• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect the sequence of machine instructions for a basic block.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/MachineBasicBlock.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/CodeGen/LiveIntervals.h"
16 #include "llvm/CodeGen/LiveVariables.h"
17 #include "llvm/CodeGen/MachineDominators.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineLoopInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SlotIndexes.h"
23 #include "llvm/CodeGen/TargetInstrInfo.h"
24 #include "llvm/CodeGen/TargetRegisterInfo.h"
25 #include "llvm/CodeGen/TargetSubtargetInfo.h"
26 #include "llvm/Config/llvm-config.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/ModuleSlotTracker.h"
31 #include "llvm/MC/MCAsmInfo.h"
32 #include "llvm/MC/MCContext.h"
33 #include "llvm/Support/DataTypes.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetMachine.h"
37 #include <algorithm>
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "codegen"
41 
42 static cl::opt<bool> PrintSlotIndexes(
43     "print-slotindexes",
44     cl::desc("When printing machine IR, annotate instructions and blocks with "
45              "SlotIndexes when available"),
46     cl::init(true), cl::Hidden);
47 
MachineBasicBlock(MachineFunction & MF,const BasicBlock * B)48 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B)
49     : BB(B), Number(-1), xParent(&MF) {
50   Insts.Parent = this;
51   if (B)
52     IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight();
53 }
54 
~MachineBasicBlock()55 MachineBasicBlock::~MachineBasicBlock() {
56 }
57 
58 /// Return the MCSymbol for this basic block.
getSymbol() const59 MCSymbol *MachineBasicBlock::getSymbol() const {
60   if (!CachedMCSymbol) {
61     const MachineFunction *MF = getParent();
62     MCContext &Ctx = MF->getContext();
63 
64     // We emit a non-temporary symbol -- with a descriptive name -- if it begins
65     // a section (with basic block sections). Otherwise we fall back to use temp
66     // label.
67     if (MF->hasBBSections() && isBeginSection()) {
68       SmallString<5> Suffix;
69       if (SectionID == MBBSectionID::ColdSectionID) {
70         Suffix += ".cold";
71       } else if (SectionID == MBBSectionID::ExceptionSectionID) {
72         Suffix += ".eh";
73       } else {
74         Suffix += "." + std::to_string(SectionID.Number);
75       }
76       CachedMCSymbol = Ctx.getOrCreateSymbol(MF->getName() + Suffix);
77     } else {
78       const StringRef Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
79       CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" +
80                                              Twine(MF->getFunctionNumber()) +
81                                              "_" + Twine(getNumber()));
82     }
83   }
84   return CachedMCSymbol;
85 }
86 
getEndSymbol() const87 MCSymbol *MachineBasicBlock::getEndSymbol() const {
88   if (!CachedEndMCSymbol) {
89     const MachineFunction *MF = getParent();
90     MCContext &Ctx = MF->getContext();
91     auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
92     CachedEndMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB_END" +
93                                               Twine(MF->getFunctionNumber()) +
94                                               "_" + Twine(getNumber()));
95   }
96   return CachedEndMCSymbol;
97 }
98 
operator <<(raw_ostream & OS,const MachineBasicBlock & MBB)99 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
100   MBB.print(OS);
101   return OS;
102 }
103 
printMBBReference(const MachineBasicBlock & MBB)104 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) {
105   return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); });
106 }
107 
108 /// When an MBB is added to an MF, we need to update the parent pointer of the
109 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right
110 /// operand list for registers.
111 ///
112 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
113 /// gets the next available unique MBB number. If it is removed from a
114 /// MachineFunction, it goes back to being #-1.
addNodeToList(MachineBasicBlock * N)115 void ilist_callback_traits<MachineBasicBlock>::addNodeToList(
116     MachineBasicBlock *N) {
117   MachineFunction &MF = *N->getParent();
118   N->Number = MF.addToMBBNumbering(N);
119 
120   // Make sure the instructions have their operands in the reginfo lists.
121   MachineRegisterInfo &RegInfo = MF.getRegInfo();
122   for (MachineBasicBlock::instr_iterator
123          I = N->instr_begin(), E = N->instr_end(); I != E; ++I)
124     I->AddRegOperandsToUseLists(RegInfo);
125 }
126 
removeNodeFromList(MachineBasicBlock * N)127 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList(
128     MachineBasicBlock *N) {
129   N->getParent()->removeFromMBBNumbering(N->Number);
130   N->Number = -1;
131 }
132 
133 /// When we add an instruction to a basic block list, we update its parent
134 /// pointer and add its operands from reg use/def lists if appropriate.
addNodeToList(MachineInstr * N)135 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
136   assert(!N->getParent() && "machine instruction already in a basic block");
137   N->setParent(Parent);
138 
139   // Add the instruction's register operands to their corresponding
140   // use/def lists.
141   MachineFunction *MF = Parent->getParent();
142   N->AddRegOperandsToUseLists(MF->getRegInfo());
143   MF->handleInsertion(*N);
144 }
145 
146 /// When we remove an instruction from a basic block list, we update its parent
147 /// pointer and remove its operands from reg use/def lists if appropriate.
removeNodeFromList(MachineInstr * N)148 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
149   assert(N->getParent() && "machine instruction not in a basic block");
150 
151   // Remove from the use/def lists.
152   if (MachineFunction *MF = N->getMF()) {
153     MF->handleRemoval(*N);
154     N->RemoveRegOperandsFromUseLists(MF->getRegInfo());
155   }
156 
157   N->setParent(nullptr);
158 }
159 
160 /// When moving a range of instructions from one MBB list to another, we need to
161 /// update the parent pointers and the use/def lists.
transferNodesFromList(ilist_traits & FromList,instr_iterator First,instr_iterator Last)162 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList,
163                                                        instr_iterator First,
164                                                        instr_iterator Last) {
165   assert(Parent->getParent() == FromList.Parent->getParent() &&
166          "cannot transfer MachineInstrs between MachineFunctions");
167 
168   // If it's within the same BB, there's nothing to do.
169   if (this == &FromList)
170     return;
171 
172   assert(Parent != FromList.Parent && "Two lists have the same parent?");
173 
174   // If splicing between two blocks within the same function, just update the
175   // parent pointers.
176   for (; First != Last; ++First)
177     First->setParent(Parent);
178 }
179 
deleteNode(MachineInstr * MI)180 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) {
181   assert(!MI->getParent() && "MI is still in a block!");
182   Parent->getParent()->DeleteMachineInstr(MI);
183 }
184 
getFirstNonPHI()185 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
186   instr_iterator I = instr_begin(), E = instr_end();
187   while (I != E && I->isPHI())
188     ++I;
189   assert((I == E || !I->isInsideBundle()) &&
190          "First non-phi MI cannot be inside a bundle!");
191   return I;
192 }
193 
194 MachineBasicBlock::iterator
SkipPHIsAndLabels(MachineBasicBlock::iterator I)195 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
196   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
197 
198   iterator E = end();
199   while (I != E && (I->isPHI() || I->isPosition() ||
200                     TII->isBasicBlockPrologue(*I)))
201     ++I;
202   // FIXME: This needs to change if we wish to bundle labels
203   // inside the bundle.
