1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect the sequence of machine instructions for a basic block.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/CodeGen/MachineBasicBlock.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/CodeGen/LiveIntervals.h"
16 #include "llvm/CodeGen/LiveVariables.h"
17 #include "llvm/CodeGen/MachineDominators.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineLoopInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SlotIndexes.h"
23 #include "llvm/CodeGen/TargetInstrInfo.h"
24 #include "llvm/CodeGen/TargetRegisterInfo.h"
25 #include "llvm/CodeGen/TargetSubtargetInfo.h"
26 #include "llvm/Config/llvm-config.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/ModuleSlotTracker.h"
31 #include "llvm/MC/MCAsmInfo.h"
32 #include "llvm/MC/MCContext.h"
33 #include "llvm/Support/DataTypes.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetMachine.h"
37 #include <algorithm>
38 using namespace llvm;
39
40 #define DEBUG_TYPE "codegen"
41
42 static cl::opt<bool> PrintSlotIndexes(
43 "print-slotindexes",
44 cl::desc("When printing machine IR, annotate instructions and blocks with "
45 "SlotIndexes when available"),
46 cl::init(true), cl::Hidden);
47
MachineBasicBlock(MachineFunction & MF,const BasicBlock * B)48 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B)
49 : BB(B), Number(-1), xParent(&MF) {
50 Insts.Parent = this;
51 if (B)
52 IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight();
53 }
54
~MachineBasicBlock()55 MachineBasicBlock::~MachineBasicBlock() {
56 }
57
58 /// Return the MCSymbol for this basic block.
getSymbol() const59 MCSymbol *MachineBasicBlock::getSymbol() const {
60 if (!CachedMCSymbol) {
61 const MachineFunction *MF = getParent();
62 MCContext &Ctx = MF->getContext();
63
64 // We emit a non-temporary symbol -- with a descriptive name -- if it begins
65 // a section (with basic block sections). Otherwise we fall back to use temp
66 // label.
67 if (MF->hasBBSections() && isBeginSection()) {
68 SmallString<5> Suffix;
69 if (SectionID == MBBSectionID::ColdSectionID) {
70 Suffix += ".cold";
71 } else if (SectionID == MBBSectionID::ExceptionSectionID) {
72 Suffix += ".eh";
73 } else {
74 Suffix += "." + std::to_string(SectionID.Number);
75 }
76 CachedMCSymbol = Ctx.getOrCreateSymbol(MF->getName() + Suffix);
77 } else {
78 const StringRef Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
79 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" +
80 Twine(MF->getFunctionNumber()) +
81 "_" + Twine(getNumber()));
82 }
83 }
84 return CachedMCSymbol;
85 }
86
getEndSymbol() const87 MCSymbol *MachineBasicBlock::getEndSymbol() const {
88 if (!CachedEndMCSymbol) {
89 const MachineFunction *MF = getParent();
90 MCContext &Ctx = MF->getContext();
91 auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
92 CachedEndMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB_END" +
93 Twine(MF->getFunctionNumber()) +
94 "_" + Twine(getNumber()));
95 }
96 return CachedEndMCSymbol;
97 }
98
operator <<(raw_ostream & OS,const MachineBasicBlock & MBB)99 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
100 MBB.print(OS);
101 return OS;
102 }
103
printMBBReference(const MachineBasicBlock & MBB)104 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) {
105 return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); });
106 }
107
108 /// When an MBB is added to an MF, we need to update the parent pointer of the
109 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right
110 /// operand list for registers.
111 ///
112 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
113 /// gets the next available unique MBB number. If it is removed from a
114 /// MachineFunction, it goes back to being #-1.
addNodeToList(MachineBasicBlock * N)115 void ilist_callback_traits<MachineBasicBlock>::addNodeToList(
116 MachineBasicBlock *N) {
117 MachineFunction &MF = *N->getParent();
118 N->Number = MF.addToMBBNumbering(N);
119
120 // Make sure the instructions have their operands in the reginfo lists.
121 MachineRegisterInfo &RegInfo = MF.getRegInfo();
122 for (MachineBasicBlock::instr_iterator
123 I = N->instr_begin(), E = N->instr_end(); I != E; ++I)
124 I->AddRegOperandsToUseLists(RegInfo);
125 }
126
removeNodeFromList(MachineBasicBlock * N)127 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList(
128 MachineBasicBlock *N) {
129 N->getParent()->removeFromMBBNumbering(N->Number);
130 N->Number = -1;
131 }
132
133 /// When we add an instruction to a basic block list, we update its parent
134 /// pointer and add its operands from reg use/def lists if appropriate.
addNodeToList(MachineInstr * N)135 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
136 assert(!N->getParent() && "machine instruction already in a basic block");
137 N->setParent(Parent);
138
139 // Add the instruction's register operands to their corresponding
140 // use/def lists.
141 MachineFunction *MF = Parent->getParent();
142 N->AddRegOperandsToUseLists(MF->getRegInfo());
143 MF->handleInsertion(*N);
144 }
145
146 /// When we remove an instruction from a basic block list, we update its parent
147 /// pointer and remove its operands from reg use/def lists if appropriate.
removeNodeFromList(MachineInstr * N)148 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
149 assert(N->getParent() && "machine instruction not in a basic block");
150
151 // Remove from the use/def lists.
152 if (MachineFunction *MF = N->getMF()) {
153 MF->handleRemoval(*N);
154 N->RemoveRegOperandsFromUseLists(MF->getRegInfo());
155 }
156
157 N->setParent(nullptr);
158 }
159
160 /// When moving a range of instructions from one MBB list to another, we need to
161 /// update the parent pointers and the use/def lists.
transferNodesFromList(ilist_traits & FromList,instr_iterator First,instr_iterator Last)162 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList,
163 instr_iterator First,
164 instr_iterator Last) {
165 assert(Parent->getParent() == FromList.Parent->getParent() &&
166 "cannot transfer MachineInstrs between MachineFunctions");
167
168 // If it's within the same BB, there's nothing to do.
169 if (this == &FromList)
170 return;
171
172 assert(Parent != FromList.Parent && "Two lists have the same parent?");
173
174 // If splicing between two blocks within the same function, just update the
175 // parent pointers.
176 for (; First != Last; ++First)
177 First->setParent(Parent);
178 }
179
deleteNode(MachineInstr * MI)180 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) {
181 assert(!MI->getParent() && "MI is still in a block!");
182 Parent->getParent()->DeleteMachineInstr(MI);
183 }
184
getFirstNonPHI()185 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
186 instr_iterator I = instr_begin(), E = instr_end();
187 while (I != E && I->isPHI())
188 ++I;
189 assert((I == E || !I->isInsideBundle()) &&
190 "First non-phi MI cannot be inside a bundle!");
191 return I;
192 }
193
194 MachineBasicBlock::iterator
SkipPHIsAndLabels(MachineBasicBlock::iterator I)195 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
196 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
197
198 iterator E = end();
199 while (I != E && (I->isPHI() || I->isPosition() ||
200 TII->isBasicBlockPrologue(*I)))
201 ++I;
202 // FIXME: This needs to change if we wish to bundle labels
203 // inside the bundle.
