1 //===- InstCombineAndOrXor.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitAnd, visitOr, and visitXor functions.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "InstCombineInternal.h"
14 #include "llvm/Analysis/CmpInstAnalysis.h"
15 #include "llvm/Analysis/InstructionSimplify.h"
16 #include "llvm/IR/ConstantRange.h"
17 #include "llvm/IR/Intrinsics.h"
18 #include "llvm/IR/PatternMatch.h"
19 #include "llvm/Transforms/InstCombine/InstCombiner.h"
20 #include "llvm/Transforms/Utils/Local.h"
21
22 using namespace llvm;
23 using namespace PatternMatch;
24
25 #define DEBUG_TYPE "instcombine"
26
27 /// Similar to getICmpCode but for FCmpInst. This encodes a fcmp predicate into
28 /// a four bit mask.
getFCmpCode(FCmpInst::Predicate CC)29 static unsigned getFCmpCode(FCmpInst::Predicate CC) {
30 assert(FCmpInst::FCMP_FALSE <= CC && CC <= FCmpInst::FCMP_TRUE &&
31 "Unexpected FCmp predicate!");
32 // Take advantage of the bit pattern of FCmpInst::Predicate here.
33 // U L G E
34 static_assert(FCmpInst::FCMP_FALSE == 0, ""); // 0 0 0 0
35 static_assert(FCmpInst::FCMP_OEQ == 1, ""); // 0 0 0 1
36 static_assert(FCmpInst::FCMP_OGT == 2, ""); // 0 0 1 0
37 static_assert(FCmpInst::FCMP_OGE == 3, ""); // 0 0 1 1
38 static_assert(FCmpInst::FCMP_OLT == 4, ""); // 0 1 0 0
39 static_assert(FCmpInst::FCMP_OLE == 5, ""); // 0 1 0 1
40 static_assert(FCmpInst::FCMP_ONE == 6, ""); // 0 1 1 0
41 static_assert(FCmpInst::FCMP_ORD == 7, ""); // 0 1 1 1
42 static_assert(FCmpInst::FCMP_UNO == 8, ""); // 1 0 0 0
43 static_assert(FCmpInst::FCMP_UEQ == 9, ""); // 1 0 0 1
44 static_assert(FCmpInst::FCMP_UGT == 10, ""); // 1 0 1 0
45 static_assert(FCmpInst::FCMP_UGE == 11, ""); // 1 0 1 1
46 static_assert(FCmpInst::FCMP_ULT == 12, ""); // 1 1 0 0
47 static_assert(FCmpInst::FCMP_ULE == 13, ""); // 1 1 0 1
48 static_assert(FCmpInst::FCMP_UNE == 14, ""); // 1 1 1 0
49 static_assert(FCmpInst::FCMP_TRUE == 15, ""); // 1 1 1 1
50 return CC;
51 }
52
53 /// This is the complement of getICmpCode, which turns an opcode and two
54 /// operands into either a constant true or false, or a brand new ICmp
55 /// instruction. The sign is passed in to determine which kind of predicate to
56 /// use in the new icmp instruction.
getNewICmpValue(unsigned Code,bool Sign,Value * LHS,Value * RHS,InstCombiner::BuilderTy & Builder)57 static Value *getNewICmpValue(unsigned Code, bool Sign, Value *LHS, Value *RHS,
58 InstCombiner::BuilderTy &Builder) {
59 ICmpInst::Predicate NewPred;
60 if (Constant *TorF = getPredForICmpCode(Code, Sign, LHS->getType(), NewPred))
61 return TorF;
62 return Builder.CreateICmp(NewPred, LHS, RHS);
63 }
64
65 /// This is the complement of getFCmpCode, which turns an opcode and two
66 /// operands into either a FCmp instruction, or a true/false constant.
getFCmpValue(unsigned Code,Value * LHS,Value * RHS,InstCombiner::BuilderTy & Builder)67 static Value *getFCmpValue(unsigned Code, Value *LHS, Value *RHS,
68 InstCombiner::BuilderTy &Builder) {
69 const auto Pred = static_cast<FCmpInst::Predicate>(Code);
70 assert(FCmpInst::FCMP_FALSE <= Pred && Pred <= FCmpInst::FCMP_TRUE &&
71 "Unexpected FCmp predicate!");
72 if (Pred == FCmpInst::FCMP_FALSE)
73 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
74 if (Pred == FCmpInst::FCMP_TRUE)
75 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1);
76 return Builder.CreateFCmp(Pred, LHS, RHS);
77 }
78
79 /// Transform BITWISE_OP(BSWAP(A),BSWAP(B)) or
80 /// BITWISE_OP(BSWAP(A), Constant) to BSWAP(BITWISE_OP(A, B))
81 /// \param I Binary operator to transform.
82 /// \return Pointer to node that must replace the original binary operator, or
83 /// null pointer if no transformation was made.
SimplifyBSwap(BinaryOperator & I,InstCombiner::BuilderTy & Builder)84 static Value *SimplifyBSwap(BinaryOperator &I,
85 InstCombiner::BuilderTy &Builder) {
86 assert(I.isBitwiseLogicOp() && "Unexpected opcode for bswap simplifying");
87
88 Value *OldLHS = I.getOperand(0);
89 Value *OldRHS = I.getOperand(1);
90
91 Value *NewLHS;
92 if (!match(OldLHS, m_BSwap(m_Value(NewLHS))))
93 return nullptr;
94
95 Value *NewRHS;
96 const APInt *C;
97
98 if (match(OldRHS, m_BSwap(m_Value(NewRHS)))) {
99 // OP( BSWAP(x), BSWAP(y) ) -> BSWAP( OP(x, y) )
100 if (!OldLHS->hasOneUse() && !OldRHS->hasOneUse())
101 return nullptr;
102 // NewRHS initialized by the matcher.
103 } else if (match(OldRHS, m_APInt(C))) {
104 // OP( BSWAP(x), CONSTANT ) -> BSWAP( OP(x, BSWAP(CONSTANT) ) )
105 if (!OldLHS->hasOneUse())
106 return nullptr;
107 NewRHS = ConstantInt::get(I.getType(), C->byteSwap());
108 } else
109 return nullptr;
110
111 Value *BinOp = Builder.CreateBinOp(I.getOpcode(), NewLHS, NewRHS);
112 Function *F = Intrinsic::getDeclaration(I.getModule(), Intrinsic::bswap,
113 I.getType());
114 return Builder.CreateCall(F, BinOp);
115 }
116
117 /// Emit a computation of: (V >= Lo && V < Hi) if Inside is true, otherwise
118 /// (V < Lo || V >= Hi). This method expects that Lo < Hi. IsSigned indicates
119 /// whether to treat V, Lo, and Hi as signed or not.
insertRangeTest(Value * V,const APInt & Lo,const APInt & Hi,bool isSigned,bool Inside)120 Value *InstCombinerImpl::insertRangeTest(Value *V, const APInt &Lo,
121 const APInt &Hi, bool isSigned,
122 bool Inside) {
123 assert((isSigned ? Lo.slt(Hi) : Lo.ult(Hi)) &&
124 "Lo is not < Hi in range emission code!");
125
126 Type *Ty = V->getType();
127
128 // V >= Min && V < Hi --> V < Hi
129 // V < Min || V >= Hi --> V >= Hi
130 ICmpInst::Predicate Pred = Inside ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE;
131 if (isSigned ? Lo.isMinSignedValue() : Lo.isMinValue()) {
132 Pred = isSigned ? ICmpInst::getSignedPredicate(Pred) : Pred;
133 return Builder.CreateICmp(Pred, V, ConstantInt::get(Ty, Hi));
134 }
135
136 // V >= Lo && V < Hi --> V - Lo u< Hi - Lo
137 // V < Lo || V >= Hi --> V - Lo u>= Hi - Lo
138 Value *VMinusLo =
139 Builder.CreateSub(V, ConstantInt::get(Ty, Lo), V->getName() + ".off");
140 Constant *HiMinusLo = ConstantInt::get(Ty, Hi - Lo);
141 return Builder.CreateICmp(Pred, VMinusLo, HiMinusLo);
142 }
143
144 /// Classify (icmp eq (A & B), C) and (icmp ne (A & B), C) as matching patterns
145 /// that can be simplified.
146 /// One of A and B is considered the mask. The other is the value. This is
147 /// described as the "AMask" or "BMask" part of the enum. If the enum contains
148 /// only "Mask", then both A and B can be considered masks. If A is the mask,
149 /// then it was proven that (A & C) == C. This is trivial if C == A or C == 0.
150 /// If both A and C are constants, this proof is also easy.
151 /// For the following explanations, we assume that A is the mask.
152 ///
153 /// "AllOnes" declares that the comparison is true only if (A & B) == A or all
154 /// bits of A are set in B.
155 /// Example: (icmp eq (A & 3), 3) -> AMask_AllOnes
156 ///
157 /// "AllZeros" declares that the comparison is true only if (A & B) == 0 or all
158 /// bits of A are cleared in B.
159 /// Example: (icmp eq (A & 3), 0) -> Mask_AllZeroes
160 ///
161 /// "Mixed" declares that (A & B) == C and C might or might not contain any
162 /// number of one bits and zero bits.
163 /// Example: (icmp eq (A & 3), 1) -> AMask_Mixed
164 ///
165 /// "Not" means that in above descriptions "==" should be replaced by "!=".
166 /// Example: (icmp ne (A & 3), 3) -> AMask_NotAllOnes
167 ///
168 /// If the mask A contains a single bit, then the following is equivalent:
169 /// (icmp eq (A & B), A) equals (icmp ne (A & B), 0)
170 /// (icmp ne (A & B), A) equals (icmp eq (A & B), 0)
171 enum MaskedICmpType {
172 AMask_AllOnes = 1,
173 AMask_NotAllOnes = 2,
174 BMask_AllOnes = 4,
175 BMask_NotAllOnes = 8,
176 Mask_AllZeros = 16,
177 Mask_NotAllZeros = 32,
178 AMask_Mixed = 64,
179 AMask_NotMixed = 128,
180 BMask_Mixed = 256,
181 BMask_NotMixed = 512
182 };
183
184 /// Return the set of patterns (from MaskedICmpType) that (icmp SCC (A & B), C)
185 /// satisfies.
getMaskedICmpType(Value * A,Value * B,Value * C,ICmpInst::Predicate Pred)186 static unsigned getMaskedICmpType(Value *A, Value *B, Value *C,
187 ICmpInst::Predicate Pred) {
188 ConstantInt *ACst = dyn_cast<ConstantInt>(A);
189 ConstantInt *BCst = dyn_cast<ConstantInt>(B);
190 ConstantInt *CCst = dyn_cast<ConstantInt>(C);
191 bool IsEq = (Pred == ICmpInst::ICMP_EQ);
192 bool IsAPow2 = (ACst && !ACst->isZero() && ACst->getValue().isPowerOf2());
193 bool IsBPow2 = (BCst && !BCst->isZero() && BCst->getValue().isPowerOf2());
194 unsigned MaskVal = 0;
195 if (CCst && CCst->isZero()) {
196 // if C is zero, then both A and B qualify as mask
197 MaskVal |= (IsEq ? (Mask_AllZeros | AMask_Mixed | BMask_Mixed)
198 : (Mask_NotAllZeros | AMask_NotMixed | BMask_NotMixed));
199 if (IsAPow2)
200 MaskVal |= (IsEq ? (AMask_NotAllOnes | AMask_NotMixed)
201 : (AMask_AllOnes | AMask_Mixed));
202 if (IsBPow2)
203 MaskVal |= (IsEq ? (BMask_NotAllOnes | BMask_NotMixed)
204 : (BMask_AllOnes | BMask_Mixed));
205 return MaskVal;
206 }
207
208 if (A == C) {
209 MaskVal |= (IsEq ? (AMask_AllOnes | AMask_Mixed)
210 : (AMask_NotAllOnes | AMask_NotMixed));
211 if (IsAPow2)
212 MaskVal |= (IsEq ? (Mask_NotAllZeros | AMask_NotMixed)
213 : (Mask_AllZeros | AMask_Mixed));
214 } else if (ACst && CCst && ConstantExpr::getAnd(ACst, CCst) == CCst) {
215 MaskVal |= (IsEq ? AMask_Mixed : AMask_NotMixed);
216 }
217
218 if (B == C) {
219 MaskVal |= (IsEq ? (BMask_AllOnes | BMask_Mixed)
220 : (BMask_NotAllOnes | BMask_NotMixed));
221 if (IsBPow2)
222 MaskVal |= (IsEq ? (Mask_NotAllZeros | BMask_NotMixed)
223 : (Mask_AllZeros | BMask_Mixed));
224 } else if (BCst && CCst && ConstantExpr::getAnd(BCst, CCst) == CCst) {
225 MaskVal |= (IsEq ? BMask_Mixed : BMask_NotMixed);
226 }
227
228 return MaskVal;
229 }
230
231 /// Convert an analysis of a masked ICmp into its equivalent if all boolean
232 /// operations had the opposite sense. Since each "NotXXX" flag (recording !=)
233 /// is adjacent to the corresponding normal flag (recording ==), this just
234 /// involves swapping those bits over.
conjugateICmpMask(unsigned Mask)235 static unsigned conjugateICmpMask(unsigned Mask) {
236 unsigned NewMask;
237 NewMask = (Mask & (AMask_AllOnes | BMask_AllOnes | Mask_AllZeros |
238 AMask_Mixed | BMask_Mixed))
239 << 1;
240
241 NewMask |= (Mask & (AMask_NotAllOnes | BMask_NotAllOnes | Mask_NotAllZeros |
242 AMask_NotMixed | BMask_NotMixed))
243 >> 1;
244
245 return NewMask;
246 }
247
248 // Adapts the external decomposeBitTestICmp for local use.
decomposeBitTestICmp(Value * LHS,Value * RHS,CmpInst::Predicate & Pred,Value * & X,Value * & Y,Value * & Z)249 static bool decomposeBitTestICmp(Value *LHS, Value *RHS, CmpInst::Predicate &Pred,
250 Value *&X, Value *&Y, Value *&Z) {
251 APInt Mask;
252 if (!llvm::decomposeBitTestICmp(LHS, RHS, Pred, X, Mask))
253 return false;
254
255 Y = ConstantInt::get(X->getType(), Mask);
256 Z = ConstantInt::get(X->getType(), 0);
257 return true;
258 }
259
260 /// Handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E).
261 /// Return the pattern classes (from MaskedICmpType) for the left hand side and
262 /// the right hand side as a pair.
263 /// LHS and RHS are the left hand side and the right hand side ICmps and PredL
264 /// and PredR are their predicates, respectively.
265 static
266 Optional<std::pair<unsigned, unsigned>>
getMaskedTypeForICmpPair(Value * & A,Value * & B,Value * & C,Value * & D,Value * & E,ICmpInst * LHS,ICmpInst * RHS,ICmpInst::Predicate & PredL,ICmpInst::Predicate & PredR)267 getMaskedTypeForICmpPair(Value *&A, Value *&B, Value *&C,
268 Value *&D, Value *&E, ICmpInst *LHS,
269 ICmpInst *RHS,
270 ICmpInst::Predicate &PredL,
271 ICmpInst::Predicate &PredR) {
272 // vectors are not (yet?) supported. Don't support pointers either.
273 if (!LHS->getOperand(0)->getType()->isIntegerTy() ||
274 !RHS->getOperand(0)->getType()->isIntegerTy())
275 return None;
276
277 // Here comes the tricky part:
278 // LHS might be of the form L11 & L12 == X, X == L21 & L22,
279 // and L11 & L12 == L21 & L22. The same goes for RHS.
280 // Now we must find those components L** and R**, that are equal, so
281 // that we can extract the parameters A, B, C, D, and E for the canonical
282 // above.
283 Value *L1 = LHS->getOperand(0);
284 Value *L2 = LHS->getOperand(1);
285 Value *L11, *L12, *L21, *L22;
286 // Check whether the icmp can be decomposed into a bit test.
287 if (decomposeBitTestICmp(L1, L2, PredL, L11, L12, L2)) {
288 L21 = L22 = L1 = nullptr;
289 } else {
290 // Look for ANDs in the LHS icmp.
291 if (!match(L1, m_And(m_Value(L11), m_Value(L12)))) {
292 // Any icmp can be viewed as being trivially masked; if it allows us to
293 // remove one, it's worth it.
294 L11 = L1;
295 L12 = Constant::getAllOnesValue(L1->getType());
296 }
297
298 if (!match(L2, m_And(m_Value(L21), m_Value(L22)))) {
299 L21 = L2;
300 L22 = Constant::getAllOnesValue(L2->getType());
301 }
302 }
303
304 // Bail if LHS was a icmp that can't be decomposed into an equality.
305 if (!ICmpInst::isEquality(PredL))
306 return None;
307
308 Value *R1 = RHS->getOperand(0);
309 Value *R2 = RHS->getOperand(1);
310 Value *R11, *R12;
311 bool Ok = false;
312 if (decomposeBitTestICmp(R1, R2, PredR, R11, R12, R2)) {
313 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
314 A = R11;
315 D = R12;
316 } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
317 A = R12;
318 D = R11;
319 } else {
320 return None;
321 }
322 E = R2;
323 R1 = nullptr;
324 Ok = true;
325 } else {
326 if (!match(R1, m_And(m_Value(R11), m_Value(R12)))) {
327 // As before, model no mask as a trivial mask if it'll let us do an
328 // optimization.
329 R11 = R1;
330 R12 = Constant::getAllOnesValue(R1->getType());
331 }
332
333 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
334 A = R11;
335 D = R12;
336 E = R2;
337 Ok = true;
338 } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
339 A = R12;
340 D = R11;
341 E = R2;
342 Ok = true;
343 }
344 }
345
346 // Bail if RHS was a icmp that can't be decomposed into an equality.
347 if (!ICmpInst::isEquality(PredR))
348 return None;
349
350 // Look for ANDs on the right side of the RHS icmp.
351 if (!Ok) {
352 if (!match(R2, m_And(m_Value(R11), m_Value(R12)))) {
353 R11 = R2;
354 R12 = Constant::getAllOnesValue(R2->getType());
355 }
356
357 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
358 A = R11;
359 D = R12;
360 E = R1;
361 Ok = true;
362 } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
363 A = R12;
364 D = R11;
365 E = R1;
366 Ok = true;
367 } else {
368 return None;
369 }
370 }
371 if (!Ok)
372 return None;
373
374 if (L11 == A) {
375 B = L12;
376 C = L2;
377 } else if (L12 == A) {
378 B = L11;
379 C = L2;
380 } else if (L21 == A) {
381 B = L22;
382 C = L1;
383 } else if (L22 == A) {
384 B = L21;
385 C = L1;
386 }
387
388 unsigned LeftType = getMaskedICmpType(A, B, C, PredL);
389 unsigned RightType = getMaskedICmpType(A, D, E, PredR);
390 return Optional<std::pair<unsigned, unsigned>>(std::make_pair(LeftType, RightType));
391 }
392
393 /// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E) into a single
394 /// (icmp(A & X) ==/!= Y), where the left-hand side is of type Mask_NotAllZeros
395 /// and the right hand side is of type BMask_Mixed. For example,
396 /// (icmp (A & 12) != 0) & (icmp (A & 15) == 8) -> (icmp (A & 15) == 8).
foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(ICmpInst * LHS,ICmpInst * RHS,bool IsAnd,Value * A,Value * B,Value * C,Value * D,Value * E,ICmpInst::Predicate PredL,ICmpInst::Predicate PredR,InstCombiner::BuilderTy & Builder)397 static Value *foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
398 ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, Value *A, Value *B, Value *C,
399 Value *D, Value *E, ICmpInst::Predicate PredL, ICmpInst::Predicate PredR,
400 InstCombiner::BuilderTy &Builder) {
401 // We are given the canonical form:
402 // (icmp ne (A & B), 0) & (icmp eq (A & D), E).
403 // where D & E == E.
404 //
405 // If IsAnd is false, we get it in negated form:
406 // (icmp eq (A & B), 0) | (icmp ne (A & D), E) ->
407 // !((icmp ne (A & B), 0) & (icmp eq (A & D), E)).
408 //
409 // We currently handle the case of B, C, D, E are constant.
410 //
411 ConstantInt *BCst, *CCst, *DCst, *ECst;
412 if (!match(B, m_ConstantInt(BCst)) || !match(C, m_ConstantInt(CCst)) ||
413 !match(D, m_ConstantInt(DCst)) || !match(E, m_ConstantInt(ECst)))
414 return nullptr;
415
416 ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
417
418 // Update E to the canonical form when D is a power of two and RHS is
419 // canonicalized as,
420 // (icmp ne (A & D), 0) -> (icmp eq (A & D), D) or
421 // (icmp ne (A & D), D) -> (icmp eq (A & D), 0).
422 if (PredR != NewCC)
423 ECst = cast<ConstantInt>(ConstantExpr::getXor(DCst, ECst));
424
425 // If B or D is zero, skip because if LHS or RHS can be trivially folded by
426 // other folding rules and this pattern won't apply any more.
427 if (BCst->getValue() == 0 || DCst->getValue() == 0)
428 return nullptr;
429
430 // If B and D don't intersect, ie. (B & D) == 0, no folding because we can't
431 // deduce anything from it.
432 // For example,
433 // (icmp ne (A & 12), 0) & (icmp eq (A & 3), 1) -> no folding.
434 if ((BCst->getValue() & DCst->getValue()) == 0)
435 return nullptr;
436
437 // If the following two conditions are met:
438 //
439 // 1. mask B covers only a single bit that's not covered by mask D, that is,
440 // (B & (B ^ D)) is a power of 2 (in other words, B minus the intersection of
441 // B and D has only one bit set) and,
442 //
443 // 2. RHS (and E) indicates that the rest of B's bits are zero (in other
444 // words, the intersection of B and D is zero), that is, ((B & D) & E) == 0
445 //
446 // then that single bit in B must be one and thus the whole expression can be
447 // folded to
448 // (A & (B | D)) == (B & (B ^ D)) | E.