204   assert((I == E || !I->isInsideBundle()) &&
205          "First non-phi / non-label instruction is inside a bundle!");
206   return I;
207 }
208 
209 MachineBasicBlock::iterator
SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I)210 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I) {
211   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
212 
213   iterator E = end();
214   while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() ||
215                     TII->isBasicBlockPrologue(*I)))
216     ++I;
217   // FIXME: This needs to change if we wish to bundle labels / dbg_values
218   // inside the bundle.
219   assert((I == E || !I->isInsideBundle()) &&
220          "First non-phi / non-label / non-debug "
221          "instruction is inside a bundle!");
222   return I;
223 }
224 
getFirstTerminator()225 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
226   iterator B = begin(), E = end(), I = E;
227   while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
228     ; /*noop */
229   while (I != E && !I->isTerminator())
230     ++I;
231   return I;
232 }
233 
getFirstInstrTerminator()234 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
235   instr_iterator B = instr_begin(), E = instr_end(), I = E;
236   while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
237     ; /*noop */
238   while (I != E && !I->isTerminator())
239     ++I;
240   return I;
241 }
242 
getFirstNonDebugInstr()243 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() {
244   // Skip over begin-of-block dbg_value instructions.
245   return skipDebugInstructionsForward(begin(), end());
246 }
247 
getLastNonDebugInstr()248 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() {
249   // Skip over end-of-block dbg_value instructions.
250   instr_iterator B = instr_begin(), I = instr_end();
251   while (I != B) {
252     --I;
253     // Return instruction that starts a bundle.
254     if (I->isDebugInstr() || I->isInsideBundle())
255       continue;
256     return I;
257   }
258   // The block is all debug values.
259   return end();
260 }
261 
hasEHPadSuccessor() const262 bool MachineBasicBlock::hasEHPadSuccessor() const {
263   for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I)
264     if ((*I)->isEHPad())
265       return true;
266   return false;
267 }
268 
isEntryBlock() const269 bool MachineBasicBlock::isEntryBlock() const {
270   return getParent()->begin() == getIterator();
271 }
272 
273 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const274 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const {
275   print(dbgs());
276 }
277 #endif
278 
mayHaveInlineAsmBr() const279 bool MachineBasicBlock::mayHaveInlineAsmBr() const {
280   for (const MachineBasicBlock *Succ : successors()) {
281     if (Succ->isInlineAsmBrIndirectTarget())
282       return true;
283   }
284   return false;
285 }
286 
isLegalToHoistInto() const287 bool MachineBasicBlock::isLegalToHoistInto() const {
288   if (isReturnBlock() || hasEHPadSuccessor() || mayHaveInlineAsmBr())
289     return false;
290   return true;
291 }
292 
getName() const293 StringRef MachineBasicBlock::getName() const {
294   if (const BasicBlock *LBB = getBasicBlock())
295     return LBB->getName();
296   else
297     return StringRef("", 0);
298 }
299 
300 /// Return a hopefully unique identifier for this block.
getFullName() const301 std::string MachineBasicBlock::getFullName() const {
302   std::string Name;
303   if (getParent())
304     Name = (getParent()->getName() + ":").str();
305   if (getBasicBlock())
306     Name += getBasicBlock()->getName();
307   else
308     Name += ("BB" + Twine(getNumber())).str();
309   return Name;
310 }
311 
print(raw_ostream & OS,const SlotIndexes * Indexes,bool IsStandalone) const312 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes,
313                               bool IsStandalone) const {
314   const MachineFunction *MF = getParent();
315   if (!MF) {
316     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
317        << " is null\n";
318     return;
319   }
320   const Function &F = MF->getFunction();
321   const Module *M = F.getParent();
322   ModuleSlotTracker MST(M);
323   MST.incorporateFunction(F);
324   print(OS, MST, Indexes, IsStandalone);
325 }
326 
print(raw_ostream & OS,ModuleSlotTracker & MST,const SlotIndexes * Indexes,bool IsStandalone) const327 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST,
328                               const SlotIndexes *Indexes,
329                               bool IsStandalone) const {
330   const MachineFunction *MF = getParent();
331   if (!MF) {
332     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
333        << " is null\n";
334     return;
335   }
336 
337   if (Indexes && PrintSlotIndexes)
338     OS << Indexes->getMBBStartIdx(this) << '\t';
339 
340   printName(OS, PrintNameIr | PrintNameAttributes, &MST);
341   OS << ":\n";
342 
343   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
344   const MachineRegisterInfo &MRI = MF->getRegInfo();
345   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
346   bool HasLineAttributes = false;
347 
348   // Print the preds of this block according to the CFG.
349   if (!pred_empty() && IsStandalone) {
350     if (Indexes) OS << '\t';
351     // Don't indent(2), align with previous line attributes.
352     OS << "; predecessors: ";
353     for (auto I = pred_begin(), E = pred_end(); I != E; ++I) {
354       if (I != pred_begin())
355         OS << ", ";
356       OS << printMBBReference(**I);
357     }
358     OS << '\n';
359     HasLineAttributes = true;
360   }
361 
362   if (!succ_empty()) {
363     if (Indexes) OS << '\t';
364     // Print the successors
365     OS.indent(2) << "successors: ";
366     for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
367       if (I != succ_begin())
368         OS << ", ";
369       OS << printMBBReference(**I);
370       if (!Probs.empty())
371         OS << '('
372            << format("0x%08" PRIx32, getSuccProbability(I).getNumerator())
373            << ')';
374     }
375     if (!Probs.empty() && IsStandalone) {
376       // Print human readable probabilities as comments.
377       OS << "; ";
378       for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
379         const BranchProbability &BP = getSuccProbability(I);
380         if (I != succ_begin())
381           OS << ", ";
382         OS << printMBBReference(**I) << '('
383            << format("%.2f%%",
384                      rint(((double)BP.getNumerator() / BP.getDenominator()) *
385                           100.0 * 100.0) /
386                          100.0)
387            << ')';
388       }
389     }
390 
391     OS << '\n';
392     HasLineAttributes = true;
393   }
394 
395   if (!livein_empty() && MRI.tracksLiveness()) {
396     if (Indexes) OS << '\t';
397     OS.indent(2) << "liveins: ";
398 
399     bool First = true;
400     for (const auto &LI : liveins()) {
401       if (!First)
402         OS << ", ";
403       First = false;
404       OS << printReg(LI.PhysReg, TRI);
405       if (!LI.LaneMask.all())
406         OS << ":0x" << PrintLaneMask(LI.LaneMask);
407     }
408     HasLineAttributes = true;
409   }
410 
411   if (HasLineAttributes)
412     OS << '\n';
413 
414   bool IsInBundle = false;
415   for (const MachineInstr &MI : instrs()) {
416     if (Indexes && PrintSlotIndexes) {
417       if (Indexes->hasIndex(MI))
418         OS << Indexes->getInstructionIndex(MI);
419       OS << '\t';
420     }
421 
422     if (IsInBundle && !MI.isInsideBundle()) {
423       OS.indent(2) << "}\n";
424       IsInBundle = false;
425     }
426 
427     OS.indent(IsInBundle ? 4 : 2);
428     MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false,
429              /*AddNewLine=*/false, &TII);
430 
431     if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) {
432       OS << " {";
433       IsInBundle = true;
434     }
435     OS << '\n';
436   }
437 
438   if (IsInBundle)
439     OS.indent(2) << "}\n";
440 
441   if (IrrLoopHeaderWeight && IsStandalone) {
442     if (Indexes) OS << '\t';
443     OS.indent(2) << "; Irreducible loop header weight: "
444                  << IrrLoopHeaderWeight.getValue() << '\n';
445   }
446 }
447 
448 /// Print the basic block's name as:
449 ///
450 ///    bb.{number}[.{ir-name}] [(attributes...)]