204 assert((I == E || !I->isInsideBundle()) &&
205 "First non-phi / non-label instruction is inside a bundle!");
206 return I;
207 }
208
209 MachineBasicBlock::iterator
SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I)210 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I) {
211 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
212
213 iterator E = end();
214 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() ||
215 TII->isBasicBlockPrologue(*I)))
216 ++I;
217 // FIXME: This needs to change if we wish to bundle labels / dbg_values
218 // inside the bundle.
219 assert((I == E || !I->isInsideBundle()) &&
220 "First non-phi / non-label / non-debug "
221 "instruction is inside a bundle!");
222 return I;
223 }
224
getFirstTerminator()225 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
226 iterator B = begin(), E = end(), I = E;
227 while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
228 ; /*noop */
229 while (I != E && !I->isTerminator())
230 ++I;
231 return I;
232 }
233
getFirstInstrTerminator()234 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
235 instr_iterator B = instr_begin(), E = instr_end(), I = E;
236 while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
237 ; /*noop */
238 while (I != E && !I->isTerminator())
239 ++I;
240 return I;
241 }
242
getFirstNonDebugInstr()243 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() {
244 // Skip over begin-of-block dbg_value instructions.
245 return skipDebugInstructionsForward(begin(), end());
246 }
247
getLastNonDebugInstr()248 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() {
249 // Skip over end-of-block dbg_value instructions.
250 instr_iterator B = instr_begin(), I = instr_end();
251 while (I != B) {
252 --I;
253 // Return instruction that starts a bundle.
254 if (I->isDebugInstr() || I->isInsideBundle())
255 continue;
256 return I;
257 }
258 // The block is all debug values.
259 return end();
260 }
261
hasEHPadSuccessor() const262 bool MachineBasicBlock::hasEHPadSuccessor() const {
263 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I)
264 if ((*I)->isEHPad())
265 return true;
266 return false;
267 }
268
isEntryBlock() const269 bool MachineBasicBlock::isEntryBlock() const {
270 return getParent()->begin() == getIterator();
271 }
272
273 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const274 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const {
275 print(dbgs());
276 }
277 #endif
278
mayHaveInlineAsmBr() const279 bool MachineBasicBlock::mayHaveInlineAsmBr() const {
280 for (const MachineBasicBlock *Succ : successors()) {
281 if (Succ->isInlineAsmBrIndirectTarget())
282 return true;
283 }
284 return false;
285 }
286
isLegalToHoistInto() const287 bool MachineBasicBlock::isLegalToHoistInto() const {
288 if (isReturnBlock() || hasEHPadSuccessor() || mayHaveInlineAsmBr())
289 return false;
290 return true;
291 }
292
getName() const293 StringRef MachineBasicBlock::getName() const {
294 if (const BasicBlock *LBB = getBasicBlock())
295 return LBB->getName();
296 else
297 return StringRef("", 0);
298 }
299
300 /// Return a hopefully unique identifier for this block.
getFullName() const301 std::string MachineBasicBlock::getFullName() const {
302 std::string Name;
303 if (getParent())
304 Name = (getParent()->getName() + ":").str();
305 if (getBasicBlock())
306 Name += getBasicBlock()->getName();
307 else
308 Name += ("BB" + Twine(getNumber())).str();
309 return Name;
310 }
311
print(raw_ostream & OS,const SlotIndexes * Indexes,bool IsStandalone) const312 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes,
313 bool IsStandalone) const {
314 const MachineFunction *MF = getParent();
315 if (!MF) {
316 OS << "Can't print out MachineBasicBlock because parent MachineFunction"
317 << " is null\n";
318 return;
319 }
320 const Function &F = MF->getFunction();
321 const Module *M = F.getParent();
322 ModuleSlotTracker MST(M);
323 MST.incorporateFunction(F);
324 print(OS, MST, Indexes, IsStandalone);
325 }
326
print(raw_ostream & OS,ModuleSlotTracker & MST,const SlotIndexes * Indexes,bool IsStandalone) const327 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST,
328 const SlotIndexes *Indexes,
329 bool IsStandalone) const {
330 const MachineFunction *MF = getParent();
331 if (!MF) {
332 OS << "Can't print out MachineBasicBlock because parent MachineFunction"
333 << " is null\n";
334 return;
335 }
336
337 if (Indexes && PrintSlotIndexes)
338 OS << Indexes->getMBBStartIdx(this) << '\t';
339
340 printName(OS, PrintNameIr | PrintNameAttributes, &MST);
341 OS << ":\n";
342
343 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
344 const MachineRegisterInfo &MRI = MF->getRegInfo();
345 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
346 bool HasLineAttributes = false;
347
348 // Print the preds of this block according to the CFG.
349 if (!pred_empty() && IsStandalone) {
350 if (Indexes) OS << '\t';
351 // Don't indent(2), align with previous line attributes.
352 OS << "; predecessors: ";
353 for (auto I = pred_begin(), E = pred_end(); I != E; ++I) {
354 if (I != pred_begin())
355 OS << ", ";
356 OS << printMBBReference(**I);
357 }
358 OS << '\n';
359 HasLineAttributes = true;
360 }
361
362 if (!succ_empty()) {
363 if (Indexes) OS << '\t';
364 // Print the successors
365 OS.indent(2) << "successors: ";
366 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
367 if (I != succ_begin())
368 OS << ", ";
369 OS << printMBBReference(**I);
370 if (!Probs.empty())
371 OS << '('
372 << format("0x%08" PRIx32, getSuccProbability(I).getNumerator())
373 << ')';
374 }
375 if (!Probs.empty() && IsStandalone) {
376 // Print human readable probabilities as comments.
377 OS << "; ";
378 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
379 const BranchProbability &BP = getSuccProbability(I);
380 if (I != succ_begin())
381 OS << ", ";
382 OS << printMBBReference(**I) << '('
383 << format("%.2f%%",
384 rint(((double)BP.getNumerator() / BP.getDenominator()) *
385 100.0 * 100.0) /
386 100.0)
387 << ')';
388 }
389 }
390
391 OS << '\n';
392 HasLineAttributes = true;
393 }
394
395 if (!livein_empty() && MRI.tracksLiveness()) {
396 if (Indexes) OS << '\t';
397 OS.indent(2) << "liveins: ";
398
399 bool First = true;
400 for (const auto &LI : liveins()) {
401 if (!First)
402 OS << ", ";
403 First = false;
404 OS << printReg(LI.PhysReg, TRI);
405 if (!LI.LaneMask.all())
406 OS << ":0x" << PrintLaneMask(LI.LaneMask);
407 }
408 HasLineAttributes = true;
409 }
410
411 if (HasLineAttributes)
412 OS << '\n';
413
414 bool IsInBundle = false;
415 for (const MachineInstr &MI : instrs()) {
416 if (Indexes && PrintSlotIndexes) {
417 if (Indexes->hasIndex(MI))
418 OS << Indexes->getInstructionIndex(MI);
419 OS << '\t';
420 }
421
422 if (IsInBundle && !MI.isInsideBundle()) {
423 OS.indent(2) << "}\n";
424 IsInBundle = false;
425 }
426
427 OS.indent(IsInBundle ? 4 : 2);
428 MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false,
429 /*AddNewLine=*/false, &TII);
430
431 if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) {
432 OS << " {";
433 IsInBundle = true;
434 }
435 OS << '\n';
436 }
437
438 if (IsInBundle)
439 OS.indent(2) << "}\n";
440
441 if (IrrLoopHeaderWeight && IsStandalone) {
442 if (Indexes) OS << '\t';
443 OS.indent(2) << "; Irreducible loop header weight: "
444 << IrrLoopHeaderWeight.getValue() << '\n';
445 }
446 }
447
448 /// Print the basic block's name as:
449 ///
450 /// bb.{number}[.{ir-name}] [(attributes...)]
