1 //===-- tsan_interceptors_mac.cpp -----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of ThreadSanitizer (TSan), a race detector.
10 //
11 // Mac-specific interceptors.
12 //===----------------------------------------------------------------------===//
13
14 #include "sanitizer_common/sanitizer_platform.h"
15 #if SANITIZER_MAC
16
17 #include "interception/interception.h"
18 #include "tsan_interceptors.h"
19 #include "tsan_interface.h"
20 #include "tsan_interface_ann.h"
21 #include "sanitizer_common/sanitizer_addrhashmap.h"
22
23 #include <errno.h>
24 #include <libkern/OSAtomic.h>
25 #include <objc/objc-sync.h>
26 #include <os/lock.h>
27 #include <sys/ucontext.h>
28
29 #if defined(__has_include) && __has_include(<xpc/xpc.h>)
30 #include <xpc/xpc.h>
31 #endif // #if defined(__has_include) && __has_include(<xpc/xpc.h>)
32
33 typedef long long_t;
34
35 extern "C" {
36 int getcontext(ucontext_t *ucp) __attribute__((returns_twice));
37 int setcontext(const ucontext_t *ucp);
38 }
39
40 namespace __tsan {
41
42 // The non-barrier versions of OSAtomic* functions are semantically mo_relaxed,
43 // but the two variants (e.g. OSAtomicAdd32 and OSAtomicAdd32Barrier) are
44 // actually aliases of each other, and we cannot have different interceptors for
45 // them, because they're actually the same function. Thus, we have to stay
46 // conservative and treat the non-barrier versions as mo_acq_rel.
47 static const morder kMacOrderBarrier = mo_acq_rel;
48 static const morder kMacOrderNonBarrier = mo_acq_rel;
49
50 #define OSATOMIC_INTERCEPTOR(return_t, t, tsan_t, f, tsan_atomic_f, mo) \
51 TSAN_INTERCEPTOR(return_t, f, t x, volatile t *ptr) { \
52 SCOPED_TSAN_INTERCEPTOR(f, x, ptr); \
53 return tsan_atomic_f((volatile tsan_t *)ptr, x, mo); \
54 }
55
56 #define OSATOMIC_INTERCEPTOR_PLUS_X(return_t, t, tsan_t, f, tsan_atomic_f, mo) \
57 TSAN_INTERCEPTOR(return_t, f, t x, volatile t *ptr) { \
58 SCOPED_TSAN_INTERCEPTOR(f, x, ptr); \
59 return tsan_atomic_f((volatile tsan_t *)ptr, x, mo) + x; \
60 }
61
62 #define OSATOMIC_INTERCEPTOR_PLUS_1(return_t, t, tsan_t, f, tsan_atomic_f, mo) \
63 TSAN_INTERCEPTOR(return_t, f, volatile t *ptr) { \
64 SCOPED_TSAN_INTERCEPTOR(f, ptr); \
65 return tsan_atomic_f((volatile tsan_t *)ptr, 1, mo) + 1; \
66 }
67
68 #define OSATOMIC_INTERCEPTOR_MINUS_1(return_t, t, tsan_t, f, tsan_atomic_f, \
69 mo) \
70 TSAN_INTERCEPTOR(return_t, f, volatile t *ptr) { \
71 SCOPED_TSAN_INTERCEPTOR(f, ptr); \
72 return tsan_atomic_f((volatile tsan_t *)ptr, 1, mo) - 1; \
73 }
74
75 #define OSATOMIC_INTERCEPTORS_ARITHMETIC(f, tsan_atomic_f, m) \
76 m(int32_t, int32_t, a32, f##32, __tsan_atomic32_##tsan_atomic_f, \
77 kMacOrderNonBarrier) \
78 m(int32_t, int32_t, a32, f##32##Barrier, __tsan_atomic32_##tsan_atomic_f, \
79 kMacOrderBarrier) \
80 m(int64_t, int64_t, a64, f##64, __tsan_atomic64_##tsan_atomic_f, \
81 kMacOrderNonBarrier) \
82 m(int64_t, int64_t, a64, f##64##Barrier, __tsan_atomic64_##tsan_atomic_f, \
83 kMacOrderBarrier)
84
85 #define OSATOMIC_INTERCEPTORS_BITWISE(f, tsan_atomic_f, m, m_orig) \