451 ///
452 /// The {ir-name} is only printed when the \ref PrintNameIr flag is passed
453 /// (which is the default). If the IR block has no name, it is identified
454 /// numerically using the attribute syntax as "(%ir-block.{ir-slot})".
455 ///
456 /// When the \ref PrintNameAttributes flag is passed, additional attributes
457 /// of the block are printed when set.
458 ///
459 /// \param printNameFlags Combination of \ref PrintNameFlag flags indicating
460 ///                       the parts to print.
461 /// \param moduleSlotTracker Optional ModuleSlotTracker. This method will
462 ///                          incorporate its own tracker when necessary to
463 ///                          determine the block's IR name.
printName(raw_ostream & os,unsigned printNameFlags,ModuleSlotTracker * moduleSlotTracker) const464 void MachineBasicBlock::printName(raw_ostream &os, unsigned printNameFlags,
465                                   ModuleSlotTracker *moduleSlotTracker) const {
466   os << "bb." << getNumber();
467   bool hasAttributes = false;
468 
469   if (printNameFlags & PrintNameIr) {
470     if (const auto *bb = getBasicBlock()) {
471       if (bb->hasName()) {
472         os << '.' << bb->getName();
473       } else {
474         hasAttributes = true;
475         os << " (";
476 
477         int slot = -1;
478 
479         if (moduleSlotTracker) {
480           slot = moduleSlotTracker->getLocalSlot(bb);
481         } else if (bb->getParent()) {
482           ModuleSlotTracker tmpTracker(bb->getModule(), false);
483           tmpTracker.incorporateFunction(*bb->getParent());
484           slot = tmpTracker.getLocalSlot(bb);
485         }
486 
487         if (slot == -1)
488           os << "<ir-block badref>";
489         else
490           os << (Twine("%ir-block.") + Twine(slot)).str();
491       }
492     }
493   }
494 
495   if (printNameFlags & PrintNameAttributes) {
496     if (hasAddressTaken()) {
497       os << (hasAttributes ? ", " : " (");
498       os << "address-taken";
499       hasAttributes = true;
500     }
501     if (isEHPad()) {
502       os << (hasAttributes ? ", " : " (");
503       os << "landing-pad";
504       hasAttributes = true;
505     }
506     if (isEHFuncletEntry()) {
507       os << (hasAttributes ? ", " : " (");
508       os << "ehfunclet-entry";
509       hasAttributes = true;
510     }
511     if (getAlignment() != Align(1)) {
512       os << (hasAttributes ? ", " : " (");
513       os << "align " << getAlignment().value();
514       hasAttributes = true;
515     }
516     if (getSectionID() != MBBSectionID(0)) {
517       os << (hasAttributes ? ", " : " (");
518       os << "bbsections ";
519       switch (getSectionID().Type) {
520       case MBBSectionID::SectionType::Exception:
521         os << "Exception";
522         break;
523       case MBBSectionID::SectionType::Cold:
524         os << "Cold";
525         break;
526       default:
527         os << getSectionID().Number;
528       }
529       hasAttributes = true;
530     }
531   }
532 
533   if (hasAttributes)
534     os << ')';
535 }
536 
printAsOperand(raw_ostream & OS,bool) const537 void MachineBasicBlock::printAsOperand(raw_ostream &OS,
538                                        bool /*PrintType*/) const {
539   OS << '%';
540   printName(OS, 0);
541 }
542 
removeLiveIn(MCPhysReg Reg,LaneBitmask LaneMask)543 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) {
544   LiveInVector::iterator I = find_if(
545       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
546   if (I == LiveIns.end())
547     return;
548 
549   I->LaneMask &= ~LaneMask;
550   if (I->LaneMask.none())
551     LiveIns.erase(I);
552 }
553 
554 MachineBasicBlock::livein_iterator
removeLiveIn(MachineBasicBlock::livein_iterator I)555 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) {
556   // Get non-const version of iterator.
557   LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin());
558   return LiveIns.erase(LI);
559 }
560 
isLiveIn(MCPhysReg Reg,LaneBitmask LaneMask) const561 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const {
562   livein_iterator I = find_if(
563       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
564   return I != livein_end() && (I->LaneMask & LaneMask).any();
565 }
566 
sortUniqueLiveIns()567 void MachineBasicBlock::sortUniqueLiveIns() {
568   llvm::sort(LiveIns,
569              [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) {
570                return LI0.PhysReg < LI1.PhysReg;
571              });
572   // Liveins are sorted by physreg now we can merge their lanemasks.
573   LiveInVector::const_iterator I = LiveIns.begin();
574   LiveInVector::const_iterator J;
575   LiveInVector::iterator Out = LiveIns.begin();
576   for (; I != LiveIns.end(); ++Out, I = J) {
577     MCRegister PhysReg = I->PhysReg;
578     LaneBitmask LaneMask = I->LaneMask;
579     for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J)
580       LaneMask |= J->LaneMask;
581     Out->PhysReg = PhysReg;
582     Out->LaneMask = LaneMask;
583   }
584   LiveIns.erase(Out, LiveIns.end());
585 }
586 
587 Register
addLiveIn(MCRegister PhysReg,const TargetRegisterClass * RC)588 MachineBasicBlock::addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC) {
589   assert(getParent() && "MBB must be inserted in function");
590   assert(Register::isPhysicalRegister(PhysReg) && "Expected physreg");
591   assert(RC && "Register class is required");
592   assert((isEHPad() || this == &getParent()->front()) &&
593          "Only the entry block and landing pads can have physreg live ins");
594 
595   bool LiveIn = isLiveIn(PhysReg);
596   iterator I = SkipPHIsAndLabels(begin()), E = end();
597   MachineRegisterInfo &MRI = getParent()->getRegInfo();
598   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
599 
600   // Look for an existing copy.
601   if (LiveIn)
602     for (;I != E && I->isCopy(); ++I)
603       if (I->getOperand(1).getReg() == PhysReg) {
604         Register VirtReg = I->getOperand(0).getReg();
605         if (!MRI.constrainRegClass(VirtReg, RC))
606           llvm_unreachable("Incompatible live-in register class.");
607         return VirtReg;
608       }
609 
610   // No luck, create a virtual register.
611   Register VirtReg = MRI.createVirtualRegister(RC);
612   BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
613     .addReg(PhysReg, RegState::Kill);
614   if (!LiveIn)
615     addLiveIn(PhysReg);
616   return VirtReg;
617 }
618 
moveBefore(MachineBasicBlock * NewAfter)619 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
620   getParent()->splice(NewAfter->getIterator(), getIterator());
621 }
622 
moveAfter(MachineBasicBlock * NewBefore)623 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
624   getParent()->splice(++NewBefore->getIterator(), getIterator());
625 }
626 
updateTerminator(MachineBasicBlock * PreviousLayoutSuccessor)627 void MachineBasicBlock::updateTerminator(
628     MachineBasicBlock *PreviousLayoutSuccessor) {
629   LLVM_DEBUG(dbgs() << "Updating terminators on " << printMBBReference(*this)
630                     << "\n");
631 
632   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
633   // A block with no successors has no concerns with fall-through edges.