449 //
450 // For example,
451 // (icmp ne (A & 12), 0) & (icmp eq (A & 7), 1) -> (icmp eq (A & 15), 9)
452 // (icmp ne (A & 15), 0) & (icmp eq (A & 7), 0) -> (icmp eq (A & 15), 8)
453 if ((((BCst->getValue() & DCst->getValue()) & ECst->getValue()) == 0) &&
454 (BCst->getValue() & (BCst->getValue() ^ DCst->getValue())).isPowerOf2()) {
455 APInt BorD = BCst->getValue() | DCst->getValue();
456 APInt BandBxorDorE = (BCst->getValue() & (BCst->getValue() ^ DCst->getValue())) |
457 ECst->getValue();
458 Value *NewMask = ConstantInt::get(BCst->getType(), BorD);
459 Value *NewMaskedValue = ConstantInt::get(BCst->getType(), BandBxorDorE);
460 Value *NewAnd = Builder.CreateAnd(A, NewMask);
461 return Builder.CreateICmp(NewCC, NewAnd, NewMaskedValue);
462 }
463
464 auto IsSubSetOrEqual = [](ConstantInt *C1, ConstantInt *C2) {
465 return (C1->getValue() & C2->getValue()) == C1->getValue();
466 };
467 auto IsSuperSetOrEqual = [](ConstantInt *C1, ConstantInt *C2) {
468 return (C1->getValue() & C2->getValue()) == C2->getValue();
469 };
470
471 // In the following, we consider only the cases where B is a superset of D, B
472 // is a subset of D, or B == D because otherwise there's at least one bit
473 // covered by B but not D, in which case we can't deduce much from it, so
474 // no folding (aside from the single must-be-one bit case right above.)
475 // For example,
476 // (icmp ne (A & 14), 0) & (icmp eq (A & 3), 1) -> no folding.
477 if (!IsSubSetOrEqual(BCst, DCst) && !IsSuperSetOrEqual(BCst, DCst))
478 return nullptr;
479
480 // At this point, either B is a superset of D, B is a subset of D or B == D.
481
482 // If E is zero, if B is a subset of (or equal to) D, LHS and RHS contradict
483 // and the whole expression becomes false (or true if negated), otherwise, no
484 // folding.
485 // For example,
486 // (icmp ne (A & 3), 0) & (icmp eq (A & 7), 0) -> false.
487 // (icmp ne (A & 15), 0) & (icmp eq (A & 3), 0) -> no folding.
488 if (ECst->isZero()) {
489 if (IsSubSetOrEqual(BCst, DCst))
490 return ConstantInt::get(LHS->getType(), !IsAnd);
491 return nullptr;
492 }
493
494 // At this point, B, D, E aren't zero and (B & D) == B, (B & D) == D or B ==
495 // D. If B is a superset of (or equal to) D, since E is not zero, LHS is
496 // subsumed by RHS (RHS implies LHS.) So the whole expression becomes
497 // RHS. For example,
498 // (icmp ne (A & 255), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
499 // (icmp ne (A & 15), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
500 if (IsSuperSetOrEqual(BCst, DCst))
501 return RHS;
502 // Otherwise, B is a subset of D. If B and E have a common bit set,
503 // ie. (B & E) != 0, then LHS is subsumed by RHS. For example.
504 // (icmp ne (A & 12), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
505 assert(IsSubSetOrEqual(BCst, DCst) && "Precondition due to above code");
506 if ((BCst->getValue() & ECst->getValue()) != 0)
507 return RHS;
508 // Otherwise, LHS and RHS contradict and the whole expression becomes false
509 // (or true if negated.) For example,
510 // (icmp ne (A & 7), 0) & (icmp eq (A & 15), 8) -> false.
511 // (icmp ne (A & 6), 0) & (icmp eq (A & 15), 8) -> false.
512 return ConstantInt::get(LHS->getType(), !IsAnd);
513 }
514
515 /// Try to fold (icmp(A & B) ==/!= 0) &/| (icmp(A & D) ==/!= E) into a single
516 /// (icmp(A & X) ==/!= Y), where the left-hand side and the right hand side
517 /// aren't of the common mask pattern type.
foldLogOpOfMaskedICmpsAsymmetric(ICmpInst * LHS,ICmpInst * RHS,bool IsAnd,Value * A,Value * B,Value * C,Value * D,Value * E,ICmpInst::Predicate PredL,ICmpInst::Predicate PredR,unsigned LHSMask,unsigned RHSMask,InstCombiner::BuilderTy & Builder)518 static Value *foldLogOpOfMaskedICmpsAsymmetric(
519 ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, Value *A, Value *B, Value *C,
520 Value *D, Value *E, ICmpInst::Predicate PredL, ICmpInst::Predicate PredR,
521 unsigned LHSMask, unsigned RHSMask, InstCombiner::BuilderTy &Builder) {
522 assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) &&
523 "Expected equality predicates for masked type of icmps.");
524 // Handle Mask_NotAllZeros-BMask_Mixed cases.
525 // (icmp ne/eq (A & B), C) &/| (icmp eq/ne (A & D), E), or
526 // (icmp eq/ne (A & B), C) &/| (icmp ne/eq (A & D), E)
527 // which gets swapped to
528 // (icmp ne/eq (A & D), E) &/| (icmp eq/ne (A & B), C).
529 if (!IsAnd) {
530 LHSMask = conjugateICmpMask(LHSMask);
531 RHSMask = conjugateICmpMask(RHSMask);
532 }
533 if ((LHSMask & Mask_NotAllZeros) && (RHSMask & BMask_Mixed)) {
534 if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
535 LHS, RHS, IsAnd, A, B, C, D, E,
536 PredL, PredR, Builder)) {
537 return V;
538 }
539 } else if ((LHSMask & BMask_Mixed) && (RHSMask & Mask_NotAllZeros)) {
540 if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
541 RHS, LHS, IsAnd, A, D, E, B, C,
542 PredR, PredL, Builder)) {
543 return V;
544 }
545 }
546 return nullptr;
547 }
548
549 /// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
550 /// into a single (icmp(A & X) ==/!= Y).
foldLogOpOfMaskedICmps(ICmpInst * LHS,ICmpInst * RHS,bool IsAnd,InstCombiner::BuilderTy & Builder)551 static Value *foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
552 InstCombiner::BuilderTy &Builder) {
553 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr;
554 ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
555 Optional<std::pair<unsigned, unsigned>> MaskPair =
556 getMaskedTypeForICmpPair(A, B, C, D, E, LHS, RHS, PredL, PredR);
557 if (!MaskPair)
558 return nullptr;
559 assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) &&
560 "Expected equality predicates for masked type of icmps.");
561 unsigned LHSMask = MaskPair->first;
562 unsigned RHSMask = MaskPair->second;
563 unsigned Mask = LHSMask & RHSMask;
564 if (Mask == 0) {
565 // Even if the two sides don't share a common pattern, check if folding can
566 // still happen.
567 if (Value *V = foldLogOpOfMaskedICmpsAsymmetric(
568 LHS, RHS, IsAnd, A, B, C, D, E, PredL, PredR, LHSMask, RHSMask,
569 Builder))
570 return V;
571 return nullptr;
572 }
573
574 // In full generality:
575 // (icmp (A & B) Op C) | (icmp (A & D) Op E)
576 // == ![ (icmp (A & B) !Op C) & (icmp (A & D) !Op E) ]
577 //
578 // If the latter can be converted into (icmp (A & X) Op Y) then the former is
579 // equivalent to (icmp (A & X) !Op Y).
580 //
581 // Therefore, we can pretend for the rest of this function that we're dealing
582 // with the conjunction, provided we flip the sense of any comparisons (both
583 // input and output).
584
585 // In most cases we're going to produce an EQ for the "&&" case.
586 ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
587 if (!IsAnd) {
588 // Convert the masking analysis into its equivalent with negated
589 // comparisons.
590 Mask = conjugateICmpMask(Mask);
591 }
592
593 if (Mask & Mask_AllZeros) {
594 // (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
595 // -> (icmp eq (A & (B|D)), 0)
596 Value *NewOr = Builder.CreateOr(B, D);
597 Value *NewAnd = Builder.CreateAnd(A, NewOr);
598 // We can't use C as zero because we might actually handle
599 // (icmp ne (A & B), B) & (icmp ne (A & D), D)
600 // with B and D, having a single bit set.
601 Value *Zero = Constant::getNullValue(A->getType());
602 return Builder.CreateICmp(NewCC, NewAnd, Zero);
603 }
604 if (Mask & BMask_AllOnes) {
605 // (icmp eq (A & B), B) & (icmp eq (A & D), D)
606 // -> (icmp eq (A & (B|D)), (B|D))
607 Value *NewOr = Builder.CreateOr(B, D);
608 Value *NewAnd = Builder.CreateAnd(A, NewOr);
609 return Builder.CreateICmp(NewCC, NewAnd, NewOr);
610 }
611 if (Mask & AMask_AllOnes) {
612 // (icmp eq (A & B), A) & (icmp eq (A & D), A)
613 // -> (icmp eq (A & (B&D)), A)
614 Value *NewAnd1 = Builder.CreateAnd(B, D);
615 Value *NewAnd2 = Builder.CreateAnd(A, NewAnd1);
616 return Builder.CreateICmp(NewCC, NewAnd2, A);
617 }
618
619 // Remaining cases assume at least that B and D are constant, and depend on
620 // their actual values. This isn't strictly necessary, just a "handle the
621 // easy cases for now" decision.
622 ConstantInt *BCst, *DCst;
623 if (!match(B, m_ConstantInt(BCst)) || !match(D, m_ConstantInt(DCst)))
624 return nullptr;
625
626 if (Mask & (Mask_NotAllZeros | BMask_NotAllOnes)) {
627 // (icmp ne (A & B), 0) & (icmp ne (A & D), 0) and
628 // (icmp ne (A & B), B) & (icmp ne (A & D), D)
629 // -> (icmp ne (A & B), 0) or (icmp ne (A & D), 0)
630 // Only valid if one of the masks is a superset of the other (check "B&D" is
631 // the same as either B or D).
632 APInt NewMask = BCst->getValue() & DCst->getValue();
633
634 if (NewMask == BCst->getValue())
635 return LHS;
636 else if (NewMask == DCst->getValue())
637 return RHS;
638 }
639
640 if (Mask & AMask_NotAllOnes) {
641 // (icmp ne (A & B), B) & (icmp ne (A & D), D)
642 // -> (icmp ne (A & B), A) or (icmp ne (A & D), A)
643 // Only valid if one of the masks is a superset of the other (check "B|D" is
644 // the same as either B or D).
645 APInt NewMask = BCst->getValue() | DCst->getValue();
646
647 if (NewMask == BCst->getValue())
648 return LHS;
649 else if (NewMask == DCst->getValue())
650 return RHS;
651 }
652
653 if (Mask & BMask_Mixed) {
654 // (icmp eq (A & B), C) & (icmp eq (A & D), E)
655 // We already know that B & C == C && D & E == E.
656 // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of
657 // C and E, which are shared by both the mask B and the mask D, don't
658 // contradict, then we can transform to
659 // -> (icmp eq (A & (B|D)), (C|E))
660 // Currently, we only handle the case of B, C, D, and E being constant.
661 // We can't simply use C and E because we might actually handle
662 // (icmp ne (A & B), B) & (icmp eq (A & D), D)
663 // with B and D, having a single bit set.
664 ConstantInt *CCst, *ECst;
665 if (!match(C, m_ConstantInt(CCst)) || !match(E, m_ConstantInt(ECst)))
666 return nullptr;
667 if (PredL != NewCC)
668 CCst = cast<ConstantInt>(ConstantExpr::getXor(BCst, CCst));
669 if (PredR != NewCC)
670 ECst = cast<ConstantInt>(ConstantExpr::getXor(DCst, ECst));
671
672 // If there is a conflict, we should actually return a false for the
673 // whole construct.
674 if (((BCst->getValue() & DCst->getValue()) &
675 (CCst->getValue() ^ ECst->getValue())).getBoolValue())
676 return ConstantInt::get(LHS->getType(), !IsAnd);
677
678 Value *NewOr1 = Builder.CreateOr(B, D);
679 Value *NewOr2 = ConstantExpr::getOr(CCst, ECst);
680 Value *NewAnd = Builder.CreateAnd(A, NewOr1);
681 return Builder.CreateICmp(NewCC, NewAnd, NewOr2);
682 }
683
684 return nullptr;
685 }
686
687 /// Try to fold a signed range checked with lower bound 0 to an unsigned icmp.
688 /// Example: (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
689 /// If \p Inverted is true then the check is for the inverted range, e.g.
690 /// (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
simplifyRangeCheck(ICmpInst * Cmp0,ICmpInst * Cmp1,bool Inverted)691 Value *InstCombinerImpl::simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1,
692 bool Inverted) {
693 // Check the lower range comparison, e.g. x >= 0
694 // InstCombine already ensured that if there is a constant it's on the RHS.
695 ConstantInt *RangeStart = dyn_cast<ConstantInt>(Cmp0->getOperand(1));
696 if (!RangeStart)
697 return nullptr;
698
699 ICmpInst::Predicate Pred0 = (Inverted ? Cmp0->getInversePredicate() :
700 Cmp0->getPredicate());
701
702 // Accept x > -1 or x >= 0 (after potentially inverting the predicate).
703 if (!((Pred0 == ICmpInst::ICMP_SGT && RangeStart->isMinusOne()) ||
704 (Pred0 == ICmpInst::ICMP_SGE && RangeStart->isZero())))
705 return nullptr;
706
707 ICmpInst::Predicate Pred1 = (Inverted ? Cmp1->getInversePredicate() :
708 Cmp1->getPredicate());
709
710 Value *Input = Cmp0->getOperand(0);
711 Value *RangeEnd;
712 if (Cmp1->getOperand(0) == Input) {
713 // For the upper range compare we have: icmp x, n
714 RangeEnd = Cmp1->getOperand(1);
715 } else if (Cmp1->getOperand(1) == Input) {
716 // For the upper range compare we have: icmp n, x
717 RangeEnd = Cmp1->getOperand(0);
718 Pred1 = ICmpInst::getSwappedPredicate(Pred1);
719 } else {
720 return nullptr;
721 }
722
723 // Check the upper range comparison, e.g. x < n
724 ICmpInst::Predicate NewPred;
725 switch (Pred1) {
726 case ICmpInst::ICMP_SLT: NewPred = ICmpInst::ICMP_ULT; break;
727 case ICmpInst::ICMP_SLE: NewPred = ICmpInst::ICMP_ULE; break;
728 default: return nullptr;
729 }
730
731 // This simplification is only valid if the upper range is not negative.
732 KnownBits Known = computeKnownBits(RangeEnd, /*Depth=*/0, Cmp1);
733 if (!Known.isNonNegative())
734 return nullptr;
735
736 if (Inverted)
737 NewPred = ICmpInst::getInversePredicate(NewPred);
738
739 return Builder.CreateICmp(NewPred, Input, RangeEnd);
740 }
741
742 static Value *
foldAndOrOfEqualityCmpsWithConstants(ICmpInst * LHS,ICmpInst * RHS,bool JoinedByAnd,InstCombiner::BuilderTy & Builder)743 foldAndOrOfEqualityCmpsWithConstants(ICmpInst *LHS, ICmpInst *RHS,
744 bool JoinedByAnd,
745 InstCombiner::BuilderTy &Builder) {
746 Value *X = LHS->getOperand(0);
747 if (X != RHS->getOperand(0))
748 return nullptr;
749
750 const APInt *C1, *C2;
751 if (!match(LHS->getOperand(1), m_APInt(C1)) ||
752 !match(RHS->getOperand(1), m_APInt(C2)))
753 return nullptr;
754
755 // We only handle (X != C1 && X != C2) and (X == C1 || X == C2).
756 ICmpInst::Predicate Pred = LHS->getPredicate();
757 if (Pred != RHS->getPredicate())
758 return nullptr;
759 if (JoinedByAnd && Pred != ICmpInst::ICMP_NE)
760 return nullptr;
761 if (!JoinedByAnd && Pred != ICmpInst::ICMP_EQ)
762 return nullptr;
763
764 // The larger unsigned constant goes on the right.
765 if (C1->ugt(*C2))
766 std::swap(C1, C2);
767
768 APInt Xor = *C1 ^ *C2;
769 if (Xor.isPowerOf2()) {
770 // If LHSC and RHSC differ by only one bit, then set that bit in X and
771 // compare against the larger constant:
772 // (X == C1 || X == C2) --> (X | (C1 ^ C2)) == C2
773 // (X != C1 && X != C2) --> (X | (C1 ^ C2)) != C2
774 // We choose an 'or' with a Pow2 constant rather than the inverse mask with
775 // 'and' because that may lead to smaller codegen from a smaller constant.
776 Value *Or = Builder.CreateOr(X, ConstantInt::get(X->getType(), Xor));
777 return Builder.CreateICmp(Pred, Or, ConstantInt::get(X->getType(), *C2));
778 }
779
780 // Special case: get the ordering right when the values wrap around zero.
781 // Ie, we assumed the constants were unsigned when swapping earlier.
782 if (C1->isNullValue() && C2->isAllOnesValue())
783 std::swap(C1, C2);
784
785 if (*C1 == *C2 - 1) {
786 // (X == 13 || X == 14) --> X - 13 <=u 1
787 // (X != 13 && X != 14) --> X - 13 >u 1
788 // An 'add' is the canonical IR form, so favor that over a 'sub'.
789 Value *Add = Builder.CreateAdd(X, ConstantInt::get(X->getType(), -(*C1)));
790 auto NewPred = JoinedByAnd ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_ULE;
791 return Builder.CreateICmp(NewPred, Add, ConstantInt::get(X->getType(), 1));
792 }
793
794 return nullptr;
795 }
796
797 // Fold (iszero(A & K1) | iszero(A & K2)) -> (A & (K1 | K2)) != (K1 | K2)
798 // Fold (!iszero(A & K1) & !iszero(A & K2)) -> (A & (K1 | K2)) == (K1 | K2)
foldAndOrOfICmpsOfAndWithPow2(ICmpInst * LHS,ICmpInst * RHS,BinaryOperator & Logic)799 Value *InstCombinerImpl::foldAndOrOfICmpsOfAndWithPow2(ICmpInst *LHS,
800 ICmpInst *RHS,
801 BinaryOperator &Logic) {
802 bool JoinedByAnd = Logic.getOpcode() == Instruction::And;
803 assert((JoinedByAnd || Logic.getOpcode() == Instruction::Or) &&
804 "Wrong opcode");
805 ICmpInst::Predicate Pred = LHS->getPredicate();
806 if (Pred != RHS->getPredicate())
807 return nullptr;
808 if (JoinedByAnd && Pred != ICmpInst::ICMP_NE)
809 return nullptr;
810 if (!JoinedByAnd && Pred != ICmpInst::ICMP_EQ)
811 return nullptr;
812
813 if (!match(LHS->getOperand(1), m_Zero()) ||
814 !match(RHS->getOperand(1), m_Zero()))
815 return nullptr;
816
817 Value *A, *B, *C, *D;
818 if (match(LHS->getOperand(0), m_And(m_Value(A), m_Value(B))) &&
819 match(RHS->getOperand(0), m_And(m_Value(C), m_Value(D)))) {
820 if (A == D || B == D)
821 std::swap(C, D);
822 if (B == C)
823 std::swap(A, B);
824
825 if (A == C &&
826 isKnownToBeAPowerOfTwo(B, false, 0, &Logic) &&
827 isKnownToBeAPowerOfTwo(D, false, 0, &Logic)) {
828 Value *Mask = Builder.CreateOr(B, D);
829 Value *Masked = Builder.CreateAnd(A, Mask);
830 auto NewPred = JoinedByAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
831 return Builder.CreateICmp(NewPred, Masked, Mask);
832 }
833 }
834
835 return nullptr;
836 }
837
838 /// General pattern:
839 /// X & Y
840 ///
841 /// Where Y is checking that all the high bits (covered by a mask 4294967168)
842 /// are uniform, i.e. %arg & 4294967168 can be either 4294967168 or 0
843 /// Pattern can be one of:
844 /// %t = add i32 %arg, 128
845 /// %r = icmp ult i32 %t, 256
846 /// Or
847 /// %t0 = shl i32 %arg, 24
848 /// %t1 = ashr i32 %t0, 24
849 /// %r = icmp eq i32 %t1, %arg
850 /// Or
851 /// %t0 = trunc i32 %arg to i8
852 /// %t1 = sext i8 %t0 to i32
853 /// %r = icmp eq i32 %t1, %arg
854 /// This pattern is a signed truncation check.
855 ///
856 /// And X is checking that some bit in that same mask is zero.
857 /// I.e. can be one of:
858 /// %r = icmp sgt i32 %arg, -1
859 /// Or
860 /// %t = and i32 %arg, 2147483648
861 /// %r = icmp eq i32 %t, 0
862 ///
863 /// Since we are checking that all the bits in that mask are the same,
864 /// and a particular bit is zero, what we are really checking is that all the
865 /// masked bits are zero.
866 /// So this should be transformed to:
867 /// %r = icmp ult i32 %arg, 128
foldSignedTruncationCheck(ICmpInst * ICmp0,ICmpInst * ICmp1,Instruction & CxtI,InstCombiner::BuilderTy & Builder)868 static Value *foldSignedTruncationCheck(ICmpInst *ICmp0, ICmpInst *ICmp1,
869 Instruction &CxtI,
870 InstCombiner::BuilderTy &Builder) {
871 assert(CxtI.getOpcode() == Instruction::And);
872
873 // Match icmp ult (add %arg, C01), C1 (C1 == C01 << 1; powers of two)
874 auto tryToMatchSignedTruncationCheck = [](ICmpInst *ICmp, Value *&X,
875 APInt &SignBitMask) -> bool {
876 CmpInst::Predicate Pred;
877 const APInt *I01, *I1; // powers of two; I1 == I01 << 1
878 if (!(match(ICmp,
879 m_ICmp(Pred, m_Add(m_Value(X), m_Power2(I01)), m_Power2(I1))) &&
880 Pred == ICmpInst::ICMP_ULT && I1->ugt(*I01) && I01->shl(1) == *I1))
881 return false;
882 // Which bit is the new sign bit as per the 'signed truncation' pattern?
883 SignBitMask = *I01;
884 return true;
885 };
886
887 // One icmp needs to be 'signed truncation check'.
888 // We need to match this first, else we will mismatch commutative cases.
889 Value *X1;
890 APInt HighestBit;
891 ICmpInst *OtherICmp;
892 if (tryToMatchSignedTruncationCheck(ICmp1, X1, HighestBit))
893 OtherICmp = ICmp0;
894 else if (tryToMatchSignedTruncationCheck(ICmp0, X1, HighestBit))
895 OtherICmp = ICmp1;
896 else
897 return nullptr;
898
899 assert(HighestBit.isPowerOf2() && "expected to be power of two (non-zero)");
900
901 // Try to match/decompose into: icmp eq (X & Mask), 0
902 auto tryToDecompose = [](ICmpInst *ICmp, Value *&X,
903 APInt &UnsetBitsMask) -> bool {
904 CmpInst::Predicate Pred = ICmp->getPredicate();
905 // Can it be decomposed into icmp eq (X & Mask), 0 ?
