1 /*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 // TODO(b/129481165): remove the #pragma below and fix conversion issues
18 #pragma clang diagnostic push
19 #pragma clang diagnostic ignored "-Wconversion"
20 #pragma clang diagnostic ignored "-Wextra"
21
22 //#define LOG_NDEBUG 0
23 #define ATRACE_TAG ATRACE_TAG_GRAPHICS
24
25 #include "SurfaceFlinger.h"
26
27 #include <android-base/properties.h>
28 #include <android/configuration.h>
29 #include <android/hardware/configstore/1.0/ISurfaceFlingerConfigs.h>
30 #include <android/hardware/configstore/1.1/ISurfaceFlingerConfigs.h>
31 #include <android/hardware/configstore/1.1/types.h>
32 #include <android/hardware/power/Boost.h>
33 #include <android/native_window.h>
34 #include <android/os/BnSetInputWindowsListener.h>
35 #include <android/os/IInputFlinger.h>
36 #include <binder/IPCThreadState.h>
37 #include <binder/IServiceManager.h>
38 #include <binder/PermissionCache.h>
39 #include <compositionengine/CompositionEngine.h>
40 #include <compositionengine/CompositionRefreshArgs.h>
41 #include <compositionengine/Display.h>
42 #include <compositionengine/DisplayColorProfile.h>
43 #include <compositionengine/DisplayCreationArgs.h>
44 #include <compositionengine/LayerFECompositionState.h>
45 #include <compositionengine/OutputLayer.h>
46 #include <compositionengine/RenderSurface.h>
47 #include <compositionengine/impl/OutputCompositionState.h>
48 #include <compositionengine/impl/OutputLayerCompositionState.h>
49 #include <configstore/Utils.h>
50 #include <cutils/compiler.h>
51 #include <cutils/properties.h>
52 #include <ftl/future.h>
53 #include <gui/BufferQueue.h>
54 #include <gui/DebugEGLImageTracker.h>
55 #include <gui/IDisplayEventConnection.h>
56 #include <gui/IProducerListener.h>
57 #include <gui/LayerDebugInfo.h>
58 #include <gui/LayerMetadata.h>
59 #include <gui/LayerState.h>
60 #include <gui/Surface.h>
61 #include <gui/TraceUtils.h>
62 #include <hidl/ServiceManagement.h>
63 #include <layerproto/LayerProtoParser.h>
64 #include <log/log.h>
65 #include <private/android_filesystem_config.h>
66 #include <private/gui/SyncFeatures.h>
67 #include <processgroup/processgroup.h>
68 #include <renderengine/RenderEngine.h>
69 #include <sys/types.h>
70 #include <ui/ColorSpace.h>
71 #include <ui/DebugUtils.h>
72 #include <ui/DisplayId.h>
73 #include <ui/DisplayMode.h>
74 #include <ui/DisplayStatInfo.h>
75 #include <ui/DisplayState.h>
76 #include <ui/DynamicDisplayInfo.h>
77 #include <ui/GraphicBufferAllocator.h>
78 #include <ui/PixelFormat.h>
79 #include <ui/StaticDisplayInfo.h>
80 #include <utils/StopWatch.h>
81 #include <utils/String16.h>
82 #include <utils/String8.h>
83 #include <utils/Timers.h>
84 #include <utils/misc.h>
85
86 #include <algorithm>
87 #include <cerrno>
88 #include <cinttypes>
89 #include <cmath>
90 #include <cstdint>
91 #include <functional>
92 #include <mutex>
93 #include <optional>
94 #include <type_traits>
95 #include <unordered_map>
96
97 #include "BufferLayer.h"
98 #include "BufferQueueLayer.h"
99 #include "BufferStateLayer.h"
100 #include "Client.h"
101 #include "Colorizer.h"
102 #include "ContainerLayer.h"
103 #include "DisplayDevice.h"
104 #include "DisplayHardware/ComposerHal.h"
105 #include "DisplayHardware/DisplayIdentification.h"
106 #include "DisplayHardware/FramebufferSurface.h"
107 #include "DisplayHardware/HWComposer.h"
108 #include "DisplayHardware/Hal.h"
109 #include "DisplayHardware/VirtualDisplaySurface.h"
110 #include "DisplayRenderArea.h"
111 #include "EffectLayer.h"
112 #include "Effects/Daltonizer.h"
113 #include "FpsReporter.h"
114 #include "FrameTimeline/FrameTimeline.h"
115 #include "FrameTracer/FrameTracer.h"
116 #include "HdrLayerInfoReporter.h"
117 #include "Layer.h"
118 #include "LayerRenderArea.h"
119 #include "LayerVector.h"
120 #include "MonitoredProducer.h"
121 #include "NativeWindowSurface.h"
122 #include "RefreshRateOverlay.h"
123 #include "RegionSamplingThread.h"
124 #include "Scheduler/DispSyncSource.h"
125 #include "Scheduler/EventThread.h"
126 #include "Scheduler/LayerHistory.h"
127 #include "Scheduler/MessageQueue.h"
128 #include "Scheduler/Scheduler.h"
129 #include "Scheduler/VsyncConfiguration.h"
130 #include "Scheduler/VsyncController.h"
131 #include "StartPropertySetThread.h"
132 #include "SurfaceFlingerProperties.h"
133 #include "SurfaceInterceptor.h"
134 #include "TimeStats/TimeStats.h"
135 #include "TunnelModeEnabledReporter.h"
136 #include "android-base/parseint.h"
137 #include "android-base/stringprintf.h"
138 #include "android-base/strings.h"
139
140 #define MAIN_THREAD ACQUIRE(mStateLock) RELEASE(mStateLock)
141
142 #define ON_MAIN_THREAD(expr) \
143 [&] { \
144 LOG_FATAL_IF(std::this_thread::get_id() != mMainThreadId); \
145 UnnecessaryLock lock(mStateLock); \
146 return (expr); \
147 }()
148
149 #undef NO_THREAD_SAFETY_ANALYSIS
150 #define NO_THREAD_SAFETY_ANALYSIS \
151 _Pragma("GCC error \"Prefer MAIN_THREAD macros or {Conditional,Timed,Unnecessary}Lock.\"")
152
153 namespace android {
154
155 using namespace std::string_literals;
156
157 using namespace android::hardware::configstore;
158 using namespace android::hardware::configstore::V1_0;
159 using namespace android::sysprop;
160
161 using android::hardware::power::Boost;
162 using base::StringAppendF;
163 using ui::ColorMode;
164 using ui::Dataspace;
165 using ui::DisplayPrimaries;
166 using ui::RenderIntent;
167
168 namespace hal = android::hardware::graphics::composer::hal;
169
170 namespace {
171
172 #pragma clang diagnostic push
173 #pragma clang diagnostic error "-Wswitch-enum"
174
isWideColorMode(const ColorMode colorMode)175 bool isWideColorMode(const ColorMode colorMode) {
176 switch (colorMode) {
177 case ColorMode::DISPLAY_P3:
178 case ColorMode::ADOBE_RGB:
179 case ColorMode::DCI_P3:
180 case ColorMode::BT2020:
181 case ColorMode::DISPLAY_BT2020:
182 case ColorMode::BT2100_PQ:
183 case ColorMode::BT2100_HLG:
184 return true;
185 case ColorMode::NATIVE:
186 case ColorMode::STANDARD_BT601_625:
187 case ColorMode::STANDARD_BT601_625_UNADJUSTED:
188 case ColorMode::STANDARD_BT601_525:
189 case ColorMode::STANDARD_BT601_525_UNADJUSTED:
190 case ColorMode::STANDARD_BT709:
191 case ColorMode::SRGB:
192 return false;
193 }
194 return false;
195 }
196
197 #pragma clang diagnostic pop
198
199 template <typename Mutex>
200 struct SCOPED_CAPABILITY ConditionalLockGuard {
ConditionalLockGuardandroid::__anon0eb13e1f0111::ConditionalLockGuard201 ConditionalLockGuard(Mutex& mutex, bool lock) ACQUIRE(mutex) : mutex(mutex), lock(lock) {
202 if (lock) mutex.lock();
203 }
204
RELEASEandroid::__anon0eb13e1f0111::ConditionalLockGuard205 ~ConditionalLockGuard() RELEASE() {
206 if (lock) mutex.unlock();
207 }
208
209 Mutex& mutex;
210 const bool lock;
211 };
212
213 using ConditionalLock = ConditionalLockGuard<Mutex>;
214
215 struct SCOPED_CAPABILITY TimedLock {
TimedLockandroid::__anon0eb13e1f0111::TimedLock216 TimedLock(Mutex& mutex, nsecs_t timeout, const char* whence) ACQUIRE(mutex)
217 : mutex(mutex), status(mutex.timedLock(timeout)) {
218 ALOGE_IF(!locked(), "%s timed out locking: %s (%d)", whence, strerror(-status), status);
219 }
220
RELEASEandroid::__anon0eb13e1f0111::TimedLock221 ~TimedLock() RELEASE() {
222 if (locked()) mutex.unlock();
223 }
224
lockedandroid::__anon0eb13e1f0111::TimedLock225 bool locked() const { return status == NO_ERROR; }
226
227 Mutex& mutex;
228 const status_t status;
229 };
230
231 struct SCOPED_CAPABILITY UnnecessaryLock {
ACQUIREandroid::__anon0eb13e1f0111::UnnecessaryLock232 explicit UnnecessaryLock(Mutex& mutex) ACQUIRE(mutex) {}
RELEASEandroid::__anon0eb13e1f0111::UnnecessaryLock233 ~UnnecessaryLock() RELEASE() {}
234 };
235
236 // TODO(b/141333600): Consolidate with DisplayMode::Builder::getDefaultDensity.
237 constexpr float FALLBACK_DENSITY = ACONFIGURATION_DENSITY_TV;
238
getDensityFromProperty(const char * property,bool required)239 float getDensityFromProperty(const char* property, bool required) {
240 char value[PROPERTY_VALUE_MAX];
241 const float density = property_get(property, value, nullptr) > 0 ? std::atof(value) : 0.f;
242 if (!density && required) {
243 ALOGE("%s must be defined as a build property", property);
244 return FALLBACK_DENSITY;
245 }
246 return density;
247 }
248
249 // Currently we only support V0_SRGB and DISPLAY_P3 as composition preference.
validateCompositionDataspace(Dataspace dataspace)250 bool validateCompositionDataspace(Dataspace dataspace) {
251 return dataspace == Dataspace::V0_SRGB || dataspace == Dataspace::DISPLAY_P3;
252 }
253
254 class FrameRateFlexibilityToken : public BBinder {
255 public:
FrameRateFlexibilityToken(std::function<void ()> callback)256 FrameRateFlexibilityToken(std::function<void()> callback) : mCallback(callback) {}
~FrameRateFlexibilityToken()257 virtual ~FrameRateFlexibilityToken() { mCallback(); }
258
259 private:
260 std::function<void()> mCallback;
261 };
262
263 enum Permission {
264 ACCESS_SURFACE_FLINGER = 0x1,
265 ROTATE_SURFACE_FLINGER = 0x2,
266 };
267
268 } // namespace anonymous
269
270 struct SetInputWindowsListener : os::BnSetInputWindowsListener {
SetInputWindowsListenerandroid::SetInputWindowsListener271 explicit SetInputWindowsListener(std::function<void()> listenerCb) : mListenerCb(listenerCb) {}
272
273 binder::Status onSetInputWindowsFinished() override;
274
275 std::function<void()> mListenerCb;
276 };
277
onSetInputWindowsFinished()278 binder::Status SetInputWindowsListener::onSetInputWindowsFinished() {
279 if (mListenerCb != nullptr) {
280 mListenerCb();
281 }
282 return binder::Status::ok();
283 }
284
285 // ---------------------------------------------------------------------------
286
287 const String16 sHardwareTest("android.permission.HARDWARE_TEST");
288 const String16 sAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER");
289 const String16 sRotateSurfaceFlinger("android.permission.ROTATE_SURFACE_FLINGER");
290 const String16 sReadFramebuffer("android.permission.READ_FRAME_BUFFER");
291 const String16 sControlDisplayBrightness("android.permission.CONTROL_DISPLAY_BRIGHTNESS");
292 const String16 sDump("android.permission.DUMP");
293 const String16 sCaptureBlackoutContent("android.permission.CAPTURE_BLACKOUT_CONTENT");
294
295 const char* KERNEL_IDLE_TIMER_PROP = "graphics.display.kernel_idle_timer.enabled";
296
297 // ---------------------------------------------------------------------------
298 int64_t SurfaceFlinger::dispSyncPresentTimeOffset;
299 bool SurfaceFlinger::useHwcForRgbToYuv;
300 bool SurfaceFlinger::hasSyncFramework;
301 int64_t SurfaceFlinger::maxFrameBufferAcquiredBuffers;
302 uint32_t SurfaceFlinger::maxGraphicsWidth;
303 uint32_t SurfaceFlinger::maxGraphicsHeight;
304 bool SurfaceFlinger::hasWideColorDisplay;
305 ui::Rotation SurfaceFlinger::internalDisplayOrientation = ui::ROTATION_0;
306 bool SurfaceFlinger::useColorManagement;
307 bool SurfaceFlinger::useContextPriority;
308 Dataspace SurfaceFlinger::defaultCompositionDataspace = Dataspace::V0_SRGB;
309 ui::PixelFormat SurfaceFlinger::defaultCompositionPixelFormat = ui::PixelFormat::RGBA_8888;
310 Dataspace SurfaceFlinger::wideColorGamutCompositionDataspace = Dataspace::V0_SRGB;
311 ui::PixelFormat SurfaceFlinger::wideColorGamutCompositionPixelFormat = ui::PixelFormat::RGBA_8888;
312 bool SurfaceFlinger::useFrameRateApi;
313 bool SurfaceFlinger::enableSdrDimming;
314 bool SurfaceFlinger::enableLatchUnsignaled;
315
decodeDisplayColorSetting(DisplayColorSetting displayColorSetting)316 std::string decodeDisplayColorSetting(DisplayColorSetting displayColorSetting) {
317 switch(displayColorSetting) {
318 case DisplayColorSetting::kManaged:
319 return std::string("Managed");
320 case DisplayColorSetting::kUnmanaged:
321 return std::string("Unmanaged");
322 case DisplayColorSetting::kEnhanced:
323 return std::string("Enhanced");
324 default:
325 return std::string("Unknown ") +
326 std::to_string(static_cast<int>(displayColorSetting));
327 }
328 }
329
callingThreadHasRotateSurfaceFlingerAccess()330 bool callingThreadHasRotateSurfaceFlingerAccess() {
331 IPCThreadState* ipc = IPCThreadState::self();
332 const int pid = ipc->getCallingPid();
333 const int uid = ipc->getCallingUid();
334 return uid == AID_GRAPHICS || uid == AID_SYSTEM ||
335 PermissionCache::checkPermission(sRotateSurfaceFlinger, pid, uid);
336 }
337
SurfaceFlinger(Factory & factory,SkipInitializationTag)338 SurfaceFlinger::SurfaceFlinger(Factory& factory, SkipInitializationTag)
339 : mFactory(factory),
340 mInterceptor(mFactory.createSurfaceInterceptor()),
341 mTimeStats(std::make_shared<impl::TimeStats>()),
342 mFrameTracer(mFactory.createFrameTracer()),
343 mFrameTimeline(mFactory.createFrameTimeline(mTimeStats, getpid())),
344 mEventQueue(mFactory.createMessageQueue()),
345 mCompositionEngine(mFactory.createCompositionEngine()),
346 mHwcServiceName(base::GetProperty("debug.sf.hwc_service_name"s, "default"s)),
347 mTunnelModeEnabledReporter(new TunnelModeEnabledReporter()),
348 mInternalDisplayDensity(getDensityFromProperty("ro.sf.lcd_density", true)),
349 mEmulatedDisplayDensity(getDensityFromProperty("qemu.sf.lcd_density", false)),
350 mPowerAdvisor(*this) {
351 ALOGI("Using HWComposer service: %s", mHwcServiceName.c_str());
352
353 mSetInputWindowsListener = new SetInputWindowsListener([&]() { setInputWindowsFinished(); });
354 }
355
SurfaceFlinger(Factory & factory)356 SurfaceFlinger::SurfaceFlinger(Factory& factory) : SurfaceFlinger(factory, SkipInitialization) {
357 ALOGI("SurfaceFlinger is starting");
358
359 hasSyncFramework = running_without_sync_framework(true);
360
361 dispSyncPresentTimeOffset = present_time_offset_from_vsync_ns(0);
362
363 useHwcForRgbToYuv = force_hwc_copy_for_virtual_displays(false);
364
365 maxFrameBufferAcquiredBuffers = max_frame_buffer_acquired_buffers(2);
366
367 maxGraphicsWidth = std::max(max_graphics_width(0), 0);
368 maxGraphicsHeight = std::max(max_graphics_height(0), 0);
369
370 hasWideColorDisplay = has_wide_color_display(false);
371
372 // Android 12 and beyond, color management in display pipeline is turned on
373 // by default.
374 useColorManagement = use_color_management(true);
375
376 mDefaultCompositionDataspace =
377 static_cast<ui::Dataspace>(default_composition_dataspace(Dataspace::V0_SRGB));
378 mWideColorGamutCompositionDataspace = static_cast<ui::Dataspace>(wcg_composition_dataspace(
379 hasWideColorDisplay ? Dataspace::DISPLAY_P3 : Dataspace::V0_SRGB));
380 defaultCompositionDataspace = mDefaultCompositionDataspace;
381 wideColorGamutCompositionDataspace = mWideColorGamutCompositionDataspace;
382 defaultCompositionPixelFormat = static_cast<ui::PixelFormat>(
383 default_composition_pixel_format(ui::PixelFormat::RGBA_8888));
384 wideColorGamutCompositionPixelFormat =
385 static_cast<ui::PixelFormat>(wcg_composition_pixel_format(ui::PixelFormat::RGBA_8888));
386
387 mColorSpaceAgnosticDataspace =
388 static_cast<ui::Dataspace>(color_space_agnostic_dataspace(Dataspace::UNKNOWN));
389
390 mLayerCachingEnabled = [] {
391 const bool enable =
392 android::sysprop::SurfaceFlingerProperties::enable_layer_caching().value_or(false);
393 return base::GetBoolProperty(std::string("debug.sf.enable_layer_caching"), enable);
394 }();
395
396 useContextPriority = use_context_priority(true);
397
398 using Values = SurfaceFlingerProperties::primary_display_orientation_values;
399 switch (primary_display_orientation(Values::ORIENTATION_0)) {
400 case Values::ORIENTATION_0:
401 break;
402 case Values::ORIENTATION_90:
403 internalDisplayOrientation = ui::ROTATION_90;
404 break;
405 case Values::ORIENTATION_180:
406 internalDisplayOrientation = ui::ROTATION_180;
407 break;
408 case Values::ORIENTATION_270:
409 internalDisplayOrientation = ui::ROTATION_270;
410 break;
411 }
412 ALOGV("Internal Display Orientation: %s", toCString(internalDisplayOrientation));
413
414 mInternalDisplayPrimaries = sysprop::getDisplayNativePrimaries();
415
416 // debugging stuff...
417 char value[PROPERTY_VALUE_MAX];
418
419 property_get("ro.bq.gpu_to_cpu_unsupported", value, "0");
420 mGpuToCpuSupported = !atoi(value);
421
422 property_get("ro.build.type", value, "user");
423 mIsUserBuild = strcmp(value, "user") == 0;
424
425 property_get("debug.sf.showupdates", value, "0");
426 mDebugRegion = atoi(value);
427
428 ALOGI_IF(mDebugRegion, "showupdates enabled");
429
430 // DDMS debugging deprecated (b/120782499)
431 property_get("debug.sf.ddms", value, "0");
432 int debugDdms = atoi(value);
433 ALOGI_IF(debugDdms, "DDMS debugging not supported");
434
435 property_get("debug.sf.enable_gl_backpressure", value, "0");
436 mPropagateBackpressureClientComposition = atoi(value);
437 ALOGI_IF(mPropagateBackpressureClientComposition,
438 "Enabling backpressure propagation for Client Composition");
439
440 property_get("ro.surface_flinger.supports_background_blur", value, "0");
441 bool supportsBlurs = atoi(value);
442 mSupportsBlur = supportsBlurs;
443 ALOGI_IF(!mSupportsBlur, "Disabling blur effects, they are not supported.");
444 property_get("ro.sf.blurs_are_expensive", value, "0");
445 mBlursAreExpensive = atoi(value);
446
447 const size_t defaultListSize = ISurfaceComposer::MAX_LAYERS;
448 auto listSize = property_get_int32("debug.sf.max_igbp_list_size", int32_t(defaultListSize));
449 mMaxGraphicBufferProducerListSize = (listSize > 0) ? size_t(listSize) : defaultListSize;
450 mGraphicBufferProducerListSizeLogThreshold =
451 std::max(static_cast<int>(0.95 *
452 static_cast<double>(mMaxGraphicBufferProducerListSize)),
453 1);
454
455 property_get("debug.sf.luma_sampling", value, "1");
456 mLumaSampling = atoi(value);
457
458 property_get("debug.sf.disable_client_composition_cache", value, "0");
459 mDisableClientCompositionCache = atoi(value);
460
461 // We should be reading 'persist.sys.sf.color_saturation' here
462 // but since /data may be encrypted, we need to wait until after vold
463 // comes online to attempt to read the property. The property is
464 // instead read after the boot animation
465
466 if (base::GetBoolProperty("debug.sf.treble_testing_override"s, false)) {
467 // Without the override SurfaceFlinger cannot connect to HIDL
468 // services that are not listed in the manifests. Considered
469 // deriving the setting from the set service name, but it
470 // would be brittle if the name that's not 'default' is used
471 // for production purposes later on.
