t oldObjectsSize = mObjectsSize;
2380             mObjectsSize = objectsSize;
2381             acquireObjects();
2382             mObjectsSize = oldObjectsSize;
2383         }
2384 
2385         if (mData) {
2386             memcpy(data, mData, mDataSize < desired ? mDataSize : desired);
2387         }
2388         if (objects && mObjects) {
2389             memcpy(objects, mObjects, objectsSize*sizeof(binder_size_t));
2390         }
2391         //ALOGI("Freeing data ref of %p (pid=%d)", this, getpid());
2392         mOwner(this, mData, mDataSize, mObjects, mObjectsSize);
2393         mOwner = nullptr;
2394 
2395         LOG_ALLOC("Parcel %p: taking ownership of %zu capacity", this, desired);
2396         gParcelGlobalAllocSize += desired;
2397         gParcelGlobalAllocCount++;
2398 
2399         mData = data;
2400         mObjects = objects;
2401         mDataSize = (mDataSize < desired) ? mDataSize : desired;
2402         ALOGV("continueWrite Setting data size of %p to %zu", this, mDataSize);
2403         mDataCapacity = desired;
2404         mObjectsSize = mObjectsCapacity = objectsSize;
2405         mNextObjectHint = 0;
2406         mObjectsSorted = false;
2407 
2408     } else if (mData) {
2409         if (objectsSize < mObjectsSize) {
2410             // Need to release refs on any objects we are dropping.
2411             const sp<ProcessState> proc(ProcessState::self());
2412             for (size_t i=objectsSize; i<mObjectsSize; i++) {
2413                 const flat_binder_object* flat
2414                     = reinterpret_cast<flat_binder_object*>(mData+mObjects[i]);
2415                 if (flat->hdr.type == BINDER_TYPE_FD) {
2416                     // will need to rescan because we may have lopped off the only FDs
2417                     mFdsKnown = false;
2418                 }
2419                 release_object(proc, *flat, this, &mOpenAshmemSize);
2420             }
2421 
2422             if (objectsSize == 0) {
2423                 free(mObjects);
2424                 mObjects = nullptr;
2425                 mObjectsCapacity = 0;
2426             } else {
2427                 binder_size_t* objects =
2428                     (binder_size_t*)realloc(mObjects, objectsSize*sizeof(binder_size_t));
2429                 if (objects) {
2430                     mObjects = objects;
2431                     mObjectsCapacity = objectsSize;
2432                 }
2433             }
2434             mObjectsSize = objectsSize;
2435             mNextObjectHint = 0;
2436             mObjectsSorted = false;
2437         }
2438 
2439         // We own the data, so we can just do a realloc().
2440         if (desired > mDataCapacity) {
2441             uint8_t* data = reallocZeroFree(mData, mDataCapacity, desired, mDeallocZero);
2442             if (data) {
2443                 LOG_ALLOC("Parcel %p: continue from %zu to %zu capacity", this, mDataCapacity,
2444                         desired);
2445                 gParcelGlobalAllocSize += desired;
2446                 gParcelGlobalAllocSize -= mDataCapacity;
2447                 mData = data;
2448                 mDataCapacity = desired;
2449             } else {
2450                 mError = NO_MEMORY;
2451                 return NO_MEMORY;
2452             }
2453         } else {
2454             if (mDataSize > desired) {
2455                 mDataSize = desired;
2456                 ALOGV("continueWrite Setting data size of %p to %zu", this, mDataSize);
2457             }
2458             if (mDataPos > desired) {
2459                 mDataPos = desired;
2460                 ALOGV("continueWrite Setting data pos of %p to %zu", this, mDataPos);
2461             }
2462         }
2463 
2464     } else {
2465         // This is the first data.  Easy!