86 m(int32_t, uint32_t, a32, f##32, __tsan_atomic32_##tsan_atomic_f, \
87 kMacOrderNonBarrier) \
88 m(int32_t, uint32_t, a32, f##32##Barrier, __tsan_atomic32_##tsan_atomic_f, \
89 kMacOrderBarrier) \
90 m_orig(int32_t, uint32_t, a32, f##32##Orig, __tsan_atomic32_##tsan_atomic_f, \
91 kMacOrderNonBarrier) \
92 m_orig(int32_t, uint32_t, a32, f##32##OrigBarrier, \
93 __tsan_atomic32_##tsan_atomic_f, kMacOrderBarrier)
94
OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicAdd,fetch_add,OSATOMIC_INTERCEPTOR_PLUS_X)95 OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicAdd, fetch_add,
96 OSATOMIC_INTERCEPTOR_PLUS_X)
97 OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicIncrement, fetch_add,
98 OSATOMIC_INTERCEPTOR_PLUS_1)
99 OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicDecrement, fetch_sub,
100 OSATOMIC_INTERCEPTOR_MINUS_1)
101 OSATOMIC_INTERCEPTORS_BITWISE(OSAtomicOr, fetch_or, OSATOMIC_INTERCEPTOR_PLUS_X,
102 OSATOMIC_INTERCEPTOR)
103 OSATOMIC_INTERCEPTORS_BITWISE(OSAtomicAnd, fetch_and,
104 OSATOMIC_INTERCEPTOR_PLUS_X, OSATOMIC_INTERCEPTOR)
105 OSATOMIC_INTERCEPTORS_BITWISE(OSAtomicXor, fetch_xor,
106 OSATOMIC_INTERCEPTOR_PLUS_X, OSATOMIC_INTERCEPTOR)
107
108 #define OSATOMIC_INTERCEPTORS_CAS(f, tsan_atomic_f, tsan_t, t) \
109 TSAN_INTERCEPTOR(bool, f, t old_value, t new_value, t volatile *ptr) { \
110 SCOPED_TSAN_INTERCEPTOR(f, old_value, new_value, ptr); \
111 return tsan_atomic_f##_compare_exchange_strong( \
112 (volatile tsan_t *)ptr, (tsan_t *)&old_value, (tsan_t)new_value, \
113 kMacOrderNonBarrier, kMacOrderNonBarrier); \
114 } \
115 \
116 TSAN_INTERCEPTOR(bool, f##Barrier, t old_value, t new_value, \
117 t volatile *ptr) { \
118 SCOPED_TSAN_INTERCEPTOR(f##Barrier, old_value, new_value, ptr); \
119 return tsan_atomic_f##_compare_exchange_strong( \
120 (volatile tsan_t *)ptr, (tsan_t *)&old_value, (tsan_t)new_value, \
121 kMacOrderBarrier, kMacOrderNonBarrier); \
122 }
123
124 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwapInt, __tsan_atomic32, a32, int)
125 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwapLong, __tsan_atomic64, a64,
126 long_t)
127 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwapPtr, __tsan_atomic64, a64,
128 void *)
129 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwap32, __tsan_atomic32, a32,
130 int32_t)
131 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwap64, __tsan_atomic64, a64,
132 int64_t)
133
134 #define OSATOMIC_INTERCEPTOR_BITOP(f, op, clear, mo) \
135 TSAN_INTERCEPTOR(bool, f, uint32_t n, volatile void *ptr) { \
136 SCOPED_TSAN_INTERCEPTOR(f, n, ptr); \
137 volatile char *byte_ptr = ((volatile char *)ptr) + (n >> 3); \
138 char bit = 0x80u >> (n & 7); \
139 char mask = clear ? ~bit : bit; \
140 char orig_byte = op((volatile a8 *)byte_ptr, mask, mo); \
141 return orig_byte & bit; \
142 }
143
144 #define OSATOMIC_INTERCEPTORS_BITOP(f, op, clear) \
145 OSATOMIC_INTERCEPTOR_BITOP(f, op, clear, kMacOrderNonBarrier) \