472 ALOGI("Enabling Treble testing override");
473 android::hardware::details::setTrebleTestingOverride(true);
474 }
475
476 useFrameRateApi = use_frame_rate_api(true);
477
478 mKernelIdleTimerEnabled = mSupportKernelIdleTimer = sysprop::support_kernel_idle_timer(false);
479 base::SetProperty(KERNEL_IDLE_TIMER_PROP, mKernelIdleTimerEnabled ? "true" : "false");
480
481 mRefreshRateOverlaySpinner = property_get_bool("sf.debug.show_refresh_rate_overlay_spinner", 0);
482
483 // Debug property overrides ro. property
484 enableSdrDimming = property_get_bool("debug.sf.enable_sdr_dimming", enable_sdr_dimming(false));
485
486 enableLatchUnsignaled = base::GetBoolProperty("debug.sf.latch_unsignaled"s, false);
487 }
488
489 SurfaceFlinger::~SurfaceFlinger() = default;
490
onFirstRef()491 void SurfaceFlinger::onFirstRef() {
492 mEventQueue->init(this);
493 }
494
binderDied(const wp<IBinder> &)495 void SurfaceFlinger::binderDied(const wp<IBinder>&) {
496 // the window manager died on us. prepare its eulogy.
497 mBootFinished = false;
498
499 // Sever the link to inputflinger since its gone as well.
500 static_cast<void>(schedule([=] { mInputFlinger = nullptr; }));
501
502 // restore initial conditions (default device unblank, etc)
503 initializeDisplays();
504
505 // restart the boot-animation
506 startBootAnim();
507 }
508
run()509 void SurfaceFlinger::run() {
510 while (true) {
511 mEventQueue->waitMessage();
512 }
513 }
514
515 template <typename F, typename T>
schedule(F && f)516 inline std::future<T> SurfaceFlinger::schedule(F&& f) {
517 auto [task, future] = makeTask(std::move(f));
518 mEventQueue->postMessage(std::move(task));
519 return std::move(future);
520 }
521
createConnection()522 sp<ISurfaceComposerClient> SurfaceFlinger::createConnection() {
523 const sp<Client> client = new Client(this);
524 return client->initCheck() == NO_ERROR ? client : nullptr;
525 }
526
createDisplay(const String8 & displayName,bool secure)527 sp<IBinder> SurfaceFlinger::createDisplay(const String8& displayName, bool secure) {
528 // onTransact already checks for some permissions, but adding an additional check here.
529 // This is to ensure that only system and graphics can request to create a secure
530 // display. Secure displays can show secure content so we add an additional restriction on it.
531 const int uid = IPCThreadState::self()->getCallingUid();
532 if (secure && uid != AID_GRAPHICS && uid != AID_SYSTEM) {
533 ALOGE("Only privileged processes can create a secure display");
534 return nullptr;
535 }
536
537 class DisplayToken : public BBinder {
538 sp<SurfaceFlinger> flinger;
539 virtual ~DisplayToken() {
540 // no more references, this display must be terminated
541 Mutex::Autolock _l(flinger->mStateLock);
542 flinger->mCurrentState.displays.removeItem(this);
543 flinger->setTransactionFlags(eDisplayTransactionNeeded);
544 }
545 public:
546 explicit DisplayToken(const sp<SurfaceFlinger>& flinger)
547 : flinger(flinger) {
548 }
549 };
550
551 sp<BBinder> token = new DisplayToken(this);
552
553 Mutex::Autolock _l(mStateLock);
554 // Display ID is assigned when virtual display is allocated by HWC.
555 DisplayDeviceState state;
556 state.isSecure = secure;
557 state.displayName = displayName;
558 mCurrentState.displays.add(token, state);
559 mInterceptor->saveDisplayCreation(state);
560 return token;
561 }
562
destroyDisplay(const sp<IBinder> & displayToken)563 void SurfaceFlinger::destroyDisplay(const sp<IBinder>& displayToken) {
564 Mutex::Autolock lock(mStateLock);
565
566 const ssize_t index = mCurrentState.displays.indexOfKey(displayToken);
567 if (index < 0) {
568 ALOGE("%s: Invalid display token %p", __FUNCTION__, displayToken.get());
569 return;
570 }
571
572 const DisplayDeviceState& state = mCurrentState.displays.valueAt(index);
573 if (state.physical) {
574 ALOGE("%s: Invalid operation on physical display", __FUNCTION__);
575 return;
576 }
577 mInterceptor->saveDisplayDeletion(state.sequenceId);
578 mCurrentState.displays.removeItemsAt(index);
579 setTransactionFlags(eDisplayTransactionNeeded);
580 }
581
enableHalVirtualDisplays(bool enable)582 void SurfaceFlinger::enableHalVirtualDisplays(bool enable) {
583 auto& generator = mVirtualDisplayIdGenerators.hal;
584 if (!generator && enable) {
585 ALOGI("Enabling HAL virtual displays");
586 generator.emplace(getHwComposer().getMaxVirtualDisplayCount());
587 } else if (generator && !enable) {
588 ALOGW_IF(generator->inUse(), "Disabling HAL virtual displays while in use");
589 generator.reset();
590 }
591 }
592
acquireVirtualDisplay(ui::Size resolution,ui::PixelFormat format,ui::LayerStack layerStack)593 VirtualDisplayId SurfaceFlinger::acquireVirtualDisplay(ui::Size resolution, ui::PixelFormat format,
594 ui::LayerStack layerStack) {
595 if (auto& generator = mVirtualDisplayIdGenerators.hal) {
596 if (const auto id = generator->generateId()) {
597 std::optional<PhysicalDisplayId> mirror;
598
599 if (const auto display = findDisplay([layerStack](const auto& display) {
600 return !display.isVirtual() && display.getLayerStack() == layerStack;
601 })) {
602 mirror = display->getPhysicalId();
603 }
604
605 if (getHwComposer().allocateVirtualDisplay(*id, resolution, &format, mirror)) {
606 return *id;
607 }
608
609 generator->releaseId(*id);
610 } else {
611 ALOGW("%s: Exhausted HAL virtual displays", __func__);
612 }
613
614 ALOGW("%s: Falling back to GPU virtual display", __func__);
615 }
616
617 const auto id = mVirtualDisplayIdGenerators.gpu.generateId();
618 LOG_ALWAYS_FATAL_IF(!id, "Failed to generate ID for GPU virtual display");
619 return *id;
620 }
621
releaseVirtualDisplay(VirtualDisplayId displayId)622 void SurfaceFlinger::releaseVirtualDisplay(VirtualDisplayId displayId) {
623 if (const auto id = HalVirtualDisplayId::tryCast(displayId)) {
624 if (auto& generator = mVirtualDisplayIdGenerators.hal) {
625 generator->releaseId(*id);
626 }
627 return;
628 }
629
630 const auto id = GpuVirtualDisplayId::tryCast(displayId);
631 LOG_ALWAYS_FATAL_IF(!id);
632 mVirtualDisplayIdGenerators.gpu.releaseId(*id);
633 }
634
getPhysicalDisplayIds() const635 std::vector<PhysicalDisplayId> SurfaceFlinger::getPhysicalDisplayIds() const {
636 Mutex::Autolock lock(mStateLock);
637
638 const auto internalDisplayId = getInternalDisplayIdLocked();
639 if (!internalDisplayId) {
640 return {};
641 }
642
643 std::vector<PhysicalDisplayId> displayIds;
644 displayIds.reserve(mPhysicalDisplayTokens.size());
645 displayIds.push_back(*internalDisplayId);
646
647 for (const auto& [id, token] : mPhysicalDisplayTokens) {
648 if (id != *internalDisplayId) {
649 displayIds.push_back(id);
650 }
651 }
652
653 return displayIds;
654 }
655
getPhysicalDisplayToken(PhysicalDisplayId displayId) const656 sp<IBinder> SurfaceFlinger::getPhysicalDisplayToken(PhysicalDisplayId displayId) const {
657 Mutex::Autolock lock(mStateLock);
658 return getPhysicalDisplayTokenLocked(displayId);
659 }
660
getColorManagement(bool * outGetColorManagement) const661 status_t SurfaceFlinger::getColorManagement(bool* outGetColorManagement) const {
662 if (!outGetColorManagement) {
663 return BAD_VALUE;
664 }
665 *outGetColorManagement = useColorManagement;
666 return NO_ERROR;
667 }
668
getHwComposer() const669 HWComposer& SurfaceFlinger::getHwComposer() const {
670 return mCompositionEngine->getHwComposer();
671 }
672
getRenderEngine() const673 renderengine::RenderEngine& SurfaceFlinger::getRenderEngine() const {
674 return mCompositionEngine->getRenderEngine();
675 }
676
getCompositionEngine() const677 compositionengine::CompositionEngine& SurfaceFlinger::getCompositionEngine() const {
678 return *mCompositionEngine.get();
679 }
680
bootFinished()681 void SurfaceFlinger::bootFinished() {
682 if (mBootFinished == true) {
683 ALOGE("Extra call to bootFinished");
684 return;
685 }
686 mBootFinished = true;
687 if (mStartPropertySetThread->join() != NO_ERROR) {
688 ALOGE("Join StartPropertySetThread failed!");
689 }
690
691 if (mRenderEnginePrimeCacheFuture.valid()) {
692 mRenderEnginePrimeCacheFuture.get();
693 }
694 const nsecs_t now = systemTime();
695 const nsecs_t duration = now - mBootTime;
696 ALOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) );
697
698 mFrameTracer->initialize();
699 mFrameTimeline->onBootFinished();
700
701 // wait patiently for the window manager death
702 const String16 name("window");
703 mWindowManager = defaultServiceManager()->getService(name);
704 if (mWindowManager != 0) {
705 mWindowManager->linkToDeath(static_cast<IBinder::DeathRecipient*>(this));
706 }
707
708 // stop boot animation
709 // formerly we would just kill the process, but we now ask it to exit so it
710 // can choose where to stop the animation.
711 property_set("service.bootanim.exit", "1");
712
713 const int LOGTAG_SF_STOP_BOOTANIM = 60110;
714 LOG_EVENT_LONG(LOGTAG_SF_STOP_BOOTANIM,
715 ns2ms(systemTime(SYSTEM_TIME_MONOTONIC)));
716
717 sp<IBinder> input(defaultServiceManager()->getService(String16("inputflinger")));
718
719 static_cast<void>(schedule([=] {
720 if (input == nullptr) {
721 ALOGE("Failed to link to input service");
722 } else {
723 mInputFlinger = interface_cast<os::IInputFlinger>(input);
724 }
725
726 readPersistentProperties();
727 mPowerAdvisor.onBootFinished();
728 mBootStage = BootStage::FINISHED;
729
730 if (property_get_bool("sf.debug.show_refresh_rate_overlay", false)) {
731 enableRefreshRateOverlay(true);
732 }
733 }));
734 }
735
getNewTexture()736 uint32_t SurfaceFlinger::getNewTexture() {
737 {
738 std::lock_guard lock(mTexturePoolMutex);
739 if (!mTexturePool.empty()) {
740 uint32_t name = mTexturePool.back();
741 mTexturePool.pop_back();
742 ATRACE_INT("TexturePoolSize", mTexturePool.size());
743 return name;
744 }
745
746 // The pool was too small, so increase it for the future
747 ++mTexturePoolSize;
748 }
749
750 // The pool was empty, so we need to get a new texture name directly using a
751 // blocking call to the main thread
752 auto genTextures = [this] {
753 uint32_t name = 0;
754 getRenderEngine().genTextures(1, &name);
755 return name;
756 };
757 if (std::this_thread::get_id() == mMainThreadId) {
758 return genTextures();
759 } else {
760 return schedule(genTextures).get();
761 }
762 }
763
deleteTextureAsync(uint32_t texture)764 void SurfaceFlinger::deleteTextureAsync(uint32_t texture) {
765 std::lock_guard lock(mTexturePoolMutex);
766 // We don't change the pool size, so the fix-up logic in postComposition will decide whether
767 // to actually delete this or not based on mTexturePoolSize
768 mTexturePool.push_back(texture);
769 ATRACE_INT("TexturePoolSize", mTexturePool.size());
770 }
771
772 // Do not call property_set on main thread which will be blocked by init
773 // Use StartPropertySetThread instead.
init()774 void SurfaceFlinger::init() {
775 ALOGI( "SurfaceFlinger's main thread ready to run. "
776 "Initializing graphics H/W...");
777 Mutex::Autolock _l(mStateLock);
778
779 // Get a RenderEngine for the given display / config (can't fail)
780 // TODO(b/77156734): We need to stop casting and use HAL types when possible.
781 // Sending maxFrameBufferAcquiredBuffers as the cache size is tightly tuned to single-display.
782 mCompositionEngine->setRenderEngine(renderengine::RenderEngine::create(
783 renderengine::RenderEngineCreationArgs::Builder()
784 .setPixelFormat(static_cast<int32_t>(defaultCompositionPixelFormat))
785 .setImageCacheSize(maxFrameBufferAcquiredBuffers)
786 .setUseColorManagerment(useColorManagement)
787 .setEnableProtectedContext(enable_protected_contents(false))
788 .setPrecacheToneMapperShaderOnly(false)
789 .setSupportsBackgroundBlur(mSupportsBlur)
790 .setContextPriority(
791 useContextPriority
792 ? renderengine::RenderEngine::ContextPriority::REALTIME
793 : renderengine::RenderEngine::ContextPriority::MEDIUM)
794 .build()));
795
796 // Set SF main policy after initializing RenderEngine which has its own policy.
797 if (!SetTaskProfiles(0, {"SFMainPolicy"})) {
798 ALOGW("Failed to set main task profile");
799 }
800
801 mCompositionEngine->setTimeStats(mTimeStats);
802 mCompositionEngine->setHwComposer(getFactory().createHWComposer(mHwcServiceName));
803 mCompositionEngine->getHwComposer().setCallback(this);
804 ClientCache::getInstance().setRenderEngine(&getRenderEngine());
805
806 if (base::GetBoolProperty("debug.sf.enable_hwc_vds"s, false)) {
807 enableHalVirtualDisplays(true);
808 }
809
810 // Process any initial hotplug and resulting display changes.
811 processDisplayHotplugEventsLocked();
812 const auto display = getDefaultDisplayDeviceLocked();
813 LOG_ALWAYS_FATAL_IF(!display, "Missing internal display after registering composer callback.");
814 const auto displayId = display->getPhysicalId();
815 LOG_ALWAYS_FATAL_IF(!getHwComposer().isConnected(displayId),
816 "Internal display is disconnected.");
817
818 // initialize our drawing state
819 mDrawingState = mCurrentState;
820
821 // set initial conditions (e.g. unblank default device)
822 initializeDisplays();
823
824 mPowerAdvisor.init();
825
826 char primeShaderCache[PROPERTY_VALUE_MAX];
827 property_get("service.sf.prime_shader_cache", primeShaderCache, "1");
828 if (atoi(primeShaderCache)) {
829 if (setSchedFifo(false) != NO_ERROR) {
830 ALOGW("Can't set SCHED_OTHER for primeCache");
831 }
832
833 mRenderEnginePrimeCacheFuture = getRenderEngine().primeCache();
834
835 if (setSchedFifo(true) != NO_ERROR) {
836 ALOGW("Can't set SCHED_OTHER for primeCache");
837 }
838 }
839
840 getRenderEngine().onPrimaryDisplaySizeChanged(display->getSize());
841
842 // Inform native graphics APIs whether the present timestamp is supported:
843
844 const bool presentFenceReliable =
845 !getHwComposer().hasCapability(hal::Capability::PRESENT_FENCE_IS_NOT_RELIABLE);
846 mStartPropertySetThread = getFactory().createStartPropertySetThread(presentFenceReliable);
847
848 if (mStartPropertySetThread->Start() != NO_ERROR) {
849 ALOGE("Run StartPropertySetThread failed!");
850 }
851
852 ALOGV("Done initializing");
853 }
854
readPersistentProperties()855 void SurfaceFlinger::readPersistentProperties() {
856 Mutex::Autolock _l(mStateLock);
857
858 char value[PROPERTY_VALUE_MAX];
859
860 property_get("persist.sys.sf.color_saturation", value, "1.0");
861 mGlobalSaturationFactor = atof(value);
862 updateColorMatrixLocked();
863 ALOGV("Saturation is set to %.2f", mGlobalSaturationFactor);
864
865 property_get("persist.sys.sf.native_mode", value, "0");
866 mDisplayColorSetting = static_cast<DisplayColorSetting>(atoi(value));
867
868 property_get("persist.sys.sf.color_mode", value, "0");
869 mForceColorMode = static_cast<ColorMode>(atoi(value));
870 }
871
startBootAnim()872 void SurfaceFlinger::startBootAnim() {
873 // Start boot animation service by setting a property mailbox
874 // if property setting thread is already running, Start() will be just a NOP
875 mStartPropertySetThread->Start();
876 // Wait until property was set
877 if (mStartPropertySetThread->join() != NO_ERROR) {
878 ALOGE("Join StartPropertySetThread failed!");
879 }
880 }
881
getMaxTextureSize() const882 size_t SurfaceFlinger::getMaxTextureSize() const {
883 return getRenderEngine().getMaxTextureSize();
884 }
885
getMaxViewportDims() const886 size_t SurfaceFlinger::getMaxViewportDims() const {
887 return getRenderEngine().getMaxViewportDims();
888 }
889
890 // ----------------------------------------------------------------------------
891
authenticateSurfaceTexture(const sp<IGraphicBufferProducer> & bufferProducer) const892 bool SurfaceFlinger::authenticateSurfaceTexture(
893 const sp<IGraphicBufferProducer>& bufferProducer) const {
894 Mutex::Autolock _l(mStateLock);
895 return authenticateSurfaceTextureLocked(bufferProducer);
896 }
897
authenticateSurfaceTextureLocked(const sp<IGraphicBufferProducer> & bufferProducer) const898 bool SurfaceFlinger::authenticateSurfaceTextureLocked(
899 const sp<IGraphicBufferProducer>& bufferProducer) const {
900 sp<IBinder> surfaceTextureBinder(IInterface::asBinder(bufferProducer));
901 return mGraphicBufferProducerList.count(surfaceTextureBinder.get()) > 0;
902 }
903
getSupportedFrameTimestamps(std::vector<FrameEvent> * outSupported) const904 status_t SurfaceFlinger::getSupportedFrameTimestamps(
905 std::vector<FrameEvent>* outSupported) const {
906 *outSupported = {
907 FrameEvent::REQUESTED_PRESENT,
908 FrameEvent::ACQUIRE,
909 FrameEvent::LATCH,
910 FrameEvent::FIRST_REFRESH_START,
911 FrameEvent::LAST_REFRESH_START,
912 FrameEvent::GPU_COMPOSITION_DONE,
913 FrameEvent::DEQUEUE_READY,
914 FrameEvent::RELEASE,
915 };
916 ConditionalLock _l(mStateLock,
917 std::this_thread::get_id() != mMainThreadId);
918 if (!getHwComposer().hasCapability(hal::Capability::PRESENT_FENCE_IS_NOT_RELIABLE)) {
919 outSupported->push_back(FrameEvent::DISPLAY_PRESENT);
920 }
921 return NO_ERROR;
922 }
923
getDisplayState(const sp<IBinder> & displayToken,ui::DisplayState * state)924 status_t SurfaceFlinger::getDisplayState(const sp<IBinder>& displayToken, ui::DisplayState* state) {
925 if (!displayToken || !state) {
926 return BAD_VALUE;
927 }
928
929 Mutex::Autolock lock(mStateLock);
930
931 const auto display = getDisplayDeviceLocked(displayToken);
932 if (!display) {
933 return NAME_NOT_FOUND;
934 }
935
936 state->layerStack = display->getLayerStack();
937 state->orientation = display->getOrientation();
938
939 const Rect layerStackRect = display->getLayerStackSpaceRect();
940 state->layerStackSpaceRect =
941 layerStackRect.isValid() ? layerStackRect.getSize() : display->getSize();
942
943 return NO_ERROR;
944 }
945
getStaticDisplayInfo(const sp<IBinder> & displayToken,ui::StaticDisplayInfo * info)946 status_t SurfaceFlinger::getStaticDisplayInfo(const sp<IBinder>& displayToken,
947 ui::StaticDisplayInfo* info) {
948 if (!displayToken || !info) {
949 return BAD_VALUE;
950 }
951
952 Mutex::Autolock lock(mStateLock);
953
954 const auto display = getDisplayDeviceLocked(displayToken);
955 if (!display) {
956 return NAME_NOT_FOUND;
957 }
958
959 if (const auto connectionType = display->getConnectionType())
960 info->connectionType = *connectionType;
961 else {
962 return INVALID_OPERATION;
963 }
964
965 if (mEmulatedDisplayDensity) {
966 info->density = mEmulatedDisplayDensity;
967 } else {
968 info->density = info->connectionType == ui::DisplayConnectionType::Internal
969 ? mInternalDisplayDensity
970 : FALLBACK_DENSITY;
971 }
972 info->density /= ACONFIGURATION_DENSITY_MEDIUM;
973
974 info->secure = display->isSecure();
975 info->deviceProductInfo = display->getDeviceProductInfo();
976
977 return NO_ERROR;
978 }
979
getDynamicDisplayInfo(const sp<IBinder> & displayToken,ui::DynamicDisplayInfo * info)980 status_t SurfaceFlinger::getDynamicDisplayInfo(const sp<IBinder>& displayToken,
981 ui::DynamicDisplayInfo* info) {
982 if (!displayToken || !info) {
983 return BAD_VALUE;
984 }
985
986 Mutex::Autolock lock(mStateLock);
987
988 const auto display = getDisplayDeviceLocked(displayToken);
989 if (!display) {
990 return NAME_NOT_FOUND;
991 }
992
993 info->activeDisplayModeId = static_cast<int32_t>(display->getActiveMode()->getId().value());
994
995 const auto& supportedModes = display->getSupportedModes();
996 info->supportedDisplayModes.clear();
997 info->supportedDisplayModes.reserve(supportedModes.size());
998 for (const auto& mode : supportedModes) {
999 ui::DisplayMode outMode;
1000 outMode.id = static_cast<int32_t>(mode->getId().value());
1001
1002 auto width = mode->getWidth();
1003 auto height = mode->getHeight();
1004
1005 auto xDpi = mode->getDpiX();
1006 auto yDpi = mode->getDpiY();
1007
1008 if (display->isPrimary() &&
1009 (internalDisplayOrientation == ui::ROTATION_90 ||
1010 internalDisplayOrientation == ui::ROTATION_270)) {
1011 std::swap(width, height);
1012 std::swap(xDpi, yDpi);
1013 }
1014
1015 outMode.resolution = ui::Size(width, height);
1016
1017 if (mEmulatedDisplayDensity) {
1018 outMode.xDpi = mEmulatedDisplayDensity;
1019 outMode.yDpi = mEmulatedDisplayDensity;
1020 } else {
1021 outMode.xDpi = xDpi;
1022 outMode.yDpi = yDpi;
1023 }
1024
1025 const nsecs_t period = mode->getVsyncPeriod();
1026 outMode.refreshRate = Fps::fromPeriodNsecs(period).getValue();
1027
1028 const auto vsyncConfigSet =
1029 mVsyncConfiguration->getConfigsForRefreshRate(Fps(outMode.refreshRate));
1030 outMode.appVsyncOffset = vsyncConfigSet.late.appOffset;
1031 outMode.sfVsyncOffset = vsyncConfigSet.late.sfOffset;
1032 outMode.group = mode->getGroup();
1033
1034 // This is how far in advance a buffer must be queued for
1035 // presentation at a given time. If you want a buffer to appear
1036 // on the screen at time N, you must submit the buffer before
1037 // (N - presentationDeadline).