906 if (llvm::decomposeBitTestICmp(ICmp->getOperand(0), ICmp->getOperand(1),
907 Pred, X, UnsetBitsMask,
908 /*LookThroughTrunc=*/false) &&
909 Pred == ICmpInst::ICMP_EQ)
910 return true;
911 // Is it icmp eq (X & Mask), 0 already?
912 const APInt *Mask;
913 if (match(ICmp, m_ICmp(Pred, m_And(m_Value(X), m_APInt(Mask)), m_Zero())) &&
914 Pred == ICmpInst::ICMP_EQ) {
915 UnsetBitsMask = *Mask;
916 return true;
917 }
918 return false;
919 };
920
921 // And the other icmp needs to be decomposable into a bit test.
922 Value *X0;
923 APInt UnsetBitsMask;
924 if (!tryToDecompose(OtherICmp, X0, UnsetBitsMask))
925 return nullptr;
926
927 assert(!UnsetBitsMask.isNullValue() && "empty mask makes no sense.");
928
929 // Are they working on the same value?
930 Value *X;
931 if (X1 == X0) {
932 // Ok as is.
933 X = X1;
934 } else if (match(X0, m_Trunc(m_Specific(X1)))) {
935 UnsetBitsMask = UnsetBitsMask.zext(X1->getType()->getScalarSizeInBits());
936 X = X1;
937 } else
938 return nullptr;
939
940 // So which bits should be uniform as per the 'signed truncation check'?
941 // (all the bits starting with (i.e. including) HighestBit)
942 APInt SignBitsMask = ~(HighestBit - 1U);
943
944 // UnsetBitsMask must have some common bits with SignBitsMask,
945 if (!UnsetBitsMask.intersects(SignBitsMask))
946 return nullptr;
947
948 // Does UnsetBitsMask contain any bits outside of SignBitsMask?
949 if (!UnsetBitsMask.isSubsetOf(SignBitsMask)) {
950 APInt OtherHighestBit = (~UnsetBitsMask) + 1U;
951 if (!OtherHighestBit.isPowerOf2())
952 return nullptr;
953 HighestBit = APIntOps::umin(HighestBit, OtherHighestBit);
954 }
955 // Else, if it does not, then all is ok as-is.
956
957 // %r = icmp ult %X, SignBit
958 return Builder.CreateICmpULT(X, ConstantInt::get(X->getType(), HighestBit),
959 CxtI.getName() + ".simplified");
960 }
961
962 /// Reduce a pair of compares that check if a value has exactly 1 bit set.
foldIsPowerOf2(ICmpInst * Cmp0,ICmpInst * Cmp1,bool JoinedByAnd,InstCombiner::BuilderTy & Builder)963 static Value *foldIsPowerOf2(ICmpInst *Cmp0, ICmpInst *Cmp1, bool JoinedByAnd,
964 InstCombiner::BuilderTy &Builder) {
965 // Handle 'and' / 'or' commutation: make the equality check the first operand.
966 if (JoinedByAnd && Cmp1->getPredicate() == ICmpInst::ICMP_NE)
967 std::swap(Cmp0, Cmp1);
968 else if (!JoinedByAnd && Cmp1->getPredicate() == ICmpInst::ICMP_EQ)
969 std::swap(Cmp0, Cmp1);
970
971 // (X != 0) && (ctpop(X) u< 2) --> ctpop(X) == 1
972 CmpInst::Predicate Pred0, Pred1;
973 Value *X;
974 if (JoinedByAnd && match(Cmp0, m_ICmp(Pred0, m_Value(X), m_ZeroInt())) &&
975 match(Cmp1, m_ICmp(Pred1, m_Intrinsic<Intrinsic::ctpop>(m_Specific(X)),
976 m_SpecificInt(2))) &&
977 Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT) {
978 Value *CtPop = Cmp1->getOperand(0);
979 return Builder.CreateICmpEQ(CtPop, ConstantInt::get(CtPop->getType(), 1));
980 }
981 // (X == 0) || (ctpop(X) u> 1) --> ctpop(X) != 1
982 if (!JoinedByAnd && match(Cmp0, m_ICmp(Pred0, m_Value(X), m_ZeroInt())) &&
983 match(Cmp1, m_ICmp(Pred1, m_Intrinsic<Intrinsic::ctpop>(m_Specific(X)),
984 m_SpecificInt(1))) &&
985 Pred0 == ICmpInst::ICMP_EQ && Pred1 == ICmpInst::ICMP_UGT) {
986 Value *CtPop = Cmp1->getOperand(0);
987 return Builder.CreateICmpNE(CtPop, ConstantInt::get(CtPop->getType(), 1));
988 }
989 return nullptr;
990 }
991
992 /// Commuted variants are assumed to be handled by calling this function again
993 /// with the parameters swapped.
foldUnsignedUnderflowCheck(ICmpInst * ZeroICmp,ICmpInst * UnsignedICmp,bool IsAnd,const SimplifyQuery & Q,InstCombiner::BuilderTy & Builder)994 static Value *foldUnsignedUnderflowCheck(ICmpInst *ZeroICmp,
995 ICmpInst *UnsignedICmp, bool IsAnd,
996 const SimplifyQuery &Q,
997 InstCombiner::BuilderTy &Builder) {
998 Value *ZeroCmpOp;
999 ICmpInst::Predicate EqPred;
1000 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(ZeroCmpOp), m_Zero())) ||
1001 !ICmpInst::isEquality(EqPred))
1002 return nullptr;
1003
1004 auto IsKnownNonZero = [&](Value *V) {
1005 return isKnownNonZero(V, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT);
1006 };
1007
1008 ICmpInst::Predicate UnsignedPred;
1009
1010 Value *A, *B;
1011 if (match(UnsignedICmp,
1012 m_c_ICmp(UnsignedPred, m_Specific(ZeroCmpOp), m_Value(A))) &&
1013 match(ZeroCmpOp, m_c_Add(m_Specific(A), m_Value(B))) &&
1014 (ZeroICmp->hasOneUse() || UnsignedICmp->hasOneUse())) {
1015 auto GetKnownNonZeroAndOther = [&](Value *&NonZero, Value *&Other) {
1016 if (!IsKnownNonZero(NonZero))
1017 std::swap(NonZero, Other);
1018 return IsKnownNonZero(NonZero);
1019 };
1020
1021 // Given ZeroCmpOp = (A + B)
1022 // ZeroCmpOp <= A && ZeroCmpOp != 0 --> (0-B) < A
1023 // ZeroCmpOp > A || ZeroCmpOp == 0 --> (0-B) >= A
1024 //
1025 // ZeroCmpOp < A && ZeroCmpOp != 0 --> (0-X) < Y iff
1026 // ZeroCmpOp >= A || ZeroCmpOp == 0 --> (0-X) >= Y iff
1027 // with X being the value (A/B) that is known to be non-zero,
1028 // and Y being remaining value.
1029 if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE &&
1030 IsAnd)
1031 return Builder.CreateICmpULT(Builder.CreateNeg(B), A);
1032 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE &&
1033 IsAnd && GetKnownNonZeroAndOther(B, A))
1034 return Builder.CreateICmpULT(Builder.CreateNeg(B), A);
1035 if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ &&
1036 !IsAnd)
1037 return Builder.CreateICmpUGE(Builder.CreateNeg(B), A);
1038 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ &&
1039 !IsAnd && GetKnownNonZeroAndOther(B, A))
1040 return Builder.CreateICmpUGE(Builder.CreateNeg(B), A);
1041 }
1042
1043 Value *Base, *Offset;
1044 if (!match(ZeroCmpOp, m_Sub(m_Value(Base), m_Value(Offset))))
1045 return nullptr;
1046
1047 if (!match(UnsignedICmp,
1048 m_c_ICmp(UnsignedPred, m_Specific(Base), m_Specific(Offset))) ||
1049 !ICmpInst::isUnsigned(UnsignedPred))
1050 return nullptr;
1051
1052 // Base >=/> Offset && (Base - Offset) != 0 <--> Base > Offset
1053 // (no overflow and not null)
1054 if ((UnsignedPred == ICmpInst::ICMP_UGE ||
1055 UnsignedPred == ICmpInst::ICMP_UGT) &&
1056 EqPred == ICmpInst::ICMP_NE && IsAnd)
1057 return Builder.CreateICmpUGT(Base, Offset);
1058
1059 // Base <=/< Offset || (Base - Offset) == 0 <--> Base <= Offset
1060 // (overflow or null)
1061 if ((UnsignedPred == ICmpInst::ICMP_ULE ||
1062 UnsignedPred == ICmpInst::ICMP_ULT) &&
1063 EqPred == ICmpInst::ICMP_EQ && !IsAnd)
1064 return Builder.CreateICmpULE(Base, Offset);
1065
1066 // Base <= Offset && (Base - Offset) != 0 --> Base < Offset
1067 if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE &&
1068 IsAnd)
1069 return Builder.CreateICmpULT(Base, Offset);
1070
1071 // Base > Offset || (Base - Offset) == 0 --> Base >= Offset
1072 if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ &&
1073 !IsAnd)
1074 return Builder.CreateICmpUGE(Base, Offset);
1075
1076 return nullptr;
1077 }
1078
1079 /// Reduce logic-of-compares with equality to a constant by substituting a
1080 /// common operand with the constant. Callers are expected to call this with
1081 /// Cmp0/Cmp1 switched to handle logic op commutativity.
foldAndOrOfICmpsWithConstEq(ICmpInst * Cmp0,ICmpInst * Cmp1,BinaryOperator & Logic,InstCombiner::BuilderTy & Builder,const SimplifyQuery & Q)1082 static Value *foldAndOrOfICmpsWithConstEq(ICmpInst *Cmp0, ICmpInst *Cmp1,
1083 BinaryOperator &Logic,
1084 InstCombiner::BuilderTy &Builder,
1085 const SimplifyQuery &Q) {
1086 bool IsAnd = Logic.getOpcode() == Instruction::And;
1087 assert((IsAnd || Logic.getOpcode() == Instruction::Or) && "Wrong logic op");
1088
1089 // Match an equality compare with a non-poison constant as Cmp0.
1090 // Also, give up if the compare can be constant-folded to avoid looping.
1091 ICmpInst::Predicate Pred0;
1092 Value *X;
1093 Constant *C;
1094 if (!match(Cmp0, m_ICmp(Pred0, m_Value(X), m_Constant(C))) ||
1095 !isGuaranteedNotToBeUndefOrPoison(C) || isa<Constant>(X))
1096 return nullptr;
1097 if ((IsAnd && Pred0 != ICmpInst::ICMP_EQ) ||
1098 (!IsAnd && Pred0 != ICmpInst::ICMP_NE))
1099 return nullptr;
1100
1101 // The other compare must include a common operand (X). Canonicalize the
1102 // common operand as operand 1 (Pred1 is swapped if the common operand was
1103 // operand 0).
1104 Value *Y;
1105 ICmpInst::Predicate Pred1;
1106 if (!match(Cmp1, m_c_ICmp(Pred1, m_Value(Y), m_Deferred(X))))
1107 return nullptr;
1108
1109 // Replace variable with constant value equivalence to remove a variable use:
1110 // (X == C) && (Y Pred1 X) --> (X == C) && (Y Pred1 C)
1111 // (X != C) || (Y Pred1 X) --> (X != C) || (Y Pred1 C)
1112 // Can think of the 'or' substitution with the 'and' bool equivalent:
1113 // A || B --> A || (!A && B)
1114 Value *SubstituteCmp = SimplifyICmpInst(Pred1, Y, C, Q);
1115 if (!SubstituteCmp) {
1116 // If we need to create a new instruction, require that the old compare can
1117 // be removed.
1118 if (!Cmp1->hasOneUse())
1119 return nullptr;
1120 SubstituteCmp = Builder.CreateICmp(Pred1, Y, C);
1121 }
1122 return Builder.CreateBinOp(Logic.getOpcode(), Cmp0, SubstituteCmp);
1123 }
1124
1125 /// Fold (icmp)&(icmp) if possible.
foldAndOfICmps(ICmpInst * LHS,ICmpInst * RHS,BinaryOperator & And)1126 Value *InstCombinerImpl::foldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS,
1127 BinaryOperator &And) {
1128 const SimplifyQuery Q = SQ.getWithInstruction(&And);
1129
1130 // Fold (!iszero(A & K1) & !iszero(A & K2)) -> (A & (K1 | K2)) == (K1 | K2)
1131 // if K1 and K2 are a one-bit mask.
1132 if (Value *V = foldAndOrOfICmpsOfAndWithPow2(LHS, RHS, And))
1133 return V;
1134
1135 ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1136
1137 // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
1138 if (predicatesFoldable(PredL, PredR)) {
1139 if (LHS->getOperand(0) == RHS->getOperand(1) &&
1140 LHS->getOperand(1) == RHS->getOperand(0))
1141 LHS->swapOperands();
1142 if (LHS->getOperand(0) == RHS->getOperand(0) &&
1143 LHS->getOperand(1) == RHS->getOperand(1)) {
1144 Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
1145 unsigned Code = getICmpCode(LHS) & getICmpCode(RHS);
1146 bool IsSigned = LHS->isSigned() || RHS->isSigned();
1147 return getNewICmpValue(Code, IsSigned, Op0, Op1, Builder);
1148 }
1149 }
1150
1151 // handle (roughly): (icmp eq (A & B), C) & (icmp eq (A & D), E)
1152 if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, true, Builder))
1153 return V;
1154
1155 if (Value *V = foldAndOrOfICmpsWithConstEq(LHS, RHS, And, Builder, Q))
1156 return V;
1157 if (Value *V = foldAndOrOfICmpsWithConstEq(RHS, LHS, And, Builder, Q))
1158 return V;
1159
1160 // E.g. (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
1161 if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/false))
1162 return V;
1163
1164 // E.g. (icmp slt x, n) & (icmp sge x, 0) --> icmp ult x, n
1165 if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/false))
1166 return V;
1167
1168 if (Value *V = foldAndOrOfEqualityCmpsWithConstants(LHS, RHS, true, Builder))
1169 return V;
1170
1171 if (Value *V = foldSignedTruncationCheck(LHS, RHS, And, Builder))
1172 return V;
1173
1174 if (Value *V = foldIsPowerOf2(LHS, RHS, true /* JoinedByAnd */, Builder))
1175 return V;
1176
1177 if (Value *X =
1178 foldUnsignedUnderflowCheck(LHS, RHS, /*IsAnd=*/true, Q, Builder))
1179 return X;
1180 if (Value *X =
1181 foldUnsignedUnderflowCheck(RHS, LHS, /*IsAnd=*/true, Q, Builder))
1182 return X;
1183
1184 // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
1185 Value *LHS0 = LHS->getOperand(0), *RHS0 = RHS->getOperand(0);
1186
1187 ConstantInt *LHSC, *RHSC;
1188 if (!match(LHS->getOperand(1), m_ConstantInt(LHSC)) ||
1189 !match(RHS->getOperand(1), m_ConstantInt(RHSC)))
1190 return nullptr;
1191
1192 if (LHSC == RHSC && PredL == PredR) {
1193 // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
1194 // where C is a power of 2 or
1195 // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
1196 if ((PredL == ICmpInst::ICMP_ULT && LHSC->getValue().isPowerOf2()) ||
1197 (PredL == ICmpInst::ICMP_EQ && LHSC->isZero())) {
1198 Value *NewOr = Builder.CreateOr(LHS0, RHS0);
1199 return Builder.CreateICmp(PredL, NewOr, LHSC);
1200 }
1201 }
1202
1203 // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2
1204 // where CMAX is the all ones value for the truncated type,
1205 // iff the lower bits of C2 and CA are zero.
1206 if (PredL == ICmpInst::ICMP_EQ && PredL == PredR && LHS->hasOneUse() &&
1207 RHS->hasOneUse()) {
1208 Value *V;
1209 ConstantInt *AndC, *SmallC = nullptr, *BigC = nullptr;
1210
1211 // (trunc x) == C1 & (and x, CA) == C2
1212 // (and x, CA) == C2 & (trunc x) == C1
1213 if (match(RHS0, m_Trunc(m_Value(V))) &&
1214 match(LHS0, m_And(m_Specific(V), m_ConstantInt(AndC)))) {
1215 SmallC = RHSC;
1216 BigC = LHSC;
1217 } else if (match(LHS0, m_Trunc(m_Value(V))) &&
1218 match(RHS0, m_And(m_Specific(V), m_ConstantInt(AndC)))) {
1219 SmallC = LHSC;
1220 BigC = RHSC;
1221 }
1222
1223 if (SmallC && BigC) {
1224 unsigned BigBitSize = BigC->getType()->getBitWidth();
1225 unsigned SmallBitSize = SmallC->getType()->getBitWidth();
1226
1227 // Check that the low bits are zero.
1228 APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize);
1229 if ((Low & AndC->getValue()).isNullValue() &&
1230 (Low & BigC->getValue()).isNullValue()) {
1231 Value *NewAnd = Builder.CreateAnd(V, Low | AndC->getValue());
1232 APInt N = SmallC->getValue().zext(BigBitSize) | BigC->getValue();
1233 Value *NewVal = ConstantInt::get(AndC->getType()->getContext(), N);
1234 return Builder.CreateICmp(PredL, NewAnd, NewVal);
1235 }
1236 }
1237 }
1238
1239 // From here on, we only handle:
1240 // (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
1241 if (LHS0 != RHS0)
1242 return nullptr;
1243
1244 // ICMP_[US][GL]E X, C is folded to ICMP_[US][GL]T elsewhere.
1245 if (PredL == ICmpInst::ICMP_UGE || PredL == ICmpInst::ICMP_ULE ||
1246 PredR == ICmpInst::ICMP_UGE || PredR == ICmpInst::ICMP_ULE ||
1247 PredL == ICmpInst::ICMP_SGE || PredL == ICmpInst::ICMP_SLE ||
1248 PredR == ICmpInst::ICMP_SGE || PredR == ICmpInst::ICMP_SLE)
1249 return nullptr;
1250
1251 // We can't fold (ugt x, C) & (sgt x, C2).
1252 if (!predicatesFoldable(PredL, PredR))
1253 return nullptr;
1254
1255 // Ensure that the larger constant is on the RHS.
1256 bool ShouldSwap;
1257 if (CmpInst::isSigned(PredL) ||
1258 (ICmpInst::isEquality(PredL) && CmpInst::isSigned(PredR)))
1259 ShouldSwap = LHSC->getValue().sgt(RHSC->getValue());
1260 else
1261 ShouldSwap = LHSC->getValue().ugt(RHSC->getValue());
1262
1263 if (ShouldSwap) {
1264 std::swap(LHS, RHS);
1265 std::swap(LHSC, RHSC);
1266 std::swap(PredL, PredR);
1267 }
1268
1269 // At this point, we know we have two icmp instructions
1270 // comparing a value against two constants and and'ing the result
1271 // together. Because of the above check, we know that we only have
1272 // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
1273 // (from the icmp folding check above), that the two constants
1274 // are not equal and that the larger constant is on the RHS
1275 assert(LHSC != RHSC && "Compares not folded above?");
1276
1277 switch (PredL) {
1278 default:
1279 llvm_unreachable("Unknown integer condition code!");
1280 case ICmpInst::ICMP_NE:
1281 switch (PredR) {
1282 default:
1283 llvm_unreachable("Unknown integer condition code!");
1284 case ICmpInst::ICMP_ULT:
1285 // (X != 13 & X u< 14) -> X < 13
1286 if (LHSC->getValue() == (RHSC->getValue() - 1))
1287 return Builder.CreateICmpULT(LHS0, LHSC);
1288 if (LHSC->isZero()) // (X != 0 & X u< C) -> X-1 u< C-1
1289 return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(),
1290 false, true);
1291 break; // (X != 13 & X u< 15) -> no change
1292 case ICmpInst::ICMP_SLT:
1293 // (X != 13 & X s< 14) -> X < 13
1294 if (LHSC->getValue() == (RHSC->getValue() - 1))
1295 return Builder.CreateICmpSLT(LHS0, LHSC);
1296 // (X != INT_MIN & X s< C) -> X-(INT_MIN+1) u< (C-(INT_MIN+1))
1297 if (LHSC->isMinValue(true))
1298 return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(),
1299 true, true);
1300 break; // (X != 13 & X s< 15) -> no change
1301 case ICmpInst::ICMP_NE:
1302 // Potential folds for this case should already be handled.
1303 break;
1304 }
1305 break;
1306 case ICmpInst::ICMP_UGT:
1307 switch (PredR) {
1308 default:
1309 llvm_unreachable("Unknown integer condition code!");
1310 case ICmpInst::ICMP_NE:
1311 // (X u> 13 & X != 14) -> X u> 14
1312 if (RHSC->getValue() == (LHSC->getValue() + 1))
1313 return Builder.CreateICmp(PredL, LHS0, RHSC);
1314 // X u> C & X != UINT_MAX -> (X-(C+1)) u< UINT_MAX-(C+1)
1315 if (RHSC->isMaxValue(false))
1316 return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(),
1317 false, true);
1318 break; // (X u> 13 & X != 15) -> no change
1319 case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) -> (X-14) u< 1
1320 return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(),
1321 false, true);
1322 }
1323 break;
1324 case ICmpInst::ICMP_SGT:
1325 switch (PredR) {
1326 default:
1327 llvm_unreachable("Unknown integer condition code!");
1328 case ICmpInst::ICMP_NE:
1329 // (X s> 13 & X != 14) -> X s> 14
1330 if (RHSC->getValue() == (LHSC->getValue() + 1))
1331 return Builder.CreateICmp(PredL, LHS0, RHSC);
1332 // X s> C & X != INT_MAX -> (X-(C+1)) u< INT_MAX-(C+1)
1333 if (RHSC->isMaxValue(true))
1334 return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(),
1335 true, true);
1336 break; // (X s> 13 & X != 15) -> no change
1337 case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) -> (X-14) u< 1
1338 return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(), true,
1339 true);
1340 }
1341 break;
1342 }
1343
1344 return nullptr;
1345 }
1346
foldLogicOfFCmps(FCmpInst * LHS,FCmpInst * RHS,bool IsAnd)1347 Value *InstCombinerImpl::foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS,
1348 bool IsAnd) {
1349 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
1350 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
1351 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1352
1353 if (LHS0 == RHS1 && RHS0 == LHS1) {
1354 // Swap RHS operands to match LHS.
