1 // Protocol Buffers - Google's data interchange format
2 // Copyright 2014 Google Inc. All rights reserved.
3 // https://developers.google.com/protocol-buffers/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 // * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 // * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 // * Neither the name of Google Inc. nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 #include "protobuf.h"
32
33 // This function is equivalent to rb_str_cat(), but unlike the real
34 // rb_str_cat(), it doesn't leak memory in some versions of Ruby.
35 // For more information, see:
36 // https://bugs.ruby-lang.org/issues/11328
noleak_rb_str_cat(VALUE rb_str,const char * str,long len)37 VALUE noleak_rb_str_cat(VALUE rb_str, const char *str, long len) {
38 char *p;
39 size_t oldlen = RSTRING_LEN(rb_str);
40 rb_str_modify_expand(rb_str, len);
41 p = RSTRING_PTR(rb_str);
42 memcpy(p + oldlen, str, len);
43 rb_str_set_len(rb_str, oldlen + len);
44 return rb_str;
45 }
46
47 // The code below also comes from upb's prototype Ruby binding, developed by
48 // haberman@.
49
50 /* stringsink *****************************************************************/
51
stringsink_start(void * _sink,const void * hd,size_t size_hint)52 static void *stringsink_start(void *_sink, const void *hd, size_t size_hint) {
53 stringsink *sink = _sink;
54 sink->len = 0;
55 return sink;
56 }
57
stringsink_string(void * _sink,const void * hd,const char * ptr,size_t len,const upb_bufhandle * handle)58 static size_t stringsink_string(void *_sink, const void *hd, const char *ptr,
59 size_t len, const upb_bufhandle *handle) {
60 stringsink *sink = _sink;
61 size_t new_size = sink->size;
62
63 UPB_UNUSED(hd);
64 UPB_UNUSED(handle);
65
66 while (sink->len + len > new_size) {
67 new_size *= 2;
68 }
69
70 if (new_size != sink->size) {
71 sink->ptr = realloc(sink->ptr, new_size);
72 sink->size = new_size;
73 }
74
75 memcpy(sink->ptr + sink->len, ptr, len);
76 sink->len += len;
77
78 return len;
79 }
80
stringsink_init(stringsink * sink)81 void stringsink_init(stringsink *sink) {
82 upb_byteshandler_init(&sink->handler);
83 upb_byteshandler_setstartstr(&sink->handler, stringsink_start, NULL);
84 upb_byteshandler_setstring(&sink->handler, stringsink_string, NULL);
85
86 upb_bytessink_reset(&sink->sink, &sink->handler, sink);
87
88 sink->size = 32;
89 sink->ptr = malloc(sink->size);
90 sink->len = 0;
91 }
92
stringsink_uninit(stringsink * sink)93 void stringsink_uninit(stringsink *sink) {
94 free(sink->ptr);
95 }
96
97 // -----------------------------------------------------------------------------
98 // Parsing.
99 // -----------------------------------------------------------------------------
100
101 #define DEREF(msg, ofs, type) *(type*)(((uint8_t *)msg) + ofs)
102
103 typedef struct {
104 size_t ofs;
105 int32_t hasbit;
106 } field_handlerdata_t;
107
108 // Creates a handlerdata that contains the offset and the hasbit for the field
newhandlerdata(upb_handlers * h,uint32_t ofs,int32_t hasbit)109 static const void* newhandlerdata(upb_handlers* h, uint32_t ofs, int32_t hasbit) {
110 field_handlerdata_t *hd = ALLOC(field_handlerdata_t);
111 hd->ofs = ofs;
112 hd->hasbit = hasbit;
113 upb_handlers_addcleanup(h, hd, xfree);
114 return hd;
115 }
116
117 typedef struct {
118 size_t ofs;
119 int32_t hasbit;
120 const upb_msgdef *md;
121 } submsg_handlerdata_t;
122
123 // Creates a handlerdata that contains offset and submessage type information.
newsubmsghandlerdata(upb_handlers * h,uint32_t ofs,int32_t hasbit,const upb_fielddef * f)124 static const void *newsubmsghandlerdata(upb_handlers* h,
125 uint32_t ofs,
126 int32_t hasbit,
127 const upb_fielddef* f) {
128 submsg_handlerdata_t *hd = ALLOC(submsg_handlerdata_t);
129 hd->ofs = ofs;
130 hd->hasbit = hasbit;
131 hd->md = upb_fielddef_msgsubdef(f);
132 upb_handlers_addcleanup(h, hd, xfree);
133 return hd;
134 }
135
136 typedef struct {
137 size_t ofs; // union data slot
138 size_t case_ofs; // oneof_case field
139 uint32_t oneof_case_num; // oneof-case number to place in oneof_case field
140 const upb_msgdef *md; // msgdef, for oneof submessage handler
141 } oneof_handlerdata_t;
142
newoneofhandlerdata(upb_handlers * h,uint32_t ofs,uint32_t case_ofs,const upb_fielddef * f)143 static const void *newoneofhandlerdata(upb_handlers *h,
144 uint32_t ofs,
145 uint32_t case_ofs,
146 const upb_fielddef *f) {
147 oneof_handlerdata_t *hd = ALLOC(oneof_handlerdata_t);
148 hd->ofs = ofs;
149 hd->case_ofs = case_ofs;
150 // We reuse the field tag number as a oneof union discriminant tag. Note that
151 // we don't expose these numbers to the user, so the only requirement is that
152 // we have some unique ID for each union case/possibility. The field tag
153 // numbers are already present and are easy to use so there's no reason to
154 // create a separate ID space. In addition, using the field tag number here
155 // lets us easily look up the field in the oneof accessor.
156 hd->oneof_case_num = upb_fielddef_number(f);
157 if (upb_fielddef_type(f) == UPB_TYPE_MESSAGE) {
158 hd->md = upb_fielddef_msgsubdef(f);
159 } else {
160 hd->md = NULL;
161 }
162 upb_handlers_addcleanup(h, hd, xfree);
163 return hd;
164 }
165
166 // A handler that starts a repeated field. Gets the Repeated*Field instance for
167 // this field (such an instance always exists even in an empty message).
startseq_handler(void * closure,const void * hd)168 static void *startseq_handler(void* closure, const void* hd) {
169 MessageHeader* msg = closure;
170 const size_t *ofs = hd;
171 return (void*)DEREF(msg, *ofs, VALUE);
172 }
173
174 // Handlers that append primitive values to a repeated field.
175 #define DEFINE_APPEND_HANDLER(type, ctype) \
176 static bool append##type##_handler(void *closure, const void *hd, \
177 ctype val) { \
178 VALUE ary = (VALUE)closure; \
179 RepeatedField_push_native(ary, &val); \
180 return true; \
181 }
182
DEFINE_APPEND_HANDLER(bool,bool)183 DEFINE_APPEND_HANDLER(bool, bool)
184 DEFINE_APPEND_HANDLER(int32, int32_t)
185 DEFINE_APPEND_HANDLER(uint32, uint32_t)
186 DEFINE_APPEND_HANDLER(float, float)
187 DEFINE_APPEND_HANDLER(int64, int64_t)
188 DEFINE_APPEND_HANDLER(uint64, uint64_t)
189 DEFINE_APPEND_HANDLER(double, double)
190
191 // Appends a string to a repeated field.
192 static void* appendstr_handler(void *closure,
193 const void *hd,
194 size_t size_hint) {
195 VALUE ary = (VALUE)closure;
196 VALUE str = rb_str_new2("");
197 rb_enc_associate(str, kRubyStringUtf8Encoding);
198 RepeatedField_push_native(ary, &str);
199 return (void*)str;
200 }
201
set_hasbit(void * closure,int32_t hasbit)202 static void set_hasbit(void *closure, int32_t hasbit) {
203 if (hasbit > 0) {
204 uint8_t* storage = closure;
205 storage[hasbit/8] |= 1 << (hasbit % 8);
206 }
207 }
208
209 // Appends a 'bytes' string to a repeated field.
appendbytes_handler(void * closure,const void * hd,size_t size_hint)210 static void* appendbytes_handler(void *closure,
211 const void *hd,
212 size_t size_hint) {
213 VALUE ary = (VALUE)closure;
214 VALUE str = rb_str_new2("");
215 rb_enc_associate(str, kRubyString8bitEncoding);
216 RepeatedField_push_native(ary, &str);
217 return (void*)str;
218 }
219
220 // Sets a non-repeated string field in a message.
str_handler(void * closure,const void * hd,size_t size_hint)221 static void* str_handler(void *closure,
222 const void *hd,
223 size_t size_hint) {
224 MessageHeader* msg = closure;
225 const field_handlerdata_t *fieldhandler = hd;
226
227 VALUE str = rb_str_new2("");
228 rb_enc_associate(str, kRubyStringUtf8Encoding);
229 DEREF(msg, fieldhandler->ofs, VALUE) = str;
230 set_hasbit(closure, fieldhandler->hasbit);
231 return (void*)str;
232 }
233
234 // Sets a non-repeated 'bytes' field in a message.