1038 //
1039 // Normally it's one full refresh period (to give SF a chance to
1040 // latch the buffer), but this can be reduced by configuring a
1041 // VsyncController offset. Any additional delays introduced by the hardware
1042 // composer or panel must be accounted for here.
1043 //
1044 // We add an additional 1ms to allow for processing time and
1045 // differences between the ideal and actual refresh rate.
1046 outMode.presentationDeadline = period - outMode.sfVsyncOffset + 1000000;
1047
1048 info->supportedDisplayModes.push_back(outMode);
1049 }
1050
1051 info->activeColorMode = display->getCompositionDisplay()->getState().colorMode;
1052 const auto displayId = display->getPhysicalId();
1053 info->supportedColorModes = getDisplayColorModes(displayId);
1054
1055 info->hdrCapabilities = display->getHdrCapabilities();
1056 info->autoLowLatencyModeSupported =
1057 getHwComposer().hasDisplayCapability(displayId,
1058 hal::DisplayCapability::AUTO_LOW_LATENCY_MODE);
1059 std::vector<hal::ContentType> types;
1060 getHwComposer().getSupportedContentTypes(displayId, &types);
1061 info->gameContentTypeSupported = std::any_of(types.begin(), types.end(), [](auto type) {
1062 return type == hal::ContentType::GAME;
1063 });
1064 return NO_ERROR;
1065 }
1066
getDisplayStats(const sp<IBinder> &,DisplayStatInfo * stats)1067 status_t SurfaceFlinger::getDisplayStats(const sp<IBinder>&, DisplayStatInfo* stats) {
1068 if (!stats) {
1069 return BAD_VALUE;
1070 }
1071
1072 *stats = mScheduler->getDisplayStatInfo(systemTime());
1073 return NO_ERROR;
1074 }
1075
setDesiredActiveMode(const ActiveModeInfo & info)1076 void SurfaceFlinger::setDesiredActiveMode(const ActiveModeInfo& info) {
1077 ATRACE_CALL();
1078 auto refreshRate = mRefreshRateConfigs->getRefreshRateFromModeId(info.modeId);
1079 ALOGV("%s(%s)", __func__, refreshRate.getName().c_str());
1080
1081 std::lock_guard<std::mutex> lock(mActiveModeLock);
1082 if (mDesiredActiveModeChanged) {
1083 // If a mode change is pending, just cache the latest request in mDesiredActiveMode
1084 const Scheduler::ModeEvent prevConfig = mDesiredActiveMode.event;
1085 mDesiredActiveMode = info;
1086 mDesiredActiveMode.event = mDesiredActiveMode.event | prevConfig;
1087 } else {
1088 // Check if we are already at the desired mode
1089 const auto display = getDefaultDisplayDeviceLocked();
1090 if (!display || display->getActiveMode()->getId() == refreshRate.getModeId()) {
1091 return;
1092 }
1093
1094 // Initiate a mode change.
1095 mDesiredActiveModeChanged = true;
1096 mDesiredActiveMode = info;
1097
1098 // This will trigger HWC refresh without resetting the idle timer.
1099 repaintEverythingForHWC();
1100 // Start receiving vsync samples now, so that we can detect a period
1101 // switch.
1102 mScheduler->resyncToHardwareVsync(true, refreshRate.getVsyncPeriod());
1103 // As we called to set period, we will call to onRefreshRateChangeCompleted once
1104 // VsyncController model is locked.
1105 modulateVsync(&VsyncModulator::onRefreshRateChangeInitiated);
1106
1107 updatePhaseConfiguration(refreshRate.getFps());
1108 mScheduler->setModeChangePending(true);
1109 }
1110 }
1111
setActiveMode(const sp<IBinder> & displayToken,int modeId)1112 status_t SurfaceFlinger::setActiveMode(const sp<IBinder>& displayToken, int modeId) {
1113 ATRACE_CALL();
1114
1115 if (!displayToken) {
1116 return BAD_VALUE;
1117 }
1118
1119 auto future = schedule([=]() -> status_t {
1120 const auto display = ON_MAIN_THREAD(getDisplayDeviceLocked(displayToken));
1121 if (!display) {
1122 ALOGE("Attempt to set allowed display modes for invalid display token %p",
1123 displayToken.get());
1124 return NAME_NOT_FOUND;
1125 }
1126
1127 if (display->isVirtual()) {
1128 ALOGW("Attempt to set allowed display modes for virtual display");
1129 return INVALID_OPERATION;
1130 }
1131
1132 const auto mode = display->getMode(DisplayModeId{modeId});
1133 if (!mode) {
1134 ALOGW("Attempt to switch to an unsupported mode %d.", modeId);
1135 return BAD_VALUE;
1136 }
1137
1138 const auto fps = mode->getFps();
1139 // Keep the old switching type.
1140 const auto allowGroupSwitching =
1141 mRefreshRateConfigs->getCurrentPolicy().allowGroupSwitching;
1142 const scheduler::RefreshRateConfigs::Policy policy{mode->getId(),
1143 allowGroupSwitching,
1144 {fps, fps}};
1145 constexpr bool kOverridePolicy = false;
1146
1147 return setDesiredDisplayModeSpecsInternal(display, policy, kOverridePolicy);
1148 });
1149
1150 return future.get();
1151 }
1152
setActiveModeInternal()1153 void SurfaceFlinger::setActiveModeInternal() {
1154 ATRACE_CALL();
1155
1156 const auto display = getDefaultDisplayDeviceLocked();
1157 if (!display) {
1158 return;
1159 }
1160
1161 const auto upcomingMode = display->getMode(mUpcomingActiveMode.modeId);
1162 if (!upcomingMode) {
1163 ALOGW("Upcoming active mode is no longer supported. Mode ID = %d",
1164 mUpcomingActiveMode.modeId.value());
1165 // TODO(b/159590486) Handle the error better. Some parts of SurfaceFlinger may
1166 // have been already updated with the upcoming active mode.
1167 return;
1168 }
1169
1170 if (display->getActiveMode()->getSize() != upcomingMode->getSize()) {
1171 auto& state = mCurrentState.displays.editValueFor(display->getDisplayToken());
1172 // We need to generate new sequenceId in order to recreate the display (and this
1173 // way the framebuffer).
1174 state.sequenceId = DisplayDeviceState{}.sequenceId;
1175 state.physical->activeMode = upcomingMode;
1176 processDisplayChangesLocked();
1177
1178 // processDisplayChangesLocked will update all necessary components so we're done here.
1179 return;
1180 }
1181
1182 std::lock_guard<std::mutex> lock(mActiveModeLock);
1183 mRefreshRateConfigs->setCurrentModeId(mUpcomingActiveMode.modeId);
1184 display->setActiveMode(mUpcomingActiveMode.modeId);
1185
1186 const Fps refreshRate = upcomingMode->getFps();
1187
1188 mRefreshRateStats->setRefreshRate(refreshRate);
1189
1190 updatePhaseConfiguration(refreshRate);
1191 ATRACE_INT("ActiveConfigFPS", refreshRate.getValue());
1192
1193 if (mRefreshRateOverlay) {
1194 mRefreshRateOverlay->changeRefreshRate(upcomingMode->getFps());
1195 }
1196
1197 if (mUpcomingActiveMode.event != Scheduler::ModeEvent::None) {
1198 const nsecs_t vsyncPeriod = refreshRate.getPeriodNsecs();
1199 const auto physicalId = display->getPhysicalId();
1200 mScheduler->onPrimaryDisplayModeChanged(mAppConnectionHandle, physicalId,
1201 mUpcomingActiveMode.modeId, vsyncPeriod);
1202 }
1203 }
1204
clearDesiredActiveModeState()1205 void SurfaceFlinger::clearDesiredActiveModeState() {
1206 std::lock_guard<std::mutex> lock(mActiveModeLock);
1207 mDesiredActiveMode.event = Scheduler::ModeEvent::None;
1208 mDesiredActiveModeChanged = false;
1209 mScheduler->setModeChangePending(false);
1210 }
1211
desiredActiveModeChangeDone()1212 void SurfaceFlinger::desiredActiveModeChangeDone() {
1213 const auto modeId = getDesiredActiveMode()->modeId;
1214
1215 clearDesiredActiveModeState();
1216
1217 const auto refreshRate = getDefaultDisplayDeviceLocked()->getMode(modeId)->getFps();
1218 mScheduler->resyncToHardwareVsync(true, refreshRate.getPeriodNsecs());
1219 updatePhaseConfiguration(refreshRate);
1220 }
1221
performSetActiveMode()1222 void SurfaceFlinger::performSetActiveMode() {
1223 ATRACE_CALL();
1224 ALOGV("%s", __FUNCTION__);
1225 // Store the local variable to release the lock.
1226 const auto desiredActiveMode = getDesiredActiveMode();
1227 if (!desiredActiveMode) {
1228 // No desired active mode pending to be applied
1229 return;
1230 }
1231
1232 const auto display = getDefaultDisplayDeviceLocked();
1233 const auto desiredMode = display->getMode(desiredActiveMode->modeId);
1234 if (!desiredMode) {
1235 ALOGW("Desired display mode is no longer supported. Mode ID = %d",
1236 desiredActiveMode->modeId.value());
1237 clearDesiredActiveModeState();
1238 return;
1239 }
1240 const auto refreshRate = desiredMode->getFps();
1241 ALOGV("%s changing active mode to %d(%s)", __FUNCTION__, desiredMode->getId().value(),
1242 to_string(refreshRate).c_str());
1243
1244 if (!display || display->getActiveMode()->getId() == desiredActiveMode->modeId) {
1245 // display is not valid or we are already in the requested mode
1246 // on both cases there is nothing left to do
1247 desiredActiveModeChangeDone();
1248 return;
1249 }
1250
1251 // Desired active mode was set, it is different than the mode currently in use, however
1252 // allowed modes might have changed by the time we process the refresh.
1253 // Make sure the desired mode is still allowed
1254 if (!isDisplayModeAllowed(desiredActiveMode->modeId)) {
1255 desiredActiveModeChangeDone();
1256 return;
1257 }
1258
1259 mUpcomingActiveMode = *desiredActiveMode;
1260
1261 ATRACE_INT("ActiveModeFPS_HWC", refreshRate.getValue());
1262
1263 // TODO(b/142753666) use constrains
1264 hal::VsyncPeriodChangeConstraints constraints;
1265 constraints.desiredTimeNanos = systemTime();
1266 constraints.seamlessRequired = false;
1267
1268 hal::VsyncPeriodChangeTimeline outTimeline;
1269 const auto status =
1270 display->initiateModeChange(mUpcomingActiveMode.modeId, constraints, &outTimeline);
1271 if (status != NO_ERROR) {
1272 // initiateModeChange may fail if a hotplug event is just about
1273 // to be sent. We just log the error in this case.
1274 ALOGW("initiateModeChange failed: %d", status);
1275 return;
1276 }
1277
1278 mScheduler->onNewVsyncPeriodChangeTimeline(outTimeline);
1279
1280 // Scheduler will submit an empty frame to HWC if needed.
1281 mSetActiveModePending = true;
1282 }
1283
disableExpensiveRendering()1284 void SurfaceFlinger::disableExpensiveRendering() {
1285 schedule([=]() MAIN_THREAD {
1286 ATRACE_CALL();
1287 if (mPowerAdvisor.isUsingExpensiveRendering()) {
1288 const auto& displays = ON_MAIN_THREAD(mDisplays);
1289 for (const auto& [_, display] : displays) {
1290 const static constexpr auto kDisable = false;
1291 mPowerAdvisor.setExpensiveRenderingExpected(display->getId(), kDisable);
1292 }
1293 }
1294 }).wait();
1295 }
1296
getDisplayColorModes(PhysicalDisplayId displayId)1297 std::vector<ColorMode> SurfaceFlinger::getDisplayColorModes(PhysicalDisplayId displayId) {
1298 auto modes = getHwComposer().getColorModes(displayId);
1299 bool isInternalDisplay = displayId == getInternalDisplayIdLocked();
1300
1301 // If it's built-in display and the configuration claims it's not wide color capable,
1302 // filter out all wide color modes. The typical reason why this happens is that the
1303 // hardware is not good enough to support GPU composition of wide color, and thus the
1304 // OEMs choose to disable this capability.
1305 if (isInternalDisplay && !hasWideColorDisplay) {
1306 const auto newEnd = std::remove_if(modes.begin(), modes.end(), isWideColorMode);
1307 modes.erase(newEnd, modes.end());
1308 }
1309
1310 return modes;
1311 }
1312
getDisplayNativePrimaries(const sp<IBinder> & displayToken,ui::DisplayPrimaries & primaries)1313 status_t SurfaceFlinger::getDisplayNativePrimaries(const sp<IBinder>& displayToken,
1314 ui::DisplayPrimaries &primaries) {
1315 if (!displayToken) {
1316 return BAD_VALUE;
1317 }
1318
1319 // Currently we only support this API for a single internal display.
1320 if (getInternalDisplayToken() != displayToken) {
1321 return NAME_NOT_FOUND;
1322 }
1323
1324 memcpy(&primaries, &mInternalDisplayPrimaries, sizeof(ui::DisplayPrimaries));
1325 return NO_ERROR;
1326 }
1327
setActiveColorMode(const sp<IBinder> & displayToken,ColorMode mode)1328 status_t SurfaceFlinger::setActiveColorMode(const sp<IBinder>& displayToken, ColorMode mode) {
1329 schedule([=]() MAIN_THREAD {
1330 const auto displayId = getPhysicalDisplayIdLocked(displayToken);
1331 if (!displayId) {
1332 ALOGE("Invalid display token %p", displayToken.get());
1333 return;
1334 }
1335 const auto modes = getDisplayColorModes(*displayId);
1336 bool exists = std::find(std::begin(modes), std::end(modes), mode) != std::end(modes);
1337 if (mode < ColorMode::NATIVE || !exists) {
1338 ALOGE("Attempt to set invalid active color mode %s (%d) for display token %p",
1339 decodeColorMode(mode).c_str(), mode, displayToken.get());
1340 return;
1341 }
1342 const auto display = getDisplayDeviceLocked(displayToken);
1343 if (!display) {
1344 ALOGE("Attempt to set active color mode %s (%d) for invalid display token %p",
1345 decodeColorMode(mode).c_str(), mode, displayToken.get());
1346 } else if (display->isVirtual()) {
1347 ALOGW("Attempt to set active color mode %s (%d) for virtual display",
1348 decodeColorMode(mode).c_str(), mode);
1349 } else {
1350 display->getCompositionDisplay()->setColorProfile(
1351 compositionengine::Output::ColorProfile{mode, Dataspace::UNKNOWN,
1352 RenderIntent::COLORIMETRIC,
1353 Dataspace::UNKNOWN});
1354 }
1355 }).wait();
1356
1357 return NO_ERROR;
1358 }
1359
setAutoLowLatencyMode(const sp<IBinder> & displayToken,bool on)1360 void SurfaceFlinger::setAutoLowLatencyMode(const sp<IBinder>& displayToken, bool on) {
1361 static_cast<void>(schedule([=]() MAIN_THREAD {
1362 if (const auto displayId = getPhysicalDisplayIdLocked(displayToken)) {
1363 getHwComposer().setAutoLowLatencyMode(*displayId, on);
1364 } else {
1365 ALOGE("%s: Invalid display token %p", __FUNCTION__, displayToken.get());
1366 }
1367 }));
1368 }
1369
setGameContentType(const sp<IBinder> & displayToken,bool on)1370 void SurfaceFlinger::setGameContentType(const sp<IBinder>& displayToken, bool on) {
1371 static_cast<void>(schedule([=]() MAIN_THREAD {
1372 if (const auto displayId = getPhysicalDisplayIdLocked(displayToken)) {
1373 const auto type = on ? hal::ContentType::GAME : hal::ContentType::NONE;
1374 getHwComposer().setContentType(*displayId, type);
1375 } else {
1376 ALOGE("%s: Invalid display token %p", __FUNCTION__, displayToken.get());
1377 }
1378 }));
1379 }
1380
clearAnimationFrameStats()1381 status_t SurfaceFlinger::clearAnimationFrameStats() {
1382 Mutex::Autolock _l(mStateLock);
1383 mAnimFrameTracker.clearStats();
1384 return NO_ERROR;
1385 }
1386
getAnimationFrameStats(FrameStats * outStats) const1387 status_t SurfaceFlinger::getAnimationFrameStats(FrameStats* outStats) const {
1388 Mutex::Autolock _l(mStateLock);
1389 mAnimFrameTracker.getStats(outStats);
1390 return NO_ERROR;
1391 }
1392
overrideHdrTypes(const sp<IBinder> & displayToken,const std::vector<ui::Hdr> & hdrTypes)1393 status_t SurfaceFlinger::overrideHdrTypes(const sp<IBinder>& displayToken,
1394 const std::vector<ui::Hdr>& hdrTypes) {
1395 Mutex::Autolock lock(mStateLock);
1396
1397 auto display = getDisplayDeviceLocked(displayToken);
1398 if (!display) {
1399 ALOGE("%s: Invalid display token %p", __FUNCTION__, displayToken.get());
1400 return NAME_NOT_FOUND;
1401 }
1402
1403 display->overrideHdrTypes(hdrTypes);
1404 dispatchDisplayHotplugEvent(display->getPhysicalId(), true /* connected */);
1405 return NO_ERROR;
1406 }
1407
onPullAtom(const int32_t atomId,std::string * pulledData,bool * success)1408 status_t SurfaceFlinger::onPullAtom(const int32_t atomId, std::string* pulledData, bool* success) {
1409 *success = mTimeStats->onPullAtom(atomId, pulledData);
1410 return NO_ERROR;
1411 }
1412
getDisplayedContentSamplingAttributes(const sp<IBinder> & displayToken,ui::PixelFormat * outFormat,ui::Dataspace * outDataspace,uint8_t * outComponentMask) const1413 status_t SurfaceFlinger::getDisplayedContentSamplingAttributes(const sp<IBinder>& displayToken,
1414 ui::PixelFormat* outFormat,
1415 ui::Dataspace* outDataspace,
1416 uint8_t* outComponentMask) const {
1417 if (!outFormat || !outDataspace || !outComponentMask) {
1418 return BAD_VALUE;
1419 }
1420
1421 Mutex::Autolock lock(mStateLock);
1422
1423 const auto displayId = getPhysicalDisplayIdLocked(displayToken);
1424 if (!displayId) {
1425 return NAME_NOT_FOUND;
1426 }
1427
1428 return getHwComposer().getDisplayedContentSamplingAttributes(*displayId, outFormat,
1429 outDataspace, outComponentMask);
1430 }
1431
setDisplayContentSamplingEnabled(const sp<IBinder> & displayToken,bool enable,uint8_t componentMask,uint64_t maxFrames)1432 status_t SurfaceFlinger::setDisplayContentSamplingEnabled(const sp<IBinder>& displayToken,
1433 bool enable, uint8_t componentMask,
1434 uint64_t maxFrames) {
1435 return schedule([=]() MAIN_THREAD -> status_t {
1436 if (const auto displayId = getPhysicalDisplayIdLocked(displayToken)) {
1437 return getHwComposer().setDisplayContentSamplingEnabled(*displayId, enable,
1438 componentMask,
1439 maxFrames);
1440 } else {
1441 ALOGE("%s: Invalid display token %p", __FUNCTION__, displayToken.get());
1442 return NAME_NOT_FOUND;
1443 }
1444 })
1445 .get();
1446 }
1447
getDisplayedContentSample(const sp<IBinder> & displayToken,uint64_t maxFrames,uint64_t timestamp,DisplayedFrameStats * outStats) const1448 status_t SurfaceFlinger::getDisplayedContentSample(const sp<IBinder>& displayToken,
1449 uint64_t maxFrames, uint64_t timestamp,
1450 DisplayedFrameStats* outStats) const {
1451 Mutex::Autolock lock(mStateLock);
1452
1453 const auto displayId = getPhysicalDisplayIdLocked(displayToken);
1454 if (!displayId) {
1455 return NAME_NOT_FOUND;
1456 }
1457
1458 return getHwComposer().getDisplayedContentSample(*displayId, maxFrames, timestamp, outStats);
1459 }
1460
getProtectedContentSupport(bool * outSupported) const1461 status_t SurfaceFlinger::getProtectedContentSupport(bool* outSupported) const {
1462 if (!outSupported) {
1463 return BAD_VALUE;
1464 }
1465 *outSupported = getRenderEngine().supportsProtectedContent();
1466 return NO_ERROR;
1467 }
1468
isWideColorDisplay(const sp<IBinder> & displayToken,bool * outIsWideColorDisplay) const1469 status_t SurfaceFlinger::isWideColorDisplay(const sp<IBinder>& displayToken,
1470 bool* outIsWideColorDisplay) const {
1471 if (!displayToken || !outIsWideColorDisplay) {
1472 return BAD_VALUE;
1473 }
1474
1475 Mutex::Autolock lock(mStateLock);
1476 const auto display = getDisplayDeviceLocked(displayToken);
