• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- InstCombineCasts.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for cast operations.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/SetVector.h"
15 #include "llvm/Analysis/ConstantFolding.h"
16 #include "llvm/Analysis/TargetLibraryInfo.h"
17 #include "llvm/IR/DIBuilder.h"
18 #include "llvm/IR/DataLayout.h"
19 #include "llvm/IR/PatternMatch.h"
20 #include "llvm/Support/KnownBits.h"
21 #include "llvm/Transforms/InstCombine/InstCombiner.h"
22 #include <numeric>
23 using namespace llvm;
24 using namespace PatternMatch;
25 
26 #define DEBUG_TYPE "instcombine"
27 
28 /// Analyze 'Val', seeing if it is a simple linear expression.
29 /// If so, decompose it, returning some value X, such that Val is
30 /// X*Scale+Offset.
31 ///
decomposeSimpleLinearExpr(Value * Val,unsigned & Scale,uint64_t & Offset)32 static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
33                                         uint64_t &Offset) {
34   if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
35     Offset = CI->getZExtValue();
36     Scale  = 0;
37     return ConstantInt::get(Val->getType(), 0);
38   }
39 
40   if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
41     // Cannot look past anything that might overflow.
42     OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
43     if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) {
44       Scale = 1;
45       Offset = 0;
46       return Val;
47     }
48 
49     if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
50       if (I->getOpcode() == Instruction::Shl) {
51         // This is a value scaled by '1 << the shift amt'.
52         Scale = UINT64_C(1) << RHS->getZExtValue();
53         Offset = 0;
54         return I->getOperand(0);
55       }
56 
57       if (I->getOpcode() == Instruction::Mul) {
58         // This value is scaled by 'RHS'.
59         Scale = RHS->getZExtValue();
60         Offset = 0;
61         return I->getOperand(0);
62       }
63 
64       if (I->getOpcode() == Instruction::Add) {
65         // We have X+C.  Check to see if we really have (X*C2)+C1,
66         // where C1 is divisible by C2.
67         unsigned SubScale;
68         Value *SubVal =
69           decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
70         Offset += RHS->getZExtValue();
71         Scale = SubScale;
72         return SubVal;
73       }
74     }
75   }
76 
77   // Otherwise, we can't look past this.
78   Scale = 1;
79   Offset = 0;
80   return Val;
81 }
82 
83 /// If we find a cast of an allocation instruction, try to eliminate the cast by
84 /// moving the type information into the alloc.
PromoteCastOfAllocation(BitCastInst & CI,AllocaInst & AI)85 Instruction *InstCombinerImpl::PromoteCastOfAllocation(BitCastInst &CI,
86                                                        AllocaInst &AI) {
87   PointerType *PTy = cast<PointerType>(CI.getType());
88 
89   IRBuilderBase::InsertPointGuard Guard(Builder);
90   Builder.SetInsertPoint(&AI);
91 
92   // Get the type really allocated and the type casted to.
93   Type *AllocElTy = AI.getAllocatedType();
94   Type *CastElTy = PTy->getElementType();
95   if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr;
96 
97   // This optimisation does not work for cases where the cast type
98   // is scalable and the allocated type is not. This because we need to
99   // know how many times the casted type fits into the allocated type.
100   // For the opposite case where the allocated type is scalable and the
101   // cast type is not this leads to poor code quality due to the
102   // introduction of 'vscale' into the calculations. It seems better to
103   // bail out for this case too until we've done a proper cost-benefit
104   // analysis.
105   bool AllocIsScalable = isa<ScalableVectorType>(AllocElTy);
106   bool CastIsScalable = isa<ScalableVectorType>(CastElTy);
107   if (AllocIsScalable != CastIsScalable) return nullptr;
108 
109   Align AllocElTyAlign = DL.getABITypeAlign(AllocElTy);
110   Align CastElTyAlign = DL.getABITypeAlign(CastElTy);
111   if (CastElTyAlign < AllocElTyAlign) return nullptr;
112 
113   // If the allocation has multiple uses, only promote it if we are strictly
114   // increasing the alignment of the resultant allocation.  If we keep it the
115   // same, we open the door to infinite loops of various kinds.
116   if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr;
117 
118   // The alloc and cast types should be either both fixed or both scalable.
119   uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy).getKnownMinSize();
120   uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy).getKnownMinSize();
121   if (CastElTySize == 0 || AllocElTySize == 0) return nullptr;
122 
123   // If the allocation has multiple uses, only promote it if we're not
124   // shrinking the amount of memory being allocated.
125   uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy).getKnownMinSize();
126   uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy).getKnownMinSize();
127   if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr;
128 
129   // See if we can satisfy the modulus by pulling a scale out of the array
130   // size argument.
131   unsigned ArraySizeScale;
132   uint64_t ArrayOffset;
133   Value *NumElements = // See if the array size is a decomposable linear expr.
134     decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
135 
136   // If we can now satisfy the modulus, by using a non-1 scale, we really can
137   // do the xform.
138   if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
139       (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return nullptr;
140 
141   // We don't currently support arrays of scalable types.
142   assert(!AllocIsScalable || (ArrayOffset == 1 && ArraySizeScale == 0));
143 
144   unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
145   Value *Amt = nullptr;
146   if (Scale == 1) {
147     Amt = NumElements;
148   } else {
149     Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
150     // Insert before the alloca, not before the cast.
151     Amt = Builder.CreateMul(Amt, NumElements);
152   }
153 
154   if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
155     Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
156                                   Offset, true);
157     Amt = Builder.CreateAdd(Amt, Off);
158   }
159 
160   AllocaInst *New = Builder.CreateAlloca(CastElTy, Amt);
161   New->setAlignment(AI.getAlign());
162   New->takeName(&AI);
163   New->setUsedWithInAlloca(AI.isUsedWithInAlloca());
164 
165   // If the allocation has multiple real uses, insert a cast and change all
166   // things that used it to use the new cast.  This will also hack on CI, but it
167   // will die soon.
168   if (!AI.hasOneUse()) {
169     // New is the allocation instruction, pointer typed. AI is the original
170     // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
171     Value *NewCast = Builder.CreateBitCast(New, AI.getType(), "tmpcast");
172     replaceInstUsesWith(AI, NewCast);
173     eraseInstFromFunction(AI);
174   }
175   return replaceInstUsesWith(CI, New);
176 }
177 
178 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns
179 /// true for, actually insert the code to evaluate the expression.
EvaluateInDifferentType(Value * V,Type * Ty,bool isSigned)180 Value *InstCombinerImpl::EvaluateInDifferentType(Value *V, Type *Ty,
181                                                  bool isSigned) {
182   if (Constant *C = dyn_cast<Constant>(V)) {
183     C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
184     // If we got a constantexpr back, try to simplify it with DL info.
185     return ConstantFoldConstant(C, DL, &TLI);
186   }
187 
188   // Otherwise, it must be an instruction.
189   Instruction *I = cast<Instruction>(V);
190   Instruction *Res = nullptr;
191   unsigned Opc = I->getOpcode();
192   switch (Opc) {
193   case Instruction::Add:
194   case Instruction::Sub:
195   case Instruction::Mul:
196   case Instruction::And:
197   case Instruction::Or:
198   case Instruction::Xor:
199   case Instruction::AShr:
200   case Instruction::LShr:
201   case Instruction::Shl:
202   case Instruction::UDiv:
203   case Instruction::URem: {
204     Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
205     Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
206     Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
207     break;
208   }
209   case Instruction::Trunc:
210   case Instruction::ZExt:
211   case Instruction::SExt:
212     // If the source type of the cast is the type we're trying for then we can
213     // just return the source.  There's no need to insert it because it is not
214     // new.
215     if (I->getOperand(0)->getType() == Ty)
216       return I->getOperand(0);
217 
218     // Otherwise, must be the same type of cast, so just reinsert a new one.
219     // This also handles the case of zext(trunc(x)) -> zext(x).
220     Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
221                                       Opc == Instruction::SExt);
222     break;
223   case Instruction::Select: {
224     Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
225     Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
226     Res = SelectInst::Create(I->getOperand(0), True, False);
227     break;
228   }
229   case Instruction::PHI: {
230     PHINode *OPN = cast<PHINode>(I);
231     PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
232     for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
233       Value *V =
234           EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
235       NPN->addIncoming(V, OPN->getIncomingBlock(i));
236     }
237     Res = NPN;
238     break;
239   }
240   default:
241     // TODO: Can handle more cases here.
242     llvm_unreachable("Unreachable!");
243   }
244 
245   Res->takeName(I);
246   return InsertNewInstWith(Res, *I);
247 }
248 
249 Instruction::CastOps
isEliminableCastPair(const CastInst * CI1,const CastInst * CI2)250 InstCombinerImpl::isEliminableCastPair(const CastInst *CI1,
251                                        const CastInst *CI2) {
252   Type *SrcTy = CI1->getSrcTy();
253   Type *MidTy = CI1->getDestTy();
254   Type *DstTy = CI2->getDestTy();
255 
256   Instruction::CastOps firstOp = CI1->getOpcode();
257   Instruction::CastOps secondOp = CI2->getOpcode();
258   Type *SrcIntPtrTy =
259       SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr;
260   Type *MidIntPtrTy =
261       MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr;
262   Type *DstIntPtrTy =
263       DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr;
264   unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
265                                                 DstTy, SrcIntPtrTy, MidIntPtrTy,
266                                                 DstIntPtrTy);
267 
268   // We don't want to form an inttoptr or ptrtoint that converts to an integer
269   // type that differs from the pointer size.
270   if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
271       (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
272     Res = 0;
273 
274   return Instruction::CastOps(Res);
275 }
276 
277 /// Implement the transforms common to all CastInst visitors.
commonCastTransforms(CastInst & CI)278 Instruction *InstCombinerImpl::commonCastTransforms(CastInst &CI) {
279   Value *Src = CI.getOperand(0);
280 
281   // Try to eliminate a cast of a cast.
282   if (auto *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
283     if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) {
284       // The first cast (CSrc) is eliminable so we need to fix up or replace
285       // the second cast (CI). CSrc will then have a good chance of being dead.
286       auto *Ty = CI.getType();
287       auto *Res = CastInst::Create(NewOpc, CSrc->getOperand(0), Ty);
288       // Point debug users of the dying cast to the new one.
289       if (CSrc->hasOneUse())
290         replaceAllDbgUsesWith(*CSrc, *Res, CI, DT);
291       return Res;
292     }
293   }
294 
295   if (auto *Sel = dyn_cast<SelectInst>(Src)) {
296     // We are casting a select. Try to fold the cast into the select if the
297     // select does not have a compare instruction with matching operand types
298     // or the select is likely better done in a narrow type.
299     // Creating a select with operands that are different sizes than its
300     // condition may inhibit other folds and lead to worse codegen.
301     auto *Cmp = dyn_cast<CmpInst>(Sel->getCondition());
302     if (!Cmp || Cmp->getOperand(0)->getType() != Sel->getType() ||
303         (CI.getOpcode() == Instruction::Trunc &&
304          shouldChangeType(CI.getSrcTy(), CI.getType()))) {
305       if (Instruction *NV = FoldOpIntoSelect(CI, Sel)) {
306         replaceAllDbgUsesWith(*Sel, *NV, CI, DT);
307         return NV;
308       }
309     }
310   }
311 
312   // If we are casting a PHI, then fold the cast into the PHI.
313   if (auto *PN = dyn_cast<PHINode>(Src)) {
314     // Don't do this if it would create a PHI node with an illegal type from a
315     // legal type.
316     if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() ||
317         shouldChangeType(CI.getSrcTy(), CI.getType()))
318       if (Instruction *NV = foldOpIntoPhi(CI, PN))
319         return NV;
320   }
321 
322   return nullptr;
323 }
324 
325 /// Constants and extensions/truncates from the destination type are always
326 /// free to be evaluated in that type. This is a helper for canEvaluate*.
canAlwaysEvaluateInType(Value * V,Type * Ty)327 static bool canAlwaysEvaluateInType(Value *V, Type *Ty) {
328   if (isa<Constant>(V))
329     return true;
330   Value *X;
331   if ((match(V, m_ZExtOrSExt(m_Value(X))) || match(V, m_Trunc(m_Value(X)))) &&
332       X->getType() == Ty)
333     return true;
334 
335   return false;
336 }
337 
338 /// Filter out values that we can not evaluate in the destination type for free.
339 /// This is a helper for canEvaluate*.
canNotEvaluateInType(Value * V,Type * Ty)340 static bool canNotEvaluateInType(Value *V, Type *Ty) {
341   assert(!isa<Constant>(V) && "Constant should already be handled.");
342   if (!isa<Instruction>(V))
343     return true;
344   // We don't extend or shrink something that has multiple uses --  doing so
345   // would require duplicating the instruction which isn't profitable.
346   if (!V->hasOneUse())
347     return true;
348 
349   return false;
350 }
351 
352 /// Return true if we can evaluate the specified expression tree as type Ty
353 /// instead of its larger type, and arrive with the same value.
354 /// This is used by code that tries to eliminate truncates.
355 ///
356 /// Ty will always be a type smaller than V.  We should return true if trunc(V)
357 /// can be computed by computing V in the smaller type.  If V is an instruction,
358 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
359 /// makes sense if x and y can be efficiently truncated.
360 ///
361 /// This function works on both vectors and scalars.
362 ///
canEvaluateTruncated(Value * V,Type * Ty,InstCombinerImpl & IC,Instruction * CxtI)363 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombinerImpl &IC,
364                                  Instruction *CxtI) {
365   if (canAlwaysEvaluateInType(V, Ty))
366     return true;
367   if (canNotEvaluateInType(V, Ty))
368     return false;
369 
370   auto *I = cast<Instruction>(V);
371   Type *OrigTy = V->getType();
372   switch (I->getOpcode()) {
373   case Instruction::Add:
374   case Instruction::Sub:
375   case Instruction::Mul:
376   case Instruction::And:
377   case Instruction::Or:
378   case Instruction::Xor:
379     // These operators can all arbitrarily be extended or truncated.
380     return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
381            canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
382 
383   case Instruction::UDiv:
384   case Instruction::URem: {
385     // UDiv and URem can be truncated if all the truncated bits are zero.
386     uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
387     uint32_t BitWidth = Ty->getScalarSizeInBits();
388     assert(BitWidth < OrigBitWidth && "Unexpected bitwidths!");
389     APInt Mask = APInt::getBitsSetFrom(OrigBitWidth, BitWidth);
390     if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) &&
391         IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) {
392       return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
393              canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
394     }
395     break;
396   }
397   case Instruction::Shl: {
398     // If we are truncating the result of this SHL, and if it's a shift of an
399     // inrange amount, we can always perform a SHL in a smaller type.