634   if (this->succ_empty())
635     return;
636 
637   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
638   SmallVector<MachineOperand, 4> Cond;
639   DebugLoc DL = findBranchDebugLoc();
640   bool B = TII->analyzeBranch(*this, TBB, FBB, Cond);
641   (void) B;
642   assert(!B && "UpdateTerminators requires analyzable predecessors!");
643   if (Cond.empty()) {
644     if (TBB) {
645       // The block has an unconditional branch. If its successor is now its
646       // layout successor, delete the branch.
647       if (isLayoutSuccessor(TBB))
648         TII->removeBranch(*this);
649     } else {
650       // The block has an unconditional fallthrough, or the end of the block is
651       // unreachable.
652 
653       // Unfortunately, whether the end of the block is unreachable is not
654       // immediately obvious; we must fall back to checking the successor list,
655       // and assuming that if the passed in block is in the succesor list and
656       // not an EHPad, it must be the intended target.
657       if (!PreviousLayoutSuccessor || !isSuccessor(PreviousLayoutSuccessor) ||
658           PreviousLayoutSuccessor->isEHPad())
659         return;
660 
661       // If the unconditional successor block is not the current layout
662       // successor, insert a branch to jump to it.
663       if (!isLayoutSuccessor(PreviousLayoutSuccessor))
664         TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
665     }
666     return;
667   }
668 
669   if (FBB) {
670     // The block has a non-fallthrough conditional branch. If one of its
671     // successors is its layout successor, rewrite it to a fallthrough
672     // conditional branch.
673     if (isLayoutSuccessor(TBB)) {
674       if (TII->reverseBranchCondition(Cond))
675         return;
676       TII->removeBranch(*this);
677       TII->insertBranch(*this, FBB, nullptr, Cond, DL);
678     } else if (isLayoutSuccessor(FBB)) {
679       TII->removeBranch(*this);
680       TII->insertBranch(*this, TBB, nullptr, Cond, DL);
681     }
682     return;
683   }
684 
685   // We now know we're going to fallthrough to PreviousLayoutSuccessor.
686   assert(PreviousLayoutSuccessor);
687   assert(!PreviousLayoutSuccessor->isEHPad());
688   assert(isSuccessor(PreviousLayoutSuccessor));
689 
690   if (PreviousLayoutSuccessor == TBB) {
691     // We had a fallthrough to the same basic block as the conditional jump
692     // targets.  Remove the conditional jump, leaving an unconditional
693     // fallthrough or an unconditional jump.
694     TII->removeBranch(*this);
695     if (!isLayoutSuccessor(TBB)) {
696       Cond.clear();
697       TII->insertBranch(*this, TBB, nullptr, Cond, DL);
698     }
699     return;
700   }
701 
702   // The block has a fallthrough conditional branch.
703   if (isLayoutSuccessor(TBB)) {
704     if (TII->reverseBranchCondition(Cond)) {
705       // We can't reverse the condition, add an unconditional branch.
706       Cond.clear();
707       TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
708       return;
709     }
710     TII->removeBranch(*this);
711     TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
712   } else if (!isLayoutSuccessor(PreviousLayoutSuccessor)) {
713     TII->removeBranch(*this);
714     TII->insertBranch(*this, TBB, PreviousLayoutSuccessor, Cond, DL);
715   }
716 }
717 
validateSuccProbs() const718 void MachineBasicBlock::validateSuccProbs() const {
719 #ifndef NDEBUG
720   int64_t Sum = 0;
721   for (auto Prob : Probs)
722     Sum += Prob.getNumerator();
723   // Due to precision issue, we assume that the sum of probabilities is one if
724   // the difference between the sum of their numerators and the denominator is
725   // no greater than the number of successors.
726   assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <=
727              Probs.size() &&
728          "The sum of successors's probabilities exceeds one.");
729 #endif // NDEBUG
730 }
731 
addSuccessor(MachineBasicBlock * Succ,BranchProbability Prob)732 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ,
733                                      BranchProbability Prob) {
734   // Probability list is either empty (if successor list isn't empty, this means
735   // disabled optimization) or has the same size as successor list.
736   if (!(Probs.empty() && !Successors.empty()))
737     Probs.push_back(Prob);
738   Successors.push_back(Succ);
739   Succ->addPredecessor(this);
740 }
741 
addSuccessorWithoutProb(MachineBasicBlock * Succ)742 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) {
743   // We need to make sure probability list is either empty or has the same size
744   // of successor list. When this function is called, we can safely delete all
745   // probability in the list.
746   Probs.clear();
747   Successors.push_back(Succ);
748   Succ->addPredecessor(this);
749 }
750 
splitSuccessor(MachineBasicBlock * Old,MachineBasicBlock * New,bool NormalizeSuccProbs)751 void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old,
752                                        MachineBasicBlock *New,
753                                        bool NormalizeSuccProbs) {
754   succ_iterator OldI = llvm::find(successors(), Old);
755   assert(OldI != succ_end() && "Old is not a successor of this block!");
756   assert(!llvm::is_contained(successors(), New) &&
757          "New is already a successor of this block!");
758 
759   // Add a new successor with equal probability as the original one. Note
760   // that we directly copy the probability using the iterator rather than
761   // getting a potentially synthetic probability computed when unknown. This
762   // preserves the probabilities as-is and then we can renormalize them and
763   // query them effectively afterward.
764   addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown()
765                                   : *getProbabilityIterator(OldI));
766   if (NormalizeSuccProbs)
767     normalizeSuccProbs();
768 }
769 
removeSuccessor(MachineBasicBlock * Succ,bool NormalizeSuccProbs)770 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ,
771                                         bool NormalizeSuccProbs) {
772   succ_iterator I = find(Successors, Succ);
773   removeSuccessor(I, NormalizeSuccProbs);
774 }
775 
776 MachineBasicBlock::succ_iterator
removeSuccessor(succ_iterator I,bool NormalizeSuccProbs)777 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) {
778   assert(I != Successors.end() && "Not a current successor!");
779 
780   // If probability list is empty it means we don't use it (disabled
781   // optimization).
782   if (!Probs.empty()) {
783     probability_iterator WI = getProbabilityIterator(I);
784     Probs.erase(WI);
785     if (NormalizeSuccProbs)
786       normalizeSuccProbs();
787   }
788 
789   (*I)->removePredecessor(this);
790   return Successors.erase(I);
791 }
792 
replaceSuccessor(MachineBasicBlock * Old,MachineBasicBlock * New)793 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
794                                          MachineBasicBlock *New) {
795   if (Old == New)
796     return;
797 
798   succ_iterator E = succ_end();
799   succ_iterator NewI = E;
800   succ_iterator OldI = E;
801   for (succ_iterator I = succ_begin(); I != E; ++I) {
802     if (*I == Old) {
803       OldI = I;
804       if (NewI != E)
805         break;
806     }
807     if (*I == New) {
808       NewI = I;
809       if (OldI != E)
810         break;
811     }
812   }
813   assert(OldI != E && "Old is not a successor of this block");
814 
815   // If New isn't already a successor, let it take Old's place.
816   if (NewI == E) {
817     Old->removePredecessor(this);
818     New->addPredecessor(this);
819     *OldI = New;
820     return;
821   }
822 
823   // New is already a successor.
824   // Update its probability instead of adding a duplicate edge.
