• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Licensed to the Apache Software Foundation (ASF) under one or more
3  * contributor license agreements.  See the NOTICE file distributed with
4  * this work for additional information regarding copyright ownership.
5  * The ASF licenses this file to You under the Apache License, Version 2.0
6  * (the "License"); you may not use this file except in compliance with
7  * the License.  You may obtain a copy of the License at
8  *
9  *      http://www.apache.org/licenses/LICENSE-2.0
10  *
11  * Unless required by applicable law or agreed to in writing, software
12  * distributed under the License is distributed on an "AS IS" BASIS,
13  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  * See the License for the specific language governing permissions and
15  * limitations under the License.
16  */
17 
18 package org.apache.commons.math.geometry;
19 
20 import java.io.Serializable;
21 
22 import org.apache.commons.math.MathRuntimeException;
23 import org.apache.commons.math.exception.util.LocalizedFormats;
24 import org.apache.commons.math.util.FastMath;
25 
26 /**
27  * This class implements rotations in a three-dimensional space.
28  *
29  * <p>Rotations can be represented by several different mathematical
30  * entities (matrices, axe and angle, Cardan or Euler angles,
31  * quaternions). This class presents an higher level abstraction, more
32  * user-oriented and hiding this implementation details. Well, for the
33  * curious, we use quaternions for the internal representation. The
34  * user can build a rotation from any of these representations, and
35  * any of these representations can be retrieved from a
36  * <code>Rotation</code> instance (see the various constructors and
37  * getters). In addition, a rotation can also be built implicitly
38  * from a set of vectors and their image.</p>
39  * <p>This implies that this class can be used to convert from one
40  * representation to another one. For example, converting a rotation
41  * matrix into a set of Cardan angles from can be done using the
42  * following single line of code:</p>
43  * <pre>
44  * double[] angles = new Rotation(matrix, 1.0e-10).getAngles(RotationOrder.XYZ);
45  * </pre>
46  * <p>Focus is oriented on what a rotation <em>do</em> rather than on its
47  * underlying representation. Once it has been built, and regardless of its
48  * internal representation, a rotation is an <em>operator</em> which basically
49  * transforms three dimensional {@link Vector3D vectors} into other three
50  * dimensional {@link Vector3D vectors}. Depending on the application, the
51  * meaning of these vectors may vary and the semantics of the rotation also.</p>
52  * <p>For example in an spacecraft attitude simulation tool, users will often
53  * consider the vectors are fixed (say the Earth direction for example) and the
54  * frames change. The rotation transforms the coordinates of the vector in inertial
55  * frame into the coordinates of the same vector in satellite frame. In this
56  * case, the rotation implicitly defines the relation between the two frames.</p>
57  * <p>Another example could be a telescope control application, where the rotation
58  * would transform the sighting direction at rest into the desired observing
59  * direction when the telescope is pointed towards an object of interest. In this
60  * case the rotation transforms the direction at rest in a topocentric frame
61  * into the sighting direction in the same topocentric frame. This implies in this
62  * case the frame is fixed and the vector moves.</p>
63  * <p>In many case, both approaches will be combined. In our telescope example,
64  * we will probably also need to transform the observing direction in the topocentric
65  * frame into the observing direction in inertial frame taking into account the observatory
66  * location and the Earth rotation, which would essentially be an application of the
67  * first approach.</p>
68  *
69  * <p>These examples show that a rotation is what the user wants it to be. This
70  * class does not push the user towards one specific definition and hence does not
71  * provide methods like <code>projectVectorIntoDestinationFrame</code> or
72  * <code>computeTransformedDirection</code>. It provides simpler and more generic
73  * methods: {@link #applyTo(Vector3D) applyTo(Vector3D)} and {@link
74  * #applyInverseTo(Vector3D) applyInverseTo(Vector3D)}.</p>
75  *
76  * <p>Since a rotation is basically a vectorial operator, several rotations can be
77  * composed together and the composite operation <code>r = r<sub>1</sub> o
78  * r<sub>2</sub></code> (which means that for each vector <code>u</code>,
79  * <code>r(u) = r<sub>1</sub>(r<sub>2</sub>(u))</code>) is also a rotation. Hence
80  * we can consider that in addition to vectors, a rotation can be applied to other
81  * rotations as well (or to itself). With our previous notations, we would say we
82  * can apply <code>r<sub>1</sub></code> to <code>r<sub>2</sub></code> and the result
83  * we get is <code>r = r<sub>1</sub> o r<sub>2</sub></code>. For this purpose, the
84  * class provides the methods: {@link #applyTo(Rotation) applyTo(Rotation)} and
85  * {@link #applyInverseTo(Rotation) applyInverseTo(Rotation)}.</p>
86  *
87  * <p>Rotations are guaranteed to be immutable objects.</p>
88  *
89  * @version $Revision: 1067500 $ $Date: 2011-02-05 21:11:30 +0100 (sam. 05 févr. 2011) $
90  * @see Vector3D
91  * @see RotationOrder
92  * @since 1.2
93  */
94 
95 public class Rotation implements Serializable {
96 
97   /** Identity rotation. */
98   public static final Rotation IDENTITY = new Rotation(1.0, 0.0, 0.0, 0.0, false);
99 
100   /** Serializable version identifier */
101   private static final long serialVersionUID = -2153622329907944313L;
102 
103   /** Scalar coordinate of the quaternion. */
104   private final double q0;
105 
106   /** First coordinate of the vectorial part of the quaternion. */
107   private final double q1;
108 
109   /** Second coordinate of the vectorial part of the quaternion. */
110   private final double q2;
111 
112   /** Third coordinate of the vectorial part of the quaternion. */
113   private final double q3;
114 
115   /** Build a rotation from the quaternion coordinates.
116    * <p>A rotation can be built from a <em>normalized</em> quaternion,
117    * i.e. a quaternion for which q<sub>0</sub><sup>2</sup> +
118    * q<sub>1</sub><sup>2</sup> + q<sub>2</sub><sup>2</sup> +
119    * q<sub>3</sub><sup>2</sup> = 1. If the quaternion is not normalized,
120    * the constructor can normalize it in a preprocessing step.</p>
121    * <p>Note that some conventions put the scalar part of the quaternion
122    * as the 4<sup>th</sup> component and the vector part as the first three
123    * components. This is <em>not</em> our convention. We put the scalar part
124    * as the first component.</p>
125    * @param q0 scalar part of the quaternion
126    * @param q1 first coordinate of the vectorial part of the quaternion
127    * @param q2 second coordinate of the vectorial part of the quaternion
128    * @param q3 third coordinate of the vectorial part of the quaternion
129    * @param needsNormalization if true, the coordinates are considered
130    * not to be normalized, a normalization preprocessing step is performed
131    * before using them
132    */
Rotation(double q0, double q1, double q2, double q3, boolean needsNormalization)133   public Rotation(double q0, double q1, double q2, double q3,
134                   boolean needsNormalization) {
135 
136     if (needsNormalization) {
137       // normalization preprocessing
138       double inv = 1.0 / FastMath.sqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
139       q0 *= inv;
140       q1 *= inv;
141       q2 *= inv;
142       q3 *= inv;
143     }
144 
145     this.q0 = q0;
146     this.q1 = q1;
147     this.q2 = q2;
148     this.q3 = q3;
149 
150   }
151 
152   /** Build a rotation from an axis and an angle.