400     uint32_t BitWidth = Ty->getScalarSizeInBits();
401     KnownBits AmtKnownBits =
402         llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
403     if (AmtKnownBits.getMaxValue().ult(BitWidth))
404       return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
405              canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
406     break;
407   }
408   case Instruction::LShr: {
409     // If this is a truncate of a logical shr, we can truncate it to a smaller
410     // lshr iff we know that the bits we would otherwise be shifting in are
411     // already zeros.
412     // TODO: It is enough to check that the bits we would be shifting in are
413     //       zero - use AmtKnownBits.getMaxValue().
414     uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
415     uint32_t BitWidth = Ty->getScalarSizeInBits();
416     KnownBits AmtKnownBits =
417         llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
418     APInt ShiftedBits = APInt::getBitsSetFrom(OrigBitWidth, BitWidth);
419     if (AmtKnownBits.getMaxValue().ult(BitWidth) &&
420         IC.MaskedValueIsZero(I->getOperand(0), ShiftedBits, 0, CxtI)) {
421       return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
422              canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
423     }
424     break;
425   }
426   case Instruction::AShr: {
427     // If this is a truncate of an arithmetic shr, we can truncate it to a
428     // smaller ashr iff we know that all the bits from the sign bit of the
429     // original type and the sign bit of the truncate type are similar.
430     // TODO: It is enough to check that the bits we would be shifting in are
431     //       similar to sign bit of the truncate type.
432     uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
433     uint32_t BitWidth = Ty->getScalarSizeInBits();
434     KnownBits AmtKnownBits =
435         llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
436     unsigned ShiftedBits = OrigBitWidth - BitWidth;
437     if (AmtKnownBits.getMaxValue().ult(BitWidth) &&
438         ShiftedBits < IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI))
439       return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
440              canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
441     break;
442   }
443   case Instruction::Trunc:
444     // trunc(trunc(x)) -> trunc(x)
445     return true;
446   case Instruction::ZExt:
447   case Instruction::SExt:
448     // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
449     // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
450     return true;
451   case Instruction::Select: {
452     SelectInst *SI = cast<SelectInst>(I);
453     return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) &&
454            canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI);
455   }
456   case Instruction::PHI: {
457     // We can change a phi if we can change all operands.  Note that we never
458     // get into trouble with cyclic PHIs here because we only consider
459     // instructions with a single use.
460     PHINode *PN = cast<PHINode>(I);
461     for (Value *IncValue : PN->incoming_values())
462       if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI))
463         return false;
464     return true;
465   }
466   default:
467     // TODO: Can handle more cases here.
468     break;
469   }
470 
471   return false;
472 }
473 
474 /// Given a vector that is bitcast to an integer, optionally logically
475 /// right-shifted, and truncated, convert it to an extractelement.
476 /// Example (big endian):
477 ///   trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32
478 ///   --->
479 ///   extractelement <4 x i32> %X, 1
foldVecTruncToExtElt(TruncInst & Trunc,InstCombinerImpl & IC)480 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc,
481                                          InstCombinerImpl &IC) {
482   Value *TruncOp = Trunc.getOperand(0);
483   Type *DestType = Trunc.getType();
484   if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType))
485     return nullptr;
486 
487   Value *VecInput = nullptr;
488   ConstantInt *ShiftVal = nullptr;
489   if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)),
490                                   m_LShr(m_BitCast(m_Value(VecInput)),
491                                          m_ConstantInt(ShiftVal)))) ||
492       !isa<VectorType>(VecInput->getType()))
493     return nullptr;
494 
495   VectorType *VecType = cast<VectorType>(VecInput->getType());
496   unsigned VecWidth = VecType->getPrimitiveSizeInBits();
497   unsigned DestWidth = DestType->getPrimitiveSizeInBits();
498   unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0;
499 
500   if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0))
501     return nullptr;
502 
503   // If the element type of the vector doesn't match the result type,
504   // bitcast it to a vector type that we can extract from.
505   unsigned NumVecElts = VecWidth / DestWidth;
506   if (VecType->getElementType() != DestType) {
507     VecType = FixedVectorType::get(DestType, NumVecElts);
508     VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc");
509   }
510 
511   unsigned Elt = ShiftAmount / DestWidth;
512   if (IC.getDataLayout().isBigEndian())
513     Elt = NumVecElts - 1 - Elt;
514 
515   return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt));
516 }
517 
518 /// Funnel/Rotate left/right may occur in a wider type than necessary because of
519 /// type promotion rules. Try to narrow the inputs and convert to funnel shift.
narrowFunnelShift(TruncInst & Trunc)520 Instruction *InstCombinerImpl::narrowFunnelShift(TruncInst &Trunc) {
521   assert((isa<VectorType>(Trunc.getSrcTy()) ||
522           shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) &&
523          "Don't narrow to an illegal scalar type");
524 
525   // Bail out on strange types. It is possible to handle some of these patterns
526   // even with non-power-of-2 sizes, but it is not a likely scenario.
527   Type *DestTy = Trunc.getType();
528   unsigned NarrowWidth = DestTy->getScalarSizeInBits();
529   if (!isPowerOf2_32(NarrowWidth))
530     return nullptr;
531 
532   // First, find an or'd pair of opposite shifts:
533   // trunc (or (lshr ShVal0, ShAmt0), (shl ShVal1, ShAmt1))
534   BinaryOperator *Or0, *Or1;
535   if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1)))))
536     return nullptr;
537 
538   Value *ShVal0, *ShVal1, *ShAmt0, *ShAmt1;
539   if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal0), m_Value(ShAmt0)))) ||
540       !match(Or1, m_OneUse(m_LogicalShift(m_Value(ShVal1), m_Value(ShAmt1)))) ||
541       Or0->getOpcode() == Or1->getOpcode())
542     return nullptr;
543 
544   // Canonicalize to or(shl(ShVal0, ShAmt0), lshr(ShVal1, ShAmt1)).
545   if (Or0->getOpcode() == BinaryOperator::LShr) {
546     std::swap(Or0, Or1);
547     std::swap(ShVal0, ShVal1);
548     std::swap(ShAmt0, ShAmt1);
549   }
550   assert(Or0->getOpcode() == BinaryOperator::Shl &&
551          Or1->getOpcode() == BinaryOperator::LShr &&
552          "Illegal or(shift,shift) pair");
553 
554   // Match the shift amount operands for a funnel/rotate pattern. This always
555   // matches a subtraction on the R operand.
556   auto matchShiftAmount = [&](Value *L, Value *R, unsigned Width) -> Value * {
557     // The shift amounts may add up to the narrow bit width:
558     // (shl ShVal0, L) | (lshr ShVal1, Width - L)
559     if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L)))))
560       return L;
561 
562     // The following patterns currently only work for rotation patterns.
563     // TODO: Add more general funnel-shift compatible patterns.
564     if (ShVal0 != ShVal1)
565       return nullptr;
566 
567     // The shift amount may be masked with negation:
568     // (shl ShVal0, (X & (Width - 1))) | (lshr ShVal1, ((-X) & (Width - 1)))
569     Value *X;
570     unsigned Mask = Width - 1;
571     if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) &&
572         match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))
573       return X;
574 
575     // Same as above, but the shift amount may be extended after masking:
576     if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
577         match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))))
578       return X;
579 
580     return nullptr;
581   };
582 
583   Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, NarrowWidth);
584   bool IsFshl = true; // Sub on LSHR.
585   if (!ShAmt) {
586     ShAmt = matchShiftAmount(ShAmt1, ShAmt0, NarrowWidth);
587     IsFshl = false; // Sub on SHL.
588   }
589   if (!ShAmt)
590     return nullptr;
591 
592   // The shifted value must have high zeros in the wide type. Typically, this
593   // will be a zext, but it could also be the result of an 'and' or 'shift'.
594   unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits();
595   APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth);
596   if (!MaskedValueIsZero(ShVal0, HiBitMask, 0, &Trunc) ||
597       !MaskedValueIsZero(ShVal1, HiBitMask, 0, &Trunc))
598     return nullptr;
599 
600   // We have an unnecessarily wide rotate!
601   // trunc (or (lshr ShVal0, ShAmt), (shl ShVal1, BitWidth - ShAmt))
602   // Narrow the inputs and convert to funnel shift intrinsic:
603   // llvm.fshl.i8(trunc(ShVal), trunc(ShVal), trunc(ShAmt))
604   Value *NarrowShAmt = Builder.CreateTrunc(ShAmt, DestTy);
605   Value *X, *Y;
606   X = Y = Builder.CreateTrunc(ShVal0, DestTy);
607   if (ShVal0 != ShVal1)
608     Y = Builder.CreateTrunc(ShVal1, DestTy);
609   Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
610   Function *F = Intrinsic::getDeclaration(Trunc.getModule(), IID, DestTy);
611   return IntrinsicInst::Create(F, {X, Y, NarrowShAmt});
612 }
613 
614 /// Try to narrow the width of math or bitwise logic instructions by pulling a
615 /// truncate ahead of binary operators.
616 /// TODO: Transforms for truncated shifts should be moved into here.
narrowBinOp(TruncInst & Trunc)617 Instruction *InstCombinerImpl::narrowBinOp(TruncInst &Trunc) {
618   Type *SrcTy = Trunc.getSrcTy();
619   Type *DestTy = Trunc.getType();
620   if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy))
621     return nullptr;
622 
623   BinaryOperator *BinOp;
624   if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp))))
625     return nullptr;
626 
627   Value *BinOp0 = BinOp->getOperand(0);
628   Value *BinOp1 = BinOp->getOperand(1);
629   switch (BinOp->getOpcode()) {
630   case Instruction::And:
631   case Instruction::Or:
632   case Instruction::Xor:
633   case Instruction::Add:
634   case Instruction::Sub:
635   case Instruction::Mul: {
636     Constant *C;
637     if (match(BinOp0, m_Constant(C))) {
638       // trunc (binop C, X) --> binop (trunc C', X)
639       Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
640       Value *TruncX = Builder.CreateTrunc(BinOp1, DestTy);
641       return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX);
642     }
643     if (match(BinOp1, m_Constant(C))) {
644       // trunc (binop X, C) --> binop (trunc X, C')
645       Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
646       Value *TruncX = Builder.CreateTrunc(BinOp0, DestTy);
647       return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC);
648     }
649     Value *X;
650     if (match(BinOp0, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
651       // trunc (binop (ext X), Y) --> binop X, (trunc Y)
652       Value *NarrowOp1 = Builder.CreateTrunc(BinOp1, DestTy);
653       return BinaryOperator::Create(BinOp->getOpcode(), X, NarrowOp1);
654     }
655     if (match(BinOp1, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
656       // trunc (binop Y, (ext X)) --> binop (trunc Y), X
657       Value *NarrowOp0 = Builder.CreateTrunc(BinOp0, DestTy);
658       return BinaryOperator::Create(BinOp->getOpcode(), NarrowOp0, X);
659     }
660     break;
661   }
662 
663   default: break;
664   }
665 
666   if (Instruction *NarrowOr = narrowFunnelShift(Trunc))
667     return NarrowOr;
668 
669   return nullptr;
670 }
671 
672 /// Try to narrow the width of a splat shuffle. This could be generalized to any
673 /// shuffle with a constant operand, but we limit the transform to avoid
674 /// creating a shuffle type that targets may not be able to lower effectively.
shrinkSplatShuffle(TruncInst & Trunc,InstCombiner::BuilderTy & Builder)675 static Instruction *shrinkSplatShuffle(TruncInst &Trunc,
676                                        InstCombiner::BuilderTy &Builder) {
677   auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0));
678   if (Shuf && Shuf->hasOneUse() && isa<UndefValue>(Shuf->getOperand(1)) &&
679       is_splat(Shuf->getShuffleMask()) &&
680       Shuf->getType() == Shuf->getOperand(0)->getType()) {
681     // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Undef, SplatMask
682     Constant *NarrowUndef = UndefValue::get(Trunc.getType());
683     Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType());
684     return new ShuffleVectorInst(NarrowOp, NarrowUndef, Shuf->getShuffleMask());
685   }
686 
687   return nullptr;
688 }
689 
690 /// Try to narrow the width of an insert element. This could be generalized for
691 /// any vector constant, but we limit the transform to insertion into undef to
692 /// avoid potential backend problems from unsupported insertion widths. This
693 /// could also be extended to handle the case of inserting a scalar constant
694 /// into a vector variable.
shrinkInsertElt(CastInst & Trunc,InstCombiner::BuilderTy & Builder)695 static Instruction *shrinkInsertElt(CastInst &Trunc,
696                                     InstCombiner::BuilderTy &Builder) {
697   Instruction::CastOps Opcode = Trunc.getOpcode();
698   assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) &&
699          "Unexpected instruction for shrinking");
700 
701   auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0));
702   if (!InsElt || !InsElt->hasOneUse())
703     return nullptr;
704 
705   Type *DestTy = Trunc.getType();
706   Type *DestScalarTy = DestTy->getScalarType();
707   Value *VecOp = InsElt->getOperand(0);
708   Value *ScalarOp = InsElt->getOperand(1);
709   Value *Index = InsElt->getOperand(2);
710 
711   if (isa<UndefValue>(VecOp)) {
712     // trunc   (inselt undef, X, Index) --> inselt undef,   (trunc X), Index
713     // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index
714     UndefValue *NarrowUndef = UndefValue::get(DestTy);
715     Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy);
716     return InsertElementInst::Create(NarrowUndef, NarrowOp, Index);
717   }
718 
719   return nullptr;
720 }
721 
visitTrunc(TruncInst & Trunc)722 Instruction *InstCombinerImpl::visitTrunc(TruncInst &Trunc) {
723   if (Instruction *Result = commonCastTransforms(Trunc))
724     return Result;
725 
726   Value *Src = Trunc.getOperand(0);
727   Type *DestTy = Trunc.getType(), *SrcTy = Src->getType();
728   unsigned DestWidth = DestTy->getScalarSizeInBits();
729   unsigned SrcWidth = SrcTy->getScalarSizeInBits();
730 
731   // Attempt to truncate the entire input expression tree to the destination
732   // type.   Only do this if the dest type is a simple type, don't convert the
733   // expression tree to something weird like i93 unless the source is also
734   // strange.
735   if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
736       canEvaluateTruncated(Src, DestTy, *this, &Trunc)) {
737 
738     // If this cast is a truncate, evaluting in a different type always
739     // eliminates the cast, so it is always a win.
740     LLVM_DEBUG(
741         dbgs() << "ICE: EvaluateInDifferentType converting expression type"
742                   " to avoid cast: "
743                << Trunc << '\n');
744     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
745     assert(Res->getType() == DestTy);
746     return replaceInstUsesWith(Trunc, Res);
747   }
748 
749   // For integer types, check if we can shorten the entire input expression to
750   // DestWidth * 2, which won't allow removing the truncate, but reducing the
751   // width may enable further optimizations, e.g. allowing for larger
752   // vectorization factors.
