1 //! Parallel quicksort.
2 //!
3 //! This implementation is copied verbatim from `std::slice::sort_unstable` and then parallelized.
4 //! The only difference from the original is that calls to `recurse` are executed in parallel using
5 //! `rayon_core::join`.
6
7 use std::cmp;
8 use std::mem;
9 use std::ptr;
10
11 /// When dropped, takes the value out of `Option` and writes it into `dest`.
12 ///
13 /// This allows us to safely read the pivot into a stack-allocated variable for efficiency, and
14 /// write it back into the slice after partitioning. This way we ensure that the write happens
15 /// even if `is_less` panics in the meantime.
16 struct WriteOnDrop<T> {
17 value: Option<T>,
18 dest: *mut T,
19 }
20
21 impl<T> Drop for WriteOnDrop<T> {
drop(&mut self)22 fn drop(&mut self) {
23 unsafe {
24 ptr::write(self.dest, self.value.take().unwrap());
25 }
26 }
27 }
28
29 /// Holds a value, but never drops it.
30 struct NoDrop<T> {
31 value: Option<T>,
32 }
33
34 impl<T> Drop for NoDrop<T> {
drop(&mut self)35 fn drop(&mut self) {
36 mem::forget(self.value.take());
37 }
38 }
39
40 /// When dropped, copies from `src` into `dest`.
41 struct CopyOnDrop<T> {
42 src: *mut T,
43 dest: *mut T,
44 }
45
46 impl<T> Drop for CopyOnDrop<T> {
drop(&mut self)47 fn drop(&mut self) {
48 unsafe {
49 ptr::copy_nonoverlapping(self.src, self.dest, 1);
50 }
51 }
52 }
53
54 /// Shifts the first element to the right until it encounters a greater or equal element.
shift_head<T, F>(v: &mut [T], is_less: &F) where F: Fn(&T, &T) -> bool,55 fn shift_head<T, F>(v: &mut [T], is_less: &F)
56 where
57 F: Fn(&T, &T) -> bool,
58 {
59 let len = v.len();
60 unsafe {
61 // If the first two elements are out-of-order...
62 if len >= 2 && is_less(v.get_unchecked(1), v.get_unchecked(0)) {
63 // Read the first element into a stack-allocated variable. If a following comparison
64 // operation panics, `hole` will get dropped and automatically write the element back
65 // into the slice.
66 let mut tmp = NoDrop {
67 value: Some(ptr::read(v.get_unchecked(0))),
68 };
69 let mut hole = CopyOnDrop {
70 src: tmp.value.as_mut().unwrap(),
71 dest: v.get_unchecked_mut(1),
72 };
73 ptr::copy_nonoverlapping(v.get_unchecked(1), v.get_unchecked_mut(0), 1);
74
75 for i in 2..len {
76 if !is_less(v.get_unchecked(i), tmp.value.as_ref().unwrap()) {
77 break;
78 }
79
80 // Move `i`-th element one place to the left, thus shifting the hole to the right.
81 ptr::copy_nonoverlapping(v.get_unchecked(i), v.get_unchecked_mut(i - 1), 1);
82 hole.dest = v.get_unchecked_mut(i);
83 }
84 // `hole` gets dropped and thus copies `tmp` into the remaining hole in `v`.
85 }
86 }
87 }
88
89 /// Shifts the last element to the left until it encounters a smaller or equal element.
shift_tail<T, F>(v: &mut [T], is_less: &F) where F: Fn(&T, &T) -> bool,90 fn shift_tail<T, F>(v: &mut [T], is_less: &F)
91 where
92 F: Fn(&T, &T) -> bool,
93 {
94 let len = v.len();
95 unsafe {
96 // If the last two elements are out-of-order...
97 if len >= 2 && is_less(v.get_unchecked(len - 1), v.get_unchecked(len - 2)) {
98 // Read the last element into a stack-allocated variable. If a following comparison
99 // operation panics, `hole` will get dropped and automatically write the element back
100 // into the slice.
101 let mut tmp = NoDrop {
102 value: Some(ptr::read(v.get_unchecked(len - 1))),
103 };
104 let mut hole = CopyOnDrop {
105 src: tmp.value.as_mut().unwrap(),
106 dest: v.get_unchecked_mut(len - 2),
107 };
108 ptr::copy_nonoverlapping(v.get_unchecked(len - 2), v.get_unchecked_mut(len - 1), 1);
109
110 for i in (0..len - 2).rev() {
111 if !is_less(&tmp.value.as_ref().unwrap(), v.get_unchecked(i)) {
112 break;
113 }
114
115 // Move `i`-th element one place to the right, thus shifting the hole to the left.