451 ///
452 /// The {ir-name} is only printed when the \ref PrintNameIr flag is passed
453 /// (which is the default). If the IR block has no name, it is identified
454 /// numerically using the attribute syntax as "(%ir-block.{ir-slot})".
455 ///
456 /// When the \ref PrintNameAttributes flag is passed, additional attributes
457 /// of the block are printed when set.
458 ///
459 /// \param printNameFlags Combination of \ref PrintNameFlag flags indicating
460 /// the parts to print.
461 /// \param moduleSlotTracker Optional ModuleSlotTracker. This method will
462 /// incorporate its own tracker when necessary to
463 /// determine the block's IR name.
printName(raw_ostream & os,unsigned printNameFlags,ModuleSlotTracker * moduleSlotTracker) const464 void MachineBasicBlock::printName(raw_ostream &os, unsigned printNameFlags,
465 ModuleSlotTracker *moduleSlotTracker) const {
466 os << "bb." << getNumber();
467 bool hasAttributes = false;
468
469 if (printNameFlags & PrintNameIr) {
470 if (const auto *bb = getBasicBlock()) {
471 if (bb->hasName()) {
472 os << '.' << bb->getName();
473 } else {
474 hasAttributes = true;
475 os << " (";
476
477 int slot = -1;
478
479 if (moduleSlotTracker) {
480 slot = moduleSlotTracker->getLocalSlot(bb);
481 } else if (bb->getParent()) {
482 ModuleSlotTracker tmpTracker(bb->getModule(), false);
483 tmpTracker.incorporateFunction(*bb->getParent());
484 slot = tmpTracker.getLocalSlot(bb);
485 }
486
487 if (slot == -1)
488 os << "<ir-block badref>";
489 else
490 os << (Twine("%ir-block.") + Twine(slot)).str();
491 }
492 }
493 }
494
495 if (printNameFlags & PrintNameAttributes) {
496 if (hasAddressTaken()) {
497 os << (hasAttributes ? ", " : " (");
498 os << "address-taken";
499 hasAttributes = true;
500 }
501 if (isEHPad()) {
502 os << (hasAttributes ? ", " : " (");
503 os << "landing-pad";
504 hasAttributes = true;
505 }
506 if (isEHFuncletEntry()) {
507 os << (hasAttributes ? ", " : " (");
508 os << "ehfunclet-entry";
509 hasAttributes = true;
510 }
511 if (getAlignment() != Align(1)) {
512 os << (hasAttributes ? ", " : " (");
513 os << "align " << getAlignment().value();
514 hasAttributes = true;
515 }
516 if (getSectionID() != MBBSectionID(0)) {
517 os << (hasAttributes ? ", " : " (");
518 os << "bbsections ";
519 switch (getSectionID().Type) {
520 case MBBSectionID::SectionType::Exception:
521 os << "Exception";
522 break;
523 case MBBSectionID::SectionType::Cold:
524 os << "Cold";
525 break;
526 default:
527 os << getSectionID().Number;
528 }
529 hasAttributes = true;
530 }
531 }
532
533 if (hasAttributes)
534 os << ')';
535 }
536
printAsOperand(raw_ostream & OS,bool) const537 void MachineBasicBlock::printAsOperand(raw_ostream &OS,
538 bool /*PrintType*/) const {
539 OS << '%';
540 printName(OS, 0);
541 }
542
removeLiveIn(MCPhysReg Reg,LaneBitmask LaneMask)543 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) {
544 LiveInVector::iterator I = find_if(
545 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
546 if (I == LiveIns.end())
547 return;
548
549 I->LaneMask &= ~LaneMask;
550 if (I->LaneMask.none())
551 LiveIns.erase(I);
552 }
553
554 MachineBasicBlock::livein_iterator
removeLiveIn(MachineBasicBlock::livein_iterator I)555 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) {
556 // Get non-const version of iterator.
557 LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin());
558 return LiveIns.erase(LI);
559 }
560
isLiveIn(MCPhysReg Reg,LaneBitmask LaneMask) const561 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const {
562 livein_iterator I = find_if(
563 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
564 return I != livein_end() && (I->LaneMask & LaneMask).any();
565 }
566
sortUniqueLiveIns()567 void MachineBasicBlock::sortUniqueLiveIns() {
568 llvm::sort(LiveIns,
569 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) {
570 return LI0.PhysReg < LI1.PhysReg;
571 });
572 // Liveins are sorted by physreg now we can merge their lanemasks.
573 LiveInVector::const_iterator I = LiveIns.begin();
574 LiveInVector::const_iterator J;
575 LiveInVector::iterator Out = LiveIns.begin();
576 for (; I != LiveIns.end(); ++Out, I = J) {
577 MCRegister PhysReg = I->PhysReg;
578 LaneBitmask LaneMask = I->LaneMask;
579 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J)
580 LaneMask |= J->LaneMask;
581 Out->PhysReg = PhysReg;
582 Out->LaneMask = LaneMask;
583 }
584 LiveIns.erase(Out, LiveIns.end());
585 }
586
587 Register
addLiveIn(MCRegister PhysReg,const TargetRegisterClass * RC)588 MachineBasicBlock::addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC) {
589 assert(getParent() && "MBB must be inserted in function");
590 assert(Register::isPhysicalRegister(PhysReg) && "Expected physreg");
591 assert(RC && "Register class is required");
592 assert((isEHPad() || this == &getParent()->front()) &&
593 "Only the entry block and landing pads can have physreg live ins");
594
595 bool LiveIn = isLiveIn(PhysReg);
596 iterator I = SkipPHIsAndLabels(begin()), E = end();
597 MachineRegisterInfo &MRI = getParent()->getRegInfo();
598 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
599
600 // Look for an existing copy.
601 if (LiveIn)
602 for (;I != E && I->isCopy(); ++I)
603 if (I->getOperand(1).getReg() == PhysReg) {
604 Register VirtReg = I->getOperand(0).getReg();
605 if (!MRI.constrainRegClass(VirtReg, RC))
606 llvm_unreachable("Incompatible live-in register class.");
607 return VirtReg;
608 }
609
610 // No luck, create a virtual register.
611 Register VirtReg = MRI.createVirtualRegister(RC);
612 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
613 .addReg(PhysReg, RegState::Kill);
614 if (!LiveIn)
615 addLiveIn(PhysReg);
616 return VirtReg;
617 }
618
moveBefore(MachineBasicBlock * NewAfter)619 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
620 getParent()->splice(NewAfter->getIterator(), getIterator());
621 }
622
moveAfter(MachineBasicBlock * NewBefore)623 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
624 getParent()->splice(++NewBefore->getIterator(), getIterator());
625 }
626
updateTerminator(MachineBasicBlock * PreviousLayoutSuccessor)627 void MachineBasicBlock::updateTerminator(
628 MachineBasicBlock *PreviousLayoutSuccessor) {
629 LLVM_DEBUG(dbgs() << "Updating terminators on " << printMBBReference(*this)
630 << "\n");
631
632 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
633 // A block with no successors has no concerns with fall-through edges.