753   if (auto *DestITy = dyn_cast<IntegerType>(DestTy)) {
754     if (DestWidth * 2 < SrcWidth) {
755       auto *NewDestTy = DestITy->getExtendedType();
756       if (shouldChangeType(SrcTy, NewDestTy) &&
757           canEvaluateTruncated(Src, NewDestTy, *this, &Trunc)) {
758         LLVM_DEBUG(
759             dbgs() << "ICE: EvaluateInDifferentType converting expression type"
760                       " to reduce the width of operand of"
761                    << Trunc << '\n');
762         Value *Res = EvaluateInDifferentType(Src, NewDestTy, false);
763         return new TruncInst(Res, DestTy);
764       }
765     }
766   }
767 
768   // Test if the trunc is the user of a select which is part of a
769   // minimum or maximum operation. If so, don't do any more simplification.
770   // Even simplifying demanded bits can break the canonical form of a
771   // min/max.
772   Value *LHS, *RHS;
773   if (SelectInst *Sel = dyn_cast<SelectInst>(Src))
774     if (matchSelectPattern(Sel, LHS, RHS).Flavor != SPF_UNKNOWN)
775       return nullptr;
776 
777   // See if we can simplify any instructions used by the input whose sole
778   // purpose is to compute bits we don't care about.
779   if (SimplifyDemandedInstructionBits(Trunc))
780     return &Trunc;
781 
782   if (DestWidth == 1) {
783     Value *Zero = Constant::getNullValue(SrcTy);
784     if (DestTy->isIntegerTy()) {
785       // Canonicalize trunc x to i1 -> icmp ne (and x, 1), 0 (scalar only).
786       // TODO: We canonicalize to more instructions here because we are probably
787       // lacking equivalent analysis for trunc relative to icmp. There may also
788       // be codegen concerns. If those trunc limitations were removed, we could
789       // remove this transform.
790       Value *And = Builder.CreateAnd(Src, ConstantInt::get(SrcTy, 1));
791       return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
792     }
793 
794     // For vectors, we do not canonicalize all truncs to icmp, so optimize
795     // patterns that would be covered within visitICmpInst.
796     Value *X;
797     Constant *C;
798     if (match(Src, m_OneUse(m_LShr(m_Value(X), m_Constant(C))))) {
799       // trunc (lshr X, C) to i1 --> icmp ne (and X, C'), 0
800       Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1));
801       Constant *MaskC = ConstantExpr::getShl(One, C);
802       Value *And = Builder.CreateAnd(X, MaskC);
803       return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
804     }
805     if (match(Src, m_OneUse(m_c_Or(m_LShr(m_Value(X), m_Constant(C)),
806                                    m_Deferred(X))))) {
807       // trunc (or (lshr X, C), X) to i1 --> icmp ne (and X, C'), 0
808       Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1));
809       Constant *MaskC = ConstantExpr::getShl(One, C);
810       MaskC = ConstantExpr::getOr(MaskC, One);
811       Value *And = Builder.CreateAnd(X, MaskC);
812       return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
813     }
814   }
815 
816   Value *A;
817   Constant *C;
818   if (match(Src, m_LShr(m_SExt(m_Value(A)), m_Constant(C)))) {
819     unsigned AWidth = A->getType()->getScalarSizeInBits();
820     unsigned MaxShiftAmt = SrcWidth - std::max(DestWidth, AWidth);
821     auto *OldSh = cast<Instruction>(Src);
822     bool IsExact = OldSh->isExact();
823 
824     // If the shift is small enough, all zero bits created by the shift are
825     // removed by the trunc.
826     if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULE,
827                                     APInt(SrcWidth, MaxShiftAmt)))) {
828       // trunc (lshr (sext A), C) --> ashr A, C
829       if (A->getType() == DestTy) {
830         Constant *MaxAmt = ConstantInt::get(SrcTy, DestWidth - 1, false);
831         Constant *ShAmt = ConstantExpr::getUMin(C, MaxAmt);
832         ShAmt = ConstantExpr::getTrunc(ShAmt, A->getType());
833         ShAmt = Constant::mergeUndefsWith(ShAmt, C);
834         return IsExact ? BinaryOperator::CreateExactAShr(A, ShAmt)
835                        : BinaryOperator::CreateAShr(A, ShAmt);
836       }
837       // The types are mismatched, so create a cast after shifting:
838       // trunc (lshr (sext A), C) --> sext/trunc (ashr A, C)
839       if (Src->hasOneUse()) {
840         Constant *MaxAmt = ConstantInt::get(SrcTy, AWidth - 1, false);
841         Constant *ShAmt = ConstantExpr::getUMin(C, MaxAmt);
842         ShAmt = ConstantExpr::getTrunc(ShAmt, A->getType());
843         Value *Shift = Builder.CreateAShr(A, ShAmt, "", IsExact);
844         return CastInst::CreateIntegerCast(Shift, DestTy, true);
845       }
846     }
847     // TODO: Mask high bits with 'and'.
848   }
849 
850   // trunc (*shr (trunc A), C) --> trunc(*shr A, C)
851   if (match(Src, m_OneUse(m_Shr(m_Trunc(m_Value(A)), m_Constant(C))))) {
852     unsigned MaxShiftAmt = SrcWidth - DestWidth;
853 
854     // If the shift is small enough, all zero/sign bits created by the shift are
855     // removed by the trunc.
856     if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULE,
857                                     APInt(SrcWidth, MaxShiftAmt)))) {
858       auto *OldShift = cast<Instruction>(Src);
859       bool IsExact = OldShift->isExact();
860       auto *ShAmt = ConstantExpr::getIntegerCast(C, A->getType(), true);
861       ShAmt = Constant::mergeUndefsWith(ShAmt, C);
862       Value *Shift =
863           OldShift->getOpcode() == Instruction::AShr
864               ? Builder.CreateAShr(A, ShAmt, OldShift->getName(), IsExact)
865               : Builder.CreateLShr(A, ShAmt, OldShift->getName(), IsExact);
866       return CastInst::CreateTruncOrBitCast(Shift, DestTy);
867     }
868   }
869 
870   if (Instruction *I = narrowBinOp(Trunc))
871     return I;
872 
873   if (Instruction *I = shrinkSplatShuffle(Trunc, Builder))
874     return I;
875 
876   if (Instruction *I = shrinkInsertElt(Trunc, Builder))
877     return I;
878 
879   if (Src->hasOneUse() &&
880       (isa<VectorType>(SrcTy) || shouldChangeType(SrcTy, DestTy))) {
881     // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the
882     // dest type is native and cst < dest size.
883     if (match(Src, m_Shl(m_Value(A), m_Constant(C))) &&
884         !match(A, m_Shr(m_Value(), m_Constant()))) {
885       // Skip shifts of shift by constants. It undoes a combine in
886       // FoldShiftByConstant and is the extend in reg pattern.
887       APInt Threshold = APInt(C->getType()->getScalarSizeInBits(), DestWidth);
888       if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold))) {
889         Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr");
890         return BinaryOperator::Create(Instruction::Shl, NewTrunc,
891                                       ConstantExpr::getTrunc(C, DestTy));
892       }
893     }
894   }
895 
896   if (Instruction *I = foldVecTruncToExtElt(Trunc, *this))
897     return I;
898 
899   // Whenever an element is extracted from a vector, and then truncated,
900   // canonicalize by converting it to a bitcast followed by an
901   // extractelement.
902   //
903   // Example (little endian):
904   //   trunc (extractelement <4 x i64> %X, 0) to i32
905   //   --->
906   //   extractelement <8 x i32> (bitcast <4 x i64> %X to <8 x i32>), i32 0
907   Value *VecOp;
908   ConstantInt *Cst;
909   if (match(Src, m_OneUse(m_ExtractElt(m_Value(VecOp), m_ConstantInt(Cst))))) {
910     auto *VecOpTy = cast<FixedVectorType>(VecOp->getType());
911     unsigned VecNumElts = VecOpTy->getNumElements();
912 
913     // A badly fit destination size would result in an invalid cast.
914     if (SrcWidth % DestWidth == 0) {
915       uint64_t TruncRatio = SrcWidth / DestWidth;
916       uint64_t BitCastNumElts = VecNumElts * TruncRatio;
917       uint64_t VecOpIdx = Cst->getZExtValue();
918       uint64_t NewIdx = DL.isBigEndian() ? (VecOpIdx + 1) * TruncRatio - 1
919                                          : VecOpIdx * TruncRatio;
920       assert(BitCastNumElts <= std::numeric_limits<uint32_t>::max() &&
921              "overflow 32-bits");
922 
923       auto *BitCastTo = FixedVectorType::get(DestTy, BitCastNumElts);
924       Value *BitCast = Builder.CreateBitCast(VecOp, BitCastTo);
925       return ExtractElementInst::Create(BitCast, Builder.getInt32(NewIdx));
926     }
927   }
928 
929   return nullptr;
930 }
931 
transformZExtICmp(ICmpInst * Cmp,ZExtInst & Zext,bool DoTransform)932 Instruction *InstCombinerImpl::transformZExtICmp(ICmpInst *Cmp, ZExtInst &Zext,
933                                                  bool DoTransform) {
934   // If we are just checking for a icmp eq of a single bit and zext'ing it
935   // to an integer, then shift the bit to the appropriate place and then
936   // cast to integer to avoid the comparison.
937   const APInt *Op1CV;
938   if (match(Cmp->getOperand(1), m_APInt(Op1CV))) {
939 
940     // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
941     // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear.
942     if ((Cmp->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isNullValue()) ||
943         (Cmp->getPredicate() == ICmpInst::ICMP_SGT && Op1CV->isAllOnesValue())) {
944       if (!DoTransform) return Cmp;
945 
946       Value *In = Cmp->getOperand(0);
947       Value *Sh = ConstantInt::get(In->getType(),
948                                    In->getType()->getScalarSizeInBits() - 1);
949       In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit");
950       if (In->getType() != Zext.getType())
951         In = Builder.CreateIntCast(In, Zext.getType(), false /*ZExt*/);
952 
953       if (Cmp->getPredicate() == ICmpInst::ICMP_SGT) {
954         Constant *One = ConstantInt::get(In->getType(), 1);
955         In = Builder.CreateXor(In, One, In->getName() + ".not");
956       }
957 
958       return replaceInstUsesWith(Zext, In);
959     }
960 
961     // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
962     // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
963     // zext (X == 1) to i32 --> X        iff X has only the low bit set.
964     // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set.
965     // zext (X != 0) to i32 --> X        iff X has only the low bit set.
966     // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
967     // zext (X != 1) to i32 --> X^1      iff X has only the low bit set.
968     // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
969     if ((Op1CV->isNullValue() || Op1CV->isPowerOf2()) &&
970         // This only works for EQ and NE
971         Cmp->isEquality()) {
972       // If Op1C some other power of two, convert:
973       KnownBits Known = computeKnownBits(Cmp->getOperand(0), 0, &Zext);
974 
975       APInt KnownZeroMask(~Known.Zero);
976       if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
977         if (!DoTransform) return Cmp;
978 
979         bool isNE = Cmp->getPredicate() == ICmpInst::ICMP_NE;
980         if (!Op1CV->isNullValue() && (*Op1CV != KnownZeroMask)) {
981           // (X&4) == 2 --> false
982           // (X&4) != 2 --> true
983           Constant *Res = ConstantInt::get(Zext.getType(), isNE);
984           return replaceInstUsesWith(Zext, Res);
985         }
986 
987         uint32_t ShAmt = KnownZeroMask.logBase2();
988         Value *In = Cmp->getOperand(0);
989         if (ShAmt) {
990           // Perform a logical shr by shiftamt.
991           // Insert the shift to put the result in the low bit.
992           In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt),
993                                   In->getName() + ".lobit");
994         }
995 
996         if (!Op1CV->isNullValue() == isNE) { // Toggle the low bit.
997           Constant *One = ConstantInt::get(In->getType(), 1);
998           In = Builder.CreateXor(In, One);
999         }
1000 
1001         if (Zext.getType() == In->getType())
1002           return replaceInstUsesWith(Zext, In);
1003 
1004         Value *IntCast = Builder.CreateIntCast(In, Zext.getType(), false);
1005         return replaceInstUsesWith(Zext, IntCast);
1006       }
1007     }
1008   }
1009 
1010   // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
1011   // It is also profitable to transform icmp eq into not(xor(A, B)) because that
1012   // may lead to additional simplifications.
1013   if (Cmp->isEquality() && Zext.getType() == Cmp->getOperand(0)->getType()) {
1014     if (IntegerType *ITy = dyn_cast<IntegerType>(Zext.getType())) {
1015       Value *LHS = Cmp->getOperand(0);
1016       Value *RHS = Cmp->getOperand(1);
1017 
1018       KnownBits KnownLHS = computeKnownBits(LHS, 0, &Zext);
1019       KnownBits KnownRHS = computeKnownBits(RHS, 0, &Zext);
1020 
1021       if (KnownLHS.Zero == KnownRHS.Zero && KnownLHS.One == KnownRHS.One) {
1022         APInt KnownBits = KnownLHS.Zero | KnownLHS.One;
1023         APInt UnknownBit = ~KnownBits;
1024         if (UnknownBit.countPopulation() == 1) {
1025           if (!DoTransform) return Cmp;
1026 
1027           Value *Result = Builder.CreateXor(LHS, RHS);
1028 
1029           // Mask off any bits that are set and won't be shifted away.
1030           if (KnownLHS.One.uge(UnknownBit))
1031             Result = Builder.CreateAnd(Result,
1032                                         ConstantInt::get(ITy, UnknownBit));
1033 
1034           // Shift the bit we're testing down to the lsb.
1035           Result = Builder.CreateLShr(
1036                Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
1037 
1038           if (Cmp->getPredicate() == ICmpInst::ICMP_EQ)
1039             Result = Builder.CreateXor(Result, ConstantInt::get(ITy, 1));
1040           Result->takeName(Cmp);
1041           return replaceInstUsesWith(Zext, Result);
1042         }
1043       }
1044     }
1045   }
1046 
1047   return nullptr;
1048 }
1049 
1050 /// Determine if the specified value can be computed in the specified wider type
1051 /// and produce the same low bits. If not, return false.
1052 ///
1053 /// If this function returns true, it can also return a non-zero number of bits
1054 /// (in BitsToClear) which indicates that the value it computes is correct for
1055 /// the zero extend, but that the additional BitsToClear bits need to be zero'd
1056 /// out.  For example, to promote something like:
1057 ///
1058 ///   %B = trunc i64 %A to i32
1059 ///   %C = lshr i32 %B, 8
1060 ///   %E = zext i32 %C to i64
1061 ///
1062 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
1063 /// set to 8 to indicate that the promoted value needs to have bits 24-31
1064 /// cleared in addition to bits 32-63.  Since an 'and' will be generated to
1065 /// clear the top bits anyway, doing this has no extra cost.