1355 PredR = FCmpInst::getSwappedPredicate(PredR);
1356 std::swap(RHS0, RHS1);
1357 }
1358
1359 // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
1360 // Suppose the relation between x and y is R, where R is one of
1361 // U(1000), L(0100), G(0010) or E(0001), and CC0 and CC1 are the bitmasks for
1362 // testing the desired relations.
1363 //
1364 // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this:
1365 // bool(R & CC0) && bool(R & CC1)
1366 // = bool((R & CC0) & (R & CC1))
1367 // = bool(R & (CC0 & CC1)) <= by re-association, commutation, and idempotency
1368 //
1369 // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this:
1370 // bool(R & CC0) || bool(R & CC1)
1371 // = bool((R & CC0) | (R & CC1))
1372 // = bool(R & (CC0 | CC1)) <= by reversed distribution (contribution? ;)
1373 if (LHS0 == RHS0 && LHS1 == RHS1) {
1374 unsigned FCmpCodeL = getFCmpCode(PredL);
1375 unsigned FCmpCodeR = getFCmpCode(PredR);
1376 unsigned NewPred = IsAnd ? FCmpCodeL & FCmpCodeR : FCmpCodeL | FCmpCodeR;
1377 return getFCmpValue(NewPred, LHS0, LHS1, Builder);
1378 }
1379
1380 if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) ||
1381 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) {
1382 if (LHS0->getType() != RHS0->getType())
1383 return nullptr;
1384
1385 // FCmp canonicalization ensures that (fcmp ord/uno X, X) and
1386 // (fcmp ord/uno X, C) will be transformed to (fcmp X, +0.0).
1387 if (match(LHS1, m_PosZeroFP()) && match(RHS1, m_PosZeroFP()))
1388 // Ignore the constants because they are obviously not NANs:
1389 // (fcmp ord x, 0.0) & (fcmp ord y, 0.0) -> (fcmp ord x, y)
1390 // (fcmp uno x, 0.0) | (fcmp uno y, 0.0) -> (fcmp uno x, y)
1391 return Builder.CreateFCmp(PredL, LHS0, RHS0);
1392 }
1393
1394 return nullptr;
1395 }
1396
1397 /// This a limited reassociation for a special case (see above) where we are
1398 /// checking if two values are either both NAN (unordered) or not-NAN (ordered).
1399 /// This could be handled more generally in '-reassociation', but it seems like
1400 /// an unlikely pattern for a large number of logic ops and fcmps.
reassociateFCmps(BinaryOperator & BO,InstCombiner::BuilderTy & Builder)1401 static Instruction *reassociateFCmps(BinaryOperator &BO,
1402 InstCombiner::BuilderTy &Builder) {
1403 Instruction::BinaryOps Opcode = BO.getOpcode();
1404 assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
1405 "Expecting and/or op for fcmp transform");
1406
1407 // There are 4 commuted variants of the pattern. Canonicalize operands of this
1408 // logic op so an fcmp is operand 0 and a matching logic op is operand 1.
1409 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1), *X;
1410 FCmpInst::Predicate Pred;
1411 if (match(Op1, m_FCmp(Pred, m_Value(), m_AnyZeroFP())))
1412 std::swap(Op0, Op1);
1413
1414 // Match inner binop and the predicate for combining 2 NAN checks into 1.
1415 BinaryOperator *BO1;
1416 FCmpInst::Predicate NanPred = Opcode == Instruction::And ? FCmpInst::FCMP_ORD
1417 : FCmpInst::FCMP_UNO;
1418 if (!match(Op0, m_FCmp(Pred, m_Value(X), m_AnyZeroFP())) || Pred != NanPred ||
1419 !match(Op1, m_BinOp(BO1)) || BO1->getOpcode() != Opcode)
1420 return nullptr;
1421
1422 // The inner logic op must have a matching fcmp operand.
1423 Value *BO10 = BO1->getOperand(0), *BO11 = BO1->getOperand(1), *Y;
1424 if (!match(BO10, m_FCmp(Pred, m_Value(Y), m_AnyZeroFP())) ||
1425 Pred != NanPred || X->getType() != Y->getType())
1426 std::swap(BO10, BO11);
1427
1428 if (!match(BO10, m_FCmp(Pred, m_Value(Y), m_AnyZeroFP())) ||
1429 Pred != NanPred || X->getType() != Y->getType())
1430 return nullptr;
1431
1432 // and (fcmp ord X, 0), (and (fcmp ord Y, 0), Z) --> and (fcmp ord X, Y), Z
1433 // or (fcmp uno X, 0), (or (fcmp uno Y, 0), Z) --> or (fcmp uno X, Y), Z
1434 Value *NewFCmp = Builder.CreateFCmp(Pred, X, Y);
1435 if (auto *NewFCmpInst = dyn_cast<FCmpInst>(NewFCmp)) {
1436 // Intersect FMF from the 2 source fcmps.
1437 NewFCmpInst->copyIRFlags(Op0);
1438 NewFCmpInst->andIRFlags(BO10);
1439 }
1440 return BinaryOperator::Create(Opcode, NewFCmp, BO11);
1441 }
1442
1443 /// Match De Morgan's Laws:
1444 /// (~A & ~B) == (~(A | B))
1445 /// (~A | ~B) == (~(A & B))
matchDeMorgansLaws(BinaryOperator & I,InstCombiner::BuilderTy & Builder)1446 static Instruction *matchDeMorgansLaws(BinaryOperator &I,
1447 InstCombiner::BuilderTy &Builder) {
1448 auto Opcode = I.getOpcode();
1449 assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
1450 "Trying to match De Morgan's Laws with something other than and/or");
1451
1452 // Flip the logic operation.
1453 Opcode = (Opcode == Instruction::And) ? Instruction::Or : Instruction::And;
1454
1455 Value *A, *B;
1456 if (match(I.getOperand(0), m_OneUse(m_Not(m_Value(A)))) &&
1457 match(I.getOperand(1), m_OneUse(m_Not(m_Value(B)))) &&
1458 !InstCombiner::isFreeToInvert(A, A->hasOneUse()) &&
1459 !InstCombiner::isFreeToInvert(B, B->hasOneUse())) {
1460 Value *AndOr = Builder.CreateBinOp(Opcode, A, B, I.getName() + ".demorgan");
1461 return BinaryOperator::CreateNot(AndOr);
1462 }
1463
1464 return nullptr;
1465 }
1466
shouldOptimizeCast(CastInst * CI)1467 bool InstCombinerImpl::shouldOptimizeCast(CastInst *CI) {
1468 Value *CastSrc = CI->getOperand(0);
1469
1470 // Noop casts and casts of constants should be eliminated trivially.
1471 if (CI->getSrcTy() == CI->getDestTy() || isa<Constant>(CastSrc))
1472 return false;
1473
1474 // If this cast is paired with another cast that can be eliminated, we prefer
1475 // to have it eliminated.
1476 if (const auto *PrecedingCI = dyn_cast<CastInst>(CastSrc))
1477 if (isEliminableCastPair(PrecedingCI, CI))
1478 return false;
1479
1480 return true;
1481 }
1482
1483 /// Fold {and,or,xor} (cast X), C.
foldLogicCastConstant(BinaryOperator & Logic,CastInst * Cast,InstCombiner::BuilderTy & Builder)1484 static Instruction *foldLogicCastConstant(BinaryOperator &Logic, CastInst *Cast,
1485 InstCombiner::BuilderTy &Builder) {
1486 Constant *C = dyn_cast<Constant>(Logic.getOperand(1));
1487 if (!C)
1488 return nullptr;
1489
1490 auto LogicOpc = Logic.getOpcode();
1491 Type *DestTy = Logic.getType();
1492 Type *SrcTy = Cast->getSrcTy();
1493
1494 // Move the logic operation ahead of a zext or sext if the constant is
1495 // unchanged in the smaller source type. Performing the logic in a smaller
1496 // type may provide more information to later folds, and the smaller logic
1497 // instruction may be cheaper (particularly in the case of vectors).
1498 Value *X;
1499 if (match(Cast, m_OneUse(m_ZExt(m_Value(X))))) {
1500 Constant *TruncC = ConstantExpr::getTrunc(C, SrcTy);
1501 Constant *ZextTruncC = ConstantExpr::getZExt(TruncC, DestTy);
1502 if (ZextTruncC == C) {
1503 // LogicOpc (zext X), C --> zext (LogicOpc X, C)
1504 Value *NewOp = Builder.CreateBinOp(LogicOpc, X, TruncC);
1505 return new ZExtInst(NewOp, DestTy);
1506 }
1507 }
1508
1509 if (match(Cast, m_OneUse(m_SExt(m_Value(X))))) {
1510 Constant *TruncC = ConstantExpr::getTrunc(C, SrcTy);
1511 Constant *SextTruncC = ConstantExpr::getSExt(TruncC, DestTy);
1512 if (SextTruncC == C) {
1513 // LogicOpc (sext X), C --> sext (LogicOpc X, C)
1514 Value *NewOp = Builder.CreateBinOp(LogicOpc, X, TruncC);
1515 return new SExtInst(NewOp, DestTy);
1516 }
1517 }
1518
1519 return nullptr;
1520 }
1521
1522 /// Fold {and,or,xor} (cast X), Y.
foldCastedBitwiseLogic(BinaryOperator & I)1523 Instruction *InstCombinerImpl::foldCastedBitwiseLogic(BinaryOperator &I) {
1524 auto LogicOpc = I.getOpcode();
1525 assert(I.isBitwiseLogicOp() && "Unexpected opcode for bitwise logic folding");
1526
1527 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1528 CastInst *Cast0 = dyn_cast<CastInst>(Op0);
1529 if (!Cast0)
1530 return nullptr;
1531
1532 // This must be a cast from an integer or integer vector source type to allow
1533 // transformation of the logic operation to the source type.
1534 Type *DestTy = I.getType();
1535 Type *SrcTy = Cast0->getSrcTy();
1536 if (!SrcTy->isIntOrIntVectorTy())
1537 return nullptr;
1538
1539 if (Instruction *Ret = foldLogicCastConstant(I, Cast0, Builder))
1540 return Ret;
1541
1542 CastInst *Cast1 = dyn_cast<CastInst>(Op1);
1543 if (!Cast1)
1544 return nullptr;
1545
1546 // Both operands of the logic operation are casts. The casts must be of the
1547 // same type for reduction.
1548 auto CastOpcode = Cast0->getOpcode();
1549 if (CastOpcode != Cast1->getOpcode() || SrcTy != Cast1->getSrcTy())
1550 return nullptr;
1551
1552 Value *Cast0Src = Cast0->getOperand(0);
1553 Value *Cast1Src = Cast1->getOperand(0);
1554
1555 // fold logic(cast(A), cast(B)) -> cast(logic(A, B))
1556 if (shouldOptimizeCast(Cast0) && shouldOptimizeCast(Cast1)) {
1557 Value *NewOp = Builder.CreateBinOp(LogicOpc, Cast0Src, Cast1Src,
1558 I.getName());
1559 return CastInst::Create(CastOpcode, NewOp, DestTy);
1560 }
1561
1562 // For now, only 'and'/'or' have optimizations after this.
1563 if (LogicOpc == Instruction::Xor)
1564 return nullptr;
1565
1566 // If this is logic(cast(icmp), cast(icmp)), try to fold this even if the
1567 // cast is otherwise not optimizable. This happens for vector sexts.
1568 ICmpInst *ICmp0 = dyn_cast<ICmpInst>(Cast0Src);
1569 ICmpInst *ICmp1 = dyn_cast<ICmpInst>(Cast1Src);
1570 if (ICmp0 && ICmp1) {
1571 Value *Res = LogicOpc == Instruction::And ? foldAndOfICmps(ICmp0, ICmp1, I)
1572 : foldOrOfICmps(ICmp0, ICmp1, I);
1573 if (Res)
1574 return CastInst::Create(CastOpcode, Res, DestTy);
1575 return nullptr;
1576 }
1577
1578 // If this is logic(cast(fcmp), cast(fcmp)), try to fold this even if the
1579 // cast is otherwise not optimizable. This happens for vector sexts.
1580 FCmpInst *FCmp0 = dyn_cast<FCmpInst>(Cast0Src);
1581 FCmpInst *FCmp1 = dyn_cast<FCmpInst>(Cast1Src);
1582 if (FCmp0 && FCmp1)
1583 if (Value *R = foldLogicOfFCmps(FCmp0, FCmp1, LogicOpc == Instruction::And))
1584 return CastInst::Create(CastOpcode, R, DestTy);
1585
1586 return nullptr;
1587 }
1588
foldAndToXor(BinaryOperator & I,InstCombiner::BuilderTy & Builder)1589 static Instruction *foldAndToXor(BinaryOperator &I,
1590 InstCombiner::BuilderTy &Builder) {
1591 assert(I.getOpcode() == Instruction::And);
1592 Value *Op0 = I.getOperand(0);
1593 Value *Op1 = I.getOperand(1);
1594 Value *A, *B;
1595
1596 // Operand complexity canonicalization guarantees that the 'or' is Op0.
1597 // (A | B) & ~(A & B) --> A ^ B
1598 // (A | B) & ~(B & A) --> A ^ B
1599 if (match(&I, m_BinOp(m_Or(m_Value(A), m_Value(B)),
1600 m_Not(m_c_And(m_Deferred(A), m_Deferred(B))))))
1601 return BinaryOperator::CreateXor(A, B);
1602
1603 // (A | ~B) & (~A | B) --> ~(A ^ B)
1604 // (A | ~B) & (B | ~A) --> ~(A ^ B)
1605 // (~B | A) & (~A | B) --> ~(A ^ B)
1606 // (~B | A) & (B | ~A) --> ~(A ^ B)
1607 if (Op0->hasOneUse() || Op1->hasOneUse())
1608 if (match(&I, m_BinOp(m_c_Or(m_Value(A), m_Not(m_Value(B))),
1609 m_c_Or(m_Not(m_Deferred(A)), m_Deferred(B)))))
1610 return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
1611
1612 return nullptr;
1613 }
1614
foldOrToXor(BinaryOperator & I,InstCombiner::BuilderTy & Builder)1615 static Instruction *foldOrToXor(BinaryOperator &I,
1616 InstCombiner::BuilderTy &Builder) {
1617 assert(I.getOpcode() == Instruction::Or);
1618 Value *Op0 = I.getOperand(0);
1619 Value *Op1 = I.getOperand(1);
1620 Value *A, *B;
1621
1622 // Operand complexity canonicalization guarantees that the 'and' is Op0.
1623 // (A & B) | ~(A | B) --> ~(A ^ B)
1624 // (A & B) | ~(B | A) --> ~(A ^ B)
1625 if (Op0->hasOneUse() || Op1->hasOneUse())
1626 if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1627 match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
1628 return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
1629
1630 // (A & ~B) | (~A & B) --> A ^ B
1631 // (A & ~B) | (B & ~A) --> A ^ B
1632 // (~B & A) | (~A & B) --> A ^ B
1633 // (~B & A) | (B & ~A) --> A ^ B
1634 if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
1635 match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))
1636 return BinaryOperator::CreateXor(A, B);
1637
1638 return nullptr;
1639 }
1640
1641 /// Return true if a constant shift amount is always less than the specified
1642 /// bit-width. If not, the shift could create poison in the narrower type.
canNarrowShiftAmt(Constant * C,unsigned BitWidth)1643 static bool canNarrowShiftAmt(Constant *C, unsigned BitWidth) {
1644 APInt Threshold(C->getType()->getScalarSizeInBits(), BitWidth);
1645 return match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold));
1646 }
1647
1648 /// Try to use narrower ops (sink zext ops) for an 'and' with binop operand and
1649 /// a common zext operand: and (binop (zext X), C), (zext X).
narrowMaskedBinOp(BinaryOperator & And)1650 Instruction *InstCombinerImpl::narrowMaskedBinOp(BinaryOperator &And) {
1651 // This transform could also apply to {or, and, xor}, but there are better
1652 // folds for those cases, so we don't expect those patterns here. AShr is not
1653 // handled because it should always be transformed to LShr in this sequence.
1654 // The subtract transform is different because it has a constant on the left.
1655 // Add/mul commute the constant to RHS; sub with constant RHS becomes add.
1656 Value *Op0 = And.getOperand(0), *Op1 = And.getOperand(1);
1657 Constant *C;
1658 if (!match(Op0, m_OneUse(m_Add(m_Specific(Op1), m_Constant(C)))) &&
1659 !match(Op0, m_OneUse(m_Mul(m_Specific(Op1), m_Constant(C)))) &&
1660 !match(Op0, m_OneUse(m_LShr(m_Specific(Op1), m_Constant(C)))) &&
1661 !match(Op0, m_OneUse(m_Shl(m_Specific(Op1), m_Constant(C)))) &&
1662 !match(Op0, m_OneUse(m_Sub(m_Constant(C), m_Specific(Op1)))))
1663 return nullptr;
1664
1665 Value *X;
1666 if (!match(Op1, m_ZExt(m_Value(X))) || Op1->hasNUsesOrMore(3))
1667 return nullptr;
1668
1669 Type *Ty = And.getType();
1670 if (!isa<VectorType>(Ty) && !shouldChangeType(Ty, X->getType()))
1671 return nullptr;
1672
1673 // If we're narrowing a shift, the shift amount must be safe (less than the
1674 // width) in the narrower type. If the shift amount is greater, instsimplify
1675 // usually handles that case, but we can't guarantee/assert it.
1676 Instruction::BinaryOps Opc = cast<BinaryOperator>(Op0)->getOpcode();
1677 if (Opc == Instruction::LShr || Opc == Instruction::Shl)
1678 if (!canNarrowShiftAmt(C, X->getType()->getScalarSizeInBits()))
1679 return nullptr;
1680
1681 // and (sub C, (zext X)), (zext X) --> zext (and (sub C', X), X)
1682 // and (binop (zext X), C), (zext X) --> zext (and (binop X, C'), X)
1683 Value *NewC = ConstantExpr::getTrunc(C, X->getType());
1684 Value *NewBO = Opc == Instruction::Sub ? Builder.CreateBinOp(Opc, NewC, X)
1685 : Builder.CreateBinOp(Opc, X, NewC);
1686 return new ZExtInst(Builder.CreateAnd(NewBO, X), Ty);
1687 }
1688
1689 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
1690 // here. We should standardize that construct where it is needed or choose some
1691 // other way to ensure that commutated variants of patterns are not missed.
visitAnd(BinaryOperator & I)1692 Instruction *InstCombinerImpl::visitAnd(BinaryOperator &I) {
1693 Type *Ty = I.getType();
1694
1695 if (Value *V = SimplifyAndInst(I.getOperand(0), I.getOperand(1),
1696 SQ.getWithInstruction(&I)))
1697 return replaceInstUsesWith(I, V);
1698
1699 if (SimplifyAssociativeOrCommutative(I))
1700 return &I;
1701
1702 if (Instruction *X = foldVectorBinop(I))
1703 return X;
1704
1705 // See if we can simplify any instructions used by the instruction whose sole
1706 // purpose is to compute bits we don't care about.
1707 if (SimplifyDemandedInstructionBits(I))
1708 return &I;
1709
1710 // Do this before using distributive laws to catch simple and/or/not patterns.
1711 if (Instruction *Xor = foldAndToXor(I, Builder))
1712 return Xor;
1713
1714 // (A|B)&(A|C) -> A|(B&C) etc
1715 if (Value *V = SimplifyUsingDistributiveLaws(I))
1716 return replaceInstUsesWith(I, V);
1717
1718 if (Value *V = SimplifyBSwap(I, Builder))
1719 return replaceInstUsesWith(I, V);
1720
1721 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1722
1723 Value *X, *Y;
1724 if (match(Op0, m_OneUse(m_LogicalShift(m_One(), m_Value(X)))) &&
1725 match(Op1, m_One())) {
1726 // (1 << X) & 1 --> zext(X == 0)
1727 // (1 >> X) & 1 --> zext(X == 0)
1728 Value *IsZero = Builder.CreateICmpEQ(X, ConstantInt::get(Ty, 0));
1729 return new ZExtInst(IsZero, Ty);
1730 }
1731
1732 const APInt *C;
1733 if (match(Op1, m_APInt(C))) {
1734 const APInt *XorC;
1735 if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_APInt(XorC))))) {
1736 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
1737 Constant *NewC = ConstantInt::get(Ty, *C & *XorC);
1738 Value *And = Builder.CreateAnd(X, Op1);
1739 And->takeName(Op0);
1740 return BinaryOperator::CreateXor(And, NewC);
1741 }
1742
1743 const APInt *OrC;
1744 if (match(Op0, m_OneUse(m_Or(m_Value(X), m_APInt(OrC))))) {
1745 // (X | C1) & C2 --> (X & C2^(C1&C2)) | (C1&C2)
1746 // NOTE: This reduces the number of bits set in the & mask, which
1747 // can expose opportunities for store narrowing for scalars.
1748 // NOTE: SimplifyDemandedBits should have already removed bits from C1
1749 // that aren't set in C2. Meaning we can replace (C1&C2) with C1 in
1750 // above, but this feels safer.
1751 APInt Together = *C & *OrC;
1752 Value *And = Builder.CreateAnd(X, ConstantInt::get(Ty, Together ^ *C));
1753 And->takeName(Op0);
1754 return BinaryOperator::CreateOr(And, ConstantInt::get(Ty, Together));
1755 }
1756
1757 // If the mask is only needed on one incoming arm, push the 'and' op up.
1758 if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_Value(Y)))) ||
1759 match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
1760 APInt NotAndMask(~(*C));
1761 BinaryOperator::BinaryOps BinOp = cast<BinaryOperator>(Op0)->getOpcode();
1762 if (MaskedValueIsZero(X, NotAndMask, 0, &I)) {
1763 // Not masking anything out for the LHS, move mask to RHS.
1764 // and ({x}or X, Y), C --> {x}or X, (and Y, C)
1765 Value *NewRHS = Builder.CreateAnd(Y, Op1, Y->getName() + ".masked");
1766 return BinaryOperator::Create(BinOp, X, NewRHS);
1767 }
1768 if (!isa<Constant>(Y) && MaskedValueIsZero(Y, NotAndMask, 0, &I)) {
1769 // Not masking anything out for the RHS, move mask to LHS.