153    * <p>We use the convention that angles are oriented according to
154    * the effect of the rotation on vectors around the axis. That means
155    * that if (i, j, k) is a direct frame and if we first provide +k as
156    * the axis and &pi;/2 as the angle to this constructor, and then
157    * {@link #applyTo(Vector3D) apply} the instance to +i, we will get
158    * +j.</p>
159    * <p>Another way to represent our convention is to say that a rotation
160    * of angle &theta; about the unit vector (x, y, z) is the same as the
161    * rotation build from quaternion components { cos(-&theta;/2),
162    * x * sin(-&theta;/2), y * sin(-&theta;/2), z * sin(-&theta;/2) }.
163    * Note the minus sign on the angle!</p>
164    * <p>On the one hand this convention is consistent with a vectorial
165    * perspective (moving vectors in fixed frames), on the other hand it
166    * is different from conventions with a frame perspective (fixed vectors
167    * viewed from different frames) like the ones used for example in spacecraft
168    * attitude community or in the graphics community.</p>
169    * @param axis axis around which to rotate
170    * @param angle rotation angle.
171    * @exception ArithmeticException if the axis norm is zero
172    */
Rotation(Vector3D axis, double angle)173   public Rotation(Vector3D axis, double angle) {
174 
175     double norm = axis.getNorm();
176     if (norm == 0) {
177       throw MathRuntimeException.createArithmeticException(LocalizedFormats.ZERO_NORM_FOR_ROTATION_AXIS);
178     }
179 
180     double halfAngle = -0.5 * angle;
181     double coeff = FastMath.sin(halfAngle) / norm;
182 
183     q0 = FastMath.cos (halfAngle);
184     q1 = coeff * axis.getX();
185     q2 = coeff * axis.getY();
186     q3 = coeff * axis.getZ();
187 
188   }
189 
190   /** Build a rotation from a 3X3 matrix.
191 
192    * <p>Rotation matrices are orthogonal matrices, i.e. unit matrices
193    * (which are matrices for which m.m<sup>T</sup> = I) with real
194    * coefficients. The module of the determinant of unit matrices is
195    * 1, among the orthogonal 3X3 matrices, only the ones having a
196    * positive determinant (+1) are rotation matrices.</p>
197    *
198    * <p>When a rotation is defined by a matrix with truncated values
199    * (typically when it is extracted from a technical sheet where only
200    * four to five significant digits are available), the matrix is not
201    * orthogonal anymore. This constructor handles this case
202    * transparently by using a copy of the given matrix and applying a
203    * correction to the copy in order to perfect its orthogonality. If
204    * the Frobenius norm of the correction needed is above the given
205    * threshold, then the matrix is considered to be too far from a
206    * true rotation matrix and an exception is thrown.<p>
207    *
208    * @param m rotation matrix
209    * @param threshold convergence threshold for the iterative
210    * orthogonality correction (convergence is reached when the
211    * difference between two steps of the Frobenius norm of the
212    * correction is below this threshold)
213    *
214    * @exception NotARotationMatrixException if the matrix is not a 3X3
215    * matrix, or if it cannot be transformed into an orthogonal matrix
216    * with the given threshold, or if the determinant of the resulting
217    * orthogonal matrix is negative
218    *
219    */
Rotation(double[][] m, double threshold)220   public Rotation(double[][] m, double threshold)
221     throws NotARotationMatrixException {
222 
223     // dimension check
224     if ((m.length != 3) || (m[0].length != 3) ||
225         (m[1].length != 3) || (m[2].length != 3)) {
226       throw new NotARotationMatrixException(
227               LocalizedFormats.ROTATION_MATRIX_DIMENSIONS,
228               m.length, m[0].length);
229     }
230 
231     // compute a "close" orthogonal matrix
232     double[][] ort = orthogonalizeMatrix(m, threshold);
233 
234     // check the sign of the determinant
235     double det = ort[0][0] * (ort[1][1] * ort[2][2] - ort[2][1] * ort[1][2]) -
236                  ort[1][0] * (ort[0][1] * ort[2][2] - ort[2][1] * ort[0][2]) +
237                  ort[2][0] * (ort[0][1] * ort[1][2] - ort[1][1] * ort[0][2]);
238     if (det < 0.0) {
239       throw new NotARotationMatrixException(
240               LocalizedFormats.CLOSEST_ORTHOGONAL_MATRIX_HAS_NEGATIVE_DETERMINANT,
241               det);
242     }
243 
244     // There are different ways to compute the quaternions elements
245     // from the matrix. They all involve computing one element from
246     // the diagonal of the matrix, and computing the three other ones
247     // using a formula involving a division by the first element,
248     // which unfortunately can be zero. Since the norm of the
249     // quaternion is 1, we know at least one element has an absolute
250     // value greater or equal to 0.5, so it is always possible to
251     // select the right formula and avoid division by zero and even
252     // numerical inaccuracy. Checking the elements in turn and using
253     // the first one greater than 0.45 is safe (this leads to a simple
254     // test since qi = 0.45 implies 4 qi^2 - 1 = -0.19)
255     double s = ort[0][0] + ort[1][1] + ort[2][2];
256     if (s > -0.19) {
257       // compute q0 and deduce q1, q2 and q3
258       q0 = 0.5 * FastMath.sqrt(s + 1.0);
259       double inv = 0.25 / q0;
260       q1 = inv * (ort[1][2] - ort[2][1]);
261       q2 = inv * (ort[2][0] - ort[0][2]);
262       q3 = inv * (ort[0][1] - ort[1][0]);
263     } else {
264       s = ort[0][0] - ort[1][1] - ort[2][2];
265       if (s > -0.19) {
266         // compute q1 and deduce q0, q2 and q3
267         q1 = 0.5 * FastMath.sqrt(s + 1.0);
268         double inv = 0.25 / q1;
269         q0 = inv * (ort[1][2] - ort[2][1]);
270         q2 = inv * (ort[0][1] + ort[1][0]);
271         q3 = inv * (ort[0][2] + ort[2][0]);
272       } else {
273         s = ort[1][1] - ort[0][0] - ort[2][2];
274         if (s > -0.19) {
275           // compute q2 and deduce q0, q1 and q3
276           q2 = 0.5 * FastMath.sqrt(s + 1.0);
277           double inv = 0.25 / q2;
278           q0 = inv * (ort[2][0] - ort[0][2]);
279           q1 = inv * (ort[0][1] + ort[1][0]);
280           q3 = inv * (ort[2][1] + ort[1][2]);
281         } else {
282           // compute q3 and deduce q0, q1 and q2
283           s = ort[2][2] - ort[0][0] - ort[1][1];
284           q3 = 0.5 * FastMath.sqrt(s + 1.0);
285           double inv = 0.25 / q3;
286           q0 = inv * (ort[0][1] - ort[1][0]);
287           q1 = inv * (ort[0][2] + ort[2][0]);
288           q2 = inv * (ort[2][1] + ort[1][2]);
289         }
290       }
291     }
292 
293   }
294 
295   /** Build the rotation that transforms a pair of vector into another pair.