1066 ///
1067 /// This function works on both vectors and scalars.
canEvaluateZExtd(Value * V,Type * Ty,unsigned & BitsToClear,InstCombinerImpl & IC,Instruction * CxtI)1068 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear,
1069                              InstCombinerImpl &IC, Instruction *CxtI) {
1070   BitsToClear = 0;
1071   if (canAlwaysEvaluateInType(V, Ty))
1072     return true;
1073   if (canNotEvaluateInType(V, Ty))
1074     return false;
1075 
1076   auto *I = cast<Instruction>(V);
1077   unsigned Tmp;
1078   switch (I->getOpcode()) {
1079   case Instruction::ZExt:  // zext(zext(x)) -> zext(x).
1080   case Instruction::SExt:  // zext(sext(x)) -> sext(x).
1081   case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
1082     return true;
1083   case Instruction::And:
1084   case Instruction::Or:
1085   case Instruction::Xor:
1086   case Instruction::Add:
1087   case Instruction::Sub:
1088   case Instruction::Mul:
1089     if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) ||
1090         !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI))
1091       return false;
1092     // These can all be promoted if neither operand has 'bits to clear'.
1093     if (BitsToClear == 0 && Tmp == 0)
1094       return true;
1095 
1096     // If the operation is an AND/OR/XOR and the bits to clear are zero in the
1097     // other side, BitsToClear is ok.
1098     if (Tmp == 0 && I->isBitwiseLogicOp()) {
1099       // We use MaskedValueIsZero here for generality, but the case we care
1100       // about the most is constant RHS.
1101       unsigned VSize = V->getType()->getScalarSizeInBits();
1102       if (IC.MaskedValueIsZero(I->getOperand(1),
1103                                APInt::getHighBitsSet(VSize, BitsToClear),
1104                                0, CxtI)) {
1105         // If this is an And instruction and all of the BitsToClear are
1106         // known to be zero we can reset BitsToClear.
1107         if (I->getOpcode() == Instruction::And)
1108           BitsToClear = 0;
1109         return true;
1110       }
1111     }
1112 
1113     // Otherwise, we don't know how to analyze this BitsToClear case yet.
1114     return false;
1115 
1116   case Instruction::Shl: {
1117     // We can promote shl(x, cst) if we can promote x.  Since shl overwrites the
1118     // upper bits we can reduce BitsToClear by the shift amount.
1119     const APInt *Amt;
1120     if (match(I->getOperand(1), m_APInt(Amt))) {
1121       if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
1122         return false;
1123       uint64_t ShiftAmt = Amt->getZExtValue();
1124       BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
1125       return true;
1126     }
1127     return false;
1128   }
1129   case Instruction::LShr: {
1130     // We can promote lshr(x, cst) if we can promote x.  This requires the
1131     // ultimate 'and' to clear out the high zero bits we're clearing out though.
1132     const APInt *Amt;
1133     if (match(I->getOperand(1), m_APInt(Amt))) {
1134       if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
1135         return false;
1136       BitsToClear += Amt->getZExtValue();
1137       if (BitsToClear > V->getType()->getScalarSizeInBits())
1138         BitsToClear = V->getType()->getScalarSizeInBits();
1139       return true;
1140     }
1141     // Cannot promote variable LSHR.
1142     return false;
1143   }
1144   case Instruction::Select:
1145     if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) ||
1146         !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) ||
1147         // TODO: If important, we could handle the case when the BitsToClear are
1148         // known zero in the disagreeing side.
1149         Tmp != BitsToClear)
1150       return false;
1151     return true;
1152 
1153   case Instruction::PHI: {
1154     // We can change a phi if we can change all operands.  Note that we never
1155     // get into trouble with cyclic PHIs here because we only consider
1156     // instructions with a single use.
1157     PHINode *PN = cast<PHINode>(I);
1158     if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI))
1159       return false;
1160     for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
1161       if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) ||
1162           // TODO: If important, we could handle the case when the BitsToClear
1163           // are known zero in the disagreeing input.
1164           Tmp != BitsToClear)
1165         return false;
1166     return true;
1167   }
1168   default:
1169     // TODO: Can handle more cases here.
1170     return false;
1171   }
1172 }
1173 
visitZExt(ZExtInst & CI)1174 Instruction *InstCombinerImpl::visitZExt(ZExtInst &CI) {
1175   // If this zero extend is only used by a truncate, let the truncate be
1176   // eliminated before we try to optimize this zext.
1177   if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
1178     return nullptr;
1179 
1180   // If one of the common conversion will work, do it.
1181   if (Instruction *Result = commonCastTransforms(CI))
1182     return Result;
1183 
1184   Value *Src = CI.getOperand(0);
1185   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
1186 
1187   // Try to extend the entire expression tree to the wide destination type.
1188   unsigned BitsToClear;
1189   if (shouldChangeType(SrcTy, DestTy) &&
1190       canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) {
1191     assert(BitsToClear <= SrcTy->getScalarSizeInBits() &&
1192            "Can't clear more bits than in SrcTy");
1193 
1194     // Okay, we can transform this!  Insert the new expression now.
1195     LLVM_DEBUG(
1196         dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1197                   " to avoid zero extend: "
1198                << CI << '\n');
1199     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
1200     assert(Res->getType() == DestTy);
1201 
1202     // Preserve debug values referring to Src if the zext is its last use.
1203     if (auto *SrcOp = dyn_cast<Instruction>(Src))
1204       if (SrcOp->hasOneUse())
1205         replaceAllDbgUsesWith(*SrcOp, *Res, CI, DT);
1206 
1207     uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
1208     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1209 
1210     // If the high bits are already filled with zeros, just replace this
1211     // cast with the result.
1212     if (MaskedValueIsZero(Res,
1213                           APInt::getHighBitsSet(DestBitSize,
1214                                                 DestBitSize-SrcBitsKept),
1215                              0, &CI))
1216       return replaceInstUsesWith(CI, Res);
1217 
1218     // We need to emit an AND to clear the high bits.
1219     Constant *C = ConstantInt::get(Res->getType(),
1220                                APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
1221     return BinaryOperator::CreateAnd(Res, C);
1222   }
1223 
1224   // If this is a TRUNC followed by a ZEXT then we are dealing with integral
1225   // types and if the sizes are just right we can convert this into a logical
1226   // 'and' which will be much cheaper than the pair of casts.
1227   if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
1228     // TODO: Subsume this into EvaluateInDifferentType.
1229 
1230     // Get the sizes of the types involved.  We know that the intermediate type
1231     // will be smaller than A or C, but don't know the relation between A and C.
1232     Value *A = CSrc->getOperand(0);
1233     unsigned SrcSize = A->getType()->getScalarSizeInBits();
1234     unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
1235     unsigned DstSize = CI.getType()->getScalarSizeInBits();
1236     // If we're actually extending zero bits, then if
1237     // SrcSize <  DstSize: zext(a & mask)
1238     // SrcSize == DstSize: a & mask
1239     // SrcSize  > DstSize: trunc(a) & mask
1240     if (SrcSize < DstSize) {
1241       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
1242       Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
1243       Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask");
1244       return new ZExtInst(And, CI.getType());
1245     }
1246 
1247     if (SrcSize == DstSize) {
1248       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
1249       return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
1250                                                            AndValue));
1251     }
1252     if (SrcSize > DstSize) {
1253       Value *Trunc = Builder.CreateTrunc(A, CI.getType());
1254       APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
1255       return BinaryOperator::CreateAnd(Trunc,
1256                                        ConstantInt::get(Trunc->getType(),
1257                                                         AndValue));
1258     }
1259   }
1260 
1261   if (ICmpInst *Cmp = dyn_cast<ICmpInst>(Src))
1262     return transformZExtICmp(Cmp, CI);
1263 
1264   BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
1265   if (SrcI && SrcI->getOpcode() == Instruction::Or) {
1266     // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) if at least one
1267     // of the (zext icmp) can be eliminated. If so, immediately perform the
1268     // according elimination.
1269     ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
1270     ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
1271     if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
1272         (transformZExtICmp(LHS, CI, false) ||
1273          transformZExtICmp(RHS, CI, false))) {
1274       // zext (or icmp, icmp) -> or (zext icmp), (zext icmp)
1275       Value *LCast = Builder.CreateZExt(LHS, CI.getType(), LHS->getName());
1276       Value *RCast = Builder.CreateZExt(RHS, CI.getType(), RHS->getName());
1277       Value *Or = Builder.CreateOr(LCast, RCast, CI.getName());
1278       if (auto *OrInst = dyn_cast<Instruction>(Or))
1279         Builder.SetInsertPoint(OrInst);
1280 
1281       // Perform the elimination.
1282       if (auto *LZExt = dyn_cast<ZExtInst>(LCast))
1283         transformZExtICmp(LHS, *LZExt);
1284       if (auto *RZExt = dyn_cast<ZExtInst>(RCast))
1285         transformZExtICmp(RHS, *RZExt);
1286 
1287       return replaceInstUsesWith(CI, Or);
1288     }
1289   }
1290 
1291   // zext(trunc(X) & C) -> (X & zext(C)).
1292   Constant *C;
1293   Value *X;
1294   if (SrcI &&
1295       match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) &&
1296       X->getType() == CI.getType())
1297     return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType()));
1298 
1299   // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)).
1300   Value *And;
1301   if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) &&
1302       match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) &&
1303       X->getType() == CI.getType()) {
1304     Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
1305     return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC);
1306   }
1307 
1308   return nullptr;
1309 }
1310 
1311 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp.
transformSExtICmp(ICmpInst * ICI,Instruction & CI)1312 Instruction *InstCombinerImpl::transformSExtICmp(ICmpInst *ICI,
1313                                                  Instruction &CI) {
1314   Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
1315   ICmpInst::Predicate Pred = ICI->getPredicate();
1316 
1317   // Don't bother if Op1 isn't of vector or integer type.
1318   if (!Op1->getType()->isIntOrIntVectorTy())
1319     return nullptr;
1320 
1321   if ((Pred == ICmpInst::ICMP_SLT && match(Op1, m_ZeroInt())) ||
1322       (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))) {
1323     // (x <s  0) ? -1 : 0 -> ashr x, 31        -> all ones if negative
1324     // (x >s -1) ? -1 : 0 -> not (ashr x, 31)  -> all ones if positive
1325     Value *Sh = ConstantInt::get(Op0->getType(),
1326                                  Op0->getType()->getScalarSizeInBits() - 1);
1327     Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit");
1328     if (In->getType() != CI.getType())
1329       In = Builder.CreateIntCast(In, CI.getType(), true /*SExt*/);
1330 
1331     if (Pred == ICmpInst::ICMP_SGT)
1332       In = Builder.CreateNot(In, In->getName() + ".not");
1333     return replaceInstUsesWith(CI, In);
1334   }
1335 
1336   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1337     // If we know that only one bit of the LHS of the icmp can be set and we
1338     // have an equality comparison with zero or a power of 2, we can transform
1339     // the icmp and sext into bitwise/integer operations.
1340     if (ICI->hasOneUse() &&
1341         ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
1342       KnownBits Known = computeKnownBits(Op0, 0, &CI);
1343 
1344       APInt KnownZeroMask(~Known.Zero);
1345       if (KnownZeroMask.isPowerOf2()) {
1346         Value *In = ICI->getOperand(0);
1347 
1348         // If the icmp tests for a known zero bit we can constant fold it.
1349         if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
1350           Value *V = Pred == ICmpInst::ICMP_NE ?
1351                        ConstantInt::getAllOnesValue(CI.getType()) :
1352                        ConstantInt::getNullValue(CI.getType());
1353           return replaceInstUsesWith(CI, V);
1354         }
1355 
1356         if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
1357           // sext ((x & 2^n) == 0)   -> (x >> n) - 1
1358           // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
1359           unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
1360           // Perform a right shift to place the desired bit in the LSB.
1361           if (ShiftAmt)
1362             In = Builder.CreateLShr(In,
1363                                     ConstantInt::get(In->getType(), ShiftAmt));
1364 
1365           // At this point "In" is either 1 or 0. Subtract 1 to turn
1366           // {1, 0} -> {0, -1}.
1367           In = Builder.CreateAdd(In,
1368                                  ConstantInt::getAllOnesValue(In->getType()),
1369                                  "sext");
1370         } else {
1371           // sext ((x & 2^n) != 0)   -> (x << bitwidth-n) a>> bitwidth-1
1372           // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
1373           unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
1374           // Perform a left shift to place the desired bit in the MSB.
1375           if (ShiftAmt)
1376             In = Builder.CreateShl(In,
1377                                    ConstantInt::get(In->getType(), ShiftAmt));
1378 
1379           // Distribute the bit over the whole bit width.
1380           In = Builder.CreateAShr(In, ConstantInt::get(In->getType(),
1381                                   KnownZeroMask.getBitWidth() - 1), "sext");
1382         }
1383 
1384         if (CI.getType() == In->getType())
1385           return replaceInstUsesWith(CI, In);
1386         return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
1387       }
1388     }
1389   }
1390 
1391   return nullptr;
1392 }
1393 
1394 /// Return true if we can take the specified value and return it as type Ty
1395 /// without inserting any new casts and without changing the value of the common
1396 /// low bits.  This is used by code that tries to promote integer operations to
1397 /// a wider types will allow us to eliminate the extension.
1398 ///
1399 /// This function works on both vectors and scalars.
1400 ///
canEvaluateSExtd(Value * V,Type * Ty)1401 static bool canEvaluateSExtd(Value *V, Type *Ty) {
1402   assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
1403          "Can't sign extend type to a smaller type");
1404   if (canAlwaysEvaluateInType(V, Ty))
1405     return true;
1406   if (canNotEvaluateInType(V, Ty))
1407     return false;
1408 
1409   auto *I = cast<Instruction>(V);
1410   switch (I->getOpcode()) {
1411   case Instruction::SExt:  // sext(sext(x)) -> sext(x)
1412   case Instruction::ZExt:  // sext(zext(x)) -> zext(x)
1413   case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
1414     return true;
1415   case Instruction::And:
1416   case Instruction::Or:
1417   case Instruction::Xor:
1418   case Instruction::Add:
1419   case Instruction::Sub:
1420   case Instruction::Mul:
1421     // These operators can all arbitrarily be extended if their inputs can.
1422     return canEvaluateSExtd(I->getOperand(0), Ty) &&
1423            canEvaluateSExtd(I->getOperand(1), Ty);
1424 
1425   //case Instruction::Shl:   TODO
1426   //case Instruction::LShr:  TODO
1427 
1428   case Instruction::Select:
1429     return canEvaluateSExtd(I->getOperand(1), Ty) &&
1430            canEvaluateSExtd(I->getOperand(2), Ty);
1431 
1432   case Instruction::PHI: {
1433     // We can change a phi if we can change all operands.  Note that we never
1434     // get into trouble with cyclic PHIs here because we only consider
1435     // instructions with a single use.