116 ptr::copy_nonoverlapping(v.get_unchecked(i), v.get_unchecked_mut(i + 1), 1);
117 hole.dest = v.get_unchecked_mut(i);
118 }
119 // `hole` gets dropped and thus copies `tmp` into the remaining hole in `v`.
120 }
121 }
122 }
123
124 /// Partially sorts a slice by shifting several out-of-order elements around.
125 ///
126 /// Returns `true` if the slice is sorted at the end. This function is `O(n)` worst-case.
127 #[cold]
partial_insertion_sort<T, F>(v: &mut [T], is_less: &F) -> bool where F: Fn(&T, &T) -> bool,128 fn partial_insertion_sort<T, F>(v: &mut [T], is_less: &F) -> bool
129 where
130 F: Fn(&T, &T) -> bool,
131 {
132 // Maximum number of adjacent out-of-order pairs that will get shifted.
133 const MAX_STEPS: usize = 5;
134 // If the slice is shorter than this, don't shift any elements.
135 const SHORTEST_SHIFTING: usize = 50;
136
137 let len = v.len();
138 let mut i = 1;
139
140 for _ in 0..MAX_STEPS {
141 unsafe {
142 // Find the next pair of adjacent out-of-order elements.
143 while i < len && !is_less(v.get_unchecked(i), v.get_unchecked(i - 1)) {
144 i += 1;
145 }
146 }
147
148 // Are we done?
149 if i == len {
150 return true;
151 }
152
153 // Don't shift elements on short arrays, that has a performance cost.
154 if len < SHORTEST_SHIFTING {
155 return false;
156 }
157
158 // Swap the found pair of elements. This puts them in correct order.
159 v.swap(i - 1, i);
160
161 // Shift the smaller element to the left.
162 shift_tail(&mut v[..i], is_less);
163 // Shift the greater element to the right.
164 shift_head(&mut v[i..], is_less);
165 }
166
167 // Didn't manage to sort the slice in the limited number of steps.
168 false
169 }
170
171 /// Sorts a slice using insertion sort, which is `O(n^2)` worst-case.
insertion_sort<T, F>(v: &mut [T], is_less: &F) where F: Fn(&T, &T) -> bool,172 fn insertion_sort<T, F>(v: &mut [T], is_less: &F)
173 where
174 F: Fn(&T, &T) -> bool,
175 {
176 for i in 1..v.len() {
177 shift_tail(&mut v[..=i], is_less);
178 }
179 }
180
181 /// Sorts `v` using heapsort, which guarantees `O(n log n)` worst-case.
182 #[cold]
heapsort<T, F>(v: &mut [T], is_less: &F) where F: Fn(&T, &T) -> bool,183 fn heapsort<T, F>(v: &mut [T], is_less: &F)
184 where
185 F: Fn(&T, &T) -> bool,
186 {
187 // This binary heap respects the invariant `parent >= child`.
188 let sift_down = |v: &mut [T], mut node| {
189 loop {
190 // Children of `node`:
191 let left = 2 * node + 1;
192 let right = 2 * node + 2;
193
194 // Choose the greater child.
195 let greater = if right < v.len() && is_less(&v[left], &v[right]) {
196 right
197 } else {
198 left
199 };
200
201 // Stop if the invariant holds at `node`.
202 if greater >= v.len() || !is_less(&v[node], &v[greater]) {
203 break;
204 }
205
206 // Swap `node` with the greater child, move one step down, and continue sifting.
207 v.swap(node, greater);
208 node = greater;
209 }
210 };
211
212 // Build the heap in linear time.
213 for i in (0..v.len() / 2).rev() {
214 sift_down(v, i);
215 }
216
217 // Pop maximal elements from the heap.
218 for i in (1..v.len()).rev() {
219 v.swap(0, i);
220 sift_down(&mut v[..i], 0);
221 }
222 }
223
224 /// Partitions `v` into elements smaller than `pivot`, followed by elements greater than or equal
225 /// to `pivot`.
226 ///
227 /// Returns the number of elements smaller than `pivot`.
228 ///
229 /// Partitioning is performed block-by-block in order to minimize the cost of branching operations.