2466         uint8_t* data = (uint8_t*)malloc(desired);
2467         if (!data) {
2468             mError = NO_MEMORY;
2469             return NO_MEMORY;
2470         }
2471 
2472         if(!(mDataCapacity == 0 && mObjects == nullptr
2473              && mObjectsCapacity == 0)) {
2474             ALOGE("continueWrite: %zu/%p/%zu/%zu", mDataCapacity, mObjects, mObjectsCapacity, desired);
2475         }
2476 
2477         LOG_ALLOC("Parcel %p: allocating with %zu capacity", this, desired);
2478         gParcelGlobalAllocSize += desired;
2479         gParcelGlobalAllocCount++;
2480 
2481         mData = data;
2482         mDataSize = mDataPos = 0;
2483         ALOGV("continueWrite Setting data size of %p to %zu", this, mDataSize);
2484         ALOGV("continueWrite Setting data pos of %p to %zu", this, mDataPos);
2485         mDataCapacity = desired;
2486     }
2487 
2488     return NO_ERROR;
2489 }
2490 
initState()2491 void Parcel::initState()
2492 {
2493     LOG_ALLOC("Parcel %p: initState", this);
2494     mError = NO_ERROR;
2495     mData = nullptr;
2496     mDataSize = 0;
2497     mDataCapacity = 0;
2498     mDataPos = 0;
2499     ALOGV("initState Setting data size of %p to %zu", this, mDataSize);
2500     ALOGV("initState Setting data pos of %p to %zu", this, mDataPos);
2501     mSession = nullptr;
2502     mObjects = nullptr;
2503     mObjectsSize = 0;
2504     mObjectsCapacity = 0;
2505     mNextObjectHint = 0;
2506     mObjectsSorted = false;
2507     mHasFds = false;
2508     mFdsKnown = true;
2509     mAllowFds = true;
2510     mDeallocZero = false;
2511     mOwner = nullptr;
2512     mOpenAshmemSize = 0;
2513     mWorkSourceRequestHeaderPosition = 0;
2514     mRequestHeaderPresent = false;
2515 
2516     // racing multiple init leads only to multiple identical write
2517     if (gMaxFds == 0) {
2518         struct rlimit result;
2519         if (!getrlimit(RLIMIT_NOFILE, &result)) {
2520             gMaxFds = (size_t)result.rlim_cur;
2521             //ALOGI("parcel fd limit set to %zu", gMaxFds);
2522         } else {
2523             ALOGW("Unable to getrlimit: %s", strerror(errno));
2524             gMaxFds = 1024;
2525         }
2526     }
2527 }
2528 
scanForFds() const2529 void Parcel::scanForFds() const
2530 {
2531     bool hasFds = false;
2532     for (size_t i=0; i<mObjectsSize; i++) {
2533         const flat_binder_object* flat
2534             = reinterpret_cast<const flat_binder_object*>(mData + mObjects[i]);
2535         if (flat->hdr.type == BINDER_TYPE_FD) {
2536             hasFds = true;
2537             break;
2538         }
2539     }
2540     mHasFds = hasFds;
2541     mFdsKnown = true;
2542 }
2543 
getBlobAshmemSize() const2544 size_t Parcel::getBlobAshmemSize() const
2545 {
2546     // This used to return the size of all blobs that were written to ashmem, now we're returning
2547     // the ashmem currently referenced by this Parcel, which should be equivalent.
2548     // TODO: Remove method once ABI can be changed.
2549     return mOpenAshmemSize;
2550 }
2551 
getOpenAshmemSize() const2552 size_t Parcel::getOpenAshmemSize() const
2553 {
2554     return mOpenAshmemSize;
2555 }
2556 
2557 // --- Parcel::Blob ---
2558 
Blob()2559 Parcel::Blob::Blob() :
2560         mFd(-1), mData(nullptr), mSize(0), mMutable(false) {
2561 }
2562 
~Blob()2563 Parcel::Blob::~Blob() {
2564     release();
2565 }
2566 
release()2567 void Parcel::Blob::release() {
2568     if (mFd != -1 && mData) {
2569         ::munmap(mData, mSize);
2570     }
2571     clear();
2572 }
2573 
init(int fd,void * data,size_t size,bool isMutable)2574 void Parcel::Blob::init(int fd, void* data, size_t size, bool isMutable) {
2575     mFd = fd;
2576     mData = data;
2577     mSize = size;
2578     mMutable = isMutable;
2579 }
2580 
clear()2581 void Parcel::Blob::clear() {
2582     mFd = -1;
2583     mData = nullptr;
2584     mSize = 0;
2585     mMutable = false;
2586 }
2587 
2588 } // namespace android
2589