• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include "compiler/glsl/ir.h"
25 #include "brw_fs.h"
26 #include "brw_nir.h"
27 #include "brw_eu.h"
28 #include "nir_search_helpers.h"
29 #include "util/u_math.h"
30 #include "util/bitscan.h"
31 
32 using namespace brw;
33 
34 void
emit_nir_code()35 fs_visitor::emit_nir_code()
36 {
37    emit_shader_float_controls_execution_mode();
38 
39    /* emit the arrays used for inputs and outputs - load/store intrinsics will
40     * be converted to reads/writes of these arrays
41     */
42    nir_setup_outputs();
43    nir_setup_uniforms();
44    nir_emit_system_values();
45    last_scratch = ALIGN(nir->scratch_size, 4) * dispatch_width;
46 
47    nir_emit_impl(nir_shader_get_entrypoint((nir_shader *)nir));
48 }
49 
50 void
nir_setup_outputs()51 fs_visitor::nir_setup_outputs()
52 {
53    if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_FRAGMENT)
54       return;
55 
56    unsigned vec4s[VARYING_SLOT_TESS_MAX] = { 0, };
57 
58    /* Calculate the size of output registers in a separate pass, before
59     * allocating them.  With ARB_enhanced_layouts, multiple output variables
60     * may occupy the same slot, but have different type sizes.
61     */
62    nir_foreach_shader_out_variable(var, nir) {
63       const int loc = var->data.driver_location;
64       const unsigned var_vec4s =
65          var->data.compact ? DIV_ROUND_UP(glsl_get_length(var->type), 4)
66                            : type_size_vec4(var->type, true);
67       vec4s[loc] = MAX2(vec4s[loc], var_vec4s);
68    }
69 
70    for (unsigned loc = 0; loc < ARRAY_SIZE(vec4s);) {
71       if (vec4s[loc] == 0) {
72          loc++;
73          continue;
74       }
75 
76       unsigned reg_size = vec4s[loc];
77 
78       /* Check if there are any ranges that start within this range and extend
79        * past it. If so, include them in this allocation.
80        */
81       for (unsigned i = 1; i < reg_size; i++) {
82          assert(i + loc < ARRAY_SIZE(vec4s));
83          reg_size = MAX2(vec4s[i + loc] + i, reg_size);
84       }
85 
86       fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_F, 4 * reg_size);
87       for (unsigned i = 0; i < reg_size; i++) {
88          assert(loc + i < ARRAY_SIZE(outputs));
89          outputs[loc + i] = offset(reg, bld, 4 * i);
90       }
91 
92       loc += reg_size;
93    }
94 }
95 
96 void
nir_setup_uniforms()97 fs_visitor::nir_setup_uniforms()
98 {
99    /* Only the first compile gets to set up uniforms. */
100    if (push_constant_loc) {
101       assert(pull_constant_loc);
102       return;
103    }
104 
105    uniforms = nir->num_uniforms / 4;
106 
107    if (stage == MESA_SHADER_COMPUTE || stage == MESA_SHADER_KERNEL) {
108       /* Add uniforms for builtins after regular NIR uniforms. */
109       assert(uniforms == prog_data->nr_params);
110 
111       uint32_t *param;
112       if (nir->info.cs.local_size_variable &&
113           compiler->lower_variable_group_size) {
114          param = brw_stage_prog_data_add_params(prog_data, 3);
115          for (unsigned i = 0; i < 3; i++) {
116             param[i] = (BRW_PARAM_BUILTIN_WORK_GROUP_SIZE_X + i);
117             group_size[i] = fs_reg(UNIFORM, uniforms++, BRW_REGISTER_TYPE_UD);
118          }
119       }
120 
121       /* Subgroup ID must be the last uniform on the list.  This will make
122        * easier later to split between cross thread and per thread
123        * uniforms.
124        */
125       param = brw_stage_prog_data_add_params(prog_data, 1);
126       *param = BRW_PARAM_BUILTIN_SUBGROUP_ID;
127       subgroup_id = fs_reg(UNIFORM, uniforms++, BRW_REGISTER_TYPE_UD);
128    }
129 }
130 
131 static bool
emit_system_values_block(nir_block * block,fs_visitor * v)132 emit_system_values_block(nir_block *block, fs_visitor *v)
133 {
134    fs_reg *reg;
135 
136    nir_foreach_instr(instr, block) {
137       if (instr->type != nir_instr_type_intrinsic)
138          continue;
139 
140       nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
141       switch (intrin->intrinsic) {
142       case nir_intrinsic_load_vertex_id:
143       case nir_intrinsic_load_base_vertex:
144          unreachable("should be lowered by nir_lower_system_values().");
145 
146       case nir_intrinsic_load_vertex_id_zero_base:
147       case nir_intrinsic_load_is_indexed_draw:
148       case nir_intrinsic_load_first_vertex:
149       case nir_intrinsic_load_instance_id:
150       case nir_intrinsic_load_base_instance:
151       case nir_intrinsic_load_draw_id:
152          unreachable("should be lowered by brw_nir_lower_vs_inputs().");
153 
154       case nir_intrinsic_load_invocation_id:
155          if (v->stage == MESA_SHADER_TESS_CTRL)
156             break;
157          assert(v->stage == MESA_SHADER_GEOMETRY);
158          reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
159          if (reg->file == BAD_FILE) {
160             const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
161             fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
162             fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
163             abld.SHR(iid, g1, brw_imm_ud(27u));
164             *reg = iid;
165          }
166          break;
167 
168       case nir_intrinsic_load_sample_pos:
169          assert(v->stage == MESA_SHADER_FRAGMENT);
170          reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
171          if (reg->file == BAD_FILE)
172             *reg = *v->emit_samplepos_setup();
173          break;
174 
175       case nir_intrinsic_load_sample_id:
176          assert(v->stage == MESA_SHADER_FRAGMENT);
177          reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
178          if (reg->file == BAD_FILE)
179             *reg = *v->emit_sampleid_setup();
180          break;
181 
182       case nir_intrinsic_load_sample_mask_in:
183          assert(v->stage == MESA_SHADER_FRAGMENT);
184          assert(v->devinfo->gen >= 7);
185          reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
186          if (reg->file == BAD_FILE)
187             *reg = *v->emit_samplemaskin_setup();
188          break;
189 
190       case nir_intrinsic_load_work_group_id:
191          assert(v->stage == MESA_SHADER_COMPUTE ||
192                 v->stage == MESA_SHADER_KERNEL);
193          reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
194          if (reg->file == BAD_FILE)
195             *reg = *v->emit_cs_work_group_id_setup();
196          break;
197 
198       case nir_intrinsic_load_helper_invocation:
199          assert(v->stage == MESA_SHADER_FRAGMENT);
200          reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
201          if (reg->file == BAD_FILE) {
202             const fs_builder abld =
203                v->bld.annotate("gl_HelperInvocation", NULL);
204 
205             /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
206              * pixel mask is in g1.7 of the thread payload.
207              *
208              * We move the per-channel pixel enable bit to the low bit of each
209              * channel by shifting the byte containing the pixel mask by the
210              * vector immediate 0x76543210UV.
211              *
212              * The region of <1,8,0> reads only 1 byte (the pixel masks for
213              * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
214              * masks for 2 and 3) in SIMD16.
215              */
216             fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
217 
218             for (unsigned i = 0; i < DIV_ROUND_UP(v->dispatch_width, 16); i++) {
219                const fs_builder hbld = abld.group(MIN2(16, v->dispatch_width), i);
220                hbld.SHR(offset(shifted, hbld, i),
221                         stride(retype(brw_vec1_grf(1 + i, 7),
222                                       BRW_REGISTER_TYPE_UB),
223                                1, 8, 0),
224                         brw_imm_v(0x76543210));
225             }
226 
227             /* A set bit in the pixel mask means the channel is enabled, but
228              * that is the opposite of gl_HelperInvocation so we need to invert
229              * the mask.
230              *
231              * The negate source-modifier bit of logical instructions on Gen8+
232              * performs 1's complement negation, so we can use that instead of
233              * a NOT instruction.
234              */
235             fs_reg inverted = negate(shifted);
236             if (v->devinfo->gen < 8) {
237                inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
238                abld.NOT(inverted, shifted);
239             }
240 
241             /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
242              * with 1 and negating.
243              */
244             fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
245             abld.AND(anded, inverted, brw_imm_uw(1));
246 
247             fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
248             abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
249             *reg = dst;
250          }
251          break;
252 
253       default:
254          break;
255       }
256    }
257 
258    return true;
259 }
260 
261 void
nir_emit_system_values()262 fs_visitor::nir_emit_system_values()
263 {
264    nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
265    for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
266       nir_system_values[i] = fs_reg();
267    }
268 
269    /* Always emit SUBGROUP_INVOCATION.  Dead code will clean it up if we
270     * never end up using it.
271     */
272    {
273       const fs_builder abld = bld.annotate("gl_SubgroupInvocation", NULL);
274       fs_reg &reg = nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
275       reg = abld.vgrf(BRW_REGISTER_TYPE_UW);
276 
277       const fs_builder allbld8 = abld.group(8, 0).exec_all();
278       allbld8.MOV(reg, brw_imm_v(0x76543210));
279       if (dispatch_width > 8)
280          allbld8.ADD(byte_offset(reg, 16), reg, brw_imm_uw(8u));
281       if (dispatch_width > 16) {
282          const fs_builder allbld16 = abld.group(16, 0).exec_all();
283          allbld16.ADD(byte_offset(reg, 32), reg, brw_imm_uw(16u));
284       }
285    }
286 
287    nir_function_impl *impl = nir_shader_get_entrypoint((nir_shader *)nir);
288    nir_foreach_block(block, impl)
289       emit_system_values_block(block, this);
290 }
291 
292 /*
293  * Returns a type based on a reference_type (word, float, half-float) and a
294  * given bit_size.
295  *
296  * Reference BRW_REGISTER_TYPE are HF,F,DF,W,D,UW,UD.
297  *
298  * @FIXME: 64-bit return types are always DF on integer types to maintain
299  * compability with uses of DF previously to the introduction of int64
300  * support.
301  */
302 static brw_reg_type
brw_reg_type_from_bit_size(const unsigned bit_size,const brw_reg_type reference_type)303 brw_reg_type_from_bit_size(const unsigned bit_size,
304                            const brw_reg_type reference_type)
305 {
306    switch(reference_type) {
307    case BRW_REGISTER_TYPE_HF:
308    case BRW_REGISTER_TYPE_F:
309    case BRW_REGISTER_TYPE_DF:
310       switch(bit_size) {
311       case 16:
312          return BRW_REGISTER_TYPE_HF;
313       case 32:
314          return BRW_REGISTER_TYPE_F;
315       case 64:
316          return BRW_REGISTER_TYPE_DF;
317       default:
318          unreachable("Invalid bit size");
319       }
320    case BRW_REGISTER_TYPE_B:
321    case BRW_REGISTER_TYPE_W:
322    case BRW_REGISTER_TYPE_D:
323    case BRW_REGISTER_TYPE_Q:
324       switch(bit_size) {
325       case 8:
326          return BRW_REGISTER_TYPE_B;
327       case 16:
328          return BRW_REGISTER_TYPE_W;
329       case 32:
330          return BRW_REGISTER_TYPE_D;
331       case 64:
332          return BRW_REGISTER_TYPE_Q;
333       default:
334          unreachable("Invalid bit size");
335       }
336    case BRW_REGISTER_TYPE_UB:
337    case BRW_REGISTER_TYPE_UW:
338    case BRW_REGISTER_TYPE_UD:
339    case BRW_REGISTER_TYPE_UQ:
340       switch(bit_size) {
341       case 8:
342          return BRW_REGISTER_TYPE_UB;
343       case 16:
344          return BRW_REGISTER_TYPE_UW;
345       case 32:
346          return BRW_REGISTER_TYPE_UD;
347       case 64:
348          return BRW_REGISTER_TYPE_UQ;
349       default:
350          unreachable("Invalid bit size");
351       }
352    default:
353       unreachable("Unknown type");
354    }
355 }
356 
357 void
nir_emit_impl(nir_function_impl * impl)358 fs_visitor::nir_emit_impl(nir_function_impl *impl)
359 {
360    nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
361    for (unsigned i = 0; i < impl->reg_alloc; i++) {
362       nir_locals[i] = fs_reg();
363    }
364 
365    foreach_list_typed(nir_register, reg, node, &impl->registers) {
366       unsigned array_elems =
367          reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
368       unsigned size = array_elems * reg->num_components;
369       const brw_reg_type reg_type = reg->bit_size == 8 ? BRW_REGISTER_TYPE_B :
370          brw_reg_type_from_bit_size(reg->bit_size, BRW_REGISTER_TYPE_F);
371       nir_locals[reg->index] = bld.vgrf(reg_type, size);
372    }
373 
374    nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
375                              impl->ssa_alloc);
376 
377    nir_emit_cf_list(&impl->body);
378 }
379 
380 void
nir_emit_cf_list(exec_list * list)381 fs_visitor::nir_emit_cf_list(exec_list *list)
382 {
383    exec_list_validate(list);
384    foreach_list_typed(nir_cf_node, node, node, list) {
385       switch (node->type) {
386       case nir_cf_node_if:
387          nir_emit_if(nir_cf_node_as_if(node));
388          break;
389 
390       case nir_cf_node_loop:
391          nir_emit_loop(nir_cf_node_as_loop(node));
392          break;
393 
394       case nir_cf_node_block:
395          nir_emit_block(nir_cf_node_as_block(node));
396          break;
397 
398       default:
399          unreachable("Invalid CFG node block");
400       }
401    }
402 }
403 
404 void
nir_emit_if(nir_if * if_stmt)405 fs_visitor::nir_emit_if(nir_if *if_stmt)
406 {
407    bool invert;
408    fs_reg cond_reg;
409 
410    /* If the condition has the form !other_condition, use other_condition as
411     * the source, but invert the predicate on the if instruction.
412     */
413    nir_alu_instr *cond = nir_src_as_alu_instr(if_stmt->condition);
414    if (cond != NULL && cond->op == nir_op_inot) {
415       invert = true;
416       cond_reg = get_nir_src(cond->src[0].src);
417    } else {
418       invert = false;
419       cond_reg = get_nir_src(if_stmt->condition);
420    }
421 
422    /* first, put the condition into f0 */
423    fs_inst *inst = bld.MOV(bld.null_reg_d(),
424                            retype(cond_reg, BRW_REGISTER_TYPE_D));
425    inst->conditional_mod = BRW_CONDITIONAL_NZ;
426 
427    bld.IF(BRW_PREDICATE_NORMAL)->predicate_inverse = invert;
428 
429    nir_emit_cf_list(&if_stmt->then_list);
430 
431    if (!nir_cf_list_is_empty_block(&if_stmt->else_list)) {
432       bld.emit(BRW_OPCODE_ELSE);
433       nir_emit_cf_list(&if_stmt->else_list);
434    }
435 
436    bld.emit(BRW_OPCODE_ENDIF);
437 
438    if (devinfo->gen < 7)
439       limit_dispatch_width(16, "Non-uniform control flow unsupported "
440                            "in SIMD32 mode.");
441 }
442 
443 void
nir_emit_loop(nir_loop * loop)444 fs_visitor::nir_emit_loop(nir_loop *loop)
445 {
446    bld.emit(BRW_OPCODE_DO);
447 
448    nir_emit_cf_list(&loop->body);
449 
450    bld.emit(BRW_OPCODE_WHILE);
451 
452    if (devinfo->gen < 7)
453       limit_dispatch_width(16, "Non-uniform control flow unsupported "
454                            "in SIMD32 mode.");
455 }
456 
457 void
nir_emit_block(nir_block * block)458 fs_visitor::nir_emit_block(nir_block *block)
459 {
460    nir_foreach_instr(instr, block) {
461       nir_emit_instr(instr);
462    }
463 }
464 
465 void
nir_emit_instr(nir_instr * instr)466 fs_visitor::nir_emit_instr(nir_instr *instr)
467 {
468    const fs_builder abld = bld.annotate(NULL, instr);
469 
470    switch (instr->type) {
471    case nir_instr_type_alu:
472       nir_emit_alu(abld, nir_instr_as_alu(instr), true);
473       break;
474 
475    case nir_instr_type_deref:
476       unreachable("All derefs should've been lowered");
477       break;
478 
479    case nir_instr_type_intrinsic:
480       switch (stage) {
481       case MESA_SHADER_VERTEX:
482          nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
483          break;
484       case MESA_SHADER_TESS_CTRL:
485          nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
486          break;
487       case MESA_SHADER_TESS_EVAL:
488          nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
489          break;
490       case MESA_SHADER_GEOMETRY:
491          nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
492          break;
493       case MESA_SHADER_FRAGMENT:
494          nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
495          break;
496       case MESA_SHADER_COMPUTE:
497       case MESA_SHADER_KERNEL:
498          nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
499          break;
500       default:
501          unreachable("unsupported shader stage");
502       }
503       break;
504 
505    case nir_instr_type_tex:
506       nir_emit_texture(abld, nir_instr_as_tex(instr));
507       break;
508 
509    case nir_instr_type_load_const:
510       nir_emit_load_const(abld, nir_instr_as_load_const(instr));
511       break;
512 
513    case nir_instr_type_ssa_undef:
514       /* We create a new VGRF for undefs on every use (by handling
515        * them in get_nir_src()), rather than for each definition.
516        * This helps register coalescing eliminate MOVs from undef.
517        */
518       break;
519 
520    case nir_instr_type_jump:
521       nir_emit_jump(abld, nir_instr_as_jump(instr));
522       break;
523 
524    default:
525       unreachable("unknown instruction type");
526    }
527 }
528 
529 /**
530  * Recognizes a parent instruction of nir_op_extract_* and changes the type to
531  * match instr.
532  */
533 bool
optimize_extract_to_float(nir_alu_instr * instr,const fs_reg & result)534 fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
535                                       const fs_reg &result)
536 {
537    if (!instr->src[0].src.is_ssa ||
538        !instr->src[0].src.ssa->parent_instr)
539       return false;
540 
541    if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
542       return false;
543 
544    nir_alu_instr *src0 =
545       nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
546 
547    if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
548        src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
549       return false;
550 
551    unsigned element = nir_src_as_uint(src0->src[1].src);
552 
553    /* Element type to extract.*/
554    const brw_reg_type type = brw_int_type(
555       src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1,
556       src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8);
557 
558    fs_reg op0 = get_nir_src(src0->src[0].src);
559    op0.type = brw_type_for_nir_type(devinfo,
560       (nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
561                      nir_src_bit_size(src0->src[0].src)));
562    op0 = offset(op0, bld, src0->src[0].swizzle[0]);
563 
564    bld.MOV(result, subscript(op0, type, element));
565    return true;
566 }
567 
568 bool
optimize_frontfacing_ternary(nir_alu_instr * instr,const fs_reg & result)569 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
570                                          const fs_reg &result)
571 {
572    nir_intrinsic_instr *src0 = nir_src_as_intrinsic(instr->src[0].src);
573    if (src0 == NULL || src0->intrinsic != nir_intrinsic_load_front_face)
574       return false;
575 
576    if (!nir_src_is_const(instr->src[1].src) ||
577        !nir_src_is_const(instr->src[2].src))
578       return false;
579 
580    const float value1 = nir_src_as_float(instr->src[1].src);
581    const float value2 = nir_src_as_float(instr->src[2].src);
582    if (fabsf(value1) != 1.0f || fabsf(value2) != 1.0f)
583       return false;
584 
585    /* nir_opt_algebraic should have gotten rid of bcsel(b, a, a) */
586    assert(value1 == -value2);
587 
588    fs_reg tmp = vgrf(glsl_type::int_type);
589 
590    if (devinfo->gen >= 12) {
591       /* Bit 15 of g1.1 is 0 if the polygon is front facing. */
592       fs_reg g1 = fs_reg(retype(brw_vec1_grf(1, 1), BRW_REGISTER_TYPE_W));
593 
594       /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
595        *
596        *    or(8)  tmp.1<2>W  g0.0<0,1,0>W  0x00003f80W
597        *    and(8) dst<1>D    tmp<8,8,1>D   0xbf800000D
598        *
599        * and negate the result for (gl_FrontFacing ? -1.0 : 1.0).
600        */
601       bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
602              g1, brw_imm_uw(0x3f80));
603 
604       if (value1 == -1.0f)
605          bld.MOV(tmp, negate(tmp));
606 
607    } else if (devinfo->gen >= 6) {
608       /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
609       fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
610 
611       /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
612        *
613        *    or(8)  tmp.1<2>W  g0.0<0,1,0>W  0x00003f80W
614        *    and(8) dst<1>D    tmp<8,8,1>D   0xbf800000D
615        *
616        * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
617        *
618        * This negation looks like it's safe in practice, because bits 0:4 will
619        * surely be TRIANGLES
620        */
621 
622       if (value1 == -1.0f) {
623          g0.negate = true;
624       }
625 
626       bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
627              g0, brw_imm_uw(0x3f80));
628    } else {
629       /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
630       fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
631 
632       /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
633        *
634        *    or(8)  tmp<1>D  g1.6<0,1,0>D  0x3f800000D
635        *    and(8) dst<1>D  tmp<8,8,1>D   0xbf800000D
636        *
637        * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
638        *
639        * This negation looks like it's safe in practice, because bits 0:4 will
640        * surely be TRIANGLES
641        */
642 
643       if (value1 == -1.0f) {
644          g1_6.negate = true;
645       }
646 
647       bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
648    }
649    bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
650 
651    return true;
652 }
653 
654 static void
emit_find_msb_using_lzd(const fs_builder & bld,const fs_reg & result,const fs_reg & src,bool is_signed)655 emit_find_msb_using_lzd(const fs_builder &bld,
656                         const fs_reg &result,
657                         const fs_reg &src,
658                         bool is_signed)
659 {
660    fs_inst *inst;
661    fs_reg temp = src;
662 
663    if (is_signed) {
664       /* LZD of an absolute value source almost always does the right
665        * thing.  There are two problem values:
666        *
667        * * 0x80000000.  Since abs(0x80000000) == 0x80000000, LZD returns
668        *   0.  However, findMSB(int(0x80000000)) == 30.
669        *
670        * * 0xffffffff.  Since abs(0xffffffff) == 1, LZD returns
671        *   31.  Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
672        *
673        *    For a value of zero or negative one, -1 will be returned.
674        *
675        * * Negative powers of two.  LZD(abs(-(1<<x))) returns x, but
676        *   findMSB(-(1<<x)) should return x-1.
677        *
678        * For all negative number cases, including 0x80000000 and
679        * 0xffffffff, the correct value is obtained from LZD if instead of
680        * negating the (already negative) value the logical-not is used.  A
681        * conditonal logical-not can be achieved in two instructions.
682        */
683       temp = bld.vgrf(BRW_REGISTER_TYPE_D);
684 
685       bld.ASR(temp, src, brw_imm_d(31));
686       bld.XOR(temp, temp, src);
687    }
688 
689    bld.LZD(retype(result, BRW_REGISTER_TYPE_UD),
690            retype(temp, BRW_REGISTER_TYPE_UD));
691 
692    /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
693     * from the LSB side. Subtract the result from 31 to convert the MSB
694     * count into an LSB count.  If no bits are set, LZD will return 32.
695     * 31-32 = -1, which is exactly what findMSB() is supposed to return.
696     */
697    inst = bld.ADD(result, retype(result, BRW_REGISTER_TYPE_D), brw_imm_d(31));
698    inst->src[0].negate = true;
699 }
700 
701 static brw_rnd_mode
brw_rnd_mode_from_nir_op(const nir_op op)702 brw_rnd_mode_from_nir_op (const nir_op op) {
703    switch (op) {
704    case nir_op_f2f16_rtz:
705       return BRW_RND_MODE_RTZ;
706    case nir_op_f2f16_rtne:
707       return BRW_RND_MODE_RTNE;
708    default:
709       unreachable("Operation doesn't support rounding mode");
710    }
711 }
712 
713 static brw_rnd_mode
brw_rnd_mode_from_execution_mode(unsigned execution_mode)714 brw_rnd_mode_from_execution_mode(unsigned execution_mode)
715 {
716    if (nir_has_any_rounding_mode_rtne(execution_mode))
717       return BRW_RND_MODE_RTNE;
718    if (nir_has_any_rounding_mode_rtz(execution_mode))
719       return BRW_RND_MODE_RTZ;
720    return BRW_RND_MODE_UNSPECIFIED;
721 }
722 
723 fs_reg
prepare_alu_destination_and_sources(const fs_builder & bld,nir_alu_instr * instr,fs_reg * op,bool need_dest)724 fs_visitor::prepare_alu_destination_and_sources(const fs_builder &bld,
725                                                 nir_alu_instr *instr,
726                                                 fs_reg *op,
727                                                 bool need_dest)
728 {
729    fs_reg result =
730       need_dest ? get_nir_dest(instr->dest.dest) : bld.null_reg_ud();
731 
732    result.type = brw_type_for_nir_type(devinfo,
733       (nir_alu_type)(nir_op_infos[instr->op].output_type |
734                      nir_dest_bit_size(instr->dest.dest)));
735 
736    assert(!instr->dest.saturate);
737 
738    for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
739       /* We don't lower to source modifiers so they should not exist. */
740       assert(!instr->src[i].abs);
741       assert(!instr->src[i].negate);
742 
743       op[i] = get_nir_src(instr->src[i].src);
744       op[i].type = brw_type_for_nir_type(devinfo,
745          (nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
746                         nir_src_bit_size(instr->src[i].src)));
747    }
748 
749    /* Move and vecN instrutions may still be vectored.  Return the raw,
750     * vectored source and destination so that fs_visitor::nir_emit_alu can
751     * handle it.  Other callers should not have to handle these kinds of
752     * instructions.
753     */
754    switch (instr->op) {
755    case nir_op_mov:
756    case nir_op_vec2:
757    case nir_op_vec3:
758    case nir_op_vec4:
759    case nir_op_vec8:
760    case nir_op_vec16:
761       return result;
762    default:
763       break;
764    }
765 
766    /* At this point, we have dealt with any instruction that operates on
767     * more than a single channel.  Therefore, we can just adjust the source
768     * and destination registers for that channel and emit the instruction.
769     */
770    unsigned channel = 0;
771    if (nir_op_infos[instr->op].output_size == 0) {
772       /* Since NIR is doing the scalarizing for us, we should only ever see
773        * vectorized operations with a single channel.
774        */
775       assert(util_bitcount(instr->dest.write_mask) == 1);
776       channel = ffs(instr->dest.write_mask) - 1;
777 
778       result = offset(result, bld, channel);
779    }
780 
781    for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
782       assert(nir_op_infos[instr->op].input_sizes[i] < 2);
783       op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
784    }
785 
786    return result;
787 }
788 
789 void
resolve_inot_sources(const fs_builder & bld,nir_alu_instr * instr,fs_reg * op)790 fs_visitor::resolve_inot_sources(const fs_builder &bld, nir_alu_instr *instr,
791                                  fs_reg *op)
792 {
793    for (unsigned i = 0; i < 2; i++) {
794       nir_alu_instr *inot_instr = nir_src_as_alu_instr(instr->src[i].src);
795 
796       if (inot_instr != NULL && inot_instr->op == nir_op_inot) {
797          /* The source of the inot is now the source of instr. */
798          prepare_alu_destination_and_sources(bld, inot_instr, &op[i], false);
799 
800          assert(!op[i].negate);
801          op[i].negate = true;
802       } else {
803          op[i] = resolve_source_modifiers(op[i]);
804       }
805    }
806 }
807 
808 bool
try_emit_b2fi_of_inot(const fs_builder & bld,fs_reg result,nir_alu_instr * instr)809 fs_visitor::try_emit_b2fi_of_inot(const fs_builder &bld,
810                                   fs_reg result,
811                                   nir_alu_instr *instr)
812 {
813    if (devinfo->gen < 6 || devinfo->gen >= 12)
814       return false;
815 
816    nir_alu_instr *inot_instr = nir_src_as_alu_instr(instr->src[0].src);
817 
818    if (inot_instr == NULL || inot_instr->op != nir_op_inot)
819       return false;
820 
821    /* HF is also possible as a destination on BDW+.  For nir_op_b2i, the set
822     * of valid size-changing combinations is a bit more complex.
823     *
824     * The source restriction is just because I was lazy about generating the
825     * constant below.
826     */
827    if (nir_dest_bit_size(instr->dest.dest) != 32 ||
828        nir_src_bit_size(inot_instr->src[0].src) != 32)
829       return false;
830 
831    /* b2[fi](inot(a)) maps a=0 => 1, a=-1 => 0.  Since a can only be 0 or -1,
832     * this is float(1 + a).
833     */
834    fs_reg op;
835 
836    prepare_alu_destination_and_sources(bld, inot_instr, &op, false);
837 
838    /* Ignore the saturate modifier, if there is one.  The result of the
839     * arithmetic can only be 0 or 1, so the clamping will do nothing anyway.
840     */
841    bld.ADD(result, op, brw_imm_d(1));
842 
843    return true;
844 }
845 
846 /**
847  * Emit code for nir_op_fsign possibly fused with a nir_op_fmul
848  *
849  * If \c instr is not the \c nir_op_fsign, then \c fsign_src is the index of
850  * the source of \c instr that is a \c nir_op_fsign.
851  */
852 void
emit_fsign(const fs_builder & bld,const nir_alu_instr * instr,fs_reg result,fs_reg * op,unsigned fsign_src)853 fs_visitor::emit_fsign(const fs_builder &bld, const nir_alu_instr *instr,
854                        fs_reg result, fs_reg *op, unsigned fsign_src)
855 {
856    fs_inst *inst;
857 
858    assert(instr->op == nir_op_fsign || instr->op == nir_op_fmul);
859    assert(fsign_src < nir_op_infos[instr->op].num_inputs);
860 
861    if (instr->op != nir_op_fsign) {
862       const nir_alu_instr *const fsign_instr =
863          nir_src_as_alu_instr(instr->src[fsign_src].src);
864 
865       /* op[fsign_src] has the nominal result of the fsign, and op[1 -
866        * fsign_src] has the other multiply source.  This must be rearranged so
867        * that op[0] is the source of the fsign op[1] is the other multiply
868        * source.
