• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #if defined(EIGEN_USE_GPU) && !defined(EIGEN_CXX11_TENSOR_TENSOR_DEVICE_CUDA_H)
11 #define EIGEN_CXX11_TENSOR_TENSOR_DEVICE_CUDA_H
12 
13 namespace Eigen {
14 
15 static const int kCudaScratchSize = 1024;
16 
17 // This defines an interface that GPUDevice can take to use
18 // CUDA streams underneath.
19 class StreamInterface {
20  public:
~StreamInterface()21   virtual ~StreamInterface() {}
22 
23   virtual const cudaStream_t& stream() const = 0;
24   virtual const cudaDeviceProp& deviceProperties() const = 0;
25 
26   // Allocate memory on the actual device where the computation will run
27   virtual void* allocate(size_t num_bytes) const = 0;
28   virtual void deallocate(void* buffer) const = 0;
29 
30   // Return a scratchpad buffer of size 1k
31   virtual void* scratchpad() const = 0;
32 
33   // Return a semaphore. The semaphore is initially initialized to 0, and
34   // each kernel using it is responsible for resetting to 0 upon completion
35   // to maintain the invariant that the semaphore is always equal to 0 upon
36   // each kernel start.
37   virtual unsigned int* semaphore() const = 0;
38 };
39 
40 static cudaDeviceProp* m_deviceProperties;
41 static bool m_devicePropInitialized = false;
42 
initializeDeviceProp()43 static void initializeDeviceProp() {
44   if (!m_devicePropInitialized) {
45     // Attempts to ensure proper behavior in the case of multiple threads
46     // calling this function simultaneously. This would be trivial to
47     // implement if we could use std::mutex, but unfortunately mutex don't
48     // compile with nvcc, so we resort to atomics and thread fences instead.
49     // Note that if the caller uses a compiler that doesn't support c++11 we
50     // can't ensure that the initialization is thread safe.
51 #if __cplusplus >= 201103L
52     static std::atomic<bool> first(true);
53     if (first.exchange(false)) {
54 #else
55     static bool first = true;
56     if (first) {
57       first = false;
58 #endif
59       // We're the first thread to reach this point.
60       int num_devices;
61       cudaError_t status = cudaGetDeviceCount(&num_devices);
62       if (status != cudaSuccess) {
63         std::cerr << "Failed to get the number of CUDA devices: "
64                   << cudaGetErrorString(status)
65                   << std::endl;
66         assert(status == cudaSuccess);
67       }
68       m_deviceProperties = new cudaDeviceProp[num_devices];
69       for (int i = 0; i < num_devices; ++i) {
70         status = cudaGetDeviceProperties(&m_deviceProperties[i], i);
71         if (status != cudaSuccess) {
72           std::cerr << "Failed to initialize CUDA device #"
73                     << i
74                     << ": "
75                     << cudaGetErrorString(status)
76                     << std::endl;
77           assert(status == cudaSuccess);
78         }
79       }
80 
81 #if __cplusplus >= 201103L
82       std::atomic_thread_fence(std::memory_order_release);
83 #endif
84       m_devicePropInitialized = true;
85     } else {
86       // Wait for the other thread to inititialize the properties.
87       while (!m_devicePropInitialized) {
88 #if __cplusplus >= 201103L
89         std::atomic_thread_fence(std::memory_order_acquire);
90 #endif
91         sleep(1);
92       }
93     }
94   }
95 }
96 
97 static const cudaStream_t default_stream = cudaStreamDefault;
98 
99 class CudaStreamDevice : public StreamInterface {
100  public:
101   // Use the default stream on the current device
102   CudaStreamDevice() : stream_(&default_stream), scratch_(NULL), semaphore_(NULL) {
103     cudaGetDevice(&device_);
104     initializeDeviceProp();
105   }
106   // Use the default stream on the specified device
107   CudaStreamDevice(int device) : stream_(&default_stream), device_(device), scratch_(NULL), semaphore_(NULL) {
108     initializeDeviceProp();
109   }
110   // Use the specified stream. Note that it's the
111   // caller responsibility to ensure that the stream can run on
112   // the specified device. If no device is specified the code
113   // assumes that the stream is associated to the current gpu device.