296 
297    * <p>Except for possible scale factors, if the instance were applied to
298    * the pair (u<sub>1</sub>, u<sub>2</sub>) it will produce the pair
299    * (v<sub>1</sub>, v<sub>2</sub>).</p>
300    *
301    * <p>If the angular separation between u<sub>1</sub> and u<sub>2</sub> is
302    * not the same as the angular separation between v<sub>1</sub> and
303    * v<sub>2</sub>, then a corrected v'<sub>2</sub> will be used rather than
304    * v<sub>2</sub>, the corrected vector will be in the (v<sub>1</sub>,
305    * v<sub>2</sub>) plane.</p>
306    *
307    * @param u1 first vector of the origin pair
308    * @param u2 second vector of the origin pair
309    * @param v1 desired image of u1 by the rotation
310    * @param v2 desired image of u2 by the rotation
311    * @exception IllegalArgumentException if the norm of one of the vectors is zero
312    */
Rotation(Vector3D u1, Vector3D u2, Vector3D v1, Vector3D v2)313   public Rotation(Vector3D u1, Vector3D u2, Vector3D v1, Vector3D v2) {
314 
315   // norms computation
316   double u1u1 = Vector3D.dotProduct(u1, u1);
317   double u2u2 = Vector3D.dotProduct(u2, u2);
318   double v1v1 = Vector3D.dotProduct(v1, v1);
319   double v2v2 = Vector3D.dotProduct(v2, v2);
320   if ((u1u1 == 0) || (u2u2 == 0) || (v1v1 == 0) || (v2v2 == 0)) {
321     throw MathRuntimeException.createIllegalArgumentException(LocalizedFormats.ZERO_NORM_FOR_ROTATION_DEFINING_VECTOR);
322   }
323 
324   double u1x = u1.getX();
325   double u1y = u1.getY();
326   double u1z = u1.getZ();
327 
328   double u2x = u2.getX();
329   double u2y = u2.getY();
330   double u2z = u2.getZ();
331 
332   // normalize v1 in order to have (v1'|v1') = (u1|u1)
333   double coeff = FastMath.sqrt (u1u1 / v1v1);
334   double v1x   = coeff * v1.getX();
335   double v1y   = coeff * v1.getY();
336   double v1z   = coeff * v1.getZ();
337   v1 = new Vector3D(v1x, v1y, v1z);
338 
339   // adjust v2 in order to have (u1|u2) = (v1|v2) and (v2'|v2') = (u2|u2)
340   double u1u2   = Vector3D.dotProduct(u1, u2);
341   double v1v2   = Vector3D.dotProduct(v1, v2);
342   double coeffU = u1u2 / u1u1;
343   double coeffV = v1v2 / u1u1;
344   double beta   = FastMath.sqrt((u2u2 - u1u2 * coeffU) / (v2v2 - v1v2 * coeffV));
345   double alpha  = coeffU - beta * coeffV;
346   double v2x    = alpha * v1x + beta * v2.getX();
347   double v2y    = alpha * v1y + beta * v2.getY();
348   double v2z    = alpha * v1z + beta * v2.getZ();
349   v2 = new Vector3D(v2x, v2y, v2z);
350 
351   // preliminary computation (we use explicit formulation instead
352   // of relying on the Vector3D class in order to avoid building lots
353   // of temporary objects)
354   Vector3D uRef = u1;
355   Vector3D vRef = v1;
356   double dx1 = v1x - u1.getX();
357   double dy1 = v1y - u1.getY();
358   double dz1 = v1z - u1.getZ();
359   double dx2 = v2x - u2.getX();
360   double dy2 = v2y - u2.getY();
361   double dz2 = v2z - u2.getZ();
362   Vector3D k = new Vector3D(dy1 * dz2 - dz1 * dy2,
363                             dz1 * dx2 - dx1 * dz2,
364                             dx1 * dy2 - dy1 * dx2);
365   double c = k.getX() * (u1y * u2z - u1z * u2y) +
366              k.getY() * (u1z * u2x - u1x * u2z) +
367              k.getZ() * (u1x * u2y - u1y * u2x);
368 
369   if (c == 0) {
370     // the (q1, q2, q3) vector is in the (u1, u2) plane
371     // we try other vectors
372     Vector3D u3 = Vector3D.crossProduct(u1, u2);
373     Vector3D v3 = Vector3D.crossProduct(v1, v2);
374     double u3x  = u3.getX();
375     double u3y  = u3.getY();
376     double u3z  = u3.getZ();
377     double v3x  = v3.getX();
378     double v3y  = v3.getY();
379     double v3z  = v3.getZ();
380 
381     double dx3 = v3x - u3x;
382     double dy3 = v3y - u3y;
383     double dz3 = v3z - u3z;
384     k = new Vector3D(dy1 * dz3 - dz1 * dy3,
385                      dz1 * dx3 - dx1 * dz3,
386                      dx1 * dy3 - dy1 * dx3);
387     c = k.getX() * (u1y * u3z - u1z * u3y) +
388         k.getY() * (u1z * u3x - u1x * u3z) +
389         k.getZ() * (u1x * u3y - u1y * u3x);
390 
391     if (c == 0) {
392       // the (q1, q2, q3) vector is aligned with u1:
393       // we try (u2, u3) and (v2, v3)
394       k = new Vector3D(dy2 * dz3 - dz2 * dy3,
395                        dz2 * dx3 - dx2 * dz3,
396                        dx2 * dy3 - dy2 * dx3);
397       c = k.getX() * (u2y * u3z - u2z * u3y) +
398           k.getY() * (u2z * u3x - u2x * u3z) +
399           k.getZ() * (u2x * u3y - u2y * u3x);
400 
401       if (c == 0) {
402         // the (q1, q2, q3) vector is aligned with everything
403         // this is really the identity rotation
404         q0 = 1.0;
405         q1 = 0.0;
406         q2 = 0.0;
407         q3 = 0.0;
408         return;
409       }
410 
411       // we will have to use u2 and v2 to compute the scalar part
412       uRef = u2;
413       vRef = v2;
414 
415     }
416 
417   }
418 
419   // compute the vectorial part
420   c = FastMath.sqrt(c);
421   double inv = 1.0 / (c + c);
422   q1 = inv * k.getX();
423   q2 = inv * k.getY();
424   q3 = inv * k.getZ();
425 
426   // compute the scalar part
427    k = new Vector3D(uRef.getY() * q3 - uRef.getZ() * q2,
428                     uRef.getZ() * q1 - uRef.getX() * q3,
429                     uRef.getX() * q2 - uRef.getY() * q1);
430    c = Vector3D.dotProduct(k, k);
431   q0 = Vector3D.dotProduct(vRef, k) / (c + c);
432 
433   }
434 
435   /** Build one of the rotations that transform one vector into another one.