1436     PHINode *PN = cast<PHINode>(I);
1437     for (Value *IncValue : PN->incoming_values())
1438       if (!canEvaluateSExtd(IncValue, Ty)) return false;
1439     return true;
1440   }
1441   default:
1442     // TODO: Can handle more cases here.
1443     break;
1444   }
1445 
1446   return false;
1447 }
1448 
visitSExt(SExtInst & CI)1449 Instruction *InstCombinerImpl::visitSExt(SExtInst &CI) {
1450   // If this sign extend is only used by a truncate, let the truncate be
1451   // eliminated before we try to optimize this sext.
1452   if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
1453     return nullptr;
1454 
1455   if (Instruction *I = commonCastTransforms(CI))
1456     return I;
1457 
1458   Value *Src = CI.getOperand(0);
1459   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
1460 
1461   // If we know that the value being extended is positive, we can use a zext
1462   // instead.
1463   KnownBits Known = computeKnownBits(Src, 0, &CI);
1464   if (Known.isNonNegative())
1465     return CastInst::Create(Instruction::ZExt, Src, DestTy);
1466 
1467   // Try to extend the entire expression tree to the wide destination type.
1468   if (shouldChangeType(SrcTy, DestTy) && canEvaluateSExtd(Src, DestTy)) {
1469     // Okay, we can transform this!  Insert the new expression now.
1470     LLVM_DEBUG(
1471         dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1472                   " to avoid sign extend: "
1473                << CI << '\n');
1474     Value *Res = EvaluateInDifferentType(Src, DestTy, true);
1475     assert(Res->getType() == DestTy);
1476 
1477     uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1478     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1479 
1480     // If the high bits are already filled with sign bit, just replace this
1481     // cast with the result.
1482     if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize)
1483       return replaceInstUsesWith(CI, Res);
1484 
1485     // We need to emit a shl + ashr to do the sign extend.
1486     Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1487     return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"),
1488                                       ShAmt);
1489   }
1490 
1491   // If the input is a trunc from the destination type, then turn sext(trunc(x))
1492   // into shifts.
1493   Value *X;
1494   if (match(Src, m_OneUse(m_Trunc(m_Value(X)))) && X->getType() == DestTy) {
1495     // sext(trunc(X)) --> ashr(shl(X, C), C)
1496     unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1497     unsigned DestBitSize = DestTy->getScalarSizeInBits();
1498     Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize);
1499     return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt);
1500   }
1501 
1502   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
1503     return transformSExtICmp(ICI, CI);
1504 
1505   // If the input is a shl/ashr pair of a same constant, then this is a sign
1506   // extension from a smaller value.  If we could trust arbitrary bitwidth
1507   // integers, we could turn this into a truncate to the smaller bit and then
1508   // use a sext for the whole extension.  Since we don't, look deeper and check
1509   // for a truncate.  If the source and dest are the same type, eliminate the
1510   // trunc and extend and just do shifts.  For example, turn:
1511   //   %a = trunc i32 %i to i8
1512   //   %b = shl i8 %a, C
1513   //   %c = ashr i8 %b, C
1514   //   %d = sext i8 %c to i32
1515   // into:
1516   //   %a = shl i32 %i, 32-(8-C)
1517   //   %d = ashr i32 %a, 32-(8-C)
1518   Value *A = nullptr;
1519   // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
1520   Constant *BA = nullptr, *CA = nullptr;
1521   if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_Constant(BA)),
1522                         m_Constant(CA))) &&
1523       BA->isElementWiseEqual(CA) && A->getType() == DestTy) {
1524     Constant *WideCurrShAmt = ConstantExpr::getSExt(CA, DestTy);
1525     Constant *NumLowbitsLeft = ConstantExpr::getSub(
1526         ConstantInt::get(DestTy, SrcTy->getScalarSizeInBits()), WideCurrShAmt);
1527     Constant *NewShAmt = ConstantExpr::getSub(
1528         ConstantInt::get(DestTy, DestTy->getScalarSizeInBits()),
1529         NumLowbitsLeft);
1530     NewShAmt =
1531         Constant::mergeUndefsWith(Constant::mergeUndefsWith(NewShAmt, BA), CA);
1532     A = Builder.CreateShl(A, NewShAmt, CI.getName());
1533     return BinaryOperator::CreateAShr(A, NewShAmt);
1534   }
1535 
1536   return nullptr;
1537 }
1538 
1539 /// Return a Constant* for the specified floating-point constant if it fits
1540 /// in the specified FP type without changing its value.
fitsInFPType(ConstantFP * CFP,const fltSemantics & Sem)1541 static bool fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
1542   bool losesInfo;
1543   APFloat F = CFP->getValueAPF();
1544   (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
1545   return !losesInfo;
1546 }
1547 
shrinkFPConstant(ConstantFP * CFP)1548 static Type *shrinkFPConstant(ConstantFP *CFP) {
1549   if (CFP->getType() == Type::getPPC_FP128Ty(CFP->getContext()))
1550     return nullptr;  // No constant folding of this.
1551   // See if the value can be truncated to half and then reextended.
1552   if (fitsInFPType(CFP, APFloat::IEEEhalf()))
1553     return Type::getHalfTy(CFP->getContext());
1554   // See if the value can be truncated to float and then reextended.
1555   if (fitsInFPType(CFP, APFloat::IEEEsingle()))
1556     return Type::getFloatTy(CFP->getContext());
1557   if (CFP->getType()->isDoubleTy())
1558     return nullptr;  // Won't shrink.
1559   if (fitsInFPType(CFP, APFloat::IEEEdouble()))
1560     return Type::getDoubleTy(CFP->getContext());
1561   // Don't try to shrink to various long double types.
1562   return nullptr;
1563 }
1564 
1565 // Determine if this is a vector of ConstantFPs and if so, return the minimal
1566 // type we can safely truncate all elements to.
1567 // TODO: Make these support undef elements.
shrinkFPConstantVector(Value * V)1568 static Type *shrinkFPConstantVector(Value *V) {
1569   auto *CV = dyn_cast<Constant>(V);
1570   auto *CVVTy = dyn_cast<VectorType>(V->getType());
1571   if (!CV || !CVVTy)
1572     return nullptr;
1573 
1574   Type *MinType = nullptr;
1575 
1576   unsigned NumElts = cast<FixedVectorType>(CVVTy)->getNumElements();
1577   for (unsigned i = 0; i != NumElts; ++i) {
1578     auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
1579     if (!CFP)
1580       return nullptr;
1581 
1582     Type *T = shrinkFPConstant(CFP);
1583     if (!T)
1584       return nullptr;
1585 
1586     // If we haven't found a type yet or this type has a larger mantissa than
1587     // our previous type, this is our new minimal type.
1588     if (!MinType || T->getFPMantissaWidth() > MinType->getFPMantissaWidth())
1589       MinType = T;
1590   }
1591 
1592   // Make a vector type from the minimal type.
1593   return FixedVectorType::get(MinType, NumElts);
1594 }
1595 
1596 /// Find the minimum FP type we can safely truncate to.
getMinimumFPType(Value * V)1597 static Type *getMinimumFPType(Value *V) {
1598   if (auto *FPExt = dyn_cast<FPExtInst>(V))
1599     return FPExt->getOperand(0)->getType();
1600 
1601   // If this value is a constant, return the constant in the smallest FP type
1602   // that can accurately represent it.  This allows us to turn
1603   // (float)((double)X+2.0) into x+2.0f.
1604   if (auto *CFP = dyn_cast<ConstantFP>(V))
1605     if (Type *T = shrinkFPConstant(CFP))
1606       return T;
1607 
1608   // Try to shrink a vector of FP constants.
1609   if (Type *T = shrinkFPConstantVector(V))
1610     return T;
1611 
1612   return V->getType();
1613 }
1614 
1615 /// Return true if the cast from integer to FP can be proven to be exact for all
1616 /// possible inputs (the conversion does not lose any precision).
isKnownExactCastIntToFP(CastInst & I)1617 static bool isKnownExactCastIntToFP(CastInst &I) {
1618   CastInst::CastOps Opcode = I.getOpcode();
1619   assert((Opcode == CastInst::SIToFP || Opcode == CastInst::UIToFP) &&
1620          "Unexpected cast");
1621   Value *Src = I.getOperand(0);
1622   Type *SrcTy = Src->getType();
1623   Type *FPTy = I.getType();
1624   bool IsSigned = Opcode == Instruction::SIToFP;
1625   int SrcSize = (int)SrcTy->getScalarSizeInBits() - IsSigned;
1626 
1627   // Easy case - if the source integer type has less bits than the FP mantissa,
1628   // then the cast must be exact.
1629   int DestNumSigBits = FPTy->getFPMantissaWidth();
1630   if (SrcSize <= DestNumSigBits)
1631     return true;
1632 
1633   // Cast from FP to integer and back to FP is independent of the intermediate
1634   // integer width because of poison on overflow.
1635   Value *F;
1636   if (match(Src, m_FPToSI(m_Value(F))) || match(Src, m_FPToUI(m_Value(F)))) {
1637     // If this is uitofp (fptosi F), the source needs an extra bit to avoid
1638     // potential rounding of negative FP input values.
1639     int SrcNumSigBits = F->getType()->getFPMantissaWidth();
1640     if (!IsSigned && match(Src, m_FPToSI(m_Value())))
1641       SrcNumSigBits++;
1642 
1643     // [su]itofp (fpto[su]i F) --> exact if the source type has less or equal
1644     // significant bits than the destination (and make sure neither type is
1645     // weird -- ppc_fp128).
1646     if (SrcNumSigBits > 0 && DestNumSigBits > 0 &&
1647         SrcNumSigBits <= DestNumSigBits)
1648       return true;
1649   }
1650 
1651   // TODO:
1652   // Try harder to find if the source integer type has less significant bits.
1653   // For example, compute number of sign bits or compute low bit mask.
1654   return false;
1655 }
1656 
visitFPTrunc(FPTruncInst & FPT)1657 Instruction *InstCombinerImpl::visitFPTrunc(FPTruncInst &FPT) {
1658   if (Instruction *I = commonCastTransforms(FPT))
1659     return I;
1660 
1661   // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
1662   // simplify this expression to avoid one or more of the trunc/extend
1663   // operations if we can do so without changing the numerical results.
1664   //
1665   // The exact manner in which the widths of the operands interact to limit
1666   // what we can and cannot do safely varies from operation to operation, and
1667   // is explained below in the various case statements.
1668   Type *Ty = FPT.getType();
1669   auto *BO = dyn_cast<BinaryOperator>(FPT.getOperand(0));
1670   if (BO && BO->hasOneUse()) {
1671     Type *LHSMinType = getMinimumFPType(BO->getOperand(0));
1672     Type *RHSMinType = getMinimumFPType(BO->getOperand(1));
1673     unsigned OpWidth = BO->getType()->getFPMantissaWidth();
1674     unsigned LHSWidth = LHSMinType->getFPMantissaWidth();
1675     unsigned RHSWidth = RHSMinType->getFPMantissaWidth();
1676     unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
1677     unsigned DstWidth = Ty->getFPMantissaWidth();
1678     switch (BO->getOpcode()) {
1679       default: break;
1680       case Instruction::FAdd:
1681       case Instruction::FSub:
1682         // For addition and subtraction, the infinitely precise result can
1683         // essentially be arbitrarily wide; proving that double rounding
1684         // will not occur because the result of OpI is exact (as we will for
1685         // FMul, for example) is hopeless.  However, we *can* nonetheless
1686         // frequently know that double rounding cannot occur (or that it is
1687         // innocuous) by taking advantage of the specific structure of
1688         // infinitely-precise results that admit double rounding.
1689         //
1690         // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient
1691         // to represent both sources, we can guarantee that the double
1692         // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
1693         // "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
1694         // for proof of this fact).
1695         //
1696         // Note: Figueroa does not consider the case where DstFormat !=
1697         // SrcFormat.  It's possible (likely even!) that this analysis
1698         // could be tightened for those cases, but they are rare (the main
1699         // case of interest here is (float)((double)float + float)).
1700         if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
1701           Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
1702           Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
1703           Instruction *RI = BinaryOperator::Create(BO->getOpcode(), LHS, RHS);
1704           RI->copyFastMathFlags(BO);
1705           return RI;
1706         }
1707         break;
1708       case Instruction::FMul:
1709         // For multiplication, the infinitely precise result has at most
1710         // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
1711         // that such a value can be exactly represented, then no double
1712         // rounding can possibly occur; we can safely perform the operation
1713         // in the destination format if it can represent both sources.
1714         if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
1715           Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
1716           Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
1717           return BinaryOperator::CreateFMulFMF(LHS, RHS, BO);
1718         }
1719         break;
1720       case Instruction::FDiv:
1721         // For division, we use again use the bound from Figueroa's
1722         // dissertation.  I am entirely certain that this bound can be
1723         // tightened in the unbalanced operand case by an analysis based on
1724         // the diophantine rational approximation bound, but the well-known
1725         // condition used here is a good conservative first pass.
1726         // TODO: Tighten bound via rigorous analysis of the unbalanced case.
1727         if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
1728           Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
1729           Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
1730           return BinaryOperator::CreateFDivFMF(LHS, RHS, BO);
1731         }
1732         break;
1733       case Instruction::FRem: {
1734         // Remainder is straightforward.  Remainder is always exact, so the
1735         // type of OpI doesn't enter into things at all.  We simply evaluate
1736         // in whichever source type is larger, then convert to the
1737         // destination type.
1738         if (SrcWidth == OpWidth)
1739           break;
1740         Value *LHS, *RHS;
1741         if (LHSWidth == SrcWidth) {
1742            LHS = Builder.CreateFPTrunc(BO->getOperand(0), LHSMinType);
1743            RHS = Builder.CreateFPTrunc(BO->getOperand(1), LHSMinType);
1744         } else {
1745            LHS = Builder.CreateFPTrunc(BO->getOperand(0), RHSMinType);
1746            RHS = Builder.CreateFPTrunc(BO->getOperand(1), RHSMinType);
1747         }
1748 
1749         Value *ExactResult = Builder.CreateFRemFMF(LHS, RHS, BO);
1750         return CastInst::CreateFPCast(ExactResult, Ty);
1751       }
1752     }
1753   }
1754 
1755   // (fptrunc (fneg x)) -> (fneg (fptrunc x))
1756   Value *X;
1757   Instruction *Op = dyn_cast<Instruction>(FPT.getOperand(0));
1758   if (Op && Op->hasOneUse()) {
1759     // FIXME: The FMF should propagate from the fptrunc, not the source op.