634 if (this->succ_empty())
635 return;
636
637 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
638 SmallVector<MachineOperand, 4> Cond;
639 DebugLoc DL = findBranchDebugLoc();
640 bool B = TII->analyzeBranch(*this, TBB, FBB, Cond);
641 (void) B;
642 assert(!B && "UpdateTerminators requires analyzable predecessors!");
643 if (Cond.empty()) {
644 if (TBB) {
645 // The block has an unconditional branch. If its successor is now its
646 // layout successor, delete the branch.
647 if (isLayoutSuccessor(TBB))
648 TII->removeBranch(*this);
649 } else {
650 // The block has an unconditional fallthrough, or the end of the block is
651 // unreachable.
652
653 // Unfortunately, whether the end of the block is unreachable is not
654 // immediately obvious; we must fall back to checking the successor list,
655 // and assuming that if the passed in block is in the succesor list and
656 // not an EHPad, it must be the intended target.
657 if (!PreviousLayoutSuccessor || !isSuccessor(PreviousLayoutSuccessor) ||
658 PreviousLayoutSuccessor->isEHPad())
659 return;
660
661 // If the unconditional successor block is not the current layout
662 // successor, insert a branch to jump to it.
663 if (!isLayoutSuccessor(PreviousLayoutSuccessor))
664 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
665 }
666 return;
667 }
668
669 if (FBB) {
670 // The block has a non-fallthrough conditional branch. If one of its
671 // successors is its layout successor, rewrite it to a fallthrough
672 // conditional branch.
673 if (isLayoutSuccessor(TBB)) {
674 if (TII->reverseBranchCondition(Cond))
675 return;
676 TII->removeBranch(*this);
677 TII->insertBranch(*this, FBB, nullptr, Cond, DL);
678 } else if (isLayoutSuccessor(FBB)) {
679 TII->removeBranch(*this);
680 TII->insertBranch(*this, TBB, nullptr, Cond, DL);
681 }
682 return;
683 }
684
685 // We now know we're going to fallthrough to PreviousLayoutSuccessor.
686 assert(PreviousLayoutSuccessor);
687 assert(!PreviousLayoutSuccessor->isEHPad());
688 assert(isSuccessor(PreviousLayoutSuccessor));
689
690 if (PreviousLayoutSuccessor == TBB) {
691 // We had a fallthrough to the same basic block as the conditional jump
692 // targets. Remove the conditional jump, leaving an unconditional
693 // fallthrough or an unconditional jump.
694 TII->removeBranch(*this);
695 if (!isLayoutSuccessor(TBB)) {
696 Cond.clear();
697 TII->insertBranch(*this, TBB, nullptr, Cond, DL);
698 }
699 return;
700 }
701
702 // The block has a fallthrough conditional branch.
703 if (isLayoutSuccessor(TBB)) {
704 if (TII->reverseBranchCondition(Cond)) {
705 // We can't reverse the condition, add an unconditional branch.
706 Cond.clear();
707 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
708 return;
709 }
710 TII->removeBranch(*this);
711 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
712 } else if (!isLayoutSuccessor(PreviousLayoutSuccessor)) {
713 TII->removeBranch(*this);
714 TII->insertBranch(*this, TBB, PreviousLayoutSuccessor, Cond, DL);
715 }
716 }
717
validateSuccProbs() const718 void MachineBasicBlock::validateSuccProbs() const {
719 #ifndef NDEBUG
720 int64_t Sum = 0;
721 for (auto Prob : Probs)
722 Sum += Prob.getNumerator();
723 // Due to precision issue, we assume that the sum of probabilities is one if
724 // the difference between the sum of their numerators and the denominator is
725 // no greater than the number of successors.
726 assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <=
727 Probs.size() &&
728 "The sum of successors's probabilities exceeds one.");
729 #endif // NDEBUG
730 }
731
addSuccessor(MachineBasicBlock * Succ,BranchProbability Prob)732 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ,
733 BranchProbability Prob) {
734 // Probability list is either empty (if successor list isn't empty, this means
735 // disabled optimization) or has the same size as successor list.
736 if (!(Probs.empty() && !Successors.empty()))
737 Probs.push_back(Prob);
738 Successors.push_back(Succ);
739 Succ->addPredecessor(this);
740 }
741
addSuccessorWithoutProb(MachineBasicBlock * Succ)742 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) {
743 // We need to make sure probability list is either empty or has the same size
744 // of successor list. When this function is called, we can safely delete all
745 // probability in the list.
746 Probs.clear();
747 Successors.push_back(Succ);
748 Succ->addPredecessor(this);
749 }
750
splitSuccessor(MachineBasicBlock * Old,MachineBasicBlock * New,bool NormalizeSuccProbs)751 void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old,
752 MachineBasicBlock *New,
753 bool NormalizeSuccProbs) {
754 succ_iterator OldI = llvm::find(successors(), Old);
755 assert(OldI != succ_end() && "Old is not a successor of this block!");
756 assert(!llvm::is_contained(successors(), New) &&
757 "New is already a successor of this block!");
758
759 // Add a new successor with equal probability as the original one. Note
760 // that we directly copy the probability using the iterator rather than
761 // getting a potentially synthetic probability computed when unknown. This
762 // preserves the probabilities as-is and then we can renormalize them and
763 // query them effectively afterward.
764 addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown()
765 : *getProbabilityIterator(OldI));
766 if (NormalizeSuccProbs)
767 normalizeSuccProbs();
768 }
769
removeSuccessor(MachineBasicBlock * Succ,bool NormalizeSuccProbs)770 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ,
771 bool NormalizeSuccProbs) {
772 succ_iterator I = find(Successors, Succ);
773 removeSuccessor(I, NormalizeSuccProbs);
774 }
775
776 MachineBasicBlock::succ_iterator
removeSuccessor(succ_iterator I,bool NormalizeSuccProbs)777 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) {
778 assert(I != Successors.end() && "Not a current successor!");
779
780 // If probability list is empty it means we don't use it (disabled
781 // optimization).
782 if (!Probs.empty()) {
783 probability_iterator WI = getProbabilityIterator(I);
784 Probs.erase(WI);
785 if (NormalizeSuccProbs)
786 normalizeSuccProbs();
787 }
788
789 (*I)->removePredecessor(this);
790 return Successors.erase(I);
791 }
792
replaceSuccessor(MachineBasicBlock * Old,MachineBasicBlock * New)793 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
794 MachineBasicBlock *New) {
795 if (Old == New)
796 return;
797
798 succ_iterator E = succ_end();
799 succ_iterator NewI = E;
800 succ_iterator OldI = E;
801 for (succ_iterator I = succ_begin(); I != E; ++I) {
802 if (*I == Old) {
803 OldI = I;
804 if (NewI != E)
805 break;
806 }
807 if (*I == New) {
808 NewI = I;
809 if (OldI != E)
810 break;
811 }
812 }
813 assert(OldI != E && "Old is not a successor of this block");
814
815 // If New isn't already a successor, let it take Old's place.
816 if (NewI == E) {
817 Old->removePredecessor(this);
818 New->addPredecessor(this);
819 *OldI = New;
820 return;
821 }
822
823 // New is already a successor.
824 // Update its probability instead of adding a duplicate edge.