869        */
870       if (fsign_src != 0)
871          op[1] = op[0];
872 
873       op[0] = get_nir_src(fsign_instr->src[0].src);
874 
875       const nir_alu_type t =
876          (nir_alu_type)(nir_op_infos[instr->op].input_types[0] |
877                         nir_src_bit_size(fsign_instr->src[0].src));
878 
879       op[0].type = brw_type_for_nir_type(devinfo, t);
880 
881       unsigned channel = 0;
882       if (nir_op_infos[instr->op].output_size == 0) {
883          /* Since NIR is doing the scalarizing for us, we should only ever see
884           * vectorized operations with a single channel.
885           */
886          assert(util_bitcount(instr->dest.write_mask) == 1);
887          channel = ffs(instr->dest.write_mask) - 1;
888       }
889 
890       op[0] = offset(op[0], bld, fsign_instr->src[0].swizzle[channel]);
891    }
892 
893    if (type_sz(op[0].type) == 2) {
894       /* AND(val, 0x8000) gives the sign bit.
895        *
896        * Predicated OR ORs 1.0 (0x3c00) with the sign bit if val is not zero.
897        */
898       fs_reg zero = retype(brw_imm_uw(0), BRW_REGISTER_TYPE_HF);
899       bld.CMP(bld.null_reg_f(), op[0], zero, BRW_CONDITIONAL_NZ);
900 
901       op[0].type = BRW_REGISTER_TYPE_UW;
902       result.type = BRW_REGISTER_TYPE_UW;
903       bld.AND(result, op[0], brw_imm_uw(0x8000u));
904 
905       if (instr->op == nir_op_fsign)
906          inst = bld.OR(result, result, brw_imm_uw(0x3c00u));
907       else {
908          /* Use XOR here to get the result sign correct. */
909          inst = bld.XOR(result, result, retype(op[1], BRW_REGISTER_TYPE_UW));
910       }
911 
912       inst->predicate = BRW_PREDICATE_NORMAL;
913    } else if (type_sz(op[0].type) == 4) {
914       /* AND(val, 0x80000000) gives the sign bit.
915        *
916        * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
917        * zero.
918        */
919       bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
920 
921       op[0].type = BRW_REGISTER_TYPE_UD;
922       result.type = BRW_REGISTER_TYPE_UD;
923       bld.AND(result, op[0], brw_imm_ud(0x80000000u));
924 
925       if (instr->op == nir_op_fsign)
926          inst = bld.OR(result, result, brw_imm_ud(0x3f800000u));
927       else {
928          /* Use XOR here to get the result sign correct. */
929          inst = bld.XOR(result, result, retype(op[1], BRW_REGISTER_TYPE_UD));
930       }
931 
932       inst->predicate = BRW_PREDICATE_NORMAL;
933    } else {
934       /* For doubles we do the same but we need to consider:
935        *
936        * - 2-src instructions can't operate with 64-bit immediates
937        * - The sign is encoded in the high 32-bit of each DF
938        * - We need to produce a DF result.
939        */
940 
941       fs_reg zero = vgrf(glsl_type::double_type);
942       bld.MOV(zero, setup_imm_df(bld, 0.0));
943       bld.CMP(bld.null_reg_df(), op[0], zero, BRW_CONDITIONAL_NZ);
944 
945       bld.MOV(result, zero);
946 
947       fs_reg r = subscript(result, BRW_REGISTER_TYPE_UD, 1);
948       bld.AND(r, subscript(op[0], BRW_REGISTER_TYPE_UD, 1),
949               brw_imm_ud(0x80000000u));
950 
951       if (instr->op == nir_op_fsign) {
952          set_predicate(BRW_PREDICATE_NORMAL,
953                        bld.OR(r, r, brw_imm_ud(0x3ff00000u)));
954       } else {
955          /* This could be done better in some cases.  If the scale is an
956           * immediate with the low 32-bits all 0, emitting a separate XOR and
957           * OR would allow an algebraic optimization to remove the OR.  There
958           * are currently zero instances of fsign(double(x))*IMM in shader-db
959           * or any test suite, so it is hard to care at this time.
960           */
961          fs_reg result_int64 = retype(result, BRW_REGISTER_TYPE_UQ);
962          inst = bld.XOR(result_int64, result_int64,
963                         retype(op[1], BRW_REGISTER_TYPE_UQ));
964       }
965    }
966 }
967 
968 /**
969  * Deteremine whether sources of a nir_op_fmul can be fused with a nir_op_fsign
970  *
971  * Checks the operands of a \c nir_op_fmul to determine whether or not
972  * \c emit_fsign could fuse the multiplication with the \c sign() calculation.
973  *
974  * \param instr  The multiplication instruction
975  *
976  * \param fsign_src The source of \c instr that may or may not be a
977  *                  \c nir_op_fsign
978  */
979 static bool
can_fuse_fmul_fsign(nir_alu_instr * instr,unsigned fsign_src)980 can_fuse_fmul_fsign(nir_alu_instr *instr, unsigned fsign_src)
981 {
982    assert(instr->op == nir_op_fmul);
983 
984    nir_alu_instr *const fsign_instr =
985       nir_src_as_alu_instr(instr->src[fsign_src].src);
986 
987    /* Rules:
988     *
989     * 1. instr->src[fsign_src] must be a nir_op_fsign.
990     * 2. The nir_op_fsign can only be used by this multiplication.
991     * 3. The source that is the nir_op_fsign does not have source modifiers.
992     *    \c emit_fsign only examines the source modifiers of the source of the
993     *    \c nir_op_fsign.
994     *
995     * The nir_op_fsign must also not have the saturate modifier, but steps
996     * have already been taken (in nir_opt_algebraic) to ensure that.
997     */
998    return fsign_instr != NULL && fsign_instr->op == nir_op_fsign &&
999           is_used_once(fsign_instr);
1000 }
1001 
1002 void
nir_emit_alu(const fs_builder & bld,nir_alu_instr * instr,bool need_dest)1003 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr,
1004                          bool need_dest)
1005 {
1006    struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
1007    fs_inst *inst;
1008    unsigned execution_mode =
1009       bld.shader->nir->info.float_controls_execution_mode;
1010 
1011    fs_reg op[NIR_MAX_VEC_COMPONENTS];
1012    fs_reg result = prepare_alu_destination_and_sources(bld, instr, op, need_dest);
1013 
1014    switch (instr->op) {
1015    case nir_op_mov:
1016    case nir_op_vec2:
1017    case nir_op_vec3:
1018    case nir_op_vec4:
1019    case nir_op_vec8:
1020    case nir_op_vec16: {
1021       fs_reg temp = result;
1022       bool need_extra_copy = false;
1023       for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
1024          if (!instr->src[i].src.is_ssa &&
1025              instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
1026             need_extra_copy = true;
1027             temp = bld.vgrf(result.type, 4);
1028             break;
1029          }
1030       }
1031 
1032       for (unsigned i = 0; i < 4; i++) {
1033          if (!(instr->dest.write_mask & (1 << i)))
1034             continue;
1035 
1036          if (instr->op == nir_op_mov) {
1037             bld.MOV(offset(temp, bld, i),
1038                            offset(op[0], bld, instr->src[0].swizzle[i]));
1039          } else {
1040             bld.MOV(offset(temp, bld, i),
1041                            offset(op[i], bld, instr->src[i].swizzle[0]));
1042          }
1043       }
1044 
1045       /* In this case the source and destination registers were the same,
1046        * so we need to insert an extra set of moves in order to deal with
1047        * any swizzling.
1048        */
1049       if (need_extra_copy) {
1050          for (unsigned i = 0; i < 4; i++) {
1051             if (!(instr->dest.write_mask & (1 << i)))
1052                continue;
1053 
1054             bld.MOV(offset(result, bld, i), offset(temp, bld, i));
1055          }
1056       }
1057       return;
1058    }
1059 
1060    case nir_op_i2f32:
1061    case nir_op_u2f32:
1062       if (optimize_extract_to_float(instr, result))
1063          return;
1064       inst = bld.MOV(result, op[0]);
1065       break;
1066 
1067    case nir_op_f2f16_rtne:
1068    case nir_op_f2f16_rtz:
1069    case nir_op_f2f16: {
1070       brw_rnd_mode rnd = BRW_RND_MODE_UNSPECIFIED;
1071 
1072       if (nir_op_f2f16 == instr->op)
1073          rnd = brw_rnd_mode_from_execution_mode(execution_mode);
1074       else
1075          rnd = brw_rnd_mode_from_nir_op(instr->op);
1076 
1077       if (BRW_RND_MODE_UNSPECIFIED != rnd)
1078          bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(), brw_imm_d(rnd));
1079 
1080       /* In theory, it would be better to use BRW_OPCODE_F32TO16. Depending
1081        * on the HW gen, it is a special hw opcode or just a MOV, and
1082        * brw_F32TO16 (at brw_eu_emit) would do the work to chose.
1083        *
1084        * But if we want to use that opcode, we need to provide support on
1085        * different optimizations and lowerings. As right now HF support is
1086        * only for gen8+, it will be better to use directly the MOV, and use
1087        * BRW_OPCODE_F32TO16 when/if we work for HF support on gen7.
1088        */
1089       assert(type_sz(op[0].type) < 8); /* brw_nir_lower_conversions */
1090       inst = bld.MOV(result, op[0]);
1091       break;
1092    }
1093 
1094    case nir_op_b2i8:
1095    case nir_op_b2i16:
1096    case nir_op_b2i32:
1097    case nir_op_b2i64:
1098    case nir_op_b2f16:
1099    case nir_op_b2f32:
1100    case nir_op_b2f64:
1101       if (try_emit_b2fi_of_inot(bld, result, instr))
1102          break;
1103       op[0].type = BRW_REGISTER_TYPE_D;
1104       op[0].negate = !op[0].negate;
1105       /* fallthrough */
1106    case nir_op_i2f64:
1107    case nir_op_i2i64:
1108    case nir_op_u2f64:
1109    case nir_op_u2u64:
1110    case nir_op_f2f64:
1111    case nir_op_f2i64:
1112    case nir_op_f2u64:
1113    case nir_op_i2i32:
1114    case nir_op_u2u32:
1115    case nir_op_f2i32:
1116    case nir_op_f2u32:
1117    case nir_op_i2f16:
1118    case nir_op_i2i16:
1119    case nir_op_u2f16:
1120    case nir_op_u2u16:
1121    case nir_op_f2i16:
1122    case nir_op_f2u16:
1123    case nir_op_i2i8:
1124    case nir_op_u2u8:
1125    case nir_op_f2i8:
1126    case nir_op_f2u8:
1127       if (result.type == BRW_REGISTER_TYPE_B ||
1128           result.type == BRW_REGISTER_TYPE_UB ||
1129           result.type == BRW_REGISTER_TYPE_HF)
1130          assert(type_sz(op[0].type) < 8); /* brw_nir_lower_conversions */
1131 
1132       if (op[0].type == BRW_REGISTER_TYPE_B ||
1133           op[0].type == BRW_REGISTER_TYPE_UB ||
1134           op[0].type == BRW_REGISTER_TYPE_HF)
1135          assert(type_sz(result.type) < 8); /* brw_nir_lower_conversions */
1136 
1137       inst = bld.MOV(result, op[0]);
1138       break;
1139 
1140    case nir_op_fsat:
1141       inst = bld.MOV(result, op[0]);
1142       inst->saturate = true;
1143       break;
1144 
1145    case nir_op_fneg:
1146    case nir_op_ineg:
1147       op[0].negate = true;
1148       inst = bld.MOV(result, op[0]);
1149       break;
1150 
1151    case nir_op_fabs:
1152    case nir_op_iabs:
1153       op[0].negate = false;
1154       op[0].abs = true;
1155       inst = bld.MOV(result, op[0]);
1156       break;
1157 
1158    case nir_op_f2f32:
1159       if (nir_has_any_rounding_mode_enabled(execution_mode)) {
1160          brw_rnd_mode rnd =
1161             brw_rnd_mode_from_execution_mode(execution_mode);
1162          bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
1163                   brw_imm_d(rnd));
1164       }
1165 
1166       if (op[0].type == BRW_REGISTER_TYPE_HF)
1167          assert(type_sz(result.type) < 8); /* brw_nir_lower_conversions */
1168 
1169       inst = bld.MOV(result, op[0]);
1170       break;
1171 
1172    case nir_op_fsign:
1173       emit_fsign(bld, instr, result, op, 0);
1174       break;
1175 
1176    case nir_op_frcp:
1177       inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
1178       break;
1179 
1180    case nir_op_fexp2:
1181       inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
1182       break;
1183 
1184    case nir_op_flog2:
1185       inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
1186       break;
1187 
1188    case nir_op_fsin:
1189       inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
1190       break;
1191 
1192    case nir_op_fcos:
1193       inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
1194       break;
1195 
1196    case nir_op_fddx:
1197       if (fs_key->high_quality_derivatives) {
1198          inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
1199       } else {
1200          inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
1201       }
1202       break;
1203    case nir_op_fddx_fine:
1204       inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
1205       break;
1206    case nir_op_fddx_coarse:
1207       inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
1208       break;
1209    case nir_op_fddy:
1210       if (fs_key->high_quality_derivatives) {
1211          inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
1212       } else {
1213          inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
1214       }
1215       break;
1216    case nir_op_fddy_fine:
1217       inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
1218       break;
1219    case nir_op_fddy_coarse:
1220       inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
1221       break;
1222 
1223    case nir_op_fadd:
1224       if (nir_has_any_rounding_mode_enabled(execution_mode)) {
1225          brw_rnd_mode rnd =
1226             brw_rnd_mode_from_execution_mode(execution_mode);
1227          bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
1228                   brw_imm_d(rnd));
1229       }
1230       /* fallthrough */
1231    case nir_op_iadd:
1232       inst = bld.ADD(result, op[0], op[1]);
1233       break;
1234 
1235    case nir_op_iadd_sat:
1236    case nir_op_uadd_sat:
1237       inst = bld.ADD(result, op[0], op[1]);
1238       inst->saturate = true;
1239       break;
1240 
1241    case nir_op_isub_sat:
1242       bld.emit(SHADER_OPCODE_ISUB_SAT, result, op[0], op[1]);
1243       break;
1244 
1245    case nir_op_usub_sat:
1246       bld.emit(SHADER_OPCODE_USUB_SAT, result, op[0], op[1]);
1247       break;
1248 
1249    case nir_op_irhadd:
1250    case nir_op_urhadd:
1251       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1252       inst = bld.AVG(result, op[0], op[1]);
1253       break;
1254 
1255    case nir_op_ihadd:
1256    case nir_op_uhadd: {
1257       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1258       fs_reg tmp = bld.vgrf(result.type);
1259 
1260       if (devinfo->gen >= 8) {
1261          op[0] = resolve_source_modifiers(op[0]);
1262          op[1] = resolve_source_modifiers(op[1]);
1263       }
1264 
1265       /* AVG(x, y) - ((x ^ y) & 1) */
1266       bld.XOR(tmp, op[0], op[1]);
1267       bld.AND(tmp, tmp, retype(brw_imm_ud(1), result.type));
1268       bld.AVG(result, op[0], op[1]);
1269       inst = bld.ADD(result, result, tmp);
1270       inst->src[1].negate = true;
1271       break;
1272    }
1273 
1274    case nir_op_fmul:
1275       for (unsigned i = 0; i < 2; i++) {
1276          if (can_fuse_fmul_fsign(instr, i)) {
1277             emit_fsign(bld, instr, result, op, i);
1278             return;
1279          }
1280       }
1281 
1282       /* We emit the rounding mode after the previous fsign optimization since
1283        * it won't result in a MUL, but will try to negate the value by other
1284        * means.
1285        */
1286       if (nir_has_any_rounding_mode_enabled(execution_mode)) {
1287          brw_rnd_mode rnd =
1288             brw_rnd_mode_from_execution_mode(execution_mode);
1289          bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
1290                   brw_imm_d(rnd));
1291       }
1292 
1293       inst = bld.MUL(result, op[0], op[1]);
1294       break;
1295 
1296    case nir_op_imul_2x32_64:
1297    case nir_op_umul_2x32_64:
1298       bld.MUL(result, op[0], op[1]);
1299       break;
1300 
1301    case nir_op_imul_32x16:
1302    case nir_op_umul_32x16: {
1303       const bool ud = instr->op == nir_op_umul_32x16;
1304 
1305       assert(nir_dest_bit_size(instr->dest.dest) == 32);
1306 
1307       /* Before Gen7, the order of the 32-bit source and the 16-bit source was
1308        * swapped.  The extension isn't enabled on those platforms, so don't
1309        * pretend to support the differences.
1310        */
1311       assert(devinfo->gen >= 7);
1312 
1313       if (op[1].file == IMM)
1314          op[1] = ud ? brw_imm_uw(op[1].ud) : brw_imm_w(op[1].d);
1315       else {
1316          const enum brw_reg_type word_type =
1317             ud ? BRW_REGISTER_TYPE_UW : BRW_REGISTER_TYPE_W;
1318 
1319          op[1] = subscript(op[1], word_type, 0);
1320       }
1321 
1322       const enum brw_reg_type dword_type =
1323          ud ? BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_D;
1324 
1325       bld.MUL(result, retype(op[0], dword_type), op[1]);
1326       break;
1327    }
1328 
1329    case nir_op_imul:
1330       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1331       bld.MUL(result, op[0], op[1]);
1332       break;
1333 
1334    case nir_op_imul_high:
1335    case nir_op_umul_high:
1336       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1337       bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
1338       break;
1339 
1340    case nir_op_idiv:
1341    case nir_op_udiv:
1342       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1343       bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
1344       break;
1345 
1346    case nir_op_uadd_carry:
1347       unreachable("Should have been lowered by carry_to_arith().");
1348 
1349    case nir_op_usub_borrow:
1350       unreachable("Should have been lowered by borrow_to_arith().");
1351 
1352    case nir_op_umod:
1353    case nir_op_irem:
1354       /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
1355        * appears that our hardware just does the right thing for signed
1356        * remainder.
1357        */
1358       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1359       bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1360       break;
1361 
1362    case nir_op_imod: {
1363       /* Get a regular C-style remainder.  If a % b == 0, set the predicate. */
1364       bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1365 
1366       /* Math instructions don't support conditional mod */
1367       inst = bld.MOV(bld.null_reg_d(), result);
1368       inst->conditional_mod = BRW_CONDITIONAL_NZ;
1369 
1370       /* Now, we need to determine if signs of the sources are different.
1371        * When we XOR the sources, the top bit is 0 if they are the same and 1
1372        * if they are different.  We can then use a conditional modifier to
1373        * turn that into a predicate.  This leads us to an XOR.l instruction.
1374        *
1375        * Technically, according to the PRM, you're not allowed to use .l on a
1376        * XOR instruction.  However, emperical experiments and Curro's reading
1377        * of the simulator source both indicate that it's safe.
1378        */
1379       fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
1380       inst = bld.XOR(tmp, op[0], op[1]);
1381       inst->predicate = BRW_PREDICATE_NORMAL;
1382       inst->conditional_mod = BRW_CONDITIONAL_L;
1383 
1384       /* If the result of the initial remainder operation is non-zero and the
1385        * two sources have different signs, add in a copy of op[1] to get the
1386        * final integer modulus value.
1387        */
1388       inst = bld.ADD(result, result, op[1]);
1389       inst->predicate = BRW_PREDICATE_NORMAL;
1390       break;
1391    }
1392 
1393    case nir_op_flt32:
1394    case nir_op_fge32:
1395    case nir_op_feq32:
1396    case nir_op_fneu32: {
1397       fs_reg dest = result;
1398 
1399       const uint32_t bit_size =  nir_src_bit_size(instr->src[0].src);
1400       if (bit_size != 32)
1401          dest = bld.vgrf(op[0].type, 1);
1402 
1403       bld.CMP(dest, op[0], op[1], brw_cmod_for_nir_comparison(instr->op));
1404 
1405       if (bit_size > 32) {
1406          bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1407       } else if(bit_size < 32) {
1408          /* When we convert the result to 32-bit we need to be careful and do
1409           * it as a signed conversion to get sign extension (for 32-bit true)
1410           */
1411          const brw_reg_type src_type =
1412             brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1413 
1414          bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1415       }
1416       break;
1417    }
1418 
1419    case nir_op_ilt32:
1420    case nir_op_ult32:
1421    case nir_op_ige32:
1422    case nir_op_uge32:
1423    case nir_op_ieq32:
1424    case nir_op_ine32: {
1425       fs_reg dest = result;
1426 
1427       const uint32_t bit_size = type_sz(op[0].type) * 8;
1428       if (bit_size != 32)
1429          dest = bld.vgrf(op[0].type, 1);
1430 
1431       bld.CMP(dest, op[0], op[1],
1432               brw_cmod_for_nir_comparison(instr->op));
1433 
1434       if (bit_size > 32) {
1435          bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1436       } else if (bit_size < 32) {
1437          /* When we convert the result to 32-bit we need to be careful and do
1438           * it as a signed conversion to get sign extension (for 32-bit true)
1439           */
1440          const brw_reg_type src_type =
1441             brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1442 
1443          bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1444       }
1445       break;
1446    }
1447 
1448    case nir_op_inot:
1449       if (devinfo->gen >= 8) {
1450          nir_alu_instr *inot_src_instr = nir_src_as_alu_instr(instr->src[0].src);
1451 
1452          if (inot_src_instr != NULL &&
1453              (inot_src_instr->op == nir_op_ior ||
1454               inot_src_instr->op == nir_op_ixor ||
1455               inot_src_instr->op == nir_op_iand)) {
1456             /* The sources of the source logical instruction are now the
1457              * sources of the instruction that will be generated.
1458              */
1459             prepare_alu_destination_and_sources(bld, inot_src_instr, op, false);
1460             resolve_inot_sources(bld, inot_src_instr, op);
1461 
1462             /* Smash all of the sources and destination to be signed.  This
1463              * doesn't matter for the operation of the instruction, but cmod
1464              * propagation fails on unsigned sources with negation (due to
1465              * fs_inst::can_do_cmod returning false).
1466              */
1467             result.type =
1468                brw_type_for_nir_type(devinfo,
1469                                      (nir_alu_type)(nir_type_int |
1470                                                     nir_dest_bit_size(instr->dest.dest)));
1471             op[0].type =
1472                brw_type_for_nir_type(devinfo,
1473                                      (nir_alu_type)(nir_type_int |
1474                                                     nir_src_bit_size(inot_src_instr->src[0].src)));
1475             op[1].type =
1476                brw_type_for_nir_type(devinfo,
1477                                      (nir_alu_type)(nir_type_int |
1478                                                     nir_src_bit_size(inot_src_instr->src[1].src)));
1479 
1480             /* For XOR, only invert one of the sources.  Arbitrarily choose
1481              * the first source.
1482              */
1483             op[0].negate = !op[0].negate;
1484             if (inot_src_instr->op != nir_op_ixor)
1485                op[1].negate = !op[1].negate;
1486 
1487             switch (inot_src_instr->op) {
1488             case nir_op_ior:
1489                bld.AND(result, op[0], op[1]);
1490                return;
1491 
1492             case nir_op_iand:
1493                bld.OR(result, op[0], op[1]);
1494                return;
1495 
1496             case nir_op_ixor:
1497                bld.XOR(result, op[0], op[1]);
1498                return;
1499 
1500             default:
1501                unreachable("impossible opcode");
1502             }
1503          }
1504          op[0] = resolve_source_modifiers(op[0]);
1505       }
1506       bld.NOT(result, op[0]);
1507       break;
1508    case nir_op_ixor:
1509       if (devinfo->gen >= 8) {
1510          resolve_inot_sources(bld, instr, op);
1511       }
1512       bld.XOR(result, op[0], op[1]);
1513       break;
1514    case nir_op_ior:
1515       if (devinfo->gen >= 8) {
1516          resolve_inot_sources(bld, instr, op);
1517       }
1518       bld.OR(result, op[0], op[1]);
1519       break;
1520    case nir_op_iand:
1521       if (devinfo->gen >= 8) {
1522          resolve_inot_sources(bld, instr, op);
1523       }
1524       bld.AND(result, op[0], op[1]);
1525       break;
1526 
1527    case nir_op_fdot2:
1528    case nir_op_fdot3:
1529    case nir_op_fdot4:
1530    case nir_op_b32all_fequal2:
1531    case nir_op_b32all_iequal2:
1532    case nir_op_b32all_fequal3:
1533    case nir_op_b32all_iequal3:
1534    case nir_op_b32all_fequal4:
1535    case nir_op_b32all_iequal4:
1536    case nir_op_b32any_fnequal2:
1537    case nir_op_b32any_inequal2:
1538    case nir_op_b32any_fnequal3:
1539    case nir_op_b32any_inequal3:
1540    case nir_op_b32any_fnequal4:
1541    case nir_op_b32any_inequal4:
1542       unreachable("Lowered by nir_lower_alu_reductions");
1543 
1544    case nir_op_ldexp:
1545       unreachable("not reached: should be handled by ldexp_to_arith()");
1546 
1547    case nir_op_fsqrt:
1548       inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
1549       break;
1550 
1551    case nir_op_frsq:
1552       inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
1553       break;
1554 
1555    case nir_op_i2b32:
1556    case nir_op_f2b32: {
1557       uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1558       if (bit_size == 64) {
1559          /* two-argument instructions can't take 64-bit immediates */
1560          fs_reg zero;
1561          fs_reg tmp;
1562 
1563          if (instr->op == nir_op_f2b32) {
1564             zero = vgrf(glsl_type::double_type);
1565             tmp = vgrf(glsl_type::double_type);
1566             bld.MOV(zero, setup_imm_df(bld, 0.0));
1567          } else {
1568             zero = vgrf(glsl_type::int64_t_type);
1569             tmp = vgrf(glsl_type::int64_t_type);
1570             bld.MOV(zero, brw_imm_q(0));
1571          }
1572 
1573          /* A SIMD16 execution needs to be split in two instructions, so use
1574           * a vgrf instead of the flag register as dst so instruction splitting
1575           * works
1576           */
1577          bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ);
1578          bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0));
1579       } else {
1580          fs_reg zero;
1581          if (bit_size == 32) {
1582             zero = instr->op == nir_op_f2b32 ? brw_imm_f(0.0f) : brw_imm_d(0);
1583          } else {
1584             assert(bit_size == 16);
1585             zero = instr->op == nir_op_f2b32 ?
1586                retype(brw_imm_w(0), BRW_REGISTER_TYPE_HF) : brw_imm_w(0);
1587          }
1588          bld.CMP(result, op[0], zero, BRW_CONDITIONAL_NZ);
1589       }
1590       break;
1591    }
1592 
1593    case nir_op_ftrunc:
1594       inst = bld.RNDZ(result, op[0]);
1595       if (devinfo->gen < 6) {
1596          set_condmod(BRW_CONDITIONAL_R, inst);
1597          set_predicate(BRW_PREDICATE_NORMAL,
1598                        bld.ADD(result, result, brw_imm_f(1.0f)));
1599          inst = bld.MOV(result, result); /* for potential saturation */
1600       }
1601       break;
1602 
1603    case nir_op_fceil: {
1604       op[0].negate = !op[0].negate;
1605       fs_reg temp = vgrf(glsl_type::float_type);
1606       bld.RNDD(temp, op[0]);
1607       temp.negate = true;
1608       inst = bld.MOV(result, temp);
1609       break;
1610    }
1611    case nir_op_ffloor:
1612       inst = bld.RNDD(result, op[0]);
1613       break;
1614    case nir_op_ffract:
1615       inst = bld.FRC(result, op[0]);
1616       break;
1617    case nir_op_fround_even:
1618       inst = bld.RNDE(result, op[0]);
1619       if (devinfo->gen < 6) {
1620          set_condmod(BRW_CONDITIONAL_R, inst);
1621          set_predicate(BRW_PREDICATE_NORMAL,
1622                        bld.ADD(result, result, brw_imm_f(1.0f)));
1623          inst = bld.MOV(result, result); /* for potential saturation */
1624       }
1625       break;
1626 
1627    case nir_op_fquantize2f16: {
1628       fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1629       fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1630       fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1631 
1632       /* The destination stride must be at least as big as the source stride. */
1633       tmp16.type = BRW_REGISTER_TYPE_W;
1634       tmp16.stride = 2;
1635 
1636       /* Check for denormal */
1637       fs_reg abs_src0 = op[0];
1638       abs_src0.abs = true;
1639       bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1640               BRW_CONDITIONAL_L);
1641       /* Get the appropriately signed zero */
1642       bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1643               retype(op[0], BRW_REGISTER_TYPE_UD),
1644               brw_imm_ud(0x80000000));
1645       /* Do the actual F32 -> F16 -> F32 conversion */
1646       bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1647       bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1648       /* Select that or zero based on normal status */
1649       inst = bld.SEL(result, zero, tmp32);
1650       inst->predicate = BRW_PREDICATE_NORMAL;
1651       break;
1652    }
1653 
1654    case nir_op_imin:
1655    case nir_op_umin:
1656    case nir_op_fmin:
1657       inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1658       break;
1659 
1660    case nir_op_imax:
1661    case nir_op_umax:
1662    case nir_op_fmax:
1663       inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1664       break;
1665 
1666    case nir_op_pack_snorm_2x16:
1667    case nir_op_pack_snorm_4x8:
1668    case nir_op_pack_unorm_2x16:
1669    case nir_op_pack_unorm_4x8:
1670    case nir_op_unpack_snorm_2x16:
1671    case nir_op_unpack_snorm_4x8:
1672    case nir_op_unpack_unorm_2x16:
1673    case nir_op_unpack_unorm_4x8:
1674    case nir_op_unpack_half_2x16:
1675    case nir_op_pack_half_2x16:
1676       unreachable("not reached: should be handled by lower_packing_builtins");
1677 
1678    case nir_op_unpack_half_2x16_split_x_flush_to_zero:
1679       assert(FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 & execution_mode);
1680       /* Fall-through */
1681    case nir_op_unpack_half_2x16_split_x:
1682       inst = bld.emit(BRW_OPCODE_F16TO32, result,
1683                       subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1684       break;
1685 
1686    case nir_op_unpack_half_2x16_split_y_flush_to_zero:
1687       assert(FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16 & execution_mode);
1688       /* Fall-through */
1689    case nir_op_unpack_half_2x16_split_y:
1690       inst = bld.emit(BRW_OPCODE_F16TO32, result,
1691                       subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1692       break;
1693 
1694    case nir_op_pack_64_2x32_split:
1695    case nir_op_pack_32_2x16_split:
1696       bld.emit(FS_OPCODE_PACK, result, op[0], op[1]);
1697       break;
1698 
1699    case nir_op_unpack_64_2x32_split_x:
1700    case nir_op_unpack_64_2x32_split_y: {
1701       if (instr->op == nir_op_unpack_64_2x32_split_x)
1702          bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0));
1703       else
1704          bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
1705       break;
1706    }
1707 
1708    case nir_op_unpack_32_2x16_split_x:
1709    case nir_op_unpack_32_2x16_split_y: {
1710       if (instr->op == nir_op_unpack_32_2x16_split_x)
1711          bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1712       else
1713          bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1714       break;
1715    }
1716 
1717    case nir_op_fpow:
1718       inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1719       break;
1720 
1721    case nir_op_bitfield_reverse:
1722       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1723       bld.BFREV(result, op[0]);
1724       break;
1725 
1726    case nir_op_bit_count:
1727       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1728       bld.CBIT(result, op[0]);
1729       break;
1730 
1731    case nir_op_ufind_msb: {
1732       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1733       emit_find_msb_using_lzd(bld, result, op[0], false);
1734       break;
1735    }
1736 
1737    case nir_op_uclz:
1738       assert(nir_dest_bit_size(instr->dest.dest) == 32);
1739       bld.LZD(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1740       break;
1741 
1742    case nir_op_ifind_msb: {
1743       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1744 
1745       if (devinfo->gen < 7) {
1746          emit_find_msb_using_lzd(bld, result, op[0], true);
1747       } else {
1748          bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1749 
1750          /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1751           * count from the LSB side. If FBH didn't return an error
1752           * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1753           * count into an LSB count.