bytes_handler(void * closure,const void * hd,size_t size_hint)235 static void* bytes_handler(void *closure,
236 const void *hd,
237 size_t size_hint) {
238 MessageHeader* msg = closure;
239 const field_handlerdata_t *fieldhandler = hd;
240
241 VALUE str = rb_str_new2("");
242 rb_enc_associate(str, kRubyString8bitEncoding);
243 DEREF(msg, fieldhandler->ofs, VALUE) = str;
244 set_hasbit(closure, fieldhandler->hasbit);
245 return (void*)str;
246 }
247
stringdata_handler(void * closure,const void * hd,const char * str,size_t len,const upb_bufhandle * handle)248 static size_t stringdata_handler(void* closure, const void* hd,
249 const char* str, size_t len,
250 const upb_bufhandle* handle) {
251 VALUE rb_str = (VALUE)closure;
252 noleak_rb_str_cat(rb_str, str, len);
253 return len;
254 }
255
stringdata_end_handler(void * closure,const void * hd)256 static bool stringdata_end_handler(void* closure, const void* hd) {
257 VALUE rb_str = closure;
258 rb_obj_freeze(rb_str);
259 return true;
260 }
261
appendstring_end_handler(void * closure,const void * hd)262 static bool appendstring_end_handler(void* closure, const void* hd) {
263 VALUE rb_str = closure;
264 rb_obj_freeze(rb_str);
265 return true;
266 }
267
268 // Appends a submessage to a repeated field (a regular Ruby array for now).
appendsubmsg_handler(void * closure,const void * hd)269 static void *appendsubmsg_handler(void *closure, const void *hd) {
270 VALUE ary = (VALUE)closure;
271 const submsg_handlerdata_t *submsgdata = hd;
272 VALUE subdesc =
273 get_def_obj((void*)submsgdata->md);
274 VALUE subklass = Descriptor_msgclass(subdesc);
275 MessageHeader* submsg;
276
277 VALUE submsg_rb = rb_class_new_instance(0, NULL, subklass);
278 RepeatedField_push(ary, submsg_rb);
279
280 TypedData_Get_Struct(submsg_rb, MessageHeader, &Message_type, submsg);
281 return submsg;
282 }
283
284 // Sets a non-repeated submessage field in a message.
submsg_handler(void * closure,const void * hd)285 static void *submsg_handler(void *closure, const void *hd) {
286 MessageHeader* msg = closure;
287 const submsg_handlerdata_t* submsgdata = hd;
288 VALUE subdesc =
289 get_def_obj((void*)submsgdata->md);
290 VALUE subklass = Descriptor_msgclass(subdesc);
291 VALUE submsg_rb;
292 MessageHeader* submsg;
293
294 if (DEREF(msg, submsgdata->ofs, VALUE) == Qnil) {
295 DEREF(msg, submsgdata->ofs, VALUE) =
296 rb_class_new_instance(0, NULL, subklass);
297 }
298
299 set_hasbit(closure, submsgdata->hasbit);
300
301 submsg_rb = DEREF(msg, submsgdata->ofs, VALUE);
302 TypedData_Get_Struct(submsg_rb, MessageHeader, &Message_type, submsg);
303
304 return submsg;
305 }
306
307 // Handler data for startmap/endmap handlers.
308 typedef struct {
309 size_t ofs;
310 upb_fieldtype_t key_field_type;
311 upb_fieldtype_t value_field_type;
312
313 // We know that we can hold this reference because the handlerdata has the
314 // same lifetime as the upb_handlers struct, and the upb_handlers struct holds
315 // a reference to the upb_msgdef, which in turn has references to its subdefs.
316 const upb_def* value_field_subdef;
317 } map_handlerdata_t;
318
319 // Temporary frame for map parsing: at the beginning of a map entry message, a
320 // submsg handler allocates a frame to hold (i) a reference to the Map object
321 // into which this message will be inserted and (ii) storage slots to
322 // temporarily hold the key and value for this map entry until the end of the
323 // submessage. When the submessage ends, another handler is called to insert the
324 // value into the map.
325 typedef struct {
326 VALUE map;
327 const map_handlerdata_t* handlerdata;
328 char key_storage[NATIVE_SLOT_MAX_SIZE];
329 char value_storage[NATIVE_SLOT_MAX_SIZE];
330 } map_parse_frame_t;
331
MapParseFrame_mark(void * _self)332 static void MapParseFrame_mark(void* _self) {
333 map_parse_frame_t* frame = _self;
334
335 // This shouldn't strictly be necessary since this should be rooted by the
336 // message itself, but it can't hurt.
337 rb_gc_mark(frame->map);
338
339 native_slot_mark(frame->handlerdata->key_field_type, &frame->key_storage);
340 native_slot_mark(frame->handlerdata->value_field_type, &frame->value_storage);
341 }
342
MapParseFrame_free(void * self)343 void MapParseFrame_free(void* self) {
344 xfree(self);
345 }
346
347 rb_data_type_t MapParseFrame_type = {
348 "MapParseFrame",
349 { MapParseFrame_mark, MapParseFrame_free, NULL },
350 };
351
map_push_frame(VALUE map,const map_handlerdata_t * handlerdata)352 static map_parse_frame_t* map_push_frame(VALUE map,
353 const map_handlerdata_t* handlerdata) {
354 map_parse_frame_t* frame = ALLOC(map_parse_frame_t);
355 frame->handlerdata = handlerdata;
356 frame->map = map;
357 native_slot_init(handlerdata->key_field_type, &frame->key_storage);
358 native_slot_init(handlerdata->value_field_type, &frame->value_storage);
359
360 Map_set_frame(map,
361 TypedData_Wrap_Struct(rb_cObject, &MapParseFrame_type, frame));
362
363 return frame;
364 }
365
366 // Handler to begin a map entry: allocates a temporary frame. This is the
367 // 'startsubmsg' handler on the msgdef that contains the map field.
startmapentry_handler(void * closure,const void * hd)368 static void *startmapentry_handler(void *closure, const void *hd) {
369 MessageHeader* msg = closure;
370 const map_handlerdata_t* mapdata = hd;
371 VALUE map_rb = DEREF(msg, mapdata->ofs, VALUE);
372
373 return map_push_frame(map_rb, mapdata);
374 }
375
376 // Handler to end a map entry: inserts the value defined during the message into
377 // the map. This is the 'endmsg' handler on the map entry msgdef.
endmap_handler(void * closure,const void * hd,upb_status * s)378 static bool endmap_handler(void *closure, const void *hd, upb_status* s) {
379 map_parse_frame_t* frame = closure;
380 const map_handlerdata_t* mapdata = hd;
381
382 VALUE key = native_slot_get(
383 mapdata->key_field_type, Qnil,
384 &frame->key_storage);
385
386 VALUE value_field_typeclass = Qnil;
387 VALUE value;
388
389 if (mapdata->value_field_type == UPB_TYPE_MESSAGE ||
390 mapdata->value_field_type == UPB_TYPE_ENUM) {
391 value_field_typeclass = get_def_obj(mapdata->value_field_subdef);
392 if (mapdata->value_field_type == UPB_TYPE_ENUM) {
393 value_field_typeclass = EnumDescriptor_enummodule(value_field_typeclass);
394 }
395 }
396
397 value = native_slot_get(
398 mapdata->value_field_type, value_field_typeclass,
399 &frame->value_storage);
400
401 Map_index_set(frame->map, key, value);
402 Map_set_frame(frame->map, Qnil);
403
404 return true;
405 }
406
407 // Allocates a new map_handlerdata_t given the map entry message definition. If
408 // the offset of the field within the parent message is also given, that is
409 // added to the handler data as well. Note that this is called *twice* per map
410 // field: once in the parent message handler setup when setting the startsubmsg
411 // handler and once in the map entry message handler setup when setting the
412 // key/value and endmsg handlers. The reason is that there is no easy way to
413 // pass the handlerdata down to the sub-message handler setup.
new_map_handlerdata(size_t ofs,const upb_msgdef * mapentry_def,Descriptor * desc)414 static map_handlerdata_t* new_map_handlerdata(
415 size_t ofs,
416 const upb_msgdef* mapentry_def,
417 Descriptor* desc) {
418 const upb_fielddef* key_field;
419 const upb_fielddef* value_field;
420 map_handlerdata_t* hd = ALLOC(map_handlerdata_t);
421 hd->ofs = ofs;
422 key_field = upb_msgdef_itof(mapentry_def, MAP_KEY_FIELD);
423 assert(key_field != NULL);
424 hd->key_field_type = upb_fielddef_type(key_field);
425 value_field = upb_msgdef_itof(mapentry_def, MAP_VALUE_FIELD);
426 assert(value_field != NULL);
427 hd->value_field_type = upb_fielddef_type(value_field);
428 hd->value_field_subdef = upb_fielddef_subdef(value_field);
429
430 return hd;
431 }
432
433 // Handlers that set primitive values in oneofs.