825   if (!Probs.empty()) {
826     auto ProbIter = getProbabilityIterator(NewI);
827     if (!ProbIter->isUnknown())
828       *ProbIter += *getProbabilityIterator(OldI);
829   }
830   removeSuccessor(OldI);
831 }
832 
copySuccessor(MachineBasicBlock * Orig,succ_iterator I)833 void MachineBasicBlock::copySuccessor(MachineBasicBlock *Orig,
834                                       succ_iterator I) {
835   if (!Orig->Probs.empty())
836     addSuccessor(*I, Orig->getSuccProbability(I));
837   else
838     addSuccessorWithoutProb(*I);
839 }
840 
addPredecessor(MachineBasicBlock * Pred)841 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) {
842   Predecessors.push_back(Pred);
843 }
844 
removePredecessor(MachineBasicBlock * Pred)845 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) {
846   pred_iterator I = find(Predecessors, Pred);
847   assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
848   Predecessors.erase(I);
849 }
850 
transferSuccessors(MachineBasicBlock * FromMBB)851 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) {
852   if (this == FromMBB)
853     return;
854 
855   while (!FromMBB->succ_empty()) {
856     MachineBasicBlock *Succ = *FromMBB->succ_begin();
857 
858     // If probability list is empty it means we don't use it (disabled
859     // optimization).
860     if (!FromMBB->Probs.empty()) {
861       auto Prob = *FromMBB->Probs.begin();
862       addSuccessor(Succ, Prob);
863     } else
864       addSuccessorWithoutProb(Succ);
865 
866     FromMBB->removeSuccessor(Succ);
867   }
868 }
869 
870 void
transferSuccessorsAndUpdatePHIs(MachineBasicBlock * FromMBB)871 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) {
872   if (this == FromMBB)
873     return;
874 
875   while (!FromMBB->succ_empty()) {
876     MachineBasicBlock *Succ = *FromMBB->succ_begin();
877     if (!FromMBB->Probs.empty()) {
878       auto Prob = *FromMBB->Probs.begin();
879       addSuccessor(Succ, Prob);
880     } else
881       addSuccessorWithoutProb(Succ);
882     FromMBB->removeSuccessor(Succ);
883 
884     // Fix up any PHI nodes in the successor.
885     Succ->replacePhiUsesWith(FromMBB, this);
886   }
887   normalizeSuccProbs();
888 }
889 
isPredecessor(const MachineBasicBlock * MBB) const890 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
891   return is_contained(predecessors(), MBB);
892 }
893 
isSuccessor(const MachineBasicBlock * MBB) const894 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
895   return is_contained(successors(), MBB);
896 }
897 
isLayoutSuccessor(const MachineBasicBlock * MBB) const898 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
899   MachineFunction::const_iterator I(this);
900   return std::next(I) == MachineFunction::const_iterator(MBB);
901 }
902 
getFallThrough()903 MachineBasicBlock *MachineBasicBlock::getFallThrough() {
904   MachineFunction::iterator Fallthrough = getIterator();
905   ++Fallthrough;
906   // If FallthroughBlock is off the end of the function, it can't fall through.
907   if (Fallthrough == getParent()->end())
908     return nullptr;
909 
910   // If FallthroughBlock isn't a successor, no fallthrough is possible.
911   if (!isSuccessor(&*Fallthrough))
912     return nullptr;
913 
914   // Analyze the branches, if any, at the end of the block.
915   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
916   SmallVector<MachineOperand, 4> Cond;
917   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
918   if (TII->analyzeBranch(*this, TBB, FBB, Cond)) {
919     // If we couldn't analyze the branch, examine the last instruction.
920     // If the block doesn't end in a known control barrier, assume fallthrough
921     // is possible. The isPredicated check is needed because this code can be
922     // called during IfConversion, where an instruction which is normally a
923     // Barrier is predicated and thus no longer an actual control barrier.
924     return (empty() || !back().isBarrier() || TII->isPredicated(back()))
925                ? &*Fallthrough
926                : nullptr;
927   }
928 
929   // If there is no branch, control always falls through.
930   if (!TBB) return &*Fallthrough;
931 
932   // If there is some explicit branch to the fallthrough block, it can obviously
933   // reach, even though the branch should get folded to fall through implicitly.
934   if (MachineFunction::iterator(TBB) == Fallthrough ||
935       MachineFunction::iterator(FBB) == Fallthrough)
936     return &*Fallthrough;
937 
938   // If it's an unconditional branch to some block not the fall through, it
939   // doesn't fall through.
940   if (Cond.empty()) return nullptr;
941 
942   // Otherwise, if it is conditional and has no explicit false block, it falls
943   // through.
944   return (FBB == nullptr) ? &*Fallthrough : nullptr;
945 }
946 
canFallThrough()947 bool MachineBasicBlock::canFallThrough() {
948   return getFallThrough() != nullptr;
949 }
950 
splitAt(MachineInstr & MI,bool UpdateLiveIns,LiveIntervals * LIS)951 MachineBasicBlock *MachineBasicBlock::splitAt(MachineInstr &MI,
952                                               bool UpdateLiveIns,
953                                               LiveIntervals *LIS) {
954   MachineBasicBlock::iterator SplitPoint(&MI);
955   ++SplitPoint;
956 
957   if (SplitPoint == end()) {
958     // Don't bother with a new block.
959     return this;
960   }
961 
962   MachineFunction *MF = getParent();
963 
964   LivePhysRegs LiveRegs;
965   if (UpdateLiveIns) {
966     // Make sure we add any physregs we define in the block as liveins to the
967     // new block.
968     MachineBasicBlock::iterator Prev(&MI);
969     LiveRegs.init(*MF->getSubtarget().getRegisterInfo());
970     LiveRegs.addLiveOuts(*this);
971     for (auto I = rbegin(), E = Prev.getReverse(); I != E; ++I)
972       LiveRegs.stepBackward(*I);
973   }
974 
975   MachineBasicBlock *SplitBB = MF->CreateMachineBasicBlock(getBasicBlock());
976 
977   MF->insert(++MachineFunction::iterator(this), SplitBB);
978   SplitBB->splice(SplitBB->begin(), this, SplitPoint, end());
979 
980   SplitBB->transferSuccessorsAndUpdatePHIs(this);
981   addSuccessor(SplitBB);
982 
983   if (UpdateLiveIns)
984     addLiveIns(*SplitBB, LiveRegs);
985 
986   if (LIS)
987     LIS->insertMBBInMaps(SplitBB, &MI);
988 
989   return SplitBB;
990 }
991 
SplitCriticalEdge(MachineBasicBlock * Succ,Pass & P,std::vector<SparseBitVector<>> * LiveInSets)992 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(
993     MachineBasicBlock *Succ, Pass &P,
994     std::vector<SparseBitVector<>> *LiveInSets) {
995   if (!canSplitCriticalEdge(Succ))
996     return nullptr;
997 
998   MachineFunction *MF = getParent();
999   MachineBasicBlock *PrevFallthrough = getNextNode();
1000   DebugLoc DL;  // FIXME: this is nowhere
1001 
1002   MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
1003   MF->insert(std::next(MachineFunction::iterator(this)), NMBB);
1004   LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this)
1005                     << " -- " << printMBBReference(*NMBB) << " -- "
1006                     << printMBBReference(*Succ) << '\n');
1007 
1008   LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>();
1009   SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>();
1010   if (LIS)
1011     LIS->insertMBBInMaps(NMBB);
1012   else if (Indexes)
1013     Indexes->insertMBBInMaps(NMBB);
1014 
1015   // On some targets like Mips, branches may kill virtual registers. Make sure
1016   // that LiveVariables is properly updated after updateTerminator replaces the
1017   // terminators.