230 /// This idea is presented in the [BlockQuicksort][pdf] paper.
231 ///
232 /// [pdf]: http://drops.dagstuhl.de/opus/volltexte/2016/6389/pdf/LIPIcs-ESA-2016-38.pdf
partition_in_blocks<T, F>(v: &mut [T], pivot: &T, is_less: &F) -> usize where F: Fn(&T, &T) -> bool,233 fn partition_in_blocks<T, F>(v: &mut [T], pivot: &T, is_less: &F) -> usize
234 where
235 F: Fn(&T, &T) -> bool,
236 {
237 // Number of elements in a typical block.
238 const BLOCK: usize = 128;
239
240 // The partitioning algorithm repeats the following steps until completion:
241 //
242 // 1. Trace a block from the left side to identify elements greater than or equal to the pivot.
243 // 2. Trace a block from the right side to identify elements smaller than the pivot.
244 // 3. Exchange the identified elements between the left and right side.
245 //
246 // We keep the following variables for a block of elements:
247 //
248 // 1. `block` - Number of elements in the block.
249 // 2. `start` - Start pointer into the `offsets` array.
250 // 3. `end` - End pointer into the `offsets` array.
251 // 4. `offsets - Indices of out-of-order elements within the block.
252
253 // The current block on the left side (from `l` to `l.offset(block_l)`).
254 let mut l = v.as_mut_ptr();
255 let mut block_l = BLOCK;
256 let mut start_l = ptr::null_mut();
257 let mut end_l = ptr::null_mut();
258 let mut offsets_l = [0u8; BLOCK];
259
260 // The current block on the right side (from `r.offset(-block_r)` to `r`).
261 let mut r = unsafe { l.add(v.len()) };
262 let mut block_r = BLOCK;
263 let mut start_r = ptr::null_mut();
264 let mut end_r = ptr::null_mut();
265 let mut offsets_r = [0u8; BLOCK];
266
267 // Returns the number of elements between pointers `l` (inclusive) and `r` (exclusive).
268 fn width<T>(l: *mut T, r: *mut T) -> usize {
269 assert!(mem::size_of::<T>() > 0);
270 (r as usize - l as usize) / mem::size_of::<T>()
271 }
272
273 loop {
274 // We are done with partitioning block-by-block when `l` and `r` get very close. Then we do
275 // some patch-up work in order to partition the remaining elements in between.
276 let is_done = width(l, r) <= 2 * BLOCK;
277
278 if is_done {
279 // Number of remaining elements (still not compared to the pivot).
280 let mut rem = width(l, r);
281 if start_l < end_l || start_r < end_r {
282 rem -= BLOCK;
283 }
284
285 // Adjust block sizes so that the left and right block don't overlap, but get perfectly
286 // aligned to cover the whole remaining gap.
287 if start_l < end_l {
288 block_r = rem;
289 } else if start_r < end_r {
290 block_l = rem;
291 } else {
292 block_l = rem / 2;
293 block_r = rem - block_l;
294 }
295 debug_assert!(block_l <= BLOCK && block_r <= BLOCK);
296 debug_assert!(width(l, r) == block_l + block_r);
297 }
298
299 if start_l == end_l {
300 // Trace `block_l` elements from the left side.
301 start_l = offsets_l.as_mut_ptr();
302 end_l = offsets_l.as_mut_ptr();
303 let mut elem = l;
304
305 for i in 0..block_l {
306 unsafe {
307 // Branchless comparison.
308 *end_l = i as u8;
309 end_l = end_l.offset(!is_less(&*elem, pivot) as isize);
310 elem = elem.offset(1);
311 }
312 }
313 }
314
315 if start_r == end_r {
316 // Trace `block_r` elements from the right side.
317 start_r = offsets_r.as_mut_ptr();
318 end_r = offsets_r.as_mut_ptr();
319 let mut elem = r;
320
321 for i in 0..block_r {
322 unsafe {
323 // Branchless comparison.
324 elem = elem.offset(-1);
325 *end_r = i as u8;
326 end_r = end_r.offset(is_less(&*elem, pivot) as isize);
327 }
328 }
329 }
330
331 // Number of out-of-order elements to swap between the left and right side.