1770 // and ({x}or X, Y), C --> {x}or (and X, C), Y
1771 Value *NewLHS = Builder.CreateAnd(X, Op1, X->getName() + ".masked");
1772 return BinaryOperator::Create(BinOp, NewLHS, Y);
1773 }
1774 }
1775
1776 unsigned Width = Ty->getScalarSizeInBits();
1777 const APInt *ShiftC;
1778 if (match(Op0, m_OneUse(m_SExt(m_AShr(m_Value(X), m_APInt(ShiftC)))))) {
1779 if (*C == APInt::getLowBitsSet(Width, Width - ShiftC->getZExtValue())) {
1780 // We are clearing high bits that were potentially set by sext+ashr:
1781 // and (sext (ashr X, ShiftC)), C --> lshr (sext X), ShiftC
1782 Value *Sext = Builder.CreateSExt(X, Ty);
1783 Constant *ShAmtC = ConstantInt::get(Ty, ShiftC->zext(Width));
1784 return BinaryOperator::CreateLShr(Sext, ShAmtC);
1785 }
1786 }
1787
1788 const APInt *AddC;
1789 if (match(Op0, m_Add(m_Value(X), m_APInt(AddC)))) {
1790 // If we add zeros to every bit below a mask, the add has no effect:
1791 // (X + AddC) & LowMaskC --> X & LowMaskC
1792 unsigned Ctlz = C->countLeadingZeros();
1793 APInt LowMask(APInt::getLowBitsSet(Width, Width - Ctlz));
1794 if ((*AddC & LowMask).isNullValue())
1795 return BinaryOperator::CreateAnd(X, Op1);
1796
1797 // If we are masking the result of the add down to exactly one bit and
1798 // the constant we are adding has no bits set below that bit, then the
1799 // add is flipping a single bit. Example:
1800 // (X + 4) & 4 --> (X & 4) ^ 4
1801 if (Op0->hasOneUse() && C->isPowerOf2() && (*AddC & (*C - 1)) == 0) {
1802 assert((*C & *AddC) != 0 && "Expected common bit");
1803 Value *NewAnd = Builder.CreateAnd(X, Op1);
1804 return BinaryOperator::CreateXor(NewAnd, Op1);
1805 }
1806 }
1807 }
1808
1809 ConstantInt *AndRHS;
1810 if (match(Op1, m_ConstantInt(AndRHS))) {
1811 const APInt &AndRHSMask = AndRHS->getValue();
1812
1813 // Optimize a variety of ((val OP C1) & C2) combinations...
1814 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
1815 // ((C1 OP zext(X)) & C2) -> zext((C1-X) & C2) if C2 fits in the bitwidth
1816 // of X and OP behaves well when given trunc(C1) and X.
1817 // TODO: Do this for vectors by using m_APInt instead of m_ConstantInt.
1818 switch (Op0I->getOpcode()) {
1819 default:
1820 break;
1821 case Instruction::Xor:
1822 case Instruction::Or:
1823 case Instruction::Mul:
1824 case Instruction::Add:
1825 case Instruction::Sub:
1826 Value *X;
1827 ConstantInt *C1;
1828 // TODO: The one use restrictions could be relaxed a little if the AND
1829 // is going to be removed.
1830 if (match(Op0I, m_OneUse(m_c_BinOp(m_OneUse(m_ZExt(m_Value(X))),
1831 m_ConstantInt(C1))))) {
1832 if (AndRHSMask.isIntN(X->getType()->getScalarSizeInBits())) {
1833 auto *TruncC1 = ConstantExpr::getTrunc(C1, X->getType());
1834 Value *BinOp;
1835 Value *Op0LHS = Op0I->getOperand(0);
1836 if (isa<ZExtInst>(Op0LHS))
1837 BinOp = Builder.CreateBinOp(Op0I->getOpcode(), X, TruncC1);
1838 else
1839 BinOp = Builder.CreateBinOp(Op0I->getOpcode(), TruncC1, X);
1840 auto *TruncC2 = ConstantExpr::getTrunc(AndRHS, X->getType());
1841 auto *And = Builder.CreateAnd(BinOp, TruncC2);
1842 return new ZExtInst(And, Ty);
1843 }
1844 }
1845 }
1846 }
1847 }
1848
1849 if (match(&I, m_And(m_OneUse(m_Shl(m_ZExt(m_Value(X)), m_Value(Y))),
1850 m_SignMask())) &&
1851 match(Y, m_SpecificInt_ICMP(
1852 ICmpInst::Predicate::ICMP_EQ,
1853 APInt(Ty->getScalarSizeInBits(),
1854 Ty->getScalarSizeInBits() -
1855 X->getType()->getScalarSizeInBits())))) {
1856 auto *SExt = Builder.CreateSExt(X, Ty, X->getName() + ".signext");
1857 auto *SanitizedSignMask = cast<Constant>(Op1);
1858 // We must be careful with the undef elements of the sign bit mask, however:
1859 // the mask elt can be undef iff the shift amount for that lane was undef,
1860 // otherwise we need to sanitize undef masks to zero.
1861 SanitizedSignMask = Constant::replaceUndefsWith(
1862 SanitizedSignMask, ConstantInt::getNullValue(Ty->getScalarType()));
1863 SanitizedSignMask =
1864 Constant::mergeUndefsWith(SanitizedSignMask, cast<Constant>(Y));
1865 return BinaryOperator::CreateAnd(SExt, SanitizedSignMask);
1866 }
1867
1868 if (Instruction *Z = narrowMaskedBinOp(I))
1869 return Z;
1870
1871 if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
1872 return FoldedLogic;
1873
1874 if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder))
1875 return DeMorgan;
1876
1877 {
1878 Value *A, *B, *C;
1879 // A & (A ^ B) --> A & ~B
1880 if (match(Op1, m_OneUse(m_c_Xor(m_Specific(Op0), m_Value(B)))))
1881 return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(B));
1882 // (A ^ B) & A --> A & ~B
1883 if (match(Op0, m_OneUse(m_c_Xor(m_Specific(Op1), m_Value(B)))))
1884 return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(B));
1885
1886 // (A ^ B) & ((B ^ C) ^ A) -> (A ^ B) & ~C
1887 if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
1888 if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A))))
1889 if (Op1->hasOneUse() || isFreeToInvert(C, C->hasOneUse()))
1890 return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(C));
1891
1892 // ((A ^ C) ^ B) & (B ^ A) -> (B ^ A) & ~C
1893 if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))))
1894 if (match(Op1, m_Xor(m_Specific(B), m_Specific(A))))
1895 if (Op0->hasOneUse() || isFreeToInvert(C, C->hasOneUse()))
1896 return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(C));
1897
1898 // (A | B) & ((~A) ^ B) -> (A & B)
1899 // (A | B) & (B ^ (~A)) -> (A & B)
1900 // (B | A) & ((~A) ^ B) -> (A & B)
1901 // (B | A) & (B ^ (~A)) -> (A & B)
1902 if (match(Op1, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) &&
1903 match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
1904 return BinaryOperator::CreateAnd(A, B);
1905
1906 // ((~A) ^ B) & (A | B) -> (A & B)
1907 // ((~A) ^ B) & (B | A) -> (A & B)
1908 // (B ^ (~A)) & (A | B) -> (A & B)
1909 // (B ^ (~A)) & (B | A) -> (A & B)
1910 if (match(Op0, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) &&
1911 match(Op1, m_c_Or(m_Specific(A), m_Specific(B))))
1912 return BinaryOperator::CreateAnd(A, B);
1913 }
1914
1915 {
1916 ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
1917 ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
1918 if (LHS && RHS)
1919 if (Value *Res = foldAndOfICmps(LHS, RHS, I))
1920 return replaceInstUsesWith(I, Res);
1921
1922 // TODO: Make this recursive; it's a little tricky because an arbitrary
1923 // number of 'and' instructions might have to be created.
1924 if (LHS && match(Op1, m_OneUse(m_And(m_Value(X), m_Value(Y))))) {
1925 if (auto *Cmp = dyn_cast<ICmpInst>(X))
1926 if (Value *Res = foldAndOfICmps(LHS, Cmp, I))
1927 return replaceInstUsesWith(I, Builder.CreateAnd(Res, Y));
1928 if (auto *Cmp = dyn_cast<ICmpInst>(Y))
1929 if (Value *Res = foldAndOfICmps(LHS, Cmp, I))
1930 return replaceInstUsesWith(I, Builder.CreateAnd(Res, X));
1931 }
1932 if (RHS && match(Op0, m_OneUse(m_And(m_Value(X), m_Value(Y))))) {
1933 if (auto *Cmp = dyn_cast<ICmpInst>(X))
1934 if (Value *Res = foldAndOfICmps(Cmp, RHS, I))
1935 return replaceInstUsesWith(I, Builder.CreateAnd(Res, Y));
1936 if (auto *Cmp = dyn_cast<ICmpInst>(Y))
1937 if (Value *Res = foldAndOfICmps(Cmp, RHS, I))
1938 return replaceInstUsesWith(I, Builder.CreateAnd(Res, X));
1939 }
1940 }
1941
1942 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
1943 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
1944 if (Value *Res = foldLogicOfFCmps(LHS, RHS, true))
1945 return replaceInstUsesWith(I, Res);
1946
1947 if (Instruction *FoldedFCmps = reassociateFCmps(I, Builder))
1948 return FoldedFCmps;
1949
1950 if (Instruction *CastedAnd = foldCastedBitwiseLogic(I))
1951 return CastedAnd;
1952
1953 // and(sext(A), B) / and(B, sext(A)) --> A ? B : 0, where A is i1 or <N x i1>.
1954 Value *A;
1955 if (match(Op0, m_OneUse(m_SExt(m_Value(A)))) &&
1956 A->getType()->isIntOrIntVectorTy(1))
1957 return SelectInst::Create(A, Op1, Constant::getNullValue(Ty));
1958 if (match(Op1, m_OneUse(m_SExt(m_Value(A)))) &&
1959 A->getType()->isIntOrIntVectorTy(1))
1960 return SelectInst::Create(A, Op0, Constant::getNullValue(Ty));
1961
1962 // and(ashr(subNSW(Y, X), ScalarSizeInBits(Y)-1), X) --> X s> Y ? X : 0.
1963 if (match(&I, m_c_And(m_OneUse(m_AShr(
1964 m_NSWSub(m_Value(Y), m_Value(X)),
1965 m_SpecificInt(Ty->getScalarSizeInBits() - 1))),
1966 m_Deferred(X)))) {
1967 Value *NewICmpInst = Builder.CreateICmpSGT(X, Y);
1968 return SelectInst::Create(NewICmpInst, X, ConstantInt::getNullValue(Ty));
1969 }
1970
1971 return nullptr;
1972 }
1973
matchBSwapOrBitReverse(BinaryOperator & Or,bool MatchBSwaps,bool MatchBitReversals)1974 Instruction *InstCombinerImpl::matchBSwapOrBitReverse(BinaryOperator &Or,
1975 bool MatchBSwaps,
1976 bool MatchBitReversals) {
1977 assert(Or.getOpcode() == Instruction::Or && "bswap requires an 'or'");
1978 Value *Op0 = Or.getOperand(0), *Op1 = Or.getOperand(1);
1979
1980 // Look through zero extends.
1981 if (Instruction *Ext = dyn_cast<ZExtInst>(Op0))
1982 Op0 = Ext->getOperand(0);
1983
1984 if (Instruction *Ext = dyn_cast<ZExtInst>(Op1))
1985 Op1 = Ext->getOperand(0);
1986
1987 // (A | B) | C and A | (B | C) -> bswap if possible.
1988 bool OrWithOrs = match(Op0, m_Or(m_Value(), m_Value())) ||
1989 match(Op1, m_Or(m_Value(), m_Value()));
1990
1991 // (A >> B) | C and (A << B) | C -> bswap if possible.
1992 bool OrWithShifts = match(Op0, m_LogicalShift(m_Value(), m_Value())) ||
1993 match(Op1, m_LogicalShift(m_Value(), m_Value()));
1994
1995 // (A & B) | C and A | (B & C) -> bswap if possible.
1996 bool OrWithAnds = match(Op0, m_And(m_Value(), m_Value())) ||
1997 match(Op1, m_And(m_Value(), m_Value()));
1998
1999 // fshl(A,B,C) | D and A | fshl(B,C,D) -> bswap if possible.
2000 // fshr(A,B,C) | D and A | fshr(B,C,D) -> bswap if possible.
2001 bool OrWithFunnels = match(Op0, m_FShl(m_Value(), m_Value(), m_Value())) ||
2002 match(Op0, m_FShr(m_Value(), m_Value(), m_Value())) ||
2003 match(Op0, m_FShl(m_Value(), m_Value(), m_Value())) ||
2004 match(Op0, m_FShr(m_Value(), m_Value(), m_Value()));
2005
2006 // TODO: Do we need all these filtering checks or should we just rely on
2007 // recognizeBSwapOrBitReverseIdiom + collectBitParts to reject them quickly?
2008 if (!OrWithOrs && !OrWithShifts && !OrWithAnds && !OrWithFunnels)
2009 return nullptr;
2010
2011 SmallVector<Instruction *, 4> Insts;
2012 if (!recognizeBSwapOrBitReverseIdiom(&Or, MatchBSwaps, MatchBitReversals,
2013 Insts))
2014 return nullptr;
2015 Instruction *LastInst = Insts.pop_back_val();
2016 LastInst->removeFromParent();
2017
2018 for (auto *Inst : Insts)
2019 Worklist.push(Inst);
2020 return LastInst;
2021 }
2022
2023 /// Match UB-safe variants of the funnel shift intrinsic.
matchFunnelShift(Instruction & Or,InstCombinerImpl & IC)2024 static Instruction *matchFunnelShift(Instruction &Or, InstCombinerImpl &IC) {
2025 // TODO: Can we reduce the code duplication between this and the related
2026 // rotate matching code under visitSelect and visitTrunc?
2027 unsigned Width = Or.getType()->getScalarSizeInBits();
2028
2029 // First, find an or'd pair of opposite shifts:
2030 // or (lshr ShVal0, ShAmt0), (shl ShVal1, ShAmt1)
2031 BinaryOperator *Or0, *Or1;
2032 if (!match(Or.getOperand(0), m_BinOp(Or0)) ||
2033 !match(Or.getOperand(1), m_BinOp(Or1)))
2034 return nullptr;
2035
2036 Value *ShVal0, *ShVal1, *ShAmt0, *ShAmt1;
2037 if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal0), m_Value(ShAmt0)))) ||
2038 !match(Or1, m_OneUse(m_LogicalShift(m_Value(ShVal1), m_Value(ShAmt1)))) ||
2039 Or0->getOpcode() == Or1->getOpcode())
2040 return nullptr;
2041
2042 // Canonicalize to or(shl(ShVal0, ShAmt0), lshr(ShVal1, ShAmt1)).
2043 if (Or0->getOpcode() == BinaryOperator::LShr) {
2044 std::swap(Or0, Or1);
2045 std::swap(ShVal0, ShVal1);
2046 std::swap(ShAmt0, ShAmt1);
2047 }
2048 assert(Or0->getOpcode() == BinaryOperator::Shl &&
2049 Or1->getOpcode() == BinaryOperator::LShr &&
2050 "Illegal or(shift,shift) pair");
2051
2052 // Match the shift amount operands for a funnel shift pattern. This always
2053 // matches a subtraction on the R operand.
2054 auto matchShiftAmount = [&](Value *L, Value *R, unsigned Width) -> Value * {
2055 // Check for constant shift amounts that sum to the bitwidth.
2056 const APInt *LI, *RI;
2057 if (match(L, m_APIntAllowUndef(LI)) && match(R, m_APIntAllowUndef(RI)))
2058 if (LI->ult(Width) && RI->ult(Width) && (*LI + *RI) == Width)
2059 return ConstantInt::get(L->getType(), *LI);
2060
2061 Constant *LC, *RC;
2062 if (match(L, m_Constant(LC)) && match(R, m_Constant(RC)) &&
2063 match(L, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, APInt(Width, Width))) &&
2064 match(R, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, APInt(Width, Width))) &&
2065 match(ConstantExpr::getAdd(LC, RC), m_SpecificIntAllowUndef(Width)))
2066 return ConstantExpr::mergeUndefsWith(LC, RC);
2067
2068 // (shl ShVal, X) | (lshr ShVal, (Width - x)) iff X < Width.
2069 // We limit this to X < Width in case the backend re-expands the intrinsic,
2070 // and has to reintroduce a shift modulo operation (InstCombine might remove
2071 // it after this fold). This still doesn't guarantee that the final codegen
2072 // will match this original pattern.
2073 if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L))))) {
2074 KnownBits KnownL = IC.computeKnownBits(L, /*Depth*/ 0, &Or);
2075 return KnownL.getMaxValue().ult(Width) ? L : nullptr;
2076 }
2077
2078 // For non-constant cases, the following patterns currently only work for
2079 // rotation patterns.
2080 // TODO: Add general funnel-shift compatible patterns.
2081 if (ShVal0 != ShVal1)
2082 return nullptr;
2083
2084 // For non-constant cases we don't support non-pow2 shift masks.
2085 // TODO: Is it worth matching urem as well?
2086 if (!isPowerOf2_32(Width))
2087 return nullptr;
2088
2089 // The shift amount may be masked with negation:
2090 // (shl ShVal, (X & (Width - 1))) | (lshr ShVal, ((-X) & (Width - 1)))
2091 Value *X;
2092 unsigned Mask = Width - 1;
2093 if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) &&
2094 match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))
2095 return X;
2096
2097 // Similar to above, but the shift amount may be extended after masking,
2098 // so return the extended value as the parameter for the intrinsic.
2099 if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
2100 match(R, m_And(m_Neg(m_ZExt(m_And(m_Specific(X), m_SpecificInt(Mask)))),
2101 m_SpecificInt(Mask))))
2102 return L;
2103
2104 if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
2105 match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))))
2106 return L;
2107
2108 return nullptr;
2109 };
2110
2111 Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, Width);
2112 bool IsFshl = true; // Sub on LSHR.
2113 if (!ShAmt) {
2114 ShAmt = matchShiftAmount(ShAmt1, ShAmt0, Width);
2115 IsFshl = false; // Sub on SHL.
2116 }
2117 if (!ShAmt)
2118 return nullptr;
2119
2120 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
2121 Function *F = Intrinsic::getDeclaration(Or.getModule(), IID, Or.getType());
2122 return IntrinsicInst::Create(F, {ShVal0, ShVal1, ShAmt});
2123 }
2124
2125 /// Attempt to combine or(zext(x),shl(zext(y),bw/2) concat packing patterns.
matchOrConcat(Instruction & Or,InstCombiner::BuilderTy & Builder)2126 static Instruction *matchOrConcat(Instruction &Or,
2127 InstCombiner::BuilderTy &Builder) {
2128 assert(Or.getOpcode() == Instruction::Or && "bswap requires an 'or'");
2129 Value *Op0 = Or.getOperand(0), *Op1 = Or.getOperand(1);
2130 Type *Ty = Or.getType();
2131
2132 unsigned Width = Ty->getScalarSizeInBits();
2133 if ((Width & 1) != 0)
2134 return nullptr;
2135 unsigned HalfWidth = Width / 2;
2136
2137 // Canonicalize zext (lower half) to LHS.
2138 if (!isa<ZExtInst>(Op0))
2139 std::swap(Op0, Op1);
2140
2141 // Find lower/upper half.
2142 Value *LowerSrc, *ShlVal, *UpperSrc;
2143 const APInt *C;
2144 if (!match(Op0, m_OneUse(m_ZExt(m_Value(LowerSrc)))) ||
2145 !match(Op1, m_OneUse(m_Shl(m_Value(ShlVal), m_APInt(C)))) ||
2146 !match(ShlVal, m_OneUse(m_ZExt(m_Value(UpperSrc)))))
2147 return nullptr;
2148 if (*C != HalfWidth || LowerSrc->getType() != UpperSrc->getType() ||
2149 LowerSrc->getType()->getScalarSizeInBits() != HalfWidth)
2150 return nullptr;
2151
2152 auto ConcatIntrinsicCalls = [&](Intrinsic::ID id, Value *Lo, Value *Hi) {
2153 Value *NewLower = Builder.CreateZExt(Lo, Ty);
2154 Value *NewUpper = Builder.CreateZExt(Hi, Ty);
2155 NewUpper = Builder.CreateShl(NewUpper, HalfWidth);
2156 Value *BinOp = Builder.CreateOr(NewLower, NewUpper);
2157 Function *F = Intrinsic::getDeclaration(Or.getModule(), id, Ty);
2158 return Builder.CreateCall(F, BinOp);
2159 };
2160
2161 // BSWAP: Push the concat down, swapping the lower/upper sources.
2162 // concat(bswap(x),bswap(y)) -> bswap(concat(x,y))
2163 Value *LowerBSwap, *UpperBSwap;
2164 if (match(LowerSrc, m_BSwap(m_Value(LowerBSwap))) &&
2165 match(UpperSrc, m_BSwap(m_Value(UpperBSwap))))
2166 return ConcatIntrinsicCalls(Intrinsic::bswap, UpperBSwap, LowerBSwap);
2167
2168 // BITREVERSE: Push the concat down, swapping the lower/upper sources.
2169 // concat(bitreverse(x),bitreverse(y)) -> bitreverse(concat(x,y))
2170 Value *LowerBRev, *UpperBRev;
2171 if (match(LowerSrc, m_BitReverse(m_Value(LowerBRev))) &&
2172 match(UpperSrc, m_BitReverse(m_Value(UpperBRev))))
2173 return ConcatIntrinsicCalls(Intrinsic::bitreverse, UpperBRev, LowerBRev);
2174
2175 return nullptr;
2176 }
2177
2178 /// If all elements of two constant vectors are 0/-1 and inverses, return true.
areInverseVectorBitmasks(Constant * C1,Constant * C2)2179 static bool areInverseVectorBitmasks(Constant *C1, Constant *C2) {
2180 unsigned NumElts = cast<FixedVectorType>(C1->getType())->getNumElements();
2181 for (unsigned i = 0; i != NumElts; ++i) {
2182 Constant *EltC1 = C1->getAggregateElement(i);
2183 Constant *EltC2 = C2->getAggregateElement(i);
2184 if (!EltC1 || !EltC2)
2185 return false;
2186
2187 // One element must be all ones, and the other must be all zeros.