1754           */
1755          bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1756 
1757          inst = bld.ADD(result, result, brw_imm_d(31));
1758          inst->predicate = BRW_PREDICATE_NORMAL;
1759          inst->src[0].negate = true;
1760       }
1761       break;
1762    }
1763 
1764    case nir_op_find_lsb:
1765       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1766 
1767       if (devinfo->gen < 7) {
1768          fs_reg temp = vgrf(glsl_type::int_type);
1769 
1770          /* (x & -x) generates a value that consists of only the LSB of x.
1771           * For all powers of 2, findMSB(y) == findLSB(y).
1772           */
1773          fs_reg src = retype(op[0], BRW_REGISTER_TYPE_D);
1774          fs_reg negated_src = src;
1775 
1776          /* One must be negated, and the other must be non-negated.  It
1777           * doesn't matter which is which.
1778           */
1779          negated_src.negate = true;
1780          src.negate = false;
1781 
1782          bld.AND(temp, src, negated_src);
1783          emit_find_msb_using_lzd(bld, result, temp, false);
1784       } else {
1785          bld.FBL(result, op[0]);
1786       }
1787       break;
1788 
1789    case nir_op_ubitfield_extract:
1790    case nir_op_ibitfield_extract:
1791       unreachable("should have been lowered");
1792    case nir_op_ubfe:
1793    case nir_op_ibfe:
1794       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1795       bld.BFE(result, op[2], op[1], op[0]);
1796       break;
1797    case nir_op_bfm:
1798       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1799       bld.BFI1(result, op[0], op[1]);
1800       break;
1801    case nir_op_bfi:
1802       assert(nir_dest_bit_size(instr->dest.dest) < 64);
1803       bld.BFI2(result, op[0], op[1], op[2]);
1804       break;
1805 
1806    case nir_op_bitfield_insert:
1807       unreachable("not reached: should have been lowered");
1808 
1809    case nir_op_ishl:
1810       bld.SHL(result, op[0], op[1]);
1811       break;
1812    case nir_op_ishr:
1813       bld.ASR(result, op[0], op[1]);
1814       break;
1815    case nir_op_ushr:
1816       bld.SHR(result, op[0], op[1]);
1817       break;
1818 
1819    case nir_op_urol:
1820       bld.ROL(result, op[0], op[1]);
1821       break;
1822    case nir_op_uror:
1823       bld.ROR(result, op[0], op[1]);
1824       break;
1825 
1826    case nir_op_pack_half_2x16_split:
1827       bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1828       break;
1829 
1830    case nir_op_ffma:
1831       if (nir_has_any_rounding_mode_enabled(execution_mode)) {
1832          brw_rnd_mode rnd =
1833             brw_rnd_mode_from_execution_mode(execution_mode);
1834          bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
1835                   brw_imm_d(rnd));
1836       }
1837 
1838       inst = bld.MAD(result, op[2], op[1], op[0]);
1839       break;
1840 
1841    case nir_op_flrp:
1842       if (nir_has_any_rounding_mode_enabled(execution_mode)) {
1843          brw_rnd_mode rnd =
1844             brw_rnd_mode_from_execution_mode(execution_mode);
1845          bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
1846                   brw_imm_d(rnd));
1847       }
1848 
1849       inst = bld.LRP(result, op[0], op[1], op[2]);
1850       break;
1851 
1852    case nir_op_b32csel:
1853       if (optimize_frontfacing_ternary(instr, result))
1854          return;
1855 
1856       bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1857       inst = bld.SEL(result, op[1], op[2]);
1858       inst->predicate = BRW_PREDICATE_NORMAL;
1859       break;
1860 
1861    case nir_op_extract_u8:
1862    case nir_op_extract_i8: {
1863       unsigned byte = nir_src_as_uint(instr->src[1].src);
1864 
1865       /* The PRMs say:
1866        *
1867        *    BDW+
1868        *    There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB.
1869        *    Use two instructions and a word or DWord intermediate integer type.
1870        */
1871       if (nir_dest_bit_size(instr->dest.dest) == 64) {
1872          const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1873 
1874          if (instr->op == nir_op_extract_i8) {
1875             /* If we need to sign extend, extract to a word first */
1876             fs_reg w_temp = bld.vgrf(BRW_REGISTER_TYPE_W);
1877             bld.MOV(w_temp, subscript(op[0], type, byte));
1878             bld.MOV(result, w_temp);
1879          } else if (byte & 1) {
1880             /* Extract the high byte from the word containing the desired byte
1881              * offset.
1882              */
1883             bld.SHR(result,
1884                     subscript(op[0], BRW_REGISTER_TYPE_UW, byte / 2),
1885                     brw_imm_uw(8));
1886          } else {
1887             /* Otherwise use an AND with 0xff and a word type */
1888             bld.AND(result,
1889                     subscript(op[0], BRW_REGISTER_TYPE_UW, byte / 2),
1890                     brw_imm_uw(0xff));
1891          }
1892       } else {
1893          const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1894          bld.MOV(result, subscript(op[0], type, byte));
1895       }
1896       break;
1897    }
1898 
1899    case nir_op_extract_u16:
1900    case nir_op_extract_i16: {
1901       const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16);
1902       unsigned word = nir_src_as_uint(instr->src[1].src);
1903       bld.MOV(result, subscript(op[0], type, word));
1904       break;
1905    }
1906 
1907    default:
1908       unreachable("unhandled instruction");
1909    }
1910 
1911    /* If we need to do a boolean resolve, replace the result with -(x & 1)
1912     * to sign extend the low bit to 0/~0
1913     */
1914    if (devinfo->gen <= 5 &&
1915        !result.is_null() &&
1916        (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1917       fs_reg masked = vgrf(glsl_type::int_type);
1918       bld.AND(masked, result, brw_imm_d(1));
1919       masked.negate = true;
1920       bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1921    }
1922 }
1923 
1924 void
nir_emit_load_const(const fs_builder & bld,nir_load_const_instr * instr)1925 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1926                                 nir_load_const_instr *instr)
1927 {
1928    const brw_reg_type reg_type =
1929       brw_reg_type_from_bit_size(instr->def.bit_size, BRW_REGISTER_TYPE_D);
1930    fs_reg reg = bld.vgrf(reg_type, instr->def.num_components);
1931 
1932    switch (instr->def.bit_size) {
1933    case 8:
1934       for (unsigned i = 0; i < instr->def.num_components; i++)
1935          bld.MOV(offset(reg, bld, i), setup_imm_b(bld, instr->value[i].i8));
1936       break;
1937 
1938    case 16:
1939       for (unsigned i = 0; i < instr->def.num_components; i++)
1940          bld.MOV(offset(reg, bld, i), brw_imm_w(instr->value[i].i16));
1941       break;
1942 
1943    case 32:
1944       for (unsigned i = 0; i < instr->def.num_components; i++)
1945          bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value[i].i32));
1946       break;
1947 
1948    case 64:
1949       assert(devinfo->gen >= 7);
1950       if (devinfo->gen == 7) {
1951          /* We don't get 64-bit integer types until gen8 */
1952          for (unsigned i = 0; i < instr->def.num_components; i++) {
1953             bld.MOV(retype(offset(reg, bld, i), BRW_REGISTER_TYPE_DF),
1954                     setup_imm_df(bld, instr->value[i].f64));
1955          }
1956       } else {
1957          for (unsigned i = 0; i < instr->def.num_components; i++)
1958             bld.MOV(offset(reg, bld, i), brw_imm_q(instr->value[i].i64));
1959       }
1960       break;
1961 
1962    default:
1963       unreachable("Invalid bit size");
1964    }
1965 
1966    nir_ssa_values[instr->def.index] = reg;
1967 }
1968 
1969 fs_reg
get_nir_src(const nir_src & src)1970 fs_visitor::get_nir_src(const nir_src &src)
1971 {
1972    fs_reg reg;
1973    if (src.is_ssa) {
1974       if (src.ssa->parent_instr->type == nir_instr_type_ssa_undef) {
1975          const brw_reg_type reg_type =
1976             brw_reg_type_from_bit_size(src.ssa->bit_size, BRW_REGISTER_TYPE_D);
1977          reg = bld.vgrf(reg_type, src.ssa->num_components);
1978       } else {
1979          reg = nir_ssa_values[src.ssa->index];
1980       }
1981    } else {
1982       /* We don't handle indirects on locals */
1983       assert(src.reg.indirect == NULL);
1984       reg = offset(nir_locals[src.reg.reg->index], bld,
1985                    src.reg.base_offset * src.reg.reg->num_components);
1986    }
1987 
1988    if (nir_src_bit_size(src) == 64 && devinfo->gen == 7) {
1989       /* The only 64-bit type available on gen7 is DF, so use that. */
1990       reg.type = BRW_REGISTER_TYPE_DF;
1991    } else {
1992       /* To avoid floating-point denorm flushing problems, set the type by
1993        * default to an integer type - instructions that need floating point
1994        * semantics will set this to F if they need to
1995        */
1996       reg.type = brw_reg_type_from_bit_size(nir_src_bit_size(src),
1997                                             BRW_REGISTER_TYPE_D);
1998    }
1999 
2000    return reg;
2001 }
2002 
2003 /**
2004  * Return an IMM for constants; otherwise call get_nir_src() as normal.
2005  *
2006  * This function should not be called on any value which may be 64 bits.
2007  * We could theoretically support 64-bit on gen8+ but we choose not to
2008  * because it wouldn't work in general (no gen7 support) and there are
2009  * enough restrictions in 64-bit immediates that you can't take the return
2010  * value and treat it the same as the result of get_nir_src().
2011  */
2012 fs_reg
get_nir_src_imm(const nir_src & src)2013 fs_visitor::get_nir_src_imm(const nir_src &src)
2014 {
2015    assert(nir_src_bit_size(src) == 32);
2016    return nir_src_is_const(src) ?
2017           fs_reg(brw_imm_d(nir_src_as_int(src))) : get_nir_src(src);
2018 }
2019 
2020 fs_reg
get_nir_dest(const nir_dest & dest)2021 fs_visitor::get_nir_dest(const nir_dest &dest)
2022 {
2023    if (dest.is_ssa) {
2024       const brw_reg_type reg_type =
2025          brw_reg_type_from_bit_size(dest.ssa.bit_size,
2026                                     dest.ssa.bit_size == 8 ?
2027                                     BRW_REGISTER_TYPE_D :
2028                                     BRW_REGISTER_TYPE_F);
2029       nir_ssa_values[dest.ssa.index] =
2030          bld.vgrf(reg_type, dest.ssa.num_components);
2031       bld.UNDEF(nir_ssa_values[dest.ssa.index]);
2032       return nir_ssa_values[dest.ssa.index];
2033    } else {
2034       /* We don't handle indirects on locals */
2035       assert(dest.reg.indirect == NULL);
2036       return offset(nir_locals[dest.reg.reg->index], bld,
2037                     dest.reg.base_offset * dest.reg.reg->num_components);
2038    }
2039 }
2040 
2041 void
emit_percomp(const fs_builder & bld,const fs_inst & inst,unsigned wr_mask)2042 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
2043                          unsigned wr_mask)
2044 {
2045    for (unsigned i = 0; i < 4; i++) {
2046       if (!((wr_mask >> i) & 1))
2047          continue;
2048 
2049       fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
2050       new_inst->dst = offset(new_inst->dst, bld, i);
2051       for (unsigned j = 0; j < new_inst->sources; j++)
2052          if (new_inst->src[j].file == VGRF)
2053             new_inst->src[j] = offset(new_inst->src[j], bld, i);
2054 
2055       bld.emit(new_inst);
2056    }
2057 }
2058 
2059 static fs_inst *
emit_pixel_interpolater_send(const fs_builder & bld,enum opcode opcode,const fs_reg & dst,const fs_reg & src,const fs_reg & desc,glsl_interp_mode interpolation)2060 emit_pixel_interpolater_send(const fs_builder &bld,
2061                              enum opcode opcode,
2062                              const fs_reg &dst,
2063                              const fs_reg &src,
2064                              const fs_reg &desc,
2065                              glsl_interp_mode interpolation)
2066 {
2067    struct brw_wm_prog_data *wm_prog_data =
2068       brw_wm_prog_data(bld.shader->stage_prog_data);
2069 
2070    fs_inst *inst = bld.emit(opcode, dst, src, desc);
2071    /* 2 floats per slot returned */
2072    inst->size_written = 2 * dst.component_size(inst->exec_size);
2073    inst->pi_noperspective = interpolation == INTERP_MODE_NOPERSPECTIVE;
2074 
2075    wm_prog_data->pulls_bary = true;
2076 
2077    return inst;
2078 }
2079 
2080 /**
2081  * Computes 1 << x, given a D/UD register containing some value x.
2082  */
2083 static fs_reg
intexp2(const fs_builder & bld,const fs_reg & x)2084 intexp2(const fs_builder &bld, const fs_reg &x)
2085 {
2086    assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
2087 
2088    fs_reg result = bld.vgrf(x.type, 1);
2089    fs_reg one = bld.vgrf(x.type, 1);
2090 
2091    bld.MOV(one, retype(brw_imm_d(1), one.type));
2092    bld.SHL(result, one, x);
2093    return result;
2094 }
2095 
2096 void
emit_gs_end_primitive(const nir_src & vertex_count_nir_src)2097 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
2098 {
2099    assert(stage == MESA_SHADER_GEOMETRY);
2100 
2101    struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2102 
2103    if (gs_compile->control_data_header_size_bits == 0)
2104       return;
2105 
2106    /* We can only do EndPrimitive() functionality when the control data
2107     * consists of cut bits.  Fortunately, the only time it isn't is when the
2108     * output type is points, in which case EndPrimitive() is a no-op.
2109     */
2110    if (gs_prog_data->control_data_format !=
2111        GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
2112       return;
2113    }
2114 
2115    /* Cut bits use one bit per vertex. */
2116    assert(gs_compile->control_data_bits_per_vertex == 1);
2117 
2118    fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
2119    vertex_count.type = BRW_REGISTER_TYPE_UD;
2120 
2121    /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
2122     * vertex n, 0 otherwise.  So all we need to do here is mark bit
2123     * (vertex_count - 1) % 32 in the cut_bits register to indicate that
2124     * EndPrimitive() was called after emitting vertex (vertex_count - 1);
2125     * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
2126     *
2127     * Note that if EndPrimitive() is called before emitting any vertices, this
2128     * will cause us to set bit 31 of the control_data_bits register to 1.
2129     * That's fine because:
2130     *
2131     * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
2132     *   output, so the hardware will ignore cut bit 31.
2133     *
2134     * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
2135     *   last vertex, so setting cut bit 31 has no effect (since the primitive
2136     *   is automatically ended when the GS terminates).
2137     *
2138     * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
2139     *   control_data_bits register to 0 when the first vertex is emitted.
2140     */
2141 
2142    const fs_builder abld = bld.annotate("end primitive");
2143 
2144    /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
2145    fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2146    abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
2147    fs_reg mask = intexp2(abld, prev_count);
2148    /* Note: we're relying on the fact that the GEN SHL instruction only pays
2149     * attention to the lower 5 bits of its second source argument, so on this
2150     * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
2151     * ((vertex_count - 1) % 32).
2152     */
2153    abld.OR(this->control_data_bits, this->control_data_bits, mask);
2154 }
2155 
2156 void
emit_gs_control_data_bits(const fs_reg & vertex_count)2157 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
2158 {
2159    assert(stage == MESA_SHADER_GEOMETRY);
2160    assert(gs_compile->control_data_bits_per_vertex != 0);
2161 
2162    struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2163 
2164    const fs_builder abld = bld.annotate("emit control data bits");
2165    const fs_builder fwa_bld = bld.exec_all();
2166 
2167    /* We use a single UD register to accumulate control data bits (32 bits
2168     * for each of the SIMD8 channels).  So we need to write a DWord (32 bits)
2169     * at a time.
2170     *
2171     * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
2172     * We have select a 128-bit group via the Global and Per-Slot Offsets, then
2173     * use the Channel Mask phase to enable/disable which DWord within that
2174     * group to write.  (Remember, different SIMD8 channels may have emitted
2175     * different numbers of vertices, so we may need per-slot offsets.)
2176     *
2177     * Channel masking presents an annoying problem: we may have to replicate
2178     * the data up to 4 times:
2179     *
2180     * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
2181     *
2182     * To avoid penalizing shaders that emit a small number of vertices, we
2183     * can avoid these sometimes: if the size of the control data header is
2184     * <= 128 bits, then there is only 1 OWord.  All SIMD8 channels will land
2185     * land in the same 128-bit group, so we can skip per-slot offsets.
2186     *
2187     * Similarly, if the control data header is <= 32 bits, there is only one
2188     * DWord, so we can skip channel masks.
2189     */
2190    enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
2191 
2192    fs_reg channel_mask, per_slot_offset;
2193 
2194    if (gs_compile->control_data_header_size_bits > 32) {
2195       opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2196       channel_mask = vgrf(glsl_type::uint_type);
2197    }
2198 
2199    if (gs_compile->control_data_header_size_bits > 128) {
2200       opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
2201       per_slot_offset = vgrf(glsl_type::uint_type);
2202    }
2203 
2204    /* Figure out which DWord we're trying to write to using the formula:
2205     *
2206     *    dword_index = (vertex_count - 1) * bits_per_vertex / 32
2207     *
2208     * Since bits_per_vertex is a power of two, and is known at compile
2209     * time, this can be optimized to:
2210     *
2211     *    dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
2212     */
2213    if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
2214       fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2215       fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2216       abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
2217       unsigned log2_bits_per_vertex =
2218          util_last_bit(gs_compile->control_data_bits_per_vertex);
2219       abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
2220 
2221       if (per_slot_offset.file != BAD_FILE) {
2222          /* Set the per-slot offset to dword_index / 4, so that we'll write to
2223           * the appropriate OWord within the control data header.
2224           */
2225          abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
2226       }
2227 
2228       /* Set the channel masks to 1 << (dword_index % 4), so that we'll
2229        * write to the appropriate DWORD within the OWORD.
2230        */
2231       fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2232       fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
2233       channel_mask = intexp2(fwa_bld, channel);
2234       /* Then the channel masks need to be in bits 23:16. */
2235       fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
2236    }
2237 
2238    /* Store the control data bits in the message payload and send it. */
2239    unsigned mlen = 2;
2240    if (channel_mask.file != BAD_FILE)
2241       mlen += 4; /* channel masks, plus 3 extra copies of the data */
2242    if (per_slot_offset.file != BAD_FILE)
2243       mlen++;
2244 
2245    fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2246    fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
2247    unsigned i = 0;
2248    sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
2249    if (per_slot_offset.file != BAD_FILE)
2250       sources[i++] = per_slot_offset;
2251    if (channel_mask.file != BAD_FILE)
2252       sources[i++] = channel_mask;
2253    while (i < mlen) {
2254       sources[i++] = this->control_data_bits;
2255    }
2256 
2257    abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
2258    fs_inst *inst = abld.emit(opcode, reg_undef, payload);
2259    inst->mlen = mlen;
2260    /* We need to increment Global Offset by 256-bits to make room for
2261     * Broadwell's extra "Vertex Count" payload at the beginning of the
2262     * URB entry.  Since this is an OWord message, Global Offset is counted
2263     * in 128-bit units, so we must set it to 2.
2264     */
2265    if (gs_prog_data->static_vertex_count == -1)
2266       inst->offset = 2;
2267 }
2268 
2269 void
set_gs_stream_control_data_bits(const fs_reg & vertex_count,unsigned stream_id)2270 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
2271                                             unsigned stream_id)
2272 {
2273    /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
2274 
2275    /* Note: we are calling this *before* increasing vertex_count, so
2276     * this->vertex_count == vertex_count - 1 in the formula above.
2277     */
2278 
2279    /* Stream mode uses 2 bits per vertex */
2280    assert(gs_compile->control_data_bits_per_vertex == 2);
2281 
2282    /* Must be a valid stream */
2283    assert(stream_id < MAX_VERTEX_STREAMS);
2284 
2285    /* Control data bits are initialized to 0 so we don't have to set any
2286     * bits when sending vertices to stream 0.
2287     */
2288    if (stream_id == 0)
2289       return;
2290 
2291    const fs_builder abld = bld.annotate("set stream control data bits", NULL);
2292 
2293    /* reg::sid = stream_id */
2294    fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2295    abld.MOV(sid, brw_imm_ud(stream_id));
2296 
2297    /* reg:shift_count = 2 * (vertex_count - 1) */
2298    fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2299    abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
2300 
2301    /* Note: we're relying on the fact that the GEN SHL instruction only pays
2302     * attention to the lower 5 bits of its second source argument, so on this
2303     * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
2304     * stream_id << ((2 * (vertex_count - 1)) % 32).
2305     */
2306    fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2307    abld.SHL(mask, sid, shift_count);
2308    abld.OR(this->control_data_bits, this->control_data_bits, mask);
2309 }
2310 
2311 void
emit_gs_vertex(const nir_src & vertex_count_nir_src,unsigned stream_id)2312 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
2313                            unsigned stream_id)
2314 {
2315    assert(stage == MESA_SHADER_GEOMETRY);
2316 
2317    struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2318 
2319    fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
2320    vertex_count.type = BRW_REGISTER_TYPE_UD;
2321 
2322    /* Haswell and later hardware ignores the "Render Stream Select" bits
2323     * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
2324     * and instead sends all primitives down the pipeline for rasterization.
2325     * If the SOL stage is enabled, "Render Stream Select" is honored and
2326     * primitives bound to non-zero streams are discarded after stream output.
2327     *
2328     * Since the only purpose of primives sent to non-zero streams is to
2329     * be recorded by transform feedback, we can simply discard all geometry
2330     * bound to these streams when transform feedback is disabled.
2331     */
2332    if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
2333       return;
2334 
2335    /* If we're outputting 32 control data bits or less, then we can wait
2336     * until the shader is over to output them all.  Otherwise we need to
2337     * output them as we go.  Now is the time to do it, since we're about to
2338     * output the vertex_count'th vertex, so it's guaranteed that the
2339     * control data bits associated with the (vertex_count - 1)th vertex are
2340     * correct.
2341     */
2342    if (gs_compile->control_data_header_size_bits > 32) {
2343       const fs_builder abld =
2344          bld.annotate("emit vertex: emit control data bits");
2345 
2346       /* Only emit control data bits if we've finished accumulating a batch
2347        * of 32 bits.  This is the case when:
2348        *
2349        *     (vertex_count * bits_per_vertex) % 32 == 0
2350        *
2351        * (in other words, when the last 5 bits of vertex_count *
2352        * bits_per_vertex are 0).  Assuming bits_per_vertex == 2^n for some
2353        * integer n (which is always the case, since bits_per_vertex is
2354        * always 1 or 2), this is equivalent to requiring that the last 5-n
2355        * bits of vertex_count are 0:
2356        *
2357        *     vertex_count & (2^(5-n) - 1) == 0
2358        *
2359        * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
2360        * equivalent to:
2361        *
2362        *     vertex_count & (32 / bits_per_vertex - 1) == 0
2363        *
2364        * TODO: If vertex_count is an immediate, we could do some of this math
2365        *       at compile time...
2366        */
2367       fs_inst *inst =
2368          abld.AND(bld.null_reg_d(), vertex_count,
2369                   brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
2370       inst->conditional_mod = BRW_CONDITIONAL_Z;
2371 
2372       abld.IF(BRW_PREDICATE_NORMAL);
2373       /* If vertex_count is 0, then no control data bits have been
2374        * accumulated yet, so we can skip emitting them.
2375        */
2376       abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
2377                BRW_CONDITIONAL_NEQ);
2378       abld.IF(BRW_PREDICATE_NORMAL);
2379       emit_gs_control_data_bits(vertex_count);
2380       abld.emit(BRW_OPCODE_ENDIF);
2381 
2382       /* Reset control_data_bits to 0 so we can start accumulating a new
2383        * batch.
2384        *
2385        * Note: in the case where vertex_count == 0, this neutralizes the
2386        * effect of any call to EndPrimitive() that the shader may have
2387        * made before outputting its first vertex.
2388        */
2389       inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
2390       inst->force_writemask_all = true;
2391       abld.emit(BRW_OPCODE_ENDIF);
2392    }
2393 
2394    emit_urb_writes(vertex_count);
2395 
2396    /* In stream mode we have to set control data bits for all vertices
2397     * unless we have disabled control data bits completely (which we do
2398     * do for GL_POINTS outputs that don't use streams).
2399     */
2400    if (gs_compile->control_data_header_size_bits > 0 &&
2401        gs_prog_data->control_data_format ==
2402           GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
2403       set_gs_stream_control_data_bits(vertex_count, stream_id);
2404    }
2405 }
2406 
2407 void
emit_gs_input_load(const fs_reg & dst,const nir_src & vertex_src,unsigned base_offset,const nir_src & offset_src,unsigned num_components,unsigned first_component)2408 fs_visitor::emit_gs_input_load(const fs_reg &dst,
2409                                const nir_src &vertex_src,
2410                                unsigned base_offset,
2411                                const nir_src &offset_src,
2412                                unsigned num_components,
2413                                unsigned first_component)
2414 {
2415    assert(type_sz(dst.type) == 4);
2416    struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2417    const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
2418 
2419    /* TODO: figure out push input layout for invocations == 1 */
2420    if (gs_prog_data->invocations == 1 &&
2421        nir_src_is_const(offset_src) && nir_src_is_const(vertex_src) &&
2422        4 * (base_offset + nir_src_as_uint(offset_src)) < push_reg_count) {
2423       int imm_offset = (base_offset + nir_src_as_uint(offset_src)) * 4 +
2424                        nir_src_as_uint(vertex_src) * push_reg_count;
2425       for (unsigned i = 0; i < num_components; i++) {
2426          bld.MOV(offset(dst, bld, i),
2427                  fs_reg(ATTR, imm_offset + i + first_component, dst.type));
2428       }
2429       return;
2430    }
2431 
2432    /* Resort to the pull model.  Ensure the VUE handles are provided. */
2433    assert(gs_prog_data->base.include_vue_handles);
2434 
2435    unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
2436    fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2437 
2438    if (gs_prog_data->invocations == 1) {
2439       if (nir_src_is_const(vertex_src)) {
2440          /* The vertex index is constant; just select the proper URB handle. */
2441          icp_handle =
2442             retype(brw_vec8_grf(first_icp_handle + nir_src_as_uint(vertex_src), 0),
2443                    BRW_REGISTER_TYPE_UD);
2444       } else {
2445          /* The vertex index is non-constant.  We need to use indirect
2446           * addressing to fetch the proper URB handle.
2447           *
2448           * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2449           * indicating that channel <n> should read the handle from
2450           * DWord <n>.  We convert that to bytes by multiplying by 4.
2451           *
2452           * Next, we convert the vertex index to bytes by multiplying
2453           * by 32 (shifting by 5), and add the two together.  This is
2454           * the final indirect byte offset.
2455           */
2456          fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2457          fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2458          fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2459          fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2460 
2461          /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2462          bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2463          /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2464          bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2465          /* Convert vertex_index to bytes (multiply by 32) */
2466          bld.SHL(vertex_offset_bytes,
2467                  retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2468                  brw_imm_ud(5u));
2469          bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2470 
2471          /* Use first_icp_handle as the base offset.  There is one register
2472           * of URB handles per vertex, so inform the register allocator that
2473           * we might read up to nir->info.gs.vertices_in registers.