1760     IRBuilder<>::FastMathFlagGuard FMFG(Builder);
1761     if (isa<FPMathOperator>(Op))
1762       Builder.setFastMathFlags(Op->getFastMathFlags());
1763 
1764     if (match(Op, m_FNeg(m_Value(X)))) {
1765       Value *InnerTrunc = Builder.CreateFPTrunc(X, Ty);
1766 
1767       return UnaryOperator::CreateFNegFMF(InnerTrunc, Op);
1768     }
1769 
1770     // If we are truncating a select that has an extended operand, we can
1771     // narrow the other operand and do the select as a narrow op.
1772     Value *Cond, *X, *Y;
1773     if (match(Op, m_Select(m_Value(Cond), m_FPExt(m_Value(X)), m_Value(Y))) &&
1774         X->getType() == Ty) {
1775       // fptrunc (select Cond, (fpext X), Y --> select Cond, X, (fptrunc Y)
1776       Value *NarrowY = Builder.CreateFPTrunc(Y, Ty);
1777       Value *Sel = Builder.CreateSelect(Cond, X, NarrowY, "narrow.sel", Op);
1778       return replaceInstUsesWith(FPT, Sel);
1779     }
1780     if (match(Op, m_Select(m_Value(Cond), m_Value(Y), m_FPExt(m_Value(X)))) &&
1781         X->getType() == Ty) {
1782       // fptrunc (select Cond, Y, (fpext X) --> select Cond, (fptrunc Y), X
1783       Value *NarrowY = Builder.CreateFPTrunc(Y, Ty);
1784       Value *Sel = Builder.CreateSelect(Cond, NarrowY, X, "narrow.sel", Op);
1785       return replaceInstUsesWith(FPT, Sel);
1786     }
1787   }
1788 
1789   if (auto *II = dyn_cast<IntrinsicInst>(FPT.getOperand(0))) {
1790     switch (II->getIntrinsicID()) {
1791     default: break;
1792     case Intrinsic::ceil:
1793     case Intrinsic::fabs:
1794     case Intrinsic::floor:
1795     case Intrinsic::nearbyint:
1796     case Intrinsic::rint:
1797     case Intrinsic::round:
1798     case Intrinsic::roundeven:
1799     case Intrinsic::trunc: {
1800       Value *Src = II->getArgOperand(0);
1801       if (!Src->hasOneUse())
1802         break;
1803 
1804       // Except for fabs, this transformation requires the input of the unary FP
1805       // operation to be itself an fpext from the type to which we're
1806       // truncating.
1807       if (II->getIntrinsicID() != Intrinsic::fabs) {
1808         FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src);
1809         if (!FPExtSrc || FPExtSrc->getSrcTy() != Ty)
1810           break;
1811       }
1812 
1813       // Do unary FP operation on smaller type.
1814       // (fptrunc (fabs x)) -> (fabs (fptrunc x))
1815       Value *InnerTrunc = Builder.CreateFPTrunc(Src, Ty);
1816       Function *Overload = Intrinsic::getDeclaration(FPT.getModule(),
1817                                                      II->getIntrinsicID(), Ty);
1818       SmallVector<OperandBundleDef, 1> OpBundles;
1819       II->getOperandBundlesAsDefs(OpBundles);
1820       CallInst *NewCI =
1821           CallInst::Create(Overload, {InnerTrunc}, OpBundles, II->getName());
1822       NewCI->copyFastMathFlags(II);
1823       return NewCI;
1824     }
1825     }
1826   }
1827 
1828   if (Instruction *I = shrinkInsertElt(FPT, Builder))
1829     return I;
1830 
1831   Value *Src = FPT.getOperand(0);
1832   if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) {
1833     auto *FPCast = cast<CastInst>(Src);
1834     if (isKnownExactCastIntToFP(*FPCast))
1835       return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty);
1836   }
1837 
1838   return nullptr;
1839 }
1840 
visitFPExt(CastInst & FPExt)1841 Instruction *InstCombinerImpl::visitFPExt(CastInst &FPExt) {
1842   // If the source operand is a cast from integer to FP and known exact, then
1843   // cast the integer operand directly to the destination type.
1844   Type *Ty = FPExt.getType();
1845   Value *Src = FPExt.getOperand(0);
1846   if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) {
1847     auto *FPCast = cast<CastInst>(Src);
1848     if (isKnownExactCastIntToFP(*FPCast))
1849       return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty);
1850   }
1851 
1852   return commonCastTransforms(FPExt);
1853 }
1854 
1855 /// fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X)
1856 /// This is safe if the intermediate type has enough bits in its mantissa to
1857 /// accurately represent all values of X.  For example, this won't work with
1858 /// i64 -> float -> i64.
foldItoFPtoI(CastInst & FI)1859 Instruction *InstCombinerImpl::foldItoFPtoI(CastInst &FI) {
1860   if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0)))
1861     return nullptr;
1862 
1863   auto *OpI = cast<CastInst>(FI.getOperand(0));
1864   Value *X = OpI->getOperand(0);
1865   Type *XType = X->getType();
1866   Type *DestType = FI.getType();
1867   bool IsOutputSigned = isa<FPToSIInst>(FI);
1868 
1869   // Since we can assume the conversion won't overflow, our decision as to
1870   // whether the input will fit in the float should depend on the minimum
1871   // of the input range and output range.
1872 
1873   // This means this is also safe for a signed input and unsigned output, since
1874   // a negative input would lead to undefined behavior.
1875   if (!isKnownExactCastIntToFP(*OpI)) {
1876     // The first cast may not round exactly based on the source integer width
1877     // and FP width, but the overflow UB rules can still allow this to fold.
1878     // If the destination type is narrow, that means the intermediate FP value
1879     // must be large enough to hold the source value exactly.
1880     // For example, (uint8_t)((float)(uint32_t 16777217) is undefined behavior.
1881     int OutputSize = (int)DestType->getScalarSizeInBits() - IsOutputSigned;
1882     if (OutputSize > OpI->getType()->getFPMantissaWidth())
1883       return nullptr;
1884   }
1885 
1886   if (DestType->getScalarSizeInBits() > XType->getScalarSizeInBits()) {
1887     bool IsInputSigned = isa<SIToFPInst>(OpI);
1888     if (IsInputSigned && IsOutputSigned)
1889       return new SExtInst(X, DestType);
1890     return new ZExtInst(X, DestType);
1891   }
1892   if (DestType->getScalarSizeInBits() < XType->getScalarSizeInBits())
1893     return new TruncInst(X, DestType);
1894 
1895   assert(XType == DestType && "Unexpected types for int to FP to int casts");
1896   return replaceInstUsesWith(FI, X);
1897 }
1898 
visitFPToUI(FPToUIInst & FI)1899 Instruction *InstCombinerImpl::visitFPToUI(FPToUIInst &FI) {
1900   if (Instruction *I = foldItoFPtoI(FI))
1901     return I;
1902 
1903   return commonCastTransforms(FI);
1904 }
1905 
visitFPToSI(FPToSIInst & FI)1906 Instruction *InstCombinerImpl::visitFPToSI(FPToSIInst &FI) {
1907   if (Instruction *I = foldItoFPtoI(FI))
1908     return I;
1909 
1910   return commonCastTransforms(FI);
1911 }
1912 
visitUIToFP(CastInst & CI)1913 Instruction *InstCombinerImpl::visitUIToFP(CastInst &CI) {
1914   return commonCastTransforms(CI);
1915 }
1916 
visitSIToFP(CastInst & CI)1917 Instruction *InstCombinerImpl::visitSIToFP(CastInst &CI) {
1918   return commonCastTransforms(CI);
1919 }
1920 
visitIntToPtr(IntToPtrInst & CI)1921 Instruction *InstCombinerImpl::visitIntToPtr(IntToPtrInst &CI) {
1922   // If the source integer type is not the intptr_t type for this target, do a
1923   // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the
1924   // cast to be exposed to other transforms.
1925   unsigned AS = CI.getAddressSpace();
1926   if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
1927       DL.getPointerSizeInBits(AS)) {
1928     Type *Ty = DL.getIntPtrType(CI.getContext(), AS);
1929     // Handle vectors of pointers.
1930     if (auto *CIVTy = dyn_cast<VectorType>(CI.getType()))
1931       Ty = VectorType::get(Ty, CIVTy->getElementCount());
1932 
1933     Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty);
1934     return new IntToPtrInst(P, CI.getType());
1935   }
1936 
1937   if (Instruction *I = commonCastTransforms(CI))
1938     return I;
1939 
1940   return nullptr;
1941 }
1942 
1943 /// Implement the transforms for cast of pointer (bitcast/ptrtoint)
commonPointerCastTransforms(CastInst & CI)1944 Instruction *InstCombinerImpl::commonPointerCastTransforms(CastInst &CI) {
1945   Value *Src = CI.getOperand(0);
1946 
1947   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
1948     // If casting the result of a getelementptr instruction with no offset, turn
1949     // this into a cast of the original pointer!
1950     if (GEP->hasAllZeroIndices() &&
1951         // If CI is an addrspacecast and GEP changes the poiner type, merging
1952         // GEP into CI would undo canonicalizing addrspacecast with different
1953         // pointer types, causing infinite loops.
1954         (!isa<AddrSpaceCastInst>(CI) ||
1955          GEP->getType() == GEP->getPointerOperandType())) {
1956       // Changing the cast operand is usually not a good idea but it is safe
1957       // here because the pointer operand is being replaced with another
1958       // pointer operand so the opcode doesn't need to change.
1959       return replaceOperand(CI, 0, GEP->getOperand(0));
1960     }
1961   }
1962 
1963   return commonCastTransforms(CI);
1964 }
1965 
visitPtrToInt(PtrToIntInst & CI)1966 Instruction *InstCombinerImpl::visitPtrToInt(PtrToIntInst &CI) {
1967   // If the destination integer type is not the intptr_t type for this target,
1968   // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast
1969   // to be exposed to other transforms.
1970   Value *SrcOp = CI.getPointerOperand();
1971   Type *Ty = CI.getType();
1972   unsigned AS = CI.getPointerAddressSpace();
1973   unsigned TySize = Ty->getScalarSizeInBits();
1974   unsigned PtrSize = DL.getPointerSizeInBits(AS);
1975   if (TySize != PtrSize) {
1976     Type *IntPtrTy = DL.getIntPtrType(CI.getContext(), AS);
1977     if (auto *VecTy = dyn_cast<VectorType>(Ty)) {
1978       // Handle vectors of pointers.
1979       // FIXME: what should happen for scalable vectors?
1980       IntPtrTy = FixedVectorType::get(
1981           IntPtrTy, cast<FixedVectorType>(VecTy)->getNumElements());
1982     }
1983 
1984     Value *P = Builder.CreatePtrToInt(SrcOp, IntPtrTy);
1985     return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
1986   }
1987 
1988   Value *Vec, *Scalar, *Index;
1989   if (match(SrcOp, m_OneUse(m_InsertElt(m_IntToPtr(m_Value(Vec)),
1990                                         m_Value(Scalar), m_Value(Index)))) &&
1991       Vec->getType() == Ty) {
1992     assert(Vec->getType()->getScalarSizeInBits() == PtrSize && "Wrong type");
1993     // Convert the scalar to int followed by insert to eliminate one cast:
1994     // p2i (ins (i2p Vec), Scalar, Index --> ins Vec, (p2i Scalar), Index
1995     Value *NewCast = Builder.CreatePtrToInt(Scalar, Ty->getScalarType());
1996     return InsertElementInst::Create(Vec, NewCast, Index);
1997   }
1998 
1999   return commonPointerCastTransforms(CI);
2000 }
2001 
2002 /// This input value (which is known to have vector type) is being zero extended
2003 /// or truncated to the specified vector type. Since the zext/trunc is done
2004 /// using an integer type, we have a (bitcast(cast(bitcast))) pattern,
2005 /// endianness will impact which end of the vector that is extended or
2006 /// truncated.
2007 ///
2008 /// A vector is always stored with index 0 at the lowest address, which
2009 /// corresponds to the most significant bits for a big endian stored integer and
2010 /// the least significant bits for little endian. A trunc/zext of an integer
2011 /// impacts the big end of the integer. Thus, we need to add/remove elements at
2012 /// the front of the vector for big endian targets, and the back of the vector
2013 /// for little endian targets.
2014 ///
2015 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible.
2016 ///
2017 /// The source and destination vector types may have different element types.
2018 static Instruction *
optimizeVectorResizeWithIntegerBitCasts(Value * InVal,VectorType * DestTy,InstCombinerImpl & IC)2019 optimizeVectorResizeWithIntegerBitCasts(Value *InVal, VectorType *DestTy,
2020                                         InstCombinerImpl &IC) {
2021   // We can only do this optimization if the output is a multiple of the input
2022   // element size, or the input is a multiple of the output element size.
2023   // Convert the input type to have the same element type as the output.
2024   VectorType *SrcTy = cast<VectorType>(InVal->getType());
2025 
2026   if (SrcTy->getElementType() != DestTy->getElementType()) {
2027     // The input types don't need to be identical, but for now they must be the
2028     // same size.  There is no specific reason we couldn't handle things like
2029     // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
2030     // there yet.
2031     if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
2032         DestTy->getElementType()->getPrimitiveSizeInBits())
2033       return nullptr;
2034 
2035     SrcTy =
2036         FixedVectorType::get(DestTy->getElementType(),
2037                              cast<FixedVectorType>(SrcTy)->getNumElements());
2038     InVal = IC.Builder.CreateBitCast(InVal, SrcTy);
2039   }
2040 
2041   bool IsBigEndian = IC.getDataLayout().isBigEndian();
2042   unsigned SrcElts = cast<FixedVectorType>(SrcTy)->getNumElements();
2043   unsigned DestElts = cast<FixedVectorType>(DestTy)->getNumElements();
2044 
2045   assert(SrcElts != DestElts && "Element counts should be different.");
2046 
2047   // Now that the element types match, get the shuffle mask and RHS of the
2048   // shuffle to use, which depends on whether we're increasing or decreasing the
2049   // size of the input.
2050   SmallVector<int, 16> ShuffleMaskStorage;
2051   ArrayRef<int> ShuffleMask;
2052   Value *V2;
2053 
2054   // Produce an identify shuffle mask for the src vector.
2055   ShuffleMaskStorage.resize(SrcElts);
2056   std::iota(ShuffleMaskStorage.begin(), ShuffleMaskStorage.end(), 0);
2057 
2058   if (SrcElts > DestElts) {
2059     // If we're shrinking the number of elements (rewriting an integer
2060     // truncate), just shuffle in the elements corresponding to the least
2061     // significant bits from the input and use undef as the second shuffle
2062     // input.
2063     V2 = UndefValue::get(SrcTy);
2064     // Make sure the shuffle mask selects the "least significant bits" by
2065     // keeping elements from back of the src vector for big endian, and from the
2066     // front for little endian.