2188 if (!((match(EltC1, m_Zero()) && match(EltC2, m_AllOnes())) ||
2189 (match(EltC2, m_Zero()) && match(EltC1, m_AllOnes()))))
2190 return false;
2191 }
2192 return true;
2193 }
2194
2195 /// We have an expression of the form (A & C) | (B & D). If A is a scalar or
2196 /// vector composed of all-zeros or all-ones values and is the bitwise 'not' of
2197 /// B, it can be used as the condition operand of a select instruction.
getSelectCondition(Value * A,Value * B)2198 Value *InstCombinerImpl::getSelectCondition(Value *A, Value *B) {
2199 // Step 1: We may have peeked through bitcasts in the caller.
2200 // Exit immediately if we don't have (vector) integer types.
2201 Type *Ty = A->getType();
2202 if (!Ty->isIntOrIntVectorTy() || !B->getType()->isIntOrIntVectorTy())
2203 return nullptr;
2204
2205 // Step 2: We need 0 or all-1's bitmasks.
2206 if (ComputeNumSignBits(A) != Ty->getScalarSizeInBits())
2207 return nullptr;
2208
2209 // Step 3: If B is the 'not' value of A, we have our answer.
2210 if (match(A, m_Not(m_Specific(B)))) {
2211 // If these are scalars or vectors of i1, A can be used directly.
2212 if (Ty->isIntOrIntVectorTy(1))
2213 return A;
2214 return Builder.CreateTrunc(A, CmpInst::makeCmpResultType(Ty));
2215 }
2216
2217 // If both operands are constants, see if the constants are inverse bitmasks.
2218 Constant *AConst, *BConst;
2219 if (match(A, m_Constant(AConst)) && match(B, m_Constant(BConst)))
2220 if (AConst == ConstantExpr::getNot(BConst))
2221 return Builder.CreateZExtOrTrunc(A, CmpInst::makeCmpResultType(Ty));
2222
2223 // Look for more complex patterns. The 'not' op may be hidden behind various
2224 // casts. Look through sexts and bitcasts to find the booleans.
2225 Value *Cond;
2226 Value *NotB;
2227 if (match(A, m_SExt(m_Value(Cond))) &&
2228 Cond->getType()->isIntOrIntVectorTy(1) &&
2229 match(B, m_OneUse(m_Not(m_Value(NotB))))) {
2230 NotB = peekThroughBitcast(NotB, true);
2231 if (match(NotB, m_SExt(m_Specific(Cond))))
2232 return Cond;
2233 }
2234
2235 // All scalar (and most vector) possibilities should be handled now.
2236 // Try more matches that only apply to non-splat constant vectors.
2237 if (!Ty->isVectorTy())
2238 return nullptr;
2239
2240 // If both operands are xor'd with constants using the same sexted boolean
2241 // operand, see if the constants are inverse bitmasks.
2242 // TODO: Use ConstantExpr::getNot()?
2243 if (match(A, (m_Xor(m_SExt(m_Value(Cond)), m_Constant(AConst)))) &&
2244 match(B, (m_Xor(m_SExt(m_Specific(Cond)), m_Constant(BConst)))) &&
2245 Cond->getType()->isIntOrIntVectorTy(1) &&
2246 areInverseVectorBitmasks(AConst, BConst)) {
2247 AConst = ConstantExpr::getTrunc(AConst, CmpInst::makeCmpResultType(Ty));
2248 return Builder.CreateXor(Cond, AConst);
2249 }
2250 return nullptr;
2251 }
2252
2253 /// We have an expression of the form (A & C) | (B & D). Try to simplify this
2254 /// to "A' ? C : D", where A' is a boolean or vector of booleans.
matchSelectFromAndOr(Value * A,Value * C,Value * B,Value * D)2255 Value *InstCombinerImpl::matchSelectFromAndOr(Value *A, Value *C, Value *B,
2256 Value *D) {
2257 // The potential condition of the select may be bitcasted. In that case, look
2258 // through its bitcast and the corresponding bitcast of the 'not' condition.
2259 Type *OrigType = A->getType();
2260 A = peekThroughBitcast(A, true);
2261 B = peekThroughBitcast(B, true);
2262 if (Value *Cond = getSelectCondition(A, B)) {
2263 // ((bc Cond) & C) | ((bc ~Cond) & D) --> bc (select Cond, (bc C), (bc D))
2264 // The bitcasts will either all exist or all not exist. The builder will
2265 // not create unnecessary casts if the types already match.
2266 Value *BitcastC = Builder.CreateBitCast(C, A->getType());
2267 Value *BitcastD = Builder.CreateBitCast(D, A->getType());
2268 Value *Select = Builder.CreateSelect(Cond, BitcastC, BitcastD);
2269 return Builder.CreateBitCast(Select, OrigType);
2270 }
2271
2272 return nullptr;
2273 }
2274
2275 /// Fold (icmp)|(icmp) if possible.
foldOrOfICmps(ICmpInst * LHS,ICmpInst * RHS,BinaryOperator & Or)2276 Value *InstCombinerImpl::foldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS,
2277 BinaryOperator &Or) {
2278 const SimplifyQuery Q = SQ.getWithInstruction(&Or);
2279
2280 // Fold (iszero(A & K1) | iszero(A & K2)) -> (A & (K1 | K2)) != (K1 | K2)
2281 // if K1 and K2 are a one-bit mask.
2282 if (Value *V = foldAndOrOfICmpsOfAndWithPow2(LHS, RHS, Or))
2283 return V;
2284
2285 ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
2286 Value *LHS0 = LHS->getOperand(0), *RHS0 = RHS->getOperand(0);
2287 Value *LHS1 = LHS->getOperand(1), *RHS1 = RHS->getOperand(1);
2288 auto *LHSC = dyn_cast<ConstantInt>(LHS1);
2289 auto *RHSC = dyn_cast<ConstantInt>(RHS1);
2290
2291 // Fold (icmp ult/ule (A + C1), C3) | (icmp ult/ule (A + C2), C3)
2292 // --> (icmp ult/ule ((A & ~(C1 ^ C2)) + max(C1, C2)), C3)
2293 // The original condition actually refers to the following two ranges:
2294 // [MAX_UINT-C1+1, MAX_UINT-C1+1+C3] and [MAX_UINT-C2+1, MAX_UINT-C2+1+C3]
2295 // We can fold these two ranges if:
2296 // 1) C1 and C2 is unsigned greater than C3.
2297 // 2) The two ranges are separated.
2298 // 3) C1 ^ C2 is one-bit mask.
2299 // 4) LowRange1 ^ LowRange2 and HighRange1 ^ HighRange2 are one-bit mask.
2300 // This implies all values in the two ranges differ by exactly one bit.
2301 if ((PredL == ICmpInst::ICMP_ULT || PredL == ICmpInst::ICMP_ULE) &&
2302 PredL == PredR && LHSC && RHSC && LHS->hasOneUse() && RHS->hasOneUse() &&
2303 LHSC->getType() == RHSC->getType() &&
2304 LHSC->getValue() == (RHSC->getValue())) {
2305
2306 Value *AddOpnd;
2307 ConstantInt *LAddC, *RAddC;
2308 if (match(LHS0, m_Add(m_Value(AddOpnd), m_ConstantInt(LAddC))) &&
2309 match(RHS0, m_Add(m_Specific(AddOpnd), m_ConstantInt(RAddC))) &&
2310 LAddC->getValue().ugt(LHSC->getValue()) &&
2311 RAddC->getValue().ugt(LHSC->getValue())) {
2312
2313 APInt DiffC = LAddC->getValue() ^ RAddC->getValue();
2314 if (DiffC.isPowerOf2()) {
2315 ConstantInt *MaxAddC = nullptr;
2316 if (LAddC->getValue().ult(RAddC->getValue()))
2317 MaxAddC = RAddC;
2318 else
2319 MaxAddC = LAddC;
2320
2321 APInt RRangeLow = -RAddC->getValue();
2322 APInt RRangeHigh = RRangeLow + LHSC->getValue();
2323 APInt LRangeLow = -LAddC->getValue();
2324 APInt LRangeHigh = LRangeLow + LHSC->getValue();
2325 APInt LowRangeDiff = RRangeLow ^ LRangeLow;
2326 APInt HighRangeDiff = RRangeHigh ^ LRangeHigh;
2327 APInt RangeDiff = LRangeLow.sgt(RRangeLow) ? LRangeLow - RRangeLow
2328 : RRangeLow - LRangeLow;
2329
2330 if (LowRangeDiff.isPowerOf2() && LowRangeDiff == HighRangeDiff &&
2331 RangeDiff.ugt(LHSC->getValue())) {
2332 Value *MaskC = ConstantInt::get(LAddC->getType(), ~DiffC);
2333
2334 Value *NewAnd = Builder.CreateAnd(AddOpnd, MaskC);
2335 Value *NewAdd = Builder.CreateAdd(NewAnd, MaxAddC);
2336 return Builder.CreateICmp(LHS->getPredicate(), NewAdd, LHSC);
2337 }
2338 }
2339 }
2340 }
2341
2342 // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
2343 if (predicatesFoldable(PredL, PredR)) {
2344 if (LHS0 == RHS1 && LHS1 == RHS0)
2345 LHS->swapOperands();
2346 if (LHS0 == RHS0 && LHS1 == RHS1) {
2347 unsigned Code = getICmpCode(LHS) | getICmpCode(RHS);
2348 bool IsSigned = LHS->isSigned() || RHS->isSigned();
2349 return getNewICmpValue(Code, IsSigned, LHS0, LHS1, Builder);
2350 }
2351 }
2352
2353 // handle (roughly):
2354 // (icmp ne (A & B), C) | (icmp ne (A & D), E)
2355 if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, false, Builder))
2356 return V;
2357
2358 if (LHS->hasOneUse() || RHS->hasOneUse()) {
2359 // (icmp eq B, 0) | (icmp ult A, B) -> (icmp ule A, B-1)
2360 // (icmp eq B, 0) | (icmp ugt B, A) -> (icmp ule A, B-1)
2361 Value *A = nullptr, *B = nullptr;
2362 if (PredL == ICmpInst::ICMP_EQ && match(LHS1, m_Zero())) {
2363 B = LHS0;
2364 if (PredR == ICmpInst::ICMP_ULT && LHS0 == RHS1)
2365 A = RHS0;
2366 else if (PredR == ICmpInst::ICMP_UGT && LHS0 == RHS0)
2367 A = RHS1;
2368 }
2369 // (icmp ult A, B) | (icmp eq B, 0) -> (icmp ule A, B-1)
2370 // (icmp ugt B, A) | (icmp eq B, 0) -> (icmp ule A, B-1)
2371 else if (PredR == ICmpInst::ICMP_EQ && match(RHS1, m_Zero())) {
2372 B = RHS0;
2373 if (PredL == ICmpInst::ICMP_ULT && RHS0 == LHS1)
2374 A = LHS0;
2375 else if (PredL == ICmpInst::ICMP_UGT && RHS0 == LHS0)
2376 A = LHS1;
2377 }
2378 if (A && B && B->getType()->isIntOrIntVectorTy())
2379 return Builder.CreateICmp(
2380 ICmpInst::ICMP_UGE,
2381 Builder.CreateAdd(B, Constant::getAllOnesValue(B->getType())), A);
2382 }
2383
2384 if (Value *V = foldAndOrOfICmpsWithConstEq(LHS, RHS, Or, Builder, Q))
2385 return V;
2386 if (Value *V = foldAndOrOfICmpsWithConstEq(RHS, LHS, Or, Builder, Q))
2387 return V;
2388
2389 // E.g. (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
2390 if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/true))
2391 return V;
2392
2393 // E.g. (icmp sgt x, n) | (icmp slt x, 0) --> icmp ugt x, n
2394 if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/true))
2395 return V;
2396
2397 if (Value *V = foldAndOrOfEqualityCmpsWithConstants(LHS, RHS, false, Builder))
2398 return V;
2399
2400 if (Value *V = foldIsPowerOf2(LHS, RHS, false /* JoinedByAnd */, Builder))
2401 return V;
2402
2403 if (Value *X =
2404 foldUnsignedUnderflowCheck(LHS, RHS, /*IsAnd=*/false, Q, Builder))
2405 return X;
2406 if (Value *X =
2407 foldUnsignedUnderflowCheck(RHS, LHS, /*IsAnd=*/false, Q, Builder))
2408 return X;
2409
2410 // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0)
2411 // TODO: Remove this when foldLogOpOfMaskedICmps can handle vectors.
2412 if (PredL == ICmpInst::ICMP_NE && match(LHS1, m_Zero()) &&
2413 PredR == ICmpInst::ICMP_NE && match(RHS1, m_Zero()) &&
2414 LHS0->getType()->isIntOrIntVectorTy() &&
2415 LHS0->getType() == RHS0->getType()) {
2416 Value *NewOr = Builder.CreateOr(LHS0, RHS0);
2417 return Builder.CreateICmp(PredL, NewOr,
2418 Constant::getNullValue(NewOr->getType()));
2419 }
2420
2421 // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
2422 if (!LHSC || !RHSC)
2423 return nullptr;
2424
2425 // (icmp ult (X + CA), C1) | (icmp eq X, C2) -> (icmp ule (X + CA), C1)
2426 // iff C2 + CA == C1.
2427 if (PredL == ICmpInst::ICMP_ULT && PredR == ICmpInst::ICMP_EQ) {
2428 ConstantInt *AddC;
2429 if (match(LHS0, m_Add(m_Specific(RHS0), m_ConstantInt(AddC))))
2430 if (RHSC->getValue() + AddC->getValue() == LHSC->getValue())
2431 return Builder.CreateICmpULE(LHS0, LHSC);
2432 }
2433
2434 // From here on, we only handle:
2435 // (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
2436 if (LHS0 != RHS0)
2437 return nullptr;
2438
2439 // ICMP_[US][GL]E X, C is folded to ICMP_[US][GL]T elsewhere.
2440 if (PredL == ICmpInst::ICMP_UGE || PredL == ICmpInst::ICMP_ULE ||
2441 PredR == ICmpInst::ICMP_UGE || PredR == ICmpInst::ICMP_ULE ||
2442 PredL == ICmpInst::ICMP_SGE || PredL == ICmpInst::ICMP_SLE ||
2443 PredR == ICmpInst::ICMP_SGE || PredR == ICmpInst::ICMP_SLE)
2444 return nullptr;
2445
2446 // We can't fold (ugt x, C) | (sgt x, C2).
2447 if (!predicatesFoldable(PredL, PredR))
2448 return nullptr;
2449
2450 // Ensure that the larger constant is on the RHS.
2451 bool ShouldSwap;
2452 if (CmpInst::isSigned(PredL) ||
2453 (ICmpInst::isEquality(PredL) && CmpInst::isSigned(PredR)))
2454 ShouldSwap = LHSC->getValue().sgt(RHSC->getValue());
2455 else
2456 ShouldSwap = LHSC->getValue().ugt(RHSC->getValue());
2457
2458 if (ShouldSwap) {
2459 std::swap(LHS, RHS);
2460 std::swap(LHSC, RHSC);
2461 std::swap(PredL, PredR);
2462 }
2463
2464 // At this point, we know we have two icmp instructions
2465 // comparing a value against two constants and or'ing the result
2466 // together. Because of the above check, we know that we only have
2467 // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
2468 // icmp folding check above), that the two constants are not
2469 // equal.
2470 assert(LHSC != RHSC && "Compares not folded above?");
2471
2472 switch (PredL) {
2473 default:
2474 llvm_unreachable("Unknown integer condition code!");
2475 case ICmpInst::ICMP_EQ:
2476 switch (PredR) {
2477 default:
2478 llvm_unreachable("Unknown integer condition code!");
2479 case ICmpInst::ICMP_EQ:
2480 // Potential folds for this case should already be handled.
2481 break;
2482 case ICmpInst::ICMP_UGT:
2483 // (X == 0 || X u> C) -> (X-1) u>= C
2484 if (LHSC->isMinValue(false))
2485 return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue() + 1,
2486 false, false);
2487 // (X == 13 | X u> 14) -> no change
2488 break;
2489 case ICmpInst::ICMP_SGT:
2490 // (X == INT_MIN || X s> C) -> (X-(INT_MIN+1)) u>= C-INT_MIN
2491 if (LHSC->isMinValue(true))
2492 return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue() + 1,
2493 true, false);
2494 // (X == 13 | X s> 14) -> no change
2495 break;
2496 }
2497 break;
2498 case ICmpInst::ICMP_ULT:
2499 switch (PredR) {
2500 default:
2501 llvm_unreachable("Unknown integer condition code!");
2502 case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change
2503 // (X u< C || X == UINT_MAX) => (X-C) u>= UINT_MAX-C
2504 if (RHSC->isMaxValue(false))
2505 return insertRangeTest(LHS0, LHSC->getValue(), RHSC->getValue(),
2506 false, false);
2507 break;
2508 case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) -> (X-13) u> 2
2509 assert(!RHSC->isMaxValue(false) && "Missed icmp simplification");
2510 return insertRangeTest(LHS0, LHSC->getValue(), RHSC->getValue() + 1,
2511 false, false);
2512 }
2513 break;
2514 case ICmpInst::ICMP_SLT:
2515 switch (PredR) {
2516 default:
2517 llvm_unreachable("Unknown integer condition code!");
2518 case ICmpInst::ICMP_EQ:
2519 // (X s< C || X == INT_MAX) => (X-C) u>= INT_MAX-C
2520 if (RHSC->isMaxValue(true))
2521 return insertRangeTest(LHS0, LHSC->getValue(), RHSC->getValue(),
2522 true, false);
2523 // (X s< 13 | X == 14) -> no change
2524 break;
2525 case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) -> (X-13) u> 2
2526 assert(!RHSC->isMaxValue(true) && "Missed icmp simplification");
2527 return insertRangeTest(LHS0, LHSC->getValue(), RHSC->getValue() + 1, true,
2528 false);
2529 }
2530 break;
2531 }
2532 return nullptr;
2533 }
2534
2535 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
2536 // here. We should standardize that construct where it is needed or choose some
2537 // other way to ensure that commutated variants of patterns are not missed.
visitOr(BinaryOperator & I)2538 Instruction *InstCombinerImpl::visitOr(BinaryOperator &I) {
2539 if (Value *V = SimplifyOrInst(I.getOperand(0), I.getOperand(1),
2540 SQ.getWithInstruction(&I)))
2541 return replaceInstUsesWith(I, V);
2542
2543 if (SimplifyAssociativeOrCommutative(I))
2544 return &I;
2545
2546 if (Instruction *X = foldVectorBinop(I))
2547 return X;
2548
2549 // See if we can simplify any instructions used by the instruction whose sole
2550 // purpose is to compute bits we don't care about.
2551 if (SimplifyDemandedInstructionBits(I))
2552 return &I;
2553
2554 // Do this before using distributive laws to catch simple and/or/not patterns.
2555 if (Instruction *Xor = foldOrToXor(I, Builder))
2556 return Xor;
2557
2558 // (A&B)|(A&C) -> A&(B|C) etc
2559 if (Value *V = SimplifyUsingDistributiveLaws(I))
2560 return replaceInstUsesWith(I, V);
2561
2562 if (Value *V = SimplifyBSwap(I, Builder))
2563 return replaceInstUsesWith(I, V);
2564
2565 if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
2566 return FoldedLogic;
2567
2568 if (Instruction *BSwap = matchBSwapOrBitReverse(I, /*MatchBSwaps*/ true,
2569 /*MatchBitReversals*/ false))
2570 return BSwap;
2571
2572 if (Instruction *Funnel = matchFunnelShift(I, *this))
2573 return Funnel;
2574
2575 if (Instruction *Concat = matchOrConcat(I, Builder))
2576 return replaceInstUsesWith(I, Concat);
2577
2578 Value *X, *Y;
2579 const APInt *CV;
2580 if (match(&I, m_c_Or(m_OneUse(m_Xor(m_Value(X), m_APInt(CV))), m_Value(Y))) &&
2581 !CV->isAllOnesValue() && MaskedValueIsZero(Y, *CV, 0, &I)) {
2582 // (X ^ C) | Y -> (X | Y) ^ C iff Y & C == 0
2583 // The check for a 'not' op is for efficiency (if Y is known zero --> ~X).
2584 Value *Or = Builder.CreateOr(X, Y);
2585 return BinaryOperator::CreateXor(Or, ConstantInt::get(I.getType(), *CV));
2586 }
2587
2588 // (A & C)|(B & D)
2589 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2590 Value *A, *B, *C, *D;
2591 if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
2592 match(Op1, m_And(m_Value(B), m_Value(D)))) {
2593 // (A & C1)|(B & C2)
2594 ConstantInt *C1, *C2;
2595 if (match(C, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2))) {
2596 Value *V1 = nullptr, *V2 = nullptr;
2597 if ((C1->getValue() & C2->getValue()).isNullValue()) {
2598 // ((V | N) & C1) | (V & C2) --> (V|N) & (C1|C2)
2599 // iff (C1&C2) == 0 and (N&~C1) == 0
2600 if (match(A, m_Or(m_Value(V1), m_Value(V2))) &&
2601 ((V1 == B &&
2602 MaskedValueIsZero(V2, ~C1->getValue(), 0, &I)) || // (V|N)
2603 (V2 == B &&
2604 MaskedValueIsZero(V1, ~C1->getValue(), 0, &I)))) // (N|V)
2605 return BinaryOperator::CreateAnd(A,
2606 Builder.getInt(C1->getValue()|C2->getValue()));
2607 // Or commutes, try both ways.
2608 if (match(B, m_Or(m_Value(V1), m_Value(V2))) &&
2609 ((V1 == A &&
2610 MaskedValueIsZero(V2, ~C2->getValue(), 0, &I)) || // (V|N)
2611 (V2 == A &&
2612 MaskedValueIsZero(V1, ~C2->getValue(), 0, &I)))) // (N|V)
2613 return BinaryOperator::CreateAnd(B,
2614 Builder.getInt(C1->getValue()|C2->getValue()));
2615
2616 // ((V|C3)&C1) | ((V|C4)&C2) --> (V|C3|C4)&(C1|C2)
2617 // iff (C1&C2) == 0 and (C3&~C1) == 0 and (C4&~C2) == 0.