146 OSATOMIC_INTERCEPTOR_BITOP(f##Barrier, op, clear, kMacOrderBarrier)
147
148 OSATOMIC_INTERCEPTORS_BITOP(OSAtomicTestAndSet, __tsan_atomic8_fetch_or, false)
149 OSATOMIC_INTERCEPTORS_BITOP(OSAtomicTestAndClear, __tsan_atomic8_fetch_and,
150 true)
151
152 TSAN_INTERCEPTOR(void, OSAtomicEnqueue, OSQueueHead *list, void *item,
153 size_t offset) {
154 SCOPED_TSAN_INTERCEPTOR(OSAtomicEnqueue, list, item, offset);
155 __tsan_release(item);
156 REAL(OSAtomicEnqueue)(list, item, offset);
157 }
158
TSAN_INTERCEPTOR(void *,OSAtomicDequeue,OSQueueHead * list,size_t offset)159 TSAN_INTERCEPTOR(void *, OSAtomicDequeue, OSQueueHead *list, size_t offset) {
160 SCOPED_TSAN_INTERCEPTOR(OSAtomicDequeue, list, offset);
161 void *item = REAL(OSAtomicDequeue)(list, offset);
162 if (item) __tsan_acquire(item);
163 return item;
164 }
165
166 // OSAtomicFifoEnqueue and OSAtomicFifoDequeue are only on OS X.
167 #if !SANITIZER_IOS
168
TSAN_INTERCEPTOR(void,OSAtomicFifoEnqueue,OSFifoQueueHead * list,void * item,size_t offset)169 TSAN_INTERCEPTOR(void, OSAtomicFifoEnqueue, OSFifoQueueHead *list, void *item,
170 size_t offset) {
171 SCOPED_TSAN_INTERCEPTOR(OSAtomicFifoEnqueue, list, item, offset);
172 __tsan_release(item);
173 REAL(OSAtomicFifoEnqueue)(list, item, offset);
174 }
175
TSAN_INTERCEPTOR(void *,OSAtomicFifoDequeue,OSFifoQueueHead * list,size_t offset)176 TSAN_INTERCEPTOR(void *, OSAtomicFifoDequeue, OSFifoQueueHead *list,
177 size_t offset) {
178 SCOPED_TSAN_INTERCEPTOR(OSAtomicFifoDequeue, list, offset);
179 void *item = REAL(OSAtomicFifoDequeue)(list, offset);
180 if (item) __tsan_acquire(item);
181 return item;
182 }
183
184 #endif
185
TSAN_INTERCEPTOR(void,OSSpinLockLock,volatile OSSpinLock * lock)186 TSAN_INTERCEPTOR(void, OSSpinLockLock, volatile OSSpinLock *lock) {
187 CHECK(!cur_thread()->is_dead);
188 if (!cur_thread()->is_inited) {
189 return REAL(OSSpinLockLock)(lock);
190 }
191 SCOPED_TSAN_INTERCEPTOR(OSSpinLockLock, lock);
192 REAL(OSSpinLockLock)(lock);
193 Acquire(thr, pc, (uptr)lock);
194 }
195
TSAN_INTERCEPTOR(bool,OSSpinLockTry,volatile OSSpinLock * lock)196 TSAN_INTERCEPTOR(bool, OSSpinLockTry, volatile OSSpinLock *lock) {
197 CHECK(!cur_thread()->is_dead);
198 if (!cur_thread()->is_inited) {
199 return REAL(OSSpinLockTry)(lock);
200 }
201 SCOPED_TSAN_INTERCEPTOR(OSSpinLockTry, lock);
202 bool result = REAL(OSSpinLockTry)(lock);
203 if (result)
204 Acquire(thr, pc, (uptr)lock);
205 return result;
206 }
207
TSAN_INTERCEPTOR(void,OSSpinLockUnlock,volatile OSSpinLock * lock)208 TSAN_INTERCEPTOR(void, OSSpinLockUnlock, volatile OSSpinLock *lock) {
209 CHECK(!cur_thread()->is_dead);
210 if (!cur_thread()->is_inited) {
211 return REAL(OSSpinLockUnlock)(lock);
212 }
213 SCOPED_TSAN_INTERCEPTOR(OSSpinLockUnlock, lock);
214 Release(thr, pc, (uptr)lock);
215 REAL(OSSpinLockUnlock)(lock);
216 }
217
TSAN_INTERCEPTOR(void,os_lock_lock,void * lock)218 TSAN_INTERCEPTOR(void, os_lock_lock, void *lock) {
219 CHECK(!cur_thread()->is_dead);
220 if (!cur_thread()->is_inited) {
221 return REAL(os_lock_lock)(lock);