2067     ShuffleMask = ShuffleMaskStorage;
2068     if (IsBigEndian)
2069       ShuffleMask = ShuffleMask.take_back(DestElts);
2070     else
2071       ShuffleMask = ShuffleMask.take_front(DestElts);
2072   } else {
2073     // If we're increasing the number of elements (rewriting an integer zext),
2074     // shuffle in all of the elements from InVal. Fill the rest of the result
2075     // elements with zeros from a constant zero.
2076     V2 = Constant::getNullValue(SrcTy);
2077     // Use first elt from V2 when indicating zero in the shuffle mask.
2078     uint32_t NullElt = SrcElts;
2079     // Extend with null values in the "most significant bits" by adding elements
2080     // in front of the src vector for big endian, and at the back for little
2081     // endian.
2082     unsigned DeltaElts = DestElts - SrcElts;
2083     if (IsBigEndian)
2084       ShuffleMaskStorage.insert(ShuffleMaskStorage.begin(), DeltaElts, NullElt);
2085     else
2086       ShuffleMaskStorage.append(DeltaElts, NullElt);
2087     ShuffleMask = ShuffleMaskStorage;
2088   }
2089 
2090   return new ShuffleVectorInst(InVal, V2, ShuffleMask);
2091 }
2092 
isMultipleOfTypeSize(unsigned Value,Type * Ty)2093 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
2094   return Value % Ty->getPrimitiveSizeInBits() == 0;
2095 }
2096 
getTypeSizeIndex(unsigned Value,Type * Ty)2097 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
2098   return Value / Ty->getPrimitiveSizeInBits();
2099 }
2100 
2101 /// V is a value which is inserted into a vector of VecEltTy.
2102 /// Look through the value to see if we can decompose it into
2103 /// insertions into the vector.  See the example in the comment for
2104 /// OptimizeIntegerToVectorInsertions for the pattern this handles.
2105 /// The type of V is always a non-zero multiple of VecEltTy's size.
2106 /// Shift is the number of bits between the lsb of V and the lsb of
2107 /// the vector.
2108 ///
2109 /// This returns false if the pattern can't be matched or true if it can,
2110 /// filling in Elements with the elements found here.
collectInsertionElements(Value * V,unsigned Shift,SmallVectorImpl<Value * > & Elements,Type * VecEltTy,bool isBigEndian)2111 static bool collectInsertionElements(Value *V, unsigned Shift,
2112                                      SmallVectorImpl<Value *> &Elements,
2113                                      Type *VecEltTy, bool isBigEndian) {
2114   assert(isMultipleOfTypeSize(Shift, VecEltTy) &&
2115          "Shift should be a multiple of the element type size");
2116 
2117   // Undef values never contribute useful bits to the result.
2118   if (isa<UndefValue>(V)) return true;
2119 
2120   // If we got down to a value of the right type, we win, try inserting into the
2121   // right element.
2122   if (V->getType() == VecEltTy) {
2123     // Inserting null doesn't actually insert any elements.
2124     if (Constant *C = dyn_cast<Constant>(V))
2125       if (C->isNullValue())
2126         return true;
2127 
2128     unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
2129     if (isBigEndian)
2130       ElementIndex = Elements.size() - ElementIndex - 1;
2131 
2132     // Fail if multiple elements are inserted into this slot.
2133     if (Elements[ElementIndex])
2134       return false;
2135 
2136     Elements[ElementIndex] = V;
2137     return true;
2138   }
2139 
2140   if (Constant *C = dyn_cast<Constant>(V)) {
2141     // Figure out the # elements this provides, and bitcast it or slice it up
2142     // as required.
2143     unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
2144                                         VecEltTy);
2145     // If the constant is the size of a vector element, we just need to bitcast
2146     // it to the right type so it gets properly inserted.
2147     if (NumElts == 1)
2148       return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
2149                                       Shift, Elements, VecEltTy, isBigEndian);
2150 
2151     // Okay, this is a constant that covers multiple elements.  Slice it up into
2152     // pieces and insert each element-sized piece into the vector.
2153     if (!isa<IntegerType>(C->getType()))
2154       C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
2155                                        C->getType()->getPrimitiveSizeInBits()));
2156     unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
2157     Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
2158 
2159     for (unsigned i = 0; i != NumElts; ++i) {
2160       unsigned ShiftI = Shift+i*ElementSize;
2161       Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
2162                                                                   ShiftI));
2163       Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
2164       if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy,
2165                                     isBigEndian))
2166         return false;
2167     }
2168     return true;
2169   }
2170 
2171   if (!V->hasOneUse()) return false;
2172 
2173   Instruction *I = dyn_cast<Instruction>(V);
2174   if (!I) return false;
2175   switch (I->getOpcode()) {
2176   default: return false; // Unhandled case.
2177   case Instruction::BitCast:
2178     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2179                                     isBigEndian);
2180   case Instruction::ZExt:
2181     if (!isMultipleOfTypeSize(
2182                           I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
2183                               VecEltTy))
2184       return false;
2185     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2186                                     isBigEndian);
2187   case Instruction::Or:
2188     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2189                                     isBigEndian) &&
2190            collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy,
2191                                     isBigEndian);
2192   case Instruction::Shl: {
2193     // Must be shifting by a constant that is a multiple of the element size.
2194     ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
2195     if (!CI) return false;
2196     Shift += CI->getZExtValue();
2197     if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
2198     return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2199                                     isBigEndian);
2200   }
2201 
2202   }
2203 }
2204 
2205 
2206 /// If the input is an 'or' instruction, we may be doing shifts and ors to
2207 /// assemble the elements of the vector manually.
2208 /// Try to rip the code out and replace it with insertelements.  This is to
2209 /// optimize code like this:
2210 ///
2211 ///    %tmp37 = bitcast float %inc to i32
2212 ///    %tmp38 = zext i32 %tmp37 to i64
2213 ///    %tmp31 = bitcast float %inc5 to i32
2214 ///    %tmp32 = zext i32 %tmp31 to i64
2215 ///    %tmp33 = shl i64 %tmp32, 32
2216 ///    %ins35 = or i64 %tmp33, %tmp38
2217 ///    %tmp43 = bitcast i64 %ins35 to <2 x float>
2218 ///
2219 /// Into two insertelements that do "buildvector{%inc, %inc5}".
optimizeIntegerToVectorInsertions(BitCastInst & CI,InstCombinerImpl & IC)2220 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI,
2221                                                 InstCombinerImpl &IC) {
2222   auto *DestVecTy = cast<FixedVectorType>(CI.getType());
2223   Value *IntInput = CI.getOperand(0);
2224 
2225   SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
2226   if (!collectInsertionElements(IntInput, 0, Elements,
2227                                 DestVecTy->getElementType(),
2228                                 IC.getDataLayout().isBigEndian()))
2229     return nullptr;
2230 
2231   // If we succeeded, we know that all of the element are specified by Elements
2232   // or are zero if Elements has a null entry.  Recast this as a set of
2233   // insertions.
2234   Value *Result = Constant::getNullValue(CI.getType());
2235   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
2236     if (!Elements[i]) continue;  // Unset element.
2237 
2238     Result = IC.Builder.CreateInsertElement(Result, Elements[i],
2239                                             IC.Builder.getInt32(i));
2240   }
2241 
2242   return Result;
2243 }
2244 
2245 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the
2246 /// vector followed by extract element. The backend tends to handle bitcasts of
2247 /// vectors better than bitcasts of scalars because vector registers are
2248 /// usually not type-specific like scalar integer or scalar floating-point.
canonicalizeBitCastExtElt(BitCastInst & BitCast,InstCombinerImpl & IC)2249 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast,
2250                                               InstCombinerImpl &IC) {
2251   // TODO: Create and use a pattern matcher for ExtractElementInst.
2252   auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0));
2253   if (!ExtElt || !ExtElt->hasOneUse())
2254     return nullptr;
2255 
2256   // The bitcast must be to a vectorizable type, otherwise we can't make a new
2257   // type to extract from.
2258   Type *DestType = BitCast.getType();
2259   if (!VectorType::isValidElementType(DestType))
2260     return nullptr;
2261 
2262   auto *NewVecType = VectorType::get(DestType, ExtElt->getVectorOperandType());
2263   auto *NewBC = IC.Builder.CreateBitCast(ExtElt->getVectorOperand(),
2264                                          NewVecType, "bc");
2265   return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand());
2266 }
2267 
2268 /// Change the type of a bitwise logic operation if we can eliminate a bitcast.
foldBitCastBitwiseLogic(BitCastInst & BitCast,InstCombiner::BuilderTy & Builder)2269 static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast,
2270                                             InstCombiner::BuilderTy &Builder) {
2271   Type *DestTy = BitCast.getType();
2272   BinaryOperator *BO;
2273   if (!DestTy->isIntOrIntVectorTy() ||
2274       !match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) ||
2275       !BO->isBitwiseLogicOp())
2276     return nullptr;
2277 
2278   // FIXME: This transform is restricted to vector types to avoid backend
2279   // problems caused by creating potentially illegal operations. If a fix-up is
2280   // added to handle that situation, we can remove this check.
2281   if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy())
2282     return nullptr;
2283 
2284   Value *X;
2285   if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) &&
2286       X->getType() == DestTy && !isa<Constant>(X)) {
2287     // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y))
2288     Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy);
2289     return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1);
2290   }
2291 
2292   if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) &&
2293       X->getType() == DestTy && !isa<Constant>(X)) {
2294     // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X)
2295     Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
2296     return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X);
2297   }
2298 
2299   // Canonicalize vector bitcasts to come before vector bitwise logic with a
2300   // constant. This eases recognition of special constants for later ops.
2301   // Example:
2302   // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
2303   Constant *C;
2304   if (match(BO->getOperand(1), m_Constant(C))) {
2305     // bitcast (logic X, C) --> logic (bitcast X, C')
2306     Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
2307     Value *CastedC = Builder.CreateBitCast(C, DestTy);
2308     return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC);
2309   }
2310 
2311   return nullptr;
2312 }
2313 
2314 /// Change the type of a select if we can eliminate a bitcast.
foldBitCastSelect(BitCastInst & BitCast,InstCombiner::BuilderTy & Builder)2315 static Instruction *foldBitCastSelect(BitCastInst &BitCast,
2316                                       InstCombiner::BuilderTy &Builder) {
2317   Value *Cond, *TVal, *FVal;
2318   if (!match(BitCast.getOperand(0),
2319              m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
2320     return nullptr;
2321 
2322   // A vector select must maintain the same number of elements in its operands.
2323   Type *CondTy = Cond->getType();
2324   Type *DestTy = BitCast.getType();
2325   if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) {
2326     if (!DestTy->isVectorTy())
2327       return nullptr;
2328     if (cast<FixedVectorType>(DestTy)->getNumElements() !=
2329         cast<FixedVectorType>(CondVTy)->getNumElements())
2330       return nullptr;
2331   }
2332 
2333   // FIXME: This transform is restricted from changing the select between
2334   // scalars and vectors to avoid backend problems caused by creating
2335   // potentially illegal operations. If a fix-up is added to handle that
2336   // situation, we can remove this check.
2337   if (DestTy->isVectorTy() != TVal->getType()->isVectorTy())
2338     return nullptr;
2339 
2340   auto *Sel = cast<Instruction>(BitCast.getOperand(0));
2341   Value *X;
2342   if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
2343       !isa<Constant>(X)) {
2344     // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y))
2345     Value *CastedVal = Builder.CreateBitCast(FVal, DestTy);
2346     return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel);
2347   }
2348 
2349   if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
2350       !isa<Constant>(X)) {
2351     // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X)
2352     Value *CastedVal = Builder.CreateBitCast(TVal, DestTy);
2353     return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel);
2354   }
2355 
2356   return nullptr;
2357 }
2358 
2359 /// Check if all users of CI are StoreInsts.
hasStoreUsersOnly(CastInst & CI)2360 static bool hasStoreUsersOnly(CastInst &CI) {
2361   for (User *U : CI.users()) {
2362     if (!isa<StoreInst>(U))
2363       return false;
2364   }
2365   return true;
2366 }
2367 
2368 /// This function handles following case
2369 ///
2370 ///     A  ->  B    cast
2371 ///     PHI
2372 ///     B  ->  A    cast
2373 ///
2374 /// All the related PHI nodes can be replaced by new PHI nodes with type A.
2375 /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN.
optimizeBitCastFromPhi(CastInst & CI,PHINode * PN)2376 Instruction *InstCombinerImpl::optimizeBitCastFromPhi(CastInst &CI,
2377                                                       PHINode *PN) {
2378   // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp.
2379   if (hasStoreUsersOnly(CI))
2380     return nullptr;
2381 
2382   Value *Src = CI.getOperand(0);
2383   Type *SrcTy = Src->getType();         // Type B
2384   Type *DestTy = CI.getType();          // Type A
2385 
2386   SmallVector<PHINode *, 4> PhiWorklist;
2387   SmallSetVector<PHINode *, 4> OldPhiNodes;
2388 
2389   // Find all of the A->B casts and PHI nodes.
2390   // We need to inspect all related PHI nodes, but PHIs can be cyclic, so
2391   // OldPhiNodes is used to track all known PHI nodes, before adding a new
2392   // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first.
2393   PhiWorklist.push_back(PN);
2394   OldPhiNodes.insert(PN);
2395   while (!PhiWorklist.empty()) {
2396     auto *OldPN = PhiWorklist.pop_back_val();
2397     for (Value *IncValue : OldPN->incoming_values()) {
2398       if (isa<Constant>(IncValue))
2399         continue;
2400 
2401       if (auto *LI = dyn_cast<LoadInst>(IncValue)) {
2402         // If there is a sequence of one or more load instructions, each loaded
2403         // value is used as address of later load instruction, bitcast is
2404         // necessary to change the value type, don't optimize it. For
2405         // simplicity we give up if the load address comes from another load.
2406         Value *Addr = LI->getOperand(0);
2407         if (Addr == &CI || isa<LoadInst>(Addr))
2408           return nullptr;
2409         if (LI->hasOneUse() && LI->isSimple())
2410           continue;
2411         // If a LoadInst has more than one use, changing the type of loaded
2412         // value may create another bitcast.
2413         return nullptr;
2414       }
2415 
2416       if (auto *PNode = dyn_cast<PHINode>(IncValue)) {
2417         if (OldPhiNodes.insert(PNode))
2418           PhiWorklist.push_back(PNode);
2419         continue;
2420       }
2421 
2422       auto *BCI = dyn_cast<BitCastInst>(IncValue);
2423       // We can't handle other instructions.
2424       if (!BCI)
2425         return nullptr;
2426 
2427       // Verify it's a A->B cast.
2428       Type *TyA = BCI->getOperand(0)->getType();
2429       Type *TyB = BCI->getType();
2430       if (TyA != DestTy || TyB != SrcTy)
2431         return nullptr;
2432     }
2433   }
2434 
2435   // Check that each user of each old PHI node is something that we can
2436   // rewrite, so that all of the old PHI nodes can be cleaned up afterwards.
