1 /*
2 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3 *
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 */
11
12 #include <assert.h>
13 #include <limits.h>
14 #include <stdio.h>
15
16 #include "aom/aom_encoder.h"
17 #include "aom_dsp/aom_dsp_common.h"
18 #include "aom_dsp/binary_codes_writer.h"
19 #include "aom_dsp/bitwriter_buffer.h"
20 #include "aom_mem/aom_mem.h"
21 #include "aom_ports/bitops.h"
22 #include "aom_ports/mem_ops.h"
23 #include "aom_ports/system_state.h"
24 #if CONFIG_BITSTREAM_DEBUG
25 #include "aom_util/debug_util.h"
26 #endif // CONFIG_BITSTREAM_DEBUG
27
28 #include "av1/common/cdef.h"
29 #include "av1/common/cfl.h"
30 #include "av1/common/entropy.h"
31 #include "av1/common/entropymode.h"
32 #include "av1/common/entropymv.h"
33 #include "av1/common/mvref_common.h"
34 #include "av1/common/pred_common.h"
35 #include "av1/common/reconinter.h"
36 #include "av1/common/reconintra.h"
37 #include "av1/common/seg_common.h"
38 #include "av1/common/tile_common.h"
39
40 #include "av1/encoder/bitstream.h"
41 #include "av1/encoder/cost.h"
42 #include "av1/encoder/encodemv.h"
43 #include "av1/encoder/encodetxb.h"
44 #include "av1/encoder/mcomp.h"
45 #include "av1/encoder/palette.h"
46 #include "av1/encoder/segmentation.h"
47 #include "av1/encoder/tokenize.h"
48
49 #define ENC_MISMATCH_DEBUG 0
50
write_uniform(aom_writer * w,int n,int v)51 static INLINE void write_uniform(aom_writer *w, int n, int v) {
52 const int l = get_unsigned_bits(n);
53 const int m = (1 << l) - n;
54 if (l == 0) return;
55 if (v < m) {
56 aom_write_literal(w, v, l - 1);
57 } else {
58 aom_write_literal(w, m + ((v - m) >> 1), l - 1);
59 aom_write_literal(w, (v - m) & 1, 1);
60 }
61 }
62
63 static AOM_INLINE void loop_restoration_write_sb_coeffs(
64 const AV1_COMMON *const cm, MACROBLOCKD *xd, const RestorationUnitInfo *rui,
65 aom_writer *const w, int plane, FRAME_COUNTS *counts);
66
write_intra_y_mode_kf(FRAME_CONTEXT * frame_ctx,const MB_MODE_INFO * mi,const MB_MODE_INFO * above_mi,const MB_MODE_INFO * left_mi,PREDICTION_MODE mode,aom_writer * w)67 static AOM_INLINE void write_intra_y_mode_kf(FRAME_CONTEXT *frame_ctx,
68 const MB_MODE_INFO *mi,
69 const MB_MODE_INFO *above_mi,
70 const MB_MODE_INFO *left_mi,
71 PREDICTION_MODE mode,
72 aom_writer *w) {
73 assert(!is_intrabc_block(mi));
74 (void)mi;
75 aom_write_symbol(w, mode, get_y_mode_cdf(frame_ctx, above_mi, left_mi),
76 INTRA_MODES);
77 }
78
write_inter_mode(aom_writer * w,PREDICTION_MODE mode,FRAME_CONTEXT * ec_ctx,const int16_t mode_ctx)79 static AOM_INLINE void write_inter_mode(aom_writer *w, PREDICTION_MODE mode,
80 FRAME_CONTEXT *ec_ctx,
81 const int16_t mode_ctx) {
82 const int16_t newmv_ctx = mode_ctx & NEWMV_CTX_MASK;
83
84 aom_write_symbol(w, mode != NEWMV, ec_ctx->newmv_cdf[newmv_ctx], 2);
85
86 if (mode != NEWMV) {
87 const int16_t zeromv_ctx =
88 (mode_ctx >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;
89 aom_write_symbol(w, mode != GLOBALMV, ec_ctx->zeromv_cdf[zeromv_ctx], 2);
90
91 if (mode != GLOBALMV) {
92 int16_t refmv_ctx = (mode_ctx >> REFMV_OFFSET) & REFMV_CTX_MASK;
93 aom_write_symbol(w, mode != NEARESTMV, ec_ctx->refmv_cdf[refmv_ctx], 2);
94 }
95 }
96 }
97
write_drl_idx(FRAME_CONTEXT * ec_ctx,const MB_MODE_INFO * mbmi,const MB_MODE_INFO_EXT_FRAME * mbmi_ext_frame,aom_writer * w)98 static AOM_INLINE void write_drl_idx(
99 FRAME_CONTEXT *ec_ctx, const MB_MODE_INFO *mbmi,
100 const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame, aom_writer *w) {
101 assert(mbmi->ref_mv_idx < 3);
102
103 const int new_mv = mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV;
104 if (new_mv) {
105 int idx;
106 for (idx = 0; idx < 2; ++idx) {
107 if (mbmi_ext_frame->ref_mv_count > idx + 1) {
108 uint8_t drl_ctx = av1_drl_ctx(mbmi_ext_frame->weight, idx);
109
110 aom_write_symbol(w, mbmi->ref_mv_idx != idx, ec_ctx->drl_cdf[drl_ctx],
111 2);
112 if (mbmi->ref_mv_idx == idx) return;
113 }
114 }
115 return;
116 }
117
118 if (have_nearmv_in_inter_mode(mbmi->mode)) {
119 int idx;
120 // TODO(jingning): Temporary solution to compensate the NEARESTMV offset.
121 for (idx = 1; idx < 3; ++idx) {
122 if (mbmi_ext_frame->ref_mv_count > idx + 1) {
123 uint8_t drl_ctx = av1_drl_ctx(mbmi_ext_frame->weight, idx);
124 aom_write_symbol(w, mbmi->ref_mv_idx != (idx - 1),
125 ec_ctx->drl_cdf[drl_ctx], 2);
126 if (mbmi->ref_mv_idx == (idx - 1)) return;
127 }
128 }
129 return;
130 }
131 }
132
write_inter_compound_mode(MACROBLOCKD * xd,aom_writer * w,PREDICTION_MODE mode,const int16_t mode_ctx)133 static AOM_INLINE void write_inter_compound_mode(MACROBLOCKD *xd, aom_writer *w,
134 PREDICTION_MODE mode,
135 const int16_t mode_ctx) {
136 assert(is_inter_compound_mode(mode));
137 aom_write_symbol(w, INTER_COMPOUND_OFFSET(mode),
138 xd->tile_ctx->inter_compound_mode_cdf[mode_ctx],
139 INTER_COMPOUND_MODES);
140 }
141
write_tx_size_vartx(MACROBLOCKD * xd,const MB_MODE_INFO * mbmi,TX_SIZE tx_size,int depth,int blk_row,int blk_col,aom_writer * w)142 static AOM_INLINE void write_tx_size_vartx(MACROBLOCKD *xd,
143 const MB_MODE_INFO *mbmi,
144 TX_SIZE tx_size, int depth,
145 int blk_row, int blk_col,
146 aom_writer *w) {
147 FRAME_CONTEXT *const ec_ctx = xd->tile_ctx;
148 const int max_blocks_high = max_block_high(xd, mbmi->sb_type, 0);
149 const int max_blocks_wide = max_block_wide(xd, mbmi->sb_type, 0);
150
151 if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
152
153 if (depth == MAX_VARTX_DEPTH) {
154 txfm_partition_update(xd->above_txfm_context + blk_col,
155 xd->left_txfm_context + blk_row, tx_size, tx_size);
156 return;
157 }
158
159 const int ctx = txfm_partition_context(xd->above_txfm_context + blk_col,
160 xd->left_txfm_context + blk_row,
161 mbmi->sb_type, tx_size);
162 const int txb_size_index =
163 av1_get_txb_size_index(mbmi->sb_type, blk_row, blk_col);
164 const int write_txfm_partition =
165 tx_size == mbmi->inter_tx_size[txb_size_index];
166 if (write_txfm_partition) {
167 aom_write_symbol(w, 0, ec_ctx->txfm_partition_cdf[ctx], 2);
168
169 txfm_partition_update(xd->above_txfm_context + blk_col,
170 xd->left_txfm_context + blk_row, tx_size, tx_size);
171 // TODO(yuec): set correct txfm partition update for qttx
172 } else {
173 const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
174 const int bsw = tx_size_wide_unit[sub_txs];
175 const int bsh = tx_size_high_unit[sub_txs];
176
177 aom_write_symbol(w, 1, ec_ctx->txfm_partition_cdf[ctx], 2);
178
179 if (sub_txs == TX_4X4) {
180 txfm_partition_update(xd->above_txfm_context + blk_col,
181 xd->left_txfm_context + blk_row, sub_txs, tx_size);
182 return;
183 }
184
185 assert(bsw > 0 && bsh > 0);
186 for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh)
187 for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) {
188 int offsetr = blk_row + row;
189 int offsetc = blk_col + col;
190 write_tx_size_vartx(xd, mbmi, sub_txs, depth + 1, offsetr, offsetc, w);
191 }
192 }
193 }
194
write_selected_tx_size(const MACROBLOCKD * xd,aom_writer * w)195 static AOM_INLINE void write_selected_tx_size(const MACROBLOCKD *xd,
196 aom_writer *w) {
197 const MB_MODE_INFO *const mbmi = xd->mi[0];
198 const BLOCK_SIZE bsize = mbmi->sb_type;
199 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
200 if (block_signals_txsize(bsize)) {
201 const TX_SIZE tx_size = mbmi->tx_size;
202 const int tx_size_ctx = get_tx_size_context(xd);
203 const int depth = tx_size_to_depth(tx_size, bsize);
204 const int max_depths = bsize_to_max_depth(bsize);
205 const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize);
206
207 assert(depth >= 0 && depth <= max_depths);
208 assert(!is_inter_block(mbmi));
209 assert(IMPLIES(is_rect_tx(tx_size), is_rect_tx_allowed(xd, mbmi)));
210
211 aom_write_symbol(w, depth, ec_ctx->tx_size_cdf[tx_size_cat][tx_size_ctx],
212 max_depths + 1);
213 }
214 }
215
write_skip(const AV1_COMMON * cm,const MACROBLOCKD * xd,int segment_id,const MB_MODE_INFO * mi,aom_writer * w)216 static int write_skip(const AV1_COMMON *cm, const MACROBLOCKD *xd,
217 int segment_id, const MB_MODE_INFO *mi, aom_writer *w) {
218 if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
219 return 1;
220 } else {
221 const int skip = mi->skip;
222 const int ctx = av1_get_skip_context(xd);
223 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
224 aom_write_symbol(w, skip, ec_ctx->skip_cdfs[ctx], 2);
225 return skip;
226 }
227 }
228
write_skip_mode(const AV1_COMMON * cm,const MACROBLOCKD * xd,int segment_id,const MB_MODE_INFO * mi,aom_writer * w)229 static int write_skip_mode(const AV1_COMMON *cm, const MACROBLOCKD *xd,
230 int segment_id, const MB_MODE_INFO *mi,
231 aom_writer *w) {
232 if (!cm->current_frame.skip_mode_info.skip_mode_flag) return 0;
233 if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
234 return 0;
235 }
236 const int skip_mode = mi->skip_mode;
237 if (!is_comp_ref_allowed(mi->sb_type)) {
238 assert(!skip_mode);
239 return 0;
240 }
241 if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME) ||
242 segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) {
243 // These features imply single-reference mode, while skip mode implies
244 // compound reference. Hence, the two are mutually exclusive.
245 // In other words, skip_mode is implicitly 0 here.
246 assert(!skip_mode);
247 return 0;
248 }
249 const int ctx = av1_get_skip_mode_context(xd);
250 aom_write_symbol(w, skip_mode, xd->tile_ctx->skip_mode_cdfs[ctx], 2);
251 return skip_mode;
252 }
253
write_is_inter(const AV1_COMMON * cm,const MACROBLOCKD * xd,int segment_id,aom_writer * w,const int is_inter)254 static AOM_INLINE void write_is_inter(const AV1_COMMON *cm,
255 const MACROBLOCKD *xd, int segment_id,
256 aom_writer *w, const int is_inter) {
257 if (!segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
258 if (segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) {
259 assert(is_inter);
260 return;
261 }
262 const int ctx = av1_get_intra_inter_context(xd);
263 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
264 aom_write_symbol(w, is_inter, ec_ctx->intra_inter_cdf[ctx], 2);
265 }
266 }
267
write_motion_mode(const AV1_COMMON * cm,MACROBLOCKD * xd,const MB_MODE_INFO * mbmi,aom_writer * w)268 static AOM_INLINE void write_motion_mode(const AV1_COMMON *cm, MACROBLOCKD *xd,
269 const MB_MODE_INFO *mbmi,
270 aom_writer *w) {
271 MOTION_MODE last_motion_mode_allowed =
272 cm->features.switchable_motion_mode
273 ? motion_mode_allowed(cm->global_motion, xd, mbmi,
274 cm->features.allow_warped_motion)
275 : SIMPLE_TRANSLATION;
276 assert(mbmi->motion_mode <= last_motion_mode_allowed);
277 switch (last_motion_mode_allowed) {
278 case SIMPLE_TRANSLATION: break;
279 case OBMC_CAUSAL:
280 aom_write_symbol(w, mbmi->motion_mode == OBMC_CAUSAL,
281 xd->tile_ctx->obmc_cdf[mbmi->sb_type], 2);
282 break;
283 default:
284 aom_write_symbol(w, mbmi->motion_mode,
285 xd->tile_ctx->motion_mode_cdf[mbmi->sb_type],
286 MOTION_MODES);
287 }
288 }
289
write_delta_qindex(const MACROBLOCKD * xd,int delta_qindex,aom_writer * w)290 static AOM_INLINE void write_delta_qindex(const MACROBLOCKD *xd,
291 int delta_qindex, aom_writer *w) {
292 int sign = delta_qindex < 0;
293 int abs = sign ? -delta_qindex : delta_qindex;
294 int rem_bits, thr;
295 int smallval = abs < DELTA_Q_SMALL ? 1 : 0;
296 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
297
298 aom_write_symbol(w, AOMMIN(abs, DELTA_Q_SMALL), ec_ctx->delta_q_cdf,
299 DELTA_Q_PROBS + 1);
300
301 if (!smallval) {
302 rem_bits = get_msb(abs - 1);
303 thr = (1 << rem_bits) + 1;
304 aom_write_literal(w, rem_bits - 1, 3);
305 aom_write_literal(w, abs - thr, rem_bits);
306 }
307 if (abs > 0) {
308 aom_write_bit(w, sign);
309 }
310 }
311
write_delta_lflevel(const AV1_COMMON * cm,const MACROBLOCKD * xd,int lf_id,int delta_lflevel,aom_writer * w)312 static AOM_INLINE void write_delta_lflevel(const AV1_COMMON *cm,
313 const MACROBLOCKD *xd, int lf_id,
314 int delta_lflevel, aom_writer *w) {
315 int sign = delta_lflevel < 0;
316 int abs = sign ? -delta_lflevel : delta_lflevel;
317 int rem_bits, thr;
318 int smallval = abs < DELTA_LF_SMALL ? 1 : 0;
319 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
320
321 if (cm->delta_q_info.delta_lf_multi) {
322 assert(lf_id >= 0 && lf_id < (av1_num_planes(cm) > 1 ? FRAME_LF_COUNT
323 : FRAME_LF_COUNT - 2));
324 aom_write_symbol(w, AOMMIN(abs, DELTA_LF_SMALL),
325 ec_ctx->delta_lf_multi_cdf[lf_id], DELTA_LF_PROBS + 1);
326 } else {
327 aom_write_symbol(w, AOMMIN(abs, DELTA_LF_SMALL), ec_ctx->delta_lf_cdf,
328 DELTA_LF_PROBS + 1);
329 }
330
331 if (!smallval) {
332 rem_bits = get_msb(abs - 1);
333 thr = (1 << rem_bits) + 1;
334 aom_write_literal(w, rem_bits - 1, 3);
335 aom_write_literal(w, abs - thr, rem_bits);
336 }
337 if (abs > 0) {
338 aom_write_bit(w, sign);
339 }
340 }
341
pack_map_tokens(aom_writer * w,const TOKENEXTRA ** tp,int n,int num)342 static AOM_INLINE void pack_map_tokens(aom_writer *w, const TOKENEXTRA **tp,
343 int n, int num) {
344 const TOKENEXTRA *p = *tp;
345 write_uniform(w, n, p->token); // The first color index.
346 ++p;
347 --num;
348 for (int i = 0; i < num; ++i) {
349 aom_write_symbol(w, p->token, p->color_map_cdf, n);
350 ++p;
351 }
352 *tp = p;
353 }
354
pack_txb_tokens(aom_writer * w,AV1_COMMON * cm,MACROBLOCK * const x,const TOKENEXTRA ** tp,const TOKENEXTRA * const tok_end,MACROBLOCKD * xd,MB_MODE_INFO * mbmi,int plane,BLOCK_SIZE plane_bsize,aom_bit_depth_t bit_depth,int block,int blk_row,int blk_col,TX_SIZE tx_size,TOKEN_STATS * token_stats)355 static AOM_INLINE void pack_txb_tokens(
356 aom_writer *w, AV1_COMMON *cm, MACROBLOCK *const x, const TOKENEXTRA **tp,
357 const TOKENEXTRA *const tok_end, MACROBLOCKD *xd, MB_MODE_INFO *mbmi,
358 int plane, BLOCK_SIZE plane_bsize, aom_bit_depth_t bit_depth, int block,
359 int blk_row, int blk_col, TX_SIZE tx_size, TOKEN_STATS *token_stats) {
360 const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
361 const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
362
363 if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
364
365 const struct macroblockd_plane *const pd = &xd->plane[plane];
366 const TX_SIZE plane_tx_size =
367 plane ? av1_get_max_uv_txsize(mbmi->sb_type, pd->subsampling_x,
368 pd->subsampling_y)
369 : mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row,
370 blk_col)];
371
372 if (tx_size == plane_tx_size || plane) {
373 av1_write_coeffs_txb(cm, x, w, blk_row, blk_col, plane, block, tx_size);
374 #if CONFIG_RD_DEBUG
375 TOKEN_STATS tmp_token_stats;
376 init_token_stats(&tmp_token_stats);
377 token_stats->txb_coeff_cost_map[blk_row][blk_col] = tmp_token_stats.cost;
378 token_stats->cost += tmp_token_stats.cost;
379 #endif
380 } else {
381 const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
382 const int bsw = tx_size_wide_unit[sub_txs];
383 const int bsh = tx_size_high_unit[sub_txs];
384 const int step = bsh * bsw;
385
386 assert(bsw > 0 && bsh > 0);
387
388 for (int r = 0; r < tx_size_high_unit[tx_size]; r += bsh) {
389 for (int c = 0; c < tx_size_wide_unit[tx_size]; c += bsw) {
390 const int offsetr = blk_row + r;
391 const int offsetc = blk_col + c;
392 if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue;
393 pack_txb_tokens(w, cm, x, tp, tok_end, xd, mbmi, plane, plane_bsize,
394 bit_depth, block, offsetr, offsetc, sub_txs,
395 token_stats);
396 block += step;
397 }
398 }
399 }
400 }
401
set_spatial_segment_id(const CommonModeInfoParams * const mi_params,uint8_t * segment_ids,BLOCK_SIZE bsize,int mi_row,int mi_col,int segment_id)402 static INLINE void set_spatial_segment_id(
403 const CommonModeInfoParams *const mi_params, uint8_t *segment_ids,
404 BLOCK_SIZE bsize, int mi_row, int mi_col, int segment_id) {
405 const int mi_offset = mi_row * mi_params->mi_cols + mi_col;
406 const int bw = mi_size_wide[bsize];
407 const int bh = mi_size_high[bsize];
408 const int xmis = AOMMIN(mi_params->mi_cols - mi_col, bw);
409 const int ymis = AOMMIN(mi_params->mi_rows - mi_row, bh);
410
411 for (int y = 0; y < ymis; ++y) {
412 for (int x = 0; x < xmis; ++x) {
413 segment_ids[mi_offset + y * mi_params->mi_cols + x] = segment_id;
414 }
415 }
416 }
417
av1_neg_interleave(int x,int ref,int max)418 int av1_neg_interleave(int x, int ref, int max) {
419 assert(x < max);
420 const int diff = x - ref;
421 if (!ref) return x;
422 if (ref >= (max - 1)) return -x + max - 1;
423 if (2 * ref < max) {
424 if (abs(diff) <= ref) {
425 if (diff > 0)
426 return (diff << 1) - 1;
427 else
428 return ((-diff) << 1);
429 }
430 return x;
431 } else {
432 if (abs(diff) < (max - ref)) {
433 if (diff > 0)
434 return (diff << 1) - 1;
435 else
436 return ((-diff) << 1);
437 }
438 return (max - x) - 1;
439 }
440 }
441
write_segment_id(AV1_COMP * cpi,const MB_MODE_INFO * const mbmi,aom_writer * w,const struct segmentation * seg,struct segmentation_probs * segp,int skip)442 static AOM_INLINE void write_segment_id(
443 AV1_COMP *cpi, const MB_MODE_INFO *const mbmi, aom_writer *w,
444 const struct segmentation *seg, struct segmentation_probs *segp, int skip) {
445 if (!seg->enabled || !seg->update_map) return;
446
447 AV1_COMMON *const cm = &cpi->common;
448 MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
449 int cdf_num;
450 const int pred = av1_get_spatial_seg_pred(cm, xd, &cdf_num);
451 const int mi_row = xd->mi_row;
452 const int mi_col = xd->mi_col;
453
454 if (skip) {
455 // Still need to transmit tx size for intra blocks even if skip is
456 // true. Changing segment_id may make the tx size become invalid, e.g
457 // changing from lossless to lossy.
458 assert(is_inter_block(mbmi) || !cpi->enc_seg.has_lossless_segment);
459
460 set_spatial_segment_id(&cm->mi_params, cm->cur_frame->seg_map,
461 mbmi->sb_type, mi_row, mi_col, pred);
462 set_spatial_segment_id(&cm->mi_params, cpi->enc_seg.map, mbmi->sb_type,
463 mi_row, mi_col, pred);
464 /* mbmi is read only but we need to update segment_id */
465 ((MB_MODE_INFO *)mbmi)->segment_id = pred;
466 return;
467 }
468
469 const int coded_id =
470 av1_neg_interleave(mbmi->segment_id, pred, seg->last_active_segid + 1);
471 aom_cdf_prob *pred_cdf = segp->spatial_pred_seg_cdf[cdf_num];
472 aom_write_symbol(w, coded_id, pred_cdf, MAX_SEGMENTS);
473 set_spatial_segment_id(&cm->mi_params, cm->cur_frame->seg_map, mbmi->sb_type,
474 mi_row, mi_col, mbmi->segment_id);
475 }
476
477 #define WRITE_REF_BIT(bname, pname) \
478 aom_write_symbol(w, bname, av1_get_pred_cdf_##pname(xd), 2)
479
480 // This function encodes the reference frame
write_ref_frames(const AV1_COMMON * cm,const MACROBLOCKD * xd,aom_writer * w)481 static AOM_INLINE void write_ref_frames(const AV1_COMMON *cm,
482 const MACROBLOCKD *xd, aom_writer *w) {
483 const MB_MODE_INFO *const mbmi = xd->mi[0];
484 const int is_compound = has_second_ref(mbmi);
485 const int segment_id = mbmi->segment_id;
486
487 // If segment level coding of this signal is disabled...