114   CudaStreamDevice(const cudaStream_t* stream, int device = -1)
115       : stream_(stream), device_(device), scratch_(NULL), semaphore_(NULL) {
116     if (device < 0) {
117       cudaGetDevice(&device_);
118     } else {
119       int num_devices;
120       cudaError_t err = cudaGetDeviceCount(&num_devices);
121       EIGEN_UNUSED_VARIABLE(err)
122       assert(err == cudaSuccess);
123       assert(device < num_devices);
124       device_ = device;
125     }
126     initializeDeviceProp();
127   }
128 
129   virtual ~CudaStreamDevice() {
130     if (scratch_) {
131       deallocate(scratch_);
132     }
133   }
134 
135   const cudaStream_t& stream() const { return *stream_; }
136   const cudaDeviceProp& deviceProperties() const {
137     return m_deviceProperties[device_];
138   }
139   virtual void* allocate(size_t num_bytes) const {
140     cudaError_t err = cudaSetDevice(device_);
141     EIGEN_UNUSED_VARIABLE(err)
142     assert(err == cudaSuccess);
143     void* result;
144     err = cudaMalloc(&result, num_bytes);
145     assert(err == cudaSuccess);
146     assert(result != NULL);
147     return result;
148   }
149   virtual void deallocate(void* buffer) const {
150     cudaError_t err = cudaSetDevice(device_);
151     EIGEN_UNUSED_VARIABLE(err)
152     assert(err == cudaSuccess);
153     assert(buffer != NULL);
154     err = cudaFree(buffer);
155     assert(err == cudaSuccess);
156   }
157 
158   virtual void* scratchpad() const {
159     if (scratch_ == NULL) {
160       scratch_ = allocate(kCudaScratchSize + sizeof(unsigned int));
161     }
162     return scratch_;
163   }
164 
165   virtual unsigned int* semaphore() const {
166     if (semaphore_ == NULL) {
167       char* scratch = static_cast<char*>(scratchpad()) + kCudaScratchSize;
168       semaphore_ = reinterpret_cast<unsigned int*>(scratch);
169       cudaError_t err = cudaMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_);
170       EIGEN_UNUSED_VARIABLE(err)
171       assert(err == cudaSuccess);
172     }
173     return semaphore_;
174   }
175 
176  private:
177   const cudaStream_t* stream_;
178   int device_;
179   mutable void* scratch_;
180   mutable unsigned int* semaphore_;
181 };
182 
183 struct GpuDevice {
184   // The StreamInterface is not owned: the caller is
185   // responsible for its initialization and eventual destruction.
186   explicit GpuDevice(const StreamInterface* stream) : stream_(stream), max_blocks_(INT_MAX) {
187     eigen_assert(stream);
188   }
189   explicit GpuDevice(const StreamInterface* stream, int num_blocks) : stream_(stream), max_blocks_(num_blocks) {
190     eigen_assert(stream);
191   }
192   // TODO(bsteiner): This is an internal API, we should not expose it.
193   EIGEN_STRONG_INLINE const cudaStream_t& stream() const {
194     return stream_->stream();
195   }
196 
197   EIGEN_STRONG_INLINE void* allocate(size_t num_bytes) const {
198     return stream_->allocate(num_bytes);
199   }
200 
201   EIGEN_STRONG_INLINE void deallocate(void* buffer) const {
202     stream_->deallocate(buffer);
203   }
204 
205   EIGEN_STRONG_INLINE void* scratchpad() const {
206     return stream_->scratchpad();
207   }
208 
209   EIGEN_STRONG_INLINE unsigned int* semaphore() const {
210     return stream_->semaphore();
211   }
212 
213   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memcpy(void* dst, const void* src, size_t n) const {
214 #ifndef __CUDA_ARCH__
215     cudaError_t err = cudaMemcpyAsync(dst, src, n, cudaMemcpyDeviceToDevice,
216                                       stream_->stream());
217     EIGEN_UNUSED_VARIABLE(err)
218     assert(err == cudaSuccess);
219 #else
220   eigen_assert(false && "The default device should be used instead to generate kernel code");
221 #endif
222   }
223 
224   EIGEN_STRONG_INLINE void memcpyHostToDevice(void* dst, const void* src, size_t n) const {
225     cudaError_t err =
226         cudaMemcpyAsync(dst, src, n, cudaMemcpyHostToDevice, stream_->stream());
227     EIGEN_UNUSED_VARIABLE(err)
228     assert(err == cudaSuccess);
229   }
230 
231   EIGEN_STRONG_INLINE void memcpyDeviceToHost(void* dst, const void* src, size_t n) const {
232     cudaError_t err =
233         cudaMemcpyAsync(dst, src, n, cudaMemcpyDeviceToHost, stream_->stream());
234     EIGEN_UNUSED_VARIABLE(err)
235     assert(err == cudaSuccess);
236   }
237 
238   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memset(void* buffer, int c, size_t n) const {
239 #ifndef __CUDA_ARCH__
240     cudaError_t err = cudaMemsetAsync(buffer, c, n, stream_->stream());
241     EIGEN_UNUSED_VARIABLE(err)
242     assert(err == cudaSuccess);
243 #else
244   eigen_assert(false && "The default device should be used instead to generate kernel code");
245 #endif
246   }
247 
248   EIGEN_STRONG_INLINE size_t numThreads() const {
249     // FIXME
250     return 32;
251   }
252 
253   EIGEN_STRONG_INLINE size_t firstLevelCacheSize() const {
254     // FIXME
255     return 48*1024;
256   }
257 
258   EIGEN_STRONG_INLINE size_t lastLevelCacheSize() const {
259     // We won't try to take advantage of the l2 cache for the time being, and
260     // there is no l3 cache on cuda devices.