332 let count = cmp::min(width(start_l, end_l), width(start_r, end_r));
333
334 if count > 0 {
335 macro_rules! left {
336 () => {
337 l.offset(*start_l as isize)
338 };
339 }
340 macro_rules! right {
341 () => {
342 r.offset(-(*start_r as isize) - 1)
343 };
344 }
345
346 // Instead of swapping one pair at the time, it is more efficient to perform a cyclic
347 // permutation. This is not strictly equivalent to swapping, but produces a similar
348 // result using fewer memory operations.
349 unsafe {
350 let tmp = ptr::read(left!());
351 ptr::copy_nonoverlapping(right!(), left!(), 1);
352
353 for _ in 1..count {
354 start_l = start_l.offset(1);
355 ptr::copy_nonoverlapping(left!(), right!(), 1);
356 start_r = start_r.offset(1);
357 ptr::copy_nonoverlapping(right!(), left!(), 1);
358 }
359
360 ptr::copy_nonoverlapping(&tmp, right!(), 1);
361 mem::forget(tmp);
362 start_l = start_l.offset(1);
363 start_r = start_r.offset(1);
364 }
365 }
366
367 if start_l == end_l {
368 // All out-of-order elements in the left block were moved. Move to the next block.
369 l = unsafe { l.add(block_l) };
370 }
371
372 if start_r == end_r {
373 // All out-of-order elements in the right block were moved. Move to the previous block.
374 r = unsafe { r.sub(block_r) };
375 }
376
377 if is_done {
378 break;
379 }
380 }
381
382 // All that remains now is at most one block (either the left or the right) with out-of-order
383 // elements that need to be moved. Such remaining elements can be simply shifted to the end
384 // within their block.
385
386 if start_l < end_l {
387 // The left block remains.
388 // Move it's remaining out-of-order elements to the far right.
389 debug_assert_eq!(width(l, r), block_l);
390 while start_l < end_l {
391 unsafe {
392 end_l = end_l.offset(-1);
393 ptr::swap(l.offset(*end_l as isize), r.offset(-1));
394 r = r.offset(-1);
395 }
396 }
397 width(v.as_mut_ptr(), r)
398 } else if start_r < end_r {
399 // The right block remains.
400 // Move it's remaining out-of-order elements to the far left.
401 debug_assert_eq!(width(l, r), block_r);
402 while start_r < end_r {
403 unsafe {
404 end_r = end_r.offset(-1);
405 ptr::swap(l, r.offset(-(*end_r as isize) - 1));
406 l = l.offset(1);
407 }
408 }
409 width(v.as_mut_ptr(), l)
410 } else {
411 // Nothing else to do, we're done.
412 width(v.as_mut_ptr(), l)
413 }
414 }
415
416 /// Partitions `v` into elements smaller than `v[pivot]`, followed by elements greater than or
417 /// equal to `v[pivot]`.
418 ///
419 /// Returns a tuple of:
420 ///
421 /// 1. Number of elements smaller than `v[pivot]`.
422 /// 2. True if `v` was already partitioned.
partition<T, F>(v: &mut [T], pivot: usize, is_less: &F) -> (usize, bool) where F: Fn(&T, &T) -> bool,423 fn partition<T, F>(v: &mut [T], pivot: usize, is_less: &F) -> (usize, bool)
424 where
425 F: Fn(&T, &T) -> bool,
426 {
427 let (mid, was_partitioned) = {
428 // Place the pivot at the beginning of slice.
429 v.swap(0, pivot);
430 let (pivot, v) = v.split_at_mut(1);
431 let pivot = &mut pivot[0];
432
433 // Read the pivot into a stack-allocated variable for efficiency. If a following comparison
434 // operation panics, the pivot will be automatically written back into the slice.
435 let write_on_drop = WriteOnDrop {
436 value: unsafe { Some(ptr::read(pivot)) },
437 dest: pivot,
438 };
439 let pivot = write_on_drop.value.as_ref().unwrap();
440
441 // Find the first pair of out-of-order elements.
442 let mut l = 0;
443 let mut r = v.len();
444 unsafe {
445 // Find the first element greater then or equal to the pivot.
446 while l < r && is_less(v.get_unchecked(l), pivot) {
447 l += 1;
448 }
449
450 // Find the last element smaller that the pivot.
451 while l < r && !is_less(v.get_unchecked(r - 1), pivot) {
452 r -= 1;
453 }
454 }
455
456 (
457 l + partition_in_blocks(&mut v[l..r], pivot, is_less),
458 l >= r,
459 )
460
461 // `write_on_drop` goes out of scope and writes the pivot (which is a stack-allocated
462 // variable) back into the slice where it originally was. This step is critical in ensuring
463 // safety!