2618 ConstantInt *C3 = nullptr, *C4 = nullptr;
2619 if (match(A, m_Or(m_Value(V1), m_ConstantInt(C3))) &&
2620 (C3->getValue() & ~C1->getValue()).isNullValue() &&
2621 match(B, m_Or(m_Specific(V1), m_ConstantInt(C4))) &&
2622 (C4->getValue() & ~C2->getValue()).isNullValue()) {
2623 V2 = Builder.CreateOr(V1, ConstantExpr::getOr(C3, C4), "bitfield");
2624 return BinaryOperator::CreateAnd(V2,
2625 Builder.getInt(C1->getValue()|C2->getValue()));
2626 }
2627 }
2628
2629 if (C1->getValue() == ~C2->getValue()) {
2630 Value *X;
2631
2632 // ((X|B)&C1)|(B&C2) -> (X&C1) | B iff C1 == ~C2
2633 if (match(A, m_c_Or(m_Value(X), m_Specific(B))))
2634 return BinaryOperator::CreateOr(Builder.CreateAnd(X, C1), B);
2635 // (A&C2)|((X|A)&C1) -> (X&C2) | A iff C1 == ~C2
2636 if (match(B, m_c_Or(m_Specific(A), m_Value(X))))
2637 return BinaryOperator::CreateOr(Builder.CreateAnd(X, C2), A);
2638
2639 // ((X^B)&C1)|(B&C2) -> (X&C1) ^ B iff C1 == ~C2
2640 if (match(A, m_c_Xor(m_Value(X), m_Specific(B))))
2641 return BinaryOperator::CreateXor(Builder.CreateAnd(X, C1), B);
2642 // (A&C2)|((X^A)&C1) -> (X&C2) ^ A iff C1 == ~C2
2643 if (match(B, m_c_Xor(m_Specific(A), m_Value(X))))
2644 return BinaryOperator::CreateXor(Builder.CreateAnd(X, C2), A);
2645 }
2646 }
2647
2648 // Don't try to form a select if it's unlikely that we'll get rid of at
2649 // least one of the operands. A select is generally more expensive than the
2650 // 'or' that it is replacing.
2651 if (Op0->hasOneUse() || Op1->hasOneUse()) {
2652 // (Cond & C) | (~Cond & D) -> Cond ? C : D, and commuted variants.
2653 if (Value *V = matchSelectFromAndOr(A, C, B, D))
2654 return replaceInstUsesWith(I, V);
2655 if (Value *V = matchSelectFromAndOr(A, C, D, B))
2656 return replaceInstUsesWith(I, V);
2657 if (Value *V = matchSelectFromAndOr(C, A, B, D))
2658 return replaceInstUsesWith(I, V);
2659 if (Value *V = matchSelectFromAndOr(C, A, D, B))
2660 return replaceInstUsesWith(I, V);
2661 if (Value *V = matchSelectFromAndOr(B, D, A, C))
2662 return replaceInstUsesWith(I, V);
2663 if (Value *V = matchSelectFromAndOr(B, D, C, A))
2664 return replaceInstUsesWith(I, V);
2665 if (Value *V = matchSelectFromAndOr(D, B, A, C))
2666 return replaceInstUsesWith(I, V);
2667 if (Value *V = matchSelectFromAndOr(D, B, C, A))
2668 return replaceInstUsesWith(I, V);
2669 }
2670 }
2671
2672 // (A ^ B) | ((B ^ C) ^ A) -> (A ^ B) | C
2673 if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
2674 if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A))))
2675 return BinaryOperator::CreateOr(Op0, C);
2676
2677 // ((A ^ C) ^ B) | (B ^ A) -> (B ^ A) | C
2678 if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))))
2679 if (match(Op1, m_Xor(m_Specific(B), m_Specific(A))))
2680 return BinaryOperator::CreateOr(Op1, C);
2681
2682 // ((B | C) & A) | B -> B | (A & C)
2683 if (match(Op0, m_And(m_Or(m_Specific(Op1), m_Value(C)), m_Value(A))))
2684 return BinaryOperator::CreateOr(Op1, Builder.CreateAnd(A, C));
2685
2686 if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder))
2687 return DeMorgan;
2688
2689 // Canonicalize xor to the RHS.
2690 bool SwappedForXor = false;
2691 if (match(Op0, m_Xor(m_Value(), m_Value()))) {
2692 std::swap(Op0, Op1);
2693 SwappedForXor = true;
2694 }
2695
2696 // A | ( A ^ B) -> A | B
2697 // A | (~A ^ B) -> A | ~B
2698 // (A & B) | (A ^ B)
2699 if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
2700 if (Op0 == A || Op0 == B)
2701 return BinaryOperator::CreateOr(A, B);
2702
2703 if (match(Op0, m_And(m_Specific(A), m_Specific(B))) ||
2704 match(Op0, m_And(m_Specific(B), m_Specific(A))))
2705 return BinaryOperator::CreateOr(A, B);
2706
2707 if (Op1->hasOneUse() && match(A, m_Not(m_Specific(Op0)))) {
2708 Value *Not = Builder.CreateNot(B, B->getName() + ".not");
2709 return BinaryOperator::CreateOr(Not, Op0);
2710 }
2711 if (Op1->hasOneUse() && match(B, m_Not(m_Specific(Op0)))) {
2712 Value *Not = Builder.CreateNot(A, A->getName() + ".not");
2713 return BinaryOperator::CreateOr(Not, Op0);
2714 }
2715 }
2716
2717 // A | ~(A | B) -> A | ~B
2718 // A | ~(A ^ B) -> A | ~B
2719 if (match(Op1, m_Not(m_Value(A))))
2720 if (BinaryOperator *B = dyn_cast<BinaryOperator>(A))
2721 if ((Op0 == B->getOperand(0) || Op0 == B->getOperand(1)) &&
2722 Op1->hasOneUse() && (B->getOpcode() == Instruction::Or ||
2723 B->getOpcode() == Instruction::Xor)) {
2724 Value *NotOp = Op0 == B->getOperand(0) ? B->getOperand(1) :
2725 B->getOperand(0);
2726 Value *Not = Builder.CreateNot(NotOp, NotOp->getName() + ".not");
2727 return BinaryOperator::CreateOr(Not, Op0);
2728 }
2729
2730 if (SwappedForXor)
2731 std::swap(Op0, Op1);
2732
2733 {
2734 ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
2735 ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
2736 if (LHS && RHS)
2737 if (Value *Res = foldOrOfICmps(LHS, RHS, I))
2738 return replaceInstUsesWith(I, Res);
2739
2740 // TODO: Make this recursive; it's a little tricky because an arbitrary
2741 // number of 'or' instructions might have to be created.
2742 Value *X, *Y;
2743 if (LHS && match(Op1, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
2744 if (auto *Cmp = dyn_cast<ICmpInst>(X))
2745 if (Value *Res = foldOrOfICmps(LHS, Cmp, I))
2746 return replaceInstUsesWith(I, Builder.CreateOr(Res, Y));
2747 if (auto *Cmp = dyn_cast<ICmpInst>(Y))
2748 if (Value *Res = foldOrOfICmps(LHS, Cmp, I))
2749 return replaceInstUsesWith(I, Builder.CreateOr(Res, X));
2750 }
2751 if (RHS && match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
2752 if (auto *Cmp = dyn_cast<ICmpInst>(X))
2753 if (Value *Res = foldOrOfICmps(Cmp, RHS, I))
2754 return replaceInstUsesWith(I, Builder.CreateOr(Res, Y));
2755 if (auto *Cmp = dyn_cast<ICmpInst>(Y))
2756 if (Value *Res = foldOrOfICmps(Cmp, RHS, I))
2757 return replaceInstUsesWith(I, Builder.CreateOr(Res, X));
2758 }
2759 }
2760
2761 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
2762 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
2763 if (Value *Res = foldLogicOfFCmps(LHS, RHS, false))
2764 return replaceInstUsesWith(I, Res);
2765
2766 if (Instruction *FoldedFCmps = reassociateFCmps(I, Builder))
2767 return FoldedFCmps;
2768
2769 if (Instruction *CastedOr = foldCastedBitwiseLogic(I))
2770 return CastedOr;
2771
2772 // or(sext(A), B) / or(B, sext(A)) --> A ? -1 : B, where A is i1 or <N x i1>.
2773 if (match(Op0, m_OneUse(m_SExt(m_Value(A)))) &&
2774 A->getType()->isIntOrIntVectorTy(1))
2775 return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op1);
2776 if (match(Op1, m_OneUse(m_SExt(m_Value(A)))) &&
2777 A->getType()->isIntOrIntVectorTy(1))
2778 return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op0);
2779
2780 // Note: If we've gotten to the point of visiting the outer OR, then the
2781 // inner one couldn't be simplified. If it was a constant, then it won't
2782 // be simplified by a later pass either, so we try swapping the inner/outer
2783 // ORs in the hopes that we'll be able to simplify it this way.
2784 // (X|C) | V --> (X|V) | C
2785 ConstantInt *CI;
2786 if (Op0->hasOneUse() && !match(Op1, m_ConstantInt()) &&
2787 match(Op0, m_Or(m_Value(A), m_ConstantInt(CI)))) {
2788 Value *Inner = Builder.CreateOr(A, Op1);
2789 Inner->takeName(Op0);
2790 return BinaryOperator::CreateOr(Inner, CI);
2791 }
2792
2793 // Change (or (bool?A:B),(bool?C:D)) --> (bool?(or A,C):(or B,D))
2794 // Since this OR statement hasn't been optimized further yet, we hope
2795 // that this transformation will allow the new ORs to be optimized.
2796 {
2797 Value *X = nullptr, *Y = nullptr;
2798 if (Op0->hasOneUse() && Op1->hasOneUse() &&
2799 match(Op0, m_Select(m_Value(X), m_Value(A), m_Value(B))) &&
2800 match(Op1, m_Select(m_Value(Y), m_Value(C), m_Value(D))) && X == Y) {
2801 Value *orTrue = Builder.CreateOr(A, C);
2802 Value *orFalse = Builder.CreateOr(B, D);
2803 return SelectInst::Create(X, orTrue, orFalse);
2804 }
2805 }
2806
2807 // or(ashr(subNSW(Y, X), ScalarSizeInBits(Y) - 1), X) --> X s> Y ? -1 : X.
2808 {
2809 Value *X, *Y;
2810 Type *Ty = I.getType();
2811 if (match(&I, m_c_Or(m_OneUse(m_AShr(
2812 m_NSWSub(m_Value(Y), m_Value(X)),
2813 m_SpecificInt(Ty->getScalarSizeInBits() - 1))),
2814 m_Deferred(X)))) {
2815 Value *NewICmpInst = Builder.CreateICmpSGT(X, Y);
2816 Value *AllOnes = ConstantInt::getAllOnesValue(Ty);
2817 return SelectInst::Create(NewICmpInst, AllOnes, X);
2818 }
2819 }
2820
2821 if (Instruction *V =
2822 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
2823 return V;
2824
2825 CmpInst::Predicate Pred;
2826 Value *Mul, *Ov, *MulIsNotZero, *UMulWithOv;
2827 // Check if the OR weakens the overflow condition for umul.with.overflow by
2828 // treating any non-zero result as overflow. In that case, we overflow if both
2829 // umul.with.overflow operands are != 0, as in that case the result can only
2830 // be 0, iff the multiplication overflows.
2831 if (match(&I,
2832 m_c_Or(m_CombineAnd(m_ExtractValue<1>(m_Value(UMulWithOv)),
2833 m_Value(Ov)),
2834 m_CombineAnd(m_ICmp(Pred,
2835 m_CombineAnd(m_ExtractValue<0>(
2836 m_Deferred(UMulWithOv)),
2837 m_Value(Mul)),
2838 m_ZeroInt()),
2839 m_Value(MulIsNotZero)))) &&
2840 (Ov->hasOneUse() || (MulIsNotZero->hasOneUse() && Mul->hasOneUse())) &&
2841 Pred == CmpInst::ICMP_NE) {
2842 Value *A, *B;
2843 if (match(UMulWithOv, m_Intrinsic<Intrinsic::umul_with_overflow>(
2844 m_Value(A), m_Value(B)))) {
2845 Value *NotNullA = Builder.CreateIsNotNull(A);
2846 Value *NotNullB = Builder.CreateIsNotNull(B);
2847 return BinaryOperator::CreateAnd(NotNullA, NotNullB);
2848 }
2849 }
2850
2851 return nullptr;
2852 }
2853
2854 /// A ^ B can be specified using other logic ops in a variety of patterns. We
2855 /// can fold these early and efficiently by morphing an existing instruction.
foldXorToXor(BinaryOperator & I,InstCombiner::BuilderTy & Builder)2856 static Instruction *foldXorToXor(BinaryOperator &I,
2857 InstCombiner::BuilderTy &Builder) {
2858 assert(I.getOpcode() == Instruction::Xor);
2859 Value *Op0 = I.getOperand(0);
2860 Value *Op1 = I.getOperand(1);
2861 Value *A, *B;
2862
2863 // There are 4 commuted variants for each of the basic patterns.
2864
2865 // (A & B) ^ (A | B) -> A ^ B
2866 // (A & B) ^ (B | A) -> A ^ B
2867 // (A | B) ^ (A & B) -> A ^ B
2868 // (A | B) ^ (B & A) -> A ^ B
2869 if (match(&I, m_c_Xor(m_And(m_Value(A), m_Value(B)),
2870 m_c_Or(m_Deferred(A), m_Deferred(B)))))
2871 return BinaryOperator::CreateXor(A, B);
2872
2873 // (A | ~B) ^ (~A | B) -> A ^ B
2874 // (~B | A) ^ (~A | B) -> A ^ B
2875 // (~A | B) ^ (A | ~B) -> A ^ B
2876 // (B | ~A) ^ (A | ~B) -> A ^ B
2877 if (match(&I, m_Xor(m_c_Or(m_Value(A), m_Not(m_Value(B))),
2878 m_c_Or(m_Not(m_Deferred(A)), m_Deferred(B)))))
2879 return BinaryOperator::CreateXor(A, B);
2880
2881 // (A & ~B) ^ (~A & B) -> A ^ B
2882 // (~B & A) ^ (~A & B) -> A ^ B
2883 // (~A & B) ^ (A & ~B) -> A ^ B
2884 // (B & ~A) ^ (A & ~B) -> A ^ B
2885 if (match(&I, m_Xor(m_c_And(m_Value(A), m_Not(m_Value(B))),
2886 m_c_And(m_Not(m_Deferred(A)), m_Deferred(B)))))
2887 return BinaryOperator::CreateXor(A, B);
2888
2889 // For the remaining cases we need to get rid of one of the operands.
2890 if (!Op0->hasOneUse() && !Op1->hasOneUse())
2891 return nullptr;
2892
2893 // (A | B) ^ ~(A & B) -> ~(A ^ B)
2894 // (A | B) ^ ~(B & A) -> ~(A ^ B)
2895 // (A & B) ^ ~(A | B) -> ~(A ^ B)
2896 // (A & B) ^ ~(B | A) -> ~(A ^ B)
2897 // Complexity sorting ensures the not will be on the right side.
2898 if ((match(Op0, m_Or(m_Value(A), m_Value(B))) &&
2899 match(Op1, m_Not(m_c_And(m_Specific(A), m_Specific(B))))) ||
2900 (match(Op0, m_And(m_Value(A), m_Value(B))) &&
2901 match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))))
2902 return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
2903
2904 return nullptr;
2905 }
2906
foldXorOfICmps(ICmpInst * LHS,ICmpInst * RHS,BinaryOperator & I)2907 Value *InstCombinerImpl::foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS,
2908 BinaryOperator &I) {
2909 assert(I.getOpcode() == Instruction::Xor && I.getOperand(0) == LHS &&
2910 I.getOperand(1) == RHS && "Should be 'xor' with these operands");
2911
2912 if (predicatesFoldable(LHS->getPredicate(), RHS->getPredicate())) {
2913 if (LHS->getOperand(0) == RHS->getOperand(1) &&
2914 LHS->getOperand(1) == RHS->getOperand(0))
2915 LHS->swapOperands();
2916 if (LHS->getOperand(0) == RHS->getOperand(0) &&
2917 LHS->getOperand(1) == RHS->getOperand(1)) {
2918 // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
2919 Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
2920 unsigned Code = getICmpCode(LHS) ^ getICmpCode(RHS);
2921 bool IsSigned = LHS->isSigned() || RHS->isSigned();
2922 return getNewICmpValue(Code, IsSigned, Op0, Op1, Builder);
2923 }
2924 }
2925
2926 // TODO: This can be generalized to compares of non-signbits using
2927 // decomposeBitTestICmp(). It could be enhanced more by using (something like)
2928 // foldLogOpOfMaskedICmps().
2929 ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
2930 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
2931 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
2932 if ((LHS->hasOneUse() || RHS->hasOneUse()) &&
2933 LHS0->getType() == RHS0->getType() &&
2934 LHS0->getType()->isIntOrIntVectorTy()) {
2935 // (X > -1) ^ (Y > -1) --> (X ^ Y) < 0
2936 // (X < 0) ^ (Y < 0) --> (X ^ Y) < 0
2937 if ((PredL == CmpInst::ICMP_SGT && match(LHS1, m_AllOnes()) &&
2938 PredR == CmpInst::ICMP_SGT && match(RHS1, m_AllOnes())) ||
2939 (PredL == CmpInst::ICMP_SLT && match(LHS1, m_Zero()) &&
2940 PredR == CmpInst::ICMP_SLT && match(RHS1, m_Zero()))) {
2941 Value *Zero = ConstantInt::getNullValue(LHS0->getType());
2942 return Builder.CreateICmpSLT(Builder.CreateXor(LHS0, RHS0), Zero);
2943 }
2944 // (X > -1) ^ (Y < 0) --> (X ^ Y) > -1
2945 // (X < 0) ^ (Y > -1) --> (X ^ Y) > -1
2946 if ((PredL == CmpInst::ICMP_SGT && match(LHS1, m_AllOnes()) &&
2947 PredR == CmpInst::ICMP_SLT && match(RHS1, m_Zero())) ||
2948 (PredL == CmpInst::ICMP_SLT && match(LHS1, m_Zero()) &&
2949 PredR == CmpInst::ICMP_SGT && match(RHS1, m_AllOnes()))) {
2950 Value *MinusOne = ConstantInt::getAllOnesValue(LHS0->getType());
2951 return Builder.CreateICmpSGT(Builder.CreateXor(LHS0, RHS0), MinusOne);
2952 }
2953 }
2954
2955 // Instead of trying to imitate the folds for and/or, decompose this 'xor'
2956 // into those logic ops. That is, try to turn this into an and-of-icmps
2957 // because we have many folds for that pattern.
2958 //
2959 // This is based on a truth table definition of xor:
2960 // X ^ Y --> (X | Y) & !(X & Y)
2961 if (Value *OrICmp = SimplifyBinOp(Instruction::Or, LHS, RHS, SQ)) {
2962 // TODO: If OrICmp is true, then the definition of xor simplifies to !(X&Y).
2963 // TODO: If OrICmp is false, the whole thing is false (InstSimplify?).
2964 if (Value *AndICmp = SimplifyBinOp(Instruction::And, LHS, RHS, SQ)) {
2965 // TODO: Independently handle cases where the 'and' side is a constant.
2966 ICmpInst *X = nullptr, *Y = nullptr;
2967 if (OrICmp == LHS && AndICmp == RHS) {
2968 // (LHS | RHS) & !(LHS & RHS) --> LHS & !RHS --> X & !Y
2969 X = LHS;
2970 Y = RHS;
2971 }
2972 if (OrICmp == RHS && AndICmp == LHS) {
2973 // !(LHS & RHS) & (LHS | RHS) --> !LHS & RHS --> !Y & X
2974 X = RHS;
2975 Y = LHS;
2976 }
2977 if (X && Y && (Y->hasOneUse() || canFreelyInvertAllUsersOf(Y, &I))) {
2978 // Invert the predicate of 'Y', thus inverting its output.
2979 Y->setPredicate(Y->getInversePredicate());
2980 // So, are there other uses of Y?
2981 if (!Y->hasOneUse()) {
2982 // We need to adapt other uses of Y though. Get a value that matches
2983 // the original value of Y before inversion. While this increases
2984 // immediate instruction count, we have just ensured that all the
2985 // users are freely-invertible, so that 'not' *will* get folded away.
2986 BuilderTy::InsertPointGuard Guard(Builder);
2987 // Set insertion point to right after the Y.
2988 Builder.SetInsertPoint(Y->getParent(), ++(Y->getIterator()));
2989 Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
2990 // Replace all uses of Y (excluding the one in NotY!) with NotY.
2991 Worklist.pushUsersToWorkList(*Y);
2992 Y->replaceUsesWithIf(NotY,
2993 [NotY](Use &U) { return U.getUser() != NotY; });
2994 }
2995 // All done.
2996 return Builder.CreateAnd(LHS, RHS);
2997 }
2998 }
2999 }
3000
3001 return nullptr;
3002 }
3003
3004 /// If we have a masked merge, in the canonical form of:
3005 /// (assuming that A only has one use.)
3006 /// | A | |B|
3007 /// ((x ^ y) & M) ^ y
3008 /// | D |
3009 /// * If M is inverted:
3010 /// | D |
3011 /// ((x ^ y) & ~M) ^ y
3012 /// We can canonicalize by swapping the final xor operand
3013 /// to eliminate the 'not' of the mask.
3014 /// ((x ^ y) & M) ^ x
3015 /// * If M is a constant, and D has one use, we transform to 'and' / 'or' ops
3016 /// because that shortens the dependency chain and improves analysis:
3017 /// (x & M) | (y & ~M)
visitMaskedMerge(BinaryOperator & I,InstCombiner::BuilderTy & Builder)3018 static Instruction *visitMaskedMerge(BinaryOperator &I,
3019 InstCombiner::BuilderTy &Builder) {
3020 Value *B, *X, *D;
3021 Value *M;
3022 if (!match(&I, m_c_Xor(m_Value(B),
3023 m_OneUse(m_c_And(
3024 m_CombineAnd(m_c_Xor(m_Deferred(B), m_Value(X)),
3025 m_Value(D)),
3026 m_Value(M))))))
3027 return nullptr;
3028
3029 Value *NotM;
3030 if (match(M, m_Not(m_Value(NotM)))) {
3031 // De-invert the mask and swap the value in B part.
3032 Value *NewA = Builder.CreateAnd(D, NotM);
3033 return BinaryOperator::CreateXor(NewA, X);
3034 }
3035
3036 Constant *C;
3037 if (D->hasOneUse() && match(M, m_Constant(C))) {
3038 // Propagating undef is unsafe. Clamp undef elements to -1.