2474           */
2475          bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2476                   retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2477                   fs_reg(icp_offset_bytes),
2478                   brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
2479       }
2480    } else {
2481       assert(gs_prog_data->invocations > 1);
2482 
2483       if (nir_src_is_const(vertex_src)) {
2484          unsigned vertex = nir_src_as_uint(vertex_src);
2485          assert(devinfo->gen >= 9 || vertex <= 5);
2486          bld.MOV(icp_handle,
2487                  retype(brw_vec1_grf(first_icp_handle + vertex / 8, vertex % 8),
2488                         BRW_REGISTER_TYPE_UD));
2489       } else {
2490          /* The vertex index is non-constant.  We need to use indirect
2491           * addressing to fetch the proper URB handle.
2492           *
2493           */
2494          fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2495 
2496          /* Convert vertex_index to bytes (multiply by 4) */
2497          bld.SHL(icp_offset_bytes,
2498                  retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2499                  brw_imm_ud(2u));
2500 
2501          /* Use first_icp_handle as the base offset.  There is one DWord
2502           * of URB handles per vertex, so inform the register allocator that
2503           * we might read up to ceil(nir->info.gs.vertices_in / 8) registers.
2504           */
2505          bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2506                   retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2507                   fs_reg(icp_offset_bytes),
2508                   brw_imm_ud(DIV_ROUND_UP(nir->info.gs.vertices_in, 8) *
2509                              REG_SIZE));
2510       }
2511    }
2512 
2513    fs_inst *inst;
2514    fs_reg indirect_offset = get_nir_src(offset_src);
2515 
2516    if (nir_src_is_const(offset_src)) {
2517       /* Constant indexing - use global offset. */
2518       if (first_component != 0) {
2519          unsigned read_components = num_components + first_component;
2520          fs_reg tmp = bld.vgrf(dst.type, read_components);
2521          inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2522          inst->size_written = read_components *
2523                               tmp.component_size(inst->exec_size);
2524          for (unsigned i = 0; i < num_components; i++) {
2525             bld.MOV(offset(dst, bld, i),
2526                     offset(tmp, bld, i + first_component));
2527          }
2528       } else {
2529          inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2530          inst->size_written = num_components *
2531                               dst.component_size(inst->exec_size);
2532       }
2533       inst->offset = base_offset + nir_src_as_uint(offset_src);
2534       inst->mlen = 1;
2535    } else {
2536       /* Indirect indexing - use per-slot offsets as well. */
2537       const fs_reg srcs[] = { icp_handle, indirect_offset };
2538       unsigned read_components = num_components + first_component;
2539       fs_reg tmp = bld.vgrf(dst.type, read_components);
2540       fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2541       bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2542       if (first_component != 0) {
2543          inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2544                          payload);
2545          inst->size_written = read_components *
2546                               tmp.component_size(inst->exec_size);
2547          for (unsigned i = 0; i < num_components; i++) {
2548             bld.MOV(offset(dst, bld, i),
2549                     offset(tmp, bld, i + first_component));
2550          }
2551       } else {
2552          inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst, payload);
2553          inst->size_written = num_components *
2554                               dst.component_size(inst->exec_size);
2555       }
2556       inst->offset = base_offset;
2557       inst->mlen = 2;
2558    }
2559 }
2560 
2561 fs_reg
get_indirect_offset(nir_intrinsic_instr * instr)2562 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
2563 {
2564    nir_src *offset_src = nir_get_io_offset_src(instr);
2565 
2566    if (nir_src_is_const(*offset_src)) {
2567       /* The only constant offset we should find is 0.  brw_nir.c's
2568        * add_const_offset_to_base() will fold other constant offsets
2569        * into instr->const_index[0].
2570        */
2571       assert(nir_src_as_uint(*offset_src) == 0);
2572       return fs_reg();
2573    }
2574 
2575    return get_nir_src(*offset_src);
2576 }
2577 
2578 void
nir_emit_vs_intrinsic(const fs_builder & bld,nir_intrinsic_instr * instr)2579 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
2580                                   nir_intrinsic_instr *instr)
2581 {
2582    assert(stage == MESA_SHADER_VERTEX);
2583 
2584    fs_reg dest;
2585    if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2586       dest = get_nir_dest(instr->dest);
2587 
2588    switch (instr->intrinsic) {
2589    case nir_intrinsic_load_vertex_id:
2590    case nir_intrinsic_load_base_vertex:
2591       unreachable("should be lowered by nir_lower_system_values()");
2592 
2593    case nir_intrinsic_load_input: {
2594       assert(nir_dest_bit_size(instr->dest) == 32);
2595       fs_reg src = fs_reg(ATTR, nir_intrinsic_base(instr) * 4, dest.type);
2596       src = offset(src, bld, nir_intrinsic_component(instr));
2597       src = offset(src, bld, nir_src_as_uint(instr->src[0]));
2598 
2599       for (unsigned i = 0; i < instr->num_components; i++)
2600          bld.MOV(offset(dest, bld, i), offset(src, bld, i));
2601       break;
2602    }
2603 
2604    case nir_intrinsic_load_vertex_id_zero_base:
2605    case nir_intrinsic_load_instance_id:
2606    case nir_intrinsic_load_base_instance:
2607    case nir_intrinsic_load_draw_id:
2608    case nir_intrinsic_load_first_vertex:
2609    case nir_intrinsic_load_is_indexed_draw:
2610       unreachable("lowered by brw_nir_lower_vs_inputs");
2611 
2612    default:
2613       nir_emit_intrinsic(bld, instr);
2614       break;
2615    }
2616 }
2617 
2618 fs_reg
get_tcs_single_patch_icp_handle(const fs_builder & bld,nir_intrinsic_instr * instr)2619 fs_visitor::get_tcs_single_patch_icp_handle(const fs_builder &bld,
2620                                             nir_intrinsic_instr *instr)
2621 {
2622    struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2623    const nir_src &vertex_src = instr->src[0];
2624    nir_intrinsic_instr *vertex_intrin = nir_src_as_intrinsic(vertex_src);
2625    fs_reg icp_handle;
2626 
2627    if (nir_src_is_const(vertex_src)) {
2628       /* Emit a MOV to resolve <0,1,0> regioning. */
2629       icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2630       unsigned vertex = nir_src_as_uint(vertex_src);
2631       bld.MOV(icp_handle,
2632               retype(brw_vec1_grf(1 + (vertex >> 3), vertex & 7),
2633                      BRW_REGISTER_TYPE_UD));
2634    } else if (tcs_prog_data->instances == 1 && vertex_intrin &&
2635               vertex_intrin->intrinsic == nir_intrinsic_load_invocation_id) {
2636       /* For the common case of only 1 instance, an array index of
2637        * gl_InvocationID means reading g1.  Skip all the indirect work.
2638        */
2639       icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2640    } else {
2641       /* The vertex index is non-constant.  We need to use indirect
2642        * addressing to fetch the proper URB handle.
2643        */
2644       icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2645 
2646       /* Each ICP handle is a single DWord (4 bytes) */
2647       fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2648       bld.SHL(vertex_offset_bytes,
2649               retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2650               brw_imm_ud(2u));
2651 
2652       /* Start at g1.  We might read up to 4 registers. */
2653       bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2654                retype(brw_vec8_grf(1, 0), icp_handle.type), vertex_offset_bytes,
2655                brw_imm_ud(4 * REG_SIZE));
2656    }
2657 
2658    return icp_handle;
2659 }
2660 
2661 fs_reg
get_tcs_eight_patch_icp_handle(const fs_builder & bld,nir_intrinsic_instr * instr)2662 fs_visitor::get_tcs_eight_patch_icp_handle(const fs_builder &bld,
2663                                            nir_intrinsic_instr *instr)
2664 {
2665    struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2666    struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2667    const nir_src &vertex_src = instr->src[0];
2668 
2669    unsigned first_icp_handle = tcs_prog_data->include_primitive_id ? 3 : 2;
2670 
2671    if (nir_src_is_const(vertex_src)) {
2672       return fs_reg(retype(brw_vec8_grf(first_icp_handle +
2673                                         nir_src_as_uint(vertex_src), 0),
2674                            BRW_REGISTER_TYPE_UD));
2675    }
2676 
2677    /* The vertex index is non-constant.  We need to use indirect
2678     * addressing to fetch the proper URB handle.
2679     *
2680     * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2681     * indicating that channel <n> should read the handle from
2682     * DWord <n>.  We convert that to bytes by multiplying by 4.
2683     *
2684     * Next, we convert the vertex index to bytes by multiplying
2685     * by 32 (shifting by 5), and add the two together.  This is
2686     * the final indirect byte offset.
2687     */
2688    fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2689    fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2690    fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2691    fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2692    fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2693 
2694    /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2695    bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2696    /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2697    bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2698    /* Convert vertex_index to bytes (multiply by 32) */
2699    bld.SHL(vertex_offset_bytes,
2700            retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2701            brw_imm_ud(5u));
2702    bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2703 
2704    /* Use first_icp_handle as the base offset.  There is one register
2705     * of URB handles per vertex, so inform the register allocator that
2706     * we might read up to nir->info.gs.vertices_in registers.
2707     */
2708    bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2709             retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2710             icp_offset_bytes, brw_imm_ud(tcs_key->input_vertices * REG_SIZE));
2711 
2712    return icp_handle;
2713 }
2714 
2715 struct brw_reg
get_tcs_output_urb_handle()2716 fs_visitor::get_tcs_output_urb_handle()
2717 {
2718    struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
2719 
2720    if (vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH) {
2721       return retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD);
2722    } else {
2723       assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH);
2724       return retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2725    }
2726 }
2727 
2728 void
nir_emit_tcs_intrinsic(const fs_builder & bld,nir_intrinsic_instr * instr)2729 fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld,
2730                                    nir_intrinsic_instr *instr)
2731 {
2732    assert(stage == MESA_SHADER_TESS_CTRL);
2733    struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2734    struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2735    struct brw_vue_prog_data *vue_prog_data = &tcs_prog_data->base;
2736 
2737    bool eight_patch =
2738       vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH;
2739 
2740    fs_reg dst;
2741    if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2742       dst = get_nir_dest(instr->dest);
2743 
2744    switch (instr->intrinsic) {
2745    case nir_intrinsic_load_primitive_id:
2746       bld.MOV(dst, fs_reg(eight_patch ? brw_vec8_grf(2, 0)
2747                                       : brw_vec1_grf(0, 1)));
2748       break;
2749    case nir_intrinsic_load_invocation_id:
2750       bld.MOV(retype(dst, invocation_id.type), invocation_id);
2751       break;
2752    case nir_intrinsic_load_patch_vertices_in:
2753       bld.MOV(retype(dst, BRW_REGISTER_TYPE_D),
2754               brw_imm_d(tcs_key->input_vertices));
2755       break;
2756 
2757    case nir_intrinsic_control_barrier: {
2758       if (tcs_prog_data->instances == 1)
2759          break;
2760 
2761       fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2762       fs_reg m0_2 = component(m0, 2);
2763 
2764       const fs_builder chanbld = bld.exec_all().group(1, 0);
2765 
2766       /* Zero the message header */
2767       bld.exec_all().MOV(m0, brw_imm_ud(0u));
2768 
2769       if (devinfo->gen < 11) {
2770          /* Copy "Barrier ID" from r0.2, bits 16:13 */
2771          chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2772                      brw_imm_ud(INTEL_MASK(16, 13)));
2773 
2774          /* Shift it up to bits 27:24. */
2775          chanbld.SHL(m0_2, m0_2, brw_imm_ud(11));
2776       } else {
2777          chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2778                      brw_imm_ud(INTEL_MASK(30, 24)));
2779       }
2780 
2781       /* Set the Barrier Count and the enable bit */
2782       if (devinfo->gen < 11) {
2783          chanbld.OR(m0_2, m0_2,
2784                     brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15)));
2785       } else {
2786          chanbld.OR(m0_2, m0_2,
2787                     brw_imm_ud(tcs_prog_data->instances << 8 | (1 << 15)));
2788       }
2789 
2790       bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
2791       break;
2792    }
2793 
2794    case nir_intrinsic_load_input:
2795       unreachable("nir_lower_io should never give us these.");
2796       break;
2797 
2798    case nir_intrinsic_load_per_vertex_input: {
2799       assert(nir_dest_bit_size(instr->dest) == 32);
2800       fs_reg indirect_offset = get_indirect_offset(instr);
2801       unsigned imm_offset = instr->const_index[0];
2802       fs_inst *inst;
2803 
2804       fs_reg icp_handle =
2805          eight_patch ? get_tcs_eight_patch_icp_handle(bld, instr)
2806                      : get_tcs_single_patch_icp_handle(bld, instr);
2807 
2808       /* We can only read two double components with each URB read, so
2809        * we send two read messages in that case, each one loading up to
2810        * two double components.
2811        */
2812       unsigned num_components = instr->num_components;
2813       unsigned first_component = nir_intrinsic_component(instr);
2814 
2815       if (indirect_offset.file == BAD_FILE) {
2816          /* Constant indexing - use global offset. */
2817          if (first_component != 0) {
2818             unsigned read_components = num_components + first_component;
2819             fs_reg tmp = bld.vgrf(dst.type, read_components);
2820             inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2821             for (unsigned i = 0; i < num_components; i++) {
2822                bld.MOV(offset(dst, bld, i),
2823                        offset(tmp, bld, i + first_component));
2824             }
2825          } else {
2826             inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2827          }
2828          inst->offset = imm_offset;
2829          inst->mlen = 1;
2830       } else {
2831          /* Indirect indexing - use per-slot offsets as well. */
2832          const fs_reg srcs[] = { icp_handle, indirect_offset };
2833          fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2834          bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2835          if (first_component != 0) {
2836             unsigned read_components = num_components + first_component;
2837             fs_reg tmp = bld.vgrf(dst.type, read_components);
2838             inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2839                             payload);
2840             for (unsigned i = 0; i < num_components; i++) {
2841                bld.MOV(offset(dst, bld, i),
2842                        offset(tmp, bld, i + first_component));
2843             }
2844          } else {
2845             inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2846                             payload);
2847          }
2848          inst->offset = imm_offset;
2849          inst->mlen = 2;
2850       }
2851       inst->size_written = (num_components + first_component) *
2852                            inst->dst.component_size(inst->exec_size);
2853 
2854       /* Copy the temporary to the destination to deal with writemasking.
2855        *
2856        * Also attempt to deal with gl_PointSize being in the .w component.
2857        */
2858       if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
2859          assert(type_sz(dst.type) == 4);
2860          inst->dst = bld.vgrf(dst.type, 4);
2861          inst->size_written = 4 * REG_SIZE;
2862          bld.MOV(dst, offset(inst->dst, bld, 3));
2863       }
2864       break;
2865    }
2866 
2867    case nir_intrinsic_load_output:
2868    case nir_intrinsic_load_per_vertex_output: {
2869       assert(nir_dest_bit_size(instr->dest) == 32);
2870       fs_reg indirect_offset = get_indirect_offset(instr);
2871       unsigned imm_offset = instr->const_index[0];
2872       unsigned first_component = nir_intrinsic_component(instr);
2873 
2874       struct brw_reg output_handles = get_tcs_output_urb_handle();
2875 
2876       fs_inst *inst;
2877       if (indirect_offset.file == BAD_FILE) {
2878          /* This MOV replicates the output handle to all enabled channels
2879           * is SINGLE_PATCH mode.
2880           */
2881          fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2882          bld.MOV(patch_handle, output_handles);
2883 
2884          {
2885             if (first_component != 0) {
2886                unsigned read_components =
2887                   instr->num_components + first_component;
2888                fs_reg tmp = bld.vgrf(dst.type, read_components);
2889                inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2890                                patch_handle);
2891                inst->size_written = read_components * REG_SIZE;
2892                for (unsigned i = 0; i < instr->num_components; i++) {
2893                   bld.MOV(offset(dst, bld, i),
2894                           offset(tmp, bld, i + first_component));
2895                }
2896             } else {
2897                inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst,
2898                                patch_handle);
2899                inst->size_written = instr->num_components * REG_SIZE;
2900             }
2901             inst->offset = imm_offset;
2902             inst->mlen = 1;
2903          }
2904       } else {
2905          /* Indirect indexing - use per-slot offsets as well. */
2906          const fs_reg srcs[] = { output_handles, indirect_offset };
2907          fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2908          bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2909          if (first_component != 0) {
2910             unsigned read_components =
2911                instr->num_components + first_component;
2912             fs_reg tmp = bld.vgrf(dst.type, read_components);
2913             inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2914                             payload);
2915             inst->size_written = read_components * REG_SIZE;
2916             for (unsigned i = 0; i < instr->num_components; i++) {
2917                bld.MOV(offset(dst, bld, i),
2918                        offset(tmp, bld, i + first_component));
2919             }
2920          } else {
2921             inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2922                             payload);
2923             inst->size_written = instr->num_components * REG_SIZE;
2924          }
2925          inst->offset = imm_offset;
2926          inst->mlen = 2;
2927       }
2928       break;
2929    }
2930 
2931    case nir_intrinsic_store_output:
2932    case nir_intrinsic_store_per_vertex_output: {
2933       assert(nir_src_bit_size(instr->src[0]) == 32);
2934       fs_reg value = get_nir_src(instr->src[0]);
2935       fs_reg indirect_offset = get_indirect_offset(instr);
2936       unsigned imm_offset = instr->const_index[0];
2937       unsigned mask = instr->const_index[1];
2938       unsigned header_regs = 0;
2939       struct brw_reg output_handles = get_tcs_output_urb_handle();
2940 
2941       fs_reg srcs[7];
2942       srcs[header_regs++] = output_handles;
2943 
2944       if (indirect_offset.file != BAD_FILE) {
2945          srcs[header_regs++] = indirect_offset;
2946       }
2947 
2948       if (mask == 0)
2949          break;
2950 
2951       unsigned num_components = util_last_bit(mask);
2952       enum opcode opcode;
2953 
2954       /* We can only pack two 64-bit components in a single message, so send
2955        * 2 messages if we have more components
2956        */
2957       unsigned first_component = nir_intrinsic_component(instr);
2958       mask = mask << first_component;
2959 
2960       if (mask != WRITEMASK_XYZW) {
2961          srcs[header_regs++] = brw_imm_ud(mask << 16);
2962          opcode = indirect_offset.file != BAD_FILE ?
2963             SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2964             SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2965       } else {
2966          opcode = indirect_offset.file != BAD_FILE ?
2967             SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT :
2968             SHADER_OPCODE_URB_WRITE_SIMD8;
2969       }
2970 
2971       for (unsigned i = 0; i < num_components; i++) {
2972          if (!(mask & (1 << (i + first_component))))
2973             continue;
2974 
2975          srcs[header_regs + i + first_component] = offset(value, bld, i);
2976       }
2977 
2978       unsigned mlen = header_regs + num_components + first_component;
2979       fs_reg payload =
2980          bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2981       bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs);
2982 
2983       fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload);
2984       inst->offset = imm_offset;
2985       inst->mlen = mlen;
2986       break;
2987    }
2988 
2989    default:
2990       nir_emit_intrinsic(bld, instr);
2991       break;
2992    }
2993 }
2994 
2995 void
nir_emit_tes_intrinsic(const fs_builder & bld,nir_intrinsic_instr * instr)2996 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
2997                                    nir_intrinsic_instr *instr)
2998 {
2999    assert(stage == MESA_SHADER_TESS_EVAL);
3000    struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(prog_data);
3001 
3002    fs_reg dest;
3003    if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3004       dest = get_nir_dest(instr->dest);
3005 
3006    switch (instr->intrinsic) {
3007    case nir_intrinsic_load_primitive_id:
3008       bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
3009       break;
3010    case nir_intrinsic_load_tess_coord:
3011       /* gl_TessCoord is part of the payload in g1-3 */
3012       for (unsigned i = 0; i < 3; i++) {
3013          bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
3014       }
3015       break;
3016 
3017    case nir_intrinsic_load_input:
3018    case nir_intrinsic_load_per_vertex_input: {
3019       assert(nir_dest_bit_size(instr->dest) == 32);
3020       fs_reg indirect_offset = get_indirect_offset(instr);
3021       unsigned imm_offset = instr->const_index[0];
3022       unsigned first_component = nir_intrinsic_component(instr);
3023 
3024       fs_inst *inst;
3025       if (indirect_offset.file == BAD_FILE) {
3026          /* Arbitrarily only push up to 32 vec4 slots worth of data,
3027           * which is 16 registers (since each holds 2 vec4 slots).
3028           */
3029          const unsigned max_push_slots = 32;
3030          if (imm_offset < max_push_slots) {
3031             fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
3032             for (int i = 0; i < instr->num_components; i++) {
3033                unsigned comp = 4 * (imm_offset % 2) + i + first_component;
3034                bld.MOV(offset(dest, bld, i), component(src, comp));
3035             }
3036 
3037             tes_prog_data->base.urb_read_length =
3038                MAX2(tes_prog_data->base.urb_read_length,
3039                     (imm_offset / 2) + 1);
3040          } else {
3041             /* Replicate the patch handle to all enabled channels */
3042             const fs_reg srcs[] = {
3043                retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
3044             };
3045             fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
3046             bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
3047 
3048             if (first_component != 0) {
3049                unsigned read_components =
3050                   instr->num_components + first_component;
3051                fs_reg tmp = bld.vgrf(dest.type, read_components);
3052                inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
3053                                patch_handle);
3054                inst->size_written = read_components * REG_SIZE;
3055                for (unsigned i = 0; i < instr->num_components; i++) {
3056                   bld.MOV(offset(dest, bld, i),
3057                           offset(tmp, bld, i + first_component));
3058                }
3059             } else {
3060                inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest,
3061                                patch_handle);
3062                inst->size_written = instr->num_components * REG_SIZE;
3063             }
3064             inst->mlen = 1;
3065             inst->offset = imm_offset;
3066          }
3067       } else {
3068          /* Indirect indexing - use per-slot offsets as well. */
3069 
3070          /* We can only read two double components with each URB read, so
3071           * we send two read messages in that case, each one loading up to
3072           * two double components.
3073           */
3074          unsigned num_components = instr->num_components;
3075          const fs_reg srcs[] = {
3076             retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
3077             indirect_offset
3078          };
3079          fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3080          bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
3081 
3082          if (first_component != 0) {
3083             unsigned read_components =
3084                 num_components + first_component;
3085             fs_reg tmp = bld.vgrf(dest.type, read_components);
3086             inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
3087                             payload);
3088             for (unsigned i = 0; i < num_components; i++) {
3089                bld.MOV(offset(dest, bld, i),
3090                        offset(tmp, bld, i + first_component));
3091             }
3092          } else {
3093             inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest,
3094                             payload);
3095          }
3096          inst->mlen = 2;
3097          inst->offset = imm_offset;
3098          inst->size_written = (num_components + first_component) *
3099                               inst->dst.component_size(inst->exec_size);
3100       }
3101       break;
3102    }
3103    default:
3104       nir_emit_intrinsic(bld, instr);
3105       break;
3106    }
3107 }
3108 
3109 void
nir_emit_gs_intrinsic(const fs_builder & bld,nir_intrinsic_instr * instr)3110 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
3111                                   nir_intrinsic_instr *instr)
3112 {
3113    assert(stage == MESA_SHADER_GEOMETRY);
3114    fs_reg indirect_offset;
3115 
3116    fs_reg dest;
3117    if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3118       dest = get_nir_dest(instr->dest);
3119 
3120    switch (instr->intrinsic) {
3121    case nir_intrinsic_load_primitive_id:
3122       assert(stage == MESA_SHADER_GEOMETRY);
3123       assert(brw_gs_prog_data(prog_data)->include_primitive_id);
3124       bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
3125               retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
3126       break;
3127 
3128    case nir_intrinsic_load_input:
3129       unreachable("load_input intrinsics are invalid for the GS stage");
3130 
3131    case nir_intrinsic_load_per_vertex_input:
3132       emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
3133                          instr->src[1], instr->num_components,
3134                          nir_intrinsic_component(instr));
3135       break;
3136 
3137    case nir_intrinsic_emit_vertex_with_counter:
3138       emit_gs_vertex(instr->src[0], instr->const_index[0]);
3139       break;
3140 
3141    case nir_intrinsic_end_primitive_with_counter:
3142       emit_gs_end_primitive(instr->src[0]);
3143       break;
3144 
3145    case nir_intrinsic_set_vertex_and_primitive_count:
3146       bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
3147       break;
3148 
3149    case nir_intrinsic_load_invocation_id: {
3150       fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
3151       assert(val.file != BAD_FILE);
3152       dest.type = val.type;
3153       bld.MOV(dest, val);
3154       break;
3155    }
3156 
3157    default:
3158       nir_emit_intrinsic(bld, instr);
3159       break;
3160    }
3161 }
3162 
3163 /**
3164  * Fetch the current render target layer index.
3165  */
3166 static fs_reg
fetch_render_target_array_index(const fs_builder & bld)3167 fetch_render_target_array_index(const fs_builder &bld)
3168 {
3169    if (bld.shader->devinfo->gen >= 12) {
3170       /* The render target array index is provided in the thread payload as
3171        * bits 26:16 of r1.1.
3172        */
3173       const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
3174       bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 1, 3),
3175               brw_imm_uw(0x7ff));
3176       return idx;
3177    } else if (bld.shader->devinfo->gen >= 6) {
3178       /* The render target array index is provided in the thread payload as
3179        * bits 26:16 of r0.0.
3180        */
3181       const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
3182       bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 0, 1),
3183               brw_imm_uw(0x7ff));
3184       return idx;
3185    } else {
3186       /* Pre-SNB we only ever render into the first layer of the framebuffer
3187        * since layered rendering is not implemented.
3188        */
3189       return brw_imm_ud(0);
3190    }
3191 }
3192 
3193 /**
3194  * Fake non-coherent framebuffer read implemented using TXF to fetch from the
3195  * framebuffer at the current fragment coordinates and sample index.
3196  */
3197 fs_inst *
emit_non_coherent_fb_read(const fs_builder & bld,const fs_reg & dst,unsigned target)3198 fs_visitor::emit_non_coherent_fb_read(const fs_builder &bld, const fs_reg &dst,
3199                                       unsigned target)
3200 {
3201    const struct gen_device_info *devinfo = bld.shader->devinfo;
3202 
3203    assert(bld.shader->stage == MESA_SHADER_FRAGMENT);
3204    const brw_wm_prog_key *wm_key =
3205       reinterpret_cast<const brw_wm_prog_key *>(key);
3206    assert(!wm_key->coherent_fb_fetch);
3207    const struct brw_wm_prog_data *wm_prog_data =
3208       brw_wm_prog_data(stage_prog_data);
3209 
3210    /* Calculate the surface index relative to the start of the texture binding
3211     * table block, since that's what the texturing messages expect.
3212     */
3213    const unsigned surface = target +
3214       wm_prog_data->binding_table.render_target_read_start -
3215       wm_prog_data->base.binding_table.texture_start;
3216 
3217    /* Calculate the fragment coordinates. */
3218    const fs_reg coords = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
3219    bld.MOV(offset(coords, bld, 0), pixel_x);
3220    bld.MOV(offset(coords, bld, 1), pixel_y);
3221    bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld));
3222 
3223    /* Calculate the sample index and MCS payload when multisampling.  Luckily
3224     * the MCS fetch message behaves deterministically for UMS surfaces, so it
3225     * shouldn't be necessary to recompile based on whether the framebuffer is
3226     * CMS or UMS.
3227     */
3228    if (wm_key->multisample_fbo &&
3229        nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
3230       nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
3231 
3232    const fs_reg sample = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
3233    const fs_reg mcs = wm_key->multisample_fbo ?
3234       emit_mcs_fetch(coords, 3, brw_imm_ud(surface), fs_reg()) : fs_reg();
3235 
3236    /* Use either a normal or a CMS texel fetch message depending on whether
3237     * the framebuffer is single or multisample.  On SKL+ use the wide CMS
3238     * message just in case the framebuffer uses 16x multisampling, it should
3239     * be equivalent to the normal CMS fetch for lower multisampling modes.
3240     */
3241    const opcode op = !wm_key->multisample_fbo ? SHADER_OPCODE_TXF_LOGICAL :
3242                      devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W_LOGICAL :
3243                      SHADER_OPCODE_TXF_CMS_LOGICAL;
3244 
3245    /* Emit the instruction. */
3246    fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
3247    srcs[TEX_LOGICAL_SRC_COORDINATE]       = coords;
3248    srcs[TEX_LOGICAL_SRC_LOD]              = brw_imm_ud(0);
3249    srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX]     = sample;
3250    srcs[TEX_LOGICAL_SRC_MCS]              = mcs;
3251    srcs[TEX_LOGICAL_SRC_SURFACE]          = brw_imm_ud(surface);
3252    srcs[TEX_LOGICAL_SRC_SAMPLER]          = brw_imm_ud(0);
3253    srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_ud(3);
3254    srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS]  = brw_imm_ud(0);
3255 
3256    fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs));
3257    inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3258 
3259    return inst;
3260 }
3261 
3262 /**
3263  * Actual coherent framebuffer read implemented using the native render target
3264  * read message.  Requires SKL+.