464 };
465
466 // Place the pivot between the two partitions.
467 v.swap(0, mid);
468
469 (mid, was_partitioned)
470 }
471
472 /// Partitions `v` into elements equal to `v[pivot]` followed by elements greater than `v[pivot]`.
473 ///
474 /// Returns the number of elements equal to the pivot. It is assumed that `v` does not contain
475 /// elements smaller than the pivot.
partition_equal<T, F>(v: &mut [T], pivot: usize, is_less: &F) -> usize where F: Fn(&T, &T) -> bool,476 fn partition_equal<T, F>(v: &mut [T], pivot: usize, is_less: &F) -> usize
477 where
478 F: Fn(&T, &T) -> bool,
479 {
480 // Place the pivot at the beginning of slice.
481 v.swap(0, pivot);
482 let (pivot, v) = v.split_at_mut(1);
483 let pivot = &mut pivot[0];
484
485 // Read the pivot into a stack-allocated variable for efficiency. If a following comparison
486 // operation panics, the pivot will be automatically written back into the slice.
487 let write_on_drop = WriteOnDrop {
488 value: unsafe { Some(ptr::read(pivot)) },
489 dest: pivot,
490 };
491 let pivot = write_on_drop.value.as_ref().unwrap();
492
493 // Now partition the slice.
494 let mut l = 0;
495 let mut r = v.len();
496 loop {
497 unsafe {
498 // Find the first element greater that the pivot.
499 while l < r && !is_less(pivot, v.get_unchecked(l)) {
500 l += 1;
501 }
502
503 // Find the last element equal to the pivot.
504 while l < r && is_less(pivot, v.get_unchecked(r - 1)) {
505 r -= 1;
506 }
507
508 // Are we done?
509 if l >= r {
510 break;
511 }
512
513 // Swap the found pair of out-of-order elements.
514 r -= 1;
515 ptr::swap(v.get_unchecked_mut(l), v.get_unchecked_mut(r));
516 l += 1;
517 }
518 }
519
520 // We found `l` elements equal to the pivot. Add 1 to account for the pivot itself.
521 l + 1
522
523 // `write_on_drop` goes out of scope and writes the pivot (which is a stack-allocated variable)
524 // back into the slice where it originally was. This step is critical in ensuring safety!
525 }
526
527 /// Scatters some elements around in an attempt to break patterns that might cause imbalanced
528 /// partitions in quicksort.
529 #[cold]
break_patterns<T>(v: &mut [T])530 fn break_patterns<T>(v: &mut [T]) {
531 let len = v.len();
532 if len >= 8 {
533 // Pseudorandom number generator from the "Xorshift RNGs" paper by George Marsaglia.
534 let mut random = len as u32;
535 let mut gen_u32 = || {
536 random ^= random << 13;
537 random ^= random >> 17;
538 random ^= random << 5;
539 random
540 };
541 let mut gen_usize = || {
542 if mem::size_of::<usize>() <= 4 {
543 gen_u32() as usize
544 } else {
545 ((u64::from(gen_u32()) << 32) | u64::from(gen_u32())) as usize
546 }
547 };
548
549 // Take random numbers modulo this number.
550 // The number fits into `usize` because `len` is not greater than `isize::MAX`.
551 let modulus = len.next_power_of_two();
552
553 // Some pivot candidates will be in the nearby of this index. Let's randomize them.
554 let pos = len / 4 * 2;
555
556 for i in 0..3 {
557 // Generate a random number modulo `len`. However, in order to avoid costly operations
558 // we first take it modulo a power of two, and then decrease by `len` until it fits
559 // into the range `[0, len - 1]`.
560 let mut other = gen_usize() & (modulus - 1);
561
562 // `other` is guaranteed to be less than `2 * len`.
563 if other >= len {
564 other -= len;
565 }
566
567 v.swap(pos - 1 + i, other);
568 }
569 }
570 }
571
572 /// Chooses a pivot in `v` and returns the index and `true` if the slice is likely already sorted.
573 ///
574 /// Elements in `v` might be reordered in the process.
choose_pivot<T, F>(v: &mut [T], is_less: &F) -> (usize, bool) where F: Fn(&T, &T) -> bool,575 fn choose_pivot<T, F>(v: &mut [T], is_less: &F) -> (usize, bool)
576 where
577 F: Fn(&T, &T) -> bool,
578 {
579 // Minimum length to choose the median-of-medians method.