1018   LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>();
1019 
1020   // Collect a list of virtual registers killed by the terminators.
1021   SmallVector<Register, 4> KilledRegs;
1022   if (LV)
1023     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
1024          I != E; ++I) {
1025       MachineInstr *MI = &*I;
1026       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
1027            OE = MI->operands_end(); OI != OE; ++OI) {
1028         if (!OI->isReg() || OI->getReg() == 0 ||
1029             !OI->isUse() || !OI->isKill() || OI->isUndef())
1030           continue;
1031         Register Reg = OI->getReg();
1032         if (Register::isPhysicalRegister(Reg) ||
1033             LV->getVarInfo(Reg).removeKill(*MI)) {
1034           KilledRegs.push_back(Reg);
1035           LLVM_DEBUG(dbgs() << "Removing terminator kill: " << *MI);
1036           OI->setIsKill(false);
1037         }
1038       }
1039     }
1040 
1041   SmallVector<Register, 4> UsedRegs;
1042   if (LIS) {
1043     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
1044          I != E; ++I) {
1045       MachineInstr *MI = &*I;
1046 
1047       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
1048            OE = MI->operands_end(); OI != OE; ++OI) {
1049         if (!OI->isReg() || OI->getReg() == 0)
1050           continue;
1051 
1052         Register Reg = OI->getReg();
1053         if (!is_contained(UsedRegs, Reg))
1054           UsedRegs.push_back(Reg);
1055       }
1056     }
1057   }
1058 
1059   ReplaceUsesOfBlockWith(Succ, NMBB);
1060 
1061   // If updateTerminator() removes instructions, we need to remove them from
1062   // SlotIndexes.
1063   SmallVector<MachineInstr*, 4> Terminators;
1064   if (Indexes) {
1065     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
1066          I != E; ++I)
1067       Terminators.push_back(&*I);
1068   }
1069 
1070   // Since we replaced all uses of Succ with NMBB, that should also be treated
1071   // as the fallthrough successor
1072   if (Succ == PrevFallthrough)
1073     PrevFallthrough = NMBB;
1074   updateTerminator(PrevFallthrough);
1075 
1076   if (Indexes) {
1077     SmallVector<MachineInstr*, 4> NewTerminators;
1078     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
1079          I != E; ++I)
1080       NewTerminators.push_back(&*I);
1081 
1082     for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(),
1083         E = Terminators.end(); I != E; ++I) {
1084       if (!is_contained(NewTerminators, *I))
1085         Indexes->removeMachineInstrFromMaps(**I);
1086     }
1087   }
1088 
1089   // Insert unconditional "jump Succ" instruction in NMBB if necessary.
1090   NMBB->addSuccessor(Succ);
1091   if (!NMBB->isLayoutSuccessor(Succ)) {
1092     SmallVector<MachineOperand, 4> Cond;
1093     const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
1094     TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL);
1095 
1096     if (Indexes) {
1097       for (MachineInstr &MI : NMBB->instrs()) {
1098         // Some instructions may have been moved to NMBB by updateTerminator(),
1099         // so we first remove any instruction that already has an index.
1100         if (Indexes->hasIndex(MI))
1101           Indexes->removeMachineInstrFromMaps(MI);
1102         Indexes->insertMachineInstrInMaps(MI);
1103       }
1104     }
1105   }
1106 
1107   // Fix PHI nodes in Succ so they refer to NMBB instead of this.
1108   Succ->replacePhiUsesWith(this, NMBB);
1109 
1110   // Inherit live-ins from the successor
1111   for (const auto &LI : Succ->liveins())
1112     NMBB->addLiveIn(LI);
1113 
1114   // Update LiveVariables.
1115   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1116   if (LV) {
1117     // Restore kills of virtual registers that were killed by the terminators.
1118     while (!KilledRegs.empty()) {
1119       Register Reg = KilledRegs.pop_back_val();
1120       for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
1121         if (!(--I)->addRegisterKilled(Reg, TRI, /* AddIfNotFound= */ false))
1122           continue;
1123         if (Register::isVirtualRegister(Reg))
1124           LV->getVarInfo(Reg).Kills.push_back(&*I);
1125         LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I);
1126         break;
1127       }
1128     }
1129     // Update relevant live-through information.
1130     if (LiveInSets != nullptr)
1131       LV->addNewBlock(NMBB, this, Succ, *LiveInSets);
1132     else
1133       LV->addNewBlock(NMBB, this, Succ);
1134   }
1135 
1136   if (LIS) {
1137     // After splitting the edge and updating SlotIndexes, live intervals may be
1138     // in one of two situations, depending on whether this block was the last in
1139     // the function. If the original block was the last in the function, all
1140     // live intervals will end prior to the beginning of the new split block. If
1141     // the original block was not at the end of the function, all live intervals
1142     // will extend to the end of the new split block.
1143 
1144     bool isLastMBB =
1145       std::next(MachineFunction::iterator(NMBB)) == getParent()->end();
1146 
1147     SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
1148     SlotIndex PrevIndex = StartIndex.getPrevSlot();
1149     SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
1150 
1151     // Find the registers used from NMBB in PHIs in Succ.
1152     SmallSet<Register, 8> PHISrcRegs;
1153     for (MachineBasicBlock::instr_iterator
1154          I = Succ->instr_begin(), E = Succ->instr_end();
1155          I != E && I->isPHI(); ++I) {
1156       for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
1157         if (I->getOperand(ni+1).getMBB() == NMBB) {
1158           MachineOperand &MO = I->getOperand(ni);
1159           Register Reg = MO.getReg();
1160           PHISrcRegs.insert(Reg);
1161           if (MO.isUndef())
1162             continue;
1163 
1164           LiveInterval &LI = LIS->getInterval(Reg);
1165           VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1166           assert(VNI &&
1167                  "PHI sources should be live out of their predecessors.");
1168           LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1169         }
1170       }
1171     }
1172 
1173     MachineRegisterInfo *MRI = &getParent()->getRegInfo();
1174     for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1175       Register Reg = Register::index2VirtReg(i);
1176       if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
1177         continue;
1178 
1179       LiveInterval &LI = LIS->getInterval(Reg);
1180       if (!LI.liveAt(PrevIndex))
1181         continue;
1182 
1183       bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
1184       if (isLiveOut && isLastMBB) {
1185         VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1186         assert(VNI && "LiveInterval should have VNInfo where it is live.");
1187         LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1188       } else if (!isLiveOut && !isLastMBB) {
1189         LI.removeSegment(StartIndex, EndIndex);
1190       }
1191     }
1192 
1193     // Update all intervals for registers whose uses may have been modified by
1194     // updateTerminator().
1195     LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
1196   }
1197 
1198   if (MachineDominatorTree *MDT =
1199           P.getAnalysisIfAvailable<MachineDominatorTree>())
1200     MDT->recordSplitCriticalEdge(this, Succ, NMBB);
1201 
1202   if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>())
1203     if (MachineLoop *TIL = MLI->getLoopFor(this)) {
1204       // If one or the other blocks were not in a loop, the new block is not
1205       // either, and thus LI doesn't need to be updated.
1206       if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
1207         if (TIL == DestLoop) {
1208           // Both in the same loop, the NMBB joins loop.