434 #define DEFINE_ONEOF_HANDLER(type, ctype) \
435 static bool oneof##type##_handler(void *closure, const void *hd, \
436 ctype val) { \
437 const oneof_handlerdata_t *oneofdata = hd; \
438 DEREF(closure, oneofdata->case_ofs, uint32_t) = \
439 oneofdata->oneof_case_num; \
440 DEREF(closure, oneofdata->ofs, ctype) = val; \
441 return true; \
442 }
443
DEFINE_ONEOF_HANDLER(bool,bool)444 DEFINE_ONEOF_HANDLER(bool, bool)
445 DEFINE_ONEOF_HANDLER(int32, int32_t)
446 DEFINE_ONEOF_HANDLER(uint32, uint32_t)
447 DEFINE_ONEOF_HANDLER(float, float)
448 DEFINE_ONEOF_HANDLER(int64, int64_t)
449 DEFINE_ONEOF_HANDLER(uint64, uint64_t)
450 DEFINE_ONEOF_HANDLER(double, double)
451
452 #undef DEFINE_ONEOF_HANDLER
453
454 // Handlers for strings in a oneof.
455 static void *oneofstr_handler(void *closure,
456 const void *hd,
457 size_t size_hint) {
458 MessageHeader* msg = closure;
459 const oneof_handlerdata_t *oneofdata = hd;
460 VALUE str = rb_str_new2("");
461 rb_enc_associate(str, kRubyStringUtf8Encoding);
462 DEREF(msg, oneofdata->case_ofs, uint32_t) =
463 oneofdata->oneof_case_num;
464 DEREF(msg, oneofdata->ofs, VALUE) = str;
465 return (void*)str;
466 }
467
oneofbytes_handler(void * closure,const void * hd,size_t size_hint)468 static void *oneofbytes_handler(void *closure,
469 const void *hd,
470 size_t size_hint) {
471 MessageHeader* msg = closure;
472 const oneof_handlerdata_t *oneofdata = hd;
473 VALUE str = rb_str_new2("");
474 rb_enc_associate(str, kRubyString8bitEncoding);
475 DEREF(msg, oneofdata->case_ofs, uint32_t) =
476 oneofdata->oneof_case_num;
477 DEREF(msg, oneofdata->ofs, VALUE) = str;
478 return (void*)str;
479 }
480
oneofstring_end_handler(void * closure,const void * hd)481 static bool oneofstring_end_handler(void* closure, const void* hd) {
482 VALUE rb_str = rb_str_new2("");
483 rb_obj_freeze(rb_str);
484 return true;
485 }
486
487 // Handler for a submessage field in a oneof.
oneofsubmsg_handler(void * closure,const void * hd)488 static void *oneofsubmsg_handler(void *closure,
489 const void *hd) {
490 MessageHeader* msg = closure;
491 const oneof_handlerdata_t *oneofdata = hd;
492 uint32_t oldcase = DEREF(msg, oneofdata->case_ofs, uint32_t);
493
494 VALUE subdesc =
495 get_def_obj((void*)oneofdata->md);
496 VALUE subklass = Descriptor_msgclass(subdesc);
497 VALUE submsg_rb;
498 MessageHeader* submsg;
499
500 if (oldcase != oneofdata->oneof_case_num ||
501 DEREF(msg, oneofdata->ofs, VALUE) == Qnil) {
502 DEREF(msg, oneofdata->ofs, VALUE) =
503 rb_class_new_instance(0, NULL, subklass);
504 }
505 // Set the oneof case *after* allocating the new class instance -- otherwise,
506 // if the Ruby GC is invoked as part of a call into the VM, it might invoke
507 // our mark routines, and our mark routines might see the case value
508 // indicating a VALUE is present and expect a valid VALUE. See comment in
509 // layout_set() for more detail: basically, the change to the value and the
510 // case must be atomic w.r.t. the Ruby VM.
511 DEREF(msg, oneofdata->case_ofs, uint32_t) =
512 oneofdata->oneof_case_num;
513
514 submsg_rb = DEREF(msg, oneofdata->ofs, VALUE);
515 TypedData_Get_Struct(submsg_rb, MessageHeader, &Message_type, submsg);
516 return submsg;
517 }
518
519 // Set up handlers for a repeated field.
add_handlers_for_repeated_field(upb_handlers * h,const upb_fielddef * f,size_t offset)520 static void add_handlers_for_repeated_field(upb_handlers *h,
521 const upb_fielddef *f,
522 size_t offset) {
523 upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
524 upb_handlerattr_sethandlerdata(&attr, newhandlerdata(h, offset, -1));
525 upb_handlers_setstartseq(h, f, startseq_handler, &attr);
526 upb_handlerattr_uninit(&attr);
527
528 switch (upb_fielddef_type(f)) {
529
530 #define SET_HANDLER(utype, ltype) \
531 case utype: \
532 upb_handlers_set##ltype(h, f, append##ltype##_handler, NULL); \
533 break;
534
535 SET_HANDLER(UPB_TYPE_BOOL, bool);
536 SET_HANDLER(UPB_TYPE_INT32, int32);
537 SET_HANDLER(UPB_TYPE_UINT32, uint32);
538 SET_HANDLER(UPB_TYPE_ENUM, int32);
539 SET_HANDLER(UPB_TYPE_FLOAT, float);
540 SET_HANDLER(UPB_TYPE_INT64, int64);
541 SET_HANDLER(UPB_TYPE_UINT64, uint64);
542 SET_HANDLER(UPB_TYPE_DOUBLE, double);
543
544 #undef SET_HANDLER
545
546 case UPB_TYPE_STRING:
547 case UPB_TYPE_BYTES: {
548 bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES;
549 upb_handlers_setstartstr(h, f, is_bytes ?
550 appendbytes_handler : appendstr_handler,
551 NULL);
552 upb_handlers_setstring(h, f, stringdata_handler, NULL);
553 upb_handlers_setendstr(h, f, appendstring_end_handler, NULL);
554 break;
555 }
556 case UPB_TYPE_MESSAGE: {
557 upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
558 upb_handlerattr_sethandlerdata(&attr, newsubmsghandlerdata(h, 0, -1, f));
559 upb_handlers_setstartsubmsg(h, f, appendsubmsg_handler, &attr);
560 upb_handlerattr_uninit(&attr);
561 break;
562 }
563 }
564 }
565
566 // Set up handlers for a singular field.
add_handlers_for_singular_field(upb_handlers * h,const upb_fielddef * f,size_t offset,size_t hasbit_off)567 static void add_handlers_for_singular_field(upb_handlers *h,
568 const upb_fielddef *f,
569 size_t offset,
570 size_t hasbit_off) {
571 // The offset we pass to UPB points to the start of the Message,
572 // rather than the start of where our data is stored.
573 int32_t hasbit = -1;
574 if (hasbit_off != MESSAGE_FIELD_NO_HASBIT) {
575 hasbit = hasbit_off + sizeof(MessageHeader) * 8;
576 }
577
578 switch (upb_fielddef_type(f)) {
579 case UPB_TYPE_BOOL:
580 case UPB_TYPE_INT32:
581 case UPB_TYPE_UINT32:
582 case UPB_TYPE_ENUM:
583 case UPB_TYPE_FLOAT:
584 case UPB_TYPE_INT64:
585 case UPB_TYPE_UINT64:
586 case UPB_TYPE_DOUBLE:
587 upb_msg_setscalarhandler(h, f, offset, hasbit);
588 break;
589 case UPB_TYPE_STRING:
590 case UPB_TYPE_BYTES: {
591 bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES;
592 upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
593 upb_handlerattr_sethandlerdata(&attr, newhandlerdata(h, offset, hasbit));
594 upb_handlers_setstartstr(h, f,
595 is_bytes ? bytes_handler : str_handler,
596 &attr);
597 upb_handlers_setstring(h, f, stringdata_handler, &attr);
598 upb_handlers_setendstr(h, f, stringdata_end_handler, &attr);
599 upb_handlerattr_uninit(&attr);
600 break;
601 }
602 case UPB_TYPE_MESSAGE: {
603 upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
604 upb_handlerattr_sethandlerdata(&attr,
605 newsubmsghandlerdata(h, offset,
606 hasbit, f));
607 upb_handlers_setstartsubmsg(h, f, submsg_handler, &attr);
608 upb_handlerattr_uninit(&attr);
609 break;
610 }
611 }
612 }
613
614 // Adds handlers to a map field.