825 if (!Probs.empty()) {
826 auto ProbIter = getProbabilityIterator(NewI);
827 if (!ProbIter->isUnknown())
828 *ProbIter += *getProbabilityIterator(OldI);
829 }
830 removeSuccessor(OldI);
831 }
832
copySuccessor(MachineBasicBlock * Orig,succ_iterator I)833 void MachineBasicBlock::copySuccessor(MachineBasicBlock *Orig,
834 succ_iterator I) {
835 if (!Orig->Probs.empty())
836 addSuccessor(*I, Orig->getSuccProbability(I));
837 else
838 addSuccessorWithoutProb(*I);
839 }
840
addPredecessor(MachineBasicBlock * Pred)841 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) {
842 Predecessors.push_back(Pred);
843 }
844
removePredecessor(MachineBasicBlock * Pred)845 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) {
846 pred_iterator I = find(Predecessors, Pred);
847 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
848 Predecessors.erase(I);
849 }
850
transferSuccessors(MachineBasicBlock * FromMBB)851 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) {
852 if (this == FromMBB)
853 return;
854
855 while (!FromMBB->succ_empty()) {
856 MachineBasicBlock *Succ = *FromMBB->succ_begin();
857
858 // If probability list is empty it means we don't use it (disabled
859 // optimization).
860 if (!FromMBB->Probs.empty()) {
861 auto Prob = *FromMBB->Probs.begin();
862 addSuccessor(Succ, Prob);
863 } else
864 addSuccessorWithoutProb(Succ);
865
866 FromMBB->removeSuccessor(Succ);
867 }
868 }
869
870 void
transferSuccessorsAndUpdatePHIs(MachineBasicBlock * FromMBB)871 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) {
872 if (this == FromMBB)
873 return;
874
875 while (!FromMBB->succ_empty()) {
876 MachineBasicBlock *Succ = *FromMBB->succ_begin();
877 if (!FromMBB->Probs.empty()) {
878 auto Prob = *FromMBB->Probs.begin();
879 addSuccessor(Succ, Prob);
880 } else
881 addSuccessorWithoutProb(Succ);
882 FromMBB->removeSuccessor(Succ);
883
884 // Fix up any PHI nodes in the successor.
885 Succ->replacePhiUsesWith(FromMBB, this);
886 }
887 normalizeSuccProbs();
888 }
889
isPredecessor(const MachineBasicBlock * MBB) const890 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
891 return is_contained(predecessors(), MBB);
892 }
893
isSuccessor(const MachineBasicBlock * MBB) const894 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
895 return is_contained(successors(), MBB);
896 }
897
isLayoutSuccessor(const MachineBasicBlock * MBB) const898 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
899 MachineFunction::const_iterator I(this);
900 return std::next(I) == MachineFunction::const_iterator(MBB);
901 }
902
getFallThrough()903 MachineBasicBlock *MachineBasicBlock::getFallThrough() {
904 MachineFunction::iterator Fallthrough = getIterator();
905 ++Fallthrough;
906 // If FallthroughBlock is off the end of the function, it can't fall through.
907 if (Fallthrough == getParent()->end())
908 return nullptr;
909
910 // If FallthroughBlock isn't a successor, no fallthrough is possible.
911 if (!isSuccessor(&*Fallthrough))
912 return nullptr;
913
914 // Analyze the branches, if any, at the end of the block.
915 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
916 SmallVector<MachineOperand, 4> Cond;
917 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
918 if (TII->analyzeBranch(*this, TBB, FBB, Cond)) {
919 // If we couldn't analyze the branch, examine the last instruction.
920 // If the block doesn't end in a known control barrier, assume fallthrough
921 // is possible. The isPredicated check is needed because this code can be
922 // called during IfConversion, where an instruction which is normally a
923 // Barrier is predicated and thus no longer an actual control barrier.
924 return (empty() || !back().isBarrier() || TII->isPredicated(back()))
925 ? &*Fallthrough
926 : nullptr;
927 }
928
929 // If there is no branch, control always falls through.
930 if (!TBB) return &*Fallthrough;
931
932 // If there is some explicit branch to the fallthrough block, it can obviously
933 // reach, even though the branch should get folded to fall through implicitly.
934 if (MachineFunction::iterator(TBB) == Fallthrough ||
935 MachineFunction::iterator(FBB) == Fallthrough)
936 return &*Fallthrough;
937
938 // If it's an unconditional branch to some block not the fall through, it
939 // doesn't fall through.
940 if (Cond.empty()) return nullptr;
941
942 // Otherwise, if it is conditional and has no explicit false block, it falls
943 // through.
944 return (FBB == nullptr) ? &*Fallthrough : nullptr;
945 }
946
canFallThrough()947 bool MachineBasicBlock::canFallThrough() {
948 return getFallThrough() != nullptr;
949 }
950
splitAt(MachineInstr & MI,bool UpdateLiveIns,LiveIntervals * LIS)951 MachineBasicBlock *MachineBasicBlock::splitAt(MachineInstr &MI,
952 bool UpdateLiveIns,
953 LiveIntervals *LIS) {
954 MachineBasicBlock::iterator SplitPoint(&MI);
955 ++SplitPoint;
956
957 if (SplitPoint == end()) {
958 // Don't bother with a new block.
959 return this;
960 }
961
962 MachineFunction *MF = getParent();
963
964 LivePhysRegs LiveRegs;
965 if (UpdateLiveIns) {
966 // Make sure we add any physregs we define in the block as liveins to the
967 // new block.
968 MachineBasicBlock::iterator Prev(&MI);
969 LiveRegs.init(*MF->getSubtarget().getRegisterInfo());
970 LiveRegs.addLiveOuts(*this);
971 for (auto I = rbegin(), E = Prev.getReverse(); I != E; ++I)
972 LiveRegs.stepBackward(*I);
973 }
974
975 MachineBasicBlock *SplitBB = MF->CreateMachineBasicBlock(getBasicBlock());
976
977 MF->insert(++MachineFunction::iterator(this), SplitBB);
978 SplitBB->splice(SplitBB->begin(), this, SplitPoint, end());
979
980 SplitBB->transferSuccessorsAndUpdatePHIs(this);
981 addSuccessor(SplitBB);
982
983 if (UpdateLiveIns)
984 addLiveIns(*SplitBB, LiveRegs);
985
986 if (LIS)
987 LIS->insertMBBInMaps(SplitBB, &MI);
988
989 return SplitBB;
990 }
991
SplitCriticalEdge(MachineBasicBlock * Succ,Pass & P,std::vector<SparseBitVector<>> * LiveInSets)992 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(
993 MachineBasicBlock *Succ, Pass &P,
994 std::vector<SparseBitVector<>> *LiveInSets) {
995 if (!canSplitCriticalEdge(Succ))
996 return nullptr;
997
998 MachineFunction *MF = getParent();
999 MachineBasicBlock *PrevFallthrough = getNextNode();
1000 DebugLoc DL; // FIXME: this is nowhere
1001
1002 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
1003 MF->insert(std::next(MachineFunction::iterator(this)), NMBB);
1004 LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this)
1005 << " -- " << printMBBReference(*NMBB) << " -- "
1006 << printMBBReference(*Succ) << '\n');
1007
1008 LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>();
1009 SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>();
1010 if (LIS)
1011 LIS->insertMBBInMaps(NMBB);
1012 else if (Indexes)
1013 Indexes->insertMBBInMaps(NMBB);
1014
1015 // On some targets like Mips, branches may kill virtual registers. Make sure
1016 // that LiveVariables is properly updated after updateTerminator replaces the
1017 // terminators.