1209           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1210         } else if (TIL->contains(DestLoop)) {
1211           // Edge from an outer loop to an inner loop.  Add to the outer loop.
1212           TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
1213         } else if (DestLoop->contains(TIL)) {
1214           // Edge from an inner loop to an outer loop.  Add to the outer loop.
1215           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1216         } else {
1217           // Edge from two loops with no containment relation.  Because these
1218           // are natural loops, we know that the destination block must be the
1219           // header of its loop (adding a branch into a loop elsewhere would
1220           // create an irreducible loop).
1221           assert(DestLoop->getHeader() == Succ &&
1222                  "Should not create irreducible loops!");
1223           if (MachineLoop *P = DestLoop->getParentLoop())
1224             P->addBasicBlockToLoop(NMBB, MLI->getBase());
1225         }
1226       }
1227     }
1228 
1229   return NMBB;
1230 }
1231 
canSplitCriticalEdge(const MachineBasicBlock * Succ) const1232 bool MachineBasicBlock::canSplitCriticalEdge(
1233     const MachineBasicBlock *Succ) const {
1234   // Splitting the critical edge to a landing pad block is non-trivial. Don't do
1235   // it in this generic function.
1236   if (Succ->isEHPad())
1237     return false;
1238 
1239   // Splitting the critical edge to a callbr's indirect block isn't advised.
1240   // Don't do it in this generic function.
1241   if (Succ->isInlineAsmBrIndirectTarget())
1242     return false;
1243 
1244   const MachineFunction *MF = getParent();
1245   // Performance might be harmed on HW that implements branching using exec mask
1246   // where both sides of the branches are always executed.
1247   if (MF->getTarget().requiresStructuredCFG())
1248     return false;
1249 
1250   // We may need to update this's terminator, but we can't do that if
1251   // analyzeBranch fails. If this uses a jump table, we won't touch it.
1252   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1253   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1254   SmallVector<MachineOperand, 4> Cond;
1255   // AnalyzeBanch should modify this, since we did not allow modification.
1256   if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond,
1257                          /*AllowModify*/ false))
1258     return false;
1259 
1260   // Avoid bugpoint weirdness: A block may end with a conditional branch but
1261   // jumps to the same MBB is either case. We have duplicate CFG edges in that
1262   // case that we can't handle. Since this never happens in properly optimized
1263   // code, just skip those edges.
1264   if (TBB && TBB == FBB) {
1265     LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate "
1266                       << printMBBReference(*this) << '\n');
1267     return false;
1268   }
1269   return true;
1270 }
1271 
1272 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
1273 /// neighboring instructions so the bundle won't be broken by removing MI.
unbundleSingleMI(MachineInstr * MI)1274 static void unbundleSingleMI(MachineInstr *MI) {
1275   // Removing the first instruction in a bundle.
1276   if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
1277     MI->unbundleFromSucc();
1278   // Removing the last instruction in a bundle.
1279   if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
1280     MI->unbundleFromPred();
1281   // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
1282   // are already fine.
1283 }
1284 
1285 MachineBasicBlock::instr_iterator
erase(MachineBasicBlock::instr_iterator I)1286 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
1287   unbundleSingleMI(&*I);
1288   return Insts.erase(I);
1289 }
1290 
remove_instr(MachineInstr * MI)1291 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
1292   unbundleSingleMI(MI);
1293   MI->clearFlag(MachineInstr::BundledPred);
1294   MI->clearFlag(MachineInstr::BundledSucc);
1295   return Insts.remove(MI);
1296 }
1297 
1298 MachineBasicBlock::instr_iterator
insert(instr_iterator I,MachineInstr * MI)1299 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
1300   assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
1301          "Cannot insert instruction with bundle flags");
1302   // Set the bundle flags when inserting inside a bundle.
1303   if (I != instr_end() && I->isBundledWithPred()) {
1304     MI->setFlag(MachineInstr::BundledPred);
1305     MI->setFlag(MachineInstr::BundledSucc);
1306   }
1307   return Insts.insert(I, MI);
1308 }
1309 
1310 /// This method unlinks 'this' from the containing function, and returns it, but
1311 /// does not delete it.
removeFromParent()1312 MachineBasicBlock *MachineBasicBlock::removeFromParent() {
1313   assert(getParent() && "Not embedded in a function!");
1314   getParent()->remove(this);
1315   return this;
1316 }
1317 
1318 /// This method unlinks 'this' from the containing function, and deletes it.
eraseFromParent()1319 void MachineBasicBlock::eraseFromParent() {
1320   assert(getParent() && "Not embedded in a function!");
1321   getParent()->erase(this);
1322 }
1323 
1324 /// Given a machine basic block that branched to 'Old', change the code and CFG
1325 /// so that it branches to 'New' instead.
ReplaceUsesOfBlockWith(MachineBasicBlock * Old,MachineBasicBlock * New)1326 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
1327                                                MachineBasicBlock *New) {
1328   assert(Old != New && "Cannot replace self with self!");
1329 
1330   MachineBasicBlock::instr_iterator I = instr_end();
1331   while (I != instr_begin()) {
1332     --I;
1333     if (!I->isTerminator()) break;
1334 
1335     // Scan the operands of this machine instruction, replacing any uses of Old
1336     // with New.
1337     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1338       if (I->getOperand(i).isMBB() &&
1339           I->getOperand(i).getMBB() == Old)
1340         I->getOperand(i).setMBB(New);
1341   }
1342 
1343   // Update the successor information.
1344   replaceSuccessor(Old, New);
1345 }
1346 
replacePhiUsesWith(MachineBasicBlock * Old,MachineBasicBlock * New)1347 void MachineBasicBlock::replacePhiUsesWith(MachineBasicBlock *Old,
1348                                            MachineBasicBlock *New) {
1349   for (MachineInstr &MI : phis())
1350     for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
1351       MachineOperand &MO = MI.getOperand(i);
1352       if (MO.getMBB() == Old)
1353         MO.setMBB(New);
1354     }
1355 }
1356 
1357 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
1358 /// instructions.  Return UnknownLoc if there is none.
1359 DebugLoc
findDebugLoc(instr_iterator MBBI)1360 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
1361   // Skip debug declarations, we don't want a DebugLoc from them.
1362   MBBI = skipDebugInstructionsForward(MBBI, instr_end());
1363   if (MBBI != instr_end())
1364     return MBBI->getDebugLoc();
1365   return {};
1366 }
1367 
1368 /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE
1369 /// instructions.  Return UnknownLoc if there is none.
findPrevDebugLoc(instr_iterator MBBI)1370 DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) {
1371   if (MBBI == instr_begin()) return {};
1372   // Skip debug instructions, we don't want a DebugLoc from them.
1373   MBBI = prev_nodbg(MBBI, instr_begin());
1374   if (!MBBI->isDebugInstr()) return MBBI->getDebugLoc();
1375   return {};
1376 }
1377 
1378 /// Find and return the merged DebugLoc of the branch instructions of the block.
1379 /// Return UnknownLoc if there is none.
1380 DebugLoc
findBranchDebugLoc()1381 MachineBasicBlock::findBranchDebugLoc() {
1382   DebugLoc DL;
1383   auto TI = getFirstTerminator();
1384   while (TI != end() && !TI->isBranch())
1385     ++TI;
1386 
1387   if (TI != end()) {
1388     DL = TI->getDebugLoc();
1389     for (++TI ; TI != end() ; ++TI)
1390       if (TI->isBranch())
1391         DL = DILocation::getMergedLocation(DL, TI->getDebugLoc());
1392   }
1393   return DL;
1394 }
1395 
1396 /// Return probability of the edge from this block to MBB.