add_handlers_for_mapfield(upb_handlers * h,const upb_fielddef * fielddef,size_t offset,Descriptor * desc)615 static void add_handlers_for_mapfield(upb_handlers* h,
616 const upb_fielddef* fielddef,
617 size_t offset,
618 Descriptor* desc) {
619 const upb_msgdef* map_msgdef = upb_fielddef_msgsubdef(fielddef);
620 map_handlerdata_t* hd = new_map_handlerdata(offset, map_msgdef, desc);
621 upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
622
623 upb_handlers_addcleanup(h, hd, xfree);
624 upb_handlerattr_sethandlerdata(&attr, hd);
625 upb_handlers_setstartsubmsg(h, fielddef, startmapentry_handler, &attr);
626 upb_handlerattr_uninit(&attr);
627 }
628
629 // Adds handlers to a map-entry msgdef.
add_handlers_for_mapentry(const upb_msgdef * msgdef,upb_handlers * h,Descriptor * desc)630 static void add_handlers_for_mapentry(const upb_msgdef* msgdef,
631 upb_handlers* h,
632 Descriptor* desc) {
633 const upb_fielddef* key_field = map_entry_key(msgdef);
634 const upb_fielddef* value_field = map_entry_value(msgdef);
635 map_handlerdata_t* hd = new_map_handlerdata(0, msgdef, desc);
636 upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
637
638 upb_handlers_addcleanup(h, hd, xfree);
639 upb_handlerattr_sethandlerdata(&attr, hd);
640 upb_handlers_setendmsg(h, endmap_handler, &attr);
641
642 add_handlers_for_singular_field(
643 h, key_field,
644 offsetof(map_parse_frame_t, key_storage),
645 MESSAGE_FIELD_NO_HASBIT);
646 add_handlers_for_singular_field(
647 h, value_field,
648 offsetof(map_parse_frame_t, value_storage),
649 MESSAGE_FIELD_NO_HASBIT);
650 }
651
652 // Set up handlers for a oneof field.
add_handlers_for_oneof_field(upb_handlers * h,const upb_fielddef * f,size_t offset,size_t oneof_case_offset)653 static void add_handlers_for_oneof_field(upb_handlers *h,
654 const upb_fielddef *f,
655 size_t offset,
656 size_t oneof_case_offset) {
657
658 upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
659 upb_handlerattr_sethandlerdata(
660 &attr, newoneofhandlerdata(h, offset, oneof_case_offset, f));
661
662 switch (upb_fielddef_type(f)) {
663
664 #define SET_HANDLER(utype, ltype) \
665 case utype: \
666 upb_handlers_set##ltype(h, f, oneof##ltype##_handler, &attr); \
667 break;
668
669 SET_HANDLER(UPB_TYPE_BOOL, bool);
670 SET_HANDLER(UPB_TYPE_INT32, int32);
671 SET_HANDLER(UPB_TYPE_UINT32, uint32);
672 SET_HANDLER(UPB_TYPE_ENUM, int32);
673 SET_HANDLER(UPB_TYPE_FLOAT, float);
674 SET_HANDLER(UPB_TYPE_INT64, int64);
675 SET_HANDLER(UPB_TYPE_UINT64, uint64);
676 SET_HANDLER(UPB_TYPE_DOUBLE, double);
677
678 #undef SET_HANDLER
679
680 case UPB_TYPE_STRING:
681 case UPB_TYPE_BYTES: {
682 bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES;
683 upb_handlers_setstartstr(h, f, is_bytes ?
684 oneofbytes_handler : oneofstr_handler,
685 &attr);
686 upb_handlers_setstring(h, f, stringdata_handler, NULL);
687 upb_handlers_setendstr(h, f, oneofstring_end_handler, &attr);
688 break;
689 }
690 case UPB_TYPE_MESSAGE: {
691 upb_handlers_setstartsubmsg(h, f, oneofsubmsg_handler, &attr);
692 break;
693 }
694 }
695
696 upb_handlerattr_uninit(&attr);
697 }
698
unknown_field_handler(void * closure,const void * hd,const char * buf,size_t size)699 static bool unknown_field_handler(void* closure, const void* hd,
700 const char* buf, size_t size) {
701 UPB_UNUSED(hd);
702
703 MessageHeader* msg = (MessageHeader*)closure;
704 if (msg->unknown_fields == NULL) {
705 msg->unknown_fields = malloc(sizeof(stringsink));
706 stringsink_init(msg->unknown_fields);
707 }
708
709 stringsink_string(msg->unknown_fields, NULL, buf, size, NULL);
710
711 return true;
712 }
713
add_handlers_for_message(const void * closure,upb_handlers * h)714 static void add_handlers_for_message(const void *closure, upb_handlers *h) {
715 const upb_msgdef* msgdef = upb_handlers_msgdef(h);
716 Descriptor* desc = ruby_to_Descriptor(get_def_obj((void*)msgdef));
717 upb_msg_field_iter i;
718
719 // If this is a mapentry message type, set up a special set of handlers and
720 // bail out of the normal (user-defined) message type handling.
721 if (upb_msgdef_mapentry(msgdef)) {
722 add_handlers_for_mapentry(msgdef, h, desc);
723 return;
724 }
725
726 // Ensure layout exists. We may be invoked to create handlers for a given
727 // message if we are included as a submsg of another message type before our
728 // class is actually built, so to work around this, we just create the layout
729 // (and handlers, in the class-building function) on-demand.
730 if (desc->layout == NULL) {
731 desc->layout = create_layout(desc->msgdef);
732 }
733
734 upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
735 upb_handlers_setunknown(h, unknown_field_handler, &attr);
736
737 for (upb_msg_field_begin(&i, desc->msgdef);
738 !upb_msg_field_done(&i);
739 upb_msg_field_next(&i)) {
740 const upb_fielddef *f = upb_msg_iter_field(&i);
741 size_t offset = desc->layout->fields[upb_fielddef_index(f)].offset +
742 sizeof(MessageHeader);
743
744 if (upb_fielddef_containingoneof(f)) {
745 size_t oneof_case_offset =
746 desc->layout->fields[upb_fielddef_index(f)].case_offset +
747 sizeof(MessageHeader);
748 add_handlers_for_oneof_field(h, f, offset, oneof_case_offset);
749 } else if (is_map_field(f)) {
750 add_handlers_for_mapfield(h, f, offset, desc);
751 } else if (upb_fielddef_isseq(f)) {
752 add_handlers_for_repeated_field(h, f, offset);
753 } else {
754 add_handlers_for_singular_field(
755 h, f, offset, desc->layout->fields[upb_fielddef_index(f)].hasbit);
756 }
757 }
758 }
759
760 // Creates upb handlers for populating a message.
new_fill_handlers(Descriptor * desc,const void * owner)761 static const upb_handlers *new_fill_handlers(Descriptor* desc,
762 const void* owner) {
763 // TODO(cfallin, haberman): once upb gets a caching/memoization layer for
764 // handlers, reuse subdef handlers so that e.g. if we already parse
765 // B-with-field-of-type-C, we don't have to rebuild the whole hierarchy to
766 // parse A-with-field-of-type-B-with-field-of-type-C.
767 return upb_handlers_newfrozen(desc->msgdef, owner,
768 add_handlers_for_message, NULL);
769 }
770
771 // Constructs the handlers for filling a message's data into an in-memory
772 // object.
get_fill_handlers(Descriptor * desc)773 const upb_handlers* get_fill_handlers(Descriptor* desc) {
774 if (!desc->fill_handlers) {
775 desc->fill_handlers =
776 new_fill_handlers(desc, &desc->fill_handlers);
777 }
778 return desc->fill_handlers;
779 }
780
781 // Constructs the upb decoder method for parsing messages of this type.
782 // This is called from the message class creation code.
new_fillmsg_decodermethod(Descriptor * desc,const void * owner)783 const upb_pbdecodermethod *new_fillmsg_decodermethod(Descriptor* desc,
784 const void* owner) {
785 const upb_handlers* handlers = get_fill_handlers(desc);
786 upb_pbdecodermethodopts opts;
787 upb_pbdecodermethodopts_init(&opts, handlers);
788
789 return upb_pbdecodermethod_new(&opts, owner);
790 }
791
msgdef_decodermethod(Descriptor * desc)792 static const upb_pbdecodermethod *msgdef_decodermethod(Descriptor* desc) {
793 if (desc->fill_method == NULL) {
794 desc->fill_method = new_fillmsg_decodermethod(
795 desc, &desc->fill_method);
796 }
797 return desc->fill_method;
798 }
799
msgdef_jsonparsermethod(Descriptor * desc)800 static const upb_json_parsermethod *msgdef_jsonparsermethod(Descriptor* desc) {
801 if (desc->json_fill_method == NULL) {
802 desc->json_fill_method =
803 upb_json_parsermethod_new(desc->msgdef, &desc->json_fill_method);
804 }
805 return desc->json_fill_method;
806 }
807
808
809 // Stack-allocated context during an encode/decode operation. Contains the upb
810 // environment and its stack-based allocator, an initial buffer for allocations
811 // to avoid malloc() when possible, and a template for Ruby exception messages
812 // if any error occurs.