1018 LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>();
1019
1020 // Collect a list of virtual registers killed by the terminators.
1021 SmallVector<Register, 4> KilledRegs;
1022 if (LV)
1023 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
1024 I != E; ++I) {
1025 MachineInstr *MI = &*I;
1026 for (MachineInstr::mop_iterator OI = MI->operands_begin(),
1027 OE = MI->operands_end(); OI != OE; ++OI) {
1028 if (!OI->isReg() || OI->getReg() == 0 ||
1029 !OI->isUse() || !OI->isKill() || OI->isUndef())
1030 continue;
1031 Register Reg = OI->getReg();
1032 if (Register::isPhysicalRegister(Reg) ||
1033 LV->getVarInfo(Reg).removeKill(*MI)) {
1034 KilledRegs.push_back(Reg);
1035 LLVM_DEBUG(dbgs() << "Removing terminator kill: " << *MI);
1036 OI->setIsKill(false);
1037 }
1038 }
1039 }
1040
1041 SmallVector<Register, 4> UsedRegs;
1042 if (LIS) {
1043 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
1044 I != E; ++I) {
1045 MachineInstr *MI = &*I;
1046
1047 for (MachineInstr::mop_iterator OI = MI->operands_begin(),
1048 OE = MI->operands_end(); OI != OE; ++OI) {
1049 if (!OI->isReg() || OI->getReg() == 0)
1050 continue;
1051
1052 Register Reg = OI->getReg();
1053 if (!is_contained(UsedRegs, Reg))
1054 UsedRegs.push_back(Reg);
1055 }
1056 }
1057 }
1058
1059 ReplaceUsesOfBlockWith(Succ, NMBB);
1060
1061 // If updateTerminator() removes instructions, we need to remove them from
1062 // SlotIndexes.
1063 SmallVector<MachineInstr*, 4> Terminators;
1064 if (Indexes) {
1065 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
1066 I != E; ++I)
1067 Terminators.push_back(&*I);
1068 }
1069
1070 // Since we replaced all uses of Succ with NMBB, that should also be treated
1071 // as the fallthrough successor
1072 if (Succ == PrevFallthrough)
1073 PrevFallthrough = NMBB;
1074 updateTerminator(PrevFallthrough);
1075
1076 if (Indexes) {
1077 SmallVector<MachineInstr*, 4> NewTerminators;
1078 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
1079 I != E; ++I)
1080 NewTerminators.push_back(&*I);
1081
1082 for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(),
1083 E = Terminators.end(); I != E; ++I) {
1084 if (!is_contained(NewTerminators, *I))
1085 Indexes->removeMachineInstrFromMaps(**I);
1086 }
1087 }
1088
1089 // Insert unconditional "jump Succ" instruction in NMBB if necessary.
1090 NMBB->addSuccessor(Succ);
1091 if (!NMBB->isLayoutSuccessor(Succ)) {
1092 SmallVector<MachineOperand, 4> Cond;
1093 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
1094 TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL);
1095
1096 if (Indexes) {
1097 for (MachineInstr &MI : NMBB->instrs()) {
1098 // Some instructions may have been moved to NMBB by updateTerminator(),
1099 // so we first remove any instruction that already has an index.
1100 if (Indexes->hasIndex(MI))
1101 Indexes->removeMachineInstrFromMaps(MI);
1102 Indexes->insertMachineInstrInMaps(MI);
1103 }
1104 }
1105 }
1106
1107 // Fix PHI nodes in Succ so they refer to NMBB instead of this.
1108 Succ->replacePhiUsesWith(this, NMBB);
1109
1110 // Inherit live-ins from the successor
1111 for (const auto &LI : Succ->liveins())
1112 NMBB->addLiveIn(LI);
1113
1114 // Update LiveVariables.
1115 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1116 if (LV) {
1117 // Restore kills of virtual registers that were killed by the terminators.
1118 while (!KilledRegs.empty()) {
1119 Register Reg = KilledRegs.pop_back_val();
1120 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
1121 if (!(--I)->addRegisterKilled(Reg, TRI, /* AddIfNotFound= */ false))
1122 continue;
1123 if (Register::isVirtualRegister(Reg))
1124 LV->getVarInfo(Reg).Kills.push_back(&*I);
1125 LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I);
1126 break;
1127 }
1128 }
1129 // Update relevant live-through information.
1130 if (LiveInSets != nullptr)
1131 LV->addNewBlock(NMBB, this, Succ, *LiveInSets);
1132 else
1133 LV->addNewBlock(NMBB, this, Succ);
1134 }
1135
1136 if (LIS) {
1137 // After splitting the edge and updating SlotIndexes, live intervals may be
1138 // in one of two situations, depending on whether this block was the last in
1139 // the function. If the original block was the last in the function, all
1140 // live intervals will end prior to the beginning of the new split block. If
1141 // the original block was not at the end of the function, all live intervals
1142 // will extend to the end of the new split block.
1143
1144 bool isLastMBB =
1145 std::next(MachineFunction::iterator(NMBB)) == getParent()->end();
1146
1147 SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
1148 SlotIndex PrevIndex = StartIndex.getPrevSlot();
1149 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
1150
1151 // Find the registers used from NMBB in PHIs in Succ.
1152 SmallSet<Register, 8> PHISrcRegs;
1153 for (MachineBasicBlock::instr_iterator
1154 I = Succ->instr_begin(), E = Succ->instr_end();
1155 I != E && I->isPHI(); ++I) {
1156 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
1157 if (I->getOperand(ni+1).getMBB() == NMBB) {
1158 MachineOperand &MO = I->getOperand(ni);
1159 Register Reg = MO.getReg();
1160 PHISrcRegs.insert(Reg);
1161 if (MO.isUndef())
1162 continue;
1163
1164 LiveInterval &LI = LIS->getInterval(Reg);
1165 VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1166 assert(VNI &&
1167 "PHI sources should be live out of their predecessors.");
1168 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1169 }
1170 }
1171 }
1172
1173 MachineRegisterInfo *MRI = &getParent()->getRegInfo();
1174 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1175 Register Reg = Register::index2VirtReg(i);
1176 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
1177 continue;
1178
1179 LiveInterval &LI = LIS->getInterval(Reg);
1180 if (!LI.liveAt(PrevIndex))
1181 continue;
1182
1183 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
1184 if (isLiveOut && isLastMBB) {
1185 VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1186 assert(VNI && "LiveInterval should have VNInfo where it is live.");
1187 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1188 } else if (!isLiveOut && !isLastMBB) {
1189 LI.removeSegment(StartIndex, EndIndex);
1190 }
1191 }
1192
1193 // Update all intervals for registers whose uses may have been modified by
1194 // updateTerminator().
1195 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
1196 }
1197
1198 if (MachineDominatorTree *MDT =
1199 P.getAnalysisIfAvailable<MachineDominatorTree>())
1200 MDT->recordSplitCriticalEdge(this, Succ, NMBB);
1201
1202 if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>())
1203 if (MachineLoop *TIL = MLI->getLoopFor(this)) {
1204 // If one or the other blocks were not in a loop, the new block is not
1205 // either, and thus LI doesn't need to be updated.