580 // Shorter slices use the simple median-of-three method.
581 const SHORTEST_MEDIAN_OF_MEDIANS: usize = 50;
582 // Maximum number of swaps that can be performed in this function.
583 const MAX_SWAPS: usize = 4 * 3;
584
585 let len = v.len();
586
587 // Three indices near which we are going to choose a pivot.
588 let mut a = len / 4 * 1;
589 let mut b = len / 4 * 2;
590 let mut c = len / 4 * 3;
591
592 // Counts the total number of swaps we are about to perform while sorting indices.
593 let mut swaps = 0;
594
595 if len >= 8 {
596 // Swaps indices so that `v[a] <= v[b]`.
597 let mut sort2 = |a: &mut usize, b: &mut usize| unsafe {
598 if is_less(v.get_unchecked(*b), v.get_unchecked(*a)) {
599 ptr::swap(a, b);
600 swaps += 1;
601 }
602 };
603
604 // Swaps indices so that `v[a] <= v[b] <= v[c]`.
605 let mut sort3 = |a: &mut usize, b: &mut usize, c: &mut usize| {
606 sort2(a, b);
607 sort2(b, c);
608 sort2(a, b);
609 };
610
611 if len >= SHORTEST_MEDIAN_OF_MEDIANS {
612 // Finds the median of `v[a - 1], v[a], v[a + 1]` and stores the index into `a`.
613 let mut sort_adjacent = |a: &mut usize| {
614 let tmp = *a;
615 sort3(&mut (tmp - 1), a, &mut (tmp + 1));
616 };
617
618 // Find medians in the neighborhoods of `a`, `b`, and `c`.
619 sort_adjacent(&mut a);
620 sort_adjacent(&mut b);
621 sort_adjacent(&mut c);
622 }
623
624 // Find the median among `a`, `b`, and `c`.
625 sort3(&mut a, &mut b, &mut c);
626 }
627
628 if swaps < MAX_SWAPS {
629 (b, swaps == 0)
630 } else {
631 // The maximum number of swaps was performed. Chances are the slice is descending or mostly
632 // descending, so reversing will probably help sort it faster.
633 v.reverse();
634 (len - 1 - b, true)
635 }
636 }
637
638 /// Sorts `v` recursively.
639 ///
640 /// If the slice had a predecessor in the original array, it is specified as `pred`.
641 ///
642 /// `limit` is the number of allowed imbalanced partitions before switching to `heapsort`. If zero,
643 /// this function will immediately switch to heapsort.
recurse<'a, T, F>(mut v: &'a mut [T], is_less: &F, mut pred: Option<&'a mut T>, mut limit: usize) where T: Send, F: Fn(&T, &T) -> bool + Sync,644 fn recurse<'a, T, F>(mut v: &'a mut [T], is_less: &F, mut pred: Option<&'a mut T>, mut limit: usize)
645 where
646 T: Send,
647 F: Fn(&T, &T) -> bool + Sync,
648 {
649 // Slices of up to this length get sorted using insertion sort.
650 const MAX_INSERTION: usize = 20;
651 // If both partitions are up to this length, we continue sequentially. This number is as small
652 // as possible but so that the overhead of Rayon's task scheduling is still negligible.
653 const MAX_SEQUENTIAL: usize = 2000;
654
655 // True if the last partitioning was reasonably balanced.
656 let mut was_balanced = true;
657 // True if the last partitioning didn't shuffle elements (the slice was already partitioned).
658 let mut was_partitioned = true;
659
660 loop {
661 let len = v.len();
662
663 // Very short slices get sorted using insertion sort.
664 if len <= MAX_INSERTION {
665 insertion_sort(v, is_less);
666 return;
667 }
668
669 // If too many bad pivot choices were made, simply fall back to heapsort in order to
670 // guarantee `O(n log n)` worst-case.
671 if limit == 0 {
672 heapsort(v, is_less);
673 return;
674 }
675
676 // If the last partitioning was imbalanced, try breaking patterns in the slice by shuffling
677 // some elements around. Hopefully we'll choose a better pivot this time.
678 if !was_balanced {
679 break_patterns(v);
680 limit -= 1;
681 }
682
683 // Choose a pivot and try guessing whether the slice is already sorted.