813 #define STACK_ENV_STACKBYTES 4096
814 typedef struct {
815 upb_env env;
816 const char* ruby_error_template;
817 char allocbuf[STACK_ENV_STACKBYTES];
818 } stackenv;
819
820 static void stackenv_init(stackenv* se, const char* errmsg);
821 static void stackenv_uninit(stackenv* se);
822
823 // Callback invoked by upb if any error occurs during parsing or serialization.
env_error_func(void * ud,const upb_status * status)824 static bool env_error_func(void* ud, const upb_status* status) {
825 stackenv* se = ud;
826 // Free the env -- rb_raise will longjmp up the stack past the encode/decode
827 // function so it would not otherwise have been freed.
828 stackenv_uninit(se);
829
830 // TODO(haberman): have a way to verify that this is actually a parse error,
831 // instead of just throwing "parse error" unconditionally.
832 rb_raise(cParseError, se->ruby_error_template, upb_status_errmsg(status));
833 // Never reached: rb_raise() always longjmp()s up the stack, past all of our
834 // code, back to Ruby.
835 return false;
836 }
837
stackenv_init(stackenv * se,const char * errmsg)838 static void stackenv_init(stackenv* se, const char* errmsg) {
839 se->ruby_error_template = errmsg;
840 upb_env_init2(&se->env, se->allocbuf, sizeof(se->allocbuf), NULL);
841 upb_env_seterrorfunc(&se->env, env_error_func, se);
842 }
843
stackenv_uninit(stackenv * se)844 static void stackenv_uninit(stackenv* se) {
845 upb_env_uninit(&se->env);
846 }
847
848 /*
849 * call-seq:
850 * MessageClass.decode(data) => message
851 *
852 * Decodes the given data (as a string containing bytes in protocol buffers wire
853 * format) under the interpretration given by this message class's definition
854 * and returns a message object with the corresponding field values.
855 */
Message_decode(VALUE klass,VALUE data)856 VALUE Message_decode(VALUE klass, VALUE data) {
857 VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned);
858 Descriptor* desc = ruby_to_Descriptor(descriptor);
859 VALUE msgklass = Descriptor_msgclass(descriptor);
860 VALUE msg_rb;
861 MessageHeader* msg;
862
863 if (TYPE(data) != T_STRING) {
864 rb_raise(rb_eArgError, "Expected string for binary protobuf data.");
865 }
866
867 msg_rb = rb_class_new_instance(0, NULL, msgklass);
868 TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg);
869
870 {
871 const upb_pbdecodermethod* method = msgdef_decodermethod(desc);
872 const upb_handlers* h = upb_pbdecodermethod_desthandlers(method);
873 stackenv se;
874 upb_sink sink;
875 upb_pbdecoder* decoder;
876 stackenv_init(&se, "Error occurred during parsing: %s");
877
878 upb_sink_reset(&sink, h, msg);
879 decoder = upb_pbdecoder_create(&se.env, method, &sink);
880 upb_bufsrc_putbuf(RSTRING_PTR(data), RSTRING_LEN(data),
881 upb_pbdecoder_input(decoder));
882
883 stackenv_uninit(&se);
884 }
885
886 return msg_rb;
887 }
888
889 /*
890 * call-seq:
891 * MessageClass.decode_json(data, options = {}) => message
892 *
893 * Decodes the given data (as a string containing bytes in protocol buffers wire
894 * format) under the interpretration given by this message class's definition
895 * and returns a message object with the corresponding field values.
896 *
897 * @param options [Hash] options for the decoder
898 * ignore_unknown_fields: set true to ignore unknown fields (default is to raise an error)
899 */
Message_decode_json(int argc,VALUE * argv,VALUE klass)900 VALUE Message_decode_json(int argc, VALUE* argv, VALUE klass) {
901 VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned);
902 Descriptor* desc = ruby_to_Descriptor(descriptor);
903 VALUE msgklass = Descriptor_msgclass(descriptor);
904 VALUE msg_rb;
905 VALUE data = argv[0];
906 VALUE ignore_unknown_fields = Qfalse;
907 MessageHeader* msg;
908
909 if (argc < 1 || argc > 2) {
910 rb_raise(rb_eArgError, "Expected 1 or 2 arguments.");
911 }
912
913 if (argc == 2) {
914 VALUE hash_args = argv[1];
915 if (TYPE(hash_args) != T_HASH) {
916 rb_raise(rb_eArgError, "Expected hash arguments.");
917 }
918
919 ignore_unknown_fields = rb_hash_lookup2(
920 hash_args, ID2SYM(rb_intern("ignore_unknown_fields")), Qfalse);
921 }
922
923 if (TYPE(data) != T_STRING) {
924 rb_raise(rb_eArgError, "Expected string for JSON data.");
925 }
926 // TODO(cfallin): Check and respect string encoding. If not UTF-8, we need to
927 // convert, because string handlers pass data directly to message string
928 // fields.
929
930 msg_rb = rb_class_new_instance(0, NULL, msgklass);
931 TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg);
932
933 {
934 const upb_json_parsermethod* method = msgdef_jsonparsermethod(desc);
935 stackenv se;
936 upb_sink sink;
937 upb_json_parser* parser;
938 DescriptorPool* pool = ruby_to_DescriptorPool(generated_pool);
939 stackenv_init(&se, "Error occurred during parsing: %s");
940
941 upb_sink_reset(&sink, get_fill_handlers(desc), msg);
942 parser = upb_json_parser_create(&se.env, method, pool->symtab,
943 &sink, ignore_unknown_fields);
944 upb_bufsrc_putbuf(RSTRING_PTR(data), RSTRING_LEN(data),
945 upb_json_parser_input(parser));
946
947 stackenv_uninit(&se);
948 }
949
950 return msg_rb;
951 }
952
953 // -----------------------------------------------------------------------------
954 // Serializing.
955 // -----------------------------------------------------------------------------
956
957 /* msgvisitor *****************************************************************/
958
959 static void putmsg(VALUE msg, const Descriptor* desc,
960 upb_sink *sink, int depth, bool emit_defaults,
961 bool is_json, bool open_msg);
962
getsel(const upb_fielddef * f,upb_handlertype_t type)963 static upb_selector_t getsel(const upb_fielddef *f, upb_handlertype_t type) {
964 upb_selector_t ret;
965 bool ok = upb_handlers_getselector(f, type, &ret);
966 UPB_ASSERT(ok);
967 return ret;
968 }
969
putstr(VALUE str,const upb_fielddef * f,upb_sink * sink)970 static void putstr(VALUE str, const upb_fielddef *f, upb_sink *sink) {
971 upb_sink subsink;
972
973 if (str == Qnil) return;
974
975 assert(BUILTIN_TYPE(str) == RUBY_T_STRING);
976
977 // We should be guaranteed that the string has the correct encoding because
978 // we ensured this at assignment time and then froze the string.