1206 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
1207 if (TIL == DestLoop) {
1208 // Both in the same loop, the NMBB joins loop.
1209 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1210 } else if (TIL->contains(DestLoop)) {
1211 // Edge from an outer loop to an inner loop. Add to the outer loop.
1212 TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
1213 } else if (DestLoop->contains(TIL)) {
1214 // Edge from an inner loop to an outer loop. Add to the outer loop.
1215 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1216 } else {
1217 // Edge from two loops with no containment relation. Because these
1218 // are natural loops, we know that the destination block must be the
1219 // header of its loop (adding a branch into a loop elsewhere would
1220 // create an irreducible loop).
1221 assert(DestLoop->getHeader() == Succ &&
1222 "Should not create irreducible loops!");
1223 if (MachineLoop *P = DestLoop->getParentLoop())
1224 P->addBasicBlockToLoop(NMBB, MLI->getBase());
1225 }
1226 }
1227 }
1228
1229 return NMBB;
1230 }
1231
canSplitCriticalEdge(const MachineBasicBlock * Succ) const1232 bool MachineBasicBlock::canSplitCriticalEdge(
1233 const MachineBasicBlock *Succ) const {
1234 // Splitting the critical edge to a landing pad block is non-trivial. Don't do
1235 // it in this generic function.
1236 if (Succ->isEHPad())
1237 return false;
1238
1239 // Splitting the critical edge to a callbr's indirect block isn't advised.
1240 // Don't do it in this generic function.
1241 if (Succ->isInlineAsmBrIndirectTarget())
1242 return false;
1243
1244 const MachineFunction *MF = getParent();
1245 // Performance might be harmed on HW that implements branching using exec mask
1246 // where both sides of the branches are always executed.
1247 if (MF->getTarget().requiresStructuredCFG())
1248 return false;
1249
1250 // We may need to update this's terminator, but we can't do that if
1251 // analyzeBranch fails. If this uses a jump table, we won't touch it.
1252 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1253 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1254 SmallVector<MachineOperand, 4> Cond;
1255 // AnalyzeBanch should modify this, since we did not allow modification.
1256 if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond,
1257 /*AllowModify*/ false))
1258 return false;
1259
1260 // Avoid bugpoint weirdness: A block may end with a conditional branch but
1261 // jumps to the same MBB is either case. We have duplicate CFG edges in that
1262 // case that we can't handle. Since this never happens in properly optimized
1263 // code, just skip those edges.
1264 if (TBB && TBB == FBB) {
1265 LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate "
1266 << printMBBReference(*this) << '\n');
1267 return false;
1268 }
1269 return true;
1270 }
1271
1272 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
1273 /// neighboring instructions so the bundle won't be broken by removing MI.
unbundleSingleMI(MachineInstr * MI)1274 static void unbundleSingleMI(MachineInstr *MI) {
1275 // Removing the first instruction in a bundle.
1276 if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
1277 MI->unbundleFromSucc();
1278 // Removing the last instruction in a bundle.
1279 if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
1280 MI->unbundleFromPred();
1281 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
1282 // are already fine.
1283 }
1284
1285 MachineBasicBlock::instr_iterator
erase(MachineBasicBlock::instr_iterator I)1286 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
1287 unbundleSingleMI(&*I);
1288 return Insts.erase(I);
1289 }
1290
remove_instr(MachineInstr * MI)1291 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
1292 unbundleSingleMI(MI);
1293 MI->clearFlag(MachineInstr::BundledPred);
1294 MI->clearFlag(MachineInstr::BundledSucc);
1295 return Insts.remove(MI);
1296 }
1297
1298 MachineBasicBlock::instr_iterator
insert(instr_iterator I,MachineInstr * MI)1299 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
1300 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
1301 "Cannot insert instruction with bundle flags");
1302 // Set the bundle flags when inserting inside a bundle.
1303 if (I != instr_end() && I->isBundledWithPred()) {
1304 MI->setFlag(MachineInstr::BundledPred);
1305 MI->setFlag(MachineInstr::BundledSucc);
1306 }
1307 return Insts.insert(I, MI);
1308 }
1309
1310 /// This method unlinks 'this' from the containing function, and returns it, but
1311 /// does not delete it.
removeFromParent()1312 MachineBasicBlock *MachineBasicBlock::removeFromParent() {
1313 assert(getParent() && "Not embedded in a function!");
1314 getParent()->remove(this);
1315 return this;
1316 }
1317
1318 /// This method unlinks 'this' from the containing function, and deletes it.
eraseFromParent()1319 void MachineBasicBlock::eraseFromParent() {
1320 assert(getParent() && "Not embedded in a function!");
1321 getParent()->erase(this);
1322 }
1323
1324 /// Given a machine basic block that branched to 'Old', change the code and CFG
1325 /// so that it branches to 'New' instead.
ReplaceUsesOfBlockWith(MachineBasicBlock * Old,MachineBasicBlock * New)1326 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
1327 MachineBasicBlock *New) {
1328 assert(Old != New && "Cannot replace self with self!");
1329
1330 MachineBasicBlock::instr_iterator I = instr_end();
1331 while (I != instr_begin()) {
1332 --I;
1333 if (!I->isTerminator()) break;
1334
1335 // Scan the operands of this machine instruction, replacing any uses of Old
1336 // with New.
1337 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1338 if (I->getOperand(i).isMBB() &&
1339 I->getOperand(i).getMBB() == Old)
1340 I->getOperand(i).setMBB(New);
1341 }
1342
1343 // Update the successor information.
1344 replaceSuccessor(Old, New);
1345 }
1346
replacePhiUsesWith(MachineBasicBlock * Old,MachineBasicBlock * New)1347 void MachineBasicBlock::replacePhiUsesWith(MachineBasicBlock *Old,
1348 MachineBasicBlock *New) {
1349 for (MachineInstr &MI : phis())
1350 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
1351 MachineOperand &MO = MI.getOperand(i);
1352 if (MO.getMBB() == Old)
1353 MO.setMBB(New);
1354 }
1355 }
1356
1357 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
1358 /// instructions. Return UnknownLoc if there is none.
1359 DebugLoc
findDebugLoc(instr_iterator MBBI)1360 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
1361 // Skip debug declarations, we don't want a DebugLoc from them.
1362 MBBI = skipDebugInstructionsForward(MBBI, instr_end());
1363 if (MBBI != instr_end())
1364 return MBBI->getDebugLoc();
1365 return {};
1366 }
1367
1368 /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE
1369 /// instructions. Return UnknownLoc if there is none.
findPrevDebugLoc(instr_iterator MBBI)1370 DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) {
1371 if (MBBI == instr_begin()) return {};
1372 // Skip debug instructions, we don't want a DebugLoc from them.
1373 MBBI = prev_nodbg(MBBI, instr_begin());
1374 if (!MBBI->isDebugInstr()) return MBBI->getDebugLoc();
1375 return {};
1376 }
1377
1378 /// Find and return the merged DebugLoc of the branch instructions of the block.
1379 /// Return UnknownLoc if there is none.