488 // or the segment allows multiple reference frame options
489 if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
490 assert(!is_compound);
491 assert(mbmi->ref_frame[0] ==
492 get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME));
493 } else if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP) ||
494 segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) {
495 assert(!is_compound);
496 assert(mbmi->ref_frame[0] == LAST_FRAME);
497 } else {
498 // does the feature use compound prediction or not
499 // (if not specified at the frame/segment level)
500 if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT) {
501 if (is_comp_ref_allowed(mbmi->sb_type))
502 aom_write_symbol(w, is_compound, av1_get_reference_mode_cdf(xd), 2);
503 } else {
504 assert((!is_compound) ==
505 (cm->current_frame.reference_mode == SINGLE_REFERENCE));
506 }
507
508 if (is_compound) {
509 const COMP_REFERENCE_TYPE comp_ref_type = has_uni_comp_refs(mbmi)
510 ? UNIDIR_COMP_REFERENCE
511 : BIDIR_COMP_REFERENCE;
512 aom_write_symbol(w, comp_ref_type, av1_get_comp_reference_type_cdf(xd),
513 2);
514
515 if (comp_ref_type == UNIDIR_COMP_REFERENCE) {
516 const int bit = mbmi->ref_frame[0] == BWDREF_FRAME;
517 WRITE_REF_BIT(bit, uni_comp_ref_p);
518
519 if (!bit) {
520 assert(mbmi->ref_frame[0] == LAST_FRAME);
521 const int bit1 = mbmi->ref_frame[1] == LAST3_FRAME ||
522 mbmi->ref_frame[1] == GOLDEN_FRAME;
523 WRITE_REF_BIT(bit1, uni_comp_ref_p1);
524 if (bit1) {
525 const int bit2 = mbmi->ref_frame[1] == GOLDEN_FRAME;
526 WRITE_REF_BIT(bit2, uni_comp_ref_p2);
527 }
528 } else {
529 assert(mbmi->ref_frame[1] == ALTREF_FRAME);
530 }
531
532 return;
533 }
534
535 assert(comp_ref_type == BIDIR_COMP_REFERENCE);
536
537 const int bit = (mbmi->ref_frame[0] == GOLDEN_FRAME ||
538 mbmi->ref_frame[0] == LAST3_FRAME);
539 WRITE_REF_BIT(bit, comp_ref_p);
540
541 if (!bit) {
542 const int bit1 = mbmi->ref_frame[0] == LAST2_FRAME;
543 WRITE_REF_BIT(bit1, comp_ref_p1);
544 } else {
545 const int bit2 = mbmi->ref_frame[0] == GOLDEN_FRAME;
546 WRITE_REF_BIT(bit2, comp_ref_p2);
547 }
548
549 const int bit_bwd = mbmi->ref_frame[1] == ALTREF_FRAME;
550 WRITE_REF_BIT(bit_bwd, comp_bwdref_p);
551
552 if (!bit_bwd) {
553 WRITE_REF_BIT(mbmi->ref_frame[1] == ALTREF2_FRAME, comp_bwdref_p1);
554 }
555
556 } else {
557 const int bit0 = (mbmi->ref_frame[0] <= ALTREF_FRAME &&
558 mbmi->ref_frame[0] >= BWDREF_FRAME);
559 WRITE_REF_BIT(bit0, single_ref_p1);
560
561 if (bit0) {
562 const int bit1 = mbmi->ref_frame[0] == ALTREF_FRAME;
563 WRITE_REF_BIT(bit1, single_ref_p2);
564
565 if (!bit1) {
566 WRITE_REF_BIT(mbmi->ref_frame[0] == ALTREF2_FRAME, single_ref_p6);
567 }
568 } else {
569 const int bit2 = (mbmi->ref_frame[0] == LAST3_FRAME ||
570 mbmi->ref_frame[0] == GOLDEN_FRAME);
571 WRITE_REF_BIT(bit2, single_ref_p3);
572
573 if (!bit2) {
574 const int bit3 = mbmi->ref_frame[0] != LAST_FRAME;
575 WRITE_REF_BIT(bit3, single_ref_p4);
576 } else {
577 const int bit4 = mbmi->ref_frame[0] != LAST3_FRAME;
578 WRITE_REF_BIT(bit4, single_ref_p5);
579 }
580 }
581 }
582 }
583 }
584
write_filter_intra_mode_info(const AV1_COMMON * cm,const MACROBLOCKD * xd,const MB_MODE_INFO * const mbmi,aom_writer * w)585 static AOM_INLINE void write_filter_intra_mode_info(
586 const AV1_COMMON *cm, const MACROBLOCKD *xd, const MB_MODE_INFO *const mbmi,
587 aom_writer *w) {
588 if (av1_filter_intra_allowed(cm, mbmi)) {
589 aom_write_symbol(w, mbmi->filter_intra_mode_info.use_filter_intra,
590 xd->tile_ctx->filter_intra_cdfs[mbmi->sb_type], 2);
591 if (mbmi->filter_intra_mode_info.use_filter_intra) {
592 const FILTER_INTRA_MODE mode =
593 mbmi->filter_intra_mode_info.filter_intra_mode;
594 aom_write_symbol(w, mode, xd->tile_ctx->filter_intra_mode_cdf,
595 FILTER_INTRA_MODES);
596 }
597 }
598 }
599
write_angle_delta(aom_writer * w,int angle_delta,aom_cdf_prob * cdf)600 static AOM_INLINE void write_angle_delta(aom_writer *w, int angle_delta,
601 aom_cdf_prob *cdf) {
602 aom_write_symbol(w, angle_delta + MAX_ANGLE_DELTA, cdf,
603 2 * MAX_ANGLE_DELTA + 1);
604 }
605
write_mb_interp_filter(AV1_COMMON * const cm,const MACROBLOCKD * xd,aom_writer * w)606 static AOM_INLINE void write_mb_interp_filter(AV1_COMMON *const cm,
607 const MACROBLOCKD *xd,
608 aom_writer *w) {
609 const MB_MODE_INFO *const mbmi = xd->mi[0];
610 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
611
612 if (!av1_is_interp_needed(xd)) {
613 int_interpfilters filters = av1_broadcast_interp_filter(
614 av1_unswitchable_filter(cm->features.interp_filter));
615 assert(mbmi->interp_filters.as_int == filters.as_int);
616 (void)filters;
617 return;
618 }
619 if (cm->features.interp_filter == SWITCHABLE) {
620 int dir;
621 for (dir = 0; dir < 2; ++dir) {
622 const int ctx = av1_get_pred_context_switchable_interp(xd, dir);
623 InterpFilter filter =
624 av1_extract_interp_filter(mbmi->interp_filters, dir);
625 aom_write_symbol(w, filter, ec_ctx->switchable_interp_cdf[ctx],
626 SWITCHABLE_FILTERS);
627 ++cm->cur_frame->interp_filter_selected[filter];
628 if (cm->seq_params.enable_dual_filter == 0) return;
629 }
630 }
631 }
632
633 // Transmit color values with delta encoding. Write the first value as
634 // literal, and the deltas between each value and the previous one. "min_val" is
635 // the smallest possible value of the deltas.
delta_encode_palette_colors(const int * colors,int num,int bit_depth,int min_val,aom_writer * w)636 static AOM_INLINE void delta_encode_palette_colors(const int *colors, int num,
637 int bit_depth, int min_val,
638 aom_writer *w) {
639 if (num <= 0) return;
640 assert(colors[0] < (1 << bit_depth));
641 aom_write_literal(w, colors[0], bit_depth);
642 if (num == 1) return;
643 int max_delta = 0;
644 int deltas[PALETTE_MAX_SIZE];
645 memset(deltas, 0, sizeof(deltas));
646 for (int i = 1; i < num; ++i) {
647 assert(colors[i] < (1 << bit_depth));
648 const int delta = colors[i] - colors[i - 1];
649 deltas[i - 1] = delta;
650 assert(delta >= min_val);
651 if (delta > max_delta) max_delta = delta;
652 }
653 const int min_bits = bit_depth - 3;
654 int bits = AOMMAX(av1_ceil_log2(max_delta + 1 - min_val), min_bits);
655 assert(bits <= bit_depth);
656 int range = (1 << bit_depth) - colors[0] - min_val;
657 aom_write_literal(w, bits - min_bits, 2);
658 for (int i = 0; i < num - 1; ++i) {
659 aom_write_literal(w, deltas[i] - min_val, bits);
660 range -= deltas[i];
661 bits = AOMMIN(bits, av1_ceil_log2(range));
662 }
663 }
664
665 // Transmit luma palette color values. First signal if each color in the color
666 // cache is used. Those colors that are not in the cache are transmitted with
667 // delta encoding.
write_palette_colors_y(const MACROBLOCKD * const xd,const PALETTE_MODE_INFO * const pmi,int bit_depth,aom_writer * w)668 static AOM_INLINE void write_palette_colors_y(
669 const MACROBLOCKD *const xd, const PALETTE_MODE_INFO *const pmi,
670 int bit_depth, aom_writer *w) {
671 const int n = pmi->palette_size[0];
672 uint16_t color_cache[2 * PALETTE_MAX_SIZE];
673 const int n_cache = av1_get_palette_cache(xd, 0, color_cache);
674 int out_cache_colors[PALETTE_MAX_SIZE];
675 uint8_t cache_color_found[2 * PALETTE_MAX_SIZE];
676 const int n_out_cache =
677 av1_index_color_cache(color_cache, n_cache, pmi->palette_colors, n,
678 cache_color_found, out_cache_colors);
679 int n_in_cache = 0;
680 for (int i = 0; i < n_cache && n_in_cache < n; ++i) {
681 const int found = cache_color_found[i];
682 aom_write_bit(w, found);
683 n_in_cache += found;
684 }
685 assert(n_in_cache + n_out_cache == n);
686 delta_encode_palette_colors(out_cache_colors, n_out_cache, bit_depth, 1, w);
687 }
688
689 // Write chroma palette color values. U channel is handled similarly to the luma
690 // channel. For v channel, either use delta encoding or transmit raw values
691 // directly, whichever costs less.
write_palette_colors_uv(const MACROBLOCKD * const xd,const PALETTE_MODE_INFO * const pmi,int bit_depth,aom_writer * w)692 static AOM_INLINE void write_palette_colors_uv(
693 const MACROBLOCKD *const xd, const PALETTE_MODE_INFO *const pmi,
694 int bit_depth, aom_writer *w) {
695 const int n = pmi->palette_size[1];
696 const uint16_t *colors_u = pmi->palette_colors + PALETTE_MAX_SIZE;
697 const uint16_t *colors_v = pmi->palette_colors + 2 * PALETTE_MAX_SIZE;
698 // U channel colors.
699 uint16_t color_cache[2 * PALETTE_MAX_SIZE];
700 const int n_cache = av1_get_palette_cache(xd, 1, color_cache);
701 int out_cache_colors[PALETTE_MAX_SIZE];
702 uint8_t cache_color_found[2 * PALETTE_MAX_SIZE];
703 const int n_out_cache = av1_index_color_cache(
704 color_cache, n_cache, colors_u, n, cache_color_found, out_cache_colors);
705 int n_in_cache = 0;
706 for (int i = 0; i < n_cache && n_in_cache < n; ++i) {
707 const int found = cache_color_found[i];
708 aom_write_bit(w, found);
709 n_in_cache += found;
710 }
711 delta_encode_palette_colors(out_cache_colors, n_out_cache, bit_depth, 0, w);
712
713 // V channel colors. Don't use color cache as the colors are not sorted.
714 const int max_val = 1 << bit_depth;
715 int zero_count = 0, min_bits_v = 0;
716 int bits_v =
717 av1_get_palette_delta_bits_v(pmi, bit_depth, &zero_count, &min_bits_v);
718 const int rate_using_delta =
719 2 + bit_depth + (bits_v + 1) * (n - 1) - zero_count;
720 const int rate_using_raw = bit_depth * n;
721 if (rate_using_delta < rate_using_raw) { // delta encoding
722 assert(colors_v[0] < (1 << bit_depth));
723 aom_write_bit(w, 1);
724 aom_write_literal(w, bits_v - min_bits_v, 2);
725 aom_write_literal(w, colors_v[0], bit_depth);
726 for (int i = 1; i < n; ++i) {
727 assert(colors_v[i] < (1 << bit_depth));
728 if (colors_v[i] == colors_v[i - 1]) { // No need to signal sign bit.
729 aom_write_literal(w, 0, bits_v);
730 continue;
731 }
732 const int delta = abs((int)colors_v[i] - colors_v[i - 1]);
733 const int sign_bit = colors_v[i] < colors_v[i - 1];
734 if (delta <= max_val - delta) {
735 aom_write_literal(w, delta, bits_v);
736 aom_write_bit(w, sign_bit);
737 } else {
738 aom_write_literal(w, max_val - delta, bits_v);
739 aom_write_bit(w, !sign_bit);
740 }
741 }
742 } else { // Transmit raw values.
743 aom_write_bit(w, 0);
744 for (int i = 0; i < n; ++i) {
745 assert(colors_v[i] < (1 << bit_depth));
746 aom_write_literal(w, colors_v[i], bit_depth);
747 }
748 }
749 }
750
write_palette_mode_info(const AV1_COMMON * cm,const MACROBLOCKD * xd,const MB_MODE_INFO * const mbmi,aom_writer * w)751 static AOM_INLINE void write_palette_mode_info(const AV1_COMMON *cm,
752 const MACROBLOCKD *xd,
753 const MB_MODE_INFO *const mbmi,
754 aom_writer *w) {
755 const int num_planes = av1_num_planes(cm);
756 const BLOCK_SIZE bsize = mbmi->sb_type;
757 assert(av1_allow_palette(cm->features.allow_screen_content_tools, bsize));
758 const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
759 const int bsize_ctx = av1_get_palette_bsize_ctx(bsize);
760
761 if (mbmi->mode == DC_PRED) {
762 const int n = pmi->palette_size[0];
763 const int palette_y_mode_ctx = av1_get_palette_mode_ctx(xd);
764 aom_write_symbol(
765 w, n > 0,
766 xd->tile_ctx->palette_y_mode_cdf[bsize_ctx][palette_y_mode_ctx], 2);
767 if (n > 0) {
768 aom_write_symbol(w, n - PALETTE_MIN_SIZE,
769 xd->tile_ctx->palette_y_size_cdf[bsize_ctx],
770 PALETTE_SIZES);
771 write_palette_colors_y(xd, pmi, cm->seq_params.bit_depth, w);
772 }
773 }
774
775 const int uv_dc_pred =
776 num_planes > 1 && mbmi->uv_mode == UV_DC_PRED && xd->is_chroma_ref;
777 if (uv_dc_pred) {
778 const int n = pmi->palette_size[1];
779 const int palette_uv_mode_ctx = (pmi->palette_size[0] > 0);
780 aom_write_symbol(w, n > 0,
781 xd->tile_ctx->palette_uv_mode_cdf[palette_uv_mode_ctx], 2);
782 if (n > 0) {
783 aom_write_symbol(w, n - PALETTE_MIN_SIZE,
784 xd->tile_ctx->palette_uv_size_cdf[bsize_ctx],
785 PALETTE_SIZES);
786 write_palette_colors_uv(xd, pmi, cm->seq_params.bit_depth, w);
787 }
788 }
789 }
790
av1_write_tx_type(const AV1_COMMON * const cm,const MACROBLOCKD * xd,TX_TYPE tx_type,TX_SIZE tx_size,aom_writer * w)791 void av1_write_tx_type(const AV1_COMMON *const cm, const MACROBLOCKD *xd,
792 TX_TYPE tx_type, TX_SIZE tx_size, aom_writer *w) {
793 MB_MODE_INFO *mbmi = xd->mi[0];
794 const FeatureFlags *const features = &cm->features;
795 const int is_inter = is_inter_block(mbmi);
796 if (get_ext_tx_types(tx_size, is_inter, features->reduced_tx_set_used) > 1 &&
797 ((!cm->seg.enabled && cm->quant_params.base_qindex > 0) ||
798 (cm->seg.enabled && xd->qindex[mbmi->segment_id] > 0)) &&
799 !mbmi->skip &&
800 !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
801 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
802 const TX_SIZE square_tx_size = txsize_sqr_map[tx_size];
803 const TxSetType tx_set_type = av1_get_ext_tx_set_type(
804 tx_size, is_inter, features->reduced_tx_set_used);
805 const int eset =
806 get_ext_tx_set(tx_size, is_inter, features->reduced_tx_set_used);
807 // eset == 0 should correspond to a set with only DCT_DCT and there
808 // is no need to send the tx_type
809 assert(eset > 0);
810 assert(av1_ext_tx_used[tx_set_type][tx_type]);
811 if (is_inter) {
812 aom_write_symbol(w, av1_ext_tx_ind[tx_set_type][tx_type],
813 ec_ctx->inter_ext_tx_cdf[eset][square_tx_size],
814 av1_num_ext_tx_set[tx_set_type]);
815 } else {
816 PREDICTION_MODE intra_dir;
817 if (mbmi->filter_intra_mode_info.use_filter_intra)
818 intra_dir =
819 fimode_to_intradir[mbmi->filter_intra_mode_info.filter_intra_mode];
820 else
821 intra_dir = mbmi->mode;
822 aom_write_symbol(
823 w, av1_ext_tx_ind[tx_set_type][tx_type],
824 ec_ctx->intra_ext_tx_cdf[eset][square_tx_size][intra_dir],
825 av1_num_ext_tx_set[tx_set_type]);
826 }
827 }
828 }
829
write_intra_y_mode_nonkf(FRAME_CONTEXT * frame_ctx,BLOCK_SIZE bsize,PREDICTION_MODE mode,aom_writer * w)830 static AOM_INLINE void write_intra_y_mode_nonkf(FRAME_CONTEXT *frame_ctx,
831 BLOCK_SIZE bsize,
832 PREDICTION_MODE mode,
833 aom_writer *w) {
834 aom_write_symbol(w, mode, frame_ctx->y_mode_cdf[size_group_lookup[bsize]],
835 INTRA_MODES);
836 }
837
write_intra_uv_mode(FRAME_CONTEXT * frame_ctx,UV_PREDICTION_MODE uv_mode,PREDICTION_MODE y_mode,CFL_ALLOWED_TYPE cfl_allowed,aom_writer * w)838 static AOM_INLINE void write_intra_uv_mode(FRAME_CONTEXT *frame_ctx,
839 UV_PREDICTION_MODE uv_mode,
840 PREDICTION_MODE y_mode,
841 CFL_ALLOWED_TYPE cfl_allowed,
842 aom_writer *w) {
843 aom_write_symbol(w, uv_mode, frame_ctx->uv_mode_cdf[cfl_allowed][y_mode],
844 UV_INTRA_MODES - !cfl_allowed);
845 }
846
write_cfl_alphas(FRAME_CONTEXT * const ec_ctx,uint8_t idx,int8_t joint_sign,aom_writer * w)847 static AOM_INLINE void write_cfl_alphas(FRAME_CONTEXT *const ec_ctx,
848 uint8_t idx, int8_t joint_sign,
849 aom_writer *w) {
850 aom_write_symbol(w, joint_sign, ec_ctx->cfl_sign_cdf, CFL_JOINT_SIGNS);
851 // Magnitudes are only signaled for nonzero codes.
852 if (CFL_SIGN_U(joint_sign) != CFL_SIGN_ZERO) {
853 aom_cdf_prob *cdf_u = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)];
854 aom_write_symbol(w, CFL_IDX_U(idx), cdf_u, CFL_ALPHABET_SIZE);
855 }
856 if (CFL_SIGN_V(joint_sign) != CFL_SIGN_ZERO) {
857 aom_cdf_prob *cdf_v = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)];
858 aom_write_symbol(w, CFL_IDX_V(idx), cdf_v, CFL_ALPHABET_SIZE);
859 }
860 }
861
write_cdef(AV1_COMMON * cm,MACROBLOCKD * const xd,aom_writer * w,int skip)862 static AOM_INLINE void write_cdef(AV1_COMMON *cm, MACROBLOCKD *const xd,
863 aom_writer *w, int skip) {
864 if (cm->features.coded_lossless || cm->features.allow_intrabc) return;
865
866 // At the start of a superblock, mark that we haven't yet written CDEF
867 // strengths for any of the CDEF units contained in this superblock.
868 const int sb_mask = (cm->seq_params.mib_size - 1);
869 const int mi_row_in_sb = (xd->mi_row & sb_mask);
870 const int mi_col_in_sb = (xd->mi_col & sb_mask);
871 if (mi_row_in_sb == 0 && mi_col_in_sb == 0) {
872 xd->cdef_transmitted[0] = xd->cdef_transmitted[1] =
873 xd->cdef_transmitted[2] = xd->cdef_transmitted[3] = false;
874 }
875
876 // CDEF unit size is 64x64 irrespective of the superblock size.
877 const int cdef_size = 1 << (6 - MI_SIZE_LOG2);
878
879 // Find index of this CDEF unit in this superblock.
880 const int index_mask = cdef_size;
881 const int cdef_unit_row_in_sb = ((xd->mi_row & index_mask) != 0);
882 const int cdef_unit_col_in_sb = ((xd->mi_col & index_mask) != 0);
883 const int index = (cm->seq_params.sb_size == BLOCK_128X128)
884 ? cdef_unit_col_in_sb + 2 * cdef_unit_row_in_sb
885 : 0;
886
887 // Write CDEF strength to the first non-skip coding block in this CDEF unit.
888 if (!xd->cdef_transmitted[index] && !skip) {
889 // CDEF strength for this CDEF unit needs to be stored in the MB_MODE_INFO
890 // of the 1st block in this CDEF unit.
891 const int first_block_mask = ~(cdef_size - 1);
892 const CommonModeInfoParams *const mi_params = &cm->mi_params;
893 const int grid_idx =
894 get_mi_grid_idx(mi_params, xd->mi_row & first_block_mask,
895 xd->mi_col & first_block_mask);
896 const MB_MODE_INFO *const mbmi = mi_params->mi_grid_base[grid_idx];
897 aom_write_literal(w, mbmi->cdef_strength, cm->cdef_info.cdef_bits);
898 xd->cdef_transmitted[index] = true;
899 }
900 }
901
write_inter_segment_id(AV1_COMP * cpi,aom_writer * w,const struct segmentation * const seg,struct segmentation_probs * const segp,int skip,int preskip)902 static AOM_INLINE void write_inter_segment_id(
903 AV1_COMP *cpi, aom_writer *w, const struct segmentation *const seg,
904 struct segmentation_probs *const segp, int skip, int preskip) {
905 MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
906 MB_MODE_INFO *const mbmi = xd->mi[0];
907 AV1_COMMON *const cm = &cpi->common;
908 const int mi_row = xd->mi_row;
909 const int mi_col = xd->mi_col;
910
911 if (seg->update_map) {
912 if (preskip) {
913 if (!seg->segid_preskip) return;
914 } else {
915 if (seg->segid_preskip) return;
916 if (skip) {
917 write_segment_id(cpi, mbmi, w, seg, segp, 1);
918 if (seg->temporal_update) mbmi->seg_id_predicted = 0;
919 return;
920 }
921 }
922 if (seg->temporal_update) {
923 const int pred_flag = mbmi->seg_id_predicted;
924 aom_cdf_prob *pred_cdf = av1_get_pred_cdf_seg_id(segp, xd);
925 aom_write_symbol(w, pred_flag, pred_cdf, 2);
926 if (!pred_flag) {
927 write_segment_id(cpi, mbmi, w, seg, segp, 0);
928 }
929 if (pred_flag) {
930 set_spatial_segment_id(&cm->mi_params, cm->cur_frame->seg_map,
931 mbmi->sb_type, mi_row, mi_col, mbmi->segment_id);
932 }
933 } else {
934 write_segment_id(cpi, mbmi, w, seg, segp, 0);
935 }
936 }
937 }
938
939 // If delta q is present, writes delta_q index.
940 // Also writes delta_q loop filter levels, if present.
write_delta_q_params(AV1_COMP * cpi,int skip,aom_writer * w)941 static AOM_INLINE void write_delta_q_params(AV1_COMP *cpi, int skip,
942 aom_writer *w) {
943 AV1_COMMON *const cm = &cpi->common;
944 const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
945
946 if (delta_q_info->delta_q_present_flag) {
947 MACROBLOCK *const x = &cpi->td.mb;
948 MACROBLOCKD *const xd = &x->e_mbd;
949 const MB_MODE_INFO *const mbmi = xd->mi[0];
950 const BLOCK_SIZE bsize = mbmi->sb_type;
951 const int super_block_upper_left =
952 ((xd->mi_row & (cm->seq_params.mib_size - 1)) == 0) &&
953 ((xd->mi_col & (cm->seq_params.mib_size - 1)) == 0);
954
955 if ((bsize != cm->seq_params.sb_size || skip == 0) &&
956 super_block_upper_left) {
957 assert(mbmi->current_qindex > 0);
958 const int reduced_delta_qindex =
959 (mbmi->current_qindex - xd->current_qindex) /
960 delta_q_info->delta_q_res;
961 write_delta_qindex(xd, reduced_delta_qindex, w);
962 xd->current_qindex = mbmi->current_qindex;
963 if (delta_q_info->delta_lf_present_flag) {
964 if (delta_q_info->delta_lf_multi) {
965 const int frame_lf_count =
966 av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
967 for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) {
968 int reduced_delta_lflevel =
969 (mbmi->delta_lf[lf_id] - xd->delta_lf[lf_id]) /
970 delta_q_info->delta_lf_res;
971 write_delta_lflevel(cm, xd, lf_id, reduced_delta_lflevel, w);
972 xd->delta_lf[lf_id] = mbmi->delta_lf[lf_id];
973 }
974 } else {
975 int reduced_delta_lflevel =
976 (mbmi->delta_lf_from_base - xd->delta_lf_from_base) /
977 delta_q_info->delta_lf_res;
978 write_delta_lflevel(cm, xd, -1, reduced_delta_lflevel, w);
979 xd->delta_lf_from_base = mbmi->delta_lf_from_base;
980 }
981 }
982 }
983 }
984 }
985
write_intra_prediction_modes(AV1_COMP * cpi,int is_keyframe,aom_writer * w)986 static AOM_INLINE void write_intra_prediction_modes(AV1_COMP *cpi,
987 int is_keyframe,
988 aom_writer *w) {
989 const AV1_COMMON *const cm = &cpi->common;
990 MACROBLOCK *const x = &cpi->td.mb;
991 MACROBLOCKD *const xd = &x->e_mbd;
992 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
993 const MB_MODE_INFO *const mbmi = xd->mi[0];
994 const PREDICTION_MODE mode = mbmi->mode;
995 const BLOCK_SIZE bsize = mbmi->sb_type;
996
997 // Y mode.
998 if (is_keyframe) {
999 const MB_MODE_INFO *const above_mi = xd->above_mbmi;
1000 const MB_MODE_INFO *const left_mi = xd->left_mbmi;
1001 write_intra_y_mode_kf(ec_ctx, mbmi, above_mi, left_mi, mode, w);
1002 } else {
1003 write_intra_y_mode_nonkf(ec_ctx, bsize, mode, w);
1004 }
1005
1006 // Y angle delta.
1007 const int use_angle_delta = av1_use_angle_delta(bsize);
1008 if (use_angle_delta && av1_is_directional_mode(mode)) {
1009 write_angle_delta(w, mbmi->angle_delta[PLANE_TYPE_Y],
1010 ec_ctx->angle_delta_cdf[mode - V_PRED]);
1011 }
1012
1013 // UV mode and UV angle delta.
1014 if (!cm->seq_params.monochrome && xd->is_chroma_ref) {
1015 const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode;
1016 write_intra_uv_mode(ec_ctx, uv_mode, mode, is_cfl_allowed(xd), w);
1017 if (uv_mode == UV_CFL_PRED)
1018 write_cfl_alphas(ec_ctx, mbmi->cfl_alpha_idx, mbmi->cfl_alpha_signs, w);
1019 if (use_angle_delta && av1_is_directional_mode(get_uv_mode(uv_mode))) {
1020 write_angle_delta(w, mbmi->angle_delta[PLANE_TYPE_UV],
1021 ec_ctx->angle_delta_cdf[uv_mode - V_PRED]);
1022 }
1023 }
1024
1025 // Palette.
1026 if (av1_allow_palette(cm->features.allow_screen_content_tools, bsize)) {
1027 write_palette_mode_info(cm, xd, mbmi, w);
1028 }
1029
1030 // Filter intra.
1031 write_filter_intra_mode_info(cm, xd, mbmi, w);
1032 }
1033
mode_context_analyzer(const int16_t mode_context,const MV_REFERENCE_FRAME * const rf)1034 static INLINE int16_t mode_context_analyzer(
1035 const int16_t mode_context, const MV_REFERENCE_FRAME *const rf) {
1036 if (rf[1] <= INTRA_FRAME) return mode_context;
1037
1038 const int16_t newmv_ctx = mode_context & NEWMV_CTX_MASK;
1039 const int16_t refmv_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK;
1040
1041 const int16_t comp_ctx = compound_mode_ctx_map[refmv_ctx >> 1][AOMMIN(
1042 newmv_ctx, COMP_NEWMV_CTXS - 1)];
1043 return comp_ctx;
1044 }
1045
get_ref_mv_from_stack(int ref_idx,const MV_REFERENCE_FRAME * ref_frame,int ref_mv_idx,const MB_MODE_INFO_EXT_FRAME * mbmi_ext_frame)1046 static INLINE int_mv get_ref_mv_from_stack(
1047 int ref_idx, const MV_REFERENCE_FRAME *ref_frame, int ref_mv_idx,
1048 const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame) {
1049 const int8_t ref_frame_type = av1_ref_frame_type(ref_frame);
1050 const CANDIDATE_MV *curr_ref_mv_stack = mbmi_ext_frame->ref_mv_stack;
1051
1052 if (ref_frame[1] > INTRA_FRAME) {
1053 assert(ref_idx == 0 || ref_idx == 1);
1054 return ref_idx ? curr_ref_mv_stack[ref_mv_idx].comp_mv
1055 : curr_ref_mv_stack[ref_mv_idx].this_mv;
1056 }
1057
1058 assert(ref_idx == 0);
1059 return ref_mv_idx < mbmi_ext_frame->ref_mv_count
1060 ? curr_ref_mv_stack[ref_mv_idx].this_mv
1061 : mbmi_ext_frame->global_mvs[ref_frame_type];
1062 }
1063
get_ref_mv(const MACROBLOCK * x,int ref_idx)1064 static INLINE int_mv get_ref_mv(const MACROBLOCK *x, int ref_idx) {
1065 const MACROBLOCKD *xd = &x->e_mbd;
1066 const MB_MODE_INFO *mbmi = xd->mi[0];
1067 int ref_mv_idx = mbmi->ref_mv_idx;
1068 if (mbmi->mode == NEAR_NEWMV || mbmi->mode == NEW_NEARMV) {
1069 assert(has_second_ref(mbmi));
1070 ref_mv_idx += 1;
1071 }
1072 return get_ref_mv_from_stack(ref_idx, mbmi->ref_frame, ref_mv_idx,
1073 x->mbmi_ext_frame);
1074 }
1075
pack_inter_mode_mvs(AV1_COMP * cpi,aom_writer * w)1076 static AOM_INLINE void pack_inter_mode_mvs(AV1_COMP *cpi, aom_writer *w) {
1077 AV1_COMMON *const cm = &cpi->common;
1078 MACROBLOCK *const x = &cpi->td.mb;
1079 MACROBLOCKD *const xd = &x->e_mbd;
1080 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
1081 const struct segmentation *const seg = &cm->seg;
1082 struct segmentation_probs *const segp = &ec_ctx->seg;
1083 const MB_MODE_INFO *const mbmi = xd->mi[0];
1084 const MB_MODE_INFO_EXT_FRAME *const mbmi_ext_frame = x->mbmi_ext_frame;
1085 const PREDICTION_MODE mode = mbmi->mode;
1086 const int segment_id = mbmi->segment_id;
1087 const BLOCK_SIZE bsize = mbmi->sb_type;
1088 const int allow_hp = cm->features.allow_high_precision_mv;
1089 const int is_inter = is_inter_block(mbmi);
1090 const int is_compound = has_second_ref(mbmi);
1091 int ref;
1092
1093 write_inter_segment_id(cpi, w, seg, segp, 0, 1);
1094
1095 write_skip_mode(cm, xd, segment_id, mbmi, w);
1096
1097 assert(IMPLIES(mbmi->skip_mode, mbmi->skip));
1098 const int skip =
1099 mbmi->skip_mode ? 1 : write_skip(cm, xd, segment_id, mbmi, w);
1100
1101 write_inter_segment_id(cpi, w, seg, segp, skip, 0);
1102
1103 write_cdef(cm, xd, w, skip);
1104
1105 write_delta_q_params(cpi, skip, w);
1106
1107 if (!mbmi->skip_mode) write_is_inter(cm, xd, mbmi->segment_id, w, is_inter);
1108
1109 if (mbmi->skip_mode) return;
1110
1111 if (!is_inter) {
1112 write_intra_prediction_modes(cpi, 0, w);
1113 } else {
1114 int16_t mode_ctx;
1115
1116 av1_collect_neighbors_ref_counts(xd);
1117
1118 write_ref_frames(cm, xd, w);
1119
1120 mode_ctx =
1121 mode_context_analyzer(mbmi_ext_frame->mode_context, mbmi->ref_frame);
1122
1123 // If segment skip is not enabled code the mode.
1124 if (!segfeature_active(seg, segment_id, SEG_LVL_SKIP)) {
1125 if (is_inter_compound_mode(mode))
1126 write_inter_compound_mode(xd, w, mode, mode_ctx);
1127 else if (is_inter_singleref_mode(mode))
1128 write_inter_mode(w, mode, ec_ctx, mode_ctx);
1129
1130 if (mode == NEWMV || mode == NEW_NEWMV || have_nearmv_in_inter_mode(mode))
1131 write_drl_idx(ec_ctx, mbmi, mbmi_ext_frame, w);
1132 else
1133 assert(mbmi->ref_mv_idx == 0);
1134 }
1135
1136 if (mode == NEWMV || mode == NEW_NEWMV) {
1137 for (ref = 0; ref < 1 + is_compound; ++ref) {
1138 nmv_context *nmvc = &ec_ctx->nmvc;
1139 const int_mv ref_mv = get_ref_mv(x, ref);
1140 av1_encode_mv(cpi, w, &mbmi->mv[ref].as_mv, &ref_mv.as_mv, nmvc,
1141 allow_hp);
1142 }
1143 } else if (mode == NEAREST_NEWMV || mode == NEAR_NEWMV) {
1144 nmv_context *nmvc = &ec_ctx->nmvc;
1145 const int_mv ref_mv = get_ref_mv(x, 1);
1146 av1_encode_mv(cpi, w, &mbmi->mv[1].as_mv, &ref_mv.as_mv, nmvc, allow_hp);
1147 } else if (mode == NEW_NEARESTMV || mode == NEW_NEARMV) {
1148 nmv_context *nmvc = &ec_ctx->nmvc;
1149 const int_mv ref_mv = get_ref_mv(x, 0);
1150 av1_encode_mv(cpi, w, &mbmi->mv[0].as_mv, &ref_mv.as_mv, nmvc, allow_hp);
1151 }
1152
1153 if (cpi->common.current_frame.reference_mode != COMPOUND_REFERENCE &&
1154 cpi->common.seq_params.enable_interintra_compound &&
1155 is_interintra_allowed(mbmi)) {
1156 const int interintra = mbmi->ref_frame[1] == INTRA_FRAME;
1157 const int bsize_group = size_group_lookup[bsize];
1158 aom_write_symbol(w, interintra, ec_ctx->interintra_cdf[bsize_group], 2);
1159 if (interintra) {
1160 aom_write_symbol(w, mbmi->interintra_mode,
1161 ec_ctx->interintra_mode_cdf[bsize_group],
1162 INTERINTRA_MODES);
1163 if (av1_is_wedge_used(bsize)) {
1164 aom_write_symbol(w, mbmi->use_wedge_interintra,
1165 ec_ctx->wedge_interintra_cdf[bsize], 2);
1166 if (mbmi->use_wedge_interintra) {
1167 aom_write_symbol(w, mbmi->interintra_wedge_index,
1168 ec_ctx->wedge_idx_cdf[bsize], MAX_WEDGE_TYPES);
1169 }
1170 }
1171 }
1172 }
1173
1174 if (mbmi->ref_frame[1] != INTRA_FRAME) write_motion_mode(cm, xd, mbmi, w);
1175
1176 // First write idx to indicate current compound inter prediction mode group
1177 // Group A (0): dist_wtd_comp, compound_average
1178 // Group B (1): interintra, compound_diffwtd, wedge
1179 if (has_second_ref(mbmi)) {
1180 const int masked_compound_used = is_any_masked_compound_used(bsize) &&
1181 cm->seq_params.enable_masked_compound;
1182
1183 if (masked_compound_used) {
1184 const int ctx_comp_group_idx = get_comp_group_idx_context(xd);
1185 aom_write_symbol(w, mbmi->comp_group_idx,
1186 ec_ctx->comp_group_idx_cdf[ctx_comp_group_idx], 2);
1187 } else {
1188 assert(mbmi->comp_group_idx == 0);
1189 }
1190
1191 if (mbmi->comp_group_idx == 0) {
1192 if (mbmi->compound_idx)
1193 assert(mbmi->interinter_comp.type == COMPOUND_AVERAGE);
1194
1195 if (cm->seq_params.order_hint_info.enable_dist_wtd_comp) {
1196 const int comp_index_ctx = get_comp_index_context(cm, xd);
1197 aom_write_symbol(w, mbmi->compound_idx,
1198 ec_ctx->compound_index_cdf[comp_index_ctx], 2);
1199 } else {
1200 assert(mbmi->compound_idx == 1);
1201 }
1202 } else {
1203 assert(cpi->common.current_frame.reference_mode != SINGLE_REFERENCE &&
1204 is_inter_compound_mode(mbmi->mode) &&
1205 mbmi->motion_mode == SIMPLE_TRANSLATION);
1206 assert(masked_compound_used);
1207 // compound_diffwtd, wedge
1208 assert(mbmi->interinter_comp.type == COMPOUND_WEDGE ||
1209 mbmi->interinter_comp.type == COMPOUND_DIFFWTD);
1210
1211 if (is_interinter_compound_used(COMPOUND_WEDGE, bsize))
1212 aom_write_symbol(w, mbmi->interinter_comp.type - COMPOUND_WEDGE,
1213 ec_ctx->compound_type_cdf[bsize],
1214 MASKED_COMPOUND_TYPES);
1215
1216 if (mbmi->interinter_comp.type == COMPOUND_WEDGE) {
1217 assert(is_interinter_compound_used(COMPOUND_WEDGE, bsize));
1218 aom_write_symbol(w, mbmi->interinter_comp.wedge_index,
1219 ec_ctx->wedge_idx_cdf[bsize], MAX_WEDGE_TYPES);
1220 aom_write_bit(w, mbmi->interinter_comp.wedge_sign);
1221 } else {
1222 assert(mbmi->interinter_comp.type == COMPOUND_DIFFWTD);
1223 aom_write_literal(w, mbmi->interinter_comp.mask_type,
1224 MAX_DIFFWTD_MASK_BITS);
1225 }
1226 }
1227 }
1228 write_mb_interp_filter(cm, xd, w);
1229 }
1230 }
1231
write_intrabc_info(MACROBLOCKD * xd,const MB_MODE_INFO_EXT_FRAME * mbmi_ext_frame,aom_writer * w)1232 static AOM_INLINE void write_intrabc_info(
1233 MACROBLOCKD *xd, const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame,
1234 aom_writer *w) {
1235 const MB_MODE_INFO *const mbmi = xd->mi[0];
1236 int use_intrabc = is_intrabc_block(mbmi);
1237 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
1238 aom_write_symbol(w, use_intrabc, ec_ctx->intrabc_cdf, 2);
1239 if (use_intrabc) {
1240 assert(mbmi->mode == DC_PRED);
1241 assert(mbmi->uv_mode == UV_DC_PRED);
1242 assert(mbmi->motion_mode == SIMPLE_TRANSLATION);
1243 int_mv dv_ref = mbmi_ext_frame->ref_mv_stack[0].this_mv;
1244 av1_encode_dv(w, &mbmi->mv[0].as_mv, &dv_ref.as_mv, &ec_ctx->ndvc);
1245 }
1246 }
1247
write_mb_modes_kf(AV1_COMP * cpi,MACROBLOCKD * xd,const MB_MODE_INFO_EXT_FRAME * mbmi_ext_frame,aom_writer * w)1248 static AOM_INLINE void write_mb_modes_kf(
1249 AV1_COMP *cpi, MACROBLOCKD *xd,
1250 const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame, aom_writer *w) {
1251 AV1_COMMON *const cm = &cpi->common;
1252 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
1253 const struct segmentation *const seg = &cm->seg;
1254 struct segmentation_probs *const segp = &ec_ctx->seg;
1255 const MB_MODE_INFO *const mbmi = xd->mi[0];
1256
1257 if (seg->segid_preskip && seg->update_map)
1258 write_segment_id(cpi, mbmi, w, seg, segp, 0);
1259
1260 const int skip = write_skip(cm, xd, mbmi->segment_id, mbmi, w);
1261
1262 if (!seg->segid_preskip && seg->update_map)
1263 write_segment_id(cpi, mbmi, w, seg, segp, skip);
1264
1265 write_cdef(cm, xd, w, skip);
1266
1267 write_delta_q_params(cpi, skip, w);
1268
1269 if (av1_allow_intrabc(cm)) {
1270 write_intrabc_info(xd, mbmi_ext_frame, w);
1271 if (is_intrabc_block(mbmi)) return;
1272 }
1273
1274 write_intra_prediction_modes(cpi, 1, w);
1275 }
1276
1277 #if CONFIG_RD_DEBUG
dump_mode_info(MB_MODE_INFO * mi)1278 static AOM_INLINE void dump_mode_info(MB_MODE_INFO *mi) {
1279 printf("\nmi->mi_row == %d\n", mi->mi_row);
1280 printf("&& mi->mi_col == %d\n", mi->mi_col);
1281 printf("&& mi->sb_type == %d\n", mi->sb_type);
1282 printf("&& mi->tx_size == %d\n", mi->tx_size);
1283 printf("&& mi->mode == %d\n", mi->mode);
1284 }
1285
rd_token_stats_mismatch(RD_STATS * rd_stats,TOKEN_STATS * token_stats,int plane)1286 static int rd_token_stats_mismatch(RD_STATS *rd_stats, TOKEN_STATS *token_stats,
1287 int plane) {
1288 if (rd_stats->txb_coeff_cost[plane] != token_stats->cost) {
1289 int r, c;
1290 printf("\nplane %d rd_stats->txb_coeff_cost %d token_stats->cost %d\n",
1291 plane, rd_stats->txb_coeff_cost[plane], token_stats->cost);
1292 printf("rd txb_coeff_cost_map\n");
1293 for (r = 0; r < TXB_COEFF_COST_MAP_SIZE; ++r) {
1294 for (c = 0; c < TXB_COEFF_COST_MAP_SIZE; ++c) {
1295 printf("%d ", rd_stats->txb_coeff_cost_map[plane][r][c]);
1296 }
1297 printf("\n");
1298 }
1299
1300 printf("pack txb_coeff_cost_map\n");
1301 for (r = 0; r < TXB_COEFF_COST_MAP_SIZE; ++r) {
1302 for (c = 0; c < TXB_COEFF_COST_MAP_SIZE; ++c) {
1303 printf("%d ", token_stats->txb_coeff_cost_map[r][c]);
1304 }
1305 printf("\n");
1306 }
1307 return 1;
1308 }
1309 return 0;
1310 }
1311 #endif
1312
1313 #if ENC_MISMATCH_DEBUG
enc_dump_logs(const AV1_COMMON * const cm,const MBMIExtFrameBufferInfo * const mbmi_ext_info,int mi_row,int mi_col)1314 static AOM_INLINE void enc_dump_logs(
1315 const AV1_COMMON *const cm,
1316 const MBMIExtFrameBufferInfo *const mbmi_ext_info, int mi_row, int mi_col) {
1317 const MB_MODE_INFO *const mbmi = *(
1318 cm->mi_params.mi_grid_base + (mi_row * cm->mi_params.mi_stride + mi_col));
1319 const MB_MODE_INFO_EXT_FRAME *const mbmi_ext_frame =
1320 mbmi_ext_info->frame_base + get_mi_ext_idx(mi_row, mi_col,
1321 cm->mi_params.mi_alloc_bsize,
1322 mbmi_ext_info->stride);
1323 if (is_inter_block(mbmi)) {
1324 #define FRAME_TO_CHECK 11
1325 if (cm->current_frame.frame_number == FRAME_TO_CHECK &&
1326 cm->show_frame == 1) {
1327 const BLOCK_SIZE bsize = mbmi->sb_type;
1328
1329 int_mv mv[2] = { 0 };
1330 const int is_comp_ref = has_second_ref(mbmi);
1331
1332 for (int ref = 0; ref < 1 + is_comp_ref; ++ref)
1333 mv[ref].as_mv = mbmi->mv[ref].as_mv;
1334
1335 if (!is_comp_ref) {
1336 mv[1].as_int = 0;
1337 }
1338
1339 const int16_t mode_ctx =
1340 is_comp_ref ? 0
1341 : mode_context_analyzer(mbmi_ext_frame->mode_context,
1342 mbmi->ref_frame);
1343
1344 const int16_t newmv_ctx = mode_ctx & NEWMV_CTX_MASK;
1345 int16_t zeromv_ctx = -1;
1346 int16_t refmv_ctx = -1;
1347
1348 if (mbmi->mode != NEWMV) {
1349 zeromv_ctx = (mode_ctx >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;
1350 if (mbmi->mode != GLOBALMV)
1351 refmv_ctx = (mode_ctx >> REFMV_OFFSET) & REFMV_CTX_MASK;
1352 }
1353
1354 printf(
1355 "=== ENCODER ===: "
1356 "Frame=%d, (mi_row,mi_col)=(%d,%d), skip_mode=%d, mode=%d, bsize=%d, "
1357 "show_frame=%d, mv[0]=(%d,%d), mv[1]=(%d,%d), ref[0]=%d, "
1358 "ref[1]=%d, motion_mode=%d, mode_ctx=%d, "
1359 "newmv_ctx=%d, zeromv_ctx=%d, refmv_ctx=%d, tx_size=%d\n",
1360 cm->current_frame.frame_number, mi_row, mi_col, mbmi->skip_mode,
1361 mbmi->mode, bsize, cm->show_frame, mv[0].as_mv.row, mv[0].as_mv.col,
1362 mv[1].as_mv.row, mv[1].as_mv.col, mbmi->ref_frame[0],
1363 mbmi->ref_frame[1], mbmi->motion_mode, mode_ctx, newmv_ctx,
1364 zeromv_ctx, refmv_ctx, mbmi->tx_size);
1365 }
1366 }
1367 }
1368 #endif // ENC_MISMATCH_DEBUG
1369
write_mbmi_b(AV1_COMP * cpi,aom_writer * w)1370 static AOM_INLINE void write_mbmi_b(AV1_COMP *cpi, aom_writer *w) {
1371 AV1_COMMON *const cm = &cpi->common;
1372 MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
1373 MB_MODE_INFO *m = xd->mi[0];
1374
1375 if (frame_is_intra_only(cm)) {
1376 write_mb_modes_kf(cpi, xd, cpi->td.mb.mbmi_ext_frame, w);
1377 } else {
1378 // has_subpel_mv_component needs the ref frame buffers set up to look
1379 // up if they are scaled. has_subpel_mv_component is in turn needed by
1380 // write_switchable_interp_filter, which is called by pack_inter_mode_mvs.
1381 set_ref_ptrs(cm, xd, m->ref_frame[0], m->ref_frame[1]);
1382
1383 #if ENC_MISMATCH_DEBUG
1384 enc_dump_logs(cm, &cpi->mbmi_ext_info, xd->mi_row, xd->mi_col);
1385 #endif // ENC_MISMATCH_DEBUG
1386
1387 pack_inter_mode_mvs(cpi, w);
1388 }
1389 }
1390
write_inter_txb_coeff(AV1_COMMON * const cm,MACROBLOCK * const x,MB_MODE_INFO * const mbmi,aom_writer * w,const TOKENEXTRA ** tok,const TOKENEXTRA * const tok_end,TOKEN_STATS * token_stats,const int row,const int col,int * block,const int plane)1391 static AOM_INLINE void write_inter_txb_coeff(
1392 AV1_COMMON *const cm, MACROBLOCK *const x, MB_MODE_INFO *const mbmi,
1393 aom_writer *w, const TOKENEXTRA **tok, const TOKENEXTRA *const tok_end,
1394 TOKEN_STATS *token_stats, const int row, const int col, int *block,
1395 const int plane) {
1396 MACROBLOCKD *const xd = &x->e_mbd;
1397 const struct macroblockd_plane *const pd = &xd->plane[plane];
1398 const BLOCK_SIZE bsize = mbmi->sb_type;
1399 assert(bsize < BLOCK_SIZES_ALL);
1400 const int ss_x = pd->subsampling_x;
1401 const int ss_y = pd->subsampling_y;
1402 const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ss_x, ss_y);
1403 assert(plane_bsize < BLOCK_SIZES_ALL);
1404 const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, plane);
1405 const int step =
1406 tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size];
1407 const int bkw = tx_size_wide_unit[max_tx_size];
1408 const int bkh = tx_size_high_unit[max_tx_size];
1409 const BLOCK_SIZE max_unit_bsize =
1410 get_plane_block_size(BLOCK_64X64, ss_x, ss_y);
1411 const int num_4x4_w = mi_size_wide[plane_bsize];
1412 const int num_4x4_h = mi_size_high[plane_bsize];
1413 const int mu_blocks_wide = mi_size_wide[max_unit_bsize];
1414 const int mu_blocks_high = mi_size_high[max_unit_bsize];
1415 const int unit_height = AOMMIN(mu_blocks_high + (row >> ss_y), num_4x4_h);
1416 const int unit_width = AOMMIN(mu_blocks_wide + (col >> ss_x), num_4x4_w);
1417 for (int blk_row = row >> ss_y; blk_row < unit_height; blk_row += bkh) {
1418 for (int blk_col = col >> ss_x; blk_col < unit_width; blk_col += bkw) {
1419 pack_txb_tokens(w, cm, x, tok, tok_end, xd, mbmi, plane, plane_bsize,
1420 cm->seq_params.bit_depth, *block, blk_row, blk_col,
1421 max_tx_size, token_stats);
1422 *block += step;
1423 }
1424 }
1425 }
1426
write_tokens_b(AV1_COMP * cpi,aom_writer * w,const TOKENEXTRA ** tok,const TOKENEXTRA * const tok_end)1427 static AOM_INLINE void write_tokens_b(AV1_COMP *cpi, aom_writer *w,
1428 const TOKENEXTRA **tok,
1429 const TOKENEXTRA *const tok_end) {
1430 AV1_COMMON *const cm = &cpi->common;
1431 MACROBLOCK *const x = &cpi->td.mb;
1432 MACROBLOCKD *const xd = &x->e_mbd;
1433 MB_MODE_INFO *const mbmi = xd->mi[0];
1434 const BLOCK_SIZE bsize = mbmi->sb_type;
1435
1436 assert(!mbmi->skip);
1437
1438 const int is_inter = is_inter_block(mbmi);
1439 if (!is_inter) {
1440 av1_write_coeffs_mb(cm, x, w, bsize);
1441 } else {
1442 int block[MAX_MB_PLANE] = { 0 };
1443 assert(bsize == get_plane_block_size(bsize, xd->plane[0].subsampling_x,
1444 xd->plane[0].subsampling_y));
1445 const int num_4x4_w = mi_size_wide[bsize];
1446 const int num_4x4_h = mi_size_high[bsize];
1447 TOKEN_STATS token_stats;
1448 init_token_stats(&token_stats);
1449
1450 const BLOCK_SIZE max_unit_bsize = BLOCK_64X64;
1451 assert(max_unit_bsize == get_plane_block_size(BLOCK_64X64,
1452 xd->plane[0].subsampling_x,
1453 xd->plane[0].subsampling_y));
1454 int mu_blocks_wide = mi_size_wide[max_unit_bsize];
1455 int mu_blocks_high = mi_size_high[max_unit_bsize];
1456 mu_blocks_wide = AOMMIN(num_4x4_w, mu_blocks_wide);
1457 mu_blocks_high = AOMMIN(num_4x4_h, mu_blocks_high);
1458
1459 const int num_planes = av1_num_planes(cm);
1460 for (int row = 0; row < num_4x4_h; row += mu_blocks_high) {
1461 for (int col = 0; col < num_4x4_w; col += mu_blocks_wide) {
1462 for (int plane = 0; plane < num_planes; ++plane) {
1463 if (plane && !xd->is_chroma_ref) break;
1464 write_inter_txb_coeff(cm, x, mbmi, w, tok, tok_end, &token_stats, row,
1465 col, &block[plane], plane);
1466 }
1467 }
1468 }
1469 #if CONFIG_RD_DEBUG
1470 for (int plane = 0; plane < num_planes; ++plane) {
1471 if (mbmi->sb_type >= BLOCK_8X8 &&
1472 rd_token_stats_mismatch(&mbmi->rd_stats, &token_stats, plane)) {
1473 dump_mode_info(mbmi);
1474 assert(0);
1475 }
1476 }
1477 #endif // CONFIG_RD_DEBUG
1478 }
1479 }
1480
write_modes_b(AV1_COMP * cpi,const TileInfo * const tile,aom_writer * w,const TOKENEXTRA ** tok,const TOKENEXTRA * const tok_end,int mi_row,int mi_col)1481 static AOM_INLINE void write_modes_b(AV1_COMP *cpi, const TileInfo *const tile,
1482 aom_writer *w, const TOKENEXTRA **tok,
1483 const TOKENEXTRA *const tok_end,
1484 int mi_row, int mi_col) {
1485 const AV1_COMMON *cm = &cpi->common;
1486 const CommonModeInfoParams *const mi_params = &cm->mi_params;
1487 MACROBLOCKD *xd = &cpi->td.mb.e_mbd;
1488 const int grid_idx = mi_row * mi_params->mi_stride + mi_col;
1489 xd->mi = mi_params->mi_grid_base + grid_idx;
1490 cpi->td.mb.mbmi_ext_frame =
1491 cpi->mbmi_ext_info.frame_base +
1492 get_mi_ext_idx(mi_row, mi_col, cm->mi_params.mi_alloc_bsize,
1493 cpi->mbmi_ext_info.stride);
1494 xd->tx_type_map = mi_params->tx_type_map + grid_idx;
1495 xd->tx_type_map_stride = mi_params->mi_stride;
1496
1497 const MB_MODE_INFO *mbmi = xd->mi[0];
1498 const BLOCK_SIZE bsize = mbmi->sb_type;
1499 assert(bsize <= cm->seq_params.sb_size ||
1500 (bsize >= BLOCK_SIZES && bsize < BLOCK_SIZES_ALL));
1501
1502 const int bh = mi_size_high[bsize];
1503 const int bw = mi_size_wide[bsize];
1504 set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, mi_params->mi_rows,
1505 mi_params->mi_cols);
1506
1507 xd->above_txfm_context = cm->above_contexts.txfm[tile->tile_row] + mi_col;
1508 xd->left_txfm_context =
1509 xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
1510
1511 write_mbmi_b(cpi, w);
1512
1513 for (int plane = 0; plane < AOMMIN(2, av1_num_planes(cm)); ++plane) {
1514 const uint8_t palette_size_plane =
1515 mbmi->palette_mode_info.palette_size[plane];
1516 assert(!mbmi->skip_mode || !palette_size_plane);
1517 if (palette_size_plane > 0) {
1518 assert(mbmi->use_intrabc == 0);
1519 assert(av1_allow_palette(cm->features.allow_screen_content_tools,
1520 mbmi->sb_type));
1521 assert(!plane || xd->is_chroma_ref);
1522 int rows, cols;
1523 av1_get_block_dimensions(mbmi->sb_type, plane, xd, NULL, NULL, &rows,
1524 &cols);
1525 assert(*tok < tok_end);
1526 pack_map_tokens(w, tok, palette_size_plane, rows * cols);
1527 }
1528 }
1529
1530 const int is_inter_tx = is_inter_block(mbmi);
1531 const int skip = mbmi->skip;
1532 const int segment_id = mbmi->segment_id;
1533 if (cm->features.tx_mode == TX_MODE_SELECT && block_signals_txsize(bsize) &&
1534 !(is_inter_tx && skip) && !xd->lossless[segment_id]) {
1535 if (is_inter_tx) { // This implies skip flag is 0.
1536 const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, bsize, 0);
1537 const int txbh = tx_size_high_unit[max_tx_size];
1538 const int txbw = tx_size_wide_unit[max_tx_size];
1539 const int width = mi_size_wide[bsize];
1540 const int height = mi_size_high[bsize];
1541 for (int idy = 0; idy < height; idy += txbh) {
1542 for (int idx = 0; idx < width; idx += txbw) {
1543 write_tx_size_vartx(xd, mbmi, max_tx_size, 0, idy, idx, w);
1544 }
1545 }
1546 } else {
1547 write_selected_tx_size(xd, w);
1548 set_txfm_ctxs(mbmi->tx_size, xd->width, xd->height, 0, xd);
1549 }
1550 } else {
1551 set_txfm_ctxs(mbmi->tx_size, xd->width, xd->height, skip && is_inter_tx,
1552 xd);
1553 }
1554
1555 if (!mbmi->skip) {
1556 write_tokens_b(cpi, w, tok, tok_end);
1557 }
1558 }
1559
write_partition(const AV1_COMMON * const cm,const MACROBLOCKD * const xd,int hbs,int mi_row,int mi_col,PARTITION_TYPE p,BLOCK_SIZE bsize,aom_writer * w)1560 static AOM_INLINE void write_partition(const AV1_COMMON *const cm,
1561 const MACROBLOCKD *const xd, int hbs,
1562 int mi_row, int mi_col, PARTITION_TYPE p,
1563 BLOCK_SIZE bsize, aom_writer *w) {
1564 const int is_partition_point = bsize >= BLOCK_8X8;
1565
1566 if (!is_partition_point) return;
1567
1568 const int has_rows = (mi_row + hbs) < cm->mi_params.mi_rows;
1569 const int has_cols = (mi_col + hbs) < cm->mi_params.mi_cols;
1570 const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
1571 FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
1572
1573 if (!has_rows && !has_cols) {
1574 assert(p == PARTITION_SPLIT);
1575 return;
1576 }
1577
1578 if (has_rows && has_cols) {
1579 aom_write_symbol(w, p, ec_ctx->partition_cdf[ctx],
1580 partition_cdf_length(bsize));
1581 } else if (!has_rows && has_cols) {
1582 assert(p == PARTITION_SPLIT || p == PARTITION_HORZ);
1583 assert(bsize > BLOCK_8X8);
1584 aom_cdf_prob cdf[2];
1585 partition_gather_vert_alike(cdf, ec_ctx->partition_cdf[ctx], bsize);
1586 aom_write_cdf(w, p == PARTITION_SPLIT, cdf, 2);
1587 } else {
1588 assert(has_rows && !has_cols);
1589 assert(p == PARTITION_SPLIT || p == PARTITION_VERT);
1590 assert(bsize > BLOCK_8X8);
1591 aom_cdf_prob cdf[2];
1592 partition_gather_horz_alike(cdf, ec_ctx->partition_cdf[ctx], bsize);
1593 aom_write_cdf(w, p == PARTITION_SPLIT, cdf, 2);
1594 }
1595 }
1596
write_modes_sb(AV1_COMP * const cpi,const TileInfo * const tile,aom_writer * const w,const TOKENEXTRA ** tok,const TOKENEXTRA * const tok_end,int mi_row,int mi_col,BLOCK_SIZE bsize)1597 static AOM_INLINE void write_modes_sb(
1598 AV1_COMP *const cpi, const TileInfo *const tile, aom_writer *const w,
1599 const TOKENEXTRA **tok, const TOKENEXTRA *const tok_end, int mi_row,
1600 int mi_col, BLOCK_SIZE bsize) {
1601 const AV1_COMMON *const cm = &cpi->common;
1602 const CommonModeInfoParams *const mi_params = &cm->mi_params;
1603 MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
1604 assert(bsize < BLOCK_SIZES_ALL);
1605 const int hbs = mi_size_wide[bsize] / 2;
1606 const int quarter_step = mi_size_wide[bsize] / 4;
1607 int i;
1608 const PARTITION_TYPE partition = get_partition(cm, mi_row, mi_col, bsize);
1609 const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition);
1610
1611 if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) return;
1612
1613 const int num_planes = av1_num_planes(cm);
1614 for (int plane = 0; plane < num_planes; ++plane) {
1615 int rcol0, rcol1, rrow0, rrow1;
1616 if (av1_loop_restoration_corners_in_sb(cm, plane, mi_row, mi_col, bsize,
1617 &rcol0, &rcol1, &rrow0, &rrow1)) {
1618 const int rstride = cm->rst_info[plane].horz_units_per_tile;
1619 for (int rrow = rrow0; rrow < rrow1; ++rrow) {
1620 for (int rcol = rcol0; rcol < rcol1; ++rcol) {
1621 const int runit_idx = rcol + rrow * rstride;
1622 const RestorationUnitInfo *rui =
1623 &cm->rst_info[plane].unit_info[runit_idx];
1624 loop_restoration_write_sb_coeffs(cm, xd, rui, w, plane,
1625 cpi->td.counts);
1626 }
1627 }
1628 }
1629 }
1630
1631 write_partition(cm, xd, hbs, mi_row, mi_col, partition, bsize, w);
1632 switch (partition) {
1633 case PARTITION_NONE:
1634 write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
1635 break;
1636 case PARTITION_HORZ:
1637 write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
1638 if (mi_row + hbs < mi_params->mi_rows)
1639 write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col);
1640 break;
1641 case PARTITION_VERT:
1642 write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
1643 if (mi_col + hbs < mi_params->mi_cols)
1644 write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs);
1645 break;
1646 case PARTITION_SPLIT:
1647 write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col, subsize);
1648 write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs, subsize);
1649 write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col, subsize);
1650 write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs,
1651 subsize);
1652 break;
1653 case PARTITION_HORZ_A:
1654 write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
1655 write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs);
1656 write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col);
1657 break;
1658 case PARTITION_HORZ_B:
1659 write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
1660 write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col);
1661 write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs);
1662 break;
1663 case PARTITION_VERT_A:
1664 write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
1665 write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col);
1666 write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs);
1667 break;
1668 case PARTITION_VERT_B:
1669 write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
1670 write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs);
1671 write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs);
1672 break;
1673 case PARTITION_HORZ_4:
1674 for (i = 0; i < 4; ++i) {
1675 int this_mi_row = mi_row + i * quarter_step;
1676 if (i > 0 && this_mi_row >= mi_params->mi_rows) break;
1677
1678 write_modes_b(cpi, tile, w, tok, tok_end, this_mi_row, mi_col);
1679 }
1680 break;
1681 case PARTITION_VERT_4:
1682 for (i = 0; i < 4; ++i) {
1683 int this_mi_col = mi_col + i * quarter_step;
1684 if (i > 0 && this_mi_col >= mi_params->mi_cols) break;
1685
1686 write_modes_b(cpi, tile, w, tok, tok_end, mi_row, this_mi_col);
1687 }
1688 break;
1689 default: assert(0);
1690 }
1691
1692 // update partition context
1693 update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition);
1694 }
1695
write_modes(AV1_COMP * const cpi,const TileInfo * const tile,aom_writer * const w,int tile_row,int tile_col)1696 static AOM_INLINE void write_modes(AV1_COMP *const cpi,
1697 const TileInfo *const tile,
1698 aom_writer *const w, int tile_row,
1699 int tile_col) {
1700 AV1_COMMON *const cm = &cpi->common;
1701 MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
1702 const int mi_row_start = tile->mi_row_start;
1703 const int mi_row_end = tile->mi_row_end;
1704 const int mi_col_start = tile->mi_col_start;
1705 const int mi_col_end = tile->mi_col_end;
1706 const int num_planes = av1_num_planes(cm);
1707
1708 av1_zero_above_context(cm, xd, mi_col_start, mi_col_end, tile->tile_row);
1709 av1_init_above_context(&cm->above_contexts, num_planes, tile->tile_row, xd);
1710
1711 if (cpi->common.delta_q_info.delta_q_present_flag) {
1712 xd->current_qindex = cpi->common.quant_params.base_qindex;
1713 if (cpi->common.delta_q_info.delta_lf_present_flag) {
1714 av1_reset_loop_filter_delta(xd, num_planes);
1715 }
1716 }
1717
1718 for (int mi_row = mi_row_start; mi_row < mi_row_end;
1719 mi_row += cm->seq_params.mib_size) {
1720 const int sb_row_in_tile =
1721 (mi_row - tile->mi_row_start) >> cm->seq_params.mib_size_log2;
1722 const TOKENEXTRA *tok =
1723 cpi->tplist[tile_row][tile_col][sb_row_in_tile].start;
1724 const TOKENEXTRA *tok_end =
1725 tok + cpi->tplist[tile_row][tile_col][sb_row_in_tile].count;
1726
1727 av1_zero_left_context(xd);
1728
1729 for (int mi_col = mi_col_start; mi_col < mi_col_end;
1730 mi_col += cm->seq_params.mib_size) {
1731 cpi->td.mb.cb_coef_buff = av1_get_cb_coeff_buffer(cpi, mi_row, mi_col);
1732 write_modes_sb(cpi, tile, w, &tok, tok_end, mi_row, mi_col,
1733 cm->seq_params.sb_size);
1734 }
1735 assert(tok == cpi->tplist[tile_row][tile_col][sb_row_in_tile].stop);
1736 }
1737 }
1738
encode_restoration_mode(AV1_COMMON * cm,struct aom_write_bit_buffer * wb)1739 static AOM_INLINE void encode_restoration_mode(
1740 AV1_COMMON *cm, struct aom_write_bit_buffer *wb) {
1741 assert(!cm->features.all_lossless);
1742 if (!cm->seq_params.enable_restoration) return;
1743 if (cm->features.allow_intrabc) return;
1744 const int num_planes = av1_num_planes(cm);
1745 int all_none = 1, chroma_none = 1;
1746 for (int p = 0; p < num_planes; ++p) {
1747 RestorationInfo *rsi = &cm->rst_info[p];
1748 if (rsi->frame_restoration_type != RESTORE_NONE) {
1749 all_none = 0;
1750 chroma_none &= p == 0;
1751 }
1752 switch (rsi->frame_restoration_type) {
1753 case RESTORE_NONE:
1754 aom_wb_write_bit(wb, 0);
1755 aom_wb_write_bit(wb, 0);
1756 break;
1757 case RESTORE_WIENER:
1758 aom_wb_write_bit(wb, 1);
1759 aom_wb_write_bit(wb, 0);
1760 break;
1761 case RESTORE_SGRPROJ:
1762 aom_wb_write_bit(wb, 1);
1763 aom_wb_write_bit(wb, 1);
1764 break;
1765 case RESTORE_SWITCHABLE:
1766 aom_wb_write_bit(wb, 0);
1767 aom_wb_write_bit(wb, 1);
1768 break;
1769 default: assert(0);
1770 }
1771 }
1772 if (!all_none) {
1773 assert(cm->seq_params.sb_size == BLOCK_64X64 ||
1774 cm->seq_params.sb_size == BLOCK_128X128);
1775 const int sb_size = cm->seq_params.sb_size == BLOCK_128X128 ? 128 : 64;
1776
1777 RestorationInfo *rsi = &cm->rst_info[0];
1778
1779 assert(rsi->restoration_unit_size >= sb_size);
1780 assert(RESTORATION_UNITSIZE_MAX == 256);
1781
1782 if (sb_size == 64) {
1783 aom_wb_write_bit(wb, rsi->restoration_unit_size > 64);
1784 }
1785 if (rsi->restoration_unit_size > 64) {
1786 aom_wb_write_bit(wb, rsi->restoration_unit_size > 128);
1787 }
1788 }
1789
1790 if (num_planes > 1) {
1791 int s = AOMMIN(cm->seq_params.subsampling_x, cm->seq_params.subsampling_y);
1792 if (s && !chroma_none) {
1793 aom_wb_write_bit(wb, cm->rst_info[1].restoration_unit_size !=
1794 cm->rst_info[0].restoration_unit_size);
1795 assert(cm->rst_info[1].restoration_unit_size ==
1796 cm->rst_info[0].restoration_unit_size ||
1797 cm->rst_info[1].restoration_unit_size ==
1798 (cm->rst_info[0].restoration_unit_size >> s));
1799 assert(cm->rst_info[2].restoration_unit_size ==
1800 cm->rst_info[1].restoration_unit_size);
1801 } else if (!s) {
1802 assert(cm->rst_info[1].restoration_unit_size ==
1803 cm->rst_info[0].restoration_unit_size);
1804 assert(cm->rst_info[2].restoration_unit_size ==
1805 cm->rst_info[1].restoration_unit_size);
1806 }
1807 }
1808 }
1809
write_wiener_filter(int wiener_win,const WienerInfo * wiener_info,WienerInfo * ref_wiener_info,aom_writer * wb)1810 static AOM_INLINE void write_wiener_filter(int wiener_win,
1811 const WienerInfo *wiener_info,
1812 WienerInfo *ref_wiener_info,
1813 aom_writer *wb) {
1814 if (wiener_win == WIENER_WIN)
1815 aom_write_primitive_refsubexpfin(
1816 wb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
1817 WIENER_FILT_TAP0_SUBEXP_K,
1818 ref_wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV,
1819 wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV);
1820 else
1821 assert(wiener_info->vfilter[0] == 0 &&
1822 wiener_info->vfilter[WIENER_WIN - 1] == 0);
1823 aom_write_primitive_refsubexpfin(
1824 wb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
1825 WIENER_FILT_TAP1_SUBEXP_K,
1826 ref_wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV,
1827 wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV);
1828 aom_write_primitive_refsubexpfin(
1829 wb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
1830 WIENER_FILT_TAP2_SUBEXP_K,
1831 ref_wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV,
1832 wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV);
1833 if (wiener_win == WIENER_WIN)
1834 aom_write_primitive_refsubexpfin(
1835 wb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
1836 WIENER_FILT_TAP0_SUBEXP_K,
1837 ref_wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV,
1838 wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV);
1839 else
1840 assert(wiener_info->hfilter[0] == 0 &&
1841 wiener_info->hfilter[WIENER_WIN - 1] == 0);
1842 aom_write_primitive_refsubexpfin(
1843 wb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
1844 WIENER_FILT_TAP1_SUBEXP_K,
1845 ref_wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV,
1846 wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV);
1847 aom_write_primitive_refsubexpfin(
1848 wb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
1849 WIENER_FILT_TAP2_SUBEXP_K,
1850 ref_wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV,
1851 wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV);
1852 memcpy(ref_wiener_info, wiener_info, sizeof(*wiener_info));
1853 }
1854
write_sgrproj_filter(const SgrprojInfo * sgrproj_info,SgrprojInfo * ref_sgrproj_info,aom_writer * wb)1855 static AOM_INLINE void write_sgrproj_filter(const SgrprojInfo *sgrproj_info,
1856 SgrprojInfo *ref_sgrproj_info,
1857 aom_writer *wb) {
1858 aom_write_literal(wb, sgrproj_info->ep, SGRPROJ_PARAMS_BITS);
1859 const sgr_params_type *params = &av1_sgr_params[sgrproj_info->ep];
1860
1861 if (params->r[0] == 0) {
1862 assert(sgrproj_info->xqd[0] == 0);
1863 aom_write_primitive_refsubexpfin(
1864 wb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K,
1865 ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1,
1866 sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1);
1867 } else if (params->r[1] == 0) {
1868 aom_write_primitive_refsubexpfin(
1869 wb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K,
1870 ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0,
1871 sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0);
1872 } else {
1873 aom_write_primitive_refsubexpfin(
1874 wb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K,
1875 ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0,
1876 sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0);
1877 aom_write_primitive_refsubexpfin(
1878 wb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K,
1879 ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1,
1880 sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1);
1881 }
1882
1883 memcpy(ref_sgrproj_info, sgrproj_info, sizeof(*sgrproj_info));
1884 }
1885
loop_restoration_write_sb_coeffs(const AV1_COMMON * const cm,MACROBLOCKD * xd,const RestorationUnitInfo * rui,aom_writer * const w,int plane,FRAME_COUNTS * counts)1886 static AOM_INLINE void loop_restoration_write_sb_coeffs(
1887 const AV1_COMMON *const cm, MACROBLOCKD *xd, const RestorationUnitInfo *rui,
1888 aom_writer *const w, int plane, FRAME_COUNTS *counts) {
1889 const RestorationInfo *rsi = cm->rst_info + plane;
1890 RestorationType frame_rtype = rsi->frame_restoration_type;
1891 if (frame_rtype == RESTORE_NONE) return;
1892
1893 (void)counts;
1894 assert(!cm->features.all_lossless);
1895
1896 const int wiener_win = (plane > 0) ? WIENER_WIN_CHROMA : WIENER_WIN;
1897 WienerInfo *ref_wiener_info = &xd->wiener_info[plane];
1898 SgrprojInfo *ref_sgrproj_info = &xd->sgrproj_info[plane];
1899 RestorationType unit_rtype = rui->restoration_type;
1900
1901 if (frame_rtype == RESTORE_SWITCHABLE) {
1902 aom_write_symbol(w, unit_rtype, xd->tile_ctx->switchable_restore_cdf,
1903 RESTORE_SWITCHABLE_TYPES);
1904 #if CONFIG_ENTROPY_STATS
1905 ++counts->switchable_restore[unit_rtype];
1906 #endif
1907 switch (unit_rtype) {
1908 case RESTORE_WIENER:
1909 write_wiener_filter(wiener_win, &rui->wiener_info, ref_wiener_info, w);
1910 break;
1911 case RESTORE_SGRPROJ:
1912 write_sgrproj_filter(&rui->sgrproj_info, ref_sgrproj_info, w);
1913 break;
1914 default: assert(unit_rtype == RESTORE_NONE); break;
1915 }
1916 } else if (frame_rtype == RESTORE_WIENER) {
1917 aom_write_symbol(w, unit_rtype != RESTORE_NONE,
1918 xd->tile_ctx->wiener_restore_cdf, 2);
1919 #if CONFIG_ENTROPY_STATS
1920 ++counts->wiener_restore[unit_rtype != RESTORE_NONE];
1921 #endif
1922 if (unit_rtype != RESTORE_NONE) {
1923 write_wiener_filter(wiener_win, &rui->wiener_info, ref_wiener_info, w);
1924 }
1925 } else if (frame_rtype == RESTORE_SGRPROJ) {
1926 aom_write_symbol(w, unit_rtype != RESTORE_NONE,
1927 xd->tile_ctx->sgrproj_restore_cdf, 2);
1928 #if CONFIG_ENTROPY_STATS
1929 ++counts->sgrproj_restore[unit_rtype != RESTORE_NONE];
1930 #endif
1931 if (unit_rtype != RESTORE_NONE) {
1932 write_sgrproj_filter(&rui->sgrproj_info, ref_sgrproj_info, w);
1933 }
1934 }
1935 }
1936
1937 // Only write out the ref delta section if any of the elements
1938 // will signal a delta.
is_mode_ref_delta_meaningful(AV1_COMMON * cm)1939 static bool is_mode_ref_delta_meaningful(AV1_COMMON *cm) {
1940 struct loopfilter *lf = &cm->lf;
1941 if (!lf->mode_ref_delta_update) {
1942 return 0;
1943 }
1944 const RefCntBuffer *buf = get_primary_ref_frame_buf(cm);
1945 int8_t last_ref_deltas[REF_FRAMES];
1946 int8_t last_mode_deltas[MAX_MODE_LF_DELTAS];
1947 if (buf == NULL) {
1948 av1_set_default_ref_deltas(last_ref_deltas);
1949 av1_set_default_mode_deltas(last_mode_deltas);
1950 } else {
1951 memcpy(last_ref_deltas, buf->ref_deltas, REF_FRAMES);
1952 memcpy(last_mode_deltas, buf->mode_deltas, MAX_MODE_LF_DELTAS);
1953 }
1954 for (int i = 0; i < REF_FRAMES; i++) {
1955 if (lf->ref_deltas[i] != last_ref_deltas[i]) {
1956 return true;
1957 }
1958 }
1959 for (int i = 0; i < MAX_MODE_LF_DELTAS; i++) {
1960 if (lf->mode_deltas[i] != last_mode_deltas[i]) {
1961 return true;
1962 }
1963 }
1964 return false;
1965 }
1966
encode_loopfilter(AV1_COMMON * cm,struct aom_write_bit_buffer * wb)1967 static AOM_INLINE void encode_loopfilter(AV1_COMMON *cm,
1968 struct aom_write_bit_buffer *wb) {
1969 assert(!cm->features.coded_lossless);
1970 if (cm->features.allow_intrabc) return;
1971 const int num_planes = av1_num_planes(cm);
1972 struct loopfilter *lf = &cm->lf;
1973
1974 // Encode the loop filter level and type
1975 aom_wb_write_literal(wb, lf->filter_level[0], 6);
1976 aom_wb_write_literal(wb, lf->filter_level[1], 6);
1977 if (num_planes > 1) {
1978 if (lf->filter_level[0] || lf->filter_level[1]) {
1979 aom_wb_write_literal(wb, lf->filter_level_u, 6);
1980 aom_wb_write_literal(wb, lf->filter_level_v, 6);
1981 }
1982 }
1983 aom_wb_write_literal(wb, lf->sharpness_level, 3);
1984
1985 aom_wb_write_bit(wb, lf->mode_ref_delta_enabled);
1986
1987 // Write out loop filter deltas applied at the MB level based on mode or
1988 // ref frame (if they are enabled), only if there is information to write.
1989 int meaningful = is_mode_ref_delta_meaningful(cm);
1990 aom_wb_write_bit(wb, meaningful);
1991 if (!meaningful) {
1992 return;
1993 }
1994
1995 const RefCntBuffer *buf = get_primary_ref_frame_buf(cm);
1996 int8_t last_ref_deltas[REF_FRAMES];
1997 int8_t last_mode_deltas[MAX_MODE_LF_DELTAS];
1998 if (buf == NULL) {
1999 av1_set_default_ref_deltas(last_ref_deltas);
2000 av1_set_default_mode_deltas(last_mode_deltas);
2001 } else {
2002 memcpy(last_ref_deltas, buf->ref_deltas, REF_FRAMES);
2003 memcpy(last_mode_deltas, buf->mode_deltas, MAX_MODE_LF_DELTAS);
2004 }
2005 for (int i = 0; i < REF_FRAMES; i++) {
2006 const int delta = lf->ref_deltas[i];
2007 const int changed = delta != last_ref_deltas[i];
2008 aom_wb_write_bit(wb, changed);
2009 if (changed) aom_wb_write_inv_signed_literal(wb, delta, 6);
2010 }
2011 for (int i = 0; i < MAX_MODE_LF_DELTAS; i++) {
2012 const int delta = lf->mode_deltas[i];
2013 const int changed = delta != last_mode_deltas[i];
2014 aom_wb_write_bit(wb, changed);
2015 if (changed) aom_wb_write_inv_signed_literal(wb, delta, 6);
2016 }
2017 }
2018
encode_cdef(const AV1_COMMON * cm,struct aom_write_bit_buffer * wb)2019 static AOM_INLINE void encode_cdef(const AV1_COMMON *cm,
2020 struct aom_write_bit_buffer *wb) {
2021 assert(!cm->features.coded_lossless);
2022 if (!cm->seq_params.enable_cdef) return;
2023 if (cm->features.allow_intrabc) return;
2024 const int num_planes = av1_num_planes(cm);
2025 int i;
2026 aom_wb_write_literal(wb, cm->cdef_info.cdef_damping - 3, 2);
2027 aom_wb_write_literal(wb, cm->cdef_info.cdef_bits, 2);
2028 for (i = 0; i < cm->cdef_info.nb_cdef_strengths; i++) {
2029 aom_wb_write_literal(wb, cm->cdef_info.cdef_strengths[i],
2030 CDEF_STRENGTH_BITS);
2031 if (num_planes > 1)
2032 aom_wb_write_literal(wb, cm->cdef_info.cdef_uv_strengths[i],
2033 CDEF_STRENGTH_BITS);
2034 }
2035 }
2036
write_delta_q(struct aom_write_bit_buffer * wb,int delta_q)2037 static AOM_INLINE void write_delta_q(struct aom_write_bit_buffer *wb,
2038 int delta_q) {
2039 if (delta_q != 0) {
2040 aom_wb_write_bit(wb, 1);
2041 aom_wb_write_inv_signed_literal(wb, delta_q, 6);
2042 } else {
2043 aom_wb_write_bit(wb, 0);
2044 }
2045 }
2046
encode_quantization(const CommonQuantParams * const quant_params,int num_planes,bool separate_uv_delta_q,struct aom_write_bit_buffer * wb)2047 static AOM_INLINE void encode_quantization(
2048 const CommonQuantParams *const quant_params, int num_planes,
2049 bool separate_uv_delta_q, struct aom_write_bit_buffer *wb) {
2050 aom_wb_write_literal(wb, quant_params->base_qindex, QINDEX_BITS);
2051 write_delta_q(wb, quant_params->y_dc_delta_q);
2052 if (num_planes > 1) {
2053 int diff_uv_delta =
2054 (quant_params->u_dc_delta_q != quant_params->v_dc_delta_q) ||
2055 (quant_params->u_ac_delta_q != quant_params->v_ac_delta_q);
2056 if (separate_uv_delta_q) aom_wb_write_bit(wb, diff_uv_delta);
2057 write_delta_q(wb, quant_params->u_dc_delta_q);
2058 write_delta_q(wb, quant_params->u_ac_delta_q);
2059 if (diff_uv_delta) {
2060 write_delta_q(wb, quant_params->v_dc_delta_q);
2061 write_delta_q(wb, quant_params->v_ac_delta_q);
2062 }
2063 }
2064 aom_wb_write_bit(wb, quant_params->using_qmatrix);
2065 if (quant_params->using_qmatrix) {
2066 aom_wb_write_literal(wb, quant_params->qmatrix_level_y, QM_LEVEL_BITS);
2067 aom_wb_write_literal(wb, quant_params->qmatrix_level_u, QM_LEVEL_BITS);
2068 if (!separate_uv_delta_q)
2069 assert(quant_params->qmatrix_level_u == quant_params->qmatrix_level_v);
2070 else
2071 aom_wb_write_literal(wb, quant_params->qmatrix_level_v, QM_LEVEL_BITS);
2072 }
2073 }
2074
encode_segmentation(AV1_COMMON * cm,MACROBLOCKD * xd,struct aom_write_bit_buffer * wb)2075 static AOM_INLINE void encode_segmentation(AV1_COMMON *cm, MACROBLOCKD *xd,
2076 struct aom_write_bit_buffer *wb) {
2077 int i, j;
2078 struct segmentation *seg = &cm->seg;
2079
2080 aom_wb_write_bit(wb, seg->enabled);
2081 if (!seg->enabled) return;
2082
2083 // Write update flags
2084 if (cm->features.primary_ref_frame == PRIMARY_REF_NONE) {
2085 assert(seg->update_map == 1);
2086 seg->temporal_update = 0;
2087 assert(seg->update_data == 1);
2088 } else {
2089 aom_wb_write_bit(wb, seg->update_map);
2090 if (seg->update_map) {
2091 // Select the coding strategy (temporal or spatial)
2092 av1_choose_segmap_coding_method(cm, xd);
2093 aom_wb_write_bit(wb, seg->temporal_update);
2094 }
2095 aom_wb_write_bit(wb, seg->update_data);
2096 }
2097
2098 // Segmentation data
2099 if (seg->update_data) {
2100 for (i = 0; i < MAX_SEGMENTS; i++) {
2101 for (j = 0; j < SEG_LVL_MAX; j++) {
2102 const int active = segfeature_active(seg, i, j);
2103 aom_wb_write_bit(wb, active);
2104 if (active) {
2105 const int data_max = av1_seg_feature_data_max(j);
2106 const int data_min = -data_max;
2107 const int ubits = get_unsigned_bits(data_max);
2108 const int data = clamp(get_segdata(seg, i, j), data_min, data_max);
2109
2110 if (av1_is_segfeature_signed(j)) {
2111 aom_wb_write_inv_signed_literal(wb, data, ubits);
2112 } else {
2113 aom_wb_write_literal(wb, data, ubits);
2114 }
2115 }
2116 }
2117 }
2118 }
2119 }
2120
write_frame_interp_filter(InterpFilter filter,struct aom_write_bit_buffer * wb)2121 static AOM_INLINE void write_frame_interp_filter(
2122 InterpFilter filter, struct aom_write_bit_buffer *wb) {
2123 aom_wb_write_bit(wb, filter == SWITCHABLE);
2124 if (filter != SWITCHABLE)
2125 aom_wb_write_literal(wb, filter, LOG_SWITCHABLE_FILTERS);
2126 }
2127
2128 // Same function as write_uniform but writing to uncompresses header wb
wb_write_uniform(struct aom_write_bit_buffer * wb,int n,int v)2129 static AOM_INLINE void wb_write_uniform(struct aom_write_bit_buffer *wb, int n,
2130 int v) {
2131 const int l = get_unsigned_bits(n);
2132 const int m = (1 << l) - n;
2133 if (l == 0) return;
2134 if (v < m) {
2135 aom_wb_write_literal(wb, v, l - 1);
2136 } else {
2137 aom_wb_write_literal(wb, m + ((v - m) >> 1), l - 1);
2138 aom_wb_write_literal(wb, (v - m) & 1, 1);
2139 }
2140 }
2141
write_tile_info_max_tile(const AV1_COMMON * const cm,struct aom_write_bit_buffer * wb)2142 static AOM_INLINE void write_tile_info_max_tile(
2143 const AV1_COMMON *const cm, struct aom_write_bit_buffer *wb) {
2144 int width_mi =
2145 ALIGN_POWER_OF_TWO(cm->mi_params.mi_cols, cm->seq_params.mib_size_log2);
2146 int height_mi =
2147 ALIGN_POWER_OF_TWO(cm->mi_params.mi_rows, cm->seq_params.mib_size_log2);
2148 int width_sb = width_mi >> cm->seq_params.mib_size_log2;
2149 int height_sb = height_mi >> cm->seq_params.mib_size_log2;
2150 int size_sb, i;
2151 const CommonTileParams *const tiles = &cm->tiles;
2152
2153 aom_wb_write_bit(wb, tiles->uniform_spacing);
2154
2155 if (tiles->uniform_spacing) {
2156 int ones = tiles->log2_cols - tiles->min_log2_cols;
2157 while (ones--) {
2158 aom_wb_write_bit(wb, 1);
2159 }
2160 if (tiles->log2_cols < tiles->max_log2_cols) {
2161 aom_wb_write_bit(wb, 0);
2162 }
2163
2164 // rows
2165 ones = tiles->log2_rows - tiles->min_log2_rows;
2166 while (ones--) {
2167 aom_wb_write_bit(wb, 1);
2168 }
2169 if (tiles->log2_rows < tiles->max_log2_rows) {
2170 aom_wb_write_bit(wb, 0);
2171 }
2172 } else {
2173 // Explicit tiles with configurable tile widths and heights
2174 // columns
2175 for (i = 0; i < tiles->cols; i++) {
2176 size_sb = tiles->col_start_sb[i + 1] - tiles->col_start_sb[i];
2177 wb_write_uniform(wb, AOMMIN(width_sb, tiles->max_width_sb), size_sb - 1);
2178 width_sb -= size_sb;
2179 }
2180 assert(width_sb == 0);
2181
2182 // rows
2183 for (i = 0; i < tiles->rows; i++) {
2184 size_sb = tiles->row_start_sb[i + 1] - tiles->row_start_sb[i];
2185 wb_write_uniform(wb, AOMMIN(height_sb, tiles->max_height_sb),
2186 size_sb - 1);
2187 height_sb -= size_sb;
2188 }
2189 assert(height_sb == 0);
2190 }
2191 }
2192
write_tile_info(const AV1_COMMON * const cm,struct aom_write_bit_buffer * saved_wb,struct aom_write_bit_buffer * wb)2193 static AOM_INLINE void write_tile_info(const AV1_COMMON *const cm,
2194 struct aom_write_bit_buffer *saved_wb,
2195 struct aom_write_bit_buffer *wb) {
2196 write_tile_info_max_tile(cm, wb);
2197
2198 *saved_wb = *wb;
2199 if (cm->tiles.rows * cm->tiles.cols > 1) {
2200 // tile id used for cdf update
2201 aom_wb_write_literal(wb, 0, cm->tiles.log2_cols + cm->tiles.log2_rows);
2202 // Number of bytes in tile size - 1
2203 aom_wb_write_literal(wb, 3, 2);
2204 }
2205 }
2206
write_ext_tile_info(const AV1_COMMON * const cm,struct aom_write_bit_buffer * saved_wb,struct aom_write_bit_buffer * wb)2207 static AOM_INLINE void write_ext_tile_info(
2208 const AV1_COMMON *const cm, struct aom_write_bit_buffer *saved_wb,
2209 struct aom_write_bit_buffer *wb) {
2210 // This information is stored as a separate byte.
2211 int mod = wb->bit_offset % CHAR_BIT;
2212 if (mod > 0) aom_wb_write_literal(wb, 0, CHAR_BIT - mod);
2213 assert(aom_wb_is_byte_aligned(wb));
2214
2215 *saved_wb = *wb;
2216 if (cm->tiles.rows * cm->tiles.cols > 1) {
2217 // Note that the last item in the uncompressed header is the data
2218 // describing tile configuration.
2219 // Number of bytes in tile column size - 1
2220 aom_wb_write_literal(wb, 0, 2);
2221 // Number of bytes in tile size - 1
2222 aom_wb_write_literal(wb, 0, 2);
2223 }
2224 }
2225
2226 // Stores the location and size of a tile's data in the bitstream. Used for
2227 // later identifying identical tiles
2228 typedef struct TileBufferEnc {
2229 uint8_t *data;
2230 size_t size;
2231 } TileBufferEnc;
2232
find_identical_tile(const int tile_row,const int tile_col,TileBufferEnc (* const tile_buffers)[MAX_TILE_COLS])2233 static INLINE int find_identical_tile(
2234 const int tile_row, const int tile_col,
2235 TileBufferEnc (*const tile_buffers)[MAX_TILE_COLS]) {
2236 const MV32 candidate_offset[1] = { { 1, 0 } };
2237 const uint8_t *const cur_tile_data =
2238 tile_buffers[tile_row][tile_col].data + 4;
2239 const size_t cur_tile_size = tile_buffers[tile_row][tile_col].size;
2240
2241 int i;
2242
2243 if (tile_row == 0) return 0;
2244
2245 // (TODO: yunqingwang) For now, only above tile is checked and used.
2246 // More candidates such as left tile can be added later.
2247 for (i = 0; i < 1; i++) {
2248 int row_offset = candidate_offset[0].row;
2249 int col_offset = candidate_offset[0].col;
2250 int row = tile_row - row_offset;
2251 int col = tile_col - col_offset;
2252 const uint8_t *tile_data;
2253 TileBufferEnc *candidate;
2254
2255 if (row < 0 || col < 0) continue;
2256
2257 const uint32_t tile_hdr = mem_get_le32(tile_buffers[row][col].data);
2258
2259 // Read out tile-copy-mode bit:
2260 if ((tile_hdr >> 31) == 1) {
2261 // The candidate is a copy tile itself: the offset is stored in bits
2262 // 30 through 24 inclusive.
2263 row_offset += (tile_hdr >> 24) & 0x7f;
2264 row = tile_row - row_offset;
2265 }
2266
2267 candidate = &tile_buffers[row][col];
2268
2269 if (row_offset >= 128 || candidate->size != cur_tile_size) continue;
2270
2271 tile_data = candidate->data + 4;
2272
2273 if (memcmp(tile_data, cur_tile_data, cur_tile_size) != 0) continue;
2274
2275 // Identical tile found
2276 assert(row_offset > 0);
2277 return row_offset;
2278 }
2279
2280 // No identical tile found
2281 return 0;
2282 }
2283
write_render_size(const AV1_COMMON * cm,struct aom_write_bit_buffer * wb)2284 static AOM_INLINE void write_render_size(const AV1_COMMON *cm,
2285 struct aom_write_bit_buffer *wb) {
2286 const int scaling_active = av1_resize_scaled(cm);
2287 aom_wb_write_bit(wb, scaling_active);
2288 if (scaling_active) {
2289 aom_wb_write_literal(wb, cm->render_width - 1, 16);
2290 aom_wb_write_literal(wb, cm->render_height - 1, 16);
2291 }
2292 }
2293
write_superres_scale(const AV1_COMMON * const cm,struct aom_write_bit_buffer * wb)2294 static AOM_INLINE void write_superres_scale(const AV1_COMMON *const cm,
2295 struct aom_write_bit_buffer *wb) {
2296 const SequenceHeader *const seq_params = &cm->seq_params;
2297 if (!seq_params->enable_superres) {
2298 assert(cm->superres_scale_denominator == SCALE_NUMERATOR);
2299 return;
2300 }
2301
2302 // First bit is whether to to scale or not
2303 if (cm->superres_scale_denominator == SCALE_NUMERATOR) {
2304 aom_wb_write_bit(wb, 0); // no scaling
2305 } else {
2306 aom_wb_write_bit(wb, 1); // scaling, write scale factor
2307 assert(cm->superres_scale_denominator >= SUPERRES_SCALE_DENOMINATOR_MIN);
2308 assert(cm->superres_scale_denominator <
2309 SUPERRES_SCALE_DENOMINATOR_MIN + (1 << SUPERRES_SCALE_BITS));
2310 aom_wb_write_literal(
2311 wb, cm->superres_scale_denominator - SUPERRES_SCALE_DENOMINATOR_MIN,
2312 SUPERRES_SCALE_BITS);
2313 }
2314 }
2315
write_frame_size(const AV1_COMMON * cm,int frame_size_override,struct aom_write_bit_buffer * wb)2316 static AOM_INLINE void write_frame_size(const AV1_COMMON *cm,
2317 int frame_size_override,
2318 struct aom_write_bit_buffer *wb) {
2319 const int coded_width = cm->superres_upscaled_width - 1;
2320 const int coded_height = cm->superres_upscaled_height - 1;
2321
2322 if (frame_size_override) {
2323 const SequenceHeader *seq_params = &cm->seq_params;
2324 int num_bits_width = seq_params->num_bits_width;
2325 int num_bits_height = seq_params->num_bits_height;
2326 aom_wb_write_literal(wb, coded_width, num_bits_width);
2327 aom_wb_write_literal(wb, coded_height, num_bits_height);
2328 }
2329
2330 write_superres_scale(cm, wb);
2331 write_render_size(cm, wb);
2332 }
2333
write_frame_size_with_refs(const AV1_COMMON * const cm,struct aom_write_bit_buffer * wb)2334 static AOM_INLINE void write_frame_size_with_refs(
2335 const AV1_COMMON *const cm, struct aom_write_bit_buffer *wb) {
2336 int found = 0;
2337
2338 MV_REFERENCE_FRAME ref_frame;
2339 for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
2340 const YV12_BUFFER_CONFIG *cfg = get_ref_frame_yv12_buf(cm, ref_frame);
2341
2342 if (cfg != NULL) {
2343 found = cm->superres_upscaled_width == cfg->y_crop_width &&
2344 cm->superres_upscaled_height == cfg->y_crop_height;
2345 found &= cm->render_width == cfg->render_width &&
2346 cm->render_height == cfg->render_height;
2347 }
2348 aom_wb_write_bit(wb, found);
2349 if (found) {
2350 write_superres_scale(cm, wb);
2351 break;
2352 }
2353 }
2354
2355 if (!found) {
2356 int frame_size_override = 1; // Always equal to 1 in this function
2357 write_frame_size(cm, frame_size_override, wb);
2358 }
2359 }
2360
write_profile(BITSTREAM_PROFILE profile,struct aom_write_bit_buffer * wb)2361 static AOM_INLINE void write_profile(BITSTREAM_PROFILE profile,
2362 struct aom_write_bit_buffer *wb) {
2363 assert(profile >= PROFILE_0 && profile < MAX_PROFILES);
2364 aom_wb_write_literal(wb, profile, PROFILE_BITS);
2365 }
2366
write_bitdepth(const SequenceHeader * const seq_params,struct aom_write_bit_buffer * wb)2367 static AOM_INLINE void write_bitdepth(const SequenceHeader *const seq_params,
2368 struct aom_write_bit_buffer *wb) {
2369 // Profile 0/1: [0] for 8 bit, [1] 10-bit
2370 // Profile 2: [0] for 8 bit, [10] 10-bit, [11] - 12-bit
2371 aom_wb_write_bit(wb, seq_params->bit_depth == AOM_BITS_8 ? 0 : 1);
2372 if (seq_params->profile == PROFILE_2 && seq_params->bit_depth != AOM_BITS_8) {
2373 aom_wb_write_bit(wb, seq_params->bit_depth == AOM_BITS_10 ? 0 : 1);
2374 }
2375 }
2376
write_color_config(const SequenceHeader * const seq_params,struct aom_write_bit_buffer * wb)2377 static AOM_INLINE void write_color_config(
2378 const SequenceHeader *const seq_params, struct aom_write_bit_buffer *wb) {
2379 write_bitdepth(seq_params, wb);
2380 const int is_monochrome = seq_params->monochrome;
2381 // monochrome bit
2382 if (seq_params->profile != PROFILE_1)
2383 aom_wb_write_bit(wb, is_monochrome);
2384 else
2385 assert(!is_monochrome);
2386 if (seq_params->color_primaries == AOM_CICP_CP_UNSPECIFIED &&
2387 seq_params->transfer_characteristics == AOM_CICP_TC_UNSPECIFIED &&
2388 seq_params->matrix_coefficients == AOM_CICP_MC_UNSPECIFIED) {
2389 aom_wb_write_bit(wb, 0); // No color description present
2390 } else {
2391 aom_wb_write_bit(wb, 1); // Color description present
2392 aom_wb_write_literal(wb, seq_params->color_primaries, 8);
2393 aom_wb_write_literal(wb, seq_params->transfer_characteristics, 8);
2394 aom_wb_write_literal(wb, seq_params->matrix_coefficients, 8);
2395 }
2396 if (is_monochrome) {
2397 // 0: [16, 235] (i.e. xvYCC), 1: [0, 255]
2398 aom_wb_write_bit(wb, seq_params->color_range);
2399 return;
2400 }
2401 if (seq_params->color_primaries == AOM_CICP_CP_BT_709 &&
2402 seq_params->transfer_characteristics == AOM_CICP_TC_SRGB &&
2403 seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY) {
2404 assert(seq_params->subsampling_x == 0 && seq_params->subsampling_y == 0);
2405 assert(seq_params->profile == PROFILE_1 ||
2406 (seq_params->profile == PROFILE_2 &&
2407 seq_params->bit_depth == AOM_BITS_12));
2408 } else {
2409 // 0: [16, 235] (i.e. xvYCC), 1: [0, 255]
2410 aom_wb_write_bit(wb, seq_params->color_range);
2411 if (seq_params->profile == PROFILE_0) {
2412 // 420 only
2413 assert(seq_params->subsampling_x == 1 && seq_params->subsampling_y == 1);
2414 } else if (seq_params->profile == PROFILE_1) {
2415 // 444 only
2416 assert(seq_params->subsampling_x == 0 && seq_params->subsampling_y == 0);
2417 } else if (seq_params->profile == PROFILE_2) {
2418 if (seq_params->bit_depth == AOM_BITS_12) {
2419 // 420, 444 or 422
2420 aom_wb_write_bit(wb, seq_params->subsampling_x);
2421 if (seq_params->subsampling_x == 0) {
2422 assert(seq_params->subsampling_y == 0 &&
2423 "4:4:0 subsampling not allowed in AV1");
2424 } else {
2425 aom_wb_write_bit(wb, seq_params->subsampling_y);
2426 }
2427 } else {
2428 // 422 only
2429 assert(seq_params->subsampling_x == 1 &&
2430 seq_params->subsampling_y == 0);
2431 }
2432 }
2433 if (seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY) {
2434 assert(seq_params->subsampling_x == 0 && seq_params->subsampling_y == 0);
2435 }
2436 if (seq_params->subsampling_x == 1 && seq_params->subsampling_y == 1) {
2437 aom_wb_write_literal(wb, seq_params->chroma_sample_position, 2);
2438 }
2439 }
2440 aom_wb_write_bit(wb, seq_params->separate_uv_delta_q);
2441 }
2442
write_timing_info_header(const aom_timing_info_t * const timing_info,struct aom_write_bit_buffer * wb)2443 static AOM_INLINE void write_timing_info_header(
2444 const aom_timing_info_t *const timing_info,
2445 struct aom_write_bit_buffer *wb) {
2446 aom_wb_write_unsigned_literal(wb, timing_info->num_units_in_display_tick, 32);
2447 aom_wb_write_unsigned_literal(wb, timing_info->time_scale, 32);
2448 aom_wb_write_bit(wb, timing_info->equal_picture_interval);
2449 if (timing_info->equal_picture_interval) {
2450 aom_wb_write_uvlc(wb, timing_info->num_ticks_per_picture - 1);
2451 }
2452 }
2453
write_decoder_model_info(const aom_dec_model_info_t * const decoder_model_info,struct aom_write_bit_buffer * wb)2454 static AOM_INLINE void write_decoder_model_info(
2455 const aom_dec_model_info_t *const decoder_model_info,
2456 struct aom_write_bit_buffer *wb) {
2457 aom_wb_write_literal(
2458 wb, decoder_model_info->encoder_decoder_buffer_delay_length - 1, 5);
2459 aom_wb_write_unsigned_literal(
2460 wb, decoder_model_info->num_units_in_decoding_tick, 32);
2461 aom_wb_write_literal(wb, decoder_model_info->buffer_removal_time_length - 1,
2462 5);
2463 aom_wb_write_literal(
2464 wb, decoder_model_info->frame_presentation_time_length - 1, 5);
2465 }
2466
write_dec_model_op_parameters(const aom_dec_model_op_parameters_t * op_params,int buffer_delay_length,struct aom_write_bit_buffer * wb)2467 static AOM_INLINE void write_dec_model_op_parameters(
2468 const aom_dec_model_op_parameters_t *op_params, int buffer_delay_length,
2469 struct aom_write_bit_buffer *wb) {
2470 aom_wb_write_unsigned_literal(wb, op_params->decoder_buffer_delay,
2471 buffer_delay_length);
2472 aom_wb_write_unsigned_literal(wb, op_params->encoder_buffer_delay,
2473 buffer_delay_length);
2474 aom_wb_write_bit(wb, op_params->low_delay_mode_flag);
2475 }
2476
write_tu_pts_info(AV1_COMMON * const cm,struct aom_write_bit_buffer * wb)2477 static AOM_INLINE void write_tu_pts_info(AV1_COMMON *const cm,
2478 struct aom_write_bit_buffer *wb) {
2479 aom_wb_write_unsigned_literal(
2480 wb, cm->frame_presentation_time,
2481 cm->seq_params.decoder_model_info.frame_presentation_time_length);
2482 }
2483
write_film_grain_params(const AV1_COMP * const cpi,struct aom_write_bit_buffer * wb)2484 static AOM_INLINE void write_film_grain_params(
2485 const AV1_COMP *const cpi, struct aom_write_bit_buffer *wb) {
2486 const AV1_COMMON *const cm = &cpi->common;
2487 const aom_film_grain_t *const pars = &cm->cur_frame->film_grain_params;
2488
2489 aom_wb_write_bit(wb, pars->apply_grain);
2490 if (!pars->apply_grain) return;
2491
2492 aom_wb_write_literal(wb, pars->random_seed, 16);
2493
2494 if (cm->current_frame.frame_type == INTER_FRAME)
2495 aom_wb_write_bit(wb, pars->update_parameters);
2496
2497 if (!pars->update_parameters) {
2498 int ref_frame, ref_idx;
2499 for (ref_frame = LAST_FRAME; ref_frame < REF_FRAMES; ref_frame++) {
2500 ref_idx = get_ref_frame_map_idx(cm, ref_frame);
2501 assert(ref_idx != INVALID_IDX);
2502 const RefCntBuffer *const buf = cm->ref_frame_map[ref_idx];
2503 if (buf->film_grain_params_present &&
2504 av1_check_grain_params_equiv(pars, &buf->film_grain_params)) {
2505 break;
2506 }
2507 }
2508 assert(ref_frame < REF_FRAMES);
2509 aom_wb_write_literal(wb, ref_idx, 3);
2510 return;
2511 }
2512
2513 // Scaling functions parameters
2514 aom_wb_write_literal(wb, pars->num_y_points, 4); // max 14
2515 for (int i = 0; i < pars->num_y_points; i++) {
2516 aom_wb_write_literal(wb, pars->scaling_points_y[i][0], 8);
2517 aom_wb_write_literal(wb, pars->scaling_points_y[i][1], 8);
2518 }
2519
2520 if (!cm->seq_params.monochrome) {
2521 aom_wb_write_bit(wb, pars->chroma_scaling_from_luma);
2522 } else {
2523 assert(!pars->chroma_scaling_from_luma);
2524 }
2525
2526 if (cm->seq_params.monochrome || pars->chroma_scaling_from_luma ||
2527 ((cm->seq_params.subsampling_x == 1) &&
2528 (cm->seq_params.subsampling_y == 1) && (pars->num_y_points == 0))) {
2529 assert(pars->num_cb_points == 0 && pars->num_cr_points == 0);
2530 } else {
2531 aom_wb_write_literal(wb, pars->num_cb_points, 4); // max 10
2532 for (int i = 0; i < pars->num_cb_points; i++) {
2533 aom_wb_write_literal(wb, pars->scaling_points_cb[i][0], 8);
2534 aom_wb_write_literal(wb, pars->scaling_points_cb[i][1], 8);
2535 }
2536
2537 aom_wb_write_literal(wb, pars->num_cr_points, 4); // max 10
2538 for (int i = 0; i < pars->num_cr_points; i++) {
2539 aom_wb_write_literal(wb, pars->scaling_points_cr[i][0], 8);
2540 aom_wb_write_literal(wb, pars->scaling_points_cr[i][1], 8);
2541 }
2542 }
2543
2544 aom_wb_write_literal(wb, pars->scaling_shift - 8, 2); // 8 + value
2545
2546 // AR coefficients
2547 // Only sent if the corresponsing scaling function has
2548 // more than 0 points
2549
2550 aom_wb_write_literal(wb, pars->ar_coeff_lag, 2);
2551
2552 int num_pos_luma = 2 * pars->ar_coeff_lag * (pars->ar_coeff_lag + 1);
2553 int num_pos_chroma = num_pos_luma;
2554 if (pars->num_y_points > 0) ++num_pos_chroma;
2555
2556 if (pars->num_y_points)
2557 for (int i = 0; i < num_pos_luma; i++)
2558 aom_wb_write_literal(wb, pars->ar_coeffs_y[i] + 128, 8);
2559
2560 if (pars->num_cb_points || pars->chroma_scaling_from_luma)
2561 for (int i = 0; i < num_pos_chroma; i++)
2562 aom_wb_write_literal(wb, pars->ar_coeffs_cb[i] + 128, 8);
2563
2564 if (pars->num_cr_points || pars->chroma_scaling_from_luma)
2565 for (int i = 0; i < num_pos_chroma; i++)
2566 aom_wb_write_literal(wb, pars->ar_coeffs_cr[i] + 128, 8);
2567
2568 aom_wb_write_literal(wb, pars->ar_coeff_shift - 6, 2); // 8 + value
2569
2570 aom_wb_write_literal(wb, pars->grain_scale_shift, 2);
2571
2572 if (pars->num_cb_points) {
2573 aom_wb_write_literal(wb, pars->cb_mult, 8);
2574 aom_wb_write_literal(wb, pars->cb_luma_mult, 8);
2575 aom_wb_write_literal(wb, pars->cb_offset, 9);
2576 }
2577
2578 if (pars->num_cr_points) {
2579 aom_wb_write_literal(wb, pars->cr_mult, 8);
2580 aom_wb_write_literal(wb, pars->cr_luma_mult, 8);
2581 aom_wb_write_literal(wb, pars->cr_offset, 9);
2582 }
2583
2584 aom_wb_write_bit(wb, pars->overlap_flag);
2585
2586 aom_wb_write_bit(wb, pars->clip_to_restricted_range);
2587 }
2588
write_sb_size(const SequenceHeader * const seq_params,struct aom_write_bit_buffer * wb)2589 static AOM_INLINE void write_sb_size(const SequenceHeader *const seq_params,
2590 struct aom_write_bit_buffer *wb) {
2591 (void)seq_params;
2592 (void)wb;
2593 assert(seq_params->mib_size == mi_size_wide[seq_params->sb_size]);
2594 assert(seq_params->mib_size == 1 << seq_params->mib_size_log2);
2595 assert(seq_params->sb_size == BLOCK_128X128 ||
2596 seq_params->sb_size == BLOCK_64X64);
2597 aom_wb_write_bit(wb, seq_params->sb_size == BLOCK_128X128 ? 1 : 0);
2598 }
2599
write_sequence_header(const SequenceHeader * const seq_params,struct aom_write_bit_buffer * wb)2600 static AOM_INLINE void write_sequence_header(
2601 const SequenceHeader *const seq_params, struct aom_write_bit_buffer *wb) {
2602 aom_wb_write_literal(wb, seq_params->num_bits_width - 1, 4);
2603 aom_wb_write_literal(wb, seq_params->num_bits_height - 1, 4);
2604 aom_wb_write_literal(wb, seq_params->max_frame_width - 1,
2605 seq_params->num_bits_width);
2606 aom_wb_write_literal(wb, seq_params->max_frame_height - 1,
2607 seq_params->num_bits_height);
2608
2609 if (!seq_params->reduced_still_picture_hdr) {
2610 aom_wb_write_bit(wb, seq_params->frame_id_numbers_present_flag);
2611 if (seq_params->frame_id_numbers_present_flag) {
2612 // We must always have delta_frame_id_length < frame_id_length,
2613 // in order for a frame to be referenced with a unique delta.
2614 // Avoid wasting bits by using a coding that enforces this restriction.
2615 aom_wb_write_literal(wb, seq_params->delta_frame_id_length - 2, 4);
2616 aom_wb_write_literal(
2617 wb,
2618 seq_params->frame_id_length - seq_params->delta_frame_id_length - 1,
2619 3);
2620 }
2621 }
2622
2623 write_sb_size(seq_params, wb);
2624
2625 aom_wb_write_bit(wb, seq_params->enable_filter_intra);
2626 aom_wb_write_bit(wb, seq_params->enable_intra_edge_filter);
2627
2628 if (!seq_params->reduced_still_picture_hdr) {
2629 aom_wb_write_bit(wb, seq_params->enable_interintra_compound);
2630 aom_wb_write_bit(wb, seq_params->enable_masked_compound);
2631 aom_wb_write_bit(wb, seq_params->enable_warped_motion);
2632 aom_wb_write_bit(wb, seq_params->enable_dual_filter);
2633
2634 aom_wb_write_bit(wb, seq_params->order_hint_info.enable_order_hint);
2635
2636 if (seq_params->order_hint_info.enable_order_hint) {
2637 aom_wb_write_bit(wb, seq_params->order_hint_info.enable_dist_wtd_comp);
2638 aom_wb_write_bit(wb, seq_params->order_hint_info.enable_ref_frame_mvs);
2639 }
2640 if (seq_params->force_screen_content_tools == 2) {
2641 aom_wb_write_bit(wb, 1);
2642 } else {
2643 aom_wb_write_bit(wb, 0);
2644 aom_wb_write_bit(wb, seq_params->force_screen_content_tools);
2645 }
2646 if (seq_params->force_screen_content_tools > 0) {
2647 if (seq_params->force_integer_mv == 2) {
2648 aom_wb_write_bit(wb, 1);
2649 } else {
2650 aom_wb_write_bit(wb, 0);
2651 aom_wb_write_bit(wb, seq_params->force_integer_mv);
2652 }
2653 } else {
2654 assert(seq_params->force_integer_mv == 2);
2655 }
2656 if (seq_params->order_hint_info.enable_order_hint)
2657 aom_wb_write_literal(
2658 wb, seq_params->order_hint_info.order_hint_bits_minus_1, 3);
2659 }
2660
2661 aom_wb_write_bit(wb, seq_params->enable_superres);
2662 aom_wb_write_bit(wb, seq_params->enable_cdef);
2663 aom_wb_write_bit(wb, seq_params->enable_restoration);
2664 }
2665
write_global_motion_params(const WarpedMotionParams * params,const WarpedMotionParams * ref_params,struct aom_write_bit_buffer * wb,int allow_hp)2666 static AOM_INLINE void write_global_motion_params(
2667 const WarpedMotionParams *params, const WarpedMotionParams *ref_params,
2668 struct aom_write_bit_buffer *wb, int allow_hp) {
2669 const TransformationType type = params->wmtype;
2670
2671 aom_wb_write_bit(wb, type != IDENTITY);
2672 if (type != IDENTITY) {
2673 aom_wb_write_bit(wb, type == ROTZOOM);
2674 if (type != ROTZOOM) aom_wb_write_bit(wb, type == TRANSLATION);
2675 }
2676
2677 if (type >= ROTZOOM) {
2678 aom_wb_write_signed_primitive_refsubexpfin(
2679 wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
2680 (ref_params->wmmat[2] >> GM_ALPHA_PREC_DIFF) -
2681 (1 << GM_ALPHA_PREC_BITS),
2682 (params->wmmat[2] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS));
2683 aom_wb_write_signed_primitive_refsubexpfin(
2684 wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
2685 (ref_params->wmmat[3] >> GM_ALPHA_PREC_DIFF),
2686 (params->wmmat[3] >> GM_ALPHA_PREC_DIFF));
2687 }
2688
2689 if (type >= AFFINE) {
2690 aom_wb_write_signed_primitive_refsubexpfin(
2691 wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
2692 (ref_params->wmmat[4] >> GM_ALPHA_PREC_DIFF),
2693 (params->wmmat[4] >> GM_ALPHA_PREC_DIFF));
2694 aom_wb_write_signed_primitive_refsubexpfin(
2695 wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
2696 (ref_params->wmmat[5] >> GM_ALPHA_PREC_DIFF) -
2697 (1 << GM_ALPHA_PREC_BITS),
2698 (params->wmmat[5] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS));
2699 }
2700
2701 if (type >= TRANSLATION) {
2702 const int trans_bits = (type == TRANSLATION)
2703 ? GM_ABS_TRANS_ONLY_BITS - !allow_hp
2704 : GM_ABS_TRANS_BITS;
2705 const int trans_prec_diff = (type == TRANSLATION)
2706 ? GM_TRANS_ONLY_PREC_DIFF + !allow_hp
2707 : GM_TRANS_PREC_DIFF;
2708 aom_wb_write_signed_primitive_refsubexpfin(
2709 wb, (1 << trans_bits) + 1, SUBEXPFIN_K,
2710 (ref_params->wmmat[0] >> trans_prec_diff),
2711 (params->wmmat[0] >> trans_prec_diff));
2712 aom_wb_write_signed_primitive_refsubexpfin(
2713 wb, (1 << trans_bits) + 1, SUBEXPFIN_K,
2714 (ref_params->wmmat[1] >> trans_prec_diff),
2715 (params->wmmat[1] >> trans_prec_diff));
2716 }
2717 }
2718
write_global_motion(AV1_COMP * cpi,struct aom_write_bit_buffer * wb)2719 static AOM_INLINE void write_global_motion(AV1_COMP *cpi,
2720 struct aom_write_bit_buffer *wb) {
2721 AV1_COMMON *const cm = &cpi->common;
2722 int frame;
2723 for (frame = LAST_FRAME; frame <= ALTREF_FRAME; ++frame) {
2724 const WarpedMotionParams *ref_params =
2725 cm->prev_frame ? &cm->prev_frame->global_motion[frame]
2726 : &default_warp_params;
2727 write_global_motion_params(&cm->global_motion[frame], ref_params, wb,
2728 cm->features.allow_high_precision_mv);
2729 // TODO(sarahparker, debargha): The logic in the commented out code below
2730 // does not work currently and causes mismatches when resize is on.
2731 // Fix it before turning the optimization back on.
2732 /*
2733 YV12_BUFFER_CONFIG *ref_buf = get_ref_frame_yv12_buf(cpi, frame);
2734 if (cpi->source->y_crop_width == ref_buf->y_crop_width &&
2735 cpi->source->y_crop_height == ref_buf->y_crop_height) {
2736 write_global_motion_params(&cm->global_motion[frame],
2737 &cm->prev_frame->global_motion[frame], wb,
2738 cm->features.allow_high_precision_mv);
2739 } else {
2740 assert(cm->global_motion[frame].wmtype == IDENTITY &&
2741 "Invalid warp type for frames of different resolutions");
2742 }
2743 */
2744 /*
2745 printf("Frame %d/%d: Enc Ref %d: %d %d %d %d\n",
2746 cm->current_frame.frame_number, cm->show_frame, frame,
2747 cm->global_motion[frame].wmmat[0],
2748 cm->global_motion[frame].wmmat[1], cm->global_motion[frame].wmmat[2],
2749 cm->global_motion[frame].wmmat[3]);
2750 */
2751 }
2752 }
2753
check_frame_refs_short_signaling(AV1_COMMON * const cm)2754 static int check_frame_refs_short_signaling(AV1_COMMON *const cm) {
2755 // Check whether all references are distinct frames.
2756 const RefCntBuffer *seen_bufs[FRAME_BUFFERS] = { NULL };
2757 int num_refs = 0;
2758 for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
2759 const RefCntBuffer *const buf = get_ref_frame_buf(cm, ref_frame);
2760 if (buf != NULL) {
2761 int seen = 0;
2762 for (int i = 0; i < num_refs; i++) {
2763 if (seen_bufs[i] == buf) {
2764 seen = 1;
2765 break;
2766 }
2767 }
2768 if (!seen) seen_bufs[num_refs++] = buf;
2769 }
2770 }
2771
2772 // We only turn on frame_refs_short_signaling when all references are
2773 // distinct.
2774 if (num_refs < INTER_REFS_PER_FRAME) {
2775 // It indicates that there exist more than one reference frame pointing to
2776 // the same reference buffer, i.e. two or more references are duplicate.
2777 return 0;
2778 }
2779
2780 // Check whether the encoder side ref frame choices are aligned with that to
2781 // be derived at the decoder side.
2782 int remapped_ref_idx_decoder[REF_FRAMES];
2783
2784 const int lst_map_idx = get_ref_frame_map_idx(cm, LAST_FRAME);
2785 const int gld_map_idx = get_ref_frame_map_idx(cm, GOLDEN_FRAME);
2786
2787 // Set up the frame refs mapping indexes according to the
2788 // frame_refs_short_signaling policy.
2789 av1_set_frame_refs(cm, remapped_ref_idx_decoder, lst_map_idx, gld_map_idx);
2790
2791 // We only turn on frame_refs_short_signaling when the encoder side decision
2792 // on ref frames is identical to that at the decoder side.
2793 int frame_refs_short_signaling = 1;
2794 for (int ref_idx = 0; ref_idx < INTER_REFS_PER_FRAME; ++ref_idx) {
2795 // Compare the buffer index between two reference frames indexed
2796 // respectively by the encoder and the decoder side decisions.
2797 RefCntBuffer *ref_frame_buf_new = NULL;
2798 if (remapped_ref_idx_decoder[ref_idx] != INVALID_IDX) {
2799 ref_frame_buf_new = cm->ref_frame_map[remapped_ref_idx_decoder[ref_idx]];
2800 }
2801 if (get_ref_frame_buf(cm, LAST_FRAME + ref_idx) != ref_frame_buf_new) {
2802 frame_refs_short_signaling = 0;
2803 break;
2804 }
2805 }
2806
2807 #if 0 // For debug
2808 printf("\nFrame=%d: \n", cm->current_frame.frame_number);
2809 printf("***frame_refs_short_signaling=%d\n", frame_refs_short_signaling);
2810 for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
2811 printf("enc_ref(map_idx=%d)=%d, vs. "
2812 "dec_ref(map_idx=%d)=%d\n",
2813 get_ref_frame_map_idx(cm, ref_frame), ref_frame,
2814 cm->remapped_ref_idx[ref_frame - LAST_FRAME],
2815 ref_frame);
2816 }
2817 #endif // 0
2818
2819 return frame_refs_short_signaling;
2820 }
2821
2822 // New function based on HLS R18
write_uncompressed_header_obu(AV1_COMP * cpi,struct aom_write_bit_buffer * saved_wb,struct aom_write_bit_buffer * wb)2823 static AOM_INLINE void write_uncompressed_header_obu(
2824 AV1_COMP *cpi, struct aom_write_bit_buffer *saved_wb,
2825 struct aom_write_bit_buffer *wb) {
2826 AV1_COMMON *const cm = &cpi->common;
2827 const SequenceHeader *const seq_params = &cm->seq_params;
2828 const CommonQuantParams *quant_params = &cm->quant_params;
2829 MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
2830 CurrentFrame *const current_frame = &cm->current_frame;
2831 FeatureFlags *const features = &cm->features;
2832
2833 current_frame->frame_refs_short_signaling = 0;
2834
2835 if (seq_params->still_picture) {
2836 assert(cm->show_existing_frame == 0);
2837 assert(cm->show_frame == 1);
2838 assert(current_frame->frame_type == KEY_FRAME);
2839 }
2840 if (!seq_params->reduced_still_picture_hdr) {
2841 if (encode_show_existing_frame(cm)) {
2842 aom_wb_write_bit(wb, 1); // show_existing_frame
2843 aom_wb_write_literal(wb, cpi->existing_fb_idx_to_show, 3);
2844
2845 if (seq_params->decoder_model_info_present_flag &&
2846 seq_params->timing_info.equal_picture_interval == 0) {
2847 write_tu_pts_info(cm, wb);
2848 }
2849 if (seq_params->frame_id_numbers_present_flag) {
2850 int frame_id_len = seq_params->frame_id_length;
2851 int display_frame_id = cm->ref_frame_id[cpi->existing_fb_idx_to_show];
2852 aom_wb_write_literal(wb, display_frame_id, frame_id_len);
2853 }
2854 return;
2855 } else {
2856 aom_wb_write_bit(wb, 0); // show_existing_frame
2857 }
2858
2859 aom_wb_write_literal(wb, current_frame->frame_type, 2);
2860
2861 aom_wb_write_bit(wb, cm->show_frame);
2862 if (cm->show_frame) {
2863 if (seq_params->decoder_model_info_present_flag &&
2864 seq_params->timing_info.equal_picture_interval == 0)
2865 write_tu_pts_info(cm, wb);
2866 } else {
2867 aom_wb_write_bit(wb, cm->showable_frame);
2868 }
2869 if (frame_is_sframe(cm)) {
2870 assert(features->error_resilient_mode);
2871 } else if (!(current_frame->frame_type == KEY_FRAME && cm->show_frame)) {
2872 aom_wb_write_bit(wb, features->error_resilient_mode);
2873 }
2874 }
2875 aom_wb_write_bit(wb, features->disable_cdf_update);
2876
2877 if (seq_params->force_screen_content_tools == 2) {
2878 aom_wb_write_bit(wb, features->allow_screen_content_tools);
2879 } else {
2880 assert(features->allow_screen_content_tools ==
2881 seq_params->force_screen_content_tools);
2882 }
2883
2884 if (features->allow_screen_content_tools) {
2885 if (seq_params->force_integer_mv == 2) {
2886 aom_wb_write_bit(wb, features->cur_frame_force_integer_mv);
2887 } else {
2888 assert(features->cur_frame_force_integer_mv ==
2889 seq_params->force_integer_mv);
2890 }
2891 } else {
2892 assert(features->cur_frame_force_integer_mv == 0);
2893 }
2894
2895 int frame_size_override_flag = 0;
2896
2897 if (seq_params->reduced_still_picture_hdr) {
2898 assert(cm->superres_upscaled_width == seq_params->max_frame_width &&
2899 cm->superres_upscaled_height == seq_params->max_frame_height);
2900 } else {
2901 if (seq_params->frame_id_numbers_present_flag) {
2902 int frame_id_len = seq_params->frame_id_length;
2903 aom_wb_write_literal(wb, cm->current_frame_id, frame_id_len);
2904 }
2905
2906 if (cm->superres_upscaled_width > seq_params->max_frame_width ||
2907 cm->superres_upscaled_height > seq_params->max_frame_height) {
2908 aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
2909 "Frame dimensions are larger than the maximum values");
2910 }
2911
2912 frame_size_override_flag =
2913 frame_is_sframe(cm)
2914 ? 1
2915 : (cm->superres_upscaled_width != seq_params->max_frame_width ||
2916 cm->superres_upscaled_height != seq_params->max_frame_height);
2917 if (!frame_is_sframe(cm)) aom_wb_write_bit(wb, frame_size_override_flag);
2918
2919 if (seq_params->order_hint_info.enable_order_hint)
2920 aom_wb_write_literal(
2921 wb, current_frame->order_hint,
2922 seq_params->order_hint_info.order_hint_bits_minus_1 + 1);
2923
2924 if (!features->error_resilient_mode && !frame_is_intra_only(cm)) {
2925 aom_wb_write_literal(wb, features->primary_ref_frame, PRIMARY_REF_BITS);
2926 }
2927 }
2928
2929 if (seq_params->decoder_model_info_present_flag) {
2930 aom_wb_write_bit(wb, cm->buffer_removal_time_present);
2931 if (cm->buffer_removal_time_present) {
2932 for (int op_num = 0;
2933 op_num < seq_params->operating_points_cnt_minus_1 + 1; op_num++) {
2934 if (seq_params->op_params[op_num].decoder_model_param_present_flag) {
2935 if (((seq_params->operating_point_idc[op_num] >>
2936 cm->temporal_layer_id) &
2937 0x1 &&
2938 (seq_params->operating_point_idc[op_num] >>
2939 (cm->spatial_layer_id + 8)) &
2940 0x1) ||
2941 seq_params->operating_point_idc[op_num] == 0) {
2942 aom_wb_write_unsigned_literal(
2943 wb, cm->buffer_removal_times[op_num],
2944 seq_params->decoder_model_info.buffer_removal_time_length);
2945 cm->buffer_removal_times[op_num]++;
2946 if (cm->buffer_removal_times[op_num] == 0) {
2947 aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
2948 "buffer_removal_time overflowed");
2949 }
2950 }
2951 }
2952 }
2953 }
2954 }
2955
2956 // Shown keyframes and switch-frames automatically refreshes all reference
2957 // frames. For all other frame types, we need to write refresh_frame_flags.
2958 if ((current_frame->frame_type == KEY_FRAME && !cm->show_frame) ||
2959 current_frame->frame_type == INTER_FRAME ||
2960 current_frame->frame_type == INTRA_ONLY_FRAME)
2961 aom_wb_write_literal(wb, current_frame->refresh_frame_flags, REF_FRAMES);
2962
2963 if (!frame_is_intra_only(cm) || current_frame->refresh_frame_flags != 0xff) {
2964 // Write all ref frame order hints if error_resilient_mode == 1
2965 if (features->error_resilient_mode &&
2966 seq_params->order_hint_info.enable_order_hint) {
2967 for (int ref_idx = 0; ref_idx < REF_FRAMES; ref_idx++) {
2968 aom_wb_write_literal(
2969 wb, cm->ref_frame_map[ref_idx]->order_hint,
2970 seq_params->order_hint_info.order_hint_bits_minus_1 + 1);
2971 }
2972 }
2973 }
2974
2975 if (current_frame->frame_type == KEY_FRAME) {
2976 write_frame_size(cm, frame_size_override_flag, wb);
2977 assert(!av1_superres_scaled(cm) || !features->allow_intrabc);
2978 if (features->allow_screen_content_tools && !av1_superres_scaled(cm))
2979 aom_wb_write_bit(wb, features->allow_intrabc);
2980 } else {
2981 if (current_frame->frame_type == INTRA_ONLY_FRAME) {
2982 write_frame_size(cm, frame_size_override_flag, wb);
2983 assert(!av1_superres_scaled(cm) || !features->allow_intrabc);
2984 if (features->allow_screen_content_tools && !av1_superres_scaled(cm))
2985 aom_wb_write_bit(wb, features->allow_intrabc);
2986 } else if (current_frame->frame_type == INTER_FRAME ||
2987 frame_is_sframe(cm)) {
2988 MV_REFERENCE_FRAME ref_frame;
2989
2990 // NOTE: Error resilient mode turns off frame_refs_short_signaling
2991 // automatically.
2992 #define FRAME_REFS_SHORT_SIGNALING 0
2993 #if FRAME_REFS_SHORT_SIGNALING
2994 current_frame->frame_refs_short_signaling =
2995 seq_params->order_hint_info.enable_order_hint;
2996 #endif // FRAME_REFS_SHORT_SIGNALING
2997
2998 if (current_frame->frame_refs_short_signaling) {
2999 // NOTE(zoeliu@google.com):
3000 // An example solution for encoder-side implementation on frame refs
3001 // short signaling, which is only turned on when the encoder side
3002 // decision on ref frames is identical to that at the decoder side.
3003 current_frame->frame_refs_short_signaling =
3004 check_frame_refs_short_signaling(cm);
3005 }
3006
3007 if (seq_params->order_hint_info.enable_order_hint)
3008 aom_wb_write_bit(wb, current_frame->frame_refs_short_signaling);
3009
3010 if (current_frame->frame_refs_short_signaling) {
3011 const int lst_ref = get_ref_frame_map_idx(cm, LAST_FRAME);
3012 aom_wb_write_literal(wb, lst_ref, REF_FRAMES_LOG2);
3013
3014 const int gld_ref = get_ref_frame_map_idx(cm, GOLDEN_FRAME);
3015 aom_wb_write_literal(wb, gld_ref, REF_FRAMES_LOG2);
3016 }
3017
3018 for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
3019 assert(get_ref_frame_map_idx(cm, ref_frame) != INVALID_IDX);
3020 if (!current_frame->frame_refs_short_signaling)
3021 aom_wb_write_literal(wb, get_ref_frame_map_idx(cm, ref_frame),
3022 REF_FRAMES_LOG2);
3023 if (seq_params->frame_id_numbers_present_flag) {
3024 int i = get_ref_frame_map_idx(cm, ref_frame);
3025 int frame_id_len = seq_params->frame_id_length;
3026 int diff_len = seq_params->delta_frame_id_length;
3027 int delta_frame_id_minus_1 =
3028 ((cm->current_frame_id - cm->ref_frame_id[i] +
3029 (1 << frame_id_len)) %
3030 (1 << frame_id_len)) -
3031 1;
3032 if (delta_frame_id_minus_1 < 0 ||
3033 delta_frame_id_minus_1 >= (1 << diff_len)) {
3034 aom_internal_error(&cpi->common.error, AOM_CODEC_ERROR,
3035 "Invalid delta_frame_id_minus_1");
3036 }
3037 aom_wb_write_literal(wb, delta_frame_id_minus_1, diff_len);
3038 }
3039 }
3040
3041 if (!features->error_resilient_mode && frame_size_override_flag) {
3042 write_frame_size_with_refs(cm, wb);
3043 } else {
3044 write_frame_size(cm, frame_size_override_flag, wb);
3045 }
3046
3047 if (!features->cur_frame_force_integer_mv)
3048 aom_wb_write_bit(wb, features->allow_high_precision_mv);
3049 write_frame_interp_filter(features->interp_filter, wb);
3050 aom_wb_write_bit(wb, features->switchable_motion_mode);
3051 if (frame_might_allow_ref_frame_mvs(cm)) {
3052 aom_wb_write_bit(wb, features->allow_ref_frame_mvs);
3053 } else {
3054 assert(features->allow_ref_frame_mvs == 0);
3055 }
3056 }
3057 }
3058
3059 const int might_bwd_adapt = !(seq_params->reduced_still_picture_hdr) &&
3060 !(features->disable_cdf_update);
3061 if (cm->tiles.large_scale)
3062 assert(features->refresh_frame_context == REFRESH_FRAME_CONTEXT_DISABLED);
3063
3064 if (might_bwd_adapt) {
3065 aom_wb_write_bit(
3066 wb, features->refresh_frame_context == REFRESH_FRAME_CONTEXT_DISABLED);
3067 }
3068
3069 write_tile_info(cm, saved_wb, wb);
3070 encode_quantization(quant_params, av1_num_planes(cm),
3071 cm->seq_params.separate_uv_delta_q, wb);
3072 encode_segmentation(cm, xd, wb);
3073
3074 const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
3075 if (delta_q_info->delta_q_present_flag) assert(quant_params->base_qindex > 0);
3076 if (quant_params->base_qindex > 0) {
3077 aom_wb_write_bit(wb, delta_q_info->delta_q_present_flag);
3078 if (delta_q_info->delta_q_present_flag) {
3079 aom_wb_write_literal(wb, get_msb(delta_q_info->delta_q_res), 2);
3080 xd->current_qindex = quant_params->base_qindex;
3081 if (features->allow_intrabc)
3082 assert(delta_q_info->delta_lf_present_flag == 0);
3083 else
3084 aom_wb_write_bit(wb, delta_q_info->delta_lf_present_flag);
3085 if (delta_q_info->delta_lf_present_flag) {
3086 aom_wb_write_literal(wb, get_msb(delta_q_info->delta_lf_res), 2);
3087 aom_wb_write_bit(wb, delta_q_info->delta_lf_multi);
3088 av1_reset_loop_filter_delta(xd, av1_num_planes(cm));
3089 }
3090 }
3091 }
3092
3093 if (features->all_lossless) {
3094 assert(!av1_superres_scaled(cm));
3095 } else {
3096 if (!features->coded_lossless) {
3097 encode_loopfilter(cm, wb);
3098 encode_cdef(cm, wb);
3099 }
3100 encode_restoration_mode(cm, wb);
3101 }
3102
3103 // Write TX mode
3104 if (features->coded_lossless)
3105 assert(features->tx_mode == ONLY_4X4);
3106 else
3107 aom_wb_write_bit(wb, features->tx_mode == TX_MODE_SELECT);
3108
3109 if (!frame_is_intra_only(cm)) {
3110 const int use_hybrid_pred =
3111 current_frame->reference_mode == REFERENCE_MODE_SELECT;
3112
3113 aom_wb_write_bit(wb, use_hybrid_pred);
3114 }
3115
3116 if (current_frame->skip_mode_info.skip_mode_allowed)
3117 aom_wb_write_bit(wb, current_frame->skip_mode_info.skip_mode_flag);
3118
3119 if (frame_might_allow_warped_motion(cm))
3120 aom_wb_write_bit(wb, features->allow_warped_motion);
3121 else
3122 assert(!features->allow_warped_motion);
3123
3124 aom_wb_write_bit(wb, features->reduced_tx_set_used);
3125
3126 if (!frame_is_intra_only(cm)) write_global_motion(cpi, wb);
3127
3128 if (seq_params->film_grain_params_present &&
3129 (cm->show_frame || cm->showable_frame))
3130 write_film_grain_params(cpi, wb);
3131
3132 if (cm->tiles.large_scale) write_ext_tile_info(cm, saved_wb, wb);
3133 }
3134
choose_size_bytes(uint32_t size,int spare_msbs)3135 static int choose_size_bytes(uint32_t size, int spare_msbs) {
3136 // Choose the number of bytes required to represent size, without
3137 // using the 'spare_msbs' number of most significant bits.
3138
3139 // Make sure we will fit in 4 bytes to start with..
3140 if (spare_msbs > 0 && size >> (32 - spare_msbs) != 0) return -1;
3141
3142 // Normalise to 32 bits
3143 size <<= spare_msbs;
3144
3145 if (size >> 24 != 0)
3146 return 4;
3147 else if (size >> 16 != 0)
3148 return 3;
3149 else if (size >> 8 != 0)
3150 return 2;
3151 else
3152 return 1;
3153 }
3154
mem_put_varsize(uint8_t * const dst,const int sz,const int val)3155 static AOM_INLINE void mem_put_varsize(uint8_t *const dst, const int sz,
3156 const int val) {
3157 switch (sz) {
3158 case 1: dst[0] = (uint8_t)(val & 0xff); break;
3159 case 2: mem_put_le16(dst, val); break;
3160 case 3: mem_put_le24(dst, val); break;
3161 case 4: mem_put_le32(dst, val); break;
3162 default: assert(0 && "Invalid size"); break;
3163 }
3164 }
3165
remux_tiles(const CommonTileParams * const tiles,uint8_t * dst,const uint32_t data_size,const uint32_t max_tile_size,const uint32_t max_tile_col_size,int * const tile_size_bytes,int * const tile_col_size_bytes)3166 static int remux_tiles(const CommonTileParams *const tiles, uint8_t *dst,
3167 const uint32_t data_size, const uint32_t max_tile_size,
3168 const uint32_t max_tile_col_size,
3169 int *const tile_size_bytes,
3170 int *const tile_col_size_bytes) {
3171 // Choose the tile size bytes (tsb) and tile column size bytes (tcsb)
3172 int tsb;
3173 int tcsb;
3174
3175 if (tiles->large_scale) {
3176 // The top bit in the tile size field indicates tile copy mode, so we
3177 // have 1 less bit to code the tile size
3178 tsb = choose_size_bytes(max_tile_size, 1);
3179 tcsb = choose_size_bytes(max_tile_col_size, 0);
3180 } else {
3181 tsb = choose_size_bytes(max_tile_size, 0);
3182 tcsb = 4; // This is ignored
3183 (void)max_tile_col_size;
3184 }
3185
3186 assert(tsb > 0);
3187 assert(tcsb > 0);
3188
3189 *tile_size_bytes = tsb;
3190 *tile_col_size_bytes = tcsb;
3191 if (tsb == 4 && tcsb == 4) return data_size;
3192
3193 uint32_t wpos = 0;
3194 uint32_t rpos = 0;
3195
3196 if (tiles->large_scale) {
3197 int tile_row;
3198 int tile_col;
3199
3200 for (tile_col = 0; tile_col < tiles->cols; tile_col++) {
3201 // All but the last column has a column header
3202 if (tile_col < tiles->cols - 1) {
3203 uint32_t tile_col_size = mem_get_le32(dst + rpos);
3204 rpos += 4;
3205
3206 // Adjust the tile column size by the number of bytes removed
3207 // from the tile size fields.
3208 tile_col_size -= (4 - tsb) * tiles->rows;
3209
3210 mem_put_varsize(dst + wpos, tcsb, tile_col_size);
3211 wpos += tcsb;
3212 }
3213
3214 for (tile_row = 0; tile_row < tiles->rows; tile_row++) {
3215 // All, including the last row has a header
3216 uint32_t tile_header = mem_get_le32(dst + rpos);
3217 rpos += 4;
3218
3219 // If this is a copy tile, we need to shift the MSB to the
3220 // top bit of the new width, and there is no data to copy.
3221 if (tile_header >> 31 != 0) {
3222 if (tsb < 4) tile_header >>= 32 - 8 * tsb;
3223 mem_put_varsize(dst + wpos, tsb, tile_header);
3224 wpos += tsb;
3225 } else {
3226 mem_put_varsize(dst + wpos, tsb, tile_header);
3227 wpos += tsb;
3228
3229 tile_header += AV1_MIN_TILE_SIZE_BYTES;
3230 memmove(dst + wpos, dst + rpos, tile_header);
3231 rpos += tile_header;
3232 wpos += tile_header;
3233 }
3234 }
3235 }
3236
3237 assert(rpos > wpos);
3238 assert(rpos == data_size);
3239
3240 return wpos;
3241 }
3242 const int n_tiles = tiles->cols * tiles->rows;
3243 int n;
3244
3245 for (n = 0; n < n_tiles; n++) {
3246 int tile_size;
3247
3248 if (n == n_tiles - 1) {
3249 tile_size = data_size - rpos;
3250 } else {
3251 tile_size = mem_get_le32(dst + rpos);
3252 rpos += 4;
3253 mem_put_varsize(dst + wpos, tsb, tile_size);
3254 tile_size += AV1_MIN_TILE_SIZE_BYTES;
3255 wpos += tsb;
3256 }
3257
3258 memmove(dst + wpos, dst + rpos, tile_size);
3259
3260 rpos += tile_size;
3261 wpos += tile_size;
3262 }
3263
3264 assert(rpos > wpos);
3265 assert(rpos == data_size);
3266
3267 return wpos;
3268 }
3269
av1_write_obu_header(AV1LevelParams * const level_params,OBU_TYPE obu_type,int obu_extension,uint8_t * const dst)3270 uint32_t av1_write_obu_header(AV1LevelParams *const level_params,
3271 OBU_TYPE obu_type, int obu_extension,
3272 uint8_t *const dst) {
3273 if (level_params->keep_level_stats &&
3274 (obu_type == OBU_FRAME || obu_type == OBU_FRAME_HEADER))
3275 ++level_params->frame_header_count;
3276
3277 struct aom_write_bit_buffer wb = { dst, 0 };
3278 uint32_t size = 0;
3279
3280 aom_wb_write_literal(&wb, 0, 1); // forbidden bit.
3281 aom_wb_write_literal(&wb, (int)obu_type, 4);
3282 aom_wb_write_literal(&wb, obu_extension ? 1 : 0, 1);
3283 aom_wb_write_literal(&wb, 1, 1); // obu_has_payload_length_field
3284 aom_wb_write_literal(&wb, 0, 1); // reserved
3285
3286 if (obu_extension) {
3287 aom_wb_write_literal(&wb, obu_extension & 0xFF, 8);
3288 }
3289
3290 size = aom_wb_bytes_written(&wb);
3291 return size;
3292 }
3293
av1_write_uleb_obu_size(size_t obu_header_size,size_t obu_payload_size,uint8_t * dest)3294 int av1_write_uleb_obu_size(size_t obu_header_size, size_t obu_payload_size,
3295 uint8_t *dest) {
3296 const size_t offset = obu_header_size;
3297 size_t coded_obu_size = 0;
3298 const uint32_t obu_size = (uint32_t)obu_payload_size;
3299 assert(obu_size == obu_payload_size);
3300
3301 if (aom_uleb_encode(obu_size, sizeof(obu_size), dest + offset,
3302 &coded_obu_size) != 0) {
3303 return AOM_CODEC_ERROR;
3304 }
3305
3306 return AOM_CODEC_OK;
3307 }
3308
obu_memmove(size_t obu_header_size,size_t obu_payload_size,uint8_t * data)3309 static size_t obu_memmove(size_t obu_header_size, size_t obu_payload_size,
3310 uint8_t *data) {
3311 const size_t length_field_size = aom_uleb_size_in_bytes(obu_payload_size);
3312 const size_t move_dst_offset = length_field_size + obu_header_size;
3313 const size_t move_src_offset = obu_header_size;
3314 const size_t move_size = obu_payload_size;
3315 memmove(data + move_dst_offset, data + move_src_offset, move_size);
3316 return length_field_size;
3317 }
3318
add_trailing_bits(struct aom_write_bit_buffer * wb)3319 static AOM_INLINE void add_trailing_bits(struct aom_write_bit_buffer *wb) {
3320 if (aom_wb_is_byte_aligned(wb)) {
3321 aom_wb_write_literal(wb, 0x80, 8);
3322 } else {
3323 // assumes that the other bits are already 0s
3324 aom_wb_write_bit(wb, 1);
3325 }
3326 }
3327
write_bitstream_level(AV1_LEVEL seq_level_idx,struct aom_write_bit_buffer * wb)3328 static AOM_INLINE void write_bitstream_level(AV1_LEVEL seq_level_idx,
3329 struct aom_write_bit_buffer *wb) {
3330 assert(is_valid_seq_level_idx(seq_level_idx));
3331 aom_wb_write_literal(wb, seq_level_idx, LEVEL_BITS);
3332 }
3333
av1_write_sequence_header_obu(const SequenceHeader * seq_params,uint8_t * const dst)3334 uint32_t av1_write_sequence_header_obu(const SequenceHeader *seq_params,
3335 uint8_t *const dst) {
3336 struct aom_write_bit_buffer wb = { dst, 0 };
3337 uint32_t size = 0;
3338
3339 write_profile(seq_params->profile, &wb);
3340
3341 // Still picture or not
3342 aom_wb_write_bit(&wb, seq_params->still_picture);
3343 assert(IMPLIES(!seq_params->still_picture,
3344 !seq_params->reduced_still_picture_hdr));
3345 // whether to use reduced still picture header
3346 aom_wb_write_bit(&wb, seq_params->reduced_still_picture_hdr);
3347
3348 if (seq_params->reduced_still_picture_hdr) {
3349 assert(seq_params->timing_info_present == 0);
3350 assert(seq_params->decoder_model_info_present_flag == 0);
3351 assert(seq_params->display_model_info_present_flag == 0);
3352 write_bitstream_level(seq_params->seq_level_idx[0], &wb);
3353 } else {
3354 aom_wb_write_bit(
3355 &wb, seq_params->timing_info_present); // timing info present flag
3356
3357 if (seq_params->timing_info_present) {
3358 // timing_info
3359 write_timing_info_header(&seq_params->timing_info, &wb);
3360 aom_wb_write_bit(&wb, seq_params->decoder_model_info_present_flag);
3361 if (seq_params->decoder_model_info_present_flag) {
3362 write_decoder_model_info(&seq_params->decoder_model_info, &wb);
3363 }
3364 }
3365 aom_wb_write_bit(&wb, seq_params->display_model_info_present_flag);
3366 aom_wb_write_literal(&wb, seq_params->operating_points_cnt_minus_1,
3367 OP_POINTS_CNT_MINUS_1_BITS);
3368 int i;
3369 for (i = 0; i < seq_params->operating_points_cnt_minus_1 + 1; i++) {
3370 aom_wb_write_literal(&wb, seq_params->operating_point_idc[i],
3371 OP_POINTS_IDC_BITS);
3372 write_bitstream_level(seq_params->seq_level_idx[i], &wb);
3373 if (seq_params->seq_level_idx[i] >= SEQ_LEVEL_4_0)
3374 aom_wb_write_bit(&wb, seq_params->tier[i]);
3375 if (seq_params->decoder_model_info_present_flag) {
3376 aom_wb_write_bit(
3377 &wb, seq_params->op_params[i].decoder_model_param_present_flag);
3378 if (seq_params->op_params[i].decoder_model_param_present_flag) {
3379 write_dec_model_op_parameters(
3380 &seq_params->op_params[i],
3381 seq_params->decoder_model_info
3382 .encoder_decoder_buffer_delay_length,
3383 &wb);
3384 }
3385 }
3386 if (seq_params->display_model_info_present_flag) {
3387 aom_wb_write_bit(
3388 &wb, seq_params->op_params[i].display_model_param_present_flag);
3389 if (seq_params->op_params[i].display_model_param_present_flag) {
3390 assert(seq_params->op_params[i].initial_display_delay <= 10);
3391 aom_wb_write_literal(
3392 &wb, seq_params->op_params[i].initial_display_delay - 1, 4);
3393 }
3394 }
3395 }
3396 }
3397 write_sequence_header(seq_params, &wb);
3398
3399 write_color_config(seq_params, &wb);
3400
3401 aom_wb_write_bit(&wb, seq_params->film_grain_params_present);
3402
3403 add_trailing_bits(&wb);
3404
3405 size = aom_wb_bytes_written(&wb);
3406 return size;
3407 }
3408
write_frame_header_obu(AV1_COMP * cpi,struct aom_write_bit_buffer * saved_wb,uint8_t * const dst,int append_trailing_bits)3409 static uint32_t write_frame_header_obu(AV1_COMP *cpi,
3410 struct aom_write_bit_buffer *saved_wb,
3411 uint8_t *const dst,
3412 int append_trailing_bits) {
3413 struct aom_write_bit_buffer wb = { dst, 0 };
3414 write_uncompressed_header_obu(cpi, saved_wb, &wb);
3415 if (append_trailing_bits) add_trailing_bits(&wb);
3416 return aom_wb_bytes_written(&wb);
3417 }
3418
write_tile_group_header(uint8_t * const dst,int start_tile,int end_tile,int tiles_log2,int tile_start_and_end_present_flag)3419 static uint32_t write_tile_group_header(uint8_t *const dst, int start_tile,
3420 int end_tile, int tiles_log2,
3421 int tile_start_and_end_present_flag) {
3422 struct aom_write_bit_buffer wb = { dst, 0 };
3423 uint32_t size = 0;
3424
3425 if (!tiles_log2) return size;
3426
3427 aom_wb_write_bit(&wb, tile_start_and_end_present_flag);
3428
3429 if (tile_start_and_end_present_flag) {
3430 aom_wb_write_literal(&wb, start_tile, tiles_log2);
3431 aom_wb_write_literal(&wb, end_tile, tiles_log2);
3432 }
3433
3434 size = aom_wb_bytes_written(&wb);
3435 return size;
3436 }
3437
3438 typedef struct {
3439 uint8_t *frame_header;
3440 size_t obu_header_byte_offset;
3441 size_t total_length;
3442 } FrameHeaderInfo;
3443
3444 extern void av1_print_uncompressed_frame_header(const uint8_t *data, int size,
3445 const char *filename);
3446
write_tiles_in_tg_obus(AV1_COMP * const cpi,uint8_t * const dst,struct aom_write_bit_buffer * saved_wb,uint8_t obu_extension_header,const FrameHeaderInfo * fh_info,int * const largest_tile_id)3447 static uint32_t write_tiles_in_tg_obus(AV1_COMP *const cpi, uint8_t *const dst,
3448 struct aom_write_bit_buffer *saved_wb,
3449 uint8_t obu_extension_header,
3450 const FrameHeaderInfo *fh_info,
3451 int *const largest_tile_id) {
3452 AV1_COMMON *const cm = &cpi->common;
3453 const CommonTileParams *const tiles = &cm->tiles;
3454 AV1LevelParams *const level_params = &cpi->level_params;
3455 aom_writer mode_bc;
3456 int tile_row, tile_col;
3457 // Store the location and size of each tile's data in the bitstream:
3458 TileBufferEnc tile_buffers[MAX_TILE_ROWS][MAX_TILE_COLS];
3459 uint32_t total_size = 0;
3460 const int tile_cols = tiles->cols;
3461 const int tile_rows = tiles->rows;
3462 unsigned int tile_size = 0;
3463 unsigned int max_tile_size = 0;
3464 unsigned int max_tile_col_size = 0;
3465 const int n_log2_tiles = tiles->log2_rows + tiles->log2_cols;
3466 // Fixed size tile groups for the moment
3467 const int num_tg_hdrs = cpi->num_tg;
3468 const int tg_size =
3469 (tiles->large_scale)
3470 ? 1
3471 : (tile_rows * tile_cols + num_tg_hdrs - 1) / num_tg_hdrs;
3472 int tile_count = 0;
3473 int curr_tg_data_size = 0;
3474 uint8_t *data = dst;
3475 int new_tg = 1;
3476 const int have_tiles = tile_cols * tile_rows > 1;
3477 int first_tg = 1;
3478
3479 *largest_tile_id = 0;
3480
3481 if (tiles->large_scale) {
3482 // For large_scale_tile case, we always have only one tile group, so it can
3483 // be written as an OBU_FRAME.
3484 const OBU_TYPE obu_type = OBU_FRAME;
3485 const uint32_t tg_hdr_size =
3486 av1_write_obu_header(level_params, obu_type, 0, data);
3487 data += tg_hdr_size;
3488
3489 const uint32_t frame_header_size =
3490 write_frame_header_obu(cpi, saved_wb, data, 0);
3491 data += frame_header_size;
3492 total_size += frame_header_size;
3493
3494 // (yunqing) This test ensures the correctness of large scale tile coding.
3495 if (cpi->oxcf.ext_tile_debug) {
3496 char fn[20] = "./fh";
3497 fn[4] = cm->current_frame.frame_number / 100 + '0';
3498 fn[5] = (cm->current_frame.frame_number % 100) / 10 + '0';
3499 fn[6] = (cm->current_frame.frame_number % 10) + '0';
3500 fn[7] = '\0';
3501 av1_print_uncompressed_frame_header(data - frame_header_size,
3502 frame_header_size, fn);
3503 }
3504
3505 int tile_size_bytes = 0;
3506 int tile_col_size_bytes = 0;
3507
3508 for (tile_col = 0; tile_col < tile_cols; tile_col++) {
3509 TileInfo tile_info;
3510 const int is_last_col = (tile_col == tile_cols - 1);
3511 const uint32_t col_offset = total_size;
3512
3513 av1_tile_set_col(&tile_info, cm, tile_col);
3514
3515 // The last column does not have a column header
3516 if (!is_last_col) total_size += 4;
3517
3518 for (tile_row = 0; tile_row < tile_rows; tile_row++) {
3519 TileBufferEnc *const buf = &tile_buffers[tile_row][tile_col];
3520 const int data_offset = have_tiles ? 4 : 0;
3521 const int tile_idx = tile_row * tile_cols + tile_col;
3522 TileDataEnc *this_tile = &cpi->tile_data[tile_idx];
3523 av1_tile_set_row(&tile_info, cm, tile_row);
3524
3525 buf->data = dst + total_size + tg_hdr_size;
3526
3527 // Is CONFIG_EXT_TILE = 1, every tile in the row has a header,
3528 // even for the last one, unless no tiling is used at all.
3529 total_size += data_offset;
3530 cpi->td.mb.e_mbd.tile_ctx = &this_tile->tctx;
3531 mode_bc.allow_update_cdf = !tiles->large_scale;
3532 mode_bc.allow_update_cdf =
3533 mode_bc.allow_update_cdf && !cm->features.disable_cdf_update;
3534 aom_start_encode(&mode_bc, buf->data + data_offset);
3535 write_modes(cpi, &tile_info, &mode_bc, tile_row, tile_col);
3536 aom_stop_encode(&mode_bc);
3537 tile_size = mode_bc.pos;
3538 buf->size = tile_size;
3539
3540 // Record the maximum tile size we see, so we can compact headers later.
3541 if (tile_size > max_tile_size) {
3542 max_tile_size = tile_size;
3543 *largest_tile_id = tile_cols * tile_row + tile_col;
3544 }
3545
3546 if (have_tiles) {
3547 // tile header: size of this tile, or copy offset
3548 uint32_t tile_header = tile_size - AV1_MIN_TILE_SIZE_BYTES;
3549 const int tile_copy_mode =
3550 ((AOMMAX(tiles->width, tiles->height) << MI_SIZE_LOG2) <= 256)
3551 ? 1
3552 : 0;
3553
3554 // If tile_copy_mode = 1, check if this tile is a copy tile.
3555 // Very low chances to have copy tiles on the key frames, so don't
3556 // search on key frames to reduce unnecessary search.
3557 if (cm->current_frame.frame_type != KEY_FRAME && tile_copy_mode) {
3558 const int identical_tile_offset =
3559 find_identical_tile(tile_row, tile_col, tile_buffers);
3560
3561 // Indicate a copy-tile by setting the most significant bit.
3562 // The row-offset to copy from is stored in the highest byte.
3563 // remux_tiles will move these around later
3564 if (identical_tile_offset > 0) {
3565 tile_size = 0;
3566 tile_header = identical_tile_offset | 0x80;
3567 tile_header <<= 24;
3568 }
3569 }
3570
3571 mem_put_le32(buf->data, tile_header);
3572 }
3573
3574 total_size += tile_size;
3575 }
3576
3577 if (!is_last_col) {
3578 uint32_t col_size = total_size - col_offset - 4;
3579 mem_put_le32(dst + col_offset + tg_hdr_size, col_size);
3580
3581 // Record the maximum tile column size we see.
3582 max_tile_col_size = AOMMAX(max_tile_col_size, col_size);
3583 }
3584 }
3585
3586 if (have_tiles) {
3587 total_size = remux_tiles(tiles, data, total_size - frame_header_size,
3588 max_tile_size, max_tile_col_size,
3589 &tile_size_bytes, &tile_col_size_bytes);
3590 total_size += frame_header_size;
3591 }
3592
3593 // In EXT_TILE case, only use 1 tile group. Follow the obu syntax, write
3594 // current tile group size before tile data(include tile column header).
3595 // Tile group size doesn't include the bytes storing tg size.
3596 total_size += tg_hdr_size;
3597 const uint32_t obu_payload_size = total_size - tg_hdr_size;
3598 const size_t length_field_size =
3599 obu_memmove(tg_hdr_size, obu_payload_size, dst);
3600 if (av1_write_uleb_obu_size(tg_hdr_size, obu_payload_size, dst) !=
3601 AOM_CODEC_OK) {
3602 assert(0);
3603 }
3604 total_size += (uint32_t)length_field_size;
3605 saved_wb->bit_buffer += length_field_size;
3606
3607 // Now fill in the gaps in the uncompressed header.
3608 if (have_tiles) {
3609 assert(tile_col_size_bytes >= 1 && tile_col_size_bytes <= 4);
3610 aom_wb_overwrite_literal(saved_wb, tile_col_size_bytes - 1, 2);
3611
3612 assert(tile_size_bytes >= 1 && tile_size_bytes <= 4);
3613 aom_wb_overwrite_literal(saved_wb, tile_size_bytes - 1, 2);
3614 }
3615 return total_size;
3616 }
3617
3618 uint32_t obu_header_size = 0;
3619 uint8_t *tile_data_start = dst + total_size;
3620 for (tile_row = 0; tile_row < tile_rows; tile_row++) {
3621 TileInfo tile_info;
3622 av1_tile_set_row(&tile_info, cm, tile_row);
3623
3624 for (tile_col = 0; tile_col < tile_cols; tile_col++) {
3625 const int tile_idx = tile_row * tile_cols + tile_col;
3626 TileBufferEnc *const buf = &tile_buffers[tile_row][tile_col];
3627 TileDataEnc *this_tile = &cpi->tile_data[tile_idx];
3628 int is_last_tile_in_tg = 0;
3629
3630 if (new_tg) {
3631 data = dst + total_size;
3632
3633 // A new tile group begins at this tile. Write the obu header and
3634 // tile group header
3635 const OBU_TYPE obu_type =
3636 (num_tg_hdrs == 1) ? OBU_FRAME : OBU_TILE_GROUP;
3637 curr_tg_data_size = av1_write_obu_header(level_params, obu_type,
3638 obu_extension_header, data);
3639 obu_header_size = curr_tg_data_size;
3640
3641 if (num_tg_hdrs == 1) {
3642 curr_tg_data_size += write_frame_header_obu(
3643 cpi, saved_wb, data + curr_tg_data_size, 0);
3644 }
3645 curr_tg_data_size += write_tile_group_header(
3646 data + curr_tg_data_size, tile_idx,
3647 AOMMIN(tile_idx + tg_size - 1, tile_cols * tile_rows - 1),
3648 n_log2_tiles, cpi->num_tg > 1);
3649 total_size += curr_tg_data_size;
3650 tile_data_start += curr_tg_data_size;
3651 new_tg = 0;
3652 tile_count = 0;
3653 }
3654 tile_count++;
3655 av1_tile_set_col(&tile_info, cm, tile_col);
3656
3657 if (tile_count == tg_size || tile_idx == (tile_cols * tile_rows - 1)) {
3658 is_last_tile_in_tg = 1;
3659 new_tg = 1;
3660 } else {
3661 is_last_tile_in_tg = 0;
3662 }
3663
3664 buf->data = dst + total_size;
3665
3666 // The last tile of the tile group does not have a header.
3667 if (!is_last_tile_in_tg) total_size += 4;
3668
3669 cpi->td.mb.e_mbd.tile_ctx = &this_tile->tctx;
3670 mode_bc.allow_update_cdf = 1;
3671 mode_bc.allow_update_cdf =
3672 mode_bc.allow_update_cdf && !cm->features.disable_cdf_update;
3673 const int num_planes = av1_num_planes(cm);
3674 av1_reset_loop_restoration(&cpi->td.mb.e_mbd, num_planes);
3675
3676 aom_start_encode(&mode_bc, dst + total_size);
3677 write_modes(cpi, &tile_info, &mode_bc, tile_row, tile_col);
3678 aom_stop_encode(&mode_bc);
3679 tile_size = mode_bc.pos;
3680 assert(tile_size >= AV1_MIN_TILE_SIZE_BYTES);
3681
3682 curr_tg_data_size += (tile_size + (is_last_tile_in_tg ? 0 : 4));
3683 buf->size = tile_size;
3684 if (tile_size > max_tile_size) {
3685 *largest_tile_id = tile_cols * tile_row + tile_col;
3686 max_tile_size = tile_size;
3687 }
3688
3689 if (!is_last_tile_in_tg) {
3690 // size of this tile
3691 mem_put_le32(buf->data, tile_size - AV1_MIN_TILE_SIZE_BYTES);
3692 } else {
3693 // write current tile group size
3694 const uint32_t obu_payload_size = curr_tg_data_size - obu_header_size;
3695 const size_t length_field_size =
3696 obu_memmove(obu_header_size, obu_payload_size, data);
3697 if (av1_write_uleb_obu_size(obu_header_size, obu_payload_size, data) !=
3698 AOM_CODEC_OK) {
3699 assert(0);
3700 }
3701 curr_tg_data_size += (int)length_field_size;
3702 total_size += (uint32_t)length_field_size;
3703 tile_data_start += length_field_size;
3704 if (num_tg_hdrs == 1) {
3705 // if this tg is combined with the frame header then update saved
3706 // frame header base offset accroding to length field size
3707 saved_wb->bit_buffer += length_field_size;
3708 }
3709
3710 if (!first_tg && cm->features.error_resilient_mode) {
3711 // Make room for a duplicate Frame Header OBU.
3712 memmove(data + fh_info->total_length, data, curr_tg_data_size);
3713
3714 // Insert a copy of the Frame Header OBU.
3715 memcpy(data, fh_info->frame_header, fh_info->total_length);
3716
3717 // Force context update tile to be the first tile in error
3718 // resiliant mode as the duplicate frame headers will have
3719 // context_update_tile_id set to 0
3720 *largest_tile_id = 0;
3721
3722 // Rewrite the OBU header to change the OBU type to Redundant Frame
3723 // Header.
3724 av1_write_obu_header(level_params, OBU_REDUNDANT_FRAME_HEADER,
3725 obu_extension_header,
3726 &data[fh_info->obu_header_byte_offset]);
3727
3728 data += fh_info->total_length;
3729
3730 curr_tg_data_size += (int)(fh_info->total_length);
3731 total_size += (uint32_t)(fh_info->total_length);
3732 }
3733 first_tg = 0;
3734 }
3735
3736 total_size += tile_size;
3737 }
3738 }
3739
3740 if (have_tiles) {
3741 // Fill in context_update_tile_id indicating the tile to use for the
3742 // cdf update. The encoder currently sets it to the largest tile
3743 // (but is up to the encoder)
3744 aom_wb_overwrite_literal(saved_wb, *largest_tile_id,
3745 tiles->log2_cols + tiles->log2_rows);
3746 // If more than one tile group. tile_size_bytes takes the default value 4
3747 // and does not need to be set. For a single tile group it is set in the
3748 // section below.
3749 if (num_tg_hdrs == 1) {
3750 int tile_size_bytes = 4, unused;
3751 const uint32_t tile_data_offset = (uint32_t)(tile_data_start - dst);
3752 const uint32_t tile_data_size = total_size - tile_data_offset;
3753
3754 total_size =
3755 remux_tiles(tiles, tile_data_start, tile_data_size, max_tile_size,
3756 max_tile_col_size, &tile_size_bytes, &unused);
3757 total_size += tile_data_offset;
3758 assert(tile_size_bytes >= 1 && tile_size_bytes <= 4);
3759
3760 aom_wb_overwrite_literal(saved_wb, tile_size_bytes - 1, 2);
3761
3762 // Update the OBU length if remux_tiles() reduced the size.
3763 uint64_t payload_size;
3764 size_t length_field_size;
3765 int res =
3766 aom_uleb_decode(dst + obu_header_size, total_size - obu_header_size,
3767 &payload_size, &length_field_size);
3768 assert(res == 0);
3769 (void)res;
3770
3771 const uint64_t new_payload_size =
3772 total_size - obu_header_size - length_field_size;
3773 if (new_payload_size != payload_size) {
3774 size_t new_length_field_size;
3775 res = aom_uleb_encode(new_payload_size, length_field_size,
3776 dst + obu_header_size, &new_length_field_size);
3777 assert(res == 0);
3778 if (new_length_field_size < length_field_size) {
3779 const size_t src_offset = obu_header_size + length_field_size;
3780 const size_t dst_offset = obu_header_size + new_length_field_size;
3781 memmove(dst + dst_offset, dst + src_offset, (size_t)payload_size);
3782 total_size -= (int)(length_field_size - new_length_field_size);
3783 }
3784 }
3785 }
3786 }
3787 return total_size;
3788 }
3789
av1_write_metadata_obu(const aom_metadata_t * metadata,uint8_t * const dst)3790 static size_t av1_write_metadata_obu(const aom_metadata_t *metadata,
3791 uint8_t *const dst) {
3792 size_t coded_metadata_size = 0;
3793 const uint64_t metadata_type = (uint64_t)metadata->type;
3794 if (aom_uleb_encode(metadata_type, sizeof(metadata_type), dst,
3795 &coded_metadata_size) != 0) {
3796 return 0;
3797 }
3798 memcpy(dst + coded_metadata_size, metadata->payload, metadata->sz);
3799 // Add trailing bits.
3800 dst[coded_metadata_size + metadata->sz] = 0x80;
3801 return (uint32_t)(coded_metadata_size + metadata->sz + 1);
3802 }
3803
av1_write_metadata_array(AV1_COMP * const cpi,uint8_t * dst)3804 static size_t av1_write_metadata_array(AV1_COMP *const cpi, uint8_t *dst) {
3805 if (!cpi->source) return 0;
3806 AV1_COMMON *const cm = &cpi->common;
3807 aom_metadata_array_t *arr = cpi->source->metadata;
3808 if (!arr) return 0;
3809 size_t obu_header_size = 0;
3810 size_t obu_payload_size = 0;
3811 size_t total_bytes_written = 0;
3812 size_t length_field_size = 0;
3813 for (size_t i = 0; i < arr->sz; i++) {
3814 aom_metadata_t *current_metadata = arr->metadata_array[i];
3815 if (current_metadata && current_metadata->payload) {
3816 if ((cm->current_frame.frame_type == KEY_FRAME &&
3817 current_metadata->insert_flag == AOM_MIF_KEY_FRAME) ||
3818 (cm->current_frame.frame_type != KEY_FRAME &&
3819 current_metadata->insert_flag == AOM_MIF_NON_KEY_FRAME) ||
3820 current_metadata->insert_flag == AOM_MIF_ANY_FRAME) {
3821 obu_header_size =
3822 av1_write_obu_header(&cpi->level_params, OBU_METADATA, 0, dst);
3823 obu_payload_size =
3824 av1_write_metadata_obu(current_metadata, dst + obu_header_size);
3825 length_field_size = obu_memmove(obu_header_size, obu_payload_size, dst);
3826 if (av1_write_uleb_obu_size(obu_header_size, obu_payload_size, dst) ==
3827 AOM_CODEC_OK) {
3828 const size_t obu_size = obu_header_size + obu_payload_size;
3829 dst += obu_size + length_field_size;
3830 total_bytes_written += obu_size + length_field_size;
3831 } else {
3832 aom_internal_error(&cpi->common.error, AOM_CODEC_ERROR,
3833 "Error writing metadata OBU size");
3834 }
3835 }
3836 }
3837 }
3838 return total_bytes_written;
3839 }
3840
av1_pack_bitstream(AV1_COMP * const cpi,uint8_t * dst,size_t * size,int * const largest_tile_id)3841 int av1_pack_bitstream(AV1_COMP *const cpi, uint8_t *dst, size_t *size,
3842 int *const largest_tile_id) {
3843 uint8_t *data = dst;
3844 uint32_t data_size;
3845 AV1_COMMON *const cm = &cpi->common;
3846 AV1LevelParams *const level_params = &cpi->level_params;
3847 uint32_t obu_header_size = 0;
3848 uint32_t obu_payload_size = 0;
3849 FrameHeaderInfo fh_info = { NULL, 0, 0 };
3850 const uint8_t obu_extension_header =
3851 cm->temporal_layer_id << 5 | cm->spatial_layer_id << 3 | 0;
3852
3853 // If no non-zero delta_q has been used, reset delta_q_present_flag
3854 if (cm->delta_q_info.delta_q_present_flag && cpi->deltaq_used == 0) {
3855 cm->delta_q_info.delta_q_present_flag = 0;
3856 }
3857
3858 #if CONFIG_BITSTREAM_DEBUG
3859 bitstream_queue_reset_write();
3860 #endif
3861
3862 level_params->frame_header_count = 0;
3863
3864 // The TD is now written outside the frame encode loop
3865
3866 // write sequence header obu if KEY_FRAME, preceded by 4-byte size
3867 if (cm->current_frame.frame_type == KEY_FRAME && cm->show_frame) {
3868 obu_header_size =
3869 av1_write_obu_header(level_params, OBU_SEQUENCE_HEADER, 0, data);
3870
3871 obu_payload_size =
3872 av1_write_sequence_header_obu(&cm->seq_params, data + obu_header_size);
3873 const size_t length_field_size =
3874 obu_memmove(obu_header_size, obu_payload_size, data);
3875 if (av1_write_uleb_obu_size(obu_header_size, obu_payload_size, data) !=
3876 AOM_CODEC_OK) {
3877 return AOM_CODEC_ERROR;
3878 }
3879
3880 data += obu_header_size + obu_payload_size + length_field_size;
3881 }
3882
3883 // write metadata obus before the frame obu that has the show_frame flag set
3884 if (cm->show_frame) data += av1_write_metadata_array(cpi, data);
3885
3886 const int write_frame_header =
3887 (cpi->num_tg > 1 || encode_show_existing_frame(cm));
3888 struct aom_write_bit_buffer saved_wb;
3889 if (write_frame_header) {
3890 // Write Frame Header OBU.
3891 fh_info.frame_header = data;
3892 obu_header_size = av1_write_obu_header(level_params, OBU_FRAME_HEADER,
3893 obu_extension_header, data);
3894 obu_payload_size =
3895 write_frame_header_obu(cpi, &saved_wb, data + obu_header_size, 1);
3896
3897 const size_t length_field_size =
3898 obu_memmove(obu_header_size, obu_payload_size, data);
3899 if (av1_write_uleb_obu_size(obu_header_size, obu_payload_size, data) !=
3900 AOM_CODEC_OK) {
3901 return AOM_CODEC_ERROR;
3902 }
3903
3904 fh_info.obu_header_byte_offset = 0;
3905 fh_info.total_length =
3906 obu_header_size + obu_payload_size + length_field_size;
3907 data += fh_info.total_length;
3908
3909 // Since length_field_size is determined adaptively after frame header
3910 // encoding, saved_wb must be adjusted accordingly.
3911 saved_wb.bit_buffer += length_field_size;
3912 }
3913
3914 if (encode_show_existing_frame(cm)) {
3915 data_size = 0;
3916 } else {
3917 // Each tile group obu will be preceded by 4-byte size of the tile group
3918 // obu
3919 data_size = write_tiles_in_tg_obus(
3920 cpi, data, &saved_wb, obu_extension_header, &fh_info, largest_tile_id);
3921 }
3922 data += data_size;
3923 *size = data - dst;
3924 return AOM_CODEC_OK;
3925 }
3926