979 if (upb_fielddef_type(f) == UPB_TYPE_STRING) {
980 assert(rb_enc_from_index(ENCODING_GET(str)) == kRubyStringUtf8Encoding);
981 } else {
982 assert(rb_enc_from_index(ENCODING_GET(str)) == kRubyString8bitEncoding);
983 }
984
985 upb_sink_startstr(sink, getsel(f, UPB_HANDLER_STARTSTR), RSTRING_LEN(str),
986 &subsink);
987 upb_sink_putstring(&subsink, getsel(f, UPB_HANDLER_STRING), RSTRING_PTR(str),
988 RSTRING_LEN(str), NULL);
989 upb_sink_endstr(sink, getsel(f, UPB_HANDLER_ENDSTR));
990 }
991
putsubmsg(VALUE submsg,const upb_fielddef * f,upb_sink * sink,int depth,bool emit_defaults,bool is_json)992 static void putsubmsg(VALUE submsg, const upb_fielddef *f, upb_sink *sink,
993 int depth, bool emit_defaults, bool is_json) {
994 upb_sink subsink;
995 VALUE descriptor;
996 Descriptor* subdesc;
997
998 if (submsg == Qnil) return;
999
1000 descriptor = rb_ivar_get(submsg, descriptor_instancevar_interned);
1001 subdesc = ruby_to_Descriptor(descriptor);
1002
1003 upb_sink_startsubmsg(sink, getsel(f, UPB_HANDLER_STARTSUBMSG), &subsink);
1004 putmsg(submsg, subdesc, &subsink, depth + 1, emit_defaults, is_json, true);
1005 upb_sink_endsubmsg(sink, getsel(f, UPB_HANDLER_ENDSUBMSG));
1006 }
1007
putary(VALUE ary,const upb_fielddef * f,upb_sink * sink,int depth,bool emit_defaults,bool is_json)1008 static void putary(VALUE ary, const upb_fielddef *f, upb_sink *sink,
1009 int depth, bool emit_defaults, bool is_json) {
1010 upb_sink subsink;
1011 upb_fieldtype_t type = upb_fielddef_type(f);
1012 upb_selector_t sel = 0;
1013 int size;
1014
1015 if (ary == Qnil) return;
1016 if (!emit_defaults && NUM2INT(RepeatedField_length(ary)) == 0) return;
1017
1018 size = NUM2INT(RepeatedField_length(ary));
1019 if (size == 0 && !emit_defaults) return;
1020
1021 upb_sink_startseq(sink, getsel(f, UPB_HANDLER_STARTSEQ), &subsink);
1022
1023 if (upb_fielddef_isprimitive(f)) {
1024 sel = getsel(f, upb_handlers_getprimitivehandlertype(f));
1025 }
1026
1027 for (int i = 0; i < size; i++) {
1028 void* memory = RepeatedField_index_native(ary, i);
1029 switch (type) {
1030 #define T(upbtypeconst, upbtype, ctype) \
1031 case upbtypeconst: \
1032 upb_sink_put##upbtype(&subsink, sel, *((ctype *)memory)); \
1033 break;
1034
1035 T(UPB_TYPE_FLOAT, float, float)
1036 T(UPB_TYPE_DOUBLE, double, double)
1037 T(UPB_TYPE_BOOL, bool, int8_t)
1038 case UPB_TYPE_ENUM:
1039 T(UPB_TYPE_INT32, int32, int32_t)
1040 T(UPB_TYPE_UINT32, uint32, uint32_t)
1041 T(UPB_TYPE_INT64, int64, int64_t)
1042 T(UPB_TYPE_UINT64, uint64, uint64_t)
1043
1044 case UPB_TYPE_STRING:
1045 case UPB_TYPE_BYTES:
1046 putstr(*((VALUE *)memory), f, &subsink);
1047 break;
1048 case UPB_TYPE_MESSAGE:
1049 putsubmsg(*((VALUE *)memory), f, &subsink, depth,
1050 emit_defaults, is_json);
1051 break;
1052
1053 #undef T
1054
1055 }
1056 }
1057 upb_sink_endseq(sink, getsel(f, UPB_HANDLER_ENDSEQ));
1058 }
1059
put_ruby_value(VALUE value,const upb_fielddef * f,VALUE type_class,int depth,upb_sink * sink,bool emit_defaults,bool is_json)1060 static void put_ruby_value(VALUE value,
1061 const upb_fielddef *f,
1062 VALUE type_class,
1063 int depth,
1064 upb_sink *sink,
1065 bool emit_defaults,
1066 bool is_json) {
1067 if (depth > ENCODE_MAX_NESTING) {
1068 rb_raise(rb_eRuntimeError,
1069 "Maximum recursion depth exceeded during encoding.");
1070 }
1071
1072 upb_selector_t sel = 0;
1073 if (upb_fielddef_isprimitive(f)) {
1074 sel = getsel(f, upb_handlers_getprimitivehandlertype(f));
1075 }
1076
1077 switch (upb_fielddef_type(f)) {
1078 case UPB_TYPE_INT32:
1079 upb_sink_putint32(sink, sel, NUM2INT(value));
1080 break;
1081 case UPB_TYPE_INT64:
1082 upb_sink_putint64(sink, sel, NUM2LL(value));
1083 break;
1084 case UPB_TYPE_UINT32:
1085 upb_sink_putuint32(sink, sel, NUM2UINT(value));
1086 break;
1087 case UPB_TYPE_UINT64:
1088 upb_sink_putuint64(sink, sel, NUM2ULL(value));
1089 break;
1090 case UPB_TYPE_FLOAT:
1091 upb_sink_putfloat(sink, sel, NUM2DBL(value));
1092 break;
1093 case UPB_TYPE_DOUBLE:
1094 upb_sink_putdouble(sink, sel, NUM2DBL(value));
1095 break;
1096 case UPB_TYPE_ENUM: {
1097 if (TYPE(value) == T_SYMBOL) {
1098 value = rb_funcall(type_class, rb_intern("resolve"), 1, value);
1099 }
1100 upb_sink_putint32(sink, sel, NUM2INT(value));
1101 break;
1102 }
1103 case UPB_TYPE_BOOL:
1104 upb_sink_putbool(sink, sel, value == Qtrue);
1105 break;
1106 case UPB_TYPE_STRING:
1107 case UPB_TYPE_BYTES:
1108 putstr(value, f, sink);
1109 break;
1110 case UPB_TYPE_MESSAGE:
1111 putsubmsg(value, f, sink, depth, emit_defaults, is_json);
1112 }
1113 }
1114
putmap(VALUE map,const upb_fielddef * f,upb_sink * sink,int depth,bool emit_defaults,bool is_json)1115 static void putmap(VALUE map, const upb_fielddef *f, upb_sink *sink,
1116 int depth, bool emit_defaults, bool is_json) {
1117 Map* self;
1118 upb_sink subsink;
1119 const upb_fielddef* key_field;
1120 const upb_fielddef* value_field;
1121 Map_iter it;
1122
1123 if (map == Qnil) return;
1124 if (!emit_defaults && Map_length(map) == 0) return;
1125
1126 self = ruby_to_Map(map);
1127
1128 upb_sink_startseq(sink, getsel(f, UPB_HANDLER_STARTSEQ), &subsink);
1129
1130 assert(upb_fielddef_type(f) == UPB_TYPE_MESSAGE);
1131 key_field = map_field_key(f);
1132 value_field = map_field_value(f);
1133
1134 for (Map_begin(map, &it); !Map_done(&it); Map_next(&it)) {
1135 VALUE key = Map_iter_key(&it);
1136 VALUE value = Map_iter_value(&it);
1137 upb_status status;
1138
1139 upb_sink entry_sink;
1140 upb_sink_startsubmsg(&subsink, getsel(f, UPB_HANDLER_STARTSUBMSG),
1141 &entry_sink);
1142 upb_sink_startmsg(&entry_sink);
1143
1144 put_ruby_value(key, key_field, Qnil, depth + 1, &entry_sink,
1145 emit_defaults, is_json);
1146 put_ruby_value(value, value_field, self->value_type_class, depth + 1,
1147 &entry_sink, emit_defaults, is_json);
1148
1149 upb_sink_endmsg(&entry_sink, &status);
1150 upb_sink_endsubmsg(&subsink, getsel(f, UPB_HANDLER_ENDSUBMSG));
1151 }
1152
1153 upb_sink_endseq(sink, getsel(f, UPB_HANDLER_ENDSEQ));
1154 }
1155
1156 static const upb_handlers* msgdef_json_serialize_handlers(
1157 Descriptor* desc, bool preserve_proto_fieldnames);
1158
putjsonany(VALUE msg_rb,const Descriptor * desc,upb_sink * sink,int depth,bool emit_defaults)1159 static void putjsonany(VALUE msg_rb, const Descriptor* desc,
1160 upb_sink* sink, int depth, bool emit_defaults) {
1161 upb_status status;
1162 MessageHeader* msg = NULL;
1163 const upb_fielddef* type_field = upb_msgdef_itof(desc->msgdef, UPB_ANY_TYPE);
1164 const upb_fielddef* value_field = upb_msgdef_itof(desc->msgdef, UPB_ANY_VALUE);
1165
1166 size_t type_url_offset;
1167 VALUE type_url_str_rb;
1168 const upb_msgdef *payload_type = NULL;
1169
1170 TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg);
1171
1172 upb_sink_startmsg(sink);
1173
1174 /* Handle type url */
1175 type_url_offset = desc->layout->fields[upb_fielddef_index(type_field)].offset;
1176 type_url_str_rb = DEREF(Message_data(msg), type_url_offset, VALUE);
1177 if (RSTRING_LEN(type_url_str_rb) > 0) {
1178 putstr(type_url_str_rb, type_field, sink);
1179 }
1180
1181 {
1182 const char* type_url_str = RSTRING_PTR(type_url_str_rb);
1183 size_t type_url_len = RSTRING_LEN(type_url_str_rb);
1184 DescriptorPool* pool = ruby_to_DescriptorPool(generated_pool);
1185
1186 if (type_url_len <= 20 ||
1187 strncmp(type_url_str, "type.googleapis.com/", 20) != 0) {
1188 rb_raise(rb_eRuntimeError, "Invalid type url: %s", type_url_str);
1189 return;
1190 }
1191
1192 /* Resolve type url */
1193 type_url_str += 20;
1194 type_url_len -= 20;
1195
1196 payload_type = upb_symtab_lookupmsg2(
1197 pool->symtab, type_url_str, type_url_len);
1198 if (payload_type == NULL) {
1199 rb_raise(rb_eRuntimeError, "Unknown type: %s", type_url_str);
1200 return;
1201 }
1202 }
1203
1204 {
1205 uint32_t value_offset;
1206 VALUE value_str_rb;
1207 const char* value_str;
1208 size_t value_len;
1209