2437   for (auto *OldPN : OldPhiNodes) {
2438     for (User *V : OldPN->users()) {
2439       if (auto *SI = dyn_cast<StoreInst>(V)) {
2440         if (!SI->isSimple() || SI->getOperand(0) != OldPN)
2441           return nullptr;
2442       } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2443         // Verify it's a B->A cast.
2444         Type *TyB = BCI->getOperand(0)->getType();
2445         Type *TyA = BCI->getType();
2446         if (TyA != DestTy || TyB != SrcTy)
2447           return nullptr;
2448       } else if (auto *PHI = dyn_cast<PHINode>(V)) {
2449         // As long as the user is another old PHI node, then even if we don't
2450         // rewrite it, the PHI web we're considering won't have any users
2451         // outside itself, so it'll be dead.
2452         if (OldPhiNodes.count(PHI) == 0)
2453           return nullptr;
2454       } else {
2455         return nullptr;
2456       }
2457     }
2458   }
2459 
2460   // For each old PHI node, create a corresponding new PHI node with a type A.
2461   SmallDenseMap<PHINode *, PHINode *> NewPNodes;
2462   for (auto *OldPN : OldPhiNodes) {
2463     Builder.SetInsertPoint(OldPN);
2464     PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands());
2465     NewPNodes[OldPN] = NewPN;
2466   }
2467 
2468   // Fill in the operands of new PHI nodes.
2469   for (auto *OldPN : OldPhiNodes) {
2470     PHINode *NewPN = NewPNodes[OldPN];
2471     for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) {
2472       Value *V = OldPN->getOperand(j);
2473       Value *NewV = nullptr;
2474       if (auto *C = dyn_cast<Constant>(V)) {
2475         NewV = ConstantExpr::getBitCast(C, DestTy);
2476       } else if (auto *LI = dyn_cast<LoadInst>(V)) {
2477         // Explicitly perform load combine to make sure no opposing transform
2478         // can remove the bitcast in the meantime and trigger an infinite loop.
2479         Builder.SetInsertPoint(LI);
2480         NewV = combineLoadToNewType(*LI, DestTy);
2481         // Remove the old load and its use in the old phi, which itself becomes
2482         // dead once the whole transform finishes.
2483         replaceInstUsesWith(*LI, UndefValue::get(LI->getType()));
2484         eraseInstFromFunction(*LI);
2485       } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2486         NewV = BCI->getOperand(0);
2487       } else if (auto *PrevPN = dyn_cast<PHINode>(V)) {
2488         NewV = NewPNodes[PrevPN];
2489       }
2490       assert(NewV);
2491       NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j));
2492     }
2493   }
2494 
2495   // Traverse all accumulated PHI nodes and process its users,
2496   // which are Stores and BitcCasts. Without this processing
2497   // NewPHI nodes could be replicated and could lead to extra
2498   // moves generated after DeSSA.
2499   // If there is a store with type B, change it to type A.
2500 
2501 
2502   // Replace users of BitCast B->A with NewPHI. These will help
2503   // later to get rid off a closure formed by OldPHI nodes.
2504   Instruction *RetVal = nullptr;
2505   for (auto *OldPN : OldPhiNodes) {
2506     PHINode *NewPN = NewPNodes[OldPN];
2507     for (auto It = OldPN->user_begin(), End = OldPN->user_end(); It != End; ) {
2508       User *V = *It;
2509       // We may remove this user, advance to avoid iterator invalidation.
2510       ++It;
2511       if (auto *SI = dyn_cast<StoreInst>(V)) {
2512         assert(SI->isSimple() && SI->getOperand(0) == OldPN);
2513         Builder.SetInsertPoint(SI);
2514         auto *NewBC =
2515           cast<BitCastInst>(Builder.CreateBitCast(NewPN, SrcTy));
2516         SI->setOperand(0, NewBC);
2517         Worklist.push(SI);
2518         assert(hasStoreUsersOnly(*NewBC));
2519       }
2520       else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2521         Type *TyB = BCI->getOperand(0)->getType();
2522         Type *TyA = BCI->getType();
2523         assert(TyA == DestTy && TyB == SrcTy);
2524         (void) TyA;
2525         (void) TyB;
2526         Instruction *I = replaceInstUsesWith(*BCI, NewPN);
2527         if (BCI == &CI)
2528           RetVal = I;
2529       } else if (auto *PHI = dyn_cast<PHINode>(V)) {
2530         assert(OldPhiNodes.count(PHI) > 0);
2531         (void) PHI;
2532       } else {
2533         llvm_unreachable("all uses should be handled");
2534       }
2535     }
2536   }
2537 
2538   return RetVal;
2539 }
2540 
visitBitCast(BitCastInst & CI)2541 Instruction *InstCombinerImpl::visitBitCast(BitCastInst &CI) {
2542   // If the operands are integer typed then apply the integer transforms,
2543   // otherwise just apply the common ones.
2544   Value *Src = CI.getOperand(0);
2545   Type *SrcTy = Src->getType();
2546   Type *DestTy = CI.getType();
2547 
2548   // Get rid of casts from one type to the same type. These are useless and can
2549   // be replaced by the operand.
2550   if (DestTy == Src->getType())
2551     return replaceInstUsesWith(CI, Src);
2552 
2553   if (isa<PointerType>(SrcTy) && isa<PointerType>(DestTy)) {
2554     PointerType *SrcPTy = cast<PointerType>(SrcTy);
2555     PointerType *DstPTy = cast<PointerType>(DestTy);
2556     Type *DstElTy = DstPTy->getElementType();
2557     Type *SrcElTy = SrcPTy->getElementType();
2558 
2559     // Casting pointers between the same type, but with different address spaces
2560     // is an addrspace cast rather than a bitcast.
2561     if ((DstElTy == SrcElTy) &&
2562         (DstPTy->getAddressSpace() != SrcPTy->getAddressSpace()))
2563       return new AddrSpaceCastInst(Src, DestTy);
2564 
2565     // If we are casting a alloca to a pointer to a type of the same
2566     // size, rewrite the allocation instruction to allocate the "right" type.
2567     // There is no need to modify malloc calls because it is their bitcast that
2568     // needs to be cleaned up.
2569     if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
2570       if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
2571         return V;
2572 
2573     // When the type pointed to is not sized the cast cannot be
2574     // turned into a gep.
2575     Type *PointeeType =
2576         cast<PointerType>(Src->getType()->getScalarType())->getElementType();
2577     if (!PointeeType->isSized())
2578       return nullptr;
2579 
2580     // If the source and destination are pointers, and this cast is equivalent
2581     // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep.
2582     // This can enhance SROA and other transforms that want type-safe pointers.
2583     unsigned NumZeros = 0;
2584     while (SrcElTy && SrcElTy != DstElTy) {
2585       SrcElTy = GetElementPtrInst::getTypeAtIndex(SrcElTy, (uint64_t)0);
2586       ++NumZeros;
2587     }
2588 
2589     // If we found a path from the src to dest, create the getelementptr now.
2590     if (SrcElTy == DstElTy) {
2591       SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder.getInt32(0));
2592       GetElementPtrInst *GEP =
2593           GetElementPtrInst::Create(SrcPTy->getElementType(), Src, Idxs);
2594 
2595       // If the source pointer is dereferenceable, then assume it points to an
2596       // allocated object and apply "inbounds" to the GEP.
2597       bool CanBeNull;
2598       if (Src->getPointerDereferenceableBytes(DL, CanBeNull)) {
2599         // In a non-default address space (not 0), a null pointer can not be
2600         // assumed inbounds, so ignore that case (dereferenceable_or_null).
2601         // The reason is that 'null' is not treated differently in these address
2602         // spaces, and we consequently ignore the 'gep inbounds' special case
2603         // for 'null' which allows 'inbounds' on 'null' if the indices are
2604         // zeros.
2605         if (SrcPTy->getAddressSpace() == 0 || !CanBeNull)
2606           GEP->setIsInBounds();
2607       }
2608       return GEP;
2609     }
2610   }
2611 
2612   if (FixedVectorType *DestVTy = dyn_cast<FixedVectorType>(DestTy)) {
2613     // Beware: messing with this target-specific oddity may cause trouble.
2614     if (DestVTy->getNumElements() == 1 && SrcTy->isX86_MMXTy()) {
2615       Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType());
2616       return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
2617                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2618     }
2619 
2620     if (isa<IntegerType>(SrcTy)) {
2621       // If this is a cast from an integer to vector, check to see if the input
2622       // is a trunc or zext of a bitcast from vector.  If so, we can replace all
2623       // the casts with a shuffle and (potentially) a bitcast.
2624       if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
2625         CastInst *SrcCast = cast<CastInst>(Src);
2626         if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
2627           if (isa<VectorType>(BCIn->getOperand(0)->getType()))
2628             if (Instruction *I = optimizeVectorResizeWithIntegerBitCasts(
2629                     BCIn->getOperand(0), cast<VectorType>(DestTy), *this))
2630               return I;
2631       }
2632 
2633       // If the input is an 'or' instruction, we may be doing shifts and ors to
2634       // assemble the elements of the vector manually.  Try to rip the code out
2635       // and replace it with insertelements.
2636       if (Value *V = optimizeIntegerToVectorInsertions(CI, *this))
2637         return replaceInstUsesWith(CI, V);
2638     }
2639   }
2640 
2641   if (FixedVectorType *SrcVTy = dyn_cast<FixedVectorType>(SrcTy)) {
2642     if (SrcVTy->getNumElements() == 1) {
2643       // If our destination is not a vector, then make this a straight
2644       // scalar-scalar cast.
2645       if (!DestTy->isVectorTy()) {
2646         Value *Elem =
2647           Builder.CreateExtractElement(Src,
2648                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2649         return CastInst::Create(Instruction::BitCast, Elem, DestTy);
2650       }
2651 
2652       // Otherwise, see if our source is an insert. If so, then use the scalar
2653       // component directly:
2654       // bitcast (inselt <1 x elt> V, X, 0) to <n x m> --> bitcast X to <n x m>
2655       if (auto *InsElt = dyn_cast<InsertElementInst>(Src))
2656         return new BitCastInst(InsElt->getOperand(1), DestTy);
2657     }
2658   }
2659 
2660   if (auto *Shuf = dyn_cast<ShuffleVectorInst>(Src)) {
2661     // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
2662     // a bitcast to a vector with the same # elts.
2663     Value *ShufOp0 = Shuf->getOperand(0);
2664     Value *ShufOp1 = Shuf->getOperand(1);
2665     unsigned NumShufElts =
2666         cast<FixedVectorType>(Shuf->getType())->getNumElements();
2667     unsigned NumSrcVecElts =
2668         cast<FixedVectorType>(ShufOp0->getType())->getNumElements();
2669     if (Shuf->hasOneUse() && DestTy->isVectorTy() &&
2670         cast<FixedVectorType>(DestTy)->getNumElements() == NumShufElts &&
2671         NumShufElts == NumSrcVecElts) {
2672       BitCastInst *Tmp;
2673       // If either of the operands is a cast from CI.getType(), then
2674       // evaluating the shuffle in the casted destination's type will allow
2675       // us to eliminate at least one cast.
2676       if (((Tmp = dyn_cast<BitCastInst>(ShufOp0)) &&
2677            Tmp->getOperand(0)->getType() == DestTy) ||
2678           ((Tmp = dyn_cast<BitCastInst>(ShufOp1)) &&
2679            Tmp->getOperand(0)->getType() == DestTy)) {
2680         Value *LHS = Builder.CreateBitCast(ShufOp0, DestTy);
2681         Value *RHS = Builder.CreateBitCast(ShufOp1, DestTy);
2682         // Return a new shuffle vector.  Use the same element ID's, as we
2683         // know the vector types match #elts.
2684         return new ShuffleVectorInst(LHS, RHS, Shuf->getShuffleMask());
2685       }
2686     }
2687 
2688     // A bitcasted-to-scalar and byte-reversing shuffle is better recognized as
2689     // a byte-swap:
2690     // bitcast <N x i8> (shuf X, undef, <N, N-1,...0>) --> bswap (bitcast X)
2691     // TODO: We should match the related pattern for bitreverse.
2692     if (DestTy->isIntegerTy() &&
2693         DL.isLegalInteger(DestTy->getScalarSizeInBits()) &&
2694         SrcTy->getScalarSizeInBits() == 8 && NumShufElts % 2 == 0 &&
2695         Shuf->hasOneUse() && Shuf->isReverse()) {
2696       assert(ShufOp0->getType() == SrcTy && "Unexpected shuffle mask");
2697       assert(isa<UndefValue>(ShufOp1) && "Unexpected shuffle op");
2698       Function *Bswap =
2699           Intrinsic::getDeclaration(CI.getModule(), Intrinsic::bswap, DestTy);
2700       Value *ScalarX = Builder.CreateBitCast(ShufOp0, DestTy);
2701       return IntrinsicInst::Create(Bswap, { ScalarX });
2702     }
2703   }
2704 
2705   // Handle the A->B->A cast, and there is an intervening PHI node.
2706   if (PHINode *PN = dyn_cast<PHINode>(Src))
2707     if (Instruction *I = optimizeBitCastFromPhi(CI, PN))
2708       return I;
2709 
2710   if (Instruction *I = canonicalizeBitCastExtElt(CI, *this))
2711     return I;
2712 
2713   if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder))
2714     return I;
2715 
2716   if (Instruction *I = foldBitCastSelect(CI, Builder))
2717     return I;
2718 
2719   if (SrcTy->isPointerTy())
2720     return commonPointerCastTransforms(CI);
2721   return commonCastTransforms(CI);
2722 }
2723 
visitAddrSpaceCast(AddrSpaceCastInst & CI)2724 Instruction *InstCombinerImpl::visitAddrSpaceCast(AddrSpaceCastInst &CI) {
2725   // If the destination pointer element type is not the same as the source's
2726   // first do a bitcast to the destination type, and then the addrspacecast.
2727   // This allows the cast to be exposed to other transforms.
2728   Value *Src = CI.getOperand(0);
2729   PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType());
2730   PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType());
2731 
2732   Type *DestElemTy = DestTy->getElementType();
2733   if (SrcTy->getElementType() != DestElemTy) {
2734     Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace());
2735     if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) {
2736       // Handle vectors of pointers.
2737       // FIXME: what should happen for scalable vectors?
2738       MidTy = FixedVectorType::get(MidTy,
2739                                    cast<FixedVectorType>(VT)->getNumElements());
2740     }
2741 
2742     Value *NewBitCast = Builder.CreateBitCast(Src, MidTy);
2743     return new AddrSpaceCastInst(NewBitCast, CI.getType());
2744   }
2745 
2746   return commonPointerCastTransforms(CI);
2747 }
2748