436 
437    * <p>Except for a possible scale factor, if the instance were
438    * applied to the vector u it will produce the vector v. There is an
439    * infinite number of such rotations, this constructor choose the
440    * one with the smallest associated angle (i.e. the one whose axis
441    * is orthogonal to the (u, v) plane). If u and v are colinear, an
442    * arbitrary rotation axis is chosen.</p>
443    *
444    * @param u origin vector
445    * @param v desired image of u by the rotation
446    * @exception IllegalArgumentException if the norm of one of the vectors is zero
447    */
Rotation(Vector3D u, Vector3D v)448   public Rotation(Vector3D u, Vector3D v) {
449 
450     double normProduct = u.getNorm() * v.getNorm();
451     if (normProduct == 0) {
452         throw MathRuntimeException.createIllegalArgumentException(LocalizedFormats.ZERO_NORM_FOR_ROTATION_DEFINING_VECTOR);
453     }
454 
455     double dot = Vector3D.dotProduct(u, v);
456 
457     if (dot < ((2.0e-15 - 1.0) * normProduct)) {
458       // special case u = -v: we select a PI angle rotation around
459       // an arbitrary vector orthogonal to u
460       Vector3D w = u.orthogonal();
461       q0 = 0.0;
462       q1 = -w.getX();
463       q2 = -w.getY();
464       q3 = -w.getZ();
465     } else {
466       // general case: (u, v) defines a plane, we select
467       // the shortest possible rotation: axis orthogonal to this plane
468       q0 = FastMath.sqrt(0.5 * (1.0 + dot / normProduct));
469       double coeff = 1.0 / (2.0 * q0 * normProduct);
470       q1 = coeff * (v.getY() * u.getZ() - v.getZ() * u.getY());
471       q2 = coeff * (v.getZ() * u.getX() - v.getX() * u.getZ());
472       q3 = coeff * (v.getX() * u.getY() - v.getY() * u.getX());
473     }
474 
475   }
476 
477   /** Build a rotation from three Cardan or Euler elementary rotations.
478 
479    * <p>Cardan rotations are three successive rotations around the
480    * canonical axes X, Y and Z, each axis being used once. There are
481    * 6 such sets of rotations (XYZ, XZY, YXZ, YZX, ZXY and ZYX). Euler
482    * rotations are three successive rotations around the canonical
483    * axes X, Y and Z, the first and last rotations being around the
484    * same axis. There are 6 such sets of rotations (XYX, XZX, YXY,
485    * YZY, ZXZ and ZYZ), the most popular one being ZXZ.</p>
486    * <p>Beware that many people routinely use the term Euler angles even
487    * for what really are Cardan angles (this confusion is especially
488    * widespread in the aerospace business where Roll, Pitch and Yaw angles
489    * are often wrongly tagged as Euler angles).</p>
490    *
491    * @param order order of rotations to use
492    * @param alpha1 angle of the first elementary rotation
493    * @param alpha2 angle of the second elementary rotation
494    * @param alpha3 angle of the third elementary rotation
495    */
Rotation(RotationOrder order, double alpha1, double alpha2, double alpha3)496   public Rotation(RotationOrder order,
497                   double alpha1, double alpha2, double alpha3) {
498     Rotation r1 = new Rotation(order.getA1(), alpha1);
499     Rotation r2 = new Rotation(order.getA2(), alpha2);
500     Rotation r3 = new Rotation(order.getA3(), alpha3);
501     Rotation composed = r1.applyTo(r2.applyTo(r3));
502     q0 = composed.q0;
503     q1 = composed.q1;
504     q2 = composed.q2;
505     q3 = composed.q3;
506   }
507 
508   /** Revert a rotation.
509    * Build a rotation which reverse the effect of another
510    * rotation. This means that if r(u) = v, then r.revert(v) = u. The
511    * instance is not changed.
512    * @return a new rotation whose effect is the reverse of the effect
513    * of the instance
514    */
revert()515   public Rotation revert() {
516     return new Rotation(-q0, q1, q2, q3, false);
517   }
518 
519   /** Get the scalar coordinate of the quaternion.
520    * @return scalar coordinate of the quaternion
521    */
getQ0()522   public double getQ0() {
523     return q0;
524   }
525 
526   /** Get the first coordinate of the vectorial part of the quaternion.
527    * @return first coordinate of the vectorial part of the quaternion
528    */
getQ1()529   public double getQ1() {
530     return q1;
531   }
532 
533   /** Get the second coordinate of the vectorial part of the quaternion.
534    * @return second coordinate of the vectorial part of the quaternion
535    */
getQ2()536   public double getQ2() {
537     return q2;
538   }
539 
540   /** Get the third coordinate of the vectorial part of the quaternion.
541    * @return third coordinate of the vectorial part of the quaternion
542    */
getQ3()543   public double getQ3() {
544     return q3;
545   }
546 
547   /** Get the normalized axis of the rotation.
548    * @return normalized axis of the rotation
549    * @see #Rotation(Vector3D, double)
550    */
getAxis()551   public Vector3D getAxis() {
552     double squaredSine = q1 * q1 + q2 * q2 + q3 * q3;
553     if (squaredSine == 0) {
554       return new Vector3D(1, 0, 0);
555     } else if (q0 < 0) {
556       double inverse = 1 / FastMath.sqrt(squaredSine);
557       return new Vector3D(q1 * inverse, q2 * inverse, q3 * inverse);
558     }
559     double inverse = -1 / FastMath.sqrt(squaredSine);
560     return new Vector3D(q1 * inverse, q2 * inverse, q3 * inverse);
561   }
562 
563   /** Get the angle of the rotation.