222 }
223 SCOPED_TSAN_INTERCEPTOR(os_lock_lock, lock);
224 REAL(os_lock_lock)(lock);
225 Acquire(thr, pc, (uptr)lock);
226 }
227
TSAN_INTERCEPTOR(bool,os_lock_trylock,void * lock)228 TSAN_INTERCEPTOR(bool, os_lock_trylock, void *lock) {
229 CHECK(!cur_thread()->is_dead);
230 if (!cur_thread()->is_inited) {
231 return REAL(os_lock_trylock)(lock);
232 }
233 SCOPED_TSAN_INTERCEPTOR(os_lock_trylock, lock);
234 bool result = REAL(os_lock_trylock)(lock);
235 if (result)
236 Acquire(thr, pc, (uptr)lock);
237 return result;
238 }
239
TSAN_INTERCEPTOR(void,os_lock_unlock,void * lock)240 TSAN_INTERCEPTOR(void, os_lock_unlock, void *lock) {
241 CHECK(!cur_thread()->is_dead);
242 if (!cur_thread()->is_inited) {
243 return REAL(os_lock_unlock)(lock);
244 }
245 SCOPED_TSAN_INTERCEPTOR(os_lock_unlock, lock);
246 Release(thr, pc, (uptr)lock);
247 REAL(os_lock_unlock)(lock);
248 }
249
TSAN_INTERCEPTOR(void,os_unfair_lock_lock,os_unfair_lock_t lock)250 TSAN_INTERCEPTOR(void, os_unfair_lock_lock, os_unfair_lock_t lock) {
251 if (!cur_thread()->is_inited || cur_thread()->is_dead) {
252 return REAL(os_unfair_lock_lock)(lock);
253 }
254 SCOPED_TSAN_INTERCEPTOR(os_unfair_lock_lock, lock);
255 REAL(os_unfair_lock_lock)(lock);
256 Acquire(thr, pc, (uptr)lock);
257 }
258
TSAN_INTERCEPTOR(void,os_unfair_lock_lock_with_options,os_unfair_lock_t lock,u32 options)259 TSAN_INTERCEPTOR(void, os_unfair_lock_lock_with_options, os_unfair_lock_t lock,
260 u32 options) {
261 if (!cur_thread()->is_inited || cur_thread()->is_dead) {
262 return REAL(os_unfair_lock_lock_with_options)(lock, options);
263 }
264 SCOPED_TSAN_INTERCEPTOR(os_unfair_lock_lock_with_options, lock, options);
265 REAL(os_unfair_lock_lock_with_options)(lock, options);
266 Acquire(thr, pc, (uptr)lock);
267 }
268
TSAN_INTERCEPTOR(bool,os_unfair_lock_trylock,os_unfair_lock_t lock)269 TSAN_INTERCEPTOR(bool, os_unfair_lock_trylock, os_unfair_lock_t lock) {
270 if (!cur_thread()->is_inited || cur_thread()->is_dead) {
271 return REAL(os_unfair_lock_trylock)(lock);
272 }
273 SCOPED_TSAN_INTERCEPTOR(os_unfair_lock_trylock, lock);
274 bool result = REAL(os_unfair_lock_trylock)(lock);
275 if (result)
276 Acquire(thr, pc, (uptr)lock);
277 return result;
278 }
279
TSAN_INTERCEPTOR(void,os_unfair_lock_unlock,os_unfair_lock_t lock)280 TSAN_INTERCEPTOR(void, os_unfair_lock_unlock, os_unfair_lock_t lock) {
281 if (!cur_thread()->is_inited || cur_thread()->is_dead) {
282 return REAL(os_unfair_lock_unlock)(lock);
283 }
284 SCOPED_TSAN_INTERCEPTOR(os_unfair_lock_unlock, lock);
285 Release(thr, pc, (uptr)lock);
286 REAL(os_unfair_lock_unlock)(lock);
287 }
288
289 #if defined(__has_include) && __has_include(<xpc/xpc.h>)
290
TSAN_INTERCEPTOR(void,xpc_connection_set_event_handler,xpc_connection_t connection,xpc_handler_t handler)291 TSAN_INTERCEPTOR(void, xpc_connection_set_event_handler,
292 xpc_connection_t connection, xpc_handler_t handler) {
293 SCOPED_TSAN_INTERCEPTOR(xpc_connection_set_event_handler, connection,
294 handler);
295 Release(thr, pc, (uptr)connection);