684 let (pivot, likely_sorted) = choose_pivot(v, is_less);
685
686 // If the last partitioning was decently balanced and didn't shuffle elements, and if pivot
687 // selection predicts the slice is likely already sorted...
688 if was_balanced && was_partitioned && likely_sorted {
689 // Try identifying several out-of-order elements and shifting them to correct
690 // positions. If the slice ends up being completely sorted, we're done.
691 if partial_insertion_sort(v, is_less) {
692 return;
693 }
694 }
695
696 // If the chosen pivot is equal to the predecessor, then it's the smallest element in the
697 // slice. Partition the slice into elements equal to and elements greater than the pivot.
698 // This case is usually hit when the slice contains many duplicate elements.
699 if let Some(ref p) = pred {
700 if !is_less(p, &v[pivot]) {
701 let mid = partition_equal(v, pivot, is_less);
702
703 // Continue sorting elements greater than the pivot.
704 v = &mut { v }[mid..];
705 continue;
706 }
707 }
708
709 // Partition the slice.
710 let (mid, was_p) = partition(v, pivot, is_less);
711 was_balanced = cmp::min(mid, len - mid) >= len / 8;
712 was_partitioned = was_p;
713
714 // Split the slice into `left`, `pivot`, and `right`.
715 let (left, right) = { v }.split_at_mut(mid);
716 let (pivot, right) = right.split_at_mut(1);
717 let pivot = &mut pivot[0];
718
719 if cmp::max(left.len(), right.len()) <= MAX_SEQUENTIAL {
720 // Recurse into the shorter side only in order to minimize the total number of recursive
721 // calls and consume less stack space. Then just continue with the longer side (this is
722 // akin to tail recursion).
723 if left.len() < right.len() {
724 recurse(left, is_less, pred, limit);
725 v = right;
726 pred = Some(pivot);
727 } else {
728 recurse(right, is_less, Some(pivot), limit);
729 v = left;
730 }
731 } else {
732 // Sort the left and right half in parallel.
733 rayon_core::join(
734 || recurse(left, is_less, pred, limit),
735 || recurse(right, is_less, Some(pivot), limit),
736 );
737 break;
738 }
739 }
740 }
741
742 /// Sorts `v` using pattern-defeating quicksort in parallel.
743 ///
744 /// The algorithm is unstable, in-place, and `O(n log n)` worst-case.
par_quicksort<T, F>(v: &mut [T], is_less: F) where T: Send, F: Fn(&T, &T) -> bool + Sync,745 pub(super) fn par_quicksort<T, F>(v: &mut [T], is_less: F)
746 where
747 T: Send,
748 F: Fn(&T, &T) -> bool + Sync,
749 {
750 // Sorting has no meaningful behavior on zero-sized types.
751 if mem::size_of::<T>() == 0 {
752 return;
753 }
754
755 // Limit the number of imbalanced partitions to `floor(log2(len)) + 1`.
756 let limit = mem::size_of::<usize>() * 8 - v.len().leading_zeros() as usize;
757
758 recurse(v, &is_less, None, limit);
759 }
760
761 #[cfg(test)]
762 mod tests {
763 use super::heapsort;
764 use rand::distributions::Uniform;
765 use rand::{thread_rng, Rng};
766
767 #[test]
test_heapsort()768 fn test_heapsort() {
769 let rng = thread_rng();
770
771 for len in (0..25).chain(500..501) {
772 for &modulus in &[5, 10, 100] {
773 let dist = Uniform::new(0, modulus);
774 for _ in 0..100 {
775 let v: Vec<i32> = rng.sample_iter(&dist).take(len).collect();
776
777 // Test heapsort using `<` operator.
778 let mut tmp = v.clone();
779 heapsort(&mut tmp, &|a, b| a < b);
780 assert!(tmp.windows(2).all(|w| w[0] <= w[1]));
781
782 // Test heapsort using `>` operator.
783 let mut tmp = v.clone();
784 heapsort(&mut tmp, &|a, b| a > b);
785 assert!(tmp.windows(2).all(|w| w[0] >= w[1]));
786 }
787 }
788 }
789
790 // Sort using a completely random comparison function.
791 // This will reorder the elements *somehow*, but won't panic.
792 let mut v: Vec<_> = (0..100).collect();
793 heapsort(&mut v, &|_, _| thread_rng().gen());
794 heapsort(&mut v, &|a, b| a < b);
795
796 for i in 0..v.len() {
797 assert_eq!(v[i], i);
798 }
799 }
800 }
801