1210 value_offset = desc->layout->fields[upb_fielddef_index(value_field)].offset;
1211 value_str_rb = DEREF(Message_data(msg), value_offset, VALUE);
1212 value_str = RSTRING_PTR(value_str_rb);
1213 value_len = RSTRING_LEN(value_str_rb);
1214
1215 if (value_len > 0) {
1216 VALUE payload_desc_rb = get_def_obj(payload_type);
1217 Descriptor* payload_desc = ruby_to_Descriptor(payload_desc_rb);
1218 VALUE payload_class = Descriptor_msgclass(payload_desc_rb);
1219 upb_sink subsink;
1220 bool is_wellknown;
1221
1222 VALUE payload_msg_rb = Message_decode(payload_class, value_str_rb);
1223
1224 is_wellknown =
1225 upb_msgdef_wellknowntype(payload_desc->msgdef) !=
1226 UPB_WELLKNOWN_UNSPECIFIED;
1227 if (is_wellknown) {
1228 upb_sink_startstr(sink, getsel(value_field, UPB_HANDLER_STARTSTR), 0,
1229 &subsink);
1230 }
1231
1232 subsink.handlers =
1233 msgdef_json_serialize_handlers(payload_desc, true);
1234 subsink.closure = sink->closure;
1235 putmsg(payload_msg_rb, payload_desc, &subsink, depth, emit_defaults, true,
1236 is_wellknown);
1237 }
1238 }
1239
1240 upb_sink_endmsg(sink, &status);
1241 }
1242
putjsonlistvalue(VALUE msg_rb,const Descriptor * desc,upb_sink * sink,int depth,bool emit_defaults)1243 static void putjsonlistvalue(
1244 VALUE msg_rb, const Descriptor* desc,
1245 upb_sink* sink, int depth, bool emit_defaults) {
1246 upb_status status;
1247 upb_sink subsink;
1248 MessageHeader* msg = NULL;
1249 const upb_fielddef* f = upb_msgdef_itof(desc->msgdef, 1);
1250 uint32_t offset =
1251 desc->layout->fields[upb_fielddef_index(f)].offset +
1252 sizeof(MessageHeader);
1253 VALUE ary;
1254
1255 TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg);
1256
1257 upb_sink_startmsg(sink);
1258
1259 ary = DEREF(msg, offset, VALUE);
1260
1261 if (ary == Qnil || RepeatedField_size(ary) == 0) {
1262 upb_sink_startseq(sink, getsel(f, UPB_HANDLER_STARTSEQ), &subsink);
1263 upb_sink_endseq(sink, getsel(f, UPB_HANDLER_ENDSEQ));
1264 } else {
1265 putary(ary, f, sink, depth, emit_defaults, true);
1266 }
1267
1268 upb_sink_endmsg(sink, &status);
1269 }
1270
putmsg(VALUE msg_rb,const Descriptor * desc,upb_sink * sink,int depth,bool emit_defaults,bool is_json,bool open_msg)1271 static void putmsg(VALUE msg_rb, const Descriptor* desc,
1272 upb_sink *sink, int depth, bool emit_defaults,
1273 bool is_json, bool open_msg) {
1274 MessageHeader* msg;
1275 upb_msg_field_iter i;
1276 upb_status status;
1277
1278 if (is_json &&
1279 upb_msgdef_wellknowntype(desc->msgdef) == UPB_WELLKNOWN_ANY) {
1280 putjsonany(msg_rb, desc, sink, depth, emit_defaults);
1281 return;
1282 }
1283
1284 if (is_json &&
1285 upb_msgdef_wellknowntype(desc->msgdef) == UPB_WELLKNOWN_LISTVALUE) {
1286 putjsonlistvalue(msg_rb, desc, sink, depth, emit_defaults);
1287 return;
1288 }
1289
1290 if (open_msg) {
1291 upb_sink_startmsg(sink);
1292 }
1293
1294 // Protect against cycles (possible because users may freely reassign message
1295 // and repeated fields) by imposing a maximum recursion depth.
1296 if (depth > ENCODE_MAX_NESTING) {
1297 rb_raise(rb_eRuntimeError,
1298 "Maximum recursion depth exceeded during encoding.");
1299 }
1300
1301 TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg);
1302
1303 if (desc != msg->descriptor) {
1304 rb_raise(rb_eArgError,
1305 "The type of given msg is '%s', expect '%s'.",
1306 upb_msgdef_fullname(msg->descriptor->msgdef),
1307 upb_msgdef_fullname(desc->msgdef));
1308 }
1309
1310 for (upb_msg_field_begin(&i, desc->msgdef);
1311 !upb_msg_field_done(&i);
1312 upb_msg_field_next(&i)) {
1313 upb_fielddef *f = upb_msg_iter_field(&i);
1314 bool is_matching_oneof = false;
1315 uint32_t offset =
1316 desc->layout->fields[upb_fielddef_index(f)].offset +
1317 sizeof(MessageHeader);
1318
1319 if (upb_fielddef_containingoneof(f)) {
1320 uint32_t oneof_case_offset =
1321 desc->layout->fields[upb_fielddef_index(f)].case_offset +
1322 sizeof(MessageHeader);
1323 // For a oneof, check that this field is actually present -- skip all the
1324 // below if not.
1325 if (DEREF(msg, oneof_case_offset, uint32_t) !=
1326 upb_fielddef_number(f)) {
1327 continue;
1328 }
1329 // Otherwise, fall through to the appropriate singular-field handler
1330 // below.
1331 is_matching_oneof = true;
1332 }
1333
1334 if (is_map_field(f)) {
1335 VALUE map = DEREF(msg, offset, VALUE);
1336 if (map != Qnil || emit_defaults) {
1337 putmap(map, f, sink, depth, emit_defaults, is_json);
1338 }
1339 } else if (upb_fielddef_isseq(f)) {
1340 VALUE ary = DEREF(msg, offset, VALUE);
1341 if (ary != Qnil) {
1342 putary(ary, f, sink, depth, emit_defaults, is_json);
1343 }
1344 } else if (upb_fielddef_isstring(f)) {
1345 VALUE str = DEREF(msg, offset, VALUE);
1346 bool is_default = false;
1347
1348 if (upb_msgdef_syntax(desc->msgdef) == UPB_SYNTAX_PROTO2) {
1349 is_default = layout_has(desc->layout, Message_data(msg), f) == Qfalse;
1350 } else if (upb_msgdef_syntax(desc->msgdef) == UPB_SYNTAX_PROTO3) {
1351 is_default = RSTRING_LEN(str) == 0;
1352 }
1353
1354 if (is_matching_oneof || emit_defaults || !is_default) {
1355 putstr(str, f, sink);
1356 }
1357 } else if (upb_fielddef_issubmsg(f)) {
1358 putsubmsg(DEREF(msg, offset, VALUE), f, sink, depth,
1359 emit_defaults, is_json);
1360 } else {
1361 upb_selector_t sel = getsel(f, upb_handlers_getprimitivehandlertype(f));
1362
1363 #define T(upbtypeconst, upbtype, ctype, default_value) \
1364 case upbtypeconst: { \
1365 ctype value = DEREF(msg, offset, ctype); \
1366 bool is_default = false; \
1367 if (upb_fielddef_haspresence(f)) { \
1368 is_default = layout_has(desc->layout, Message_data(msg), f) == Qfalse; \
1369 } else if (upb_msgdef_syntax(desc->msgdef) == UPB_SYNTAX_PROTO3) { \
1370 is_default = default_value == value; \
1371 } \
1372 if (is_matching_oneof || emit_defaults || !is_default) { \
1373 upb_sink_put##upbtype(sink, sel, value); \
1374 } \
1375 } \
1376 break;
1377
1378 switch (upb_fielddef_type(f)) {
1379 T(UPB_TYPE_FLOAT, float, float, 0.0)
1380 T(UPB_TYPE_DOUBLE, double, double, 0.0)
1381 T(UPB_TYPE_BOOL, bool, uint8_t, 0)
1382 case UPB_TYPE_ENUM:
1383 T(UPB_TYPE_INT32, int32, int32_t, 0)
1384 T(UPB_TYPE_UINT32, uint32, uint32_t, 0)
1385 T(UPB_TYPE_INT64, int64, int64_t, 0)
1386 T(UPB_TYPE_UINT64, uint64, uint64_t, 0)
1387
1388 case UPB_TYPE_STRING:
1389 case UPB_TYPE_BYTES:
1390 case UPB_TYPE_MESSAGE: rb_raise(rb_eRuntimeError, "Internal error.");
1391 }
1392
1393 #undef T
1394
1395 }
1396 }
1397
1398 stringsink* unknown = msg->unknown_fields;
1399 if (unknown != NULL) {
1400 upb_sink_putunknown(sink, unknown->ptr, unknown->len);
1401 }
1402
1403 if (open_msg) {
1404 upb_sink_endmsg(sink, &status);
1405 }
1406 }
1407
msgdef_pb_serialize_handlers(Descriptor * desc)1408 static const upb_handlers* msgdef_pb_serialize_handlers(Descriptor* desc) {
1409 if (desc->pb_serialize_handlers == NULL) {
1410 desc->pb_serialize_handlers =
1411 upb_pb_encoder_newhandlers(desc->msgdef, &desc->pb_serialize_handlers);
1412 }
1413 return desc->pb_serialize_handlers;
1414 }
1415
msgdef_json_serialize_handlers(Descriptor * desc,bool preserve_proto_fieldnames)1416 static const upb_handlers* msgdef_json_serialize_handlers(
1417 Descriptor* desc, bool preserve_proto_fieldnames) {
1418 if (preserve_proto_fieldnames) {
1419 if (desc->json_serialize_handlers == NULL) {
1420 desc->json_serialize_handlers =
1421 upb_json_printer_newhandlers(
1422 desc->msgdef, true, &desc->json_serialize_handlers);
1423 }
1424 return desc->json_serialize_handlers;
1425 } else {
1426 if (desc->json_serialize_handlers_preserve == NULL) {
1427 desc->json_serialize_handlers_preserve =
1428 upb_json_printer_newhandlers(
1429 desc->msgdef, false, &desc->json_serialize_handlers_preserve);
1430 }
1431 return desc->json_serialize_handlers_preserve;
1432 }
1433 }
1434
1435 /*
1436 * call-seq:
1437 * MessageClass.encode(msg) => bytes
1438 *
1439 * Encodes the given message object to its serialized form in protocol buffers
1440 * wire format.