564    * @return angle of the rotation (between 0 and &pi;)
565    * @see #Rotation(Vector3D, double)
566    */
getAngle()567   public double getAngle() {
568     if ((q0 < -0.1) || (q0 > 0.1)) {
569       return 2 * FastMath.asin(FastMath.sqrt(q1 * q1 + q2 * q2 + q3 * q3));
570     } else if (q0 < 0) {
571       return 2 * FastMath.acos(-q0);
572     }
573     return 2 * FastMath.acos(q0);
574   }
575 
576   /** Get the Cardan or Euler angles corresponding to the instance.
577 
578    * <p>The equations show that each rotation can be defined by two
579    * different values of the Cardan or Euler angles set. For example
580    * if Cardan angles are used, the rotation defined by the angles
581    * a<sub>1</sub>, a<sub>2</sub> and a<sub>3</sub> is the same as
582    * the rotation defined by the angles &pi; + a<sub>1</sub>, &pi;
583    * - a<sub>2</sub> and &pi; + a<sub>3</sub>. This method implements
584    * the following arbitrary choices:</p>
585    * <ul>
586    *   <li>for Cardan angles, the chosen set is the one for which the
587    *   second angle is between -&pi;/2 and &pi;/2 (i.e its cosine is
588    *   positive),</li>
589    *   <li>for Euler angles, the chosen set is the one for which the
590    *   second angle is between 0 and &pi; (i.e its sine is positive).</li>
591    * </ul>
592    *
593    * <p>Cardan and Euler angle have a very disappointing drawback: all
594    * of them have singularities. This means that if the instance is
595    * too close to the singularities corresponding to the given
596    * rotation order, it will be impossible to retrieve the angles. For
597    * Cardan angles, this is often called gimbal lock. There is
598    * <em>nothing</em> to do to prevent this, it is an intrinsic problem
599    * with Cardan and Euler representation (but not a problem with the
600    * rotation itself, which is perfectly well defined). For Cardan
601    * angles, singularities occur when the second angle is close to
602    * -&pi;/2 or +&pi;/2, for Euler angle singularities occur when the
603    * second angle is close to 0 or &pi;, this implies that the identity
604    * rotation is always singular for Euler angles!</p>
605    *
606    * @param order rotation order to use
607    * @return an array of three angles, in the order specified by the set
608    * @exception CardanEulerSingularityException if the rotation is
609    * singular with respect to the angles set specified
610    */
getAngles(RotationOrder order)611   public double[] getAngles(RotationOrder order)
612     throws CardanEulerSingularityException {
613 
614     if (order == RotationOrder.XYZ) {
615 
616       // r (Vector3D.plusK) coordinates are :
617       //  sin (theta), -cos (theta) sin (phi), cos (theta) cos (phi)
618       // (-r) (Vector3D.plusI) coordinates are :
619       // cos (psi) cos (theta), -sin (psi) cos (theta), sin (theta)
620       // and we can choose to have theta in the interval [-PI/2 ; +PI/2]
621       Vector3D v1 = applyTo(Vector3D.PLUS_K);
622       Vector3D v2 = applyInverseTo(Vector3D.PLUS_I);
623       if  ((v2.getZ() < -0.9999999999) || (v2.getZ() > 0.9999999999)) {
624         throw new CardanEulerSingularityException(true);
625       }
626       return new double[] {
627         FastMath.atan2(-(v1.getY()), v1.getZ()),
628         FastMath.asin(v2.getZ()),
629         FastMath.atan2(-(v2.getY()), v2.getX())
630       };
631 
632     } else if (order == RotationOrder.XZY) {
633 
634       // r (Vector3D.plusJ) coordinates are :
635       // -sin (psi), cos (psi) cos (phi), cos (psi) sin (phi)
636       // (-r) (Vector3D.plusI) coordinates are :
637       // cos (theta) cos (psi), -sin (psi), sin (theta) cos (psi)
638       // and we can choose to have psi in the interval [-PI/2 ; +PI/2]
639       Vector3D v1 = applyTo(Vector3D.PLUS_J);
640       Vector3D v2 = applyInverseTo(Vector3D.PLUS_I);
641       if ((v2.getY() < -0.9999999999) || (v2.getY() > 0.9999999999)) {
642         throw new CardanEulerSingularityException(true);
643       }
644       return new double[] {
645         FastMath.atan2(v1.getZ(), v1.getY()),
646        -FastMath.asin(v2.getY()),
647         FastMath.atan2(v2.getZ(), v2.getX())
648       };
649 
650     } else if (order == RotationOrder.YXZ) {
651 
652       // r (Vector3D.plusK) coordinates are :
653       //  cos (phi) sin (theta), -sin (phi), cos (phi) cos (theta)
654       // (-r) (Vector3D.plusJ) coordinates are :
655       // sin (psi) cos (phi), cos (psi) cos (phi), -sin (phi)
656       // and we can choose to have phi in the interval [-PI/2 ; +PI/2]
657       Vector3D v1 = applyTo(Vector3D.PLUS_K);
658       Vector3D v2 = applyInverseTo(Vector3D.PLUS_J);
659       if ((v2.getZ() < -0.9999999999) || (v2.getZ() > 0.9999999999)) {
660         throw new CardanEulerSingularityException(true);
661       }
662       return new double[] {
663         FastMath.atan2(v1.getX(), v1.getZ()),
664        -FastMath.asin(v2.getZ()),
665         FastMath.atan2(v2.getX(), v2.getY())
666       };
667 
668     } else if (order == RotationOrder.YZX) {
669 
670       // r (Vector3D.plusI) coordinates are :
671       // cos (psi) cos (theta), sin (psi), -cos (psi) sin (theta)
672       // (-r) (Vector3D.plusJ) coordinates are :
673       // sin (psi), cos (phi) cos (psi), -sin (phi) cos (psi)
674       // and we can choose to have psi in the interval [-PI/2 ; +PI/2]
675       Vector3D v1 = applyTo(Vector3D.PLUS_I);
676       Vector3D v2 = applyInverseTo(Vector3D.PLUS_J);
677       if ((v2.getX() < -0.9999999999) || (v2.getX() > 0.9999999999)) {
678         throw new CardanEulerSingularityException(true);