296 xpc_handler_t new_handler = ^(xpc_object_t object) {
297 {
298 SCOPED_INTERCEPTOR_RAW(xpc_connection_set_event_handler);
299 Acquire(thr, pc, (uptr)connection);
300 }
301 handler(object);
302 };
303 REAL(xpc_connection_set_event_handler)(connection, new_handler);
304 }
305
TSAN_INTERCEPTOR(void,xpc_connection_send_barrier,xpc_connection_t connection,dispatch_block_t barrier)306 TSAN_INTERCEPTOR(void, xpc_connection_send_barrier, xpc_connection_t connection,
307 dispatch_block_t barrier) {
308 SCOPED_TSAN_INTERCEPTOR(xpc_connection_send_barrier, connection, barrier);
309 Release(thr, pc, (uptr)connection);
310 dispatch_block_t new_barrier = ^() {
311 {
312 SCOPED_INTERCEPTOR_RAW(xpc_connection_send_barrier);
313 Acquire(thr, pc, (uptr)connection);
314 }
315 barrier();
316 };
317 REAL(xpc_connection_send_barrier)(connection, new_barrier);
318 }
319
TSAN_INTERCEPTOR(void,xpc_connection_send_message_with_reply,xpc_connection_t connection,xpc_object_t message,dispatch_queue_t replyq,xpc_handler_t handler)320 TSAN_INTERCEPTOR(void, xpc_connection_send_message_with_reply,
321 xpc_connection_t connection, xpc_object_t message,
322 dispatch_queue_t replyq, xpc_handler_t handler) {
323 SCOPED_TSAN_INTERCEPTOR(xpc_connection_send_message_with_reply, connection,
324 message, replyq, handler);
325 Release(thr, pc, (uptr)connection);
326 xpc_handler_t new_handler = ^(xpc_object_t object) {
327 {
328 SCOPED_INTERCEPTOR_RAW(xpc_connection_send_message_with_reply);
329 Acquire(thr, pc, (uptr)connection);
330 }
331 handler(object);
332 };
333 REAL(xpc_connection_send_message_with_reply)
334 (connection, message, replyq, new_handler);
335 }
336
TSAN_INTERCEPTOR(void,xpc_connection_cancel,xpc_connection_t connection)337 TSAN_INTERCEPTOR(void, xpc_connection_cancel, xpc_connection_t connection) {
338 SCOPED_TSAN_INTERCEPTOR(xpc_connection_cancel, connection);
339 Release(thr, pc, (uptr)connection);
340 REAL(xpc_connection_cancel)(connection);
341 }
342
343 #endif // #if defined(__has_include) && __has_include(<xpc/xpc.h>)
344
345 // Determines whether the Obj-C object pointer is a tagged pointer. Tagged
346 // pointers encode the object data directly in their pointer bits and do not
347 // have an associated memory allocation. The Obj-C runtime uses tagged pointers
348 // to transparently optimize small objects.
IsTaggedObjCPointer(id obj)349 static bool IsTaggedObjCPointer(id obj) {
350 const uptr kPossibleTaggedBits = 0x8000000000000001ull;
351 return ((uptr)obj & kPossibleTaggedBits) != 0;
352 }
353
354 // Returns an address which can be used to inform TSan about synchronization
355 // points (MutexLock/Unlock). The TSan infrastructure expects this to be a valid
356 // address in the process space. We do a small allocation here to obtain a
357 // stable address (the array backing the hash map can change). The memory is
358 // never free'd (leaked) and allocation and locking are slow, but this code only
359 // runs for @synchronized with tagged pointers, which is very rare.