1441 */
Message_encode(VALUE klass,VALUE msg_rb)1442 VALUE Message_encode(VALUE klass, VALUE msg_rb) {
1443 VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned);
1444 Descriptor* desc = ruby_to_Descriptor(descriptor);
1445
1446 stringsink sink;
1447 stringsink_init(&sink);
1448
1449 {
1450 const upb_handlers* serialize_handlers =
1451 msgdef_pb_serialize_handlers(desc);
1452
1453 stackenv se;
1454 upb_pb_encoder* encoder;
1455 VALUE ret;
1456
1457 stackenv_init(&se, "Error occurred during encoding: %s");
1458 encoder = upb_pb_encoder_create(&se.env, serialize_handlers, &sink.sink);
1459
1460 putmsg(msg_rb, desc, upb_pb_encoder_input(encoder), 0, false, false, true);
1461
1462 ret = rb_str_new(sink.ptr, sink.len);
1463
1464 stackenv_uninit(&se);
1465 stringsink_uninit(&sink);
1466
1467 return ret;
1468 }
1469 }
1470
1471 /*
1472 * call-seq:
1473 * MessageClass.encode_json(msg, options = {}) => json_string
1474 *
1475 * Encodes the given message object into its serialized JSON representation.
1476 * @param options [Hash] options for the decoder
1477 * preserve_proto_fieldnames: set true to use original fieldnames (default is to camelCase)
1478 * emit_defaults: set true to emit 0/false values (default is to omit them)
1479 */
Message_encode_json(int argc,VALUE * argv,VALUE klass)1480 VALUE Message_encode_json(int argc, VALUE* argv, VALUE klass) {
1481 VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned);
1482 Descriptor* desc = ruby_to_Descriptor(descriptor);
1483 VALUE msg_rb;
1484 VALUE preserve_proto_fieldnames = Qfalse;
1485 VALUE emit_defaults = Qfalse;
1486 stringsink sink;
1487
1488 if (argc < 1 || argc > 2) {
1489 rb_raise(rb_eArgError, "Expected 1 or 2 arguments.");
1490 }
1491
1492 msg_rb = argv[0];
1493
1494 if (argc == 2) {
1495 VALUE hash_args = argv[1];
1496 if (TYPE(hash_args) != T_HASH) {
1497 rb_raise(rb_eArgError, "Expected hash arguments.");
1498 }
1499 preserve_proto_fieldnames = rb_hash_lookup2(
1500 hash_args, ID2SYM(rb_intern("preserve_proto_fieldnames")), Qfalse);
1501
1502 emit_defaults = rb_hash_lookup2(
1503 hash_args, ID2SYM(rb_intern("emit_defaults")), Qfalse);
1504 }
1505
1506 stringsink_init(&sink);
1507
1508 {
1509 const upb_handlers* serialize_handlers =
1510 msgdef_json_serialize_handlers(desc, RTEST(preserve_proto_fieldnames));
1511 upb_json_printer* printer;
1512 stackenv se;
1513 VALUE ret;
1514
1515 stackenv_init(&se, "Error occurred during encoding: %s");
1516 printer = upb_json_printer_create(&se.env, serialize_handlers, &sink.sink);
1517
1518 putmsg(msg_rb, desc, upb_json_printer_input(printer), 0,
1519 RTEST(emit_defaults), true, true);
1520
1521 ret = rb_enc_str_new(sink.ptr, sink.len, rb_utf8_encoding());
1522
1523 stackenv_uninit(&se);
1524 stringsink_uninit(&sink);
1525
1526 return ret;
1527 }
1528 }
1529
discard_unknown(VALUE msg_rb,const Descriptor * desc)1530 static void discard_unknown(VALUE msg_rb, const Descriptor* desc) {
1531 MessageHeader* msg;
1532 upb_msg_field_iter it;
1533
1534 TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg);
1535
1536 stringsink* unknown = msg->unknown_fields;
1537 if (unknown != NULL) {
1538 stringsink_uninit(unknown);
1539 msg->unknown_fields = NULL;
1540 }
1541
1542 for (upb_msg_field_begin(&it, desc->msgdef);
1543 !upb_msg_field_done(&it);
1544 upb_msg_field_next(&it)) {
1545 upb_fielddef *f = upb_msg_iter_field(&it);
1546 uint32_t offset =
1547 desc->layout->fields[upb_fielddef_index(f)].offset +
1548 sizeof(MessageHeader);
1549
1550 if (upb_fielddef_containingoneof(f)) {
1551 uint32_t oneof_case_offset =
1552 desc->layout->fields[upb_fielddef_index(f)].case_offset +
1553 sizeof(MessageHeader);
1554 // For a oneof, check that this field is actually present -- skip all the
1555 // below if not.
1556 if (DEREF(msg, oneof_case_offset, uint32_t) !=
1557 upb_fielddef_number(f)) {
1558 continue;
1559 }
1560 // Otherwise, fall through to the appropriate singular-field handler
1561 // below.
1562 }
1563
1564 if (!upb_fielddef_issubmsg(f)) {
1565 continue;
1566 }
1567
1568 if (is_map_field(f)) {
1569 if (!upb_fielddef_issubmsg(map_field_value(f))) continue;
1570 VALUE map = DEREF(msg, offset, VALUE);
1571 if (map == Qnil) continue;
1572 Map_iter map_it;
1573 for (Map_begin(map, &map_it); !Map_done(&map_it); Map_next(&map_it)) {
1574 VALUE submsg = Map_iter_value(&map_it);
1575 VALUE descriptor = rb_ivar_get(submsg, descriptor_instancevar_interned);
1576 const Descriptor* subdesc = ruby_to_Descriptor(descriptor);
1577 discard_unknown(submsg, subdesc);
1578 }
1579 } else if (upb_fielddef_isseq(f)) {
1580 VALUE ary = DEREF(msg, offset, VALUE);
1581 if (ary == Qnil) continue;
1582 int size = NUM2INT(RepeatedField_length(ary));
1583 for (int i = 0; i < size; i++) {
1584 void* memory = RepeatedField_index_native(ary, i);
1585 VALUE submsg = *((VALUE *)memory);
1586 VALUE descriptor = rb_ivar_get(submsg, descriptor_instancevar_interned);
1587 const Descriptor* subdesc = ruby_to_Descriptor(descriptor);
1588 discard_unknown(submsg, subdesc);
1589 }
1590 } else {
1591 VALUE submsg = DEREF(msg, offset, VALUE);
1592 if (submsg == Qnil) continue;
1593 VALUE descriptor = rb_ivar_get(submsg, descriptor_instancevar_interned);
1594 const Descriptor* subdesc = ruby_to_Descriptor(descriptor);
1595 discard_unknown(submsg, subdesc);
1596 }
1597 }
1598 }
1599
1600 /*
1601 * call-seq:
1602 * Google::Protobuf.discard_unknown(msg)
1603 *
1604 * Discard unknown fields in the given message object and recursively discard
1605 * unknown fields in submessages.
1606 */
Google_Protobuf_discard_unknown(VALUE self,VALUE msg_rb)1607 VALUE Google_Protobuf_discard_unknown(VALUE self, VALUE msg_rb) {
1608 VALUE klass = CLASS_OF(msg_rb);
1609 VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned);
1610 Descriptor* desc = ruby_to_Descriptor(descriptor);
1611 if (klass == cRepeatedField || klass == cMap) {
1612 rb_raise(rb_eArgError, "Expected proto msg for discard unknown.");
1613 } else {
1614 discard_unknown(msg_rb, desc);
1615 }
1616 return Qnil;
1617 }
1618