679       }
680       return new double[] {
681         FastMath.atan2(-(v1.getZ()), v1.getX()),
682         FastMath.asin(v2.getX()),
683         FastMath.atan2(-(v2.getZ()), v2.getY())
684       };
685 
686     } else if (order == RotationOrder.ZXY) {
687 
688       // r (Vector3D.plusJ) coordinates are :
689       // -cos (phi) sin (psi), cos (phi) cos (psi), sin (phi)
690       // (-r) (Vector3D.plusK) coordinates are :
691       // -sin (theta) cos (phi), sin (phi), cos (theta) cos (phi)
692       // and we can choose to have phi in the interval [-PI/2 ; +PI/2]
693       Vector3D v1 = applyTo(Vector3D.PLUS_J);
694       Vector3D v2 = applyInverseTo(Vector3D.PLUS_K);
695       if ((v2.getY() < -0.9999999999) || (v2.getY() > 0.9999999999)) {
696         throw new CardanEulerSingularityException(true);
697       }
698       return new double[] {
699         FastMath.atan2(-(v1.getX()), v1.getY()),
700         FastMath.asin(v2.getY()),
701         FastMath.atan2(-(v2.getX()), v2.getZ())
702       };
703 
704     } else if (order == RotationOrder.ZYX) {
705 
706       // r (Vector3D.plusI) coordinates are :
707       //  cos (theta) cos (psi), cos (theta) sin (psi), -sin (theta)
708       // (-r) (Vector3D.plusK) coordinates are :
709       // -sin (theta), sin (phi) cos (theta), cos (phi) cos (theta)
710       // and we can choose to have theta in the interval [-PI/2 ; +PI/2]
711       Vector3D v1 = applyTo(Vector3D.PLUS_I);
712       Vector3D v2 = applyInverseTo(Vector3D.PLUS_K);
713       if ((v2.getX() < -0.9999999999) || (v2.getX() > 0.9999999999)) {
714         throw new CardanEulerSingularityException(true);
715       }
716       return new double[] {
717         FastMath.atan2(v1.getY(), v1.getX()),
718        -FastMath.asin(v2.getX()),
719         FastMath.atan2(v2.getY(), v2.getZ())
720       };
721 
722     } else if (order == RotationOrder.XYX) {
723 
724       // r (Vector3D.plusI) coordinates are :
725       //  cos (theta), sin (phi1) sin (theta), -cos (phi1) sin (theta)
726       // (-r) (Vector3D.plusI) coordinates are :
727       // cos (theta), sin (theta) sin (phi2), sin (theta) cos (phi2)
728       // and we can choose to have theta in the interval [0 ; PI]
729       Vector3D v1 = applyTo(Vector3D.PLUS_I);
730       Vector3D v2 = applyInverseTo(Vector3D.PLUS_I);
731       if ((v2.getX() < -0.9999999999) || (v2.getX() > 0.9999999999)) {
732         throw new CardanEulerSingularityException(false);
733       }
734       return new double[] {
735         FastMath.atan2(v1.getY(), -v1.getZ()),
736         FastMath.acos(v2.getX()),
737         FastMath.atan2(v2.getY(), v2.getZ())
738       };
739 
740     } else if (order == RotationOrder.XZX) {
741 
742       // r (Vector3D.plusI) coordinates are :
743       //  cos (psi), cos (phi1) sin (psi), sin (phi1) sin (psi)
744       // (-r) (Vector3D.plusI) coordinates are :
745       // cos (psi), -sin (psi) cos (phi2), sin (psi) sin (phi2)
746       // and we can choose to have psi in the interval [0 ; PI]
747       Vector3D v1 = applyTo(Vector3D.PLUS_I);
748       Vector3D v2 = applyInverseTo(Vector3D.PLUS_I);
749       if ((v2.getX() < -0.9999999999) || (v2.getX() > 0.9999999999)) {
750         throw new CardanEulerSingularityException(false);
751       }
752       return new double[] {
753         FastMath.atan2(v1.getZ(), v1.getY()),
754         FastMath.acos(v2.getX()),
755         FastMath.atan2(v2.getZ(), -v2.getY())
756       };
757 
758     } else if (order == RotationOrder.YXY) {
759 
760       // r (Vector3D.plusJ) coordinates are :
761       //  sin (theta1) sin (phi), cos (phi), cos (theta1) sin (phi)
762       // (-r) (Vector3D.plusJ) coordinates are :
763       // sin (phi) sin (theta2), cos (phi), -sin (phi) cos (theta2)
764       // and we can choose to have phi in the interval [0 ; PI]
765       Vector3D v1 = applyTo(Vector3D.PLUS_J);
766       Vector3D v2 = applyInverseTo(Vector3D.PLUS_J);
767       if ((v2.getY() < -0.9999999999) || (v2.getY() > 0.9999999999)) {
768         throw new CardanEulerSingularityException(false);
769       }
770       return new double[] {
771         FastMath.atan2(v1.getX(), v1.getZ()),
772         FastMath.acos(v2.getY()),
773         FastMath.atan2(v2.getX(), -v2.getZ())
774       };
775 
776     } else if (order == RotationOrder.YZY) {
777 
778       // r (Vector3D.plusJ) coordinates are :
779       //  -cos (theta1) sin (psi), cos (psi), sin (theta1) sin (psi)
780       // (-r) (Vector3D.plusJ) coordinates are :
781       // sin (psi) cos (theta2), cos (psi), sin (psi) sin (theta2)
782       // and we can choose to have psi in the interval [0 ; PI]
783       Vector3D v1 = applyTo(Vector3D.PLUS_J);
784       Vector3D v2 = applyInverseTo(Vector3D.PLUS_J);
785       if ((v2.getY() < -0.9999999999) || (v2.getY() > 0.9999999999)) {
786         throw new CardanEulerSingularityException(false);
787       }
788       return new double[] {
789         FastMath.atan2(v1.getZ(), -v1.getX()),
790         FastMath.acos(v2.getY()),
791         FastMath.atan2(v2.getZ(), v2.getX())
792       };
793 
794     } else if (order == RotationOrder.ZXZ) {
795 
796       // r (Vector3D.plusK) coordinates are :
797       //  sin (psi1) sin (phi), -cos (psi1) sin (phi), cos (phi)
798       // (-r) (Vector3D.plusK) coordinates are :
799       // sin (phi) sin (psi2), sin (phi) cos (psi2), cos (phi)
800       // and we can choose to have phi in the interval [0 ; PI]
801       Vector3D v1 = applyTo(Vector3D.PLUS_K);
802       Vector3D v2 = applyInverseTo(Vector3D.PLUS_K);
803       if ((v2.getZ() < -0.9999999999) || (v2.getZ() > 0.9999999999)) {