3265  */
3266 static fs_inst *
emit_coherent_fb_read(const fs_builder & bld,const fs_reg & dst,unsigned target)3267 emit_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target)
3268 {
3269    assert(bld.shader->devinfo->gen >= 9);
3270    fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst);
3271    inst->target = target;
3272    inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3273 
3274    return inst;
3275 }
3276 
3277 static fs_reg
alloc_temporary(const fs_builder & bld,unsigned size,fs_reg * regs,unsigned n)3278 alloc_temporary(const fs_builder &bld, unsigned size, fs_reg *regs, unsigned n)
3279 {
3280    if (n && regs[0].file != BAD_FILE) {
3281       return regs[0];
3282 
3283    } else {
3284       const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, size);
3285 
3286       for (unsigned i = 0; i < n; i++)
3287          regs[i] = tmp;
3288 
3289       return tmp;
3290    }
3291 }
3292 
3293 static fs_reg
alloc_frag_output(fs_visitor * v,unsigned location)3294 alloc_frag_output(fs_visitor *v, unsigned location)
3295 {
3296    assert(v->stage == MESA_SHADER_FRAGMENT);
3297    const brw_wm_prog_key *const key =
3298       reinterpret_cast<const brw_wm_prog_key *>(v->key);
3299    const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION);
3300    const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX);
3301 
3302    if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1))
3303       return alloc_temporary(v->bld, 4, &v->dual_src_output, 1);
3304 
3305    else if (l == FRAG_RESULT_COLOR)
3306       return alloc_temporary(v->bld, 4, v->outputs,
3307                              MAX2(key->nr_color_regions, 1));
3308 
3309    else if (l == FRAG_RESULT_DEPTH)
3310       return alloc_temporary(v->bld, 1, &v->frag_depth, 1);
3311 
3312    else if (l == FRAG_RESULT_STENCIL)
3313       return alloc_temporary(v->bld, 1, &v->frag_stencil, 1);
3314 
3315    else if (l == FRAG_RESULT_SAMPLE_MASK)
3316       return alloc_temporary(v->bld, 1, &v->sample_mask, 1);
3317 
3318    else if (l >= FRAG_RESULT_DATA0 &&
3319             l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS)
3320       return alloc_temporary(v->bld, 4,
3321                              &v->outputs[l - FRAG_RESULT_DATA0], 1);
3322 
3323    else
3324       unreachable("Invalid location");
3325 }
3326 
3327 void
nir_emit_fs_intrinsic(const fs_builder & bld,nir_intrinsic_instr * instr)3328 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
3329                                   nir_intrinsic_instr *instr)
3330 {
3331    assert(stage == MESA_SHADER_FRAGMENT);
3332 
3333    fs_reg dest;
3334    if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3335       dest = get_nir_dest(instr->dest);
3336 
3337    switch (instr->intrinsic) {
3338    case nir_intrinsic_load_front_face:
3339       bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
3340               *emit_frontfacing_interpolation());
3341       break;
3342 
3343    case nir_intrinsic_load_sample_pos: {
3344       fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
3345       assert(sample_pos.file != BAD_FILE);
3346       dest.type = sample_pos.type;
3347       bld.MOV(dest, sample_pos);
3348       bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
3349       break;
3350    }
3351 
3352    case nir_intrinsic_load_layer_id:
3353       dest.type = BRW_REGISTER_TYPE_UD;
3354       bld.MOV(dest, fetch_render_target_array_index(bld));
3355       break;
3356 
3357    case nir_intrinsic_is_helper_invocation: {
3358       /* Unlike the regular gl_HelperInvocation, that is defined at dispatch,
3359        * the helperInvocationEXT() (aka SpvOpIsHelperInvocationEXT) takes into
3360        * consideration demoted invocations.  That information is stored in
3361        * f0.1.
3362        */
3363       dest.type = BRW_REGISTER_TYPE_UD;
3364 
3365       bld.MOV(dest, brw_imm_ud(0));
3366 
3367       fs_inst *mov = bld.MOV(dest, brw_imm_ud(~0));
3368       mov->predicate = BRW_PREDICATE_NORMAL;
3369       mov->predicate_inverse = true;
3370       mov->flag_subreg = sample_mask_flag_subreg(this);
3371       break;
3372    }
3373 
3374    case nir_intrinsic_load_helper_invocation:
3375    case nir_intrinsic_load_sample_mask_in:
3376    case nir_intrinsic_load_sample_id: {
3377       gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3378       fs_reg val = nir_system_values[sv];
3379       assert(val.file != BAD_FILE);
3380       dest.type = val.type;
3381       bld.MOV(dest, val);
3382       break;
3383    }
3384 
3385    case nir_intrinsic_store_output: {
3386       const fs_reg src = get_nir_src(instr->src[0]);
3387       const unsigned store_offset = nir_src_as_uint(instr->src[1]);
3388       const unsigned location = nir_intrinsic_base(instr) +
3389          SET_FIELD(store_offset, BRW_NIR_FRAG_OUTPUT_LOCATION);
3390       const fs_reg new_dest = retype(alloc_frag_output(this, location),
3391                                      src.type);
3392 
3393       for (unsigned j = 0; j < instr->num_components; j++)
3394          bld.MOV(offset(new_dest, bld, nir_intrinsic_component(instr) + j),
3395                  offset(src, bld, j));
3396 
3397       break;
3398    }
3399 
3400    case nir_intrinsic_load_output: {
3401       const unsigned l = GET_FIELD(nir_intrinsic_base(instr),
3402                                    BRW_NIR_FRAG_OUTPUT_LOCATION);
3403       assert(l >= FRAG_RESULT_DATA0);
3404       const unsigned load_offset = nir_src_as_uint(instr->src[0]);
3405       const unsigned target = l - FRAG_RESULT_DATA0 + load_offset;
3406       const fs_reg tmp = bld.vgrf(dest.type, 4);
3407 
3408       if (reinterpret_cast<const brw_wm_prog_key *>(key)->coherent_fb_fetch)
3409          emit_coherent_fb_read(bld, tmp, target);
3410       else
3411          emit_non_coherent_fb_read(bld, tmp, target);
3412 
3413       for (unsigned j = 0; j < instr->num_components; j++) {
3414          bld.MOV(offset(dest, bld, j),
3415                  offset(tmp, bld, nir_intrinsic_component(instr) + j));
3416       }
3417 
3418       break;
3419    }
3420 
3421    case nir_intrinsic_demote:
3422    case nir_intrinsic_discard:
3423    case nir_intrinsic_terminate:
3424    case nir_intrinsic_demote_if:
3425    case nir_intrinsic_discard_if:
3426    case nir_intrinsic_terminate_if: {
3427       /* We track our discarded pixels in f0.1/f1.0.  By predicating on it, we
3428        * can update just the flag bits that aren't yet discarded.  If there's
3429        * no condition, we emit a CMP of g0 != g0, so all currently executing
3430        * channels will get turned off.
3431        */
3432       fs_inst *cmp = NULL;
3433       if (instr->intrinsic == nir_intrinsic_demote_if ||
3434           instr->intrinsic == nir_intrinsic_discard_if ||
3435           instr->intrinsic == nir_intrinsic_terminate_if) {
3436          nir_alu_instr *alu = nir_src_as_alu_instr(instr->src[0]);
3437 
3438          if (alu != NULL &&
3439              alu->op != nir_op_bcsel &&
3440              (devinfo->gen > 5 ||
3441               (alu->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) != BRW_NIR_BOOLEAN_NEEDS_RESOLVE ||
3442               alu->op == nir_op_fneu32 || alu->op == nir_op_feq32 ||
3443               alu->op == nir_op_flt32 || alu->op == nir_op_fge32 ||
3444               alu->op == nir_op_ine32 || alu->op == nir_op_ieq32 ||
3445               alu->op == nir_op_ilt32 || alu->op == nir_op_ige32 ||
3446               alu->op == nir_op_ult32 || alu->op == nir_op_uge32)) {
3447             /* Re-emit the instruction that generated the Boolean value, but
3448              * do not store it.  Since this instruction will be conditional,
3449              * other instructions that want to use the real Boolean value may
3450              * get garbage.  This was a problem for piglit's fs-discard-exit-2
3451              * test.
3452              *
3453              * Ideally we'd detect that the instruction cannot have a
3454              * conditional modifier before emitting the instructions.  Alas,
3455              * that is nigh impossible.  Instead, we're going to assume the
3456              * instruction (or last instruction) generated can have a
3457              * conditional modifier.  If it cannot, fallback to the old-style
3458              * compare, and hope dead code elimination will clean up the
3459              * extra instructions generated.
3460              */
3461             nir_emit_alu(bld, alu, false);
3462 
3463             cmp = (fs_inst *) instructions.get_tail();
3464             if (cmp->conditional_mod == BRW_CONDITIONAL_NONE) {
3465                if (cmp->can_do_cmod())
3466                   cmp->conditional_mod = BRW_CONDITIONAL_Z;
3467                else
3468                   cmp = NULL;
3469             } else {
3470                /* The old sequence that would have been generated is,
3471                 * basically, bool_result == false.  This is equivalent to
3472                 * !bool_result, so negate the old modifier.
3473                 */
3474                cmp->conditional_mod = brw_negate_cmod(cmp->conditional_mod);
3475             }
3476          }
3477 
3478          if (cmp == NULL) {
3479             cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
3480                           brw_imm_d(0), BRW_CONDITIONAL_Z);
3481          }
3482       } else {
3483          fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3484                                        BRW_REGISTER_TYPE_UW));
3485          cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
3486       }
3487 
3488       cmp->predicate = BRW_PREDICATE_NORMAL;
3489       cmp->flag_subreg = sample_mask_flag_subreg(this);
3490 
3491       fs_inst *jump = bld.emit(FS_OPCODE_DISCARD_JUMP);
3492       jump->flag_subreg = sample_mask_flag_subreg(this);
3493       jump->predicate_inverse = true;
3494 
3495       if (instr->intrinsic == nir_intrinsic_terminate ||
3496           instr->intrinsic == nir_intrinsic_terminate_if) {
3497          jump->predicate = BRW_PREDICATE_NORMAL;
3498       } else {
3499          /* Only jump when the whole quad is demoted.  For historical
3500           * reasons this is also used for discard.
3501           */
3502          jump->predicate = BRW_PREDICATE_ALIGN1_ANY4H;
3503       }
3504 
3505       if (devinfo->gen < 7)
3506          limit_dispatch_width(
3507             16, "Fragment discard/demote not implemented in SIMD32 mode.\n");
3508       break;
3509    }
3510 
3511    case nir_intrinsic_load_input: {
3512       /* load_input is only used for flat inputs */
3513       assert(nir_dest_bit_size(instr->dest) == 32);
3514       unsigned base = nir_intrinsic_base(instr);
3515       unsigned comp = nir_intrinsic_component(instr);
3516       unsigned num_components = instr->num_components;
3517 
3518       /* Special case fields in the VUE header */
3519       if (base == VARYING_SLOT_LAYER)
3520          comp = 1;
3521       else if (base == VARYING_SLOT_VIEWPORT)
3522          comp = 2;
3523 
3524       for (unsigned int i = 0; i < num_components; i++) {
3525          bld.MOV(offset(dest, bld, i),
3526                  retype(component(interp_reg(base, comp + i), 3), dest.type));
3527       }
3528       break;
3529    }
3530 
3531    case nir_intrinsic_load_fs_input_interp_deltas: {
3532       assert(stage == MESA_SHADER_FRAGMENT);
3533       assert(nir_src_as_uint(instr->src[0]) == 0);
3534       fs_reg interp = interp_reg(nir_intrinsic_base(instr),
3535                                  nir_intrinsic_component(instr));
3536       dest.type = BRW_REGISTER_TYPE_F;
3537       bld.MOV(offset(dest, bld, 0), component(interp, 3));
3538       bld.MOV(offset(dest, bld, 1), component(interp, 1));
3539       bld.MOV(offset(dest, bld, 2), component(interp, 0));
3540       break;
3541    }
3542 
3543    case nir_intrinsic_load_barycentric_pixel:
3544    case nir_intrinsic_load_barycentric_centroid:
3545    case nir_intrinsic_load_barycentric_sample: {
3546       /* Use the delta_xy values computed from the payload */
3547       const glsl_interp_mode interp_mode =
3548          (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3549       enum brw_barycentric_mode bary =
3550          brw_barycentric_mode(interp_mode, instr->intrinsic);
3551       const fs_reg srcs[] = { offset(this->delta_xy[bary], bld, 0),
3552                               offset(this->delta_xy[bary], bld, 1) };
3553       bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
3554       break;
3555    }
3556 
3557    case nir_intrinsic_load_barycentric_at_sample: {
3558       const glsl_interp_mode interpolation =
3559          (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3560 
3561       if (nir_src_is_const(instr->src[0])) {
3562          unsigned msg_data = nir_src_as_uint(instr->src[0]) << 4;
3563 
3564          emit_pixel_interpolater_send(bld,
3565                                       FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3566                                       dest,
3567                                       fs_reg(), /* src */
3568                                       brw_imm_ud(msg_data),
3569                                       interpolation);
3570       } else {
3571          const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
3572                                           BRW_REGISTER_TYPE_UD);
3573 
3574          if (nir_src_is_dynamically_uniform(instr->src[0])) {
3575             const fs_reg sample_id = bld.emit_uniformize(sample_src);
3576             const fs_reg msg_data = vgrf(glsl_type::uint_type);
3577             bld.exec_all().group(1, 0)
3578                .SHL(msg_data, sample_id, brw_imm_ud(4u));
3579             emit_pixel_interpolater_send(bld,
3580                                          FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3581                                          dest,
3582                                          fs_reg(), /* src */
3583                                          component(msg_data, 0),
3584                                          interpolation);
3585          } else {
3586             /* Make a loop that sends a message to the pixel interpolater
3587              * for the sample number in each live channel. If there are
3588              * multiple channels with the same sample number then these
3589              * will be handled simultaneously with a single interation of
3590              * the loop.
3591              */
3592             bld.emit(BRW_OPCODE_DO);
3593 
3594             /* Get the next live sample number into sample_id_reg */
3595             const fs_reg sample_id = bld.emit_uniformize(sample_src);
3596 
3597             /* Set the flag register so that we can perform the send
3598              * message on all channels that have the same sample number
3599              */
3600             bld.CMP(bld.null_reg_ud(),
3601                     sample_src, sample_id,
3602                     BRW_CONDITIONAL_EQ);
3603             const fs_reg msg_data = vgrf(glsl_type::uint_type);
3604             bld.exec_all().group(1, 0)
3605                .SHL(msg_data, sample_id, brw_imm_ud(4u));
3606             fs_inst *inst =
3607                emit_pixel_interpolater_send(bld,
3608                                             FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3609                                             dest,
3610                                             fs_reg(), /* src */
3611                                             component(msg_data, 0),
3612                                             interpolation);
3613             set_predicate(BRW_PREDICATE_NORMAL, inst);
3614 
3615             /* Continue the loop if there are any live channels left */
3616             set_predicate_inv(BRW_PREDICATE_NORMAL,
3617                               true, /* inverse */
3618                               bld.emit(BRW_OPCODE_WHILE));
3619          }
3620       }
3621       break;
3622    }
3623 
3624    case nir_intrinsic_load_barycentric_at_offset: {
3625       const glsl_interp_mode interpolation =
3626          (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3627 
3628       nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3629 
3630       if (const_offset) {
3631          assert(nir_src_bit_size(instr->src[0]) == 32);
3632          unsigned off_x = MIN2((int)(const_offset[0].f32 * 16), 7) & 0xf;
3633          unsigned off_y = MIN2((int)(const_offset[1].f32 * 16), 7) & 0xf;
3634 
3635          emit_pixel_interpolater_send(bld,
3636                                       FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
3637                                       dest,
3638                                       fs_reg(), /* src */
3639                                       brw_imm_ud(off_x | (off_y << 4)),
3640                                       interpolation);
3641       } else {
3642          fs_reg src = vgrf(glsl_type::ivec2_type);
3643          fs_reg offset_src = retype(get_nir_src(instr->src[0]),
3644                                     BRW_REGISTER_TYPE_F);
3645          for (int i = 0; i < 2; i++) {
3646             fs_reg temp = vgrf(glsl_type::float_type);
3647             bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
3648             fs_reg itemp = vgrf(glsl_type::int_type);
3649             /* float to int */
3650             bld.MOV(itemp, temp);
3651 
3652             /* Clamp the upper end of the range to +7/16.
3653              * ARB_gpu_shader5 requires that we support a maximum offset
3654              * of +0.5, which isn't representable in a S0.4 value -- if
3655              * we didn't clamp it, we'd end up with -8/16, which is the
3656              * opposite of what the shader author wanted.
3657              *
3658              * This is legal due to ARB_gpu_shader5's quantization
3659              * rules:
3660              *
3661              * "Not all values of <offset> may be supported; x and y
3662              * offsets may be rounded to fixed-point values with the
3663              * number of fraction bits given by the
3664              * implementation-dependent constant
3665              * FRAGMENT_INTERPOLATION_OFFSET_BITS"
3666              */
3667             set_condmod(BRW_CONDITIONAL_L,
3668                         bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
3669          }
3670 
3671          const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
3672          emit_pixel_interpolater_send(bld,
3673                                       opcode,
3674                                       dest,
3675                                       src,
3676                                       brw_imm_ud(0u),
3677                                       interpolation);
3678       }
3679       break;
3680    }
3681 
3682    case nir_intrinsic_load_frag_coord:
3683       emit_fragcoord_interpolation(dest);
3684       break;
3685 
3686    case nir_intrinsic_load_interpolated_input: {
3687       assert(instr->src[0].ssa &&
3688              instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic);
3689       nir_intrinsic_instr *bary_intrinsic =
3690          nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3691       nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic;
3692       enum glsl_interp_mode interp_mode =
3693          (enum glsl_interp_mode) nir_intrinsic_interp_mode(bary_intrinsic);
3694       fs_reg dst_xy;
3695 
3696       if (bary_intrin == nir_intrinsic_load_barycentric_at_offset ||
3697           bary_intrin == nir_intrinsic_load_barycentric_at_sample) {
3698          /* Use the result of the PI message. */
3699          dst_xy = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_F);
3700       } else {
3701          /* Use the delta_xy values computed from the payload */
3702          enum brw_barycentric_mode bary =
3703             brw_barycentric_mode(interp_mode, bary_intrin);
3704          dst_xy = this->delta_xy[bary];
3705       }
3706 
3707       for (unsigned int i = 0; i < instr->num_components; i++) {
3708          fs_reg interp =
3709             component(interp_reg(nir_intrinsic_base(instr),
3710                                  nir_intrinsic_component(instr) + i), 0);
3711          interp.type = BRW_REGISTER_TYPE_F;
3712          dest.type = BRW_REGISTER_TYPE_F;
3713 
3714          if (devinfo->gen < 6 && interp_mode == INTERP_MODE_SMOOTH) {
3715             fs_reg tmp = vgrf(glsl_type::float_type);
3716             bld.emit(FS_OPCODE_LINTERP, tmp, dst_xy, interp);
3717             bld.MUL(offset(dest, bld, i), tmp, this->pixel_w);
3718          } else {
3719             bld.emit(FS_OPCODE_LINTERP, offset(dest, bld, i), dst_xy, interp);
3720          }
3721       }
3722       break;
3723    }
3724 
3725    default:
3726       nir_emit_intrinsic(bld, instr);
3727       break;
3728    }
3729 }
3730 
3731 void
nir_emit_cs_intrinsic(const fs_builder & bld,nir_intrinsic_instr * instr)3732 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
3733                                   nir_intrinsic_instr *instr)
3734 {
3735    assert(stage == MESA_SHADER_COMPUTE || stage == MESA_SHADER_KERNEL);
3736    struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
3737 
3738    fs_reg dest;
3739    if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3740       dest = get_nir_dest(instr->dest);
3741 
3742    switch (instr->intrinsic) {
3743    case nir_intrinsic_control_barrier:
3744       /* The whole workgroup fits in a single HW thread, so all the
3745        * invocations are already executed lock-step.  Instead of an actual
3746        * barrier just emit a scheduling fence, that will generate no code.
3747        */
3748       if (!nir->info.cs.local_size_variable &&
3749           workgroup_size() <= dispatch_width) {
3750          bld.exec_all().group(1, 0).emit(FS_OPCODE_SCHEDULING_FENCE);
3751          break;
3752       }
3753 
3754       emit_barrier();
3755       cs_prog_data->uses_barrier = true;
3756       break;
3757 
3758    case nir_intrinsic_load_subgroup_id:
3759       bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), subgroup_id);
3760       break;
3761 
3762    case nir_intrinsic_load_local_invocation_id:
3763    case nir_intrinsic_load_work_group_id: {
3764       gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3765       fs_reg val = nir_system_values[sv];
3766       assert(val.file != BAD_FILE);
3767       dest.type = val.type;
3768       for (unsigned i = 0; i < 3; i++)
3769          bld.MOV(offset(dest, bld, i), offset(val, bld, i));
3770       break;
3771    }
3772 
3773    case nir_intrinsic_load_num_work_groups: {
3774       assert(nir_dest_bit_size(instr->dest) == 32);
3775       const unsigned surface =
3776          cs_prog_data->binding_table.work_groups_start;
3777 
3778       cs_prog_data->uses_num_work_groups = true;
3779 
3780       fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3781       srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(surface);
3782       srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3783       srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(3); /* num components */
3784       srcs[SURFACE_LOGICAL_SRC_ADDRESS] = brw_imm_ud(0);
3785       srcs[SURFACE_LOGICAL_SRC_ALLOW_SAMPLE_MASK] = brw_imm_ud(0);
3786       fs_inst *inst =
3787          bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3788                   dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3789       inst->size_written = 3 * dispatch_width * 4;
3790       break;
3791    }
3792 
3793    case nir_intrinsic_shared_atomic_add:
3794    case nir_intrinsic_shared_atomic_imin:
3795    case nir_intrinsic_shared_atomic_umin:
3796    case nir_intrinsic_shared_atomic_imax:
3797    case nir_intrinsic_shared_atomic_umax:
3798    case nir_intrinsic_shared_atomic_and:
3799    case nir_intrinsic_shared_atomic_or:
3800    case nir_intrinsic_shared_atomic_xor:
3801    case nir_intrinsic_shared_atomic_exchange:
3802    case nir_intrinsic_shared_atomic_comp_swap:
3803       nir_emit_shared_atomic(bld, brw_aop_for_nir_intrinsic(instr), instr);
3804       break;
3805    case nir_intrinsic_shared_atomic_fmin:
3806    case nir_intrinsic_shared_atomic_fmax:
3807    case nir_intrinsic_shared_atomic_fcomp_swap:
3808       nir_emit_shared_atomic_float(bld, brw_aop_for_nir_intrinsic(instr), instr);
3809       break;
3810 
3811    case nir_intrinsic_load_shared: {
3812       assert(devinfo->gen >= 7);
3813       assert(stage == MESA_SHADER_COMPUTE || stage == MESA_SHADER_KERNEL);
3814 
3815       const unsigned bit_size = nir_dest_bit_size(instr->dest);
3816       fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3817       srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
3818       srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[0]);
3819       srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3820       srcs[SURFACE_LOGICAL_SRC_ALLOW_SAMPLE_MASK] = brw_imm_ud(0);
3821 
3822       /* Make dest unsigned because that's what the temporary will be */
3823       dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
3824 
3825       /* Read the vector */
3826       assert(nir_dest_bit_size(instr->dest) <= 32);
3827       assert(nir_intrinsic_align(instr) > 0);
3828       if (nir_dest_bit_size(instr->dest) == 32 &&
3829           nir_intrinsic_align(instr) >= 4) {
3830          assert(nir_dest_num_components(instr->dest) <= 4);
3831          srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3832          fs_inst *inst =
3833             bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
3834                      dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
3835          inst->size_written = instr->num_components * dispatch_width * 4;
3836       } else {
3837          assert(nir_dest_num_components(instr->dest) == 1);
3838          srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
3839 
3840          fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
3841          bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
3842                   read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
3843          bld.MOV(dest, subscript(read_result, dest.type, 0));
3844       }
3845       break;
3846    }
3847 
3848    case nir_intrinsic_store_shared: {
3849       assert(devinfo->gen >= 7);
3850       assert(stage == MESA_SHADER_COMPUTE || stage == MESA_SHADER_KERNEL);
3851 
3852       const unsigned bit_size = nir_src_bit_size(instr->src[0]);
3853       fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
3854       srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
3855       srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
3856       srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
3857       srcs[SURFACE_LOGICAL_SRC_ALLOW_SAMPLE_MASK] = brw_imm_ud(1);
3858 
3859       fs_reg data = get_nir_src(instr->src[0]);
3860       data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
3861 
3862       assert(nir_src_bit_size(instr->src[0]) <= 32);
3863       assert(nir_intrinsic_write_mask(instr) ==
3864              (1u << instr->num_components) - 1);
3865       assert(nir_intrinsic_align(instr) > 0);
3866       if (nir_src_bit_size(instr->src[0]) == 32 &&
3867           nir_intrinsic_align(instr) >= 4) {
3868          assert(nir_src_num_components(instr->src[0]) <= 4);
3869          srcs[SURFACE_LOGICAL_SRC_DATA] = data;
3870          srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
3871          bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
3872                   fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3873       } else {
3874          assert(nir_src_num_components(instr->src[0]) == 1);
3875          srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
3876 
3877          srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3878          bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
3879 
3880          bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
3881                   fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
3882       }
3883       break;
3884    }
3885 
3886    case nir_intrinsic_load_local_group_size: {
3887       assert(compiler->lower_variable_group_size);
3888       assert(nir->info.cs.local_size_variable);
3889       for (unsigned i = 0; i < 3; i++) {
3890          bld.MOV(retype(offset(dest, bld, i), BRW_REGISTER_TYPE_UD),
3891             group_size[i]);
3892       }
3893       break;
3894    }
3895 
3896    default:
3897       nir_emit_intrinsic(bld, instr);
3898       break;
3899    }
3900 }
3901 
3902 static fs_reg
brw_nir_reduction_op_identity(const fs_builder & bld,nir_op op,brw_reg_type type)3903 brw_nir_reduction_op_identity(const fs_builder &bld,
3904                               nir_op op, brw_reg_type type)
3905 {
3906    nir_const_value value = nir_alu_binop_identity(op, type_sz(type) * 8);
3907    switch (type_sz(type)) {
3908    case 1:
3909       if (type == BRW_REGISTER_TYPE_UB) {
3910          return brw_imm_uw(value.u8);
3911       } else {
3912          assert(type == BRW_REGISTER_TYPE_B);
3913          return brw_imm_w(value.i8);
3914       }
3915    case 2:
3916       return retype(brw_imm_uw(value.u16), type);
3917    case 4:
3918       return retype(brw_imm_ud(value.u32), type);
3919    case 8:
3920       if (type == BRW_REGISTER_TYPE_DF)
3921          return setup_imm_df(bld, value.f64);
3922       else
3923          return retype(brw_imm_u64(value.u64), type);
3924    default:
3925       unreachable("Invalid type size");
3926    }
3927 }
3928 
3929 static opcode
brw_op_for_nir_reduction_op(nir_op op)3930 brw_op_for_nir_reduction_op(nir_op op)
3931 {
3932    switch (op) {
3933    case nir_op_iadd: return BRW_OPCODE_ADD;
3934    case nir_op_fadd: return BRW_OPCODE_ADD;
3935    case nir_op_imul: return BRW_OPCODE_MUL;
3936    case nir_op_fmul: return BRW_OPCODE_MUL;
3937    case nir_op_imin: return BRW_OPCODE_SEL;
3938    case nir_op_umin: return BRW_OPCODE_SEL;
3939    case nir_op_fmin: return BRW_OPCODE_SEL;
3940    case nir_op_imax: return BRW_OPCODE_SEL;
3941    case nir_op_umax: return BRW_OPCODE_SEL;
3942    case nir_op_fmax: return BRW_OPCODE_SEL;
3943    case nir_op_iand: return BRW_OPCODE_AND;
3944    case nir_op_ior:  return BRW_OPCODE_OR;
3945    case nir_op_ixor: return BRW_OPCODE_XOR;
3946    default:
3947       unreachable("Invalid reduction operation");
3948    }
3949 }
3950 
3951 static brw_conditional_mod
brw_cond_mod_for_nir_reduction_op(nir_op op)3952 brw_cond_mod_for_nir_reduction_op(nir_op op)
3953 {
3954    switch (op) {
3955    case nir_op_iadd: return BRW_CONDITIONAL_NONE;
3956    case nir_op_fadd: return BRW_CONDITIONAL_NONE;
3957    case nir_op_imul: return BRW_CONDITIONAL_NONE;
3958    case nir_op_fmul: return BRW_CONDITIONAL_NONE;
3959    case nir_op_imin: return BRW_CONDITIONAL_L;
3960    case nir_op_umin: return BRW_CONDITIONAL_L;
3961    case nir_op_fmin: return BRW_CONDITIONAL_L;
3962    case nir_op_imax: return BRW_CONDITIONAL_GE;
3963    case nir_op_umax: return BRW_CONDITIONAL_GE;
3964    case nir_op_fmax: return BRW_CONDITIONAL_GE;
3965    case nir_op_iand: return BRW_CONDITIONAL_NONE;
3966    case nir_op_ior:  return BRW_CONDITIONAL_NONE;
3967    case nir_op_ixor: return BRW_CONDITIONAL_NONE;
3968    default:
3969       unreachable("Invalid reduction operation");
3970    }
3971 }
3972 
3973 fs_reg
get_nir_image_intrinsic_image(const brw::fs_builder & bld,nir_intrinsic_instr * instr)3974 fs_visitor::get_nir_image_intrinsic_image(const brw::fs_builder &bld,
3975                                           nir_intrinsic_instr *instr)
3976 {
3977    fs_reg image = retype(get_nir_src_imm(instr->src[0]), BRW_REGISTER_TYPE_UD);
3978    fs_reg surf_index = image;
3979 
3980    if (stage_prog_data->binding_table.image_start > 0) {
3981       if (image.file == BRW_IMMEDIATE_VALUE) {
3982          surf_index =
3983             brw_imm_ud(image.d + stage_prog_data->binding_table.image_start);
3984       } else {
3985          surf_index = vgrf(glsl_type::uint_type);
3986          bld.ADD(surf_index, image,
3987                  brw_imm_d(stage_prog_data->binding_table.image_start));
3988       }
3989    }
3990 
3991    return bld.emit_uniformize(surf_index);
3992 }
3993 
3994 fs_reg
get_nir_ssbo_intrinsic_index(const brw::fs_builder & bld,nir_intrinsic_instr * instr)3995 fs_visitor::get_nir_ssbo_intrinsic_index(const brw::fs_builder &bld,
3996                                          nir_intrinsic_instr *instr)
3997 {
3998    /* SSBO stores are weird in that their index is in src[1] */
3999    const bool is_store =
4000       instr->intrinsic == nir_intrinsic_store_ssbo ||
4001       instr->intrinsic == nir_intrinsic_store_ssbo_block_intel;
4002    const unsigned src = is_store ? 1 : 0;
4003 
4004    if (nir_src_is_const(instr->src[src])) {
4005       unsigned index = stage_prog_data->binding_table.ssbo_start +
4006                        nir_src_as_uint(instr->src[src]);
4007       return brw_imm_ud(index);
4008    } else {
4009       fs_reg surf_index = vgrf(glsl_type::uint_type);
4010       bld.ADD(surf_index, get_nir_src(instr->src[src]),
4011               brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4012       return bld.emit_uniformize(surf_index);
4013    }
4014 }
4015 
4016 /**
4017  * The offsets we get from NIR act as if each SIMD channel has it's own blob
4018  * of contiguous space.  However, if we actually place each SIMD channel in
4019  * it's own space, we end up with terrible cache performance because each SIMD
4020  * channel accesses a different cache line even when they're all accessing the
4021  * same byte offset.  To deal with this problem, we swizzle the address using
4022  * a simple algorithm which ensures that any time a SIMD message reads or
4023  * writes the same address, it's all in the same cache line.  We have to keep
4024  * the bottom two bits fixed so that we can read/write up to a dword at a time
4025  * and the individual element is contiguous.  We do this by splitting the
4026  * address as follows:
4027  *
4028  *    31                             4-6           2          0
4029  *    +-------------------------------+------------+----------+
4030  *    |        Hi address bits        | chan index | addr low |
4031  *    +-------------------------------+------------+----------+
4032  *
4033  * In other words, the bottom two address bits stay, and the top 30 get
4034  * shifted up so that we can stick the SIMD channel index in the middle.  This
4035  * way, we can access 8, 16, or 32-bit elements and, when accessing a 32-bit
4036  * at the same logical offset, the scratch read/write instruction acts on
4037  * continuous elements and we get good cache locality.