GetOrCreateSyncAddress(uptr addr,ThreadState * thr,uptr pc)360 static uptr GetOrCreateSyncAddress(uptr addr, ThreadState *thr, uptr pc) {
361 typedef AddrHashMap<uptr, 5> Map;
362 static Map Addresses;
363 Map::Handle h(&Addresses, addr);
364 if (h.created()) {
365 ThreadIgnoreBegin(thr, pc);
366 *h = (uptr) user_alloc(thr, pc, /*size=*/1);
367 ThreadIgnoreEnd(thr, pc);
368 }
369 return *h;
370 }
371
372 // Returns an address on which we can synchronize given an Obj-C object pointer.
373 // For normal object pointers, this is just the address of the object in memory.
374 // Tagged pointers are not backed by an actual memory allocation, so we need to
375 // synthesize a valid address.
SyncAddressForObjCObject(id obj,ThreadState * thr,uptr pc)376 static uptr SyncAddressForObjCObject(id obj, ThreadState *thr, uptr pc) {
377 if (IsTaggedObjCPointer(obj))
378 return GetOrCreateSyncAddress((uptr)obj, thr, pc);
379 return (uptr)obj;
380 }
381
TSAN_INTERCEPTOR(int,objc_sync_enter,id obj)382 TSAN_INTERCEPTOR(int, objc_sync_enter, id obj) {
383 SCOPED_TSAN_INTERCEPTOR(objc_sync_enter, obj);
384 if (!obj) return REAL(objc_sync_enter)(obj);
385 uptr addr = SyncAddressForObjCObject(obj, thr, pc);
386 MutexPreLock(thr, pc, addr, MutexFlagWriteReentrant);
387 int result = REAL(objc_sync_enter)(obj);
388 CHECK_EQ(result, OBJC_SYNC_SUCCESS);
389 MutexPostLock(thr, pc, addr, MutexFlagWriteReentrant);
390 return result;
391 }
392
TSAN_INTERCEPTOR(int,objc_sync_exit,id obj)393 TSAN_INTERCEPTOR(int, objc_sync_exit, id obj) {
394 SCOPED_TSAN_INTERCEPTOR(objc_sync_exit, obj);
395 if (!obj) return REAL(objc_sync_exit)(obj);
396 uptr addr = SyncAddressForObjCObject(obj, thr, pc);
397 MutexUnlock(thr, pc, addr);
398 int result = REAL(objc_sync_exit)(obj);
399 if (result != OBJC_SYNC_SUCCESS) MutexInvalidAccess(thr, pc, addr);
400 return result;
401 }
402
TSAN_INTERCEPTOR(int,swapcontext,ucontext_t * oucp,const ucontext_t * ucp)403 TSAN_INTERCEPTOR(int, swapcontext, ucontext_t *oucp, const ucontext_t *ucp) {
404 {
405 SCOPED_INTERCEPTOR_RAW(swapcontext, oucp, ucp);
406 }
407 // Bacause of swapcontext() semantics we have no option but to copy its
408 // impementation here
409 if (!oucp || !ucp) {
410 errno = EINVAL;
411 return -1;
412 }
413 ThreadState *thr = cur_thread();
414 const int UCF_SWAPPED = 0x80000000;
415 oucp->uc_onstack &= ~UCF_SWAPPED;
416 thr->ignore_interceptors++;
417 int ret = getcontext(oucp);
418 if (!(oucp->uc_onstack & UCF_SWAPPED)) {
419 thr->ignore_interceptors--;
420 if (!ret) {
421 oucp->uc_onstack |= UCF_SWAPPED;
422 ret = setcontext(ucp);
423 }
424 }
425 return ret;
426 }
427
428 // On macOS, libc++ is always linked dynamically, so intercepting works the
429 // usual way.
430 #define STDCXX_INTERCEPTOR TSAN_INTERCEPTOR
431
432 namespace {
433 struct fake_shared_weak_count {
434 volatile a64 shared_owners;
435 volatile a64 shared_weak_owners;
436 virtual void _unused_0x0() = 0;
437 virtual void _unused_0x8() = 0;
438 virtual void on_zero_shared() = 0;
439 virtual void _unused_0x18() = 0;
440 virtual void on_zero_shared_weak() = 0;
441 };
442 } // namespace
443
444 // The following code adds libc++ interceptors for:
445 // void __shared_weak_count::__release_shared() _NOEXCEPT;
446 // bool __shared_count::__release_shared() _NOEXCEPT;
447 // Shared and weak pointers in C++ maintain reference counts via atomics in
448 // libc++.dylib, which are TSan-invisible, and this leads to false positives in
449 // destructor code. These interceptors re-implements the whole functions so that
450 // the mo_acq_rel semantics of the atomic decrement are visible.