804         throw new CardanEulerSingularityException(false);
805       }
806       return new double[] {
807         FastMath.atan2(v1.getX(), -v1.getY()),
808         FastMath.acos(v2.getZ()),
809         FastMath.atan2(v2.getX(), v2.getY())
810       };
811 
812     } else { // last possibility is ZYZ
813 
814       // r (Vector3D.plusK) coordinates are :
815       //  cos (psi1) sin (theta), sin (psi1) sin (theta), cos (theta)
816       // (-r) (Vector3D.plusK) coordinates are :
817       // -sin (theta) cos (psi2), sin (theta) sin (psi2), cos (theta)
818       // and we can choose to have theta in the interval [0 ; PI]
819       Vector3D v1 = applyTo(Vector3D.PLUS_K);
820       Vector3D v2 = applyInverseTo(Vector3D.PLUS_K);
821       if ((v2.getZ() < -0.9999999999) || (v2.getZ() > 0.9999999999)) {
822         throw new CardanEulerSingularityException(false);
823       }
824       return new double[] {
825         FastMath.atan2(v1.getY(), v1.getX()),
826         FastMath.acos(v2.getZ()),
827         FastMath.atan2(v2.getY(), -v2.getX())
828       };
829 
830     }
831 
832   }
833 
834   /** Get the 3X3 matrix corresponding to the instance
835    * @return the matrix corresponding to the instance
836    */
getMatrix()837   public double[][] getMatrix() {
838 
839     // products
840     double q0q0  = q0 * q0;
841     double q0q1  = q0 * q1;
842     double q0q2  = q0 * q2;
843     double q0q3  = q0 * q3;
844     double q1q1  = q1 * q1;
845     double q1q2  = q1 * q2;
846     double q1q3  = q1 * q3;
847     double q2q2  = q2 * q2;
848     double q2q3  = q2 * q3;
849     double q3q3  = q3 * q3;
850 
851     // create the matrix
852     double[][] m = new double[3][];
853     m[0] = new double[3];
854     m[1] = new double[3];
855     m[2] = new double[3];
856 
857     m [0][0] = 2.0 * (q0q0 + q1q1) - 1.0;
858     m [1][0] = 2.0 * (q1q2 - q0q3);
859     m [2][0] = 2.0 * (q1q3 + q0q2);
860 
861     m [0][1] = 2.0 * (q1q2 + q0q3);
862     m [1][1] = 2.0 * (q0q0 + q2q2) - 1.0;
863     m [2][1] = 2.0 * (q2q3 - q0q1);
864 
865     m [0][2] = 2.0 * (q1q3 - q0q2);
866     m [1][2] = 2.0 * (q2q3 + q0q1);
867     m [2][2] = 2.0 * (q0q0 + q3q3) - 1.0;
868 
869     return m;
870 
871   }
872 
873   /** Apply the rotation to a vector.
874    * @param u vector to apply the rotation to
875    * @return a new vector which is the image of u by the rotation
876    */
applyTo(Vector3D u)877   public Vector3D applyTo(Vector3D u) {
878 
879     double x = u.getX();
880     double y = u.getY();
881     double z = u.getZ();
882 
883     double s = q1 * x + q2 * y + q3 * z;
884 
885     return new Vector3D(2 * (q0 * (x * q0 - (q2 * z - q3 * y)) + s * q1) - x,
886                         2 * (q0 * (y * q0 - (q3 * x - q1 * z)) + s * q2) - y,
887                         2 * (q0 * (z * q0 - (q1 * y - q2 * x)) + s * q3) - z);
888 
889   }
890 
891   /** Apply the inverse of the rotation to a vector.
892    * @param u vector to apply the inverse of the rotation to
893    * @return a new vector which such that u is its image by the rotation
894    */
applyInverseTo(Vector3D u)895   public Vector3D applyInverseTo(Vector3D u) {
896 
897     double x = u.getX();
898     double y = u.getY();
899     double z = u.getZ();
900 
901     double s = q1 * x + q2 * y + q3 * z;
902     double m0 = -q0;
903 
904     return new Vector3D(2 * (m0 * (x * m0 - (q2 * z - q3 * y)) + s * q1) - x,
905                         2 * (m0 * (y * m0 - (q3 * x - q1 * z)) + s * q2) - y,
906                         2 * (m0 * (z * m0 - (q1 * y - q2 * x)) + s * q3) - z);
907 
908   }
909 
910   /** Apply the instance to another rotation.
911    * Applying the instance to a rotation is computing the composition
912    * in an order compliant with the following rule : let u be any
913    * vector and v its image by r (i.e. r.applyTo(u) = v), let w be the image
914    * of v by the instance (i.e. applyTo(v) = w), then w = comp.applyTo(u),
915    * where comp = applyTo(r).
916    * @param r rotation to apply the rotation to
917    * @return a new rotation which is the composition of r by the instance
918    */
applyTo(Rotation r)919   public Rotation applyTo(Rotation r) {
920     return new Rotation(r.q0 * q0 - (r.q1 * q1 + r.q2 * q2 + r.q3 * q3),
921                         r.q1 * q0 + r.q0 * q1 + (r.q2 * q3 - r.q3 * q2),
922                         r.q2 * q0 + r.q0 * q2 + (r.q3 * q1 - r.q1 * q3),
923                         r.q3 * q0 + r.q0 * q3 + (r.q1 * q2 - r.q2 * q1),
924                         false);
925   }
926 
927   /** Apply the inverse of the instance to another rotation.
928    * Applying the inverse of the instance to a rotation is computing
929    * the composition in an order compliant with the following rule :
930    * let u be any vector and v its image by r (i.e. r.applyTo(u) = v),
931    * let w be the inverse image of v by the instance
932    * (i.e. applyInverseTo(v) = w), then w = comp.applyTo(u), where
933    * comp = applyInverseTo(r).
934    * @param r rotation to apply the rotation to
935    * @return a new rotation which is the composition of r by the inverse
936    * of the instance
937    */
applyInverseTo(Rotation r)938   public Rotation applyInverseTo(Rotation r) {
939     return new Rotation(-r.q0 * q0 - (r.q1 * q1 + r.q2 * q2 + r.q3 * q3),
940                         -r.q1 * q0 + r.q0 * q1 + (r.q2 * q3 - r.q3 * q2),
941                         -r.q2 * q0 + r.q0 * q2 + (r.q3 * q1 - r.q1 * q3),
942                         -r.q3 * q0 + r.q0 * q3 + (r.q1 * q2 - r.q2 * q1),
943                         false);
944   }
945 
946   /** Perfect orthogonality on a 3X3 matrix.