4038  */
4039 fs_reg
swizzle_nir_scratch_addr(const brw::fs_builder & bld,const fs_reg & nir_addr,bool in_dwords)4040 fs_visitor::swizzle_nir_scratch_addr(const brw::fs_builder &bld,
4041                                      const fs_reg &nir_addr,
4042                                      bool in_dwords)
4043 {
4044    const fs_reg &chan_index =
4045       nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
4046    const unsigned chan_index_bits = ffs(dispatch_width) - 1;
4047 
4048    fs_reg addr = bld.vgrf(BRW_REGISTER_TYPE_UD);
4049    if (in_dwords) {
4050       /* In this case, we know the address is aligned to a DWORD and we want
4051        * the final address in DWORDs.
4052        */
4053       bld.SHL(addr, nir_addr, brw_imm_ud(chan_index_bits - 2));
4054       bld.OR(addr, addr, chan_index);
4055    } else {
4056       /* This case substantially more annoying because we have to pay
4057        * attention to those pesky two bottom bits.
4058        */
4059       fs_reg addr_hi = bld.vgrf(BRW_REGISTER_TYPE_UD);
4060       bld.AND(addr_hi, nir_addr, brw_imm_ud(~0x3u));
4061       bld.SHL(addr_hi, addr_hi, brw_imm_ud(chan_index_bits));
4062       fs_reg chan_addr = bld.vgrf(BRW_REGISTER_TYPE_UD);
4063       bld.SHL(chan_addr, chan_index, brw_imm_ud(2));
4064       bld.AND(addr, nir_addr, brw_imm_ud(0x3u));
4065       bld.OR(addr, addr, addr_hi);
4066       bld.OR(addr, addr, chan_addr);
4067    }
4068    return addr;
4069 }
4070 
4071 static unsigned
choose_oword_block_size_dwords(unsigned dwords)4072 choose_oword_block_size_dwords(unsigned dwords)
4073 {
4074    unsigned block;
4075    if (dwords >= 32) {
4076       block = 32;
4077    } else if (dwords >= 16) {
4078       block = 16;
4079    } else {
4080       block = 8;
4081    }
4082    assert(block <= dwords);
4083    return block;
4084 }
4085 
4086 static void
increment_a64_address(const fs_builder & bld,fs_reg address,uint32_t v)4087 increment_a64_address(const fs_builder &bld, fs_reg address, uint32_t v)
4088 {
4089    if (bld.shader->devinfo->has_64bit_int) {
4090       bld.ADD(address, address, brw_imm_ud(v));
4091    } else {
4092       fs_reg low = retype(address, BRW_REGISTER_TYPE_UD);
4093       fs_reg high = offset(low, bld, 1);
4094 
4095       /* Add low and if that overflows, add carry to high. */
4096       bld.ADD(low, low, brw_imm_ud(v))->conditional_mod = BRW_CONDITIONAL_O;
4097       bld.ADD(high, high, brw_imm_ud(0x1))->predicate = BRW_PREDICATE_NORMAL;
4098    }
4099 }
4100 
4101 void
nir_emit_intrinsic(const fs_builder & bld,nir_intrinsic_instr * instr)4102 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
4103 {
4104    fs_reg dest;
4105    if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4106       dest = get_nir_dest(instr->dest);
4107 
4108    switch (instr->intrinsic) {
4109    case nir_intrinsic_image_load:
4110    case nir_intrinsic_image_store:
4111    case nir_intrinsic_image_atomic_add:
4112    case nir_intrinsic_image_atomic_imin:
4113    case nir_intrinsic_image_atomic_umin:
4114    case nir_intrinsic_image_atomic_imax:
4115    case nir_intrinsic_image_atomic_umax:
4116    case nir_intrinsic_image_atomic_and:
4117    case nir_intrinsic_image_atomic_or:
4118    case nir_intrinsic_image_atomic_xor:
4119    case nir_intrinsic_image_atomic_exchange:
4120    case nir_intrinsic_image_atomic_comp_swap:
4121    case nir_intrinsic_bindless_image_load:
4122    case nir_intrinsic_bindless_image_store:
4123    case nir_intrinsic_bindless_image_atomic_add:
4124    case nir_intrinsic_bindless_image_atomic_imin:
4125    case nir_intrinsic_bindless_image_atomic_umin:
4126    case nir_intrinsic_bindless_image_atomic_imax:
4127    case nir_intrinsic_bindless_image_atomic_umax:
4128    case nir_intrinsic_bindless_image_atomic_and:
4129    case nir_intrinsic_bindless_image_atomic_or:
4130    case nir_intrinsic_bindless_image_atomic_xor:
4131    case nir_intrinsic_bindless_image_atomic_exchange:
4132    case nir_intrinsic_bindless_image_atomic_comp_swap: {
4133       /* Get some metadata from the image intrinsic. */
4134       const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
4135 
4136       fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4137 
4138       switch (instr->intrinsic) {
4139       case nir_intrinsic_image_load:
4140       case nir_intrinsic_image_store:
4141       case nir_intrinsic_image_atomic_add:
4142       case nir_intrinsic_image_atomic_imin:
4143       case nir_intrinsic_image_atomic_umin:
4144       case nir_intrinsic_image_atomic_imax:
4145       case nir_intrinsic_image_atomic_umax:
4146       case nir_intrinsic_image_atomic_and:
4147       case nir_intrinsic_image_atomic_or:
4148       case nir_intrinsic_image_atomic_xor:
4149       case nir_intrinsic_image_atomic_exchange:
4150       case nir_intrinsic_image_atomic_comp_swap:
4151          srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4152             get_nir_image_intrinsic_image(bld, instr);
4153          break;
4154 
4155       default:
4156          /* Bindless */
4157          srcs[SURFACE_LOGICAL_SRC_SURFACE_HANDLE] =
4158             bld.emit_uniformize(get_nir_src(instr->src[0]));
4159          break;
4160       }
4161 
4162       srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4163       srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] =
4164          brw_imm_ud(nir_image_intrinsic_coord_components(instr));
4165 
4166       /* Emit an image load, store or atomic op. */
4167       if (instr->intrinsic == nir_intrinsic_image_load ||
4168           instr->intrinsic == nir_intrinsic_bindless_image_load) {
4169          srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4170          srcs[SURFACE_LOGICAL_SRC_ALLOW_SAMPLE_MASK] = brw_imm_ud(0);
4171          fs_inst *inst =
4172             bld.emit(SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL,
4173                      dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4174          inst->size_written = instr->num_components * dispatch_width * 4;
4175       } else if (instr->intrinsic == nir_intrinsic_image_store ||
4176                  instr->intrinsic == nir_intrinsic_bindless_image_store) {
4177          srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4178          srcs[SURFACE_LOGICAL_SRC_DATA] = get_nir_src(instr->src[3]);
4179          srcs[SURFACE_LOGICAL_SRC_ALLOW_SAMPLE_MASK] = brw_imm_ud(1);
4180          bld.emit(SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL,
4181                   fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4182       } else {
4183          unsigned num_srcs = info->num_srcs;
4184          int op = brw_aop_for_nir_intrinsic(instr);
4185          if (op == BRW_AOP_INC || op == BRW_AOP_DEC) {
4186             assert(num_srcs == 4);
4187             num_srcs = 3;
4188          }
4189 
4190          srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
4191 
4192          fs_reg data;
4193          if (num_srcs >= 4)
4194             data = get_nir_src(instr->src[3]);
4195          if (num_srcs >= 5) {
4196             fs_reg tmp = bld.vgrf(data.type, 2);
4197             fs_reg sources[2] = { data, get_nir_src(instr->src[4]) };
4198             bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
4199             data = tmp;
4200          }
4201          srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4202          srcs[SURFACE_LOGICAL_SRC_ALLOW_SAMPLE_MASK] = brw_imm_ud(1);
4203 
4204          bld.emit(SHADER_OPCODE_TYPED_ATOMIC_LOGICAL,
4205                   dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4206       }
4207       break;
4208    }
4209 
4210    case nir_intrinsic_image_size:
4211    case nir_intrinsic_bindless_image_size: {
4212       /* Unlike the [un]typed load and store opcodes, the TXS that this turns
4213        * into will handle the binding table index for us in the geneerator.
4214        * Incidentally, this means that we can handle bindless with exactly the
4215        * same code.
4216        */
4217       fs_reg image = retype(get_nir_src_imm(instr->src[0]),
4218                             BRW_REGISTER_TYPE_UD);
4219       image = bld.emit_uniformize(image);
4220 
4221       assert(nir_src_as_uint(instr->src[1]) == 0);
4222 
4223       fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
4224       if (instr->intrinsic == nir_intrinsic_image_size)
4225          srcs[TEX_LOGICAL_SRC_SURFACE] = image;
4226       else
4227          srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE] = image;
4228       srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_d(0);
4229       srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(0);
4230       srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(0);
4231 
4232       /* Since the image size is always uniform, we can just emit a SIMD8
4233        * query instruction and splat the result out.
4234        */
4235       const fs_builder ubld = bld.exec_all().group(8, 0);
4236 
4237       fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4238       fs_inst *inst = ubld.emit(SHADER_OPCODE_IMAGE_SIZE_LOGICAL,
4239                                 tmp, srcs, ARRAY_SIZE(srcs));
4240       inst->size_written = 4 * REG_SIZE;
4241 
4242       for (unsigned c = 0; c < instr->dest.ssa.num_components; ++c) {
4243          if (c == 2 && nir_intrinsic_image_dim(instr) == GLSL_SAMPLER_DIM_CUBE) {
4244             bld.emit(SHADER_OPCODE_INT_QUOTIENT,
4245                      offset(retype(dest, tmp.type), bld, c),
4246                      component(offset(tmp, ubld, c), 0), brw_imm_ud(6));
4247          } else {
4248             bld.MOV(offset(retype(dest, tmp.type), bld, c),
4249                     component(offset(tmp, ubld, c), 0));
4250          }
4251       }
4252       break;
4253    }
4254 
4255    case nir_intrinsic_image_load_raw_intel: {
4256       fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4257       srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4258          get_nir_image_intrinsic_image(bld, instr);
4259       srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4260       srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4261       srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4262       srcs[SURFACE_LOGICAL_SRC_ALLOW_SAMPLE_MASK] = brw_imm_ud(0);
4263 
4264       fs_inst *inst =
4265          bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
4266                   dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4267       inst->size_written = instr->num_components * dispatch_width * 4;
4268       break;
4269    }
4270 
4271    case nir_intrinsic_image_store_raw_intel: {
4272       fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4273       srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4274          get_nir_image_intrinsic_image(bld, instr);
4275       srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4276       srcs[SURFACE_LOGICAL_SRC_DATA] = get_nir_src(instr->src[2]);
4277       srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4278       srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4279       srcs[SURFACE_LOGICAL_SRC_ALLOW_SAMPLE_MASK] = brw_imm_ud(1);
4280 
4281       bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
4282                fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4283       break;
4284    }
4285 
4286    case nir_intrinsic_scoped_barrier:
4287       assert(nir_intrinsic_execution_scope(instr) == NIR_SCOPE_NONE);
4288       /* Fall through. */
4289    case nir_intrinsic_group_memory_barrier:
4290    case nir_intrinsic_memory_barrier_shared:
4291    case nir_intrinsic_memory_barrier_buffer:
4292    case nir_intrinsic_memory_barrier_image:
4293    case nir_intrinsic_memory_barrier:
4294    case nir_intrinsic_begin_invocation_interlock:
4295    case nir_intrinsic_end_invocation_interlock: {
4296       bool l3_fence, slm_fence;
4297       const enum opcode opcode =
4298          instr->intrinsic == nir_intrinsic_begin_invocation_interlock ?
4299          SHADER_OPCODE_INTERLOCK : SHADER_OPCODE_MEMORY_FENCE;
4300 
4301       switch (instr->intrinsic) {
4302       case nir_intrinsic_scoped_barrier: {
4303          nir_variable_mode modes = nir_intrinsic_memory_modes(instr);
4304          l3_fence = modes & (nir_var_shader_out |
4305                              nir_var_mem_ssbo |
4306                              nir_var_mem_global);
4307          slm_fence = modes & nir_var_mem_shared;
4308          break;
4309       }
4310 
4311       case nir_intrinsic_begin_invocation_interlock:
4312       case nir_intrinsic_end_invocation_interlock:
4313          /* For beginInvocationInterlockARB(), we will generate a memory fence
4314           * but with a different opcode so that generator can pick SENDC
4315           * instead of SEND.
4316           *
4317           * For endInvocationInterlockARB(), we need to insert a memory fence which
4318           * stalls in the shader until the memory transactions prior to that
4319           * fence are complete.  This ensures that the shader does not end before
4320           * any writes from its critical section have landed.  Otherwise, you can
4321           * end up with a case where the next invocation on that pixel properly
4322           * stalls for previous FS invocation on its pixel to complete but
4323           * doesn't actually wait for the dataport memory transactions from that
4324           * thread to land before submitting its own.
4325           *
4326           * Handling them here will allow the logic for IVB render cache (see
4327           * below) to be reused.
4328           */
4329          l3_fence = true;
4330          slm_fence = false;
4331          break;
4332 
4333       default:
4334          l3_fence = instr->intrinsic != nir_intrinsic_memory_barrier_shared;
4335          slm_fence = instr->intrinsic == nir_intrinsic_group_memory_barrier ||
4336                      instr->intrinsic == nir_intrinsic_memory_barrier ||
4337                      instr->intrinsic == nir_intrinsic_memory_barrier_shared;
4338          break;
4339       }
4340 
4341       if (stage != MESA_SHADER_COMPUTE && stage != MESA_SHADER_KERNEL)
4342          slm_fence = false;
4343 
4344       /* If the workgroup fits in a single HW thread, the messages for SLM are
4345        * processed in-order and the shader itself is already synchronized so
4346        * the memory fence is not necessary.
4347        *
4348        * TODO: Check if applies for many HW threads sharing same Data Port.
4349        */
4350       if (!nir->info.cs.local_size_variable &&
4351           slm_fence && workgroup_size() <= dispatch_width)
4352          slm_fence = false;
4353 
4354       /* Prior to Gen11, there's only L3 fence, so emit that instead. */
4355       if (slm_fence && devinfo->gen < 11) {
4356          slm_fence = false;
4357          l3_fence = true;
4358       }
4359 
4360       /* IVB does typed surface access through the render cache, so we need
4361        * to flush it too.
4362        */
4363       const bool needs_render_fence =
4364          devinfo->gen == 7 && !devinfo->is_haswell;
4365 
4366       /* Be conservative in Gen11+ and always stall in a fence.  Since there
4367        * are two different fences, and shader might want to synchronize
4368        * between them.
4369        *
4370        * TODO: Use scope and visibility information for the barriers from NIR
4371        * to make a better decision on whether we need to stall.
4372        */
4373       const bool stall = devinfo->gen >= 11 || needs_render_fence ||
4374          instr->intrinsic == nir_intrinsic_end_invocation_interlock;
4375 
4376       const bool commit_enable = stall ||
4377          devinfo->gen >= 10; /* HSD ES # 1404612949 */
4378 
4379       unsigned fence_regs_count = 0;
4380       fs_reg fence_regs[2] = {};
4381 
4382       const fs_builder ubld = bld.group(8, 0);
4383 
4384       if (l3_fence) {
4385          fs_inst *fence =
4386             ubld.emit(opcode,
4387                       ubld.vgrf(BRW_REGISTER_TYPE_UD),
4388                       brw_vec8_grf(0, 0),
4389                       brw_imm_ud(commit_enable),
4390                       brw_imm_ud(/* bti */ 0));
4391          fence->sfid = GEN7_SFID_DATAPORT_DATA_CACHE;
4392 
4393          fence_regs[fence_regs_count++] = fence->dst;
4394 
4395          if (needs_render_fence) {
4396             fs_inst *render_fence =
4397                ubld.emit(opcode,
4398                          ubld.vgrf(BRW_REGISTER_TYPE_UD),
4399                          brw_vec8_grf(0, 0),
4400                          brw_imm_ud(commit_enable),
4401                          brw_imm_ud(/* bti */ 0));
4402             render_fence->sfid = GEN6_SFID_DATAPORT_RENDER_CACHE;
4403 
4404             fence_regs[fence_regs_count++] = render_fence->dst;
4405          }
4406       }
4407 
4408       if (slm_fence) {
4409          assert(opcode == SHADER_OPCODE_MEMORY_FENCE);
4410          fs_inst *fence =
4411             ubld.emit(opcode,
4412                       ubld.vgrf(BRW_REGISTER_TYPE_UD),
4413                       brw_vec8_grf(0, 0),
4414                       brw_imm_ud(commit_enable),
4415                       brw_imm_ud(GEN7_BTI_SLM));
4416          fence->sfid = GEN7_SFID_DATAPORT_DATA_CACHE;
4417 
4418          fence_regs[fence_regs_count++] = fence->dst;
4419       }
4420 
4421       assert(fence_regs_count <= 2);
4422 
4423       if (stall || fence_regs_count == 0) {
4424          ubld.exec_all().group(1, 0).emit(
4425             FS_OPCODE_SCHEDULING_FENCE, ubld.null_reg_ud(),
4426             fence_regs, fence_regs_count);
4427       }
4428 
4429       break;
4430    }
4431 
4432    case nir_intrinsic_memory_barrier_tcs_patch:
4433       break;
4434 
4435    case nir_intrinsic_shader_clock: {
4436       /* We cannot do anything if there is an event, so ignore it for now */
4437       const fs_reg shader_clock = get_timestamp(bld);
4438       const fs_reg srcs[] = { component(shader_clock, 0),
4439                               component(shader_clock, 1) };
4440       bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
4441       break;
4442    }
4443 
4444    case nir_intrinsic_image_samples:
4445       /* The driver does not support multi-sampled images. */
4446       bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
4447       break;
4448 
4449    case nir_intrinsic_load_reloc_const_intel: {
4450       uint32_t id = nir_intrinsic_param_idx(instr);
4451       bld.emit(SHADER_OPCODE_MOV_RELOC_IMM,
4452                dest, brw_imm_ud(id));
4453       break;
4454    }
4455 
4456    case nir_intrinsic_load_uniform: {
4457       /* Offsets are in bytes but they should always aligned to
4458        * the type size
4459        */
4460       assert(instr->const_index[0] % 4 == 0 ||
4461              instr->const_index[0] % type_sz(dest.type) == 0);
4462 
4463       fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
4464 
4465       if (nir_src_is_const(instr->src[0])) {
4466          unsigned load_offset = nir_src_as_uint(instr->src[0]);
4467          assert(load_offset % type_sz(dest.type) == 0);
4468          /* For 16-bit types we add the module of the const_index[0]
4469           * offset to access to not 32-bit aligned element
4470           */
4471          src.offset = load_offset + instr->const_index[0] % 4;
4472 
4473          for (unsigned j = 0; j < instr->num_components; j++) {
4474             bld.MOV(offset(dest, bld, j), offset(src, bld, j));
4475          }
4476       } else {
4477          fs_reg indirect = retype(get_nir_src(instr->src[0]),
4478                                   BRW_REGISTER_TYPE_UD);
4479 
4480          /* We need to pass a size to the MOV_INDIRECT but we don't want it to
4481           * go past the end of the uniform.  In order to keep the n'th
4482           * component from running past, we subtract off the size of all but
4483           * one component of the vector.
4484           */
4485          assert(instr->const_index[1] >=
4486                 instr->num_components * (int) type_sz(dest.type));
4487          unsigned read_size = instr->const_index[1] -
4488             (instr->num_components - 1) * type_sz(dest.type);
4489 
4490          bool supports_64bit_indirects =
4491             !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo);
4492 
4493          if (type_sz(dest.type) != 8 || supports_64bit_indirects) {
4494             for (unsigned j = 0; j < instr->num_components; j++) {
4495                bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4496                         offset(dest, bld, j), offset(src, bld, j),
4497                         indirect, brw_imm_ud(read_size));
4498             }
4499          } else {
4500             const unsigned num_mov_indirects =
4501                type_sz(dest.type) / type_sz(BRW_REGISTER_TYPE_UD);
4502             /* We read a little bit less per MOV INDIRECT, as they are now
4503              * 32-bits ones instead of 64-bit. Fix read_size then.
4504              */
4505             const unsigned read_size_32bit = read_size -
4506                 (num_mov_indirects - 1) * type_sz(BRW_REGISTER_TYPE_UD);
4507             for (unsigned j = 0; j < instr->num_components; j++) {
4508                for (unsigned i = 0; i < num_mov_indirects; i++) {
4509                   bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4510                            subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, i),
4511                            subscript(offset(src, bld, j), BRW_REGISTER_TYPE_UD, i),
4512                            indirect, brw_imm_ud(read_size_32bit));
4513                }
4514             }
4515          }
4516       }
4517       break;
4518    }
4519 
4520    case nir_intrinsic_load_ubo: {
4521       fs_reg surf_index;
4522       if (nir_src_is_const(instr->src[0])) {
4523          const unsigned index = stage_prog_data->binding_table.ubo_start +
4524                                 nir_src_as_uint(instr->src[0]);
4525          surf_index = brw_imm_ud(index);
4526       } else {
4527          /* The block index is not a constant. Evaluate the index expression
4528           * per-channel and add the base UBO index; we have to select a value
4529           * from any live channel.
4530           */
4531          surf_index = vgrf(glsl_type::uint_type);
4532          bld.ADD(surf_index, get_nir_src(instr->src[0]),
4533                  brw_imm_ud(stage_prog_data->binding_table.ubo_start));
4534          surf_index = bld.emit_uniformize(surf_index);
4535       }
4536 
4537       if (!nir_src_is_const(instr->src[1])) {
4538          fs_reg base_offset = retype(get_nir_src(instr->src[1]),
4539                                      BRW_REGISTER_TYPE_UD);
4540 
4541          for (int i = 0; i < instr->num_components; i++)
4542             VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
4543                                        base_offset, i * type_sz(dest.type),
4544                                        nir_dest_bit_size(instr->dest) / 8);
4545 
4546          prog_data->has_ubo_pull = true;
4547       } else {
4548          /* Even if we are loading doubles, a pull constant load will load
4549           * a 32-bit vec4, so should only reserve vgrf space for that. If we
4550           * need to load a full dvec4 we will have to emit 2 loads. This is
4551           * similar to demote_pull_constants(), except that in that case we
4552           * see individual accesses to each component of the vector and then
4553           * we let CSE deal with duplicate loads. Here we see a vector access
4554           * and we have to split it if necessary.
4555           */
4556          const unsigned type_size = type_sz(dest.type);
4557          const unsigned load_offset = nir_src_as_uint(instr->src[1]);
4558 
4559          /* See if we've selected this as a push constant candidate */
4560          if (nir_src_is_const(instr->src[0])) {
4561             const unsigned ubo_block = nir_src_as_uint(instr->src[0]);
4562             const unsigned offset_256b = load_offset / 32;
4563 
4564             fs_reg push_reg;
4565             for (int i = 0; i < 4; i++) {
4566                const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4567                if (range->block == ubo_block &&
4568                    offset_256b >= range->start &&
4569                    offset_256b < range->start + range->length) {
4570 
4571                   push_reg = fs_reg(UNIFORM, UBO_START + i, dest.type);
4572                   push_reg.offset = load_offset - 32 * range->start;
4573                   break;
4574                }
4575             }
4576 
4577             if (push_reg.file != BAD_FILE) {
4578                for (unsigned i = 0; i < instr->num_components; i++) {
4579                   bld.MOV(offset(dest, bld, i),
4580                           byte_offset(push_reg, i * type_size));
4581                }
4582                break;
4583             }
4584          }
4585 
4586          prog_data->has_ubo_pull = true;
4587 
4588          const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
4589          const fs_builder ubld = bld.exec_all().group(block_sz / 4, 0);
4590          const fs_reg packed_consts = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4591 
4592          for (unsigned c = 0; c < instr->num_components;) {
4593             const unsigned base = load_offset + c * type_size;
4594             /* Number of usable components in the next block-aligned load. */
4595             const unsigned count = MIN2(instr->num_components - c,
4596                                         (block_sz - base % block_sz) / type_size);
4597 
4598             ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
4599                       packed_consts, surf_index,
4600                       brw_imm_ud(base & ~(block_sz - 1)));
4601 
4602             const fs_reg consts =
4603                retype(byte_offset(packed_consts, base & (block_sz - 1)),
4604                       dest.type);
4605 
4606             for (unsigned d = 0; d < count; d++)
4607                bld.MOV(offset(dest, bld, c + d), component(consts, d));
4608 
4609             c += count;
4610          }
4611       }
4612       break;
4613    }
4614 
4615    case nir_intrinsic_load_global:
4616    case nir_intrinsic_load_global_constant: {
4617       assert(devinfo->gen >= 8);
4618 
4619       assert(nir_dest_bit_size(instr->dest) <= 32);
4620       assert(nir_intrinsic_align(instr) > 0);
4621       if (nir_dest_bit_size(instr->dest) == 32 &&
4622           nir_intrinsic_align(instr) >= 4) {
4623          assert(nir_dest_num_components(instr->dest) <= 4);
4624          fs_inst *inst = bld.emit(SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL,
4625                                   dest,
4626                                   get_nir_src(instr->src[0]), /* Address */
4627                                   fs_reg(), /* No source data */
4628                                   brw_imm_ud(instr->num_components));
4629          inst->size_written = instr->num_components *
4630                               inst->dst.component_size(inst->exec_size);
4631       } else {
4632          const unsigned bit_size = nir_dest_bit_size(instr->dest);
4633          assert(nir_dest_num_components(instr->dest) == 1);
4634          fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4635          bld.emit(SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL,
4636                   tmp,
4637                   get_nir_src(instr->src[0]), /* Address */
4638                   fs_reg(), /* No source data */
4639                   brw_imm_ud(bit_size));
4640          bld.MOV(dest, subscript(tmp, dest.type, 0));
4641       }
4642       break;
4643    }
4644 
4645    case nir_intrinsic_store_global:
4646       assert(devinfo->gen >= 8);
4647 
4648       assert(nir_src_bit_size(instr->src[0]) <= 32);
4649       assert(nir_intrinsic_write_mask(instr) ==
4650              (1u << instr->num_components) - 1);
4651       assert(nir_intrinsic_align(instr) > 0);
4652       if (nir_src_bit_size(instr->src[0]) == 32 &&
4653           nir_intrinsic_align(instr) >= 4) {
4654          assert(nir_src_num_components(instr->src[0]) <= 4);
4655          bld.emit(SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL,
4656                   fs_reg(),
4657                   get_nir_src(instr->src[1]), /* Address */
4658                   get_nir_src(instr->src[0]), /* Data */
4659                   brw_imm_ud(instr->num_components));
4660       } else {
4661          assert(nir_src_num_components(instr->src[0]) == 1);
4662          const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4663          brw_reg_type data_type =
4664             brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4665          fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4666          bld.MOV(tmp, retype(get_nir_src(instr->src[0]), data_type));
4667          bld.emit(SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL,
4668                   fs_reg(),
4669                   get_nir_src(instr->src[1]), /* Address */
4670                   tmp, /* Data */
4671                   brw_imm_ud(nir_src_bit_size(instr->src[0])));
4672       }
4673       break;
4674 
4675    case nir_intrinsic_global_atomic_add:
4676    case nir_intrinsic_global_atomic_imin:
4677    case nir_intrinsic_global_atomic_umin:
4678    case nir_intrinsic_global_atomic_imax:
4679    case nir_intrinsic_global_atomic_umax:
4680    case nir_intrinsic_global_atomic_and:
4681    case nir_intrinsic_global_atomic_or:
4682    case nir_intrinsic_global_atomic_xor:
4683    case nir_intrinsic_global_atomic_exchange:
4684    case nir_intrinsic_global_atomic_comp_swap:
4685       nir_emit_global_atomic(bld, brw_aop_for_nir_intrinsic(instr), instr);
4686       break;
4687    case nir_intrinsic_global_atomic_fmin:
4688    case nir_intrinsic_global_atomic_fmax:
4689    case nir_intrinsic_global_atomic_fcomp_swap:
4690       nir_emit_global_atomic_float(bld, brw_aop_for_nir_intrinsic(instr), instr);
4691       break;
4692 
4693    case nir_intrinsic_load_ssbo: {
4694       assert(devinfo->gen >= 7);
4695 
4696       const unsigned bit_size = nir_dest_bit_size(instr->dest);
4697       fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4698       srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4699          get_nir_ssbo_intrinsic_index(bld, instr);
4700       srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
4701       srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4702       srcs[SURFACE_LOGICAL_SRC_ALLOW_SAMPLE_MASK] = brw_imm_ud(0);
4703 
4704       /* Make dest unsigned because that's what the temporary will be */
4705       dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4706 
4707       /* Read the vector */
4708       assert(nir_dest_bit_size(instr->dest) <= 32);
4709       assert(nir_intrinsic_align(instr) > 0);
4710       if (nir_dest_bit_size(instr->dest) == 32 &&
4711           nir_intrinsic_align(instr) >= 4) {
4712          assert(nir_dest_num_components(instr->dest) <= 4);
4713          srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4714          fs_inst *inst =
4715             bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL,
4716                      dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4717          inst->size_written = instr->num_components * dispatch_width * 4;
4718       } else {
4719          assert(nir_dest_num_components(instr->dest) == 1);
4720          srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4721 
4722          fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
4723          bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
4724                   read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
4725          bld.MOV(dest, subscript(read_result, dest.type, 0));
4726       }
4727       break;
4728    }
4729 
4730    case nir_intrinsic_store_ssbo: {
4731       assert(devinfo->gen >= 7);
4732 
4733       const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4734       fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4735       srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4736          get_nir_ssbo_intrinsic_index(bld, instr);
4737       srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[2]);
4738       srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4739       srcs[SURFACE_LOGICAL_SRC_ALLOW_SAMPLE_MASK] = brw_imm_ud(1);
4740 
4741       fs_reg data = get_nir_src(instr->src[0]);
4742       data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4743 
4744       assert(nir_src_bit_size(instr->src[0]) <= 32);
4745       assert(nir_intrinsic_write_mask(instr) ==
4746              (1u << instr->num_components) - 1);
4747       assert(nir_intrinsic_align(instr) > 0);
4748       if (nir_src_bit_size(instr->src[0]) == 32 &&
4749           nir_intrinsic_align(instr) >= 4) {
4750          assert(nir_src_num_components(instr->src[0]) <= 4);
4751          srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4752          srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(instr->num_components);
4753          bld.emit(SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL,
4754                   fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4755       } else {
4756          assert(nir_src_num_components(instr->src[0]) == 1);
4757          srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4758 
4759          srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
4760          bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
4761 
4762          bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
4763                   fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4764       }
4765       break;
4766    }
4767 
4768    case nir_intrinsic_store_output: {
4769       assert(nir_src_bit_size(instr->src[0]) == 32);
4770       fs_reg src = get_nir_src(instr->src[0]);
4771 
4772       unsigned store_offset = nir_src_as_uint(instr->src[1]);
4773       unsigned num_components = instr->num_components;
4774       unsigned first_component = nir_intrinsic_component(instr);
4775 
4776       fs_reg new_dest = retype(offset(outputs[instr->const_index[0]], bld,
4777                                       4 * store_offset), src.type);
4778       for (unsigned j = 0; j < num_components; j++) {
4779          bld.MOV(offset(new_dest, bld, j + first_component),
4780                  offset(src, bld, j));
4781       }
4782       break;
4783    }
4784 
4785    case nir_intrinsic_ssbo_atomic_add:
4786    case nir_intrinsic_ssbo_atomic_imin:
4787    case nir_intrinsic_ssbo_atomic_umin:
4788    case nir_intrinsic_ssbo_atomic_imax:
4789    case nir_intrinsic_ssbo_atomic_umax:
4790    case nir_intrinsic_ssbo_atomic_and:
4791    case nir_intrinsic_ssbo_atomic_or:
4792    case nir_intrinsic_ssbo_atomic_xor:
4793    case nir_intrinsic_ssbo_atomic_exchange:
4794    case nir_intrinsic_ssbo_atomic_comp_swap:
4795       nir_emit_ssbo_atomic(bld, brw_aop_for_nir_intrinsic(instr), instr);
4796       break;
4797    case nir_intrinsic_ssbo_atomic_fmin:
4798    case nir_intrinsic_ssbo_atomic_fmax:
4799    case nir_intrinsic_ssbo_atomic_fcomp_swap:
4800       nir_emit_ssbo_atomic_float(bld, brw_aop_for_nir_intrinsic(instr), instr);
4801       break;
4802 
4803    case nir_intrinsic_get_ssbo_size: {
4804       assert(nir_src_num_components(instr->src[0]) == 1);
4805       unsigned ssbo_index = nir_src_is_const(instr->src[0]) ?