261     return firstLevelCacheSize();
262   }
263 
264   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void synchronize() const {
265 #if defined(__CUDACC__) && !defined(__CUDA_ARCH__)
266     cudaError_t err = cudaStreamSynchronize(stream_->stream());
267     if (err != cudaSuccess) {
268       std::cerr << "Error detected in CUDA stream: "
269                 << cudaGetErrorString(err)
270                 << std::endl;
271       assert(err == cudaSuccess);
272     }
273 #else
274     assert(false && "The default device should be used instead to generate kernel code");
275 #endif
276   }
277 
278   EIGEN_STRONG_INLINE int getNumCudaMultiProcessors() const {
279     return stream_->deviceProperties().multiProcessorCount;
280   }
281   EIGEN_STRONG_INLINE int maxCudaThreadsPerBlock() const {
282     return stream_->deviceProperties().maxThreadsPerBlock;
283   }
284   EIGEN_STRONG_INLINE int maxCudaThreadsPerMultiProcessor() const {
285     return stream_->deviceProperties().maxThreadsPerMultiProcessor;
286   }
287   EIGEN_STRONG_INLINE int sharedMemPerBlock() const {
288     return stream_->deviceProperties().sharedMemPerBlock;
289   }
290   EIGEN_STRONG_INLINE int majorDeviceVersion() const {
291     return stream_->deviceProperties().major;
292   }
293   EIGEN_STRONG_INLINE int minorDeviceVersion() const {
294     return stream_->deviceProperties().minor;
295   }
296 
297   EIGEN_STRONG_INLINE int maxBlocks() const {
298     return max_blocks_;
299   }
300 
301   // This function checks if the CUDA runtime recorded an error for the
302   // underlying stream device.
303   inline bool ok() const {
304 #ifdef __CUDACC__
305     cudaError_t error = cudaStreamQuery(stream_->stream());
306     return (error == cudaSuccess) || (error == cudaErrorNotReady);
307 #else
308     return false;
309 #endif
310   }
311 
312  private:
313   const StreamInterface* stream_;
314   int max_blocks_;
315 };
316 
317 #define LAUNCH_CUDA_KERNEL(kernel, gridsize, blocksize, sharedmem, device, ...)             \
318   (kernel) <<< (gridsize), (blocksize), (sharedmem), (device).stream() >>> (__VA_ARGS__);   \
319   assert(cudaGetLastError() == cudaSuccess);
320 
321 
322 // FIXME: Should be device and kernel specific.
323 #ifdef __CUDACC__
324 static EIGEN_DEVICE_FUNC inline void setCudaSharedMemConfig(cudaSharedMemConfig config) {
325 #ifndef __CUDA_ARCH__
326   cudaError_t status = cudaDeviceSetSharedMemConfig(config);
327   EIGEN_UNUSED_VARIABLE(status)
328   assert(status == cudaSuccess);
329 #else
330   EIGEN_UNUSED_VARIABLE(config)
331 #endif
332 }
333 #endif
334 
335 }  // end namespace Eigen
336 
337 #endif  // EIGEN_CXX11_TENSOR_TENSOR_DEVICE_CUDA_H
338