451 //
452 // Unfortunately, the interceptors cannot simply Acquire/Release some sync
453 // object and call the original function, because it would have a race between
454 // the sync and the destruction of the object. Calling both under a lock will
455 // not work because the destructor can invoke this interceptor again (and even
456 // in a different thread, so recursive locks don't help).
457
STDCXX_INTERCEPTOR(void,_ZNSt3__119__shared_weak_count16__release_sharedEv,fake_shared_weak_count * o)458 STDCXX_INTERCEPTOR(void, _ZNSt3__119__shared_weak_count16__release_sharedEv,
459 fake_shared_weak_count *o) {
460 if (!flags()->shared_ptr_interceptor)
461 return REAL(_ZNSt3__119__shared_weak_count16__release_sharedEv)(o);
462
463 SCOPED_TSAN_INTERCEPTOR(_ZNSt3__119__shared_weak_count16__release_sharedEv,
464 o);
465 if (__tsan_atomic64_fetch_add(&o->shared_owners, -1, mo_release) == 0) {
466 Acquire(thr, pc, (uptr)&o->shared_owners);
467 o->on_zero_shared();
468 if (__tsan_atomic64_fetch_add(&o->shared_weak_owners, -1, mo_release) ==
469 0) {
470 Acquire(thr, pc, (uptr)&o->shared_weak_owners);
471 o->on_zero_shared_weak();
472 }
473 }
474 }
475
STDCXX_INTERCEPTOR(bool,_ZNSt3__114__shared_count16__release_sharedEv,fake_shared_weak_count * o)476 STDCXX_INTERCEPTOR(bool, _ZNSt3__114__shared_count16__release_sharedEv,
477 fake_shared_weak_count *o) {
478 if (!flags()->shared_ptr_interceptor)
479 return REAL(_ZNSt3__114__shared_count16__release_sharedEv)(o);
480
481 SCOPED_TSAN_INTERCEPTOR(_ZNSt3__114__shared_count16__release_sharedEv, o);
482 if (__tsan_atomic64_fetch_add(&o->shared_owners, -1, mo_release) == 0) {
483 Acquire(thr, pc, (uptr)&o->shared_owners);
484 o->on_zero_shared();
485 return true;
486 }
487 return false;
488 }
489
490 namespace {
491 struct call_once_callback_args {
492 void (*orig_func)(void *arg);
493 void *orig_arg;
494 void *flag;
495 };
496
call_once_callback_wrapper(void * arg)497 void call_once_callback_wrapper(void *arg) {
498 call_once_callback_args *new_args = (call_once_callback_args *)arg;
499 new_args->orig_func(new_args->orig_arg);
500 __tsan_release(new_args->flag);
501 }
502 } // namespace
503
504 // This adds a libc++ interceptor for:
505 // void __call_once(volatile unsigned long&, void*, void(*)(void*));
506 // C++11 call_once is implemented via an internal function __call_once which is
507 // inside libc++.dylib, and the atomic release store inside it is thus
508 // TSan-invisible. To avoid false positives, this interceptor wraps the callback
509 // function and performs an explicit Release after the user code has run.
STDCXX_INTERCEPTOR(void,_ZNSt3__111__call_onceERVmPvPFvS2_E,void * flag,void * arg,void (* func)(void * arg))510 STDCXX_INTERCEPTOR(void, _ZNSt3__111__call_onceERVmPvPFvS2_E, void *flag,
511 void *arg, void (*func)(void *arg)) {
512 call_once_callback_args new_args = {func, arg, flag};
513 REAL(_ZNSt3__111__call_onceERVmPvPFvS2_E)(flag, &new_args,
514 call_once_callback_wrapper);
515 }
516
517 } // namespace __tsan
518
519 #endif // SANITIZER_MAC
520