4806                             nir_src_as_uint(instr->src[0]) : 0;
4807 
4808       /* A resinfo's sampler message is used to get the buffer size.  The
4809        * SIMD8's writeback message consists of four registers and SIMD16's
4810        * writeback message consists of 8 destination registers (two per each
4811        * component).  Because we are only interested on the first channel of
4812        * the first returned component, where resinfo returns the buffer size
4813        * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of
4814        * the dispatch width.
4815        */
4816       const fs_builder ubld = bld.exec_all().group(8, 0);
4817       fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4818       fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4819 
4820       /* Set LOD = 0 */
4821       ubld.MOV(src_payload, brw_imm_d(0));
4822 
4823       const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
4824       fs_inst *inst = ubld.emit(SHADER_OPCODE_GET_BUFFER_SIZE, ret_payload,
4825                                 src_payload, brw_imm_ud(index));
4826       inst->header_size = 0;
4827       inst->mlen = 1;
4828       inst->size_written = 4 * REG_SIZE;
4829 
4830       /* SKL PRM, vol07, 3D Media GPGPU Engine, Bounds Checking and Faulting:
4831        *
4832        * "Out-of-bounds checking is always performed at a DWord granularity. If
4833        * any part of the DWord is out-of-bounds then the whole DWord is
4834        * considered out-of-bounds."
4835        *
4836        * This implies that types with size smaller than 4-bytes need to be
4837        * padded if they don't complete the last dword of the buffer. But as we
4838        * need to maintain the original size we need to reverse the padding
4839        * calculation to return the correct size to know the number of elements
4840        * of an unsized array. As we stored in the last two bits of the surface
4841        * size the needed padding for the buffer, we calculate here the
4842        * original buffer_size reversing the surface_size calculation:
4843        *
4844        * surface_size = isl_align(buffer_size, 4) +
4845        *                (isl_align(buffer_size) - buffer_size)
4846        *
4847        * buffer_size = surface_size & ~3 - surface_size & 3
4848        */
4849 
4850       fs_reg size_aligned4 = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4851       fs_reg size_padding = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4852       fs_reg buffer_size = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4853 
4854       ubld.AND(size_padding, ret_payload, brw_imm_ud(3));
4855       ubld.AND(size_aligned4, ret_payload, brw_imm_ud(~3));
4856       ubld.ADD(buffer_size, size_aligned4, negate(size_padding));
4857 
4858       bld.MOV(retype(dest, ret_payload.type), component(buffer_size, 0));
4859       break;
4860    }
4861 
4862    case nir_intrinsic_load_scratch: {
4863       assert(devinfo->gen >= 7);
4864 
4865       assert(nir_dest_num_components(instr->dest) == 1);
4866       const unsigned bit_size = nir_dest_bit_size(instr->dest);
4867       fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4868 
4869       if (devinfo->gen >= 8) {
4870          srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4871             brw_imm_ud(GEN8_BTI_STATELESS_NON_COHERENT);
4872       } else {
4873          srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(BRW_BTI_STATELESS);
4874       }
4875 
4876       srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4877       srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4878       srcs[SURFACE_LOGICAL_SRC_ALLOW_SAMPLE_MASK] = brw_imm_ud(0);
4879       const fs_reg nir_addr = get_nir_src(instr->src[0]);
4880 
4881       /* Make dest unsigned because that's what the temporary will be */
4882       dest.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4883 
4884       /* Read the vector */
4885       assert(nir_dest_num_components(instr->dest) == 1);
4886       assert(nir_dest_bit_size(instr->dest) <= 32);
4887       assert(nir_intrinsic_align(instr) > 0);
4888       if (nir_dest_bit_size(instr->dest) >= 4 &&
4889           nir_intrinsic_align(instr) >= 4) {
4890          /* The offset for a DWORD scattered message is in dwords. */
4891          srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
4892             swizzle_nir_scratch_addr(bld, nir_addr, true);
4893 
4894          bld.emit(SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL,
4895                   dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
4896       } else {
4897          srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
4898             swizzle_nir_scratch_addr(bld, nir_addr, false);
4899 
4900          fs_reg read_result = bld.vgrf(BRW_REGISTER_TYPE_UD);
4901          bld.emit(SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL,
4902                   read_result, srcs, SURFACE_LOGICAL_NUM_SRCS);
4903          bld.MOV(dest, read_result);
4904       }
4905       break;
4906    }
4907 
4908    case nir_intrinsic_store_scratch: {
4909       assert(devinfo->gen >= 7);
4910 
4911       assert(nir_src_num_components(instr->src[0]) == 1);
4912       const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4913       fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
4914 
4915       if (devinfo->gen >= 8) {
4916          srcs[SURFACE_LOGICAL_SRC_SURFACE] =
4917             brw_imm_ud(GEN8_BTI_STATELESS_NON_COHERENT);
4918       } else {
4919          srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(BRW_BTI_STATELESS);
4920       }
4921 
4922       srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
4923       srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(bit_size);
4924       /**
4925        * While this instruction has side-effects, it should not be predicated
4926        * on sample mask, because otherwise fs helper invocations would
4927        * load undefined values from scratch memory. And scratch memory
4928        * load-stores are produced from operations without side-effects, thus
4929        * they should not have different behaviour in the helper invocations.
4930        */
4931       srcs[SURFACE_LOGICAL_SRC_ALLOW_SAMPLE_MASK] = brw_imm_ud(0);
4932       const fs_reg nir_addr = get_nir_src(instr->src[1]);
4933 
4934       fs_reg data = get_nir_src(instr->src[0]);
4935       data.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_UD);
4936 
4937       assert(nir_src_num_components(instr->src[0]) == 1);
4938       assert(nir_src_bit_size(instr->src[0]) <= 32);
4939       assert(nir_intrinsic_write_mask(instr) == 1);
4940       assert(nir_intrinsic_align(instr) > 0);
4941       if (nir_src_bit_size(instr->src[0]) == 32 &&
4942           nir_intrinsic_align(instr) >= 4) {
4943          srcs[SURFACE_LOGICAL_SRC_DATA] = data;
4944 
4945          /* The offset for a DWORD scattered message is in dwords. */
4946          srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
4947             swizzle_nir_scratch_addr(bld, nir_addr, true);
4948 
4949          bld.emit(SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL,
4950                   fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4951       } else {
4952          srcs[SURFACE_LOGICAL_SRC_DATA] = bld.vgrf(BRW_REGISTER_TYPE_UD);
4953          bld.MOV(srcs[SURFACE_LOGICAL_SRC_DATA], data);
4954 
4955          srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
4956             swizzle_nir_scratch_addr(bld, nir_addr, false);
4957 
4958          bld.emit(SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL,
4959                   fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
4960       }
4961       break;
4962    }
4963 
4964    case nir_intrinsic_load_subgroup_size:
4965       /* This should only happen for fragment shaders because every other case
4966        * is lowered in NIR so we can optimize on it.
4967        */
4968       assert(stage == MESA_SHADER_FRAGMENT);
4969       bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(dispatch_width));
4970       break;
4971 
4972    case nir_intrinsic_load_subgroup_invocation:
4973       bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
4974               nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION]);
4975       break;
4976 
4977    case nir_intrinsic_load_subgroup_eq_mask:
4978    case nir_intrinsic_load_subgroup_ge_mask:
4979    case nir_intrinsic_load_subgroup_gt_mask:
4980    case nir_intrinsic_load_subgroup_le_mask:
4981    case nir_intrinsic_load_subgroup_lt_mask:
4982       unreachable("not reached");
4983 
4984    case nir_intrinsic_vote_any: {
4985       const fs_builder ubld = bld.exec_all().group(1, 0);
4986 
4987       /* The any/all predicates do not consider channel enables. To prevent
4988        * dead channels from affecting the result, we initialize the flag with
4989        * with the identity value for the logical operation.
4990        */
4991       if (dispatch_width == 32) {
4992          /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4993          ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4994                          brw_imm_ud(0));
4995       } else {
4996          ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0));
4997       }
4998       bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4999 
5000       /* For some reason, the any/all predicates don't work properly with
5001        * SIMD32.  In particular, it appears that a SEL with a QtrCtrl of 2H
5002        * doesn't read the correct subset of the flag register and you end up
5003        * getting garbage in the second half.  Work around this by using a pair
5004        * of 1-wide MOVs and scattering the result.
5005        */
5006       fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
5007       ubld.MOV(res1, brw_imm_d(0));
5008       set_predicate(dispatch_width == 8  ? BRW_PREDICATE_ALIGN1_ANY8H :
5009                     dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ANY16H :
5010                                            BRW_PREDICATE_ALIGN1_ANY32H,
5011                     ubld.MOV(res1, brw_imm_d(-1)));
5012 
5013       bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
5014       break;
5015    }
5016    case nir_intrinsic_vote_all: {
5017       const fs_builder ubld = bld.exec_all().group(1, 0);
5018 
5019       /* The any/all predicates do not consider channel enables. To prevent
5020        * dead channels from affecting the result, we initialize the flag with
5021        * with the identity value for the logical operation.
5022        */
5023       if (dispatch_width == 32) {
5024          /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
5025          ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
5026                          brw_imm_ud(0xffffffff));
5027       } else {
5028          ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
5029       }
5030       bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
5031 
5032       /* For some reason, the any/all predicates don't work properly with
5033        * SIMD32.  In particular, it appears that a SEL with a QtrCtrl of 2H
5034        * doesn't read the correct subset of the flag register and you end up
5035        * getting garbage in the second half.  Work around this by using a pair
5036        * of 1-wide MOVs and scattering the result.
5037        */
5038       fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
5039       ubld.MOV(res1, brw_imm_d(0));
5040       set_predicate(dispatch_width == 8  ? BRW_PREDICATE_ALIGN1_ALL8H :
5041                     dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
5042                                            BRW_PREDICATE_ALIGN1_ALL32H,
5043                     ubld.MOV(res1, brw_imm_d(-1)));
5044 
5045       bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
5046       break;
5047    }
5048    case nir_intrinsic_vote_feq:
5049    case nir_intrinsic_vote_ieq: {
5050       fs_reg value = get_nir_src(instr->src[0]);
5051       if (instr->intrinsic == nir_intrinsic_vote_feq) {
5052          const unsigned bit_size = nir_src_bit_size(instr->src[0]);
5053          value.type = bit_size == 8 ? BRW_REGISTER_TYPE_B :
5054             brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_F);
5055       }
5056 
5057       fs_reg uniformized = bld.emit_uniformize(value);
5058       const fs_builder ubld = bld.exec_all().group(1, 0);
5059 
5060       /* The any/all predicates do not consider channel enables. To prevent
5061        * dead channels from affecting the result, we initialize the flag with
5062        * with the identity value for the logical operation.
5063        */
5064       if (dispatch_width == 32) {
5065          /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
5066          ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
5067                          brw_imm_ud(0xffffffff));
5068       } else {
5069          ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
5070       }
5071       bld.CMP(bld.null_reg_d(), value, uniformized, BRW_CONDITIONAL_Z);
5072 
5073       /* For some reason, the any/all predicates don't work properly with
5074        * SIMD32.  In particular, it appears that a SEL with a QtrCtrl of 2H
5075        * doesn't read the correct subset of the flag register and you end up
5076        * getting garbage in the second half.  Work around this by using a pair
5077        * of 1-wide MOVs and scattering the result.
5078        */
5079       fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
5080       ubld.MOV(res1, brw_imm_d(0));
5081       set_predicate(dispatch_width == 8  ? BRW_PREDICATE_ALIGN1_ALL8H :
5082                     dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
5083                                            BRW_PREDICATE_ALIGN1_ALL32H,
5084                     ubld.MOV(res1, brw_imm_d(-1)));
5085 
5086       bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
5087       break;
5088    }
5089 
5090    case nir_intrinsic_ballot: {
5091       const fs_reg value = retype(get_nir_src(instr->src[0]),
5092                                   BRW_REGISTER_TYPE_UD);
5093       struct brw_reg flag = brw_flag_reg(0, 0);
5094       /* FIXME: For SIMD32 programs, this causes us to stomp on f0.1 as well
5095        * as f0.0.  This is a problem for fragment programs as we currently use
5096        * f0.1 for discards.  Fortunately, we don't support SIMD32 fragment
5097        * programs yet so this isn't a problem.  When we do, something will
5098        * have to change.
5099        */
5100       if (dispatch_width == 32)
5101          flag.type = BRW_REGISTER_TYPE_UD;
5102 
5103       bld.exec_all().group(1, 0).MOV(flag, brw_imm_ud(0u));
5104       bld.CMP(bld.null_reg_ud(), value, brw_imm_ud(0u), BRW_CONDITIONAL_NZ);
5105 
5106       if (instr->dest.ssa.bit_size > 32) {
5107          dest.type = BRW_REGISTER_TYPE_UQ;
5108       } else {
5109          dest.type = BRW_REGISTER_TYPE_UD;
5110       }
5111       bld.MOV(dest, flag);
5112       break;
5113    }
5114 
5115    case nir_intrinsic_read_invocation: {
5116       const fs_reg value = get_nir_src(instr->src[0]);
5117       const fs_reg invocation = get_nir_src(instr->src[1]);
5118       fs_reg tmp = bld.vgrf(value.type);
5119 
5120       bld.exec_all().emit(SHADER_OPCODE_BROADCAST, tmp, value,
5121                           bld.emit_uniformize(invocation));
5122 
5123       bld.MOV(retype(dest, value.type), fs_reg(component(tmp, 0)));
5124       break;
5125    }
5126 
5127    case nir_intrinsic_read_first_invocation: {
5128       const fs_reg value = get_nir_src(instr->src[0]);
5129       bld.MOV(retype(dest, value.type), bld.emit_uniformize(value));
5130       break;
5131    }
5132 
5133    case nir_intrinsic_shuffle: {
5134       const fs_reg value = get_nir_src(instr->src[0]);
5135       const fs_reg index = get_nir_src(instr->src[1]);
5136 
5137       bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, index);
5138       break;
5139    }
5140 
5141    case nir_intrinsic_first_invocation: {
5142       fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
5143       bld.exec_all().emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, tmp);
5144       bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
5145               fs_reg(component(tmp, 0)));
5146       break;
5147    }
5148 
5149    case nir_intrinsic_quad_broadcast: {
5150       const fs_reg value = get_nir_src(instr->src[0]);
5151       const unsigned index = nir_src_as_uint(instr->src[1]);
5152 
5153       bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, retype(dest, value.type),
5154                value, brw_imm_ud(index), brw_imm_ud(4));
5155       break;
5156    }
5157 
5158    case nir_intrinsic_quad_swap_horizontal: {
5159       const fs_reg value = get_nir_src(instr->src[0]);
5160       const fs_reg tmp = bld.vgrf(value.type);
5161       if (devinfo->gen <= 7) {
5162          /* The hardware doesn't seem to support these crazy regions with
5163           * compressed instructions on gen7 and earlier so we fall back to
5164           * using quad swizzles.  Fortunately, we don't support 64-bit
5165           * anything in Vulkan on gen7.
5166           */
5167          assert(nir_src_bit_size(instr->src[0]) == 32);
5168          const fs_builder ubld = bld.exec_all();
5169          ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
5170                    brw_imm_ud(BRW_SWIZZLE4(1,0,3,2)));
5171          bld.MOV(retype(dest, value.type), tmp);
5172       } else {
5173          const fs_builder ubld = bld.exec_all().group(dispatch_width / 2, 0);
5174 
5175          const fs_reg src_left = horiz_stride(value, 2);
5176          const fs_reg src_right = horiz_stride(horiz_offset(value, 1), 2);
5177          const fs_reg tmp_left = horiz_stride(tmp, 2);
5178          const fs_reg tmp_right = horiz_stride(horiz_offset(tmp, 1), 2);
5179 
5180          ubld.MOV(tmp_left, src_right);
5181          ubld.MOV(tmp_right, src_left);
5182 
5183       }
5184       bld.MOV(retype(dest, value.type), tmp);
5185       break;
5186    }
5187 
5188    case nir_intrinsic_quad_swap_vertical: {
5189       const fs_reg value = get_nir_src(instr->src[0]);
5190       if (nir_src_bit_size(instr->src[0]) == 32) {
5191          /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
5192          const fs_reg tmp = bld.vgrf(value.type);
5193          const fs_builder ubld = bld.exec_all();
5194          ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
5195                    brw_imm_ud(BRW_SWIZZLE4(2,3,0,1)));
5196          bld.MOV(retype(dest, value.type), tmp);
5197       } else {
5198          /* For larger data types, we have to either emit dispatch_width many
5199           * MOVs or else fall back to doing indirects.
5200           */
5201          fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
5202          bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
5203                       brw_imm_w(0x2));
5204          bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
5205       }
5206       break;
5207    }
5208 
5209    case nir_intrinsic_quad_swap_diagonal: {
5210       const fs_reg value = get_nir_src(instr->src[0]);
5211       if (nir_src_bit_size(instr->src[0]) == 32) {
5212          /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
5213          const fs_reg tmp = bld.vgrf(value.type);
5214          const fs_builder ubld = bld.exec_all();
5215          ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
5216                    brw_imm_ud(BRW_SWIZZLE4(3,2,1,0)));
5217          bld.MOV(retype(dest, value.type), tmp);
5218       } else {
5219          /* For larger data types, we have to either emit dispatch_width many
5220           * MOVs or else fall back to doing indirects.
5221           */
5222          fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
5223          bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
5224                       brw_imm_w(0x3));
5225          bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
5226       }
5227       break;
5228    }
5229 
5230    case nir_intrinsic_reduce: {
5231       fs_reg src = get_nir_src(instr->src[0]);
5232       nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
5233       unsigned cluster_size = nir_intrinsic_cluster_size(instr);
5234       if (cluster_size == 0 || cluster_size > dispatch_width)
5235          cluster_size = dispatch_width;
5236 
5237       /* Figure out the source type */
5238       src.type = brw_type_for_nir_type(devinfo,
5239          (nir_alu_type)(nir_op_infos[redop].input_types[0] |
5240                         nir_src_bit_size(instr->src[0])));
5241 
5242       fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
5243       opcode brw_op = brw_op_for_nir_reduction_op(redop);
5244       brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
5245 
5246       /* Set up a register for all of our scratching around and initialize it
5247        * to reduction operation's identity value.
5248        */
5249       fs_reg scan = bld.vgrf(src.type);
5250       bld.exec_all().emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
5251 
5252       bld.emit_scan(brw_op, scan, cluster_size, cond_mod);
5253 
5254       dest.type = src.type;
5255       if (cluster_size * type_sz(src.type) >= REG_SIZE * 2) {
5256          /* In this case, CLUSTER_BROADCAST instruction isn't needed because
5257           * the distance between clusters is at least 2 GRFs.  In this case,
5258           * we don't need the weird striding of the CLUSTER_BROADCAST
5259           * instruction and can just do regular MOVs.
5260           */
5261          assert((cluster_size * type_sz(src.type)) % (REG_SIZE * 2) == 0);
5262          const unsigned groups =
5263             (dispatch_width * type_sz(src.type)) / (REG_SIZE * 2);
5264          const unsigned group_size = dispatch_width / groups;
5265          for (unsigned i = 0; i < groups; i++) {
5266             const unsigned cluster = (i * group_size) / cluster_size;
5267             const unsigned comp = cluster * cluster_size + (cluster_size - 1);
5268             bld.group(group_size, i).MOV(horiz_offset(dest, i * group_size),
5269                                          component(scan, comp));
5270          }
5271       } else {
5272          bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, dest, scan,
5273                   brw_imm_ud(cluster_size - 1), brw_imm_ud(cluster_size));
5274       }
5275       break;
5276    }
5277 
5278    case nir_intrinsic_inclusive_scan:
5279    case nir_intrinsic_exclusive_scan: {
5280       fs_reg src = get_nir_src(instr->src[0]);
5281       nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
5282 
5283       /* Figure out the source type */
5284       src.type = brw_type_for_nir_type(devinfo,
5285          (nir_alu_type)(nir_op_infos[redop].input_types[0] |
5286                         nir_src_bit_size(instr->src[0])));
5287 
5288       fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
5289       opcode brw_op = brw_op_for_nir_reduction_op(redop);
5290       brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
5291 
5292       /* Set up a register for all of our scratching around and initialize it
5293        * to reduction operation's identity value.
5294        */
5295       fs_reg scan = bld.vgrf(src.type);
5296       const fs_builder allbld = bld.exec_all();
5297       allbld.emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
5298 
5299       if (instr->intrinsic == nir_intrinsic_exclusive_scan) {
5300          /* Exclusive scan is a bit harder because we have to do an annoying
5301           * shift of the contents before we can begin.  To make things worse,
5302           * we can't do this with a normal stride; we have to use indirects.
5303           */
5304          fs_reg shifted = bld.vgrf(src.type);
5305          fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
5306          allbld.ADD(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
5307                          brw_imm_w(-1));
5308          allbld.emit(SHADER_OPCODE_SHUFFLE, shifted, scan, idx);
5309          allbld.group(1, 0).MOV(component(shifted, 0), identity);
5310          scan = shifted;
5311       }
5312 
5313       bld.emit_scan(brw_op, scan, dispatch_width, cond_mod);
5314 
5315       bld.MOV(retype(dest, src.type), scan);
5316       break;
5317    }
5318 
5319    case nir_intrinsic_load_global_block_intel: {
5320       assert(nir_dest_bit_size(instr->dest) == 32);
5321 
5322       fs_reg address = bld.emit_uniformize(get_nir_src(instr->src[0]));
5323 
5324       const fs_builder ubld1 = bld.exec_all().group(1, 0);
5325       const fs_builder ubld8 = bld.exec_all().group(8, 0);
5326       const fs_builder ubld16 = bld.exec_all().group(16, 0);
5327 
5328       const unsigned total = instr->num_components * dispatch_width;
5329       unsigned loaded = 0;
5330 
5331       while (loaded < total) {
5332          const unsigned block =
5333             choose_oword_block_size_dwords(total - loaded);
5334          const unsigned block_bytes = block * 4;
5335 
5336          const fs_builder &ubld = block == 8 ? ubld8 : ubld16;
5337          ubld.emit(SHADER_OPCODE_A64_UNALIGNED_OWORD_BLOCK_READ_LOGICAL,
5338                    retype(byte_offset(dest, loaded * 4), BRW_REGISTER_TYPE_UD),
5339                    address,
5340                    fs_reg(), /* No source data */
5341                    brw_imm_ud(block))->size_written = block_bytes;
5342 
5343          increment_a64_address(ubld1, address, block_bytes);
5344          loaded += block;
5345       }
5346 
5347       assert(loaded == total);
5348       break;
5349    }
5350 
5351    case nir_intrinsic_store_global_block_intel: {
5352       assert(nir_src_bit_size(instr->src[0]) == 32);
5353 
5354       fs_reg address = bld.emit_uniformize(get_nir_src(instr->src[1]));
5355       fs_reg src = get_nir_src(instr->src[0]);
5356 
5357       const fs_builder ubld1 = bld.exec_all().group(1, 0);
5358       const fs_builder ubld8 = bld.exec_all().group(8, 0);
5359       const fs_builder ubld16 = bld.exec_all().group(16, 0);
5360 
5361       const unsigned total = instr->num_components * dispatch_width;
5362       unsigned written = 0;
5363 
5364       while (written < total) {
5365          const unsigned block =
5366             choose_oword_block_size_dwords(total - written);
5367 
5368          const fs_builder &ubld = block == 8 ? ubld8 : ubld16;
5369          ubld.emit(SHADER_OPCODE_A64_OWORD_BLOCK_WRITE_LOGICAL,
5370                    fs_reg(),
5371                    address,
5372                    retype(byte_offset(src, written * 4), BRW_REGISTER_TYPE_UD),
5373                    brw_imm_ud(block));
5374 
5375          const unsigned block_bytes = block * 4;
5376          increment_a64_address(ubld1, address, block_bytes);
5377          written += block;
5378       }
5379 
5380       assert(written == total);
5381       break;
5382    }
5383 
5384    case nir_intrinsic_load_shared_block_intel:
5385    case nir_intrinsic_load_ssbo_block_intel: {
5386       assert(nir_dest_bit_size(instr->dest) == 32);
5387 
5388       const bool is_ssbo =
5389          instr->intrinsic == nir_intrinsic_load_ssbo_block_intel;
5390       fs_reg address = bld.emit_uniformize(get_nir_src(instr->src[is_ssbo ? 1 : 0]));
5391 
5392       fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5393       srcs[SURFACE_LOGICAL_SRC_SURFACE] = is_ssbo ?