947    * @param m initial matrix (not exactly orthogonal)
948    * @param threshold convergence threshold for the iterative
949    * orthogonality correction (convergence is reached when the
950    * difference between two steps of the Frobenius norm of the
951    * correction is below this threshold)
952    * @return an orthogonal matrix close to m
953    * @exception NotARotationMatrixException if the matrix cannot be
954    * orthogonalized with the given threshold after 10 iterations
955    */
orthogonalizeMatrix(double[][] m, double threshold)956   private double[][] orthogonalizeMatrix(double[][] m, double threshold)
957     throws NotARotationMatrixException {
958     double[] m0 = m[0];
959     double[] m1 = m[1];
960     double[] m2 = m[2];
961     double x00 = m0[0];
962     double x01 = m0[1];
963     double x02 = m0[2];
964     double x10 = m1[0];
965     double x11 = m1[1];
966     double x12 = m1[2];
967     double x20 = m2[0];
968     double x21 = m2[1];
969     double x22 = m2[2];
970     double fn = 0;
971     double fn1;
972 
973     double[][] o = new double[3][3];
974     double[] o0 = o[0];
975     double[] o1 = o[1];
976     double[] o2 = o[2];
977 
978     // iterative correction: Xn+1 = Xn - 0.5 * (Xn.Mt.Xn - M)
979     int i = 0;
980     while (++i < 11) {
981 
982       // Mt.Xn
983       double mx00 = m0[0] * x00 + m1[0] * x10 + m2[0] * x20;
984       double mx10 = m0[1] * x00 + m1[1] * x10 + m2[1] * x20;
985       double mx20 = m0[2] * x00 + m1[2] * x10 + m2[2] * x20;
986       double mx01 = m0[0] * x01 + m1[0] * x11 + m2[0] * x21;
987       double mx11 = m0[1] * x01 + m1[1] * x11 + m2[1] * x21;
988       double mx21 = m0[2] * x01 + m1[2] * x11 + m2[2] * x21;
989       double mx02 = m0[0] * x02 + m1[0] * x12 + m2[0] * x22;
990       double mx12 = m0[1] * x02 + m1[1] * x12 + m2[1] * x22;
991       double mx22 = m0[2] * x02 + m1[2] * x12 + m2[2] * x22;
992 
993       // Xn+1
994       o0[0] = x00 - 0.5 * (x00 * mx00 + x01 * mx10 + x02 * mx20 - m0[0]);
995       o0[1] = x01 - 0.5 * (x00 * mx01 + x01 * mx11 + x02 * mx21 - m0[1]);
996       o0[2] = x02 - 0.5 * (x00 * mx02 + x01 * mx12 + x02 * mx22 - m0[2]);
997       o1[0] = x10 - 0.5 * (x10 * mx00 + x11 * mx10 + x12 * mx20 - m1[0]);
998       o1[1] = x11 - 0.5 * (x10 * mx01 + x11 * mx11 + x12 * mx21 - m1[1]);
999       o1[2] = x12 - 0.5 * (x10 * mx02 + x11 * mx12 + x12 * mx22 - m1[2]);
1000       o2[0] = x20 - 0.5 * (x20 * mx00 + x21 * mx10 + x22 * mx20 - m2[0]);
1001       o2[1] = x21 - 0.5 * (x20 * mx01 + x21 * mx11 + x22 * mx21 - m2[1]);
1002       o2[2] = x22 - 0.5 * (x20 * mx02 + x21 * mx12 + x22 * mx22 - m2[2]);
1003 
1004       // correction on each elements
1005       double corr00 = o0[0] - m0[0];
1006       double corr01 = o0[1] - m0[1];
1007       double corr02 = o0[2] - m0[2];
1008       double corr10 = o1[0] - m1[0];
1009       double corr11 = o1[1] - m1[1];
1010       double corr12 = o1[2] - m1[2];
1011       double corr20 = o2[0] - m2[0];
1012       double corr21 = o2[1] - m2[1];
1013       double corr22 = o2[2] - m2[2];
1014 
1015       // Frobenius norm of the correction
1016       fn1 = corr00 * corr00 + corr01 * corr01 + corr02 * corr02 +
1017             corr10 * corr10 + corr11 * corr11 + corr12 * corr12 +
1018             corr20 * corr20 + corr21 * corr21 + corr22 * corr22;
1019 
1020       // convergence test
1021       if (FastMath.abs(fn1 - fn) <= threshold)
1022         return o;
1023 
1024       // prepare next iteration
1025       x00 = o0[0];
1026       x01 = o0[1];
1027       x02 = o0[2];
1028       x10 = o1[0];
1029       x11 = o1[1];
1030       x12 = o1[2];
1031       x20 = o2[0];
1032       x21 = o2[1];
1033       x22 = o2[2];
1034       fn  = fn1;
1035 
1036     }
1037 
1038     // the algorithm did not converge after 10 iterations
1039     throw new NotARotationMatrixException(
1040             LocalizedFormats.UNABLE_TO_ORTHOGONOLIZE_MATRIX,
1041             i - 1);
1042   }
1043 
1044   /** Compute the <i>distance</i> between two rotations.
1045    * <p>The <i>distance</i> is intended here as a way to check if two
1046    * rotations are almost similar (i.e. they transform vectors the same way)
1047    * or very different. It is mathematically defined as the angle of
1048    * the rotation r that prepended to one of the rotations gives the other
1049    * one:</p>
1050    * <pre>
1051    *        r<sub>1</sub>(r) = r<sub>2</sub>
1052    * </pre>
1053    * <p>This distance is an angle between 0 and &pi;. Its value is the smallest
1054    * possible upper bound of the angle in radians between r<sub>1</sub>(v)
1055    * and r<sub>2</sub>(v) for all possible vectors v. This upper bound is
1056    * reached for some v. The distance is equal to 0 if and only if the two
1057    * rotations are identical.</p>
1058    * <p>Comparing two rotations should always be done using this value rather
1059    * than for example comparing the components of the quaternions. It is much
1060    * more stable, and has a geometric meaning. Also comparing quaternions
1061    * components is error prone since for example quaternions (0.36, 0.48, -0.48, -0.64)
1062    * and (-0.36, -0.48, 0.48, 0.64) represent exactly the same rotation despite
1063    * their components are different (they are exact opposites).</p>
1064    * @param r1 first rotation
1065    * @param r2 second rotation
1066    * @return <i>distance</i> between r1 and r2
1067    */
distance(Rotation r1, Rotation r2)1068   public static double distance(Rotation r1, Rotation r2) {
1069       return r1.applyInverseTo(r2).getAngle();
1070   }
1071 
1072 }
1073