3039 Type *EltTy = C->getType()->getScalarType();
3040 C = Constant::replaceUndefsWith(C, ConstantInt::getAllOnesValue(EltTy));
3041 // Unfold.
3042 Value *LHS = Builder.CreateAnd(X, C);
3043 Value *NotC = Builder.CreateNot(C);
3044 Value *RHS = Builder.CreateAnd(B, NotC);
3045 return BinaryOperator::CreateOr(LHS, RHS);
3046 }
3047
3048 return nullptr;
3049 }
3050
3051 // Transform
3052 // ~(x ^ y)
3053 // into:
3054 // (~x) ^ y
3055 // or into
3056 // x ^ (~y)
sinkNotIntoXor(BinaryOperator & I,InstCombiner::BuilderTy & Builder)3057 static Instruction *sinkNotIntoXor(BinaryOperator &I,
3058 InstCombiner::BuilderTy &Builder) {
3059 Value *X, *Y;
3060 // FIXME: one-use check is not needed in general, but currently we are unable
3061 // to fold 'not' into 'icmp', if that 'icmp' has multiple uses. (D35182)
3062 if (!match(&I, m_Not(m_OneUse(m_Xor(m_Value(X), m_Value(Y))))))
3063 return nullptr;
3064
3065 // We only want to do the transform if it is free to do.
3066 if (InstCombiner::isFreeToInvert(X, X->hasOneUse())) {
3067 // Ok, good.
3068 } else if (InstCombiner::isFreeToInvert(Y, Y->hasOneUse())) {
3069 std::swap(X, Y);
3070 } else
3071 return nullptr;
3072
3073 Value *NotX = Builder.CreateNot(X, X->getName() + ".not");
3074 return BinaryOperator::CreateXor(NotX, Y, I.getName() + ".demorgan");
3075 }
3076
3077 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
3078 // here. We should standardize that construct where it is needed or choose some
3079 // other way to ensure that commutated variants of patterns are not missed.
visitXor(BinaryOperator & I)3080 Instruction *InstCombinerImpl::visitXor(BinaryOperator &I) {
3081 if (Value *V = SimplifyXorInst(I.getOperand(0), I.getOperand(1),
3082 SQ.getWithInstruction(&I)))
3083 return replaceInstUsesWith(I, V);
3084
3085 if (SimplifyAssociativeOrCommutative(I))
3086 return &I;
3087
3088 if (Instruction *X = foldVectorBinop(I))
3089 return X;
3090
3091 if (Instruction *NewXor = foldXorToXor(I, Builder))
3092 return NewXor;
3093
3094 // (A&B)^(A&C) -> A&(B^C) etc
3095 if (Value *V = SimplifyUsingDistributiveLaws(I))
3096 return replaceInstUsesWith(I, V);
3097
3098 // See if we can simplify any instructions used by the instruction whose sole
3099 // purpose is to compute bits we don't care about.
3100 if (SimplifyDemandedInstructionBits(I))
3101 return &I;
3102
3103 if (Value *V = SimplifyBSwap(I, Builder))
3104 return replaceInstUsesWith(I, V);
3105
3106 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3107 Type *Ty = I.getType();
3108
3109 // Fold (X & M) ^ (Y & ~M) -> (X & M) | (Y & ~M)
3110 // This it a special case in haveNoCommonBitsSet, but the computeKnownBits
3111 // calls in there are unnecessary as SimplifyDemandedInstructionBits should
3112 // have already taken care of those cases.
3113 Value *M;
3114 if (match(&I, m_c_Xor(m_c_And(m_Not(m_Value(M)), m_Value()),
3115 m_c_And(m_Deferred(M), m_Value()))))
3116 return BinaryOperator::CreateOr(Op0, Op1);
3117
3118 // Apply DeMorgan's Law for 'nand' / 'nor' logic with an inverted operand.
3119 Value *X, *Y;
3120
3121 // We must eliminate the and/or (one-use) for these transforms to not increase
3122 // the instruction count.
3123 // ~(~X & Y) --> (X | ~Y)
3124 // ~(Y & ~X) --> (X | ~Y)
3125 if (match(&I, m_Not(m_OneUse(m_c_And(m_Not(m_Value(X)), m_Value(Y)))))) {
3126 Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
3127 return BinaryOperator::CreateOr(X, NotY);
3128 }
3129 // ~(~X | Y) --> (X & ~Y)
3130 // ~(Y | ~X) --> (X & ~Y)
3131 if (match(&I, m_Not(m_OneUse(m_c_Or(m_Not(m_Value(X)), m_Value(Y)))))) {
3132 Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
3133 return BinaryOperator::CreateAnd(X, NotY);
3134 }
3135
3136 if (Instruction *Xor = visitMaskedMerge(I, Builder))
3137 return Xor;
3138
3139 // Is this a 'not' (~) fed by a binary operator?
3140 BinaryOperator *NotVal;
3141 if (match(&I, m_Not(m_BinOp(NotVal)))) {
3142 if (NotVal->getOpcode() == Instruction::And ||
3143 NotVal->getOpcode() == Instruction::Or) {
3144 // Apply DeMorgan's Law when inverts are free:
3145 // ~(X & Y) --> (~X | ~Y)
3146 // ~(X | Y) --> (~X & ~Y)
3147 if (isFreeToInvert(NotVal->getOperand(0),
3148 NotVal->getOperand(0)->hasOneUse()) &&
3149 isFreeToInvert(NotVal->getOperand(1),
3150 NotVal->getOperand(1)->hasOneUse())) {
3151 Value *NotX = Builder.CreateNot(NotVal->getOperand(0), "notlhs");
3152 Value *NotY = Builder.CreateNot(NotVal->getOperand(1), "notrhs");
3153 if (NotVal->getOpcode() == Instruction::And)
3154 return BinaryOperator::CreateOr(NotX, NotY);
3155 return BinaryOperator::CreateAnd(NotX, NotY);
3156 }
3157 }
3158
3159 // ~(X - Y) --> ~X + Y
3160 if (match(NotVal, m_Sub(m_Value(X), m_Value(Y))))
3161 if (isa<Constant>(X) || NotVal->hasOneUse())
3162 return BinaryOperator::CreateAdd(Builder.CreateNot(X), Y);
3163
3164 // ~(~X >>s Y) --> (X >>s Y)
3165 if (match(NotVal, m_AShr(m_Not(m_Value(X)), m_Value(Y))))
3166 return BinaryOperator::CreateAShr(X, Y);
3167
3168 // If we are inverting a right-shifted constant, we may be able to eliminate
3169 // the 'not' by inverting the constant and using the opposite shift type.
3170 // Canonicalization rules ensure that only a negative constant uses 'ashr',
3171 // but we must check that in case that transform has not fired yet.
3172
3173 // ~(C >>s Y) --> ~C >>u Y (when inverting the replicated sign bits)
3174 Constant *C;
3175 if (match(NotVal, m_AShr(m_Constant(C), m_Value(Y))) &&
3176 match(C, m_Negative())) {
3177 // We matched a negative constant, so propagating undef is unsafe.
3178 // Clamp undef elements to -1.
3179 Type *EltTy = Ty->getScalarType();
3180 C = Constant::replaceUndefsWith(C, ConstantInt::getAllOnesValue(EltTy));
3181 return BinaryOperator::CreateLShr(ConstantExpr::getNot(C), Y);
3182 }
3183
3184 // ~(C >>u Y) --> ~C >>s Y (when inverting the replicated sign bits)
3185 if (match(NotVal, m_LShr(m_Constant(C), m_Value(Y))) &&
3186 match(C, m_NonNegative())) {
3187 // We matched a non-negative constant, so propagating undef is unsafe.
3188 // Clamp undef elements to 0.
3189 Type *EltTy = Ty->getScalarType();
3190 C = Constant::replaceUndefsWith(C, ConstantInt::getNullValue(EltTy));
3191 return BinaryOperator::CreateAShr(ConstantExpr::getNot(C), Y);
3192 }
3193
3194 // ~(X + C) --> -(C + 1) - X
3195 if (match(Op0, m_Add(m_Value(X), m_Constant(C))))
3196 return BinaryOperator::CreateSub(ConstantExpr::getNeg(AddOne(C)), X);
3197
3198 // ~(~X + Y) --> X - Y
3199 if (match(NotVal, m_c_Add(m_Not(m_Value(X)), m_Value(Y))))
3200 return BinaryOperator::CreateWithCopiedFlags(Instruction::Sub, X, Y,
3201 NotVal);
3202 }
3203
3204 // Use DeMorgan and reassociation to eliminate a 'not' op.
3205 Constant *C1;
3206 if (match(Op1, m_Constant(C1))) {
3207 Constant *C2;
3208 if (match(Op0, m_OneUse(m_Or(m_Not(m_Value(X)), m_Constant(C2))))) {
3209 // (~X | C2) ^ C1 --> ((X & ~C2) ^ -1) ^ C1 --> (X & ~C2) ^ ~C1
3210 Value *And = Builder.CreateAnd(X, ConstantExpr::getNot(C2));
3211 return BinaryOperator::CreateXor(And, ConstantExpr::getNot(C1));
3212 }
3213 if (match(Op0, m_OneUse(m_And(m_Not(m_Value(X)), m_Constant(C2))))) {
3214 // (~X & C2) ^ C1 --> ((X | ~C2) ^ -1) ^ C1 --> (X | ~C2) ^ ~C1
3215 Value *Or = Builder.CreateOr(X, ConstantExpr::getNot(C2));
3216 return BinaryOperator::CreateXor(Or, ConstantExpr::getNot(C1));
3217 }
3218 }
3219
3220 // not (cmp A, B) = !cmp A, B
3221 CmpInst::Predicate Pred;
3222 if (match(&I, m_Not(m_OneUse(m_Cmp(Pred, m_Value(), m_Value()))))) {
3223 cast<CmpInst>(Op0)->setPredicate(CmpInst::getInversePredicate(Pred));
3224 return replaceInstUsesWith(I, Op0);
3225 }
3226
3227 {
3228 const APInt *RHSC;
3229 if (match(Op1, m_APInt(RHSC))) {
3230 Value *X;
3231 const APInt *C;
3232 // (C - X) ^ signmaskC --> (C + signmaskC) - X
3233 if (RHSC->isSignMask() && match(Op0, m_Sub(m_APInt(C), m_Value(X))))
3234 return BinaryOperator::CreateSub(ConstantInt::get(Ty, *C + *RHSC), X);
3235
3236 // (X + C) ^ signmaskC --> X + (C + signmaskC)
3237 if (RHSC->isSignMask() && match(Op0, m_Add(m_Value(X), m_APInt(C))))
3238 return BinaryOperator::CreateAdd(X, ConstantInt::get(Ty, *C + *RHSC));
3239
3240 // (X | C) ^ RHSC --> X ^ (C ^ RHSC) iff X & C == 0
3241 if (match(Op0, m_Or(m_Value(X), m_APInt(C))) &&
3242 MaskedValueIsZero(X, *C, 0, &I))
3243 return BinaryOperator::CreateXor(X, ConstantInt::get(Ty, *C ^ *RHSC));
3244
3245 // If RHSC is inverting the remaining bits of shifted X,
3246 // canonicalize to a 'not' before the shift to help SCEV and codegen:
3247 // (X << C) ^ RHSC --> ~X << C
3248 if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_APInt(C)))) &&
3249 *RHSC == APInt::getAllOnesValue(Ty->getScalarSizeInBits()).shl(*C)) {
3250 Value *NotX = Builder.CreateNot(X);
3251 return BinaryOperator::CreateShl(NotX, ConstantInt::get(Ty, *C));
3252 }
3253 // (X >>u C) ^ RHSC --> ~X >>u C
3254 if (match(Op0, m_OneUse(m_LShr(m_Value(X), m_APInt(C)))) &&
3255 *RHSC == APInt::getAllOnesValue(Ty->getScalarSizeInBits()).lshr(*C)) {
3256 Value *NotX = Builder.CreateNot(X);
3257 return BinaryOperator::CreateLShr(NotX, ConstantInt::get(Ty, *C));
3258 }
3259 // TODO: We could handle 'ashr' here as well. That would be matching
3260 // a 'not' op and moving it before the shift. Doing that requires
3261 // preventing the inverse fold in canShiftBinOpWithConstantRHS().
3262 }
3263 }
3264
3265 // FIXME: This should not be limited to scalar (pull into APInt match above).
3266 {
3267 Value *X;
3268 ConstantInt *C1, *C2, *C3;
3269 // ((X^C1) >> C2) ^ C3 -> (X>>C2) ^ ((C1>>C2)^C3)
3270 if (match(Op1, m_ConstantInt(C3)) &&
3271 match(Op0, m_LShr(m_Xor(m_Value(X), m_ConstantInt(C1)),
3272 m_ConstantInt(C2))) &&
3273 Op0->hasOneUse()) {
3274 // fold (C1 >> C2) ^ C3
3275 APInt FoldConst = C1->getValue().lshr(C2->getValue());
3276 FoldConst ^= C3->getValue();
3277 // Prepare the two operands.
3278 auto *Opnd0 = cast<Instruction>(Builder.CreateLShr(X, C2));
3279 Opnd0->takeName(cast<Instruction>(Op0));
3280 Opnd0->setDebugLoc(I.getDebugLoc());
3281 return BinaryOperator::CreateXor(Opnd0, ConstantInt::get(Ty, FoldConst));
3282 }
3283 }
3284
3285 if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
3286 return FoldedLogic;
3287
3288 // Y ^ (X | Y) --> X & ~Y
3289 // Y ^ (Y | X) --> X & ~Y
3290 if (match(Op1, m_OneUse(m_c_Or(m_Value(X), m_Specific(Op0)))))
3291 return BinaryOperator::CreateAnd(X, Builder.CreateNot(Op0));
3292 // (X | Y) ^ Y --> X & ~Y
3293 // (Y | X) ^ Y --> X & ~Y
3294 if (match(Op0, m_OneUse(m_c_Or(m_Value(X), m_Specific(Op1)))))
3295 return BinaryOperator::CreateAnd(X, Builder.CreateNot(Op1));
3296
3297 // Y ^ (X & Y) --> ~X & Y
3298 // Y ^ (Y & X) --> ~X & Y
3299 if (match(Op1, m_OneUse(m_c_And(m_Value(X), m_Specific(Op0)))))
3300 return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(X));
3301 // (X & Y) ^ Y --> ~X & Y
3302 // (Y & X) ^ Y --> ~X & Y
3303 // Canonical form is (X & C) ^ C; don't touch that.
3304 // TODO: A 'not' op is better for analysis and codegen, but demanded bits must
3305 // be fixed to prefer that (otherwise we get infinite looping).
3306 if (!match(Op1, m_Constant()) &&
3307 match(Op0, m_OneUse(m_c_And(m_Value(X), m_Specific(Op1)))))
3308 return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(X));
3309
3310 Value *A, *B, *C;
3311 // (A ^ B) ^ (A | C) --> (~A & C) ^ B -- There are 4 commuted variants.
3312 if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_Value(A), m_Value(B))),
3313 m_OneUse(m_c_Or(m_Deferred(A), m_Value(C))))))
3314 return BinaryOperator::CreateXor(
3315 Builder.CreateAnd(Builder.CreateNot(A), C), B);
3316
3317 // (A ^ B) ^ (B | C) --> (~B & C) ^ A -- There are 4 commuted variants.
3318 if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_Value(A), m_Value(B))),
3319 m_OneUse(m_c_Or(m_Deferred(B), m_Value(C))))))
3320 return BinaryOperator::CreateXor(
3321 Builder.CreateAnd(Builder.CreateNot(B), C), A);
3322
3323 // (A & B) ^ (A ^ B) -> (A | B)
3324 if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
3325 match(Op1, m_c_Xor(m_Specific(A), m_Specific(B))))
3326 return BinaryOperator::CreateOr(A, B);
3327 // (A ^ B) ^ (A & B) -> (A | B)
3328 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
3329 match(Op1, m_c_And(m_Specific(A), m_Specific(B))))
3330 return BinaryOperator::CreateOr(A, B);
3331
3332 // (A & ~B) ^ ~A -> ~(A & B)
3333 // (~B & A) ^ ~A -> ~(A & B)
3334 if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
3335 match(Op1, m_Not(m_Specific(A))))
3336 return BinaryOperator::CreateNot(Builder.CreateAnd(A, B));
3337
3338 // (~A & B) ^ A --> A | B -- There are 4 commuted variants.
3339 if (match(&I, m_c_Xor(m_c_And(m_Not(m_Value(A)), m_Value(B)), m_Deferred(A))))
3340 return BinaryOperator::CreateOr(A, B);
3341
3342 // (A | B) ^ (A | C) --> (B ^ C) & ~A -- There are 4 commuted variants.
3343 // TODO: Loosen one-use restriction if common operand is a constant.
3344 Value *D;
3345 if (match(Op0, m_OneUse(m_Or(m_Value(A), m_Value(B)))) &&
3346 match(Op1, m_OneUse(m_Or(m_Value(C), m_Value(D))))) {
3347 if (B == C || B == D)
3348 std::swap(A, B);
3349 if (A == C)
3350 std::swap(C, D);
3351 if (A == D) {
3352 Value *NotA = Builder.CreateNot(A);
3353 return BinaryOperator::CreateAnd(Builder.CreateXor(B, C), NotA);
3354 }
3355 }
3356
3357 if (auto *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
3358 if (auto *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
3359 if (Value *V = foldXorOfICmps(LHS, RHS, I))
3360 return replaceInstUsesWith(I, V);
3361
3362 if (Instruction *CastedXor = foldCastedBitwiseLogic(I))
3363 return CastedXor;
3364
3365 // Canonicalize a shifty way to code absolute value to the common pattern.
3366 // There are 4 potential commuted variants. Move the 'ashr' candidate to Op1.
3367 // We're relying on the fact that we only do this transform when the shift has
3368 // exactly 2 uses and the add has exactly 1 use (otherwise, we might increase
3369 // instructions).
3370 if (Op0->hasNUses(2))
3371 std::swap(Op0, Op1);
3372
3373 const APInt *ShAmt;
3374 if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) &&
3375 Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 &&
3376 match(Op0, m_OneUse(m_c_Add(m_Specific(A), m_Specific(Op1))))) {
3377 // B = ashr i32 A, 31 ; smear the sign bit
3378 // xor (add A, B), B ; add -1 and flip bits if negative
3379 // --> (A < 0) ? -A : A
3380 Value *Cmp = Builder.CreateICmpSLT(A, ConstantInt::getNullValue(Ty));
3381 // Copy the nuw/nsw flags from the add to the negate.
3382 auto *Add = cast<BinaryOperator>(Op0);
3383 Value *Neg = Builder.CreateNeg(A, "", Add->hasNoUnsignedWrap(),
3384 Add->hasNoSignedWrap());
3385 return SelectInst::Create(Cmp, Neg, A);
3386 }
3387
3388 // Eliminate a bitwise 'not' op of 'not' min/max by inverting the min/max:
3389 //
3390 // %notx = xor i32 %x, -1
3391 // %cmp1 = icmp sgt i32 %notx, %y
3392 // %smax = select i1 %cmp1, i32 %notx, i32 %y
3393 // %res = xor i32 %smax, -1
3394 // =>
3395 // %noty = xor i32 %y, -1
3396 // %cmp2 = icmp slt %x, %noty
3397 // %res = select i1 %cmp2, i32 %x, i32 %noty
3398 //
3399 // Same is applicable for smin/umax/umin.
3400 if (match(Op1, m_AllOnes()) && Op0->hasOneUse()) {
3401 Value *LHS, *RHS;
3402 SelectPatternFlavor SPF = matchSelectPattern(Op0, LHS, RHS).Flavor;
3403 if (SelectPatternResult::isMinOrMax(SPF)) {
3404 // It's possible we get here before the not has been simplified, so make
3405 // sure the input to the not isn't freely invertible.
3406 if (match(LHS, m_Not(m_Value(X))) && !isFreeToInvert(X, X->hasOneUse())) {
3407 Value *NotY = Builder.CreateNot(RHS);
3408 return SelectInst::Create(
3409 Builder.CreateICmp(getInverseMinMaxPred(SPF), X, NotY), X, NotY);
3410 }
3411
3412 // It's possible we get here before the not has been simplified, so make
3413 // sure the input to the not isn't freely invertible.
3414 if (match(RHS, m_Not(m_Value(Y))) && !isFreeToInvert(Y, Y->hasOneUse())) {
3415 Value *NotX = Builder.CreateNot(LHS);
3416 return SelectInst::Create(
3417 Builder.CreateICmp(getInverseMinMaxPred(SPF), NotX, Y), NotX, Y);
3418 }
3419
3420 // If both sides are freely invertible, then we can get rid of the xor
3421 // completely.
3422 if (isFreeToInvert(LHS, !LHS->hasNUsesOrMore(3)) &&
3423 isFreeToInvert(RHS, !RHS->hasNUsesOrMore(3))) {
3424 Value *NotLHS = Builder.CreateNot(LHS);
3425 Value *NotRHS = Builder.CreateNot(RHS);
3426 return SelectInst::Create(
3427 Builder.CreateICmp(getInverseMinMaxPred(SPF), NotLHS, NotRHS),
3428 NotLHS, NotRHS);
3429 }
3430 }
3431
3432 // Pull 'not' into operands of select if both operands are one-use compares.
3433 // Inverting the predicates eliminates the 'not' operation.
3434 // Example:
3435 // not (select ?, (cmp TPred, ?, ?), (cmp FPred, ?, ?) -->
3436 // select ?, (cmp InvTPred, ?, ?), (cmp InvFPred, ?, ?)
3437 // TODO: Canonicalize by hoisting 'not' into an arm of the select if only
3438 // 1 select operand is a cmp?
3439 if (auto *Sel = dyn_cast<SelectInst>(Op0)) {
3440 auto *CmpT = dyn_cast<CmpInst>(Sel->getTrueValue());
3441 auto *CmpF = dyn_cast<CmpInst>(Sel->getFalseValue());
3442 if (CmpT && CmpF && CmpT->hasOneUse() && CmpF->hasOneUse()) {
3443 CmpT->setPredicate(CmpT->getInversePredicate());
3444 CmpF->setPredicate(CmpF->getInversePredicate());
3445 return replaceInstUsesWith(I, Sel);
3446 }
3447 }
3448 }
3449
3450 if (Instruction *NewXor = sinkNotIntoXor(I, Builder))
3451 return NewXor;
3452
3453 return nullptr;
3454 }
3455