5394          get_nir_ssbo_intrinsic_index(bld, instr) : fs_reg(brw_imm_ud(GEN7_BTI_SLM));
5395       srcs[SURFACE_LOGICAL_SRC_ADDRESS] = address;
5396 
5397       const fs_builder ubld1 = bld.exec_all().group(1, 0);
5398       const fs_builder ubld8 = bld.exec_all().group(8, 0);
5399       const fs_builder ubld16 = bld.exec_all().group(16, 0);
5400 
5401       const unsigned total = instr->num_components * dispatch_width;
5402       unsigned loaded = 0;
5403 
5404       while (loaded < total) {
5405          const unsigned block =
5406             choose_oword_block_size_dwords(total - loaded);
5407          const unsigned block_bytes = block * 4;
5408 
5409          srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(block);
5410 
5411          const fs_builder &ubld = block == 8 ? ubld8 : ubld16;
5412          ubld.emit(SHADER_OPCODE_UNALIGNED_OWORD_BLOCK_READ_LOGICAL,
5413                    retype(byte_offset(dest, loaded * 4), BRW_REGISTER_TYPE_UD),
5414                    srcs, SURFACE_LOGICAL_NUM_SRCS)->size_written = block_bytes;
5415 
5416          ubld1.ADD(address, address, brw_imm_ud(block_bytes));
5417          loaded += block;
5418       }
5419 
5420       assert(loaded == total);
5421       break;
5422    }
5423 
5424    case nir_intrinsic_store_shared_block_intel:
5425    case nir_intrinsic_store_ssbo_block_intel: {
5426       assert(nir_src_bit_size(instr->src[0]) == 32);
5427 
5428       const bool is_ssbo =
5429          instr->intrinsic == nir_intrinsic_store_ssbo_block_intel;
5430 
5431       fs_reg address = bld.emit_uniformize(get_nir_src(instr->src[is_ssbo ? 2 : 1]));
5432       fs_reg src = get_nir_src(instr->src[0]);
5433 
5434       fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5435       srcs[SURFACE_LOGICAL_SRC_SURFACE] = is_ssbo ?
5436          get_nir_ssbo_intrinsic_index(bld, instr) : fs_reg(brw_imm_ud(GEN7_BTI_SLM));
5437       srcs[SURFACE_LOGICAL_SRC_ADDRESS] = address;
5438 
5439       const fs_builder ubld1 = bld.exec_all().group(1, 0);
5440       const fs_builder ubld8 = bld.exec_all().group(8, 0);
5441       const fs_builder ubld16 = bld.exec_all().group(16, 0);
5442 
5443       const unsigned total = instr->num_components * dispatch_width;
5444       unsigned written = 0;
5445 
5446       while (written < total) {
5447          const unsigned block =
5448             choose_oword_block_size_dwords(total - written);
5449 
5450          srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(block);
5451          srcs[SURFACE_LOGICAL_SRC_DATA] =
5452             retype(byte_offset(src, written * 4), BRW_REGISTER_TYPE_UD);
5453 
5454          const fs_builder &ubld = block == 8 ? ubld8 : ubld16;
5455          ubld.emit(SHADER_OPCODE_OWORD_BLOCK_WRITE_LOGICAL,
5456                    fs_reg(), srcs, SURFACE_LOGICAL_NUM_SRCS);
5457 
5458          const unsigned block_bytes = block * 4;
5459          ubld1.ADD(address, address, brw_imm_ud(block_bytes));
5460          written += block;
5461       }
5462 
5463       assert(written == total);
5464       break;
5465    }
5466 
5467    default:
5468       unreachable("unknown intrinsic");
5469    }
5470 }
5471 
5472 void
nir_emit_ssbo_atomic(const fs_builder & bld,int op,nir_intrinsic_instr * instr)5473 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
5474                                  int op, nir_intrinsic_instr *instr)
5475 {
5476    /* The BTI untyped atomic messages only support 32-bit atomics.  If you
5477     * just look at the big table of messages in the Vol 7 of the SKL PRM, they
5478     * appear to exist.  However, if you look at Vol 2a, there are no message
5479     * descriptors provided for Qword atomic ops except for A64 messages.
5480     */
5481    assert(nir_dest_bit_size(instr->dest) == 32);
5482 
5483    fs_reg dest;
5484    if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5485       dest = get_nir_dest(instr->dest);
5486 
5487    fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5488    srcs[SURFACE_LOGICAL_SRC_SURFACE] = get_nir_ssbo_intrinsic_index(bld, instr);
5489    srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
5490    srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5491    srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5492    srcs[SURFACE_LOGICAL_SRC_ALLOW_SAMPLE_MASK] = brw_imm_ud(1);
5493 
5494    fs_reg data;
5495    if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
5496       data = get_nir_src(instr->src[2]);
5497 
5498    if (op == BRW_AOP_CMPWR) {
5499       fs_reg tmp = bld.vgrf(data.type, 2);
5500       fs_reg sources[2] = { data, get_nir_src(instr->src[3]) };
5501       bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5502       data = tmp;
5503    }
5504    srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5505 
5506    /* Emit the actual atomic operation */
5507 
5508    bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
5509             dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5510 }
5511 
5512 void
nir_emit_ssbo_atomic_float(const fs_builder & bld,int op,nir_intrinsic_instr * instr)5513 fs_visitor::nir_emit_ssbo_atomic_float(const fs_builder &bld,
5514                                        int op, nir_intrinsic_instr *instr)
5515 {
5516    fs_reg dest;
5517    if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5518       dest = get_nir_dest(instr->dest);
5519 
5520    fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5521    srcs[SURFACE_LOGICAL_SRC_SURFACE] = get_nir_ssbo_intrinsic_index(bld, instr);
5522    srcs[SURFACE_LOGICAL_SRC_ADDRESS] = get_nir_src(instr->src[1]);
5523    srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5524    srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5525    srcs[SURFACE_LOGICAL_SRC_ALLOW_SAMPLE_MASK] = brw_imm_ud(1);
5526 
5527    fs_reg data = get_nir_src(instr->src[2]);
5528    if (op == BRW_AOP_FCMPWR) {
5529       fs_reg tmp = bld.vgrf(data.type, 2);
5530       fs_reg sources[2] = { data, get_nir_src(instr->src[3]) };
5531       bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5532       data = tmp;
5533    }
5534    srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5535 
5536    /* Emit the actual atomic operation */
5537 
5538    bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL,
5539             dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5540 }
5541 
5542 void
nir_emit_shared_atomic(const fs_builder & bld,int op,nir_intrinsic_instr * instr)5543 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
5544                                    int op, nir_intrinsic_instr *instr)
5545 {
5546    fs_reg dest;
5547    if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5548       dest = get_nir_dest(instr->dest);
5549 
5550    fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5551    srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
5552    srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5553    srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5554    srcs[SURFACE_LOGICAL_SRC_ALLOW_SAMPLE_MASK] = brw_imm_ud(1);
5555 
5556    fs_reg data;
5557    if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
5558       data = get_nir_src(instr->src[1]);
5559    if (op == BRW_AOP_CMPWR) {
5560       fs_reg tmp = bld.vgrf(data.type, 2);
5561       fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5562       bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5563       data = tmp;
5564    }
5565    srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5566 
5567    /* Get the offset */
5568    if (nir_src_is_const(instr->src[0])) {
5569       srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
5570          brw_imm_ud(instr->const_index[0] + nir_src_as_uint(instr->src[0]));
5571    } else {
5572       srcs[SURFACE_LOGICAL_SRC_ADDRESS] = vgrf(glsl_type::uint_type);
5573       bld.ADD(srcs[SURFACE_LOGICAL_SRC_ADDRESS],
5574 	      retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
5575 	      brw_imm_ud(instr->const_index[0]));
5576    }
5577 
5578    /* Emit the actual atomic operation operation */
5579 
5580    bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL,
5581             dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5582 }
5583 
5584 void
nir_emit_shared_atomic_float(const fs_builder & bld,int op,nir_intrinsic_instr * instr)5585 fs_visitor::nir_emit_shared_atomic_float(const fs_builder &bld,
5586                                          int op, nir_intrinsic_instr *instr)
5587 {
5588    fs_reg dest;
5589    if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5590       dest = get_nir_dest(instr->dest);
5591 
5592    fs_reg srcs[SURFACE_LOGICAL_NUM_SRCS];
5593    srcs[SURFACE_LOGICAL_SRC_SURFACE] = brw_imm_ud(GEN7_BTI_SLM);
5594    srcs[SURFACE_LOGICAL_SRC_IMM_DIMS] = brw_imm_ud(1);
5595    srcs[SURFACE_LOGICAL_SRC_IMM_ARG] = brw_imm_ud(op);
5596    srcs[SURFACE_LOGICAL_SRC_ALLOW_SAMPLE_MASK] = brw_imm_ud(1);
5597 
5598    fs_reg data = get_nir_src(instr->src[1]);
5599    if (op == BRW_AOP_FCMPWR) {
5600       fs_reg tmp = bld.vgrf(data.type, 2);
5601       fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5602       bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5603       data = tmp;
5604    }
5605    srcs[SURFACE_LOGICAL_SRC_DATA] = data;
5606 
5607    /* Get the offset */
5608    if (nir_src_is_const(instr->src[0])) {
5609       srcs[SURFACE_LOGICAL_SRC_ADDRESS] =
5610          brw_imm_ud(instr->const_index[0] + nir_src_as_uint(instr->src[0]));
5611    } else {
5612       srcs[SURFACE_LOGICAL_SRC_ADDRESS] = vgrf(glsl_type::uint_type);
5613       bld.ADD(srcs[SURFACE_LOGICAL_SRC_ADDRESS],
5614 	      retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
5615 	      brw_imm_ud(instr->const_index[0]));
5616    }
5617 
5618    /* Emit the actual atomic operation operation */
5619 
5620    bld.emit(SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL,
5621             dest, srcs, SURFACE_LOGICAL_NUM_SRCS);
5622 }
5623 
5624 void
nir_emit_global_atomic(const fs_builder & bld,int op,nir_intrinsic_instr * instr)5625 fs_visitor::nir_emit_global_atomic(const fs_builder &bld,
5626                                    int op, nir_intrinsic_instr *instr)
5627 {
5628    fs_reg dest;
5629    if (nir_intrinsic_infos[instr->intrinsic].has_dest)
5630       dest = get_nir_dest(instr->dest);
5631 
5632    fs_reg addr = get_nir_src(instr->src[0]);
5633 
5634    fs_reg data;
5635    if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
5636       data = get_nir_src(instr->src[1]);
5637 
5638    if (op == BRW_AOP_CMPWR) {
5639       fs_reg tmp = bld.vgrf(data.type, 2);
5640       fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5641       bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5642       data = tmp;
5643    }
5644 
5645    if (nir_dest_bit_size(instr->dest) == 64) {
5646       bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL,
5647                dest, addr, data, brw_imm_ud(op));
5648    } else {
5649       assert(nir_dest_bit_size(instr->dest) == 32);
5650       bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL,
5651                dest, addr, data, brw_imm_ud(op));
5652    }
5653 }
5654 
5655 void
nir_emit_global_atomic_float(const fs_builder & bld,int op,nir_intrinsic_instr * instr)5656 fs_visitor::nir_emit_global_atomic_float(const fs_builder &bld,
5657                                          int op, nir_intrinsic_instr *instr)
5658 {
5659    assert(nir_intrinsic_infos[instr->intrinsic].has_dest);
5660    fs_reg dest = get_nir_dest(instr->dest);
5661 
5662    fs_reg addr = get_nir_src(instr->src[0]);
5663 
5664    assert(op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC);
5665    fs_reg data = get_nir_src(instr->src[1]);
5666 
5667    if (op == BRW_AOP_FCMPWR) {
5668       fs_reg tmp = bld.vgrf(data.type, 2);
5669       fs_reg sources[2] = { data, get_nir_src(instr->src[2]) };
5670       bld.LOAD_PAYLOAD(tmp, sources, 2, 0);
5671       data = tmp;
5672    }
5673 
5674    bld.emit(SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT_LOGICAL,
5675             dest, addr, data, brw_imm_ud(op));
5676 }
5677 
5678 void
nir_emit_texture(const fs_builder & bld,nir_tex_instr * instr)5679 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
5680 {
5681    unsigned texture = instr->texture_index;
5682    unsigned sampler = instr->sampler_index;
5683 
5684    fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
5685 
5686    srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture);
5687    srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler);
5688 
5689    int lod_components = 0;
5690 
5691    /* The hardware requires a LOD for buffer textures */
5692    if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
5693       srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0);
5694 
5695    uint32_t header_bits = 0;
5696    for (unsigned i = 0; i < instr->num_srcs; i++) {
5697       fs_reg src = get_nir_src(instr->src[i].src);
5698       switch (instr->src[i].src_type) {
5699       case nir_tex_src_bias:
5700          srcs[TEX_LOGICAL_SRC_LOD] =
5701             retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5702          break;
5703       case nir_tex_src_comparator:
5704          srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F);
5705          break;
5706       case nir_tex_src_coord:
5707          switch (instr->op) {
5708          case nir_texop_txf:
5709          case nir_texop_txf_ms:
5710          case nir_texop_txf_ms_mcs:
5711          case nir_texop_samples_identical:
5712             srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D);
5713             break;
5714          default:
5715             srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F);
5716             break;
5717          }
5718          break;
5719       case nir_tex_src_ddx:
5720          srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F);
5721          lod_components = nir_tex_instr_src_size(instr, i);
5722          break;
5723       case nir_tex_src_ddy:
5724          srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F);
5725          break;
5726       case nir_tex_src_lod:
5727          switch (instr->op) {
5728          case nir_texop_txs:
5729             srcs[TEX_LOGICAL_SRC_LOD] =
5730                retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD);
5731             break;
5732          case nir_texop_txf:
5733             srcs[TEX_LOGICAL_SRC_LOD] =
5734                retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D);
5735             break;
5736          default:
5737             srcs[TEX_LOGICAL_SRC_LOD] =
5738                retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5739             break;
5740          }
5741          break;
5742       case nir_tex_src_min_lod:
5743          srcs[TEX_LOGICAL_SRC_MIN_LOD] =
5744             retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5745          break;
5746       case nir_tex_src_ms_index:
5747          srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD);
5748          break;
5749 
5750       case nir_tex_src_offset: {
5751          uint32_t offset_bits = 0;
5752          if (brw_texture_offset(instr, i, &offset_bits)) {
5753             header_bits |= offset_bits;
5754          } else {
5755             srcs[TEX_LOGICAL_SRC_TG4_OFFSET] =
5756                retype(src, BRW_REGISTER_TYPE_D);
5757          }
5758          break;
5759       }
5760 
5761       case nir_tex_src_projector:
5762          unreachable("should be lowered");
5763 
5764       case nir_tex_src_texture_offset: {
5765          /* Emit code to evaluate the actual indexing expression */
5766          fs_reg tmp = vgrf(glsl_type::uint_type);
5767          bld.ADD(tmp, src, brw_imm_ud(texture));
5768          srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp);
5769          break;
5770       }
5771 
5772       case nir_tex_src_sampler_offset: {
5773          /* Emit code to evaluate the actual indexing expression */
5774          fs_reg tmp = vgrf(glsl_type::uint_type);
5775          bld.ADD(tmp, src, brw_imm_ud(sampler));
5776          srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp);
5777          break;
5778       }
5779 
5780       case nir_tex_src_texture_handle:
5781          assert(nir_tex_instr_src_index(instr, nir_tex_src_texture_offset) == -1);
5782          srcs[TEX_LOGICAL_SRC_SURFACE] = fs_reg();
5783          srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE] = bld.emit_uniformize(src);
5784          break;
5785 
5786       case nir_tex_src_sampler_handle:
5787          assert(nir_tex_instr_src_index(instr, nir_tex_src_sampler_offset) == -1);
5788          srcs[TEX_LOGICAL_SRC_SAMPLER] = fs_reg();
5789          srcs[TEX_LOGICAL_SRC_SAMPLER_HANDLE] = bld.emit_uniformize(src);
5790          break;
5791 
5792       case nir_tex_src_ms_mcs:
5793          assert(instr->op == nir_texop_txf_ms);
5794          srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D);
5795          break;
5796 
5797       case nir_tex_src_plane: {
5798          const uint32_t plane = nir_src_as_uint(instr->src[i].src);
5799          const uint32_t texture_index =
5800             instr->texture_index +
5801             stage_prog_data->binding_table.plane_start[plane] -
5802             stage_prog_data->binding_table.texture_start;
5803 
5804          srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index);
5805          break;
5806       }
5807 
5808       default:
5809          unreachable("unknown texture source");
5810       }
5811    }
5812 
5813    if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE &&
5814        (instr->op == nir_texop_txf_ms ||
5815         instr->op == nir_texop_samples_identical)) {
5816       if (devinfo->gen >= 7 &&
5817           key_tex->compressed_multisample_layout_mask & (1 << texture)) {
5818          srcs[TEX_LOGICAL_SRC_MCS] =
5819             emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE],
5820                            instr->coord_components,
5821                            srcs[TEX_LOGICAL_SRC_SURFACE],
5822                            srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE]);
5823       } else {
5824          srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u);
5825       }
5826    }
5827 
5828    srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components);
5829    srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components);
5830 
5831    enum opcode opcode;
5832    switch (instr->op) {
5833    case nir_texop_tex:
5834       opcode = SHADER_OPCODE_TEX_LOGICAL;
5835       break;
5836    case nir_texop_txb:
5837       opcode = FS_OPCODE_TXB_LOGICAL;
5838       break;
5839    case nir_texop_txl:
5840       opcode = SHADER_OPCODE_TXL_LOGICAL;
5841       break;
5842    case nir_texop_txd:
5843       opcode = SHADER_OPCODE_TXD_LOGICAL;
5844       break;
5845    case nir_texop_txf:
5846       opcode = SHADER_OPCODE_TXF_LOGICAL;
5847       break;
5848    case nir_texop_txf_ms:
5849       if ((key_tex->msaa_16 & (1 << sampler)))
5850          opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
5851       else
5852          opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
5853       break;
5854    case nir_texop_txf_ms_mcs:
5855       opcode = SHADER_OPCODE_TXF_MCS_LOGICAL;
5856       break;
5857    case nir_texop_query_levels:
5858    case nir_texop_txs:
5859       opcode = SHADER_OPCODE_TXS_LOGICAL;
5860       break;
5861    case nir_texop_lod:
5862       opcode = SHADER_OPCODE_LOD_LOGICAL;
5863       break;
5864    case nir_texop_tg4:
5865       if (srcs[TEX_LOGICAL_SRC_TG4_OFFSET].file != BAD_FILE)
5866          opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL;
5867       else
5868          opcode = SHADER_OPCODE_TG4_LOGICAL;
5869       break;
5870    case nir_texop_texture_samples:
5871       opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL;
5872       break;
5873    case nir_texop_samples_identical: {
5874       fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
5875 
5876       /* If mcs is an immediate value, it means there is no MCS.  In that case
5877        * just return false.
5878        */
5879       if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) {
5880          bld.MOV(dst, brw_imm_ud(0u));
5881       } else if ((key_tex->msaa_16 & (1 << sampler))) {
5882          fs_reg tmp = vgrf(glsl_type::uint_type);
5883          bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS],
5884                 offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1));
5885          bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
5886       } else {
5887          bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u),
5888                  BRW_CONDITIONAL_EQ);
5889       }
5890       return;
5891    }
5892    default:
5893       unreachable("unknown texture opcode");
5894    }
5895 
5896    if (instr->op == nir_texop_tg4) {
5897       if (instr->component == 1 &&
5898           key_tex->gather_channel_quirk_mask & (1 << texture)) {
5899          /* gather4 sampler is broken for green channel on RG32F --
5900           * we must ask for blue instead.
5901           */
5902          header_bits |= 2 << 16;
5903       } else {
5904          header_bits |= instr->component << 16;
5905       }
5906    }
5907 
5908    fs_reg dst = bld.vgrf(brw_type_for_nir_type(devinfo, instr->dest_type), 4);
5909    fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
5910    inst->offset = header_bits;
5911 
5912    const unsigned dest_size = nir_tex_instr_dest_size(instr);
5913    if (devinfo->gen >= 9 &&
5914        instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) {
5915       unsigned write_mask = instr->dest.is_ssa ?
5916                             nir_ssa_def_components_read(&instr->dest.ssa):
5917                             (1 << dest_size) - 1;
5918       assert(write_mask != 0); /* dead code should have been eliminated */
5919       inst->size_written = util_last_bit(write_mask) *
5920                            inst->dst.component_size(inst->exec_size);
5921    } else {
5922       inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
5923    }
5924 
5925    if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE)
5926       inst->shadow_compare = true;
5927 
5928    if (instr->op == nir_texop_tg4 && devinfo->gen == 6)
5929       emit_gen6_gather_wa(key_tex->gen6_gather_wa[texture], dst);
5930 
5931    fs_reg nir_dest[4];
5932    for (unsigned i = 0; i < dest_size; i++)
5933       nir_dest[i] = offset(dst, bld, i);
5934 
5935    if (instr->op == nir_texop_query_levels) {
5936       /* # levels is in .w */
5937       nir_dest[0] = offset(dst, bld, 3);
5938    } else if (instr->op == nir_texop_txs &&
5939               dest_size >= 3 && devinfo->gen < 7) {
5940       /* Gen4-6 return 0 instead of 1 for single layer surfaces. */
5941       fs_reg depth = offset(dst, bld, 2);
5942       nir_dest[2] = vgrf(glsl_type::int_type);
5943       bld.emit_minmax(nir_dest[2], depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
5944    }
5945 
5946    bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0);
5947 }
5948 
5949 void
nir_emit_jump(const fs_builder & bld,nir_jump_instr * instr)5950 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
5951 {
5952    switch (instr->type) {
5953    case nir_jump_break:
5954       bld.emit(BRW_OPCODE_BREAK);
5955       break;
5956    case nir_jump_continue:
5957       bld.emit(BRW_OPCODE_CONTINUE);
5958       break;
5959    case nir_jump_return:
5960    default:
5961       unreachable("unknown jump");
5962    }
5963 }
5964 
5965 /*
5966  * This helper takes a source register and un/shuffles it into the destination
5967  * register.
5968  *
5969  * If source type size is smaller than destination type size the operation
5970  * needed is a component shuffle. The opposite case would be an unshuffle. If
5971  * source/destination type size is equal a shuffle is done that would be
5972  * equivalent to a simple MOV.
5973  *
5974  * For example, if source is a 16-bit type and destination is 32-bit. A 3
5975  * components .xyz 16-bit vector on SIMD8 would be.
5976  *
5977  *    |x1|x2|x3|x4|x5|x6|x7|x8|y1|y2|y3|y4|y5|y6|y7|y8|
5978  *    |z1|z2|z3|z4|z5|z6|z7|z8|  |  |  |  |  |  |  |  |
5979  *
5980  * This helper will return the following 2 32-bit components with the 16-bit
5981  * values shuffled:
5982  *
5983  *    |x1 y1|x2 y2|x3 y3|x4 y4|x5 y5|x6 y6|x7 y7|x8 y8|
5984  *    |z1   |z2   |z3   |z4   |z5   |z6   |z7   |z8   |
5985  *
5986  * For unshuffle, the example would be the opposite, a 64-bit type source
5987  * and a 32-bit destination. A 2 component .xy 64-bit vector on SIMD8
5988  * would be:
5989  *
5990  *    | x1l   x1h | x2l   x2h | x3l   x3h | x4l   x4h |
5991  *    | x5l   x5h | x6l   x6h | x7l   x7h | x8l   x8h |
5992  *    | y1l   y1h | y2l   y2h | y3l   y3h | y4l   y4h |
5993  *    | y5l   y5h | y6l   y6h | y7l   y7h | y8l   y8h |
5994  *
5995  * The returned result would be the following 4 32-bit components unshuffled:
5996  *
5997  *    | x1l | x2l | x3l | x4l | x5l | x6l | x7l | x8l |
5998  *    | x1h | x2h | x3h | x4h | x5h | x6h | x7h | x8h |
5999  *    | y1l | y2l | y3l | y4l | y5l | y6l | y7l | y8l |
6000  *    | y1h | y2h | y3h | y4h | y5h | y6h | y7h | y8h |
6001  *
6002  * - Source and destination register must not be overlapped.
6003  * - components units are measured in terms of the smaller type between
6004  *   source and destination because we are un/shuffling the smaller
6005  *   components from/into the bigger ones.
6006  * - first_component parameter allows skipping source components.
6007  */
6008 void
shuffle_src_to_dst(const fs_builder & bld,const fs_reg & dst,const fs_reg & src,uint32_t first_component,uint32_t components)6009 shuffle_src_to_dst(const fs_builder &bld,
6010                    const fs_reg &dst,
6011                    const fs_reg &src,
6012                    uint32_t first_component,
6013                    uint32_t components)
6014 {
6015    if (type_sz(src.type) == type_sz(dst.type)) {
6016       assert(!regions_overlap(dst,
6017          type_sz(dst.type) * bld.dispatch_width() * components,
6018          offset(src, bld, first_component),
6019          type_sz(src.type) * bld.dispatch_width() * components));
6020       for (unsigned i = 0; i < components; i++) {
6021          bld.MOV(retype(offset(dst, bld, i), src.type),
6022                  offset(src, bld, i + first_component));
6023       }
6024    } else if (type_sz(src.type) < type_sz(dst.type)) {
6025       /* Source is shuffled into destination */
6026       unsigned size_ratio = type_sz(dst.type) / type_sz(src.type);
6027       assert(!regions_overlap(dst,
6028          type_sz(dst.type) * bld.dispatch_width() *
6029          DIV_ROUND_UP(components, size_ratio),
6030          offset(src, bld, first_component),
6031          type_sz(src.type) * bld.dispatch_width() * components));
6032 
6033       brw_reg_type shuffle_type =
6034          brw_reg_type_from_bit_size(8 * type_sz(src.type),
6035                                     BRW_REGISTER_TYPE_D);
6036       for (unsigned i = 0; i < components; i++) {
6037          fs_reg shuffle_component_i =
6038             subscript(offset(dst, bld, i / size_ratio),
6039                       shuffle_type, i % size_ratio);
6040          bld.MOV(shuffle_component_i,
6041                  retype(offset(src, bld, i + first_component), shuffle_type));
6042       }
6043    } else {
6044       /* Source is unshuffled into destination */
6045       unsigned size_ratio = type_sz(src.type) / type_sz(dst.type);
6046       assert(!regions_overlap(dst,
6047          type_sz(dst.type) * bld.dispatch_width() * components,
6048          offset(src, bld, first_component / size_ratio),
6049          type_sz(src.type) * bld.dispatch_width() *
6050          DIV_ROUND_UP(components + (first_component % size_ratio),
6051                       size_ratio)));
6052 
6053       brw_reg_type shuffle_type =
6054          brw_reg_type_from_bit_size(8 * type_sz(dst.type),
6055                                     BRW_REGISTER_TYPE_D);
6056       for (unsigned i = 0; i < components; i++) {
6057          fs_reg shuffle_component_i =
6058             subscript(offset(src, bld, (first_component + i) / size_ratio),
6059                       shuffle_type, (first_component + i) % size_ratio);
6060          bld.MOV(retype(offset(dst, bld, i), shuffle_type),
6061                  shuffle_component_i);
6062       }
6063    }
6064 }
6065 
6066 void
shuffle_from_32bit_read(const fs_builder & bld,const fs_reg & dst,const fs_reg & src,uint32_t first_component,uint32_t components)6067 shuffle_from_32bit_read(const fs_builder &bld,
6068                         const fs_reg &dst,
6069                         const fs_reg &src,
6070                         uint32_t first_component,
6071                         uint32_t components)
6072 {
6073    assert(type_sz(src.type) == 4);
6074 
6075    /* This function takes components in units of the destination type while
6076     * shuffle_src_to_dst takes components in units of the smallest type
6077     */
6078    if (type_sz(dst.type) > 4) {
6079       assert(type_sz(dst.type) == 8);
6080       first_component *= 2;
6081       components *= 2;
6082    }
6083 
6084    shuffle_src_to_dst(bld, dst, src, first_component, components);
6085 }
6086 
6087 fs_reg
setup_imm_df(const fs_builder & bld,double v)6088 setup_imm_df(const fs_builder &bld, double v)
6089 {
6090    const struct gen_device_info *devinfo = bld.shader->devinfo;
6091    assert(devinfo->gen >= 7);
6092 
6093    if (devinfo->gen >= 8)
6094       return brw_imm_df(v);
6095 
6096    /* gen7.5 does not support DF immediates straighforward but the DIM
6097     * instruction allows to set the 64-bit immediate value.
6098     */
6099    if (devinfo->is_haswell) {
6100       const fs_builder ubld = bld.exec_all().group(1, 0);
6101       fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_DF, 1);
6102       ubld.DIM(dst, brw_imm_df(v));
6103       return component(dst, 0);
6104    }
6105 
6106    /* gen7 does not support DF immediates, so we generate a 64-bit constant by
6107     * writing the low 32-bit of the constant to suboffset 0 of a VGRF and
6108     * the high 32-bit to suboffset 4 and then applying a stride of 0.
6109     *
6110     * Alternatively, we could also produce a normal VGRF (without stride 0)
6111     * by writing to all the channels in the VGRF, however, that would hit the
6112     * gen7 bug where we have to split writes that span more than 1 register
6113     * into instructions with a width of 4 (otherwise the write to the second
6114     * register written runs into an execmask hardware bug) which isn't very
6115     * nice.
6116     */
6117    union {
6118       double d;
6119       struct {
6120          uint32_t i1;
6121          uint32_t i2;
6122       };
6123    } di;
6124 
6125    di.d = v;
6126 
6127    const fs_builder ubld = bld.exec_all().group(1, 0);
6128    const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
6129    ubld.MOV(tmp, brw_imm_ud(di.i1));
6130    ubld.MOV(horiz_offset(tmp, 1), brw_imm_ud(di.i2));
6131 
6132    return component(retype(tmp, BRW_REGISTER_TYPE_DF), 0);
6133 }
6134 
6135 fs_reg
setup_imm_b(const fs_builder & bld,int8_t v)6136 setup_imm_b(const fs_builder &bld, int8_t v)
6137 {
6138    const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_B);
6139    bld.MOV(tmp, brw_imm_w(v));
6140    return tmp;
6141 }
6142 
6143 fs_reg
setup_imm_ub(const fs_builder & bld,uint8_t v)6144 setup_imm_ub(const fs_builder &bld, uint8_t v)
6145 {
6146    const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UB);
6147    bld.MOV(tmp, brw_imm_uw(v));
6148    return tmp;
6149 }
6150