1 //===- AffineParser.cpp - MLIR Affine Parser ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a parser for Affine structures.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "Parser.h"
14 #include "mlir/IR/AffineMap.h"
15 #include "mlir/IR/IntegerSet.h"
16
17 using namespace mlir;
18 using namespace mlir::detail;
19 using llvm::SMLoc;
20
21 namespace {
22
23 /// Lower precedence ops (all at the same precedence level). LNoOp is false in
24 /// the boolean sense.
25 enum AffineLowPrecOp {
26 /// Null value.
27 LNoOp,
28 Add,
29 Sub
30 };
31
32 /// Higher precedence ops - all at the same precedence level. HNoOp is false
33 /// in the boolean sense.
34 enum AffineHighPrecOp {
35 /// Null value.
36 HNoOp,
37 Mul,
38 FloorDiv,
39 CeilDiv,
40 Mod
41 };
42
43 /// This is a specialized parser for affine structures (affine maps, affine
44 /// expressions, and integer sets), maintaining the state transient to their
45 /// bodies.
46 class AffineParser : public Parser {
47 public:
AffineParser(ParserState & state,bool allowParsingSSAIds=false,function_ref<ParseResult (bool)> parseElement=nullptr)48 AffineParser(ParserState &state, bool allowParsingSSAIds = false,
49 function_ref<ParseResult(bool)> parseElement = nullptr)
50 : Parser(state), allowParsingSSAIds(allowParsingSSAIds),
51 parseElement(parseElement), numDimOperands(0), numSymbolOperands(0) {}
52
53 AffineMap parseAffineMapRange(unsigned numDims, unsigned numSymbols);
54 ParseResult parseAffineMapOrIntegerSetInline(AffineMap &map, IntegerSet &set);
55 IntegerSet parseIntegerSetConstraints(unsigned numDims, unsigned numSymbols);
56 ParseResult parseAffineMapOfSSAIds(AffineMap &map,
57 OpAsmParser::Delimiter delimiter);
58 void getDimsAndSymbolSSAIds(SmallVectorImpl<StringRef> &dimAndSymbolSSAIds,
59 unsigned &numDims);
60
61 private:
62 // Binary affine op parsing.
63 AffineLowPrecOp consumeIfLowPrecOp();
64 AffineHighPrecOp consumeIfHighPrecOp();
65
66 // Identifier lists for polyhedral structures.
67 ParseResult parseDimIdList(unsigned &numDims);
68 ParseResult parseSymbolIdList(unsigned &numSymbols);
69 ParseResult parseDimAndOptionalSymbolIdList(unsigned &numDims,
70 unsigned &numSymbols);
71 ParseResult parseIdentifierDefinition(AffineExpr idExpr);
72
73 AffineExpr parseAffineExpr();
74 AffineExpr parseParentheticalExpr();
75 AffineExpr parseNegateExpression(AffineExpr lhs);
76 AffineExpr parseIntegerExpr();
77 AffineExpr parseBareIdExpr();
78 AffineExpr parseSSAIdExpr(bool isSymbol);
79 AffineExpr parseSymbolSSAIdExpr();
80
81 AffineExpr getAffineBinaryOpExpr(AffineHighPrecOp op, AffineExpr lhs,
82 AffineExpr rhs, llvm::SMLoc opLoc);
83 AffineExpr getAffineBinaryOpExpr(AffineLowPrecOp op, AffineExpr lhs,
84 AffineExpr rhs);
85 AffineExpr parseAffineOperandExpr(AffineExpr lhs);
86 AffineExpr parseAffineLowPrecOpExpr(AffineExpr llhs, AffineLowPrecOp llhsOp);
87 AffineExpr parseAffineHighPrecOpExpr(AffineExpr llhs, AffineHighPrecOp llhsOp,
88 llvm::SMLoc llhsOpLoc);
89 AffineExpr parseAffineConstraint(bool *isEq);
90
91 private:
92 bool allowParsingSSAIds;
93 function_ref<ParseResult(bool)> parseElement;
94 unsigned numDimOperands;
95 unsigned numSymbolOperands;
96 SmallVector<std::pair<StringRef, AffineExpr>, 4> dimsAndSymbols;
97 };
98 } // end anonymous namespace
99
100 /// Create an affine binary high precedence op expression (mul's, div's, mod).
101 /// opLoc is the location of the op token to be used to report errors
102 /// for non-conforming expressions.
getAffineBinaryOpExpr(AffineHighPrecOp op,AffineExpr lhs,AffineExpr rhs,SMLoc opLoc)103 AffineExpr AffineParser::getAffineBinaryOpExpr(AffineHighPrecOp op,
104 AffineExpr lhs, AffineExpr rhs,
105 SMLoc opLoc) {
106 // TODO: make the error location info accurate.
107 switch (op) {
108 case Mul:
109 if (!lhs.isSymbolicOrConstant() && !rhs.isSymbolicOrConstant()) {
110 emitError(opLoc, "non-affine expression: at least one of the multiply "
111 "operands has to be either a constant or symbolic");
112 return nullptr;
113 }
114 return lhs * rhs;
115 case FloorDiv:
116 if (!rhs.isSymbolicOrConstant()) {
117 emitError(opLoc, "non-affine expression: right operand of floordiv "
118 "has to be either a constant or symbolic");
119 return nullptr;
120 }
121 return lhs.floorDiv(rhs);
122 case CeilDiv:
123 if (!rhs.isSymbolicOrConstant()) {
124 emitError(opLoc, "non-affine expression: right operand of ceildiv "
125 "has to be either a constant or symbolic");
126 return nullptr;
127 }
128 return lhs.ceilDiv(rhs);
129 case Mod:
130 if (!rhs.isSymbolicOrConstant()) {
131 emitError(opLoc, "non-affine expression: right operand of mod "
132 "has to be either a constant or symbolic");
133 return nullptr;
134 }
135 return lhs % rhs;
136 case HNoOp:
137 llvm_unreachable("can't create affine expression for null high prec op");
138 return nullptr;
139 }
140 llvm_unreachable("Unknown AffineHighPrecOp");
141 }
142
143 /// Create an affine binary low precedence op expression (add, sub).
getAffineBinaryOpExpr(AffineLowPrecOp op,AffineExpr lhs,AffineExpr rhs)144 AffineExpr AffineParser::getAffineBinaryOpExpr(AffineLowPrecOp op,
145 AffineExpr lhs, AffineExpr rhs) {
146 switch (op) {
147 case AffineLowPrecOp::Add:
148 return lhs + rhs;
149 case AffineLowPrecOp::Sub:
150 return lhs - rhs;
151 case AffineLowPrecOp::LNoOp:
152 llvm_unreachable("can't create affine expression for null low prec op");
153 return nullptr;
154 }
155 llvm_unreachable("Unknown AffineLowPrecOp");
156 }
157
158 /// Consume this token if it is a lower precedence affine op (there are only
159 /// two precedence levels).
consumeIfLowPrecOp()160 AffineLowPrecOp AffineParser::consumeIfLowPrecOp() {
161 switch (getToken().getKind()) {
162 case Token::plus:
163 consumeToken(Token::plus);
164 return AffineLowPrecOp::Add;
165 case Token::minus:
166 consumeToken(Token::minus);
167 return AffineLowPrecOp::Sub;
168 default:
169 return AffineLowPrecOp::LNoOp;
170 }
171 }
172
173 /// Consume this token if it is a higher precedence affine op (there are only
174 /// two precedence levels)
consumeIfHighPrecOp()175 AffineHighPrecOp AffineParser::consumeIfHighPrecOp() {
176 switch (getToken().getKind()) {
177 case Token::star:
178 consumeToken(Token::star);
179 return Mul;
180 case Token::kw_floordiv:
181 consumeToken(Token::kw_floordiv);
182 return FloorDiv;
183 case Token::kw_ceildiv:
184 consumeToken(Token::kw_ceildiv);
185 return CeilDiv;
186 case Token::kw_mod:
187 consumeToken(Token::kw_mod);
188 return Mod;
189 default:
190 return HNoOp;
191 }
192 }
193
194 /// Parse a high precedence op expression list: mul, div, and mod are high
195 /// precedence binary ops, i.e., parse a
196 /// expr_1 op_1 expr_2 op_2 ... expr_n
197 /// where op_1, op_2 are all a AffineHighPrecOp (mul, div, mod).
198 /// All affine binary ops are left associative.
199 /// Given llhs, returns (llhs llhsOp lhs) op rhs, or (lhs op rhs) if llhs is
200 /// null. If no rhs can be found, returns (llhs llhsOp lhs) or lhs if llhs is
201 /// null. llhsOpLoc is the location of the llhsOp token that will be used to
202 /// report an error for non-conforming expressions.
parseAffineHighPrecOpExpr(AffineExpr llhs,AffineHighPrecOp llhsOp,SMLoc llhsOpLoc)203 AffineExpr AffineParser::parseAffineHighPrecOpExpr(AffineExpr llhs,
204 AffineHighPrecOp llhsOp,
205 SMLoc llhsOpLoc) {
206 AffineExpr lhs = parseAffineOperandExpr(llhs);
207 if (!lhs)
208 return nullptr;
209
210 // Found an LHS. Parse the remaining expression.
211 auto opLoc = getToken().getLoc();
212 if (AffineHighPrecOp op = consumeIfHighPrecOp()) {
213 if (llhs) {
214 AffineExpr expr = getAffineBinaryOpExpr(llhsOp, llhs, lhs, opLoc);
215 if (!expr)
216 return nullptr;
217 return parseAffineHighPrecOpExpr(expr, op, opLoc);
218 }
219 // No LLHS, get RHS
220 return parseAffineHighPrecOpExpr(lhs, op, opLoc);
221 }
222
223 // This is the last operand in this expression.
224 if (llhs)
225 return getAffineBinaryOpExpr(llhsOp, llhs, lhs, llhsOpLoc);
226
227 // No llhs, 'lhs' itself is the expression.
228 return lhs;
229 }
230
231 /// Parse an affine expression inside parentheses.
232 ///
233 /// affine-expr ::= `(` affine-expr `)`
parseParentheticalExpr()234 AffineExpr AffineParser::parseParentheticalExpr() {
235 if (parseToken(Token::l_paren, "expected '('"))
236 return nullptr;
237 if (getToken().is(Token::r_paren))
238 return (emitError("no expression inside parentheses"), nullptr);
239
240 auto expr = parseAffineExpr();
241 if (!expr)
242 return nullptr;
243 if (parseToken(Token::r_paren, "expected ')'"))
244 return nullptr;
245
246 return expr;
247 }
248
249 /// Parse the negation expression.
250 ///
251 /// affine-expr ::= `-` affine-expr
parseNegateExpression(AffineExpr lhs)252 AffineExpr AffineParser::parseNegateExpression(AffineExpr lhs) {
253 if (parseToken(Token::minus, "expected '-'"))
254 return nullptr;
255
256 AffineExpr operand = parseAffineOperandExpr(lhs);
257 // Since negation has the highest precedence of all ops (including high
258 // precedence ops) but lower than parentheses, we are only going to use
259 // parseAffineOperandExpr instead of parseAffineExpr here.
260 if (!operand)
261 // Extra error message although parseAffineOperandExpr would have
262 // complained. Leads to a better diagnostic.
263 return (emitError("missing operand of negation"), nullptr);
264 return (-1) * operand;
265 }
266
267 /// Parse a bare id that may appear in an affine expression.
268 ///
269 /// affine-expr ::= bare-id
parseBareIdExpr()270 AffineExpr AffineParser::parseBareIdExpr() {
271 if (getToken().isNot(Token::bare_identifier))
272 return (emitError("expected bare identifier"), nullptr);
273
274 StringRef sRef = getTokenSpelling();
275 for (auto entry : dimsAndSymbols) {
276 if (entry.first == sRef) {
277 consumeToken(Token::bare_identifier);
278 return entry.second;
279 }
280 }
281
282 return (emitError("use of undeclared identifier"), nullptr);
283 }
284
285 /// Parse an SSA id which may appear in an affine expression.
parseSSAIdExpr(bool isSymbol)286 AffineExpr AffineParser::parseSSAIdExpr(bool isSymbol) {
287 if (!allowParsingSSAIds)
288 return (emitError("unexpected ssa identifier"), nullptr);
289 if (getToken().isNot(Token::percent_identifier))
290 return (emitError("expected ssa identifier"), nullptr);
291 auto name = getTokenSpelling();
292 // Check if we already parsed this SSA id.
293 for (auto entry : dimsAndSymbols) {
294 if (entry.first == name) {
295 consumeToken(Token::percent_identifier);
296 return entry.second;
297 }
298 }
299 // Parse the SSA id and add an AffineDim/SymbolExpr to represent it.
300 if (parseElement(isSymbol))
301 return (emitError("failed to parse ssa identifier"), nullptr);
302 auto idExpr = isSymbol
303 ? getAffineSymbolExpr(numSymbolOperands++, getContext())
304 : getAffineDimExpr(numDimOperands++, getContext());
305 dimsAndSymbols.push_back({name, idExpr});
306 return idExpr;
307 }
308
parseSymbolSSAIdExpr()309 AffineExpr AffineParser::parseSymbolSSAIdExpr() {
310 if (parseToken(Token::kw_symbol, "expected symbol keyword") ||
311 parseToken(Token::l_paren, "expected '(' at start of SSA symbol"))
312 return nullptr;
313 AffineExpr symbolExpr = parseSSAIdExpr(/*isSymbol=*/true);
314 if (!symbolExpr)
315 return nullptr;
316 if (parseToken(Token::r_paren, "expected ')' at end of SSA symbol"))
317 return nullptr;
318 return symbolExpr;
319 }
320
321 /// Parse a positive integral constant appearing in an affine expression.
322 ///
323 /// affine-expr ::= integer-literal
parseIntegerExpr()324 AffineExpr AffineParser::parseIntegerExpr() {
325 auto val = getToken().getUInt64IntegerValue();
326 if (!val.hasValue() || (int64_t)val.getValue() < 0)
327 return (emitError("constant too large for index"), nullptr);
328
329 consumeToken(Token::integer);
330 return builder.getAffineConstantExpr((int64_t)val.getValue());
331 }
332
333 /// Parses an expression that can be a valid operand of an affine expression.
334 /// lhs: if non-null, lhs is an affine expression that is the lhs of a binary
335 /// operator, the rhs of which is being parsed. This is used to determine
336 /// whether an error should be emitted for a missing right operand.
337 // Eg: for an expression without parentheses (like i + j + k + l), each
338 // of the four identifiers is an operand. For i + j*k + l, j*k is not an
339 // operand expression, it's an op expression and will be parsed via
340 // parseAffineHighPrecOpExpression(). However, for i + (j*k) + -l, (j*k) and
341 // -l are valid operands that will be parsed by this function.
parseAffineOperandExpr(AffineExpr lhs)342 AffineExpr AffineParser::parseAffineOperandExpr(AffineExpr lhs) {
343 switch (getToken().getKind()) {
344 case Token::bare_identifier:
345 return parseBareIdExpr();
346 case Token::kw_symbol:
347 return parseSymbolSSAIdExpr();
348 case Token::percent_identifier:
349 return parseSSAIdExpr(/*isSymbol=*/false);
350 case Token::integer:
351 return parseIntegerExpr();
352 case Token::l_paren:
353 return parseParentheticalExpr();
354 case Token::minus:
355 return parseNegateExpression(lhs);
356 case Token::kw_ceildiv:
357 case Token::kw_floordiv:
358 case Token::kw_mod:
359 case Token::plus:
360 case Token::star:
361 if (lhs)
362 emitError("missing right operand of binary operator");
363 else
364 emitError("missing left operand of binary operator");
365 return nullptr;
366 default:
367 if (lhs)
368 emitError("missing right operand of binary operator");
369 else
370 emitError("expected affine expression");
371 return nullptr;
372 }
373 }
374
375 /// Parse affine expressions that are bare-id's, integer constants,
376 /// parenthetical affine expressions, and affine op expressions that are a
377 /// composition of those.
378 ///
379 /// All binary op's associate from left to right.
380 ///
381 /// {add, sub} have lower precedence than {mul, div, and mod}.
382 ///
383 /// Add, sub'are themselves at the same precedence level. Mul, floordiv,
384 /// ceildiv, and mod are at the same higher precedence level. Negation has
385 /// higher precedence than any binary op.
386 ///
387 /// llhs: the affine expression appearing on the left of the one being parsed.
388 /// This function will return ((llhs llhsOp lhs) op rhs) if llhs is non null,
389 /// and lhs op rhs otherwise; if there is no rhs, llhs llhsOp lhs is returned
390 /// if llhs is non-null; otherwise lhs is returned. This is to deal with left
391 /// associativity.
392 ///
393 /// Eg: when the expression is e1 + e2*e3 + e4, with e1 as llhs, this function
394 /// will return the affine expr equivalent of (e1 + (e2*e3)) + e4, where
395 /// (e2*e3) will be parsed using parseAffineHighPrecOpExpr().
parseAffineLowPrecOpExpr(AffineExpr llhs,AffineLowPrecOp llhsOp)396 AffineExpr AffineParser::parseAffineLowPrecOpExpr(AffineExpr llhs,
397 AffineLowPrecOp llhsOp) {
398 AffineExpr lhs;
399 if (!(lhs = parseAffineOperandExpr(llhs)))
400 return nullptr;
401
402 // Found an LHS. Deal with the ops.
403 if (AffineLowPrecOp lOp = consumeIfLowPrecOp()) {
404 if (llhs) {
405 AffineExpr sum = getAffineBinaryOpExpr(llhsOp, llhs, lhs);
406 return parseAffineLowPrecOpExpr(sum, lOp);
407 }
408 // No LLHS, get RHS and form the expression.
409 return parseAffineLowPrecOpExpr(lhs, lOp);
410 }
411 auto opLoc = getToken().getLoc();
412 if (AffineHighPrecOp hOp = consumeIfHighPrecOp()) {
413 // We have a higher precedence op here. Get the rhs operand for the llhs
414 // through parseAffineHighPrecOpExpr.
415 AffineExpr highRes = parseAffineHighPrecOpExpr(lhs, hOp, opLoc);
416 if (!highRes)
417 return nullptr;
418
419 // If llhs is null, the product forms the first operand of the yet to be
420 // found expression. If non-null, the op to associate with llhs is llhsOp.
421 AffineExpr expr =
422 llhs ? getAffineBinaryOpExpr(llhsOp, llhs, highRes) : highRes;
423
424 // Recurse for subsequent low prec op's after the affine high prec op
425 // expression.
426 if (AffineLowPrecOp nextOp = consumeIfLowPrecOp())
427 return parseAffineLowPrecOpExpr(expr, nextOp);
428 return expr;
429 }
430 // Last operand in the expression list.
431 if (llhs)
432 return getAffineBinaryOpExpr(llhsOp, llhs, lhs);
433 // No llhs, 'lhs' itself is the expression.
434 return lhs;
435 }
436
437 /// Parse an affine expression.
438 /// affine-expr ::= `(` affine-expr `)`
439 /// | `-` affine-expr
440 /// | affine-expr `+` affine-expr
441 /// | affine-expr `-` affine-expr
442 /// | affine-expr `*` affine-expr
443 /// | affine-expr `floordiv` affine-expr
444 /// | affine-expr `ceildiv` affine-expr
445 /// | affine-expr `mod` affine-expr
446 /// | bare-id
447 /// | integer-literal
448 ///
449 /// Additional conditions are checked depending on the production. For eg.,
450 /// one of the operands for `*` has to be either constant/symbolic; the second
451 /// operand for floordiv, ceildiv, and mod has to be a positive integer.
parseAffineExpr()452 AffineExpr AffineParser::parseAffineExpr() {
453 return parseAffineLowPrecOpExpr(nullptr, AffineLowPrecOp::LNoOp);
454 }
455
456 /// Parse a dim or symbol from the lists appearing before the actual
457 /// expressions of the affine map. Update our state to store the
458 /// dimensional/symbolic identifier.
parseIdentifierDefinition(AffineExpr idExpr)459 ParseResult AffineParser::parseIdentifierDefinition(AffineExpr idExpr) {
460 if (getToken().isNot(Token::bare_identifier))
461 return emitError("expected bare identifier");
462
463 auto name = getTokenSpelling();
464 for (auto entry : dimsAndSymbols) {
465 if (entry.first == name)
466 return emitError("redefinition of identifier '" + name + "'");
467 }
468 consumeToken(Token::bare_identifier);
469
470 dimsAndSymbols.push_back({name, idExpr});
471 return success();
472 }
473
474 /// Parse the list of dimensional identifiers to an affine map.
parseDimIdList(unsigned & numDims)475 ParseResult AffineParser::parseDimIdList(unsigned &numDims) {
476 if (parseToken(Token::l_paren,
477 "expected '(' at start of dimensional identifiers list")) {
478 return failure();
479 }
480
481 auto parseElt = [&]() -> ParseResult {
482 auto dimension = getAffineDimExpr(numDims++, getContext());
483 return parseIdentifierDefinition(dimension);
484 };
485 return parseCommaSeparatedListUntil(Token::r_paren, parseElt);
486 }
487
488 /// Parse the list of symbolic identifiers to an affine map.
parseSymbolIdList(unsigned & numSymbols)489 ParseResult AffineParser::parseSymbolIdList(unsigned &numSymbols) {
490 consumeToken(Token::l_square);
491 auto parseElt = [&]() -> ParseResult {
492 auto symbol = getAffineSymbolExpr(numSymbols++, getContext());
493 return parseIdentifierDefinition(symbol);
494 };
495 return parseCommaSeparatedListUntil(Token::r_square, parseElt);
496 }
497
498 /// Parse the list of symbolic identifiers to an affine map.
499 ParseResult
parseDimAndOptionalSymbolIdList(unsigned & numDims,unsigned & numSymbols)500 AffineParser::parseDimAndOptionalSymbolIdList(unsigned &numDims,
501 unsigned &numSymbols) {
502 if (parseDimIdList(numDims)) {
503 return failure();
504 }
505 if (!getToken().is(Token::l_square)) {
506 numSymbols = 0;
507 return success();
508 }
509 return parseSymbolIdList(numSymbols);
510 }
511
512 /// Parses an ambiguous affine map or integer set definition inline.
parseAffineMapOrIntegerSetInline(AffineMap & map,IntegerSet & set)513 ParseResult AffineParser::parseAffineMapOrIntegerSetInline(AffineMap &map,
514 IntegerSet &set) {
515 unsigned numDims = 0, numSymbols = 0;
516
517 // List of dimensional and optional symbol identifiers.
518 if (parseDimAndOptionalSymbolIdList(numDims, numSymbols)) {
519 return failure();
520 }
521
522 // This is needed for parsing attributes as we wouldn't know whether we would
523 // be parsing an integer set attribute or an affine map attribute.
524 bool isArrow = getToken().is(Token::arrow);
525 bool isColon = getToken().is(Token::colon);
526 if (!isArrow && !isColon) {
527 return emitError("expected '->' or ':'");
528 } else if (isArrow) {
529 parseToken(Token::arrow, "expected '->' or '['");
530 map = parseAffineMapRange(numDims, numSymbols);
531 return map ? success() : failure();
532 } else if (parseToken(Token::colon, "expected ':' or '['")) {
533 return failure();
534 }
535
536 if ((set = parseIntegerSetConstraints(numDims, numSymbols)))
537 return success();
538
539 return failure();
540 }
541
542 /// Parse an AffineMap where the dim and symbol identifiers are SSA ids.
543 ParseResult
parseAffineMapOfSSAIds(AffineMap & map,OpAsmParser::Delimiter delimiter)544 AffineParser::parseAffineMapOfSSAIds(AffineMap &map,
545 OpAsmParser::Delimiter delimiter) {
546 Token::Kind rightToken;
547 switch (delimiter) {
548 case OpAsmParser::Delimiter::Square:
549 if (parseToken(Token::l_square, "expected '['"))
550 return failure();
551 rightToken = Token::r_square;
552 break;
553 case OpAsmParser::Delimiter::Paren:
554 if (parseToken(Token::l_paren, "expected '('"))
555 return failure();
556 rightToken = Token::r_paren;
557 break;
558 default:
559 return emitError("unexpected delimiter");
560 }
561
562 SmallVector<AffineExpr, 4> exprs;
563 auto parseElt = [&]() -> ParseResult {
564 auto elt = parseAffineExpr();
565 exprs.push_back(elt);
566 return elt ? success() : failure();
567 };
568
569 // Parse a multi-dimensional affine expression (a comma-separated list of
570 // 1-d affine expressions); the list can be empty. Grammar:
571 // multi-dim-affine-expr ::= `(` `)`
572 // | `(` affine-expr (`,` affine-expr)* `)`
573 if (parseCommaSeparatedListUntil(rightToken, parseElt,
574 /*allowEmptyList=*/true))
575 return failure();
576 // Parsed a valid affine map.
577 map = AffineMap::get(numDimOperands, dimsAndSymbols.size() - numDimOperands,
578 exprs, getContext());
579 return success();
580 }
581
582 /// Parse the range and sizes affine map definition inline.
583 ///
584 /// affine-map ::= dim-and-symbol-id-lists `->` multi-dim-affine-expr
585 ///
586 /// multi-dim-affine-expr ::= `(` `)`
587 /// multi-dim-affine-expr ::= `(` affine-expr (`,` affine-expr)* `)`
parseAffineMapRange(unsigned numDims,unsigned numSymbols)588 AffineMap AffineParser::parseAffineMapRange(unsigned numDims,
589 unsigned numSymbols) {
590 parseToken(Token::l_paren, "expected '(' at start of affine map range");
591
592 SmallVector<AffineExpr, 4> exprs;
593 auto parseElt = [&]() -> ParseResult {
594 auto elt = parseAffineExpr();
595 ParseResult res = elt ? success() : failure();
596 exprs.push_back(elt);
597 return res;
598 };
599
600 // Parse a multi-dimensional affine expression (a comma-separated list of
601 // 1-d affine expressions). Grammar:
602 // multi-dim-affine-expr ::= `(` `)`
603 // | `(` affine-expr (`,` affine-expr)* `)`
604 if (parseCommaSeparatedListUntil(Token::r_paren, parseElt, true))
605 return AffineMap();
606
607 // Parsed a valid affine map.
608 return AffineMap::get(numDims, numSymbols, exprs, getContext());
609 }
610
611 /// Parse an affine constraint.
612 /// affine-constraint ::= affine-expr `>=` `0`
613 /// | affine-expr `==` `0`
614 ///
615 /// isEq is set to true if the parsed constraint is an equality, false if it
616 /// is an inequality (greater than or equal).
617 ///
parseAffineConstraint(bool * isEq)618 AffineExpr AffineParser::parseAffineConstraint(bool *isEq) {
619 AffineExpr expr = parseAffineExpr();
620 if (!expr)
621 return nullptr;
622
623 if (consumeIf(Token::greater) && consumeIf(Token::equal) &&
624 getToken().is(Token::integer)) {
625 auto dim = getToken().getUnsignedIntegerValue();
626 if (dim.hasValue() && dim.getValue() == 0) {
627 consumeToken(Token::integer);
628 *isEq = false;
629 return expr;
630 }
631 return (emitError("expected '0' after '>='"), nullptr);
632 }
633
634 if (consumeIf(Token::equal) && consumeIf(Token::equal) &&
635 getToken().is(Token::integer)) {
636 auto dim = getToken().getUnsignedIntegerValue();
637 if (dim.hasValue() && dim.getValue() == 0) {
638 consumeToken(Token::integer);
639 *isEq = true;
640 return expr;
641 }
642 return (emitError("expected '0' after '=='"), nullptr);
643 }
644
645 return (emitError("expected '== 0' or '>= 0' at end of affine constraint"),
646 nullptr);
647 }
648
649 /// Parse the constraints that are part of an integer set definition.
650 /// integer-set-inline
651 /// ::= dim-and-symbol-id-lists `:`
652 /// '(' affine-constraint-conjunction? ')'
653 /// affine-constraint-conjunction ::= affine-constraint (`,`
654 /// affine-constraint)*
655 ///
parseIntegerSetConstraints(unsigned numDims,unsigned numSymbols)656 IntegerSet AffineParser::parseIntegerSetConstraints(unsigned numDims,
657 unsigned numSymbols) {
658 if (parseToken(Token::l_paren,
659 "expected '(' at start of integer set constraint list"))
660 return IntegerSet();
661
662 SmallVector<AffineExpr, 4> constraints;
663 SmallVector<bool, 4> isEqs;
664 auto parseElt = [&]() -> ParseResult {
665 bool isEq;
666 auto elt = parseAffineConstraint(&isEq);
667 ParseResult res = elt ? success() : failure();
668 if (elt) {
669 constraints.push_back(elt);
670 isEqs.push_back(isEq);
671 }
672 return res;
673 };
674
675 // Parse a list of affine constraints (comma-separated).
676 if (parseCommaSeparatedListUntil(Token::r_paren, parseElt, true))
677 return IntegerSet();
678
679 // If no constraints were parsed, then treat this as a degenerate 'true' case.
680 if (constraints.empty()) {
681 /* 0 == 0 */
682 auto zero = getAffineConstantExpr(0, getContext());
683 return IntegerSet::get(numDims, numSymbols, zero, true);
684 }
685
686 // Parsed a valid integer set.
687 return IntegerSet::get(numDims, numSymbols, constraints, isEqs);
688 }
689
690 //===----------------------------------------------------------------------===//
691 // Parser
692 //===----------------------------------------------------------------------===//
693
694 /// Parse an ambiguous reference to either and affine map or an integer set.
parseAffineMapOrIntegerSetReference(AffineMap & map,IntegerSet & set)695 ParseResult Parser::parseAffineMapOrIntegerSetReference(AffineMap &map,
696 IntegerSet &set) {
697 return AffineParser(state).parseAffineMapOrIntegerSetInline(map, set);
698 }
parseAffineMapReference(AffineMap & map)699 ParseResult Parser::parseAffineMapReference(AffineMap &map) {
700 llvm::SMLoc curLoc = getToken().getLoc();
701 IntegerSet set;
702 if (parseAffineMapOrIntegerSetReference(map, set))
703 return failure();
704 if (set)
705 return emitError(curLoc, "expected AffineMap, but got IntegerSet");
706 return success();
707 }
parseIntegerSetReference(IntegerSet & set)708 ParseResult Parser::parseIntegerSetReference(IntegerSet &set) {
709 llvm::SMLoc curLoc = getToken().getLoc();
710 AffineMap map;
711 if (parseAffineMapOrIntegerSetReference(map, set))
712 return failure();
713 if (map)
714 return emitError(curLoc, "expected IntegerSet, but got AffineMap");
715 return success();
716 }
717
718 /// Parse an AffineMap of SSA ids. The callback 'parseElement' is used to
719 /// parse SSA value uses encountered while parsing affine expressions.
720 ParseResult
parseAffineMapOfSSAIds(AffineMap & map,function_ref<ParseResult (bool)> parseElement,OpAsmParser::Delimiter delimiter)721 Parser::parseAffineMapOfSSAIds(AffineMap &map,
722 function_ref<ParseResult(bool)> parseElement,
723 OpAsmParser::Delimiter delimiter) {
724 return AffineParser(state, /*allowParsingSSAIds=*/true, parseElement)
725 .parseAffineMapOfSSAIds(map, delimiter);
726 }
727