1380 DebugLoc
findBranchDebugLoc()1381 MachineBasicBlock::findBranchDebugLoc() {
1382 DebugLoc DL;
1383 auto TI = getFirstTerminator();
1384 while (TI != end() && !TI->isBranch())
1385 ++TI;
1386
1387 if (TI != end()) {
1388 DL = TI->getDebugLoc();
1389 for (++TI ; TI != end() ; ++TI)
1390 if (TI->isBranch())
1391 DL = DILocation::getMergedLocation(DL, TI->getDebugLoc());
1392 }
1393 return DL;
1394 }
1395
1396 /// Return probability of the edge from this block to MBB.
1397 BranchProbability
getSuccProbability(const_succ_iterator Succ) const1398 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const {
1399 if (Probs.empty())
1400 return BranchProbability(1, succ_size());
1401
1402 const auto &Prob = *getProbabilityIterator(Succ);
1403 if (Prob.isUnknown()) {
1404 // For unknown probabilities, collect the sum of all known ones, and evenly
1405 // ditribute the complemental of the sum to each unknown probability.
1406 unsigned KnownProbNum = 0;
1407 auto Sum = BranchProbability::getZero();
1408 for (auto &P : Probs) {
1409 if (!P.isUnknown()) {
1410 Sum += P;
1411 KnownProbNum++;
1412 }
1413 }
1414 return Sum.getCompl() / (Probs.size() - KnownProbNum);
1415 } else
1416 return Prob;
1417 }
1418
1419 /// Set successor probability of a given iterator.
setSuccProbability(succ_iterator I,BranchProbability Prob)1420 void MachineBasicBlock::setSuccProbability(succ_iterator I,
1421 BranchProbability Prob) {
1422 assert(!Prob.isUnknown());
1423 if (Probs.empty())
1424 return;
1425 *getProbabilityIterator(I) = Prob;
1426 }
1427
1428 /// Return probability iterator corresonding to the I successor iterator
1429 MachineBasicBlock::const_probability_iterator
getProbabilityIterator(MachineBasicBlock::const_succ_iterator I) const1430 MachineBasicBlock::getProbabilityIterator(
1431 MachineBasicBlock::const_succ_iterator I) const {
1432 assert(Probs.size() == Successors.size() && "Async probability list!");
1433 const size_t index = std::distance(Successors.begin(), I);
1434 assert(index < Probs.size() && "Not a current successor!");
1435 return Probs.begin() + index;
1436 }
1437
1438 /// Return probability iterator corresonding to the I successor iterator.
1439 MachineBasicBlock::probability_iterator
getProbabilityIterator(MachineBasicBlock::succ_iterator I)1440 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) {
1441 assert(Probs.size() == Successors.size() && "Async probability list!");
1442 const size_t index = std::distance(Successors.begin(), I);
1443 assert(index < Probs.size() && "Not a current successor!");
1444 return Probs.begin() + index;
1445 }
1446
1447 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
1448 /// as of just before "MI".
1449 ///
1450 /// Search is localised to a neighborhood of
1451 /// Neighborhood instructions before (searching for defs or kills) and N
1452 /// instructions after (searching just for defs) MI.
1453 MachineBasicBlock::LivenessQueryResult
computeRegisterLiveness(const TargetRegisterInfo * TRI,MCRegister Reg,const_iterator Before,unsigned Neighborhood) const1454 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
1455 MCRegister Reg, const_iterator Before,
1456 unsigned Neighborhood) const {
1457 unsigned N = Neighborhood;
1458
1459 // Try searching forwards from Before, looking for reads or defs.
1460 const_iterator I(Before);
1461 for (; I != end() && N > 0; ++I) {
1462 if (I->isDebugInstr())
1463 continue;
1464
1465 --N;
1466
1467 PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI);
1468
1469 // Register is live when we read it here.
1470 if (Info.Read)
1471 return LQR_Live;
1472 // Register is dead if we can fully overwrite or clobber it here.
1473 if (Info.FullyDefined || Info.Clobbered)
1474 return LQR_Dead;
1475 }
1476
1477 // If we reached the end, it is safe to clobber Reg at the end of a block of
1478 // no successor has it live in.
1479 if (I == end()) {
1480 for (MachineBasicBlock *S : successors()) {
1481 for (const MachineBasicBlock::RegisterMaskPair &LI : S->liveins()) {
1482 if (TRI->regsOverlap(LI.PhysReg, Reg))
1483 return LQR_Live;
1484 }
1485 }
1486
1487 return LQR_Dead;
1488 }
1489
1490
1491 N = Neighborhood;
1492
1493 // Start by searching backwards from Before, looking for kills, reads or defs.
1494 I = const_iterator(Before);
1495 // If this is the first insn in the block, don't search backwards.
1496 if (I != begin()) {
1497 do {
1498 --I;
1499
1500 if (I->isDebugInstr())
1501 continue;
1502
1503 --N;
1504
1505 PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI);
1506
1507 // Defs happen after uses so they take precedence if both are present.
1508
1509 // Register is dead after a dead def of the full register.
1510 if (Info.DeadDef)
1511 return LQR_Dead;
1512 // Register is (at least partially) live after a def.
1513 if (Info.Defined) {
1514 if (!Info.PartialDeadDef)
1515 return LQR_Live;
1516 // As soon as we saw a partial definition (dead or not),
1517 // we cannot tell if the value is partial live without
1518 // tracking the lanemasks. We are not going to do this,
1519 // so fall back on the remaining of the analysis.
1520 break;
1521 }
1522 // Register is dead after a full kill or clobber and no def.
1523 if (Info.Killed || Info.Clobbered)
1524 return LQR_Dead;
1525 // Register must be live if we read it.
1526 if (Info.Read)
1527 return LQR_Live;
1528
1529 } while (I != begin() && N > 0);
1530 }
1531
1532 // If all the instructions before this in the block are debug instructions,
1533 // skip over them.
1534 while (I != begin() && std::prev(I)->isDebugInstr())
1535 --I;
1536
1537 // Did we get to the start of the block?
1538 if (I == begin()) {
1539 // If so, the register's state is definitely defined by the live-in state.
1540 for (const MachineBasicBlock::RegisterMaskPair &LI : liveins())
1541 if (TRI->regsOverlap(LI.PhysReg, Reg))
1542 return LQR_Live;
1543
1544 return LQR_Dead;
1545 }
1546
1547 // At this point we have no idea of the liveness of the register.
1548 return LQR_Unknown;
1549 }
1550
1551 const uint32_t *
getBeginClobberMask(const TargetRegisterInfo * TRI) const1552 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const {
1553 // EH funclet entry does not preserve any registers.
1554 return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr;
1555 }
1556
1557 const uint32_t *
getEndClobberMask(const TargetRegisterInfo * TRI) const1558 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const {
1559 // If we see a return block with successors, this must be a funclet return,
1560 // which does not preserve any registers. If there are no successors, we don't
1561 // care what kind of return it is, putting a mask after it is a no-op.
1562 return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr;
1563 }
1564
clearLiveIns()1565 void MachineBasicBlock::clearLiveIns() {
1566 LiveIns.clear();
1567 }
1568
livein_begin() const1569 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const {
1570 assert(getParent()->getProperties().hasProperty(
1571 MachineFunctionProperties::Property::TracksLiveness) &&
1572 "Liveness information is accurate");
1573 return LiveIns.begin();
1574 }
1575
1576 const MBBSectionID MBBSectionID::ColdSectionID(MBBSectionID::SectionType::Cold);
1577 const MBBSectionID
1578 MBBSectionID::ExceptionSectionID(MBBSectionID::SectionType::Exception);
1579