1397 BranchProbability
getSuccProbability(const_succ_iterator Succ) const1398 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const {
1399   if (Probs.empty())
1400     return BranchProbability(1, succ_size());
1401 
1402   const auto &Prob = *getProbabilityIterator(Succ);
1403   if (Prob.isUnknown()) {
1404     // For unknown probabilities, collect the sum of all known ones, and evenly
1405     // ditribute the complemental of the sum to each unknown probability.
1406     unsigned KnownProbNum = 0;
1407     auto Sum = BranchProbability::getZero();
1408     for (auto &P : Probs) {
1409       if (!P.isUnknown()) {
1410         Sum += P;
1411         KnownProbNum++;
1412       }
1413     }
1414     return Sum.getCompl() / (Probs.size() - KnownProbNum);
1415   } else
1416     return Prob;
1417 }
1418 
1419 /// Set successor probability of a given iterator.
setSuccProbability(succ_iterator I,BranchProbability Prob)1420 void MachineBasicBlock::setSuccProbability(succ_iterator I,
1421                                            BranchProbability Prob) {
1422   assert(!Prob.isUnknown());
1423   if (Probs.empty())
1424     return;
1425   *getProbabilityIterator(I) = Prob;
1426 }
1427 
1428 /// Return probability iterator corresonding to the I successor iterator
1429 MachineBasicBlock::const_probability_iterator
getProbabilityIterator(MachineBasicBlock::const_succ_iterator I) const1430 MachineBasicBlock::getProbabilityIterator(
1431     MachineBasicBlock::const_succ_iterator I) const {
1432   assert(Probs.size() == Successors.size() && "Async probability list!");
1433   const size_t index = std::distance(Successors.begin(), I);
1434   assert(index < Probs.size() && "Not a current successor!");
1435   return Probs.begin() + index;
1436 }
1437 
1438 /// Return probability iterator corresonding to the I successor iterator.
1439 MachineBasicBlock::probability_iterator
getProbabilityIterator(MachineBasicBlock::succ_iterator I)1440 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) {
1441   assert(Probs.size() == Successors.size() && "Async probability list!");
1442   const size_t index = std::distance(Successors.begin(), I);
1443   assert(index < Probs.size() && "Not a current successor!");
1444   return Probs.begin() + index;
1445 }
1446 
1447 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
1448 /// as of just before "MI".
1449 ///
1450 /// Search is localised to a neighborhood of
1451 /// Neighborhood instructions before (searching for defs or kills) and N
1452 /// instructions after (searching just for defs) MI.
1453 MachineBasicBlock::LivenessQueryResult
computeRegisterLiveness(const TargetRegisterInfo * TRI,MCRegister Reg,const_iterator Before,unsigned Neighborhood) const1454 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
1455                                            MCRegister Reg, const_iterator Before,
1456                                            unsigned Neighborhood) const {
1457   unsigned N = Neighborhood;
1458 
1459   // Try searching forwards from Before, looking for reads or defs.
1460   const_iterator I(Before);
1461   for (; I != end() && N > 0; ++I) {
1462     if (I->isDebugInstr())
1463       continue;
1464 
1465     --N;
1466 
1467     PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI);
1468 
1469     // Register is live when we read it here.
1470     if (Info.Read)
1471       return LQR_Live;
1472     // Register is dead if we can fully overwrite or clobber it here.
1473     if (Info.FullyDefined || Info.Clobbered)
1474       return LQR_Dead;
1475   }
1476 
1477   // If we reached the end, it is safe to clobber Reg at the end of a block of
1478   // no successor has it live in.
1479   if (I == end()) {
1480     for (MachineBasicBlock *S : successors()) {
1481       for (const MachineBasicBlock::RegisterMaskPair &LI : S->liveins()) {
1482         if (TRI->regsOverlap(LI.PhysReg, Reg))
1483           return LQR_Live;
1484       }
1485     }
1486 
1487     return LQR_Dead;
1488   }
1489 
1490 
1491   N = Neighborhood;
1492 
1493   // Start by searching backwards from Before, looking for kills, reads or defs.
1494   I = const_iterator(Before);
1495   // If this is the first insn in the block, don't search backwards.
1496   if (I != begin()) {
1497     do {
1498       --I;
1499 
1500       if (I->isDebugInstr())
1501         continue;
1502 
1503       --N;
1504 
1505       PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI);
1506 
1507       // Defs happen after uses so they take precedence if both are present.
1508 
1509       // Register is dead after a dead def of the full register.
1510       if (Info.DeadDef)
1511         return LQR_Dead;
1512       // Register is (at least partially) live after a def.
1513       if (Info.Defined) {
1514         if (!Info.PartialDeadDef)
1515           return LQR_Live;
1516         // As soon as we saw a partial definition (dead or not),
1517         // we cannot tell if the value is partial live without
1518         // tracking the lanemasks. We are not going to do this,
1519         // so fall back on the remaining of the analysis.
1520         break;
1521       }
1522       // Register is dead after a full kill or clobber and no def.
1523       if (Info.Killed || Info.Clobbered)
1524         return LQR_Dead;
1525       // Register must be live if we read it.
1526       if (Info.Read)
1527         return LQR_Live;
1528 
1529     } while (I != begin() && N > 0);
1530   }
1531 
1532   // If all the instructions before this in the block are debug instructions,
1533   // skip over them.
1534   while (I != begin() && std::prev(I)->isDebugInstr())
1535     --I;
1536 
1537   // Did we get to the start of the block?
1538   if (I == begin()) {
1539     // If so, the register's state is definitely defined by the live-in state.
1540     for (const MachineBasicBlock::RegisterMaskPair &LI : liveins())
1541       if (TRI->regsOverlap(LI.PhysReg, Reg))
1542         return LQR_Live;
1543 
1544     return LQR_Dead;
1545   }
1546 
1547   // At this point we have no idea of the liveness of the register.
1548   return LQR_Unknown;
1549 }
1550 
1551 const uint32_t *
getBeginClobberMask(const TargetRegisterInfo * TRI) const1552 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const {
1553   // EH funclet entry does not preserve any registers.
1554   return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr;
1555 }
1556 
1557 const uint32_t *
getEndClobberMask(const TargetRegisterInfo * TRI) const1558 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const {
1559   // If we see a return block with successors, this must be a funclet return,
1560   // which does not preserve any registers. If there are no successors, we don't
1561   // care what kind of return it is, putting a mask after it is a no-op.
1562   return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr;
1563 }
1564 
clearLiveIns()1565 void MachineBasicBlock::clearLiveIns() {
1566   LiveIns.clear();
1567 }
1568 
livein_begin() const1569 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const {
1570   assert(getParent()->getProperties().hasProperty(
1571       MachineFunctionProperties::Property::TracksLiveness) &&
1572       "Liveness information is accurate");
1573   return LiveIns.begin();
1574 }
1575 
1576 const MBBSectionID MBBSectionID::ColdSectionID(MBBSectionID::SectionType::Cold);
1577 const MBBSectionID
1578     MBBSectionID::ExceptionSectionID(MBBSectionID::SectionType::Exception);
1579