1477 if (!display) {
1478 return NAME_NOT_FOUND;
1479 }
1480
1481 *outIsWideColorDisplay =
1482 display->isPrimary() ? hasWideColorDisplay : display->hasWideColorGamut();
1483 return NO_ERROR;
1484 }
1485
enableVSyncInjections(bool enable)1486 status_t SurfaceFlinger::enableVSyncInjections(bool enable) {
1487 schedule([=] {
1488 Mutex::Autolock lock(mStateLock);
1489
1490 if (const auto handle = mScheduler->enableVSyncInjection(enable)) {
1491 mEventQueue->setInjector(enable ? mScheduler->getEventConnection(handle) : nullptr);
1492 }
1493 }).wait();
1494
1495 return NO_ERROR;
1496 }
1497
injectVSync(nsecs_t when)1498 status_t SurfaceFlinger::injectVSync(nsecs_t when) {
1499 Mutex::Autolock lock(mStateLock);
1500 const DisplayStatInfo stats = mScheduler->getDisplayStatInfo(when);
1501 const auto expectedPresent = calculateExpectedPresentTime(stats);
1502 return mScheduler->injectVSync(when, /*expectedVSyncTime=*/expectedPresent,
1503 /*deadlineTimestamp=*/expectedPresent)
1504 ? NO_ERROR
1505 : BAD_VALUE;
1506 }
1507
getLayerDebugInfo(std::vector<LayerDebugInfo> * outLayers)1508 status_t SurfaceFlinger::getLayerDebugInfo(std::vector<LayerDebugInfo>* outLayers) {
1509 outLayers->clear();
1510 schedule([=] {
1511 const auto display = ON_MAIN_THREAD(getDefaultDisplayDeviceLocked());
1512 mDrawingState.traverseInZOrder([&](Layer* layer) {
1513 outLayers->push_back(layer->getLayerDebugInfo(display.get()));
1514 });
1515 }).wait();
1516 return NO_ERROR;
1517 }
1518
getCompositionPreference(Dataspace * outDataspace,ui::PixelFormat * outPixelFormat,Dataspace * outWideColorGamutDataspace,ui::PixelFormat * outWideColorGamutPixelFormat) const1519 status_t SurfaceFlinger::getCompositionPreference(
1520 Dataspace* outDataspace, ui::PixelFormat* outPixelFormat,
1521 Dataspace* outWideColorGamutDataspace,
1522 ui::PixelFormat* outWideColorGamutPixelFormat) const {
1523 *outDataspace = mDefaultCompositionDataspace;
1524 *outPixelFormat = defaultCompositionPixelFormat;
1525 *outWideColorGamutDataspace = mWideColorGamutCompositionDataspace;
1526 *outWideColorGamutPixelFormat = wideColorGamutCompositionPixelFormat;
1527 return NO_ERROR;
1528 }
1529
addRegionSamplingListener(const Rect & samplingArea,const sp<IBinder> & stopLayerHandle,const sp<IRegionSamplingListener> & listener)1530 status_t SurfaceFlinger::addRegionSamplingListener(const Rect& samplingArea,
1531 const sp<IBinder>& stopLayerHandle,
1532 const sp<IRegionSamplingListener>& listener) {
1533 if (!listener || samplingArea == Rect::INVALID_RECT) {
1534 return BAD_VALUE;
1535 }
1536
1537 const wp<Layer> stopLayer = fromHandle(stopLayerHandle);
1538 mRegionSamplingThread->addListener(samplingArea, stopLayer, listener);
1539 return NO_ERROR;
1540 }
1541
removeRegionSamplingListener(const sp<IRegionSamplingListener> & listener)1542 status_t SurfaceFlinger::removeRegionSamplingListener(const sp<IRegionSamplingListener>& listener) {
1543 if (!listener) {
1544 return BAD_VALUE;
1545 }
1546 mRegionSamplingThread->removeListener(listener);
1547 return NO_ERROR;
1548 }
1549
addFpsListener(int32_t taskId,const sp<gui::IFpsListener> & listener)1550 status_t SurfaceFlinger::addFpsListener(int32_t taskId, const sp<gui::IFpsListener>& listener) {
1551 if (!listener) {
1552 return BAD_VALUE;
1553 }
1554
1555 mFpsReporter->addListener(listener, taskId);
1556 return NO_ERROR;
1557 }
1558
removeFpsListener(const sp<gui::IFpsListener> & listener)1559 status_t SurfaceFlinger::removeFpsListener(const sp<gui::IFpsListener>& listener) {
1560 if (!listener) {
1561 return BAD_VALUE;
1562 }
1563 mFpsReporter->removeListener(listener);
1564 return NO_ERROR;
1565 }
1566
addTunnelModeEnabledListener(const sp<gui::ITunnelModeEnabledListener> & listener)1567 status_t SurfaceFlinger::addTunnelModeEnabledListener(
1568 const sp<gui::ITunnelModeEnabledListener>& listener) {
1569 if (!listener) {
1570 return BAD_VALUE;
1571 }
1572
1573 mTunnelModeEnabledReporter->addListener(listener);
1574 return NO_ERROR;
1575 }
1576
removeTunnelModeEnabledListener(const sp<gui::ITunnelModeEnabledListener> & listener)1577 status_t SurfaceFlinger::removeTunnelModeEnabledListener(
1578 const sp<gui::ITunnelModeEnabledListener>& listener) {
1579 if (!listener) {
1580 return BAD_VALUE;
1581 }
1582
1583 mTunnelModeEnabledReporter->removeListener(listener);
1584 return NO_ERROR;
1585 }
1586
getDisplayBrightnessSupport(const sp<IBinder> & displayToken,bool * outSupport) const1587 status_t SurfaceFlinger::getDisplayBrightnessSupport(const sp<IBinder>& displayToken,
1588 bool* outSupport) const {
1589 if (!displayToken || !outSupport) {
1590 return BAD_VALUE;
1591 }
1592
1593 Mutex::Autolock lock(mStateLock);
1594
1595 const auto displayId = getPhysicalDisplayIdLocked(displayToken);
1596 if (!displayId) {
1597 return NAME_NOT_FOUND;
1598 }
1599 *outSupport =
1600 getHwComposer().hasDisplayCapability(*displayId, hal::DisplayCapability::BRIGHTNESS);
1601 return NO_ERROR;
1602 }
1603
setDisplayBrightness(const sp<IBinder> & displayToken,const gui::DisplayBrightness & brightness)1604 status_t SurfaceFlinger::setDisplayBrightness(const sp<IBinder>& displayToken,
1605 const gui::DisplayBrightness& brightness) {
1606 if (!displayToken) {
1607 return BAD_VALUE;
1608 }
1609
1610 return ftl::chain(schedule([=]() MAIN_THREAD {
1611 if (const auto display = getDisplayDeviceLocked(displayToken)) {
1612 if (enableSdrDimming) {
1613 display->getCompositionDisplay()
1614 ->setDisplayBrightness(brightness.sdrWhitePointNits,
1615 brightness.displayBrightnessNits);
1616 }
1617 return getHwComposer().setDisplayBrightness(display->getPhysicalId(),
1618 brightness.displayBrightness);
1619 } else {
1620 ALOGE("%s: Invalid display token %p", __FUNCTION__, displayToken.get());
1621 return ftl::yield<status_t>(NAME_NOT_FOUND);
1622 }
1623 }))
1624 .then([](std::future<status_t> task) { return task; })
1625 .get();
1626 }
1627
addHdrLayerInfoListener(const sp<IBinder> & displayToken,const sp<gui::IHdrLayerInfoListener> & listener)1628 status_t SurfaceFlinger::addHdrLayerInfoListener(const sp<IBinder>& displayToken,
1629 const sp<gui::IHdrLayerInfoListener>& listener) {
1630 if (!displayToken) {
1631 return BAD_VALUE;
1632 }
1633
1634 Mutex::Autolock lock(mStateLock);
1635
1636 const auto display = getDisplayDeviceLocked(displayToken);
1637 if (!display) {
1638 return NAME_NOT_FOUND;
1639 }
1640 const auto displayId = display->getId();
1641 sp<HdrLayerInfoReporter>& hdrInfoReporter = mHdrLayerInfoListeners[displayId];
1642 if (!hdrInfoReporter) {
1643 hdrInfoReporter = sp<HdrLayerInfoReporter>::make();
1644 }
1645 hdrInfoReporter->addListener(listener);
1646
1647
1648 mAddingHDRLayerInfoListener = true;
1649 return OK;
1650 }
1651
removeHdrLayerInfoListener(const sp<IBinder> & displayToken,const sp<gui::IHdrLayerInfoListener> & listener)1652 status_t SurfaceFlinger::removeHdrLayerInfoListener(
1653 const sp<IBinder>& displayToken, const sp<gui::IHdrLayerInfoListener>& listener) {
1654 if (!displayToken) {
1655 return BAD_VALUE;
1656 }
1657
1658 Mutex::Autolock lock(mStateLock);
1659
1660 const auto display = getDisplayDeviceLocked(displayToken);
1661 if (!display) {
1662 return NAME_NOT_FOUND;
1663 }
1664 const auto displayId = display->getId();
1665 sp<HdrLayerInfoReporter>& hdrInfoReporter = mHdrLayerInfoListeners[displayId];
1666 if (hdrInfoReporter) {
1667 hdrInfoReporter->removeListener(listener);
1668 }
1669 return OK;
1670 }
1671
notifyPowerBoost(int32_t boostId)1672 status_t SurfaceFlinger::notifyPowerBoost(int32_t boostId) {
1673 Boost powerBoost = static_cast<Boost>(boostId);
1674
1675 if (powerBoost == Boost::INTERACTION) {
1676 mScheduler->notifyTouchEvent();
1677 }
1678
1679 return NO_ERROR;
1680 }
1681
1682 // ----------------------------------------------------------------------------
1683
createDisplayEventConnection(ISurfaceComposer::VsyncSource vsyncSource,ISurfaceComposer::EventRegistrationFlags eventRegistration)1684 sp<IDisplayEventConnection> SurfaceFlinger::createDisplayEventConnection(
1685 ISurfaceComposer::VsyncSource vsyncSource,
1686 ISurfaceComposer::EventRegistrationFlags eventRegistration) {
1687 const auto& handle =
1688 vsyncSource == eVsyncSourceSurfaceFlinger ? mSfConnectionHandle : mAppConnectionHandle;
1689
1690 return mScheduler->createDisplayEventConnection(handle, eventRegistration);
1691 }
1692
signalTransaction()1693 void SurfaceFlinger::signalTransaction() {
1694 mScheduler->resetIdleTimer();
1695 mPowerAdvisor.notifyDisplayUpdateImminent();
1696 mEventQueue->invalidate();
1697 }
1698
signalLayerUpdate()1699 void SurfaceFlinger::signalLayerUpdate() {
1700 mScheduler->resetIdleTimer();
1701 mPowerAdvisor.notifyDisplayUpdateImminent();
1702 mEventQueue->invalidate();
1703 }
1704
signalRefresh()1705 void SurfaceFlinger::signalRefresh() {
1706 mRefreshPending = true;
1707 mEventQueue->refresh();
1708 }
1709
getVsyncPeriodFromHWC() const1710 nsecs_t SurfaceFlinger::getVsyncPeriodFromHWC() const {
1711 if (const auto display = getDefaultDisplayDeviceLocked()) {
1712 return display->getVsyncPeriodFromHWC();
1713 }
1714
1715 return 0;
1716 }
1717
onComposerHalVsync(hal::HWDisplayId hwcDisplayId,int64_t timestamp,std::optional<hal::VsyncPeriodNanos> vsyncPeriod)1718 void SurfaceFlinger::onComposerHalVsync(hal::HWDisplayId hwcDisplayId, int64_t timestamp,
1719 std::optional<hal::VsyncPeriodNanos> vsyncPeriod) {
1720 ATRACE_CALL();
1721
1722 Mutex::Autolock lock(mStateLock);
1723
1724 if (const auto displayId = getHwComposer().toPhysicalDisplayId(hwcDisplayId)) {
1725 auto token = getPhysicalDisplayTokenLocked(*displayId);
1726 auto display = getDisplayDeviceLocked(token);
1727 display->onVsync(timestamp);
1728 }
1729
1730 if (!getHwComposer().onVsync(hwcDisplayId, timestamp)) {
1731 return;
1732 }
1733
1734 if (hwcDisplayId != getHwComposer().getInternalHwcDisplayId()) {
1735 // For now, we don't do anything with external display vsyncs.
1736 return;
1737 }
1738
1739 bool periodFlushed = false;
1740 mScheduler->addResyncSample(timestamp, vsyncPeriod, &periodFlushed);
1741 if (periodFlushed) {
1742 modulateVsync(&VsyncModulator::onRefreshRateChangeCompleted);
1743 }
1744 }
1745
getCompositorTiming(CompositorTiming * compositorTiming)1746 void SurfaceFlinger::getCompositorTiming(CompositorTiming* compositorTiming) {
1747 std::lock_guard<std::mutex> lock(getBE().mCompositorTimingLock);
1748 *compositorTiming = getBE().mCompositorTiming;
1749 }
1750
isDisplayModeAllowed(DisplayModeId modeId) const1751 bool SurfaceFlinger::isDisplayModeAllowed(DisplayModeId modeId) const {
1752 return mRefreshRateConfigs->isModeAllowed(modeId);
1753 }
1754
changeRefreshRateLocked(const RefreshRate & refreshRate,Scheduler::ModeEvent event)1755 void SurfaceFlinger::changeRefreshRateLocked(const RefreshRate& refreshRate,
1756 Scheduler::ModeEvent event) {
1757 const auto display = getDefaultDisplayDeviceLocked();
1758 if (!display || mBootStage != BootStage::FINISHED) {
1759 return;
1760 }
1761 ATRACE_CALL();
1762
1763 // Don't do any updating if the current fps is the same as the new one.
1764 if (!isDisplayModeAllowed(refreshRate.getModeId())) {
1765 ALOGV("Skipping mode %d as it is not part of allowed modes",
1766 refreshRate.getModeId().value());
1767 return;
1768 }
1769
1770 setDesiredActiveMode({refreshRate.getModeId(), event});
1771 }
1772
onComposerHalHotplug(hal::HWDisplayId hwcDisplayId,hal::Connection connection)1773 void SurfaceFlinger::onComposerHalHotplug(hal::HWDisplayId hwcDisplayId,
1774 hal::Connection connection) {
1775 ALOGI("%s(%" PRIu64 ", %s)", __func__, hwcDisplayId,
1776 connection == hal::Connection::CONNECTED ? "connected" : "disconnected");
1777
1778 // Only lock if we're not on the main thread. This function is normally
1779 // called on a hwbinder thread, but for the primary display it's called on
1780 // the main thread with the state lock already held, so don't attempt to
1781 // acquire it here.
1782 ConditionalLock lock(mStateLock, std::this_thread::get_id() != mMainThreadId);
1783
1784 mPendingHotplugEvents.emplace_back(HotplugEvent{hwcDisplayId, connection});
1785
1786 if (std::this_thread::get_id() == mMainThreadId) {
1787 // Process all pending hot plug events immediately if we are on the main thread.
1788 processDisplayHotplugEventsLocked();
1789 }
1790
1791 setTransactionFlags(eDisplayTransactionNeeded);
1792 }
1793
onComposerHalVsyncPeriodTimingChanged(hal::HWDisplayId,const hal::VsyncPeriodChangeTimeline & timeline)1794 void SurfaceFlinger::onComposerHalVsyncPeriodTimingChanged(
1795 hal::HWDisplayId, const hal::VsyncPeriodChangeTimeline& timeline) {
1796 Mutex::Autolock lock(mStateLock);
1797 mScheduler->onNewVsyncPeriodChangeTimeline(timeline);
1798 }
1799
onComposerHalSeamlessPossible(hal::HWDisplayId)1800 void SurfaceFlinger::onComposerHalSeamlessPossible(hal::HWDisplayId) {
1801 // TODO(b/142753666): use constraints when calling to setActiveModeWithConstraints and
1802 // use this callback to know when to retry in case of SEAMLESS_NOT_POSSIBLE.
1803 }
1804
onComposerHalRefresh(hal::HWDisplayId)1805 void SurfaceFlinger::onComposerHalRefresh(hal::HWDisplayId) {
1806 Mutex::Autolock lock(mStateLock);
1807 repaintEverythingForHWC();
1808 }
1809
setVsyncEnabled(bool enabled)1810 void SurfaceFlinger::setVsyncEnabled(bool enabled) {
1811 ATRACE_CALL();
1812
1813 // On main thread to avoid race conditions with display power state.
1814 static_cast<void>(schedule([=]() MAIN_THREAD {
1815 mHWCVsyncPendingState = enabled ? hal::Vsync::ENABLE : hal::Vsync::DISABLE;
1816
1817 if (const auto display = getDefaultDisplayDeviceLocked();
1818 display && display->isPoweredOn()) {
1819 getHwComposer().setVsyncEnabled(display->getPhysicalId(), mHWCVsyncPendingState);
1820 }
1821 }));
1822 }
1823
previousFrameFence()1824 SurfaceFlinger::FenceWithFenceTime SurfaceFlinger::previousFrameFence() {
1825 const auto now = systemTime();
1826 const auto vsyncPeriod = mScheduler->getDisplayStatInfo(now).vsyncPeriod;
1827 const bool expectedPresentTimeIsTheNextVsync = mExpectedPresentTime - now <= vsyncPeriod;
1828 return expectedPresentTimeIsTheNextVsync ? mPreviousPresentFences[0]
1829 : mPreviousPresentFences[1];
1830 }
1831
previousFramePending(int graceTimeMs)1832 bool SurfaceFlinger::previousFramePending(int graceTimeMs) {
1833 ATRACE_CALL();
1834 const std::shared_ptr<FenceTime>& fence = previousFrameFence().fenceTime;
1835
1836 if (fence == FenceTime::NO_FENCE) {
1837 return false;
1838 }
1839
1840 const status_t status = fence->wait(graceTimeMs);
1841 // This is the same as Fence::Status::Unsignaled, but it saves a getStatus() call,
1842 // which calls wait(0) again internally
1843 return status == -ETIME;
1844 }
1845
previousFramePresentTime()1846 nsecs_t SurfaceFlinger::previousFramePresentTime() {
1847 const std::shared_ptr<FenceTime>& fence = previousFrameFence().fenceTime;
1848
1849 if (fence == FenceTime::NO_FENCE) {
1850 return Fence::SIGNAL_TIME_INVALID;
1851 }
1852
1853 return fence->getSignalTime();
1854 }
1855
calculateExpectedPresentTime(DisplayStatInfo stats) const1856 nsecs_t SurfaceFlinger::calculateExpectedPresentTime(DisplayStatInfo stats) const {
1857 // Inflate the expected present time if we're targetting the next vsync.
1858 return mVsyncModulator->getVsyncConfig().sfOffset > 0 ? stats.vsyncTime
1859 : stats.vsyncTime + stats.vsyncPeriod;
1860 }
1861
onMessageReceived(int32_t what,int64_t vsyncId,nsecs_t expectedVSyncTime)1862 void SurfaceFlinger::onMessageReceived(int32_t what, int64_t vsyncId, nsecs_t expectedVSyncTime) {
1863 switch (what) {
1864 case MessageQueue::INVALIDATE: {
1865 onMessageInvalidate(vsyncId, expectedVSyncTime);
1866 break;
1867 }
1868 case MessageQueue::REFRESH: {
1869 onMessageRefresh();
1870 break;
1871 }
1872 }
1873 }
1874
onMessageInvalidate(int64_t vsyncId,nsecs_t expectedVSyncTime)1875 void SurfaceFlinger::onMessageInvalidate(int64_t vsyncId, nsecs_t expectedVSyncTime) {
1876 const nsecs_t frameStart = systemTime();
1877 // calculate the expected present time once and use the cached
1878 // value throughout this frame to make sure all layers are
1879 // seeing this same value.
1880 if (expectedVSyncTime >= frameStart) {
1881 mExpectedPresentTime = expectedVSyncTime;
1882 } else {
1883 const DisplayStatInfo stats = mScheduler->getDisplayStatInfo(frameStart);
1884 mExpectedPresentTime = calculateExpectedPresentTime(stats);
1885 }
1886
1887 const nsecs_t lastScheduledPresentTime = mScheduledPresentTime;
1888 mScheduledPresentTime = expectedVSyncTime;
1889
1890 const auto vsyncIn = [&] {
1891 if (!ATRACE_ENABLED()) return 0.f;
1892 return (mExpectedPresentTime - systemTime()) / 1e6f;
1893 }();
1894 ATRACE_FORMAT("onMessageInvalidate %" PRId64 " vsyncIn %.2fms%s", vsyncId, vsyncIn,
1895 mExpectedPresentTime == expectedVSyncTime ? "" : " (adjusted)");
1896
1897 // When Backpressure propagation is enabled we want to give a small grace period
1898 // for the present fence to fire instead of just giving up on this frame to handle cases
1899 // where present fence is just about to get signaled.
1900 const int graceTimeForPresentFenceMs =
1901 (mPropagateBackpressureClientComposition || !mHadClientComposition) ? 1 : 0;
1902
1903 // Pending frames may trigger backpressure propagation.
1904 const TracedOrdinal<bool> framePending = {"PrevFramePending",
1905 previousFramePending(graceTimeForPresentFenceMs)};
1906
1907 // Frame missed counts for metrics tracking.
1908 // A frame is missed if the prior frame is still pending. If no longer pending,
1909 // then we still count the frame as missed if the predicted present time
1910 // was further in the past than when the fence actually fired.
1911
1912 // Add some slop to correct for drift. This should generally be
1913 // smaller than a typical frame duration, but should not be so small
1914 // that it reports reasonable drift as a missed frame.
1915 const DisplayStatInfo stats = mScheduler->getDisplayStatInfo(systemTime());
1916 const nsecs_t frameMissedSlop = stats.vsyncPeriod / 2;
1917 const nsecs_t previousPresentTime = previousFramePresentTime();
1918 const TracedOrdinal<bool> frameMissed = {"PrevFrameMissed",
1919 framePending ||
1920 (previousPresentTime >= 0 &&
1921 (lastScheduledPresentTime <
1922 previousPresentTime - frameMissedSlop))};
1923 const TracedOrdinal<bool> hwcFrameMissed = {"PrevHwcFrameMissed",
1924 mHadDeviceComposition && frameMissed};
1925 const TracedOrdinal<bool> gpuFrameMissed = {"PrevGpuFrameMissed",
1926 mHadClientComposition && frameMissed};
1927
1928 if (frameMissed) {
1929 mFrameMissedCount++;
1930 mTimeStats->incrementMissedFrames();
1931 }
1932
1933 if (hwcFrameMissed) {
1934 mHwcFrameMissedCount++;
1935 }
1936
1937 if (gpuFrameMissed) {
1938 mGpuFrameMissedCount++;
1939 }
1940
1941 // If we are in the middle of a mode change and the fence hasn't
1942 // fired yet just wait for the next invalidate
1943 if (mSetActiveModePending) {
1944 if (framePending) {
1945 mEventQueue->invalidate();
1946 return;
1947 }
1948
1949 // We received the present fence from the HWC, so we assume it successfully updated
1950 // the mode, hence we update SF.
1951 mSetActiveModePending = false;
1952 ON_MAIN_THREAD(setActiveModeInternal());
1953 }
1954
1955 if (framePending) {
1956 if ((hwcFrameMissed && !gpuFrameMissed) || mPropagateBackpressureClientComposition) {
1957 signalLayerUpdate();
1958 return;
1959 }
1960 }
1961
1962 if (mTracingEnabledChanged) {
1963 mTracingEnabled = mTracing.isEnabled();
1964 mTracingEnabledChanged = false;
1965 }
1966
1967 if (mRefreshRateOverlaySpinner) {
1968 if (Mutex::Autolock lock(mStateLock); mRefreshRateOverlay) {
1969 mRefreshRateOverlay->onInvalidate();
1970 }
1971 }
1972
1973 bool refreshNeeded;
1974 {
1975 mTracePostComposition = mTracing.flagIsSet(SurfaceTracing::TRACE_COMPOSITION) ||
1976 mTracing.flagIsSet(SurfaceTracing::TRACE_SYNC) ||
1977 mTracing.flagIsSet(SurfaceTracing::TRACE_BUFFERS);
1978 const bool tracePreComposition = mTracingEnabled && !mTracePostComposition;
1979 ConditionalLockGuard<std::mutex> lock(mTracingLock, tracePreComposition);
1980
1981 mFrameTimeline->setSfWakeUp(vsyncId, frameStart, Fps::fromPeriodNsecs(stats.vsyncPeriod));
1982
1983 refreshNeeded = handleMessageTransaction();
1984 refreshNeeded |= handleMessageInvalidate();
1985 if (tracePreComposition) {
1986 if (mVisibleRegionsDirty) {
1987 mTracing.notifyLocked("visibleRegionsDirty");
1988 }
1989 }
1990 }
1991
1992 // Layers need to get updated (in the previous line) before we can use them for
1993 // choosing the refresh rate.
1994 // Hold mStateLock as chooseRefreshRateForContent promotes wp<Layer> to sp<Layer>
1995 // and may eventually call to ~Layer() if it holds the last reference
1996 {
1997 Mutex::Autolock _l(mStateLock);
1998 mScheduler->chooseRefreshRateForContent();
1999 }
2000
2001 ON_MAIN_THREAD(performSetActiveMode());
2002
2003 updateCursorAsync();
2004 updateInputFlinger();
2005
2006 refreshNeeded |= mRepaintEverything;
2007 if (refreshNeeded && CC_LIKELY(mBootStage != BootStage::BOOTLOADER)) {
2008 // Signal a refresh if a transaction modified the window state,
2009 // a new buffer was latched, or if HWC has requested a full
2010 // repaint
2011 if (mFrameStartTime <= 0) {
2012 // We should only use the time of the first invalidate
2013 // message that signals a refresh as the beginning of the
2014 // frame. Otherwise the real frame time will be
2015 // underestimated.
2016 mFrameStartTime = frameStart;
2017 }
2018
2019 // Run the refresh immediately after invalidate as there is no point going thru the message
2020 // queue again, and to ensure that we actually refresh the screen instead of handling
2021 // other messages that were queued us already in the MessageQueue.
2022 mRefreshPending = true;
2023 onMessageRefresh();
2024 }
2025 notifyRegionSamplingThread();
2026 }
2027
handleMessageTransaction()2028 bool SurfaceFlinger::handleMessageTransaction() {
2029 ATRACE_CALL();
2030
2031 if (getTransactionFlags(eTransactionFlushNeeded)) {
2032 flushTransactionQueues();
2033 }
2034 uint32_t transactionFlags = peekTransactionFlags();
2035 bool runHandleTransaction =
2036 ((transactionFlags & (~eTransactionFlushNeeded)) != 0) || mForceTraversal;
2037
2038 if (runHandleTransaction) {
2039 handleTransaction(eTransactionMask);
2040 }
2041
2042 if (transactionFlushNeeded()) {
2043 setTransactionFlags(eTransactionFlushNeeded);
2044 }
2045
2046 return runHandleTransaction;
2047 }
2048
onMessageRefresh()2049 void SurfaceFlinger::onMessageRefresh() {
2050 ATRACE_CALL();
2051
2052 mRefreshPending = false;
2053
2054 compositionengine::CompositionRefreshArgs refreshArgs;
2055 const auto& displays = ON_MAIN_THREAD(mDisplays);
2056 refreshArgs.outputs.reserve(displays.size());
2057 for (const auto& [_, display] : displays) {
2058 refreshArgs.outputs.push_back(display->getCompositionDisplay());
2059 }
2060 mDrawingState.traverseInZOrder([&refreshArgs](Layer* layer) {
2061 if (auto layerFE = layer->getCompositionEngineLayerFE())
2062 refreshArgs.layers.push_back(layerFE);
2063 });
2064 refreshArgs.layersWithQueuedFrames.reserve(mLayersWithQueuedFrames.size());
2065 for (auto layer : mLayersWithQueuedFrames) {
2066 if (auto layerFE = layer->getCompositionEngineLayerFE())
2067 refreshArgs.layersWithQueuedFrames.push_back(layerFE);
2068 }
2069
2070 refreshArgs.repaintEverything = mRepaintEverything.exchange(false);
2071 refreshArgs.outputColorSetting = useColorManagement
2072 ? mDisplayColorSetting
2073 : compositionengine::OutputColorSetting::kUnmanaged;
2074 refreshArgs.colorSpaceAgnosticDataspace = mColorSpaceAgnosticDataspace;
2075 refreshArgs.forceOutputColorMode = mForceColorMode;
2076
2077 refreshArgs.updatingOutputGeometryThisFrame = mVisibleRegionsDirty;
2078 refreshArgs.updatingGeometryThisFrame = mGeometryInvalid || mVisibleRegionsDirty;
2079 refreshArgs.blursAreExpensive = mBlursAreExpensive;
2080 refreshArgs.internalDisplayRotationFlags = DisplayDevice::getPrimaryDisplayRotationFlags();
2081
2082 if (CC_UNLIKELY(mDrawingState.colorMatrixChanged)) {
2083 refreshArgs.colorTransformMatrix = mDrawingState.colorMatrix;
2084 mDrawingState.colorMatrixChanged = false;
2085 }
2086
2087 refreshArgs.devOptForceClientComposition = mDebugDisableHWC || mDebugRegion;
2088
2089 if (mDebugRegion != 0) {
2090 refreshArgs.devOptFlashDirtyRegionsDelay =
2091 std::chrono::milliseconds(mDebugRegion > 1 ? mDebugRegion : 0);
2092 }
2093
2094 const auto prevVsyncTime = mScheduler->getPreviousVsyncFrom(mExpectedPresentTime);
2095 const auto hwcMinWorkDuration = mVsyncConfiguration->getCurrentConfigs().hwcMinWorkDuration;
2096 refreshArgs.earliestPresentTime = prevVsyncTime - hwcMinWorkDuration;
2097 refreshArgs.previousPresentFence = mPreviousPresentFences[0].fenceTime;
2098 refreshArgs.nextInvalidateTime = mEventQueue->nextExpectedInvalidate();
2099
2100 mGeometryInvalid = false;
2101
2102 // Store the present time just before calling to the composition engine so we could notify
2103 // the scheduler.
2104 const auto presentTime = systemTime();
2105
2106 mCompositionEngine->present(refreshArgs);
2107 mTimeStats->recordFrameDuration(mFrameStartTime, systemTime());
2108 // Reset the frame start time now that we've recorded this frame.
2109 mFrameStartTime = 0;
2110
2111 mScheduler->onDisplayRefreshed(presentTime);
2112
2113 postFrame();
2114 postComposition();
2115
2116 const bool prevFrameHadClientComposition = mHadClientComposition;
2117
2118 mHadClientComposition = std::any_of(displays.cbegin(), displays.cend(), [](const auto& pair) {
2119 const auto& state = pair.second->getCompositionDisplay()->getState();
2120 return state.usesClientComposition && !state.reusedClientComposition;
2121 });
2122 mHadDeviceComposition = std::any_of(displays.cbegin(), displays.cend(), [](const auto& pair) {
2123 const auto& state = pair.second->getCompositionDisplay()->getState();
2124 return state.usesDeviceComposition;
2125 });
2126 mReusedClientComposition =
2127 std::any_of(displays.cbegin(), displays.cend(), [](const auto& pair) {
2128 const auto& state = pair.second->getCompositionDisplay()->getState();
2129 return state.reusedClientComposition;
2130 });
2131 // Only report a strategy change if we move in and out of client composition
2132 if (prevFrameHadClientComposition != mHadClientComposition) {
2133 mTimeStats->incrementCompositionStrategyChanges();
2134 }
2135
2136 // TODO: b/160583065 Enable skip validation when SF caches all client composition layers
2137 const bool usedGpuComposition = mHadClientComposition || mReusedClientComposition;
2138 modulateVsync(&VsyncModulator::onDisplayRefresh, usedGpuComposition);
2139
2140 mLayersWithQueuedFrames.clear();
2141 if (mTracingEnabled && mTracePostComposition) {
2142 // This may block if SurfaceTracing is running in sync mode.
2143 if (mVisibleRegionsDirty) {
2144 mTracing.notify("visibleRegionsDirty");
2145 } else if (mTracing.flagIsSet(SurfaceTracing::TRACE_BUFFERS)) {
2146 mTracing.notify("bufferLatched");
2147 }
2148 }
2149
2150 mVisibleRegionsWereDirtyThisFrame = mVisibleRegionsDirty; // Cache value for use in post-comp
2151 mVisibleRegionsDirty = false;
2152
2153 if (mCompositionEngine->needsAnotherUpdate()) {
2154 signalLayerUpdate();
2155 }
2156 }
2157
handleMessageInvalidate()2158 bool SurfaceFlinger::handleMessageInvalidate() {
2159 ATRACE_CALL();
2160 bool refreshNeeded = handlePageFlip();
2161
2162 // Send on commit callbacks
2163 mTransactionCallbackInvoker.sendCallbacks();
2164
2165 if (mVisibleRegionsDirty) {
2166 computeLayerBounds();
2167 }
2168
2169 for (auto& layer : mLayersPendingRefresh) {
2170 Region visibleReg;
2171 visibleReg.set(layer->getScreenBounds());
2172 invalidateLayerStack(layer, visibleReg);
2173 }
2174 mLayersPendingRefresh.clear();
2175 return refreshNeeded;
2176 }
2177
updateCompositorTiming(const DisplayStatInfo & stats,nsecs_t compositeTime,std::shared_ptr<FenceTime> & presentFenceTime)2178 void SurfaceFlinger::updateCompositorTiming(const DisplayStatInfo& stats, nsecs_t compositeTime,
2179 std::shared_ptr<FenceTime>& presentFenceTime) {
2180 // Update queue of past composite+present times and determine the
2181 // most recently known composite to present latency.
2182 getBE().mCompositePresentTimes.push({compositeTime, presentFenceTime});
2183 nsecs_t compositeToPresentLatency = -1;
2184 while (!getBE().mCompositePresentTimes.empty()) {
2185 SurfaceFlingerBE::CompositePresentTime& cpt = getBE().mCompositePresentTimes.front();
2186 // Cached values should have been updated before calling this method,
2187 // which helps avoid duplicate syscalls.
2188 nsecs_t displayTime = cpt.display->getCachedSignalTime();
2189 if (displayTime == Fence::SIGNAL_TIME_PENDING) {
2190 break;
2191 }
2192 compositeToPresentLatency = displayTime - cpt.composite;
2193 getBE().mCompositePresentTimes.pop();
2194 }
2195
2196 // Don't let mCompositePresentTimes grow unbounded, just in case.
2197 while (getBE().mCompositePresentTimes.size() > 16) {
2198 getBE().mCompositePresentTimes.pop();
2199 }
2200
2201 setCompositorTimingSnapped(stats, compositeToPresentLatency);
2202 }
2203
setCompositorTimingSnapped(const DisplayStatInfo & stats,nsecs_t compositeToPresentLatency)2204 void SurfaceFlinger::setCompositorTimingSnapped(const DisplayStatInfo& stats,
2205 nsecs_t compositeToPresentLatency) {
2206 // Integer division and modulo round toward 0 not -inf, so we need to
2207 // treat negative and positive offsets differently.
2208 nsecs_t idealLatency = (mVsyncConfiguration->getCurrentConfigs().late.sfOffset > 0)
2209 ? (stats.vsyncPeriod -
2210 (mVsyncConfiguration->getCurrentConfigs().late.sfOffset % stats.vsyncPeriod))
2211 : ((-mVsyncConfiguration->getCurrentConfigs().late.sfOffset) % stats.vsyncPeriod);
2212
2213 // Just in case mVsyncConfiguration->getCurrentConfigs().late.sf == -vsyncInterval.
2214 if (idealLatency <= 0) {
2215 idealLatency = stats.vsyncPeriod;
2216 }
2217
2218 // Snap the latency to a value that removes scheduling jitter from the
2219 // composition and present times, which often have >1ms of jitter.
2220 // Reducing jitter is important if an app attempts to extrapolate
2221 // something (such as user input) to an accurate diasplay time.
2222 // Snapping also allows an app to precisely calculate
2223 // mVsyncConfiguration->getCurrentConfigs().late.sf with (presentLatency % interval).
2224 nsecs_t bias = stats.vsyncPeriod / 2;
2225 int64_t extraVsyncs = (compositeToPresentLatency - idealLatency + bias) / stats.vsyncPeriod;
2226 nsecs_t snappedCompositeToPresentLatency =
2227 (extraVsyncs > 0) ? idealLatency + (extraVsyncs * stats.vsyncPeriod) : idealLatency;
2228
2229 std::lock_guard<std::mutex> lock(getBE().mCompositorTimingLock);
2230 getBE().mCompositorTiming.deadline = stats.vsyncTime - idealLatency;
2231 getBE().mCompositorTiming.interval = stats.vsyncPeriod;
2232 getBE().mCompositorTiming.presentLatency = snappedCompositeToPresentLatency;
2233 }
2234
postComposition()2235 void SurfaceFlinger::postComposition() {
2236 ATRACE_CALL();
2237 ALOGV("postComposition");
2238
2239 const auto* display = ON_MAIN_THREAD(getDefaultDisplayDeviceLocked()).get();
2240
2241 getBE().mGlCompositionDoneTimeline.updateSignalTimes();
2242 std::shared_ptr<FenceTime> glCompositionDoneFenceTime;
2243 if (display && display->getCompositionDisplay()->getState().usesClientComposition) {
2244 glCompositionDoneFenceTime =
2245 std::make_shared<FenceTime>(display->getCompositionDisplay()
2246 ->getRenderSurface()
2247 ->getClientTargetAcquireFence());
2248 getBE().mGlCompositionDoneTimeline.push(glCompositionDoneFenceTime);
2249 } else {
2250 glCompositionDoneFenceTime = FenceTime::NO_FENCE;
2251 }
2252
2253 getBE().mDisplayTimeline.updateSignalTimes();
2254 mPreviousPresentFences[1] = mPreviousPresentFences[0];
2255 mPreviousPresentFences[0].fence =
2256 display ? getHwComposer().getPresentFence(display->getPhysicalId()) : Fence::NO_FENCE;
2257 mPreviousPresentFences[0].fenceTime =
2258 std::make_shared<FenceTime>(mPreviousPresentFences[0].fence);
2259
2260 getBE().mDisplayTimeline.push(mPreviousPresentFences[0].fenceTime);
2261
2262 nsecs_t now = systemTime();
2263
2264 // Set presentation information before calling Layer::releasePendingBuffer, such that jank
2265 // information from previous' frame classification is already available when sending jank info
2266 // to clients, so they get jank classification as early as possible.
2267 mFrameTimeline->setSfPresent(/* sfPresentTime */ now, mPreviousPresentFences[0].fenceTime,
2268 glCompositionDoneFenceTime);
2269
2270 const DisplayStatInfo stats = mScheduler->getDisplayStatInfo(now);
2271
2272 // We use the CompositionEngine::getLastFrameRefreshTimestamp() which might
2273 // be sampled a little later than when we started doing work for this frame,
2274 // but that should be okay since updateCompositorTiming has snapping logic.
2275 updateCompositorTiming(stats, mCompositionEngine->getLastFrameRefreshTimestamp(),
2276 mPreviousPresentFences[0].fenceTime);
2277 CompositorTiming compositorTiming;
2278 {
2279 std::lock_guard<std::mutex> lock(getBE().mCompositorTimingLock);
2280 compositorTiming = getBE().mCompositorTiming;
2281 }
2282
2283 for (const auto& layer: mLayersWithQueuedFrames) {
2284 const bool frameLatched =
2285 layer->onPostComposition(display, glCompositionDoneFenceTime,
2286 mPreviousPresentFences[0].fenceTime, compositorTiming);
2287 layer->releasePendingBuffer(/*dequeueReadyTime*/ now);
2288 if (frameLatched) {
2289 recordBufferingStats(layer->getName(), layer->getOccupancyHistory(false));
2290 }
2291 }
2292
2293 std::vector<std::pair<std::shared_ptr<compositionengine::Display>, sp<HdrLayerInfoReporter>>>
2294 hdrInfoListeners;
2295 bool haveNewListeners = false;
2296 {
2297 Mutex::Autolock lock(mStateLock);
2298 if (mFpsReporter) {
2299 mFpsReporter->dispatchLayerFps();
2300 }
2301
2302 if (mTunnelModeEnabledReporter) {
2303 mTunnelModeEnabledReporter->updateTunnelModeStatus();
2304 }
2305 hdrInfoListeners.reserve(mHdrLayerInfoListeners.size());
2306 for (const auto& [displayId, reporter] : mHdrLayerInfoListeners) {
2307 if (reporter && reporter->hasListeners()) {
2308 if (const auto display = getDisplayDeviceLocked(displayId)) {
2309 hdrInfoListeners.emplace_back(display->getCompositionDisplay(), reporter);
2310 }
2311 }
2312 }
2313 haveNewListeners = mAddingHDRLayerInfoListener; // grab this with state lock
2314 mAddingHDRLayerInfoListener = false;
2315 }
2316
2317 if (haveNewListeners || mSomeDataspaceChanged || mVisibleRegionsWereDirtyThisFrame) {
2318 for (auto& [compositionDisplay, listener] : hdrInfoListeners) {
2319 HdrLayerInfoReporter::HdrLayerInfo info;
2320 int32_t maxArea = 0;
2321 mDrawingState.traverse([&, compositionDisplay = compositionDisplay](Layer* layer) {
2322 const auto layerFe = layer->getCompositionEngineLayerFE();
2323 if (layer->isVisible() && compositionDisplay->belongsInOutput(layerFe)) {
2324 const Dataspace transfer =
2325 static_cast<Dataspace>(layer->getDataSpace() & Dataspace::TRANSFER_MASK);
2326 const bool isHdr = (transfer == Dataspace::TRANSFER_ST2084 ||
2327 transfer == Dataspace::TRANSFER_HLG);
2328
2329 if (isHdr) {
2330 const auto* outputLayer =
2331 compositionDisplay->getOutputLayerForLayer(layerFe);
2332 if (outputLayer) {
2333 info.numberOfHdrLayers++;
2334 const auto displayFrame = outputLayer->getState().displayFrame;
2335 const int32_t area = displayFrame.width() * displayFrame.height();
2336 if (area > maxArea) {
2337 maxArea = area;
2338 info.maxW = displayFrame.width();
2339 info.maxH = displayFrame.height();
2340 }
2341 }
2342 }
2343 }
2344 });
2345 listener->dispatchHdrLayerInfo(info);
2346 }
2347 }
2348
2349 mSomeDataspaceChanged = false;
2350 mVisibleRegionsWereDirtyThisFrame = false;
2351
2352 mTransactionCallbackInvoker.addPresentFence(mPreviousPresentFences[0].fence);
2353 mTransactionCallbackInvoker.sendCallbacks();
2354
2355 if (display && display->isPrimary() && display->getPowerMode() == hal::PowerMode::ON &&
2356 mPreviousPresentFences[0].fenceTime->isValid()) {
2357 mScheduler->addPresentFence(mPreviousPresentFences[0].fenceTime);
2358 }
2359
2360 const bool isDisplayConnected =
2361 display && getHwComposer().isConnected(display->getPhysicalId());
2362
2363 if (!hasSyncFramework) {
2364 if (isDisplayConnected && display->isPoweredOn()) {
2365 mScheduler->enableHardwareVsync();
2366 }
2367 }
2368
2369 if (mAnimCompositionPending) {
2370 mAnimCompositionPending = false;
2371
2372 if (mPreviousPresentFences[0].fenceTime->isValid()) {
2373 mAnimFrameTracker.setActualPresentFence(mPreviousPresentFences[0].fenceTime);
2374 } else if (isDisplayConnected) {
2375 // The HWC doesn't support present fences, so use the refresh
2376 // timestamp instead.
2377 const nsecs_t presentTime = display->getRefreshTimestamp();
2378 mAnimFrameTracker.setActualPresentTime(presentTime);
2379 }
2380 mAnimFrameTracker.advanceFrame();
2381 }
2382
2383 mTimeStats->incrementTotalFrames();
2384 if (mHadClientComposition) {
2385 mTimeStats->incrementClientCompositionFrames();
2386 }
2387
2388 if (mReusedClientComposition) {
2389 mTimeStats->incrementClientCompositionReusedFrames();
2390 }
2391
2392 mTimeStats->setPresentFenceGlobal(mPreviousPresentFences[0].fenceTime);
2393
2394 const size_t sfConnections = mScheduler->getEventThreadConnectionCount(mSfConnectionHandle);
2395 const size_t appConnections = mScheduler->getEventThreadConnectionCount(mAppConnectionHandle);
2396 mTimeStats->recordDisplayEventConnectionCount(sfConnections + appConnections);
2397
2398 if (isDisplayConnected && !display->isPoweredOn()) {
2399 return;
2400 }
2401
2402 nsecs_t currentTime = systemTime();
2403 if (mHasPoweredOff) {
2404 mHasPoweredOff = false;
2405 } else {
2406 nsecs_t elapsedTime = currentTime - getBE().mLastSwapTime;
2407 size_t numPeriods = static_cast<size_t>(elapsedTime / stats.vsyncPeriod);
2408 if (numPeriods < SurfaceFlingerBE::NUM_BUCKETS - 1) {
2409 getBE().mFrameBuckets[numPeriods] += elapsedTime;
2410 } else {
2411 getBE().mFrameBuckets[SurfaceFlingerBE::NUM_BUCKETS - 1] += elapsedTime;
2412 }
2413 getBE().mTotalTime += elapsedTime;
2414 }
2415 getBE().mLastSwapTime = currentTime;
2416
2417 // Cleanup any outstanding resources due to rendering a prior frame.
2418 getRenderEngine().cleanupPostRender();
2419
2420 {
2421 std::lock_guard lock(mTexturePoolMutex);
2422 if (mTexturePool.size() < mTexturePoolSize) {
2423 const size_t refillCount = mTexturePoolSize - mTexturePool.size();
2424 const size_t offset = mTexturePool.size();
2425 mTexturePool.resize(mTexturePoolSize);
2426 getRenderEngine().genTextures(refillCount, mTexturePool.data() + offset);
2427 ATRACE_INT("TexturePoolSize", mTexturePool.size());
2428 } else if (mTexturePool.size() > mTexturePoolSize) {
2429 const size_t deleteCount = mTexturePool.size() - mTexturePoolSize;
2430 const size_t offset = mTexturePoolSize;
2431 getRenderEngine().deleteTextures(deleteCount, mTexturePool.data() + offset);
2432 mTexturePool.resize(mTexturePoolSize);
2433 ATRACE_INT("TexturePoolSize", mTexturePool.size());
2434 }
2435 }
2436
2437 // Even though ATRACE_INT64 already checks if tracing is enabled, it doesn't prevent the
2438 // side-effect of getTotalSize(), so we check that again here
2439 if (ATRACE_ENABLED()) {
2440 // getTotalSize returns the total number of buffers that were allocated by SurfaceFlinger
2441 ATRACE_INT64("Total Buffer Size", GraphicBufferAllocator::get().getTotalSize());
2442 }
2443 }
2444
getLayerClipBoundsForDisplay(const DisplayDevice & displayDevice) const2445 FloatRect SurfaceFlinger::getLayerClipBoundsForDisplay(const DisplayDevice& displayDevice) const {
2446 return displayDevice.getLayerStackSpaceRect().toFloatRect();
2447 }
2448
computeLayerBounds()2449 void SurfaceFlinger::computeLayerBounds() {
2450 for (const auto& pair : ON_MAIN_THREAD(mDisplays)) {
2451 const auto& displayDevice = pair.second;
2452 const auto display = displayDevice->getCompositionDisplay();
2453 for (const auto& layer : mDrawingState.layersSortedByZ) {
2454 // only consider the layers on the given layer stack
2455 if (!display->belongsInOutput(layer->getLayerStack(), layer->getPrimaryDisplayOnly())) {
2456 continue;
2457 }
2458
2459 layer->computeBounds(getLayerClipBoundsForDisplay(*displayDevice), ui::Transform(),
2460 0.f /* shadowRadius */);
2461 }
2462 }
2463 }
2464
postFrame()2465 void SurfaceFlinger::postFrame() {
2466 const auto display = ON_MAIN_THREAD(getDefaultDisplayDeviceLocked());
2467 if (display && getHwComposer().isConnected(display->getPhysicalId())) {
2468 uint32_t flipCount = display->getPageFlipCount();
2469 if (flipCount % LOG_FRAME_STATS_PERIOD == 0) {
2470 logFrameStats();
2471 }
2472 }
2473 }
2474
handleTransaction(uint32_t transactionFlags)2475 void SurfaceFlinger::handleTransaction(uint32_t transactionFlags) {
2476 ATRACE_CALL();
2477
2478 // here we keep a copy of the drawing state (that is the state that's
2479 // going to be overwritten by handleTransactionLocked()) outside of
2480 // mStateLock so that the side-effects of the State assignment
2481 // don't happen with mStateLock held (which can cause deadlocks).
2482 State drawingState(mDrawingState);
2483
2484 Mutex::Autolock _l(mStateLock);
2485 mDebugInTransaction = systemTime();
2486
2487 // Here we're guaranteed that some transaction flags are set
2488 // so we can call handleTransactionLocked() unconditionally.
2489 // We call getTransactionFlags(), which will also clear the flags,
2490 // with mStateLock held to guarantee that mCurrentState won't change
2491 // until the transaction is committed.
2492
2493 modulateVsync(&VsyncModulator::onTransactionCommit);
2494 transactionFlags = getTransactionFlags(eTransactionMask);
2495 handleTransactionLocked(transactionFlags);
2496
2497 mDebugInTransaction = 0;
2498 // here the transaction has been committed
2499 }
2500
loadDisplayModes(PhysicalDisplayId displayId,DisplayModes & outModes,DisplayModePtr & outActiveMode) const2501 void SurfaceFlinger::loadDisplayModes(PhysicalDisplayId displayId, DisplayModes& outModes,
2502 DisplayModePtr& outActiveMode) const {
2503 std::vector<HWComposer::HWCDisplayMode> hwcModes;
2504 std::optional<hal::HWDisplayId> activeModeHwcId;
2505 bool activeModeIsSupported;
2506 int attempt = 0;
2507 constexpr int kMaxAttempts = 3;
2508 do {
2509 hwcModes = getHwComposer().getModes(displayId);
2510 activeModeHwcId = getHwComposer().getActiveMode(displayId);
2511 LOG_ALWAYS_FATAL_IF(!activeModeHwcId, "HWC returned no active mode");
2512
2513 activeModeIsSupported =
2514 std::any_of(hwcModes.begin(), hwcModes.end(),
2515 [activeModeHwcId](const HWComposer::HWCDisplayMode& mode) {
2516 return mode.hwcId == *activeModeHwcId;
2517 });
2518 } while (!activeModeIsSupported && ++attempt < kMaxAttempts);
2519 LOG_ALWAYS_FATAL_IF(!activeModeIsSupported,
2520 "After %d attempts HWC still returns an active mode which is not"
2521 " supported. Active mode ID = %" PRIu64 " . Supported modes = %s",
2522 kMaxAttempts, *activeModeHwcId, base::Join(hwcModes, ", ").c_str());
2523
2524 DisplayModes oldModes;
2525
2526 if (const auto token = getPhysicalDisplayTokenLocked(displayId)) {
2527 oldModes = getDisplayDeviceLocked(token)->getSupportedModes();
2528 }
2529
2530 int largestUsedModeId = -1; // Use int instead of DisplayModeId for signedness
2531 for (const auto& mode : oldModes) {
2532 const auto id = static_cast<int>(mode->getId().value());
2533 if (id > largestUsedModeId) {
2534 largestUsedModeId = id;
2535 }
2536 }
2537
2538 DisplayModes newModes;
2539 int32_t nextModeId = largestUsedModeId + 1;
2540 for (const auto& hwcMode : hwcModes) {
2541 newModes.push_back(DisplayMode::Builder(hwcMode.hwcId)
2542 .setId(DisplayModeId{nextModeId++})
2543 .setWidth(hwcMode.width)
2544 .setHeight(hwcMode.height)
2545 .setVsyncPeriod(hwcMode.vsyncPeriod)
2546 .setDpiX(hwcMode.dpiX)
2547 .setDpiY(hwcMode.dpiY)
2548 .setGroup(hwcMode.configGroup)
2549 .build());
2550 }
2551
2552 const bool modesAreSame =
2553 std::equal(newModes.begin(), newModes.end(), oldModes.begin(), oldModes.end(),
2554 [](DisplayModePtr left, DisplayModePtr right) {
2555 return left->equalsExceptDisplayModeId(right);
2556 });
2557
2558 if (modesAreSame) {
2559 // The supported modes have not changed, keep the old IDs.
2560 outModes = oldModes;
2561 } else {
2562 outModes = newModes;
2563 }
2564
2565 outActiveMode = *std::find_if(outModes.begin(), outModes.end(),
2566 [activeModeHwcId](const DisplayModePtr& mode) {
2567 return mode->getHwcId() == *activeModeHwcId;
2568 });
2569 }
2570
processDisplayHotplugEventsLocked()2571 void SurfaceFlinger::processDisplayHotplugEventsLocked() {
2572 for (const auto& event : mPendingHotplugEvents) {
2573 std::optional<DisplayIdentificationInfo> info =
2574 getHwComposer().onHotplug(event.hwcDisplayId, event.connection);
2575
2576 if (!info) {
2577 continue;
2578 }
2579
2580 const auto displayId = info->id;
2581 const auto it = mPhysicalDisplayTokens.find(displayId);
2582
2583 if (event.connection == hal::Connection::CONNECTED) {
2584 DisplayModes supportedModes;
2585 DisplayModePtr activeMode;
2586 loadDisplayModes(displayId, supportedModes, activeMode);
2587
2588 if (it == mPhysicalDisplayTokens.end()) {
2589 ALOGV("Creating display %s", to_string(displayId).c_str());
2590
2591 DisplayDeviceState state;
2592 state.physical = {.id = displayId,
2593 .type = getHwComposer().getDisplayConnectionType(displayId),
2594 .hwcDisplayId = event.hwcDisplayId,
2595 .deviceProductInfo = std::move(info->deviceProductInfo),
2596 .supportedModes = std::move(supportedModes),
2597 .activeMode = activeMode};
2598 state.isSecure = true; // All physical displays are currently considered secure.
2599 state.displayName = std::move(info->name);
2600
2601 sp<IBinder> token = new BBinder();
2602 mCurrentState.displays.add(token, state);
2603 mPhysicalDisplayTokens.emplace(displayId, std::move(token));
2604
2605 if (event.hwcDisplayId == getHwComposer().getInternalHwcDisplayId()) {
2606 initScheduler(state);
2607 }
2608
2609 mInterceptor->saveDisplayCreation(state);
2610 } else {
2611 ALOGV("Recreating display %s", to_string(displayId).c_str());
2612
2613 const auto token = it->second;
2614 auto& state = mCurrentState.displays.editValueFor(token);
2615 state.sequenceId = DisplayDeviceState{}.sequenceId; // Generate new sequenceId
2616 state.physical->supportedModes = std::move(supportedModes);
2617 state.physical->activeMode = activeMode;
2618 if (getHwComposer().updatesDeviceProductInfoOnHotplugReconnect()) {
2619 state.physical->deviceProductInfo = std::move(info->deviceProductInfo);
2620 }
2621 }
2622 } else {
2623 ALOGV("Removing display %s", to_string(displayId).c_str());
2624
2625 const ssize_t index = mCurrentState.displays.indexOfKey(it->second);
2626 if (index >= 0) {
2627 const DisplayDeviceState& state = mCurrentState.displays.valueAt(index);
2628 mInterceptor->saveDisplayDeletion(state.sequenceId);
2629 mCurrentState.displays.removeItemsAt(index);
2630 }
2631 mPhysicalDisplayTokens.erase(it);
2632 }
2633
2634 processDisplayChangesLocked();
2635 }
2636
2637 mPendingHotplugEvents.clear();
2638 }
2639
dispatchDisplayHotplugEvent(PhysicalDisplayId displayId,bool connected)2640 void SurfaceFlinger::dispatchDisplayHotplugEvent(PhysicalDisplayId displayId, bool connected) {
2641 ALOGI("Dispatching display hotplug event displayId=%s, connected=%d",
2642 to_string(displayId).c_str(), connected);
2643 mScheduler->onHotplugReceived(mAppConnectionHandle, displayId, connected);
2644 mScheduler->onHotplugReceived(mSfConnectionHandle, displayId, connected);
2645 }
2646
setupNewDisplayDeviceInternal(const wp<IBinder> & displayToken,std::shared_ptr<compositionengine::Display> compositionDisplay,const DisplayDeviceState & state,const sp<compositionengine::DisplaySurface> & displaySurface,const sp<IGraphicBufferProducer> & producer)2647 sp<DisplayDevice> SurfaceFlinger::setupNewDisplayDeviceInternal(
2648 const wp<IBinder>& displayToken,
2649 std::shared_ptr<compositionengine::Display> compositionDisplay,
2650 const DisplayDeviceState& state,
2651 const sp<compositionengine::DisplaySurface>& displaySurface,
2652 const sp<IGraphicBufferProducer>& producer) {
2653 DisplayDeviceCreationArgs creationArgs(this, getHwComposer(), displayToken, compositionDisplay);
2654 creationArgs.sequenceId = state.sequenceId;
2655 creationArgs.isSecure = state.isSecure;
2656 creationArgs.displaySurface = displaySurface;
2657 creationArgs.hasWideColorGamut = false;
2658 creationArgs.supportedPerFrameMetadata = 0;
2659
2660 if (const auto& physical = state.physical) {
2661 creationArgs.connectionType = physical->type;
2662 creationArgs.supportedModes = physical->supportedModes;
2663 }
2664
2665 if (const auto id = PhysicalDisplayId::tryCast(compositionDisplay->getId())) {
2666 creationArgs.isPrimary = id == getInternalDisplayIdLocked();
2667
2668 if (useColorManagement) {
2669 std::vector<ColorMode> modes = getHwComposer().getColorModes(*id);
2670 for (ColorMode colorMode : modes) {
2671 if (isWideColorMode(colorMode)) {
2672 creationArgs.hasWideColorGamut = true;
2673 }
2674
2675 std::vector<RenderIntent> renderIntents =
2676 getHwComposer().getRenderIntents(*id, colorMode);
2677 creationArgs.hwcColorModes.emplace(colorMode, renderIntents);
2678 }
2679 }
2680 }
2681
2682 if (const auto id = HalDisplayId::tryCast(compositionDisplay->getId())) {
2683 getHwComposer().getHdrCapabilities(*id, &creationArgs.hdrCapabilities);
2684 creationArgs.supportedPerFrameMetadata = getHwComposer().getSupportedPerFrameMetadata(*id);
2685 }
2686
2687 auto nativeWindowSurface = getFactory().createNativeWindowSurface(producer);
2688 auto nativeWindow = nativeWindowSurface->getNativeWindow();
2689 creationArgs.nativeWindow = nativeWindow;
2690
2691 // Make sure that composition can never be stalled by a virtual display
2692 // consumer that isn't processing buffers fast enough. We have to do this
2693 // here, in case the display is composed entirely by HWC.
2694 if (state.isVirtual()) {
2695 nativeWindow->setSwapInterval(nativeWindow.get(), 0);
2696 }
2697
2698 creationArgs.physicalOrientation =
2699 creationArgs.isPrimary ? internalDisplayOrientation : ui::ROTATION_0;
2700
2701 // virtual displays are always considered enabled
2702 creationArgs.initialPowerMode = state.isVirtual() ? hal::PowerMode::ON : hal::PowerMode::OFF;
2703
2704 sp<DisplayDevice> display = getFactory().createDisplayDevice(creationArgs);
2705
2706 nativeWindowSurface->preallocateBuffers();
2707
2708 ColorMode defaultColorMode = ColorMode::NATIVE;
2709 Dataspace defaultDataSpace = Dataspace::UNKNOWN;
2710 if (display->hasWideColorGamut()) {
2711 defaultColorMode = ColorMode::SRGB;
2712 defaultDataSpace = Dataspace::V0_SRGB;
2713 }
2714 display->getCompositionDisplay()->setColorProfile(
2715 compositionengine::Output::ColorProfile{defaultColorMode, defaultDataSpace,
2716 RenderIntent::COLORIMETRIC,
2717 Dataspace::UNKNOWN});
2718 if (!state.isVirtual()) {
2719 display->setActiveMode(state.physical->activeMode->getId());
2720 display->setDeviceProductInfo(state.physical->deviceProductInfo);
2721 }
2722
2723 display->setLayerStack(state.layerStack);
2724 display->setProjection(state.orientation, state.layerStackSpaceRect,
2725 state.orientedDisplaySpaceRect);
2726 display->setDisplayName(state.displayName);
2727
2728 return display;
2729 }
2730
processDisplayAdded(const wp<IBinder> & displayToken,const DisplayDeviceState & state)2731 void SurfaceFlinger::processDisplayAdded(const wp<IBinder>& displayToken,
2732 const DisplayDeviceState& state) {
2733 ui::Size resolution(0, 0);
2734 ui::PixelFormat pixelFormat = static_cast<ui::PixelFormat>(PIXEL_FORMAT_UNKNOWN);
2735 if (state.physical) {
2736 resolution = state.physical->activeMode->getSize();
2737 pixelFormat = static_cast<ui::PixelFormat>(PIXEL_FORMAT_RGBA_8888);
2738 } else if (state.surface != nullptr) {
2739 int status = state.surface->query(NATIVE_WINDOW_WIDTH, &resolution.width);
2740 ALOGE_IF(status != NO_ERROR, "Unable to query width (%d)", status);
2741 status = state.surface->query(NATIVE_WINDOW_HEIGHT, &resolution.height);
2742 ALOGE_IF(status != NO_ERROR, "Unable to query height (%d)", status);
2743 int format;
2744 status = state.surface->query(NATIVE_WINDOW_FORMAT, &format);
2745 ALOGE_IF(status != NO_ERROR, "Unable to query format (%d)", status);
2746 pixelFormat = static_cast<ui::PixelFormat>(format);
2747 } else {
2748 // Virtual displays without a surface are dormant:
2749 // they have external state (layer stack, projection,
2750 // etc.) but no internal state (i.e. a DisplayDevice).
2751 return;
2752 }
2753
2754 compositionengine::DisplayCreationArgsBuilder builder;
2755 if (const auto& physical = state.physical) {
2756 builder.setId(physical->id);
2757 builder.setConnectionType(physical->type);
2758 } else {
2759 builder.setId(acquireVirtualDisplay(resolution, pixelFormat, state.layerStack));
2760 }
2761
2762 builder.setPixels(resolution);
2763 builder.setIsSecure(state.isSecure);
2764 builder.setLayerStackId(state.layerStack);
2765 builder.setPowerAdvisor(&mPowerAdvisor);
2766 builder.setName(state.displayName);
2767 auto compositionDisplay = getCompositionEngine().createDisplay(builder.build());
2768 compositionDisplay->setLayerCachingEnabled(mLayerCachingEnabled);
2769
2770 sp<compositionengine::DisplaySurface> displaySurface;
2771 sp<IGraphicBufferProducer> producer;
2772 sp<IGraphicBufferProducer> bqProducer;
2773 sp<IGraphicBufferConsumer> bqConsumer;
2774 getFactory().createBufferQueue(&bqProducer, &bqConsumer, /*consumerIsSurfaceFlinger =*/false);
2775
2776 if (state.isVirtual()) {
2777 const auto displayId = VirtualDisplayId::tryCast(compositionDisplay->getId());
2778 LOG_FATAL_IF(!displayId);
2779 auto surface = sp<VirtualDisplaySurface>::make(getHwComposer(), *displayId, state.surface,
2780 bqProducer, bqConsumer, state.displayName);
2781 displaySurface = surface;
2782 producer = std::move(surface);
2783 } else {
2784 ALOGE_IF(state.surface != nullptr,
2785 "adding a supported display, but rendering "
2786 "surface is provided (%p), ignoring it",
2787 state.surface.get());
2788 const auto displayId = PhysicalDisplayId::tryCast(compositionDisplay->getId());
2789 LOG_FATAL_IF(!displayId);
2790 displaySurface =
2791 sp<FramebufferSurface>::make(getHwComposer(), *displayId, bqConsumer,
2792 state.physical->activeMode->getSize(),
2793 ui::Size(maxGraphicsWidth, maxGraphicsHeight));
2794 producer = bqProducer;
2795 }
2796
2797 LOG_FATAL_IF(!displaySurface);
2798 const auto display = setupNewDisplayDeviceInternal(displayToken, std::move(compositionDisplay),
2799 state, displaySurface, producer);
2800 mDisplays.emplace(displayToken, display);
2801 if (!state.isVirtual()) {
2802 dispatchDisplayHotplugEvent(display->getPhysicalId(), true);
2803 }
2804
2805 if (display->isPrimary()) {
2806 mScheduler->onPrimaryDisplayAreaChanged(display->getWidth() * display->getHeight());
2807 getRenderEngine().onPrimaryDisplaySizeChanged(display->getSize());
2808 }
2809 }
2810
processDisplayRemoved(const wp<IBinder> & displayToken)2811 void SurfaceFlinger::processDisplayRemoved(const wp<IBinder>& displayToken) {
2812 auto display = getDisplayDeviceLocked(displayToken);
2813 if (display) {
2814 display->disconnect();
2815
2816 if (display->isVirtual()) {
2817 releaseVirtualDisplay(display->getVirtualId());
2818 } else {
2819 dispatchDisplayHotplugEvent(display->getPhysicalId(), false);
2820 }
2821 }
2822
2823 mDisplays.erase(displayToken);
2824
2825 if (display && display->isVirtual()) {
2826 static_cast<void>(schedule([display = std::move(display)] {
2827 // Destroy the display without holding the mStateLock.
2828 // This is a temporary solution until we can manage transaction queues without
2829 // holding the mStateLock.
2830 // With blast, the IGBP that is passed to the VirtualDisplaySurface is owned by the
2831 // client. When the IGBP is disconnected, its buffer cache in SF will be cleared
2832 // via SurfaceComposerClient::doUncacheBufferTransaction. This call from the client
2833 // ends up running on the main thread causing a deadlock since setTransactionstate
2834 // will try to acquire the mStateLock. Instead we extend the lifetime of
2835 // DisplayDevice and destroy it in the main thread without holding the mStateLock.
2836 // The display will be disconnected and removed from the mDisplays list so it will
2837 // not be accessible.
2838 }));
2839 }
2840 }
2841
processDisplayChanged(const wp<IBinder> & displayToken,const DisplayDeviceState & currentState,const DisplayDeviceState & drawingState)2842 void SurfaceFlinger::processDisplayChanged(const wp<IBinder>& displayToken,
2843 const DisplayDeviceState& currentState,
2844 const DisplayDeviceState& drawingState) {
2845 const sp<IBinder> currentBinder = IInterface::asBinder(currentState.surface);
2846 const sp<IBinder> drawingBinder = IInterface::asBinder(drawingState.surface);
2847
2848 // Recreate the DisplayDevice if the surface or sequence ID changed.
2849 if (currentBinder != drawingBinder || currentState.sequenceId != drawingState.sequenceId) {
2850 getRenderEngine().cleanFramebufferCache();
2851
2852 if (const auto display = getDisplayDeviceLocked(displayToken)) {
2853 display->disconnect();
2854 if (display->isVirtual()) {
2855 releaseVirtualDisplay(display->getVirtualId());
2856 }
2857 }
2858
2859 mDisplays.erase(displayToken);
2860
2861 if (const auto& physical = currentState.physical) {
2862 getHwComposer().allocatePhysicalDisplay(physical->hwcDisplayId, physical->id);
2863 }
2864
2865 processDisplayAdded(displayToken, currentState);
2866
2867 if (currentState.physical) {
2868 const auto display = getDisplayDeviceLocked(displayToken);
2869 setPowerModeInternal(display, hal::PowerMode::ON);
2870
2871 // TODO(b/175678251) Call a listener instead.
2872 if (currentState.physical->hwcDisplayId == getHwComposer().getInternalHwcDisplayId()) {
2873 mRefreshRateConfigs->updateDisplayModes(currentState.physical->supportedModes,
2874 currentState.physical->activeMode->getId());
2875 mVsyncConfiguration->reset();
2876 const Fps refreshRate = currentState.physical->activeMode->getFps();
2877 updatePhaseConfiguration(refreshRate);
2878 mRefreshRateStats->setRefreshRate(refreshRate);
2879
2880 if (mRefreshRateOverlay) {
2881 mRefreshRateOverlay->reset();
2882 }
2883 }
2884 }
2885 return;
2886 }
2887
2888 if (const auto display = getDisplayDeviceLocked(displayToken)) {
2889 if (currentState.layerStack != drawingState.layerStack) {
2890 display->setLayerStack(currentState.layerStack);
2891 }
2892 if ((currentState.orientation != drawingState.orientation) ||
2893 (currentState.layerStackSpaceRect != drawingState.layerStackSpaceRect) ||
2894 (currentState.orientedDisplaySpaceRect != drawingState.orientedDisplaySpaceRect)) {
2895 display->setProjection(currentState.orientation, currentState.layerStackSpaceRect,
2896 currentState.orientedDisplaySpaceRect);
2897 if (display->isPrimary()) {
2898 mDefaultDisplayTransformHint = display->getTransformHint();
2899 }
2900 }
2901 if (currentState.width != drawingState.width ||
2902 currentState.height != drawingState.height) {
2903 display->setDisplaySize(currentState.width, currentState.height);
2904
2905 if (display->isPrimary()) {
2906 mScheduler->onPrimaryDisplayAreaChanged(currentState.width * currentState.height);
2907 }
2908
2909 if (mRefreshRateOverlay) {
2910 mRefreshRateOverlay->setViewport(display->getSize());
2911 }
2912 }
2913 }
2914 }
2915
processDisplayChangesLocked()2916 void SurfaceFlinger::processDisplayChangesLocked() {
2917 // here we take advantage of Vector's copy-on-write semantics to
2918 // improve performance by skipping the transaction entirely when
2919 // know that the lists are identical
2920 const KeyedVector<wp<IBinder>, DisplayDeviceState>& curr(mCurrentState.displays);
2921 const KeyedVector<wp<IBinder>, DisplayDeviceState>& draw(mDrawingState.displays);
2922 if (!curr.isIdenticalTo(draw)) {
2923 mVisibleRegionsDirty = true;
2924
2925 // find the displays that were removed
2926 // (ie: in drawing state but not in current state)
2927 // also handle displays that changed
2928 // (ie: displays that are in both lists)
2929 for (size_t i = 0; i < draw.size(); i++) {
2930 const wp<IBinder>& displayToken = draw.keyAt(i);
2931 const ssize_t j = curr.indexOfKey(displayToken);
2932 if (j < 0) {
2933 // in drawing state but not in current state
2934 processDisplayRemoved(displayToken);
2935 } else {
2936 // this display is in both lists. see if something changed.
2937 const DisplayDeviceState& currentState = curr[j];
2938 const DisplayDeviceState& drawingState = draw[i];
2939 processDisplayChanged(displayToken, currentState, drawingState);
2940 }
2941 }
2942
2943 // find displays that were added
2944 // (ie: in current state but not in drawing state)
2945 for (size_t i = 0; i < curr.size(); i++) {
2946 const wp<IBinder>& displayToken = curr.keyAt(i);
2947 if (draw.indexOfKey(displayToken) < 0) {
2948 processDisplayAdded(displayToken, curr[i]);
2949 }
2950 }
2951 }
2952
2953 mDrawingState.displays = mCurrentState.displays;
2954 }
2955
handleTransactionLocked(uint32_t transactionFlags)2956 void SurfaceFlinger::handleTransactionLocked(uint32_t transactionFlags) {
2957 // Commit display transactions
2958 const bool displayTransactionNeeded = transactionFlags & eDisplayTransactionNeeded;
2959 if (displayTransactionNeeded) {
2960 processDisplayChangesLocked();
2961 processDisplayHotplugEventsLocked();
2962 }
2963 mForceTraversal = false;
2964 mForceTransactionDisplayChange = displayTransactionNeeded;
2965
2966 if (mSomeChildrenChanged) {
2967 mVisibleRegionsDirty = true;
2968 mSomeChildrenChanged = false;
2969 }
2970
2971 // Update transform hint
2972 if (transactionFlags & (eTransformHintUpdateNeeded | eDisplayTransactionNeeded)) {
2973 // The transform hint might have changed for some layers
2974 // (either because a display has changed, or because a layer
2975 // as changed).
2976 //
2977 // Walk through all the layers in currentLayers,
2978 // and update their transform hint.
2979 //
2980 // If a layer is visible only on a single display, then that
2981 // display is used to calculate the hint, otherwise we use the
2982 // default display.
2983 //
2984 // NOTE: we do this here, rather than when presenting the display so that
2985 // the hint is set before we acquire a buffer from the surface texture.
2986 //
2987 // NOTE: layer transactions have taken place already, so we use their
2988 // drawing state. However, SurfaceFlinger's own transaction has not
2989 // happened yet, so we must use the current state layer list
2990 // (soon to become the drawing state list).
2991 //
2992 sp<const DisplayDevice> hintDisplay;
2993 uint32_t currentlayerStack = 0;
2994 bool first = true;
2995 mCurrentState.traverse([&](Layer* layer) REQUIRES(mStateLock) {
2996 // NOTE: we rely on the fact that layers are sorted by
2997 // layerStack first (so we don't have to traverse the list
2998 // of displays for every layer).
2999 uint32_t layerStack = layer->getLayerStack();
3000 if (first || currentlayerStack != layerStack) {
3001 currentlayerStack = layerStack;
3002 // figure out if this layerstack is mirrored
3003 // (more than one display) if so, pick the default display,
3004 // if not, pick the only display it's on.
3005 hintDisplay = nullptr;
3006 for (const auto& [token, display] : mDisplays) {
3007 if (display->getCompositionDisplay()
3008 ->belongsInOutput(layer->getLayerStack(),
3009 layer->getPrimaryDisplayOnly())) {
3010 if (hintDisplay) {
3011 hintDisplay = nullptr;
3012 break;
3013 } else {
3014 hintDisplay = display;
3015 }
3016 }
3017 }
3018 }
3019
3020 if (!hintDisplay) {
3021 // NOTE: TEMPORARY FIX ONLY. Real fix should cause layers to
3022 // redraw after transform hint changes. See bug 8508397.
3023
3024 // could be null when this layer is using a layerStack
3025 // that is not visible on any display. Also can occur at
3026 // screen off/on times.
3027 hintDisplay = getDefaultDisplayDeviceLocked();
3028 }
3029
3030 // could be null if there is no display available at all to get
3031 // the transform hint from.
3032 if (hintDisplay) {
3033 layer->updateTransformHint(hintDisplay->getTransformHint());
3034 }
3035
3036 first = false;
3037 });
3038 }
3039
3040 /*
3041 * Perform our own transaction if needed
3042 */
3043
3044 if (mLayersAdded) {
3045 mLayersAdded = false;
3046 // Layers have been added.
3047 mVisibleRegionsDirty = true;
3048 }
3049
3050 // some layers might have been removed, so
3051 // we need to update the regions they're exposing.
3052 if (mLayersRemoved) {
3053 mLayersRemoved = false;
3054 mVisibleRegionsDirty = true;
3055 mDrawingState.traverseInZOrder([&](Layer* layer) {
3056 if (mLayersPendingRemoval.indexOf(layer) >= 0) {
3057 // this layer is not visible anymore
3058 Region visibleReg;
3059 visibleReg.set(layer->getScreenBounds());
3060 invalidateLayerStack(layer, visibleReg);
3061 }
3062 });
3063 }
3064
3065 commitTransaction();
3066 }
3067
updateInputFlinger()3068 void SurfaceFlinger::updateInputFlinger() {
3069 ATRACE_CALL();
3070 if (!mInputFlinger) {
3071 return;
3072 }
3073
3074 if (mVisibleRegionsDirty || mInputInfoChanged) {
3075 mInputInfoChanged = false;
3076 updateInputWindowInfo();
3077 } else if (mInputWindowCommands.syncInputWindows) {
3078 // If the caller requested to sync input windows, but there are no
3079 // changes to input windows, notify immediately.
3080 setInputWindowsFinished();
3081 }
3082
3083 for (const auto& focusRequest : mInputWindowCommands.focusRequests) {
3084 mInputFlinger->setFocusedWindow(focusRequest);
3085 }
3086 mInputWindowCommands.clear();
3087 }
3088
enablePerWindowInputRotation()3089 bool enablePerWindowInputRotation() {
3090 static bool value =
3091 android::base::GetBoolProperty("persist.debug.per_window_input_rotation", false);
3092 return value;
3093 }
3094
updateInputWindowInfo()3095 void SurfaceFlinger::updateInputWindowInfo() {
3096 std::vector<InputWindowInfo> inputInfos;
3097
3098 mDrawingState.traverseInReverseZOrder([&](Layer* layer) {
3099 if (!layer->needsInputInfo()) return;
3100 sp<DisplayDevice> display;
3101 if (enablePerWindowInputRotation()) {
3102 for (const auto& pair : ON_MAIN_THREAD(mDisplays)) {
3103 const auto& displayDevice = pair.second;
3104 if (!displayDevice->getCompositionDisplay()
3105 ->belongsInOutput(layer->getLayerStack(),
3106 layer->getPrimaryDisplayOnly())) {
3107 continue;
3108 }
3109 display = displayDevice;
3110 }
3111 }
3112 // When calculating the screen bounds we ignore the transparent region since it may
3113 // result in an unwanted offset.
3114 inputInfos.push_back(layer->fillInputInfo(display));
3115 });
3116
3117 mInputFlinger->setInputWindows(inputInfos,
3118 mInputWindowCommands.syncInputWindows ? mSetInputWindowsListener
3119 : nullptr);
3120 }
3121
updateCursorAsync()3122 void SurfaceFlinger::updateCursorAsync() {
3123 compositionengine::CompositionRefreshArgs refreshArgs;
3124 for (const auto& [_, display] : ON_MAIN_THREAD(mDisplays)) {
3125 if (HalDisplayId::tryCast(display->getId())) {
3126 refreshArgs.outputs.push_back(display->getCompositionDisplay());
3127 }
3128 }
3129
3130 mCompositionEngine->updateCursorAsync(refreshArgs);
3131 }
3132
changeRefreshRate(const RefreshRate & refreshRate,Scheduler::ModeEvent event)3133 void SurfaceFlinger::changeRefreshRate(const RefreshRate& refreshRate, Scheduler::ModeEvent event) {
3134 // If this is called from the main thread mStateLock must be locked before
3135 // Currently the only way to call this function from the main thread is from
3136 // Scheduler::chooseRefreshRateForContent
3137
3138 ConditionalLock lock(mStateLock, std::this_thread::get_id() != mMainThreadId);
3139 changeRefreshRateLocked(refreshRate, event);
3140 }
3141
triggerOnFrameRateOverridesChanged()3142 void SurfaceFlinger::triggerOnFrameRateOverridesChanged() {
3143 PhysicalDisplayId displayId = [&]() {
3144 ConditionalLock lock(mStateLock, std::this_thread::get_id() != mMainThreadId);
3145 return getDefaultDisplayDeviceLocked()->getPhysicalId();
3146 }();
3147
3148 mScheduler->onFrameRateOverridesChanged(mAppConnectionHandle, displayId);
3149 }
3150
initScheduler(const DisplayDeviceState & displayState)3151 void SurfaceFlinger::initScheduler(const DisplayDeviceState& displayState) {
3152 if (mScheduler) {
3153 // In practice it's not allowed to hotplug in/out the primary display once it's been
3154 // connected during startup, but some tests do it, so just warn and return.
3155 ALOGW("Can't re-init scheduler");
3156 return;
3157 }
3158 const auto displayId = displayState.physical->id;
3159 scheduler::RefreshRateConfigs::Config config =
3160 {.enableFrameRateOverride = android::sysprop::enable_frame_rate_override(false),
3161 .frameRateMultipleThreshold =
3162 base::GetIntProperty("debug.sf.frame_rate_multiple_threshold", 0)};
3163 mRefreshRateConfigs =
3164 std::make_unique<scheduler::RefreshRateConfigs>(displayState.physical->supportedModes,
3165 displayState.physical->activeMode
3166 ->getId(),
3167 config);
3168 const auto currRefreshRate = displayState.physical->activeMode->getFps();
3169 mRefreshRateStats = std::make_unique<scheduler::RefreshRateStats>(*mTimeStats, currRefreshRate,
3170 hal::PowerMode::OFF);
3171
3172 mVsyncConfiguration = getFactory().createVsyncConfiguration(currRefreshRate);
3173 mVsyncModulator = sp<VsyncModulator>::make(mVsyncConfiguration->getCurrentConfigs());
3174
3175 // start the EventThread
3176 mScheduler = getFactory().createScheduler(*mRefreshRateConfigs, *this);
3177 const auto configs = mVsyncConfiguration->getCurrentConfigs();
3178 const nsecs_t vsyncPeriod = currRefreshRate.getPeriodNsecs();
3179 mAppConnectionHandle =
3180 mScheduler->createConnection("app", mFrameTimeline->getTokenManager(),
3181 /*workDuration=*/configs.late.appWorkDuration,
3182 /*readyDuration=*/configs.late.sfWorkDuration,
3183 impl::EventThread::InterceptVSyncsCallback());
3184 mSfConnectionHandle =
3185 mScheduler->createConnection("appSf", mFrameTimeline->getTokenManager(),
3186 /*workDuration=*/std::chrono::nanoseconds(vsyncPeriod),
3187 /*readyDuration=*/configs.late.sfWorkDuration,
3188 [this](nsecs_t timestamp) {
3189 mInterceptor->saveVSyncEvent(timestamp);
3190 });
3191
3192 mEventQueue->initVsync(mScheduler->getVsyncDispatch(), *mFrameTimeline->getTokenManager(),
3193 configs.late.sfWorkDuration);
3194
3195 mRegionSamplingThread =
3196 new RegionSamplingThread(*this, RegionSamplingThread::EnvironmentTimingTunables());
3197 mFpsReporter = new FpsReporter(*mFrameTimeline, *this);
3198 // Dispatch a mode change request for the primary display on scheduler
3199 // initialization, so that the EventThreads always contain a reference to a
3200 // prior configuration.
3201 //
3202 // This is a bit hacky, but this avoids a back-pointer into the main SF
3203 // classes from EventThread, and there should be no run-time binder cost
3204 // anyway since there are no connected apps at this point.
3205 mScheduler->onPrimaryDisplayModeChanged(mAppConnectionHandle, displayId,
3206 displayState.physical->activeMode->getId(),
3207 vsyncPeriod);
3208 static auto ignorePresentFences =
3209 base::GetBoolProperty("debug.sf.vsync_reactor_ignore_present_fences"s, false);
3210 mScheduler->setIgnorePresentFences(
3211 ignorePresentFences ||
3212 getHwComposer().hasCapability(hal::Capability::PRESENT_FENCE_IS_NOT_RELIABLE));
3213 }
3214
updatePhaseConfiguration(const Fps & refreshRate)3215 void SurfaceFlinger::updatePhaseConfiguration(const Fps& refreshRate) {
3216 mVsyncConfiguration->setRefreshRateFps(refreshRate);
3217 setVsyncConfig(mVsyncModulator->setVsyncConfigSet(mVsyncConfiguration->getCurrentConfigs()),
3218 refreshRate.getPeriodNsecs());
3219 }
3220
setVsyncConfig(const VsyncModulator::VsyncConfig & config,nsecs_t vsyncPeriod)3221 void SurfaceFlinger::setVsyncConfig(const VsyncModulator::VsyncConfig& config,
3222 nsecs_t vsyncPeriod) {
3223 mScheduler->setDuration(mAppConnectionHandle,
3224 /*workDuration=*/config.appWorkDuration,
3225 /*readyDuration=*/config.sfWorkDuration);
3226 mScheduler->setDuration(mSfConnectionHandle,
3227 /*workDuration=*/std::chrono::nanoseconds(vsyncPeriod),
3228 /*readyDuration=*/config.sfWorkDuration);
3229 mEventQueue->setDuration(config.sfWorkDuration);
3230 }
3231
commitTransaction()3232 void SurfaceFlinger::commitTransaction() {
3233 ATRACE_CALL();
3234 commitTransactionLocked();
3235 signalSynchronousTransactions(CountDownLatch::eSyncTransaction);
3236 mAnimTransactionPending = false;
3237 }
3238
commitTransactionLocked()3239 void SurfaceFlinger::commitTransactionLocked() {
3240 if (!mLayersPendingRemoval.isEmpty()) {
3241 // Notify removed layers now that they can't be drawn from
3242 for (const auto& l : mLayersPendingRemoval) {
3243 recordBufferingStats(l->getName(), l->getOccupancyHistory(true));
3244
3245 // Ensure any buffers set to display on any children are released.
3246 if (l->isRemovedFromCurrentState()) {
3247 l->latchAndReleaseBuffer();
3248 }
3249
3250 // If the layer has been removed and has no parent, then it will not be reachable
3251 // when traversing layers on screen. Add the layer to the offscreenLayers set to
3252 // ensure we can copy its current to drawing state.
3253 if (!l->getParent()) {
3254 mOffscreenLayers.emplace(l.get());
3255 }
3256 }
3257 mLayersPendingRemoval.clear();
3258 }
3259
3260 // If this transaction is part of a window animation then the next frame
3261 // we composite should be considered an animation as well.
3262 mAnimCompositionPending = mAnimTransactionPending;
3263
3264 mDrawingState = mCurrentState;
3265 // clear the "changed" flags in current state
3266 mCurrentState.colorMatrixChanged = false;
3267
3268 if (mVisibleRegionsDirty) {
3269 for (const auto& rootLayer : mDrawingState.layersSortedByZ) {
3270 rootLayer->commitChildList();
3271 }
3272 }
3273
3274 commitOffscreenLayers();
3275 if (mNumClones > 0) {
3276 mDrawingState.traverse([&](Layer* layer) { layer->updateMirrorInfo(); });
3277 }
3278 }
3279
commitOffscreenLayers()3280 void SurfaceFlinger::commitOffscreenLayers() {
3281 for (Layer* offscreenLayer : mOffscreenLayers) {
3282 offscreenLayer->traverse(LayerVector::StateSet::Drawing, [](Layer* layer) {
3283 uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded);
3284 if (!trFlags) return;
3285
3286 layer->doTransaction(0);
3287 layer->commitChildList();
3288 });
3289 }
3290 }
3291
invalidateLayerStack(const sp<const Layer> & layer,const Region & dirty)3292 void SurfaceFlinger::invalidateLayerStack(const sp<const Layer>& layer, const Region& dirty) {
3293 for (const auto& [token, displayDevice] : ON_MAIN_THREAD(mDisplays)) {
3294 auto display = displayDevice->getCompositionDisplay();
3295 if (display->belongsInOutput(layer->getLayerStack(), layer->getPrimaryDisplayOnly())) {
3296 display->editState().dirtyRegion.orSelf(dirty);
3297 }
3298 }
3299 }
3300
handlePageFlip()3301 bool SurfaceFlinger::handlePageFlip() {
3302 ATRACE_CALL();
3303 ALOGV("handlePageFlip");
3304
3305 nsecs_t latchTime = systemTime();
3306
3307 bool visibleRegions = false;
3308 bool frameQueued = false;
3309 bool newDataLatched = false;
3310
3311 const nsecs_t expectedPresentTime = mExpectedPresentTime.load();
3312
3313 // Store the set of layers that need updates. This set must not change as
3314 // buffers are being latched, as this could result in a deadlock.
3315 // Example: Two producers share the same command stream and:
3316 // 1.) Layer 0 is latched
3317 // 2.) Layer 0 gets a new frame
3318 // 2.) Layer 1 gets a new frame
3319 // 3.) Layer 1 is latched.
3320 // Display is now waiting on Layer 1's frame, which is behind layer 0's
3321 // second frame. But layer 0's second frame could be waiting on display.
3322 mDrawingState.traverse([&](Layer* layer) {
3323 uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded);
3324 if (trFlags || mForceTransactionDisplayChange) {
3325 const uint32_t flags = layer->doTransaction(0);
3326 if (flags & Layer::eVisibleRegion)
3327 mVisibleRegionsDirty = true;
3328 }
3329
3330 if (layer->hasReadyFrame()) {
3331 frameQueued = true;
3332 if (layer->shouldPresentNow(expectedPresentTime)) {
3333 mLayersWithQueuedFrames.emplace(layer);
3334 } else {
3335 ATRACE_NAME("!layer->shouldPresentNow()");
3336 layer->useEmptyDamage();
3337 }
3338 } else {
3339 layer->useEmptyDamage();
3340 }
3341 });
3342 mForceTransactionDisplayChange = false;
3343
3344 // The client can continue submitting buffers for offscreen layers, but they will not
3345 // be shown on screen. Therefore, we need to latch and release buffers of offscreen
3346 // layers to ensure dequeueBuffer doesn't block indefinitely.
3347 for (Layer* offscreenLayer : mOffscreenLayers) {
3348 offscreenLayer->traverse(LayerVector::StateSet::Drawing,
3349 [&](Layer* l) { l->latchAndReleaseBuffer(); });
3350 }
3351
3352 if (!mLayersWithQueuedFrames.empty()) {
3353 // mStateLock is needed for latchBuffer as LayerRejecter::reject()
3354 // writes to Layer current state. See also b/119481871
3355 Mutex::Autolock lock(mStateLock);
3356
3357 for (const auto& layer : mLayersWithQueuedFrames) {
3358 if (layer->latchBuffer(visibleRegions, latchTime, expectedPresentTime)) {
3359 mLayersPendingRefresh.push_back(layer);
3360 }
3361 layer->useSurfaceDamage();
3362 if (layer->isBufferLatched()) {
3363 newDataLatched = true;
3364 }
3365 }
3366 }
3367
3368 mVisibleRegionsDirty |= visibleRegions;
3369
3370 // If we will need to wake up at some time in the future to deal with a
3371 // queued frame that shouldn't be displayed during this vsync period, wake
3372 // up during the next vsync period to check again.
3373 if (frameQueued && (mLayersWithQueuedFrames.empty() || !newDataLatched)) {
3374 signalLayerUpdate();
3375 }
3376
3377 // enter boot animation on first buffer latch
3378 if (CC_UNLIKELY(mBootStage == BootStage::BOOTLOADER && newDataLatched)) {
3379 ALOGI("Enter boot animation");
3380 mBootStage = BootStage::BOOTANIMATION;
3381 }
3382
3383 if (mNumClones > 0) {
3384 mDrawingState.traverse([&](Layer* layer) { layer->updateCloneBufferInfo(); });
3385 }
3386
3387 // Only continue with the refresh if there is actually new work to do
3388 return !mLayersWithQueuedFrames.empty() && newDataLatched;
3389 }
3390
invalidateHwcGeometry()3391 void SurfaceFlinger::invalidateHwcGeometry() {
3392 mGeometryInvalid = true;
3393 }
3394
addClientLayer(const sp<Client> & client,const sp<IBinder> & handle,const sp<IGraphicBufferProducer> & gbc,const sp<Layer> & lbc,const sp<IBinder> & parentHandle,const sp<Layer> & parentLayer,bool addToRoot,uint32_t * outTransformHint)3395 status_t SurfaceFlinger::addClientLayer(const sp<Client>& client, const sp<IBinder>& handle,
3396 const sp<IGraphicBufferProducer>& gbc, const sp<Layer>& lbc,
3397 const sp<IBinder>& parentHandle,
3398 const sp<Layer>& parentLayer, bool addToRoot,
3399 uint32_t* outTransformHint) {
3400 if (mNumLayers >= ISurfaceComposer::MAX_LAYERS) {
3401 ALOGE("AddClientLayer failed, mNumLayers (%zu) >= MAX_LAYERS (%zu)", mNumLayers.load(),
3402 ISurfaceComposer::MAX_LAYERS);
3403 return NO_MEMORY;
3404 }
3405
3406 wp<IBinder> initialProducer;
3407 if (gbc != nullptr) {
3408 initialProducer = IInterface::asBinder(gbc);
3409 }
3410 setLayerCreatedState(handle, lbc, parentHandle, parentLayer, initialProducer, addToRoot);
3411
3412 // Create a transaction includes the initial parent and producer.
3413 Vector<ComposerState> states;
3414 Vector<DisplayState> displays;
3415
3416 ComposerState composerState;
3417 composerState.state.what = layer_state_t::eLayerCreated;
3418 composerState.state.surface = handle;
3419 states.add(composerState);
3420
3421 lbc->updateTransformHint(mDefaultDisplayTransformHint);
3422 if (outTransformHint) {
3423 *outTransformHint = mDefaultDisplayTransformHint;
3424 }
3425 // attach this layer to the client
3426 client->attachLayer(handle, lbc);
3427
3428 return setTransactionState(FrameTimelineInfo{}, states, displays, 0 /* flags */, nullptr,
3429 InputWindowCommands{}, -1 /* desiredPresentTime */,
3430 true /* isAutoTimestamp */, {}, false /* hasListenerCallbacks */, {},
3431 0 /* Undefined transactionId */);
3432 }
3433
removeGraphicBufferProducerAsync(const wp<IBinder> & binder)3434 void SurfaceFlinger::removeGraphicBufferProducerAsync(const wp<IBinder>& binder) {
3435 static_cast<void>(schedule([=] {
3436 Mutex::Autolock lock(mStateLock);
3437 mGraphicBufferProducerList.erase(binder);
3438 }));
3439 }
3440
peekTransactionFlags()3441 uint32_t SurfaceFlinger::peekTransactionFlags() {
3442 return mTransactionFlags;
3443 }
3444
getTransactionFlags(uint32_t flags)3445 uint32_t SurfaceFlinger::getTransactionFlags(uint32_t flags) {
3446 return mTransactionFlags.fetch_and(~flags) & flags;
3447 }
3448
setTransactionFlags(uint32_t flags)3449 uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags) {
3450 return setTransactionFlags(flags, TransactionSchedule::Late);
3451 }
3452
setTransactionFlags(uint32_t flags,TransactionSchedule schedule,const sp<IBinder> & token)3453 uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags, TransactionSchedule schedule,
3454 const sp<IBinder>& token) {
3455 uint32_t old = mTransactionFlags.fetch_or(flags);
3456 modulateVsync(&VsyncModulator::setTransactionSchedule, schedule, token);
3457 if ((old & flags) == 0) signalTransaction();
3458 return old;
3459 }
3460
setTraversalNeeded()3461 void SurfaceFlinger::setTraversalNeeded() {
3462 mForceTraversal = true;
3463 }
3464
flushTransactionQueues()3465 void SurfaceFlinger::flushTransactionQueues() {
3466 // to prevent onHandleDestroyed from being called while the lock is held,
3467 // we must keep a copy of the transactions (specifically the composer
3468 // states) around outside the scope of the lock
3469 std::vector<const TransactionState> transactions;
3470 // Layer handles that have transactions with buffers that are ready to be applied.
3471 std::unordered_set<sp<IBinder>, ISurfaceComposer::SpHash<IBinder>> bufferLayersReadyToPresent;
3472 {
3473 Mutex::Autolock _l(mStateLock);
3474 {
3475 Mutex::Autolock _l(mQueueLock);
3476 // Collect transactions from pending transaction queue.
3477 auto it = mPendingTransactionQueues.begin();
3478 while (it != mPendingTransactionQueues.end()) {
3479 auto& [applyToken, transactionQueue] = *it;
3480
3481 while (!transactionQueue.empty()) {
3482 auto& transaction = transactionQueue.front();
3483 if (!transactionIsReadyToBeApplied(transaction.frameTimelineInfo,
3484 transaction.isAutoTimestamp,
3485 transaction.desiredPresentTime,
3486 transaction.originUid, transaction.states,
3487 bufferLayersReadyToPresent)) {
3488 setTransactionFlags(eTransactionFlushNeeded);
3489 break;
3490 }
3491 transaction.traverseStatesWithBuffers([&](const layer_state_t& state) {
3492 bufferLayersReadyToPresent.insert(state.surface);
3493 });
3494 transactions.emplace_back(std::move(transaction));
3495 transactionQueue.pop();
3496 }
3497
3498 if (transactionQueue.empty()) {
3499 it = mPendingTransactionQueues.erase(it);
3500 mTransactionQueueCV.broadcast();
3501 } else {
3502 it = std::next(it, 1);
3503 }
3504 }
3505
3506 // Collect transactions from current transaction queue or queue to pending transactions.
3507 // Case 1: push to pending when transactionIsReadyToBeApplied is false.
3508 // Case 2: push to pending when there exist a pending queue.
3509 // Case 3: others are ready to apply.
3510 while (!mTransactionQueue.empty()) {
3511 auto& transaction = mTransactionQueue.front();
3512 bool pendingTransactions = mPendingTransactionQueues.find(transaction.applyToken) !=
3513 mPendingTransactionQueues.end();
3514 if (pendingTransactions ||
3515 !transactionIsReadyToBeApplied(transaction.frameTimelineInfo,
3516 transaction.isAutoTimestamp,
3517 transaction.desiredPresentTime,
3518 transaction.originUid, transaction.states,
3519 bufferLayersReadyToPresent)) {
3520 mPendingTransactionQueues[transaction.applyToken].push(std::move(transaction));
3521 } else {
3522 transaction.traverseStatesWithBuffers([&](const layer_state_t& state) {
3523 bufferLayersReadyToPresent.insert(state.surface);
3524 });
3525 transactions.emplace_back(std::move(transaction));
3526 }
3527 mTransactionQueue.pop();
3528 ATRACE_INT("TransactionQueue", mTransactionQueue.size());
3529 }
3530 }
3531
3532 // Now apply all transactions.
3533 for (const auto& transaction : transactions) {
3534 applyTransactionState(transaction.frameTimelineInfo, transaction.states,
3535 transaction.displays, transaction.flags,
3536 transaction.inputWindowCommands, transaction.desiredPresentTime,
3537 transaction.isAutoTimestamp, transaction.buffer,
3538 transaction.postTime, transaction.permissions,
3539 transaction.hasListenerCallbacks, transaction.listenerCallbacks,
3540 transaction.originPid, transaction.originUid, transaction.id);
3541 if (transaction.transactionCommittedSignal) {
3542 mTransactionCommittedSignals.emplace_back(
3543 std::move(transaction.transactionCommittedSignal));
3544 }
3545 }
3546 }
3547 }
3548
transactionFlushNeeded()3549 bool SurfaceFlinger::transactionFlushNeeded() {
3550 Mutex::Autolock _l(mQueueLock);
3551 return !mPendingTransactionQueues.empty() || !mTransactionQueue.empty();
3552 }
3553
frameIsEarly(nsecs_t expectedPresentTime,int64_t vsyncId) const3554 bool SurfaceFlinger::frameIsEarly(nsecs_t expectedPresentTime, int64_t vsyncId) const {
3555 // The amount of time SF can delay a frame if it is considered early based
3556 // on the VsyncModulator::VsyncConfig::appWorkDuration
3557 constexpr static std::chrono::nanoseconds kEarlyLatchMaxThreshold = 100ms;
3558
3559 const auto currentVsyncPeriod = mScheduler->getDisplayStatInfo(systemTime()).vsyncPeriod;
3560 const auto earlyLatchVsyncThreshold = currentVsyncPeriod / 2;
3561
3562 const auto prediction = mFrameTimeline->getTokenManager()->getPredictionsForToken(vsyncId);
3563 if (!prediction.has_value()) {
3564 return false;
3565 }
3566
3567 if (std::abs(prediction->presentTime - expectedPresentTime) >=
3568 kEarlyLatchMaxThreshold.count()) {
3569 return false;
3570 }
3571
3572 return prediction->presentTime >= expectedPresentTime &&
3573 prediction->presentTime - expectedPresentTime >= earlyLatchVsyncThreshold;
3574 }
3575
transactionIsReadyToBeApplied(const FrameTimelineInfo & info,bool isAutoTimestamp,int64_t desiredPresentTime,uid_t originUid,const Vector<ComposerState> & states,const std::unordered_set<sp<IBinder>,ISurfaceComposer::SpHash<IBinder>> & bufferLayersReadyToPresent) const3576 bool SurfaceFlinger::transactionIsReadyToBeApplied(
3577 const FrameTimelineInfo& info, bool isAutoTimestamp, int64_t desiredPresentTime,
3578 uid_t originUid, const Vector<ComposerState>& states,
3579 const std::unordered_set<sp<IBinder>, ISurfaceComposer::SpHash<IBinder>>&
3580 bufferLayersReadyToPresent) const {
3581 ATRACE_CALL();
3582 const nsecs_t expectedPresentTime = mExpectedPresentTime.load();
3583 // Do not present if the desiredPresentTime has not passed unless it is more than one second
3584 // in the future. We ignore timestamps more than 1 second in the future for stability reasons.
3585 if (!isAutoTimestamp && desiredPresentTime >= expectedPresentTime &&
3586 desiredPresentTime < expectedPresentTime + s2ns(1)) {
3587 ATRACE_NAME("not current");
3588 return false;
3589 }
3590
3591 if (!mScheduler->isVsyncValid(expectedPresentTime, originUid)) {
3592 ATRACE_NAME("!isVsyncValid");
3593 return false;
3594 }
3595
3596 // If the client didn't specify desiredPresentTime, use the vsyncId to determine the expected
3597 // present time of this transaction.
3598 if (isAutoTimestamp && frameIsEarly(expectedPresentTime, info.vsyncId)) {
3599 ATRACE_NAME("frameIsEarly");
3600 return false;
3601 }
3602
3603 for (const ComposerState& state : states) {
3604 const layer_state_t& s = state.state;
3605 const bool acquireFenceChanged = (s.what & layer_state_t::eAcquireFenceChanged);
3606 if (acquireFenceChanged && s.acquireFence && !enableLatchUnsignaled &&
3607 s.acquireFence->getStatus() == Fence::Status::Unsignaled) {
3608 ATRACE_NAME("fence unsignaled");
3609 return false;
3610 }
3611
3612 sp<Layer> layer = nullptr;
3613 if (s.surface) {
3614 layer = fromHandleLocked(s.surface).promote();
3615 } else if (s.hasBufferChanges()) {
3616 ALOGW("Transaction with buffer, but no Layer?");
3617 continue;
3618 }
3619 if (!layer) {
3620 continue;
3621 }
3622
3623 ATRACE_NAME(layer->getName().c_str());
3624
3625 if (s.hasBufferChanges()) {
3626 // If backpressure is enabled and we already have a buffer to commit, keep the
3627 // transaction in the queue.
3628 const bool hasPendingBuffer =
3629 bufferLayersReadyToPresent.find(s.surface) != bufferLayersReadyToPresent.end();
3630 if (layer->backpressureEnabled() && hasPendingBuffer && isAutoTimestamp) {
3631 ATRACE_NAME("hasPendingBuffer");
3632 return false;
3633 }
3634 }
3635 }
3636 return true;
3637 }
3638
queueTransaction(TransactionState & state)3639 void SurfaceFlinger::queueTransaction(TransactionState& state) {
3640 Mutex::Autolock _l(mQueueLock);
3641
3642 // If its TransactionQueue already has a pending TransactionState or if it is pending
3643 auto itr = mPendingTransactionQueues.find(state.applyToken);
3644 // if this is an animation frame, wait until prior animation frame has
3645 // been applied by SF
3646 if (state.flags & eAnimation) {
3647 while (itr != mPendingTransactionQueues.end()) {
3648 status_t err = mTransactionQueueCV.waitRelative(mQueueLock, s2ns(5));
3649 if (CC_UNLIKELY(err != NO_ERROR)) {
3650 ALOGW_IF(err == TIMED_OUT,
3651 "setTransactionState timed out "
3652 "waiting for animation frame to apply");
3653 break;
3654 }
3655 itr = mPendingTransactionQueues.find(state.applyToken);
3656 }
3657 }
3658
3659 // Generate a CountDownLatch pending state if this is a synchronous transaction.
3660 if ((state.flags & eSynchronous) || state.inputWindowCommands.syncInputWindows) {
3661 state.transactionCommittedSignal = std::make_shared<CountDownLatch>(
3662 (state.inputWindowCommands.syncInputWindows
3663 ? (CountDownLatch::eSyncInputWindows | CountDownLatch::eSyncTransaction)
3664 : CountDownLatch::eSyncTransaction));
3665 }
3666
3667 mTransactionQueue.emplace(state);
3668 ATRACE_INT("TransactionQueue", mTransactionQueue.size());
3669
3670 const auto schedule = [](uint32_t flags) {
3671 if (flags & eEarlyWakeupEnd) return TransactionSchedule::EarlyEnd;
3672 if (flags & eEarlyWakeupStart) return TransactionSchedule::EarlyStart;
3673 return TransactionSchedule::Late;
3674 }(state.flags);
3675
3676 setTransactionFlags(eTransactionFlushNeeded, schedule, state.applyToken);
3677 }
3678
waitForSynchronousTransaction(const CountDownLatch & transactionCommittedSignal)3679 void SurfaceFlinger::waitForSynchronousTransaction(
3680 const CountDownLatch& transactionCommittedSignal) {
3681 // applyTransactionState is called on the main SF thread. While a given process may wish
3682 // to wait on synchronous transactions, the main SF thread should apply the transaction and
3683 // set the value to notify this after committed.
3684 if (!transactionCommittedSignal.wait_until(std::chrono::seconds(5))) {
3685 ALOGE("setTransactionState timed out!");
3686 }
3687 }
3688
signalSynchronousTransactions(const uint32_t flag)3689 void SurfaceFlinger::signalSynchronousTransactions(const uint32_t flag) {
3690 for (auto it = mTransactionCommittedSignals.begin();
3691 it != mTransactionCommittedSignals.end();) {
3692 if ((*it)->countDown(flag)) {
3693 it = mTransactionCommittedSignals.erase(it);
3694 } else {
3695 it++;
3696 }
3697 }
3698 }
3699
setTransactionState(const FrameTimelineInfo & frameTimelineInfo,const Vector<ComposerState> & states,const Vector<DisplayState> & displays,uint32_t flags,const sp<IBinder> & applyToken,const InputWindowCommands & inputWindowCommands,int64_t desiredPresentTime,bool isAutoTimestamp,const client_cache_t & uncacheBuffer,bool hasListenerCallbacks,const std::vector<ListenerCallbacks> & listenerCallbacks,uint64_t transactionId)3700 status_t SurfaceFlinger::setTransactionState(
3701 const FrameTimelineInfo& frameTimelineInfo, const Vector<ComposerState>& states,
3702 const Vector<DisplayState>& displays, uint32_t flags, const sp<IBinder>& applyToken,
3703 const InputWindowCommands& inputWindowCommands, int64_t desiredPresentTime,
3704 bool isAutoTimestamp, const client_cache_t& uncacheBuffer, bool hasListenerCallbacks,
3705 const std::vector<ListenerCallbacks>& listenerCallbacks, uint64_t transactionId) {
3706 ATRACE_CALL();
3707
3708 uint32_t permissions =
3709 callingThreadHasUnscopedSurfaceFlingerAccess() ? Permission::ACCESS_SURFACE_FLINGER : 0;
3710 // Avoid checking for rotation permissions if the caller already has ACCESS_SURFACE_FLINGER
3711 // permissions.
3712 if ((permissions & Permission::ACCESS_SURFACE_FLINGER) ||
3713 callingThreadHasRotateSurfaceFlingerAccess()) {
3714 permissions |= Permission::ROTATE_SURFACE_FLINGER;
3715 }
3716
3717 if (!(permissions & Permission::ACCESS_SURFACE_FLINGER) &&
3718 (flags & (eEarlyWakeupStart | eEarlyWakeupEnd))) {
3719 ALOGE("Only WindowManager is allowed to use eEarlyWakeup[Start|End] flags");
3720 flags &= ~(eEarlyWakeupStart | eEarlyWakeupEnd);
3721 }
3722
3723 const int64_t postTime = systemTime();
3724
3725 IPCThreadState* ipc = IPCThreadState::self();
3726 const int originPid = ipc->getCallingPid();
3727 const int originUid = ipc->getCallingUid();
3728 TransactionState state{frameTimelineInfo, states,
3729 displays, flags,
3730 applyToken, inputWindowCommands,
3731 desiredPresentTime, isAutoTimestamp,
3732 uncacheBuffer, postTime,
3733 permissions, hasListenerCallbacks,
3734 listenerCallbacks, originPid,
3735 originUid, transactionId};
3736
3737 // Check for incoming buffer updates and increment the pending buffer count.
3738 state.traverseStatesWithBuffers([&](const layer_state_t& state) {
3739 mBufferCountTracker.increment(state.surface->localBinder());
3740 });
3741 queueTransaction(state);
3742
3743 // Check the pending state to make sure the transaction is synchronous.
3744 if (state.transactionCommittedSignal) {
3745 waitForSynchronousTransaction(*state.