1 //===- CodeMoverUtils.cpp - CodeMover Utilities ----------------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform movements on basic blocks, and instructions
10 // contained within a function.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Transforms/Utils/CodeMoverUtils.h"
15 #include "llvm/ADT/Optional.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/DependenceAnalysis.h"
18 #include "llvm/Analysis/PostDominators.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/IR/Dominators.h"
21
22 using namespace llvm;
23
24 #define DEBUG_TYPE "codemover-utils"
25
26 STATISTIC(HasDependences,
27 "Cannot move across instructions that has memory dependences");
28 STATISTIC(MayThrowException, "Cannot move across instructions that may throw");
29 STATISTIC(NotControlFlowEquivalent,
30 "Instructions are not control flow equivalent");
31 STATISTIC(NotMovedPHINode, "Movement of PHINodes are not supported");
32 STATISTIC(NotMovedTerminator, "Movement of Terminator are not supported");
33
34 namespace {
35 /// Represent a control condition. A control condition is a condition of a
36 /// terminator to decide which successors to execute. The pointer field
37 /// represents the address of the condition of the terminator. The integer field
38 /// is a bool, it is true when the basic block is executed when V is true. For
39 /// example, `br %cond, bb0, bb1` %cond is a control condition of bb0 with the
40 /// integer field equals to true, while %cond is a control condition of bb1 with
41 /// the integer field equals to false.
42 using ControlCondition = PointerIntPair<Value *, 1, bool>;
43 #ifndef NDEBUG
operator <<(raw_ostream & OS,const ControlCondition & C)44 raw_ostream &operator<<(raw_ostream &OS, const ControlCondition &C) {
45 OS << "[" << *C.getPointer() << ", " << (C.getInt() ? "true" : "false")
46 << "]";
47 return OS;
48 }
49 #endif
50
51 /// Represent a set of control conditions required to execute ToBB from FromBB.
52 class ControlConditions {
53 using ConditionVectorTy = SmallVector<ControlCondition, 6>;
54
55 /// A SmallVector of control conditions.
56 ConditionVectorTy Conditions;
57
58 public:
59 /// Return a ControlConditions which stores all conditions required to execute
60 /// \p BB from \p Dominator. If \p MaxLookup is non-zero, it limits the
61 /// number of conditions to collect. Return None if not all conditions are
62 /// collected successfully, or we hit the limit.
63 static const Optional<ControlConditions>
64 collectControlConditions(const BasicBlock &BB, const BasicBlock &Dominator,
65 const DominatorTree &DT,
66 const PostDominatorTree &PDT,
67 unsigned MaxLookup = 6);
68
69 /// Return true if there exists no control conditions required to execute ToBB
70 /// from FromBB.
isUnconditional() const71 bool isUnconditional() const { return Conditions.empty(); }
72
73 /// Return a constant reference of Conditions.
getControlConditions() const74 const ConditionVectorTy &getControlConditions() const { return Conditions; }
75
76 /// Add \p V as one of the ControlCondition in Condition with IsTrueCondition
77 /// equals to \p True. Return true if inserted successfully.
78 bool addControlCondition(ControlCondition C);
79
80 /// Return true if for all control conditions in Conditions, there exists an
81 /// equivalent control condition in \p Other.Conditions.
82 bool isEquivalent(const ControlConditions &Other) const;
83
84 /// Return true if \p C1 and \p C2 are equivalent.
85 static bool isEquivalent(const ControlCondition &C1,
86 const ControlCondition &C2);
87
88 private:
89 ControlConditions() = default;
90
91 static bool isEquivalent(const Value &V1, const Value &V2);
92 static bool isInverse(const Value &V1, const Value &V2);
93 };
94 } // namespace
95
domTreeLevelBefore(DominatorTree * DT,const Instruction * InstA,const Instruction * InstB)96 static bool domTreeLevelBefore(DominatorTree *DT, const Instruction *InstA,
97 const Instruction *InstB) {
98 // Use ordered basic block in case the 2 instructions are in the same
99 // block.
100 if (InstA->getParent() == InstB->getParent())
101 return InstA->comesBefore(InstB);
102
103 DomTreeNode *DA = DT->getNode(InstA->getParent());
104 DomTreeNode *DB = DT->getNode(InstB->getParent());
105 return DA->getLevel() < DB->getLevel();
106 }
107
collectControlConditions(const BasicBlock & BB,const BasicBlock & Dominator,const DominatorTree & DT,const PostDominatorTree & PDT,unsigned MaxLookup)108 const Optional<ControlConditions> ControlConditions::collectControlConditions(
109 const BasicBlock &BB, const BasicBlock &Dominator, const DominatorTree &DT,
110 const PostDominatorTree &PDT, unsigned MaxLookup) {
111 assert(DT.dominates(&Dominator, &BB) && "Expecting Dominator to dominate BB");
112
113 ControlConditions Conditions;
114 unsigned NumConditions = 0;
115
116 // BB is executed unconditional from itself.
117 if (&Dominator == &BB)
118 return Conditions;
119
120 const BasicBlock *CurBlock = &BB;
121 // Walk up the dominator tree from the associated DT node for BB to the
122 // associated DT node for Dominator.
123 do {
124 assert(DT.getNode(CurBlock) && "Expecting a valid DT node for CurBlock");
125 BasicBlock *IDom = DT.getNode(CurBlock)->getIDom()->getBlock();
126 assert(DT.dominates(&Dominator, IDom) &&
127 "Expecting Dominator to dominate IDom");
128
129 // Limitation: can only handle branch instruction currently.
130 const BranchInst *BI = dyn_cast<BranchInst>(IDom->getTerminator());
131 if (!BI)
132 return None;
133
134 bool Inserted = false;
135 if (PDT.dominates(CurBlock, IDom)) {
136 LLVM_DEBUG(dbgs() << CurBlock->getName()
137 << " is executed unconditionally from "
138 << IDom->getName() << "\n");
139 } else if (PDT.dominates(CurBlock, BI->getSuccessor(0))) {
140 LLVM_DEBUG(dbgs() << CurBlock->getName() << " is executed when \""
141 << *BI->getCondition() << "\" is true from "
142 << IDom->getName() << "\n");
143 Inserted = Conditions.addControlCondition(
144 ControlCondition(BI->getCondition(), true));
145 } else if (PDT.dominates(CurBlock, BI->getSuccessor(1))) {
146 LLVM_DEBUG(dbgs() << CurBlock->getName() << " is executed when \""
147 << *BI->getCondition() << "\" is false from "
148 << IDom->getName() << "\n");
149 Inserted = Conditions.addControlCondition(
150 ControlCondition(BI->getCondition(), false));
151 } else
152 return None;
153
154 if (Inserted)
155 ++NumConditions;
156
157 if (MaxLookup != 0 && NumConditions > MaxLookup)
158 return None;
159
160 CurBlock = IDom;
161 } while (CurBlock != &Dominator);
162
163 return Conditions;
164 }
165
addControlCondition(ControlCondition C)166 bool ControlConditions::addControlCondition(ControlCondition C) {
167 bool Inserted = false;
168 if (none_of(Conditions, [&](ControlCondition &Exists) {
169 return ControlConditions::isEquivalent(C, Exists);
170 })) {
171 Conditions.push_back(C);
172 Inserted = true;
173 }
174
175 LLVM_DEBUG(dbgs() << (Inserted ? "Inserted " : "Not inserted ") << C << "\n");
176 return Inserted;
177 }
178
isEquivalent(const ControlConditions & Other) const179 bool ControlConditions::isEquivalent(const ControlConditions &Other) const {
180 if (Conditions.empty() && Other.Conditions.empty())
181 return true;
182
183 if (Conditions.size() != Other.Conditions.size())
184 return false;
185
186 return all_of(Conditions, [&](const ControlCondition &C) {
187 return any_of(Other.Conditions, [&](const ControlCondition &OtherC) {
188 return ControlConditions::isEquivalent(C, OtherC);
189 });
190 });
191 }
192
isEquivalent(const ControlCondition & C1,const ControlCondition & C2)193 bool ControlConditions::isEquivalent(const ControlCondition &C1,
194 const ControlCondition &C2) {
195 if (C1.getInt() == C2.getInt()) {
196 if (isEquivalent(*C1.getPointer(), *C2.getPointer()))
197 return true;
198 } else if (isInverse(*C1.getPointer(), *C2.getPointer()))
199 return true;
200
201 return false;
202 }
203
204 // FIXME: Use SCEV and reuse GVN/CSE logic to check for equivalence between
205 // Values.
206 // Currently, isEquivalent rely on other passes to ensure equivalent conditions
207 // have the same value, e.g. GVN.
isEquivalent(const Value & V1,const Value & V2)208 bool ControlConditions::isEquivalent(const Value &V1, const Value &V2) {
209 return &V1 == &V2;
210 }
211
isInverse(const Value & V1,const Value & V2)212 bool ControlConditions::isInverse(const Value &V1, const Value &V2) {
213 if (const CmpInst *Cmp1 = dyn_cast<CmpInst>(&V1))
214 if (const CmpInst *Cmp2 = dyn_cast<CmpInst>(&V2)) {
215 if (Cmp1->getPredicate() == Cmp2->getInversePredicate() &&
216 Cmp1->getOperand(0) == Cmp2->getOperand(0) &&
217 Cmp1->getOperand(1) == Cmp2->getOperand(1))
218 return true;
219
220 if (Cmp1->getPredicate() ==
221 CmpInst::getSwappedPredicate(Cmp2->getInversePredicate()) &&
222 Cmp1->getOperand(0) == Cmp2->getOperand(1) &&
223 Cmp1->getOperand(1) == Cmp2->getOperand(0))
224 return true;
225 }
226 return false;
227 }
228
isControlFlowEquivalent(const Instruction & I0,const Instruction & I1,const DominatorTree & DT,const PostDominatorTree & PDT)229 bool llvm::isControlFlowEquivalent(const Instruction &I0, const Instruction &I1,
230 const DominatorTree &DT,
231 const PostDominatorTree &PDT) {
232 return isControlFlowEquivalent(*I0.getParent(), *I1.getParent(), DT, PDT);
233 }
234
isControlFlowEquivalent(const BasicBlock & BB0,const BasicBlock & BB1,const DominatorTree & DT,const PostDominatorTree & PDT)235 bool llvm::isControlFlowEquivalent(const BasicBlock &BB0, const BasicBlock &BB1,
236 const DominatorTree &DT,
237 const PostDominatorTree &PDT) {
238 if (&BB0 == &BB1)
239 return true;
240
241 if ((DT.dominates(&BB0, &BB1) && PDT.dominates(&BB1, &BB0)) ||
242 (PDT.dominates(&BB0, &BB1) && DT.dominates(&BB1, &BB0)))
243 return true;
244
245 // If the set of conditions required to execute BB0 and BB1 from their common
246 // dominator are the same, then BB0 and BB1 are control flow equivalent.
247 const BasicBlock *CommonDominator = DT.findNearestCommonDominator(&BB0, &BB1);
248 LLVM_DEBUG(dbgs() << "The nearest common dominator of " << BB0.getName()
249 << " and " << BB1.getName() << " is "
250 << CommonDominator->getName() << "\n");
251
252 const Optional<ControlConditions> BB0Conditions =
253 ControlConditions::collectControlConditions(BB0, *CommonDominator, DT,
254 PDT);
255 if (BB0Conditions == None)
256 return false;
257
258 const Optional<ControlConditions> BB1Conditions =
259 ControlConditions::collectControlConditions(BB1, *CommonDominator, DT,
260 PDT);
261 if (BB1Conditions == None)
262 return false;
263
264 return BB0Conditions->isEquivalent(*BB1Conditions);
265 }
266
reportInvalidCandidate(const Instruction & I,llvm::Statistic & Stat)267 static bool reportInvalidCandidate(const Instruction &I,
268 llvm::Statistic &Stat) {
269 ++Stat;
270 LLVM_DEBUG(dbgs() << "Unable to move instruction: " << I << ". "
271 << Stat.getDesc());
272 return false;
273 }
274
275 /// Collect all instructions in between \p StartInst and \p EndInst, and store
276 /// them in \p InBetweenInsts.
277 static void
collectInstructionsInBetween(Instruction & StartInst,const Instruction & EndInst,SmallPtrSetImpl<Instruction * > & InBetweenInsts)278 collectInstructionsInBetween(Instruction &StartInst, const Instruction &EndInst,
279 SmallPtrSetImpl<Instruction *> &InBetweenInsts) {
280 assert(InBetweenInsts.empty() && "Expecting InBetweenInsts to be empty");
281
282 /// Get the next instructions of \p I, and push them to \p WorkList.
283 auto getNextInsts = [](Instruction &I,
284 SmallPtrSetImpl<Instruction *> &WorkList) {
285 if (Instruction *NextInst = I.getNextNode())
286 WorkList.insert(NextInst);
287 else {
288 assert(I.isTerminator() && "Expecting a terminator instruction");
289 for (BasicBlock *Succ : successors(&I))
290 WorkList.insert(&Succ->front());
291 }
292 };
293
294 SmallPtrSet<Instruction *, 10> WorkList;
295 getNextInsts(StartInst, WorkList);
296 while (!WorkList.empty()) {
297 Instruction *CurInst = *WorkList.begin();
298 WorkList.erase(CurInst);
299
300 if (CurInst == &EndInst)
301 continue;
302
303 if (!InBetweenInsts.insert(CurInst).second)
304 continue;
305
306 getNextInsts(*CurInst, WorkList);
307 }
308 }
309
isSafeToMoveBefore(Instruction & I,Instruction & InsertPoint,DominatorTree & DT,const PostDominatorTree * PDT,DependenceInfo * DI)310 bool llvm::isSafeToMoveBefore(Instruction &I, Instruction &InsertPoint,
311 DominatorTree &DT, const PostDominatorTree *PDT,
312 DependenceInfo *DI) {
313 // Skip tests when we don't have PDT or DI
314 if (!PDT || !DI)
315 return false;
316
317 // Cannot move itself before itself.
318 if (&I == &InsertPoint)
319 return false;
320
321 // Not moved.
322 if (I.getNextNode() == &InsertPoint)
323 return true;
324
325 if (isa<PHINode>(I) || isa<PHINode>(InsertPoint))
326 return reportInvalidCandidate(I, NotMovedPHINode);
327
328 if (I.isTerminator())
329 return reportInvalidCandidate(I, NotMovedTerminator);
330
331 // TODO remove this limitation.
332 if (!isControlFlowEquivalent(I, InsertPoint, DT, *PDT))
333 return reportInvalidCandidate(I, NotControlFlowEquivalent);
334
335 if (!DT.dominates(&InsertPoint, &I))
336 for (const Use &U : I.uses())
337 if (auto *UserInst = dyn_cast<Instruction>(U.getUser()))
338 if (UserInst != &InsertPoint && !DT.dominates(&InsertPoint, U))
339 return false;
340 if (!DT.dominates(&I, &InsertPoint))
341 for (const Value *Op : I.operands())
342 if (auto *OpInst = dyn_cast<Instruction>(Op))
343 if (&InsertPoint == OpInst || !DT.dominates(OpInst, &InsertPoint))
344 return false;
345
346 DT.updateDFSNumbers();
347 const bool MoveForward = domTreeLevelBefore(&DT, &I, &InsertPoint);
348 Instruction &StartInst = (MoveForward ? I : InsertPoint);
349 Instruction &EndInst = (MoveForward ? InsertPoint : I);
350 SmallPtrSet<Instruction *, 10> InstsToCheck;
351 collectInstructionsInBetween(StartInst, EndInst, InstsToCheck);
352 if (!MoveForward)
353 InstsToCheck.insert(&InsertPoint);
354
355 // Check if there exists instructions which may throw, may synchonize, or may
356 // never return, from I to InsertPoint.
357 if (!isSafeToSpeculativelyExecute(&I))
358 if (std::any_of(InstsToCheck.begin(), InstsToCheck.end(),
359 [](Instruction *I) {
360 if (I->mayThrow())
361 return true;
362
363 const CallBase *CB = dyn_cast<CallBase>(I);
364 if (!CB)
365 return false;
366 if (!CB->hasFnAttr(Attribute::WillReturn))
367 return true;
368 if (!CB->hasFnAttr(Attribute::NoSync))
369 return true;
370
371 return false;
372 })) {
373 return reportInvalidCandidate(I, MayThrowException);
374 }
375
376 // Check if I has any output/flow/anti dependences with instructions from \p
377 // StartInst to \p EndInst.
378 if (std::any_of(InstsToCheck.begin(), InstsToCheck.end(),
379 [&DI, &I](Instruction *CurInst) {
380 auto DepResult = DI->depends(&I, CurInst, true);
381 if (DepResult &&
382 (DepResult->isOutput() || DepResult->isFlow() ||
383 DepResult->isAnti()))
384 return true;
385 return false;
386 }))
387 return reportInvalidCandidate(I, HasDependences);
388
389 return true;
390 }
391
isSafeToMoveBefore(BasicBlock & BB,Instruction & InsertPoint,DominatorTree & DT,const PostDominatorTree * PDT,DependenceInfo * DI)392 bool llvm::isSafeToMoveBefore(BasicBlock &BB, Instruction &InsertPoint,
393 DominatorTree &DT, const PostDominatorTree *PDT,
394 DependenceInfo *DI) {
395 return llvm::all_of(BB, [&](Instruction &I) {
396 if (BB.getTerminator() == &I)
397 return true;
398
399 return isSafeToMoveBefore(I, InsertPoint, DT, PDT, DI);
400 });
401 }
402
moveInstructionsToTheBeginning(BasicBlock & FromBB,BasicBlock & ToBB,DominatorTree & DT,const PostDominatorTree & PDT,DependenceInfo & DI)403 void llvm::moveInstructionsToTheBeginning(BasicBlock &FromBB, BasicBlock &ToBB,
404 DominatorTree &DT,
405 const PostDominatorTree &PDT,
406 DependenceInfo &DI) {
407 for (auto It = ++FromBB.rbegin(); It != FromBB.rend();) {
408 Instruction *MovePos = ToBB.getFirstNonPHIOrDbg();
409 Instruction &I = *It;
410 // Increment the iterator before modifying FromBB.
411 ++It;
412
413 if (isSafeToMoveBefore(I, *MovePos, DT, &PDT, &DI))
414 I.moveBefore(MovePos);
415 }
416 }
417
moveInstructionsToTheEnd(BasicBlock & FromBB,BasicBlock & ToBB,DominatorTree & DT,const PostDominatorTree & PDT,DependenceInfo & DI)418 void llvm::moveInstructionsToTheEnd(BasicBlock &FromBB, BasicBlock &ToBB,
419 DominatorTree &DT,
420 const PostDominatorTree &PDT,
421 DependenceInfo &DI) {
422 Instruction *MovePos = ToBB.getTerminator();
423 while (FromBB.size() > 1) {
424 Instruction &I = FromBB.front();
425 if (isSafeToMoveBefore(I, *MovePos, DT, &PDT, &DI))
426 I.moveBefore(MovePos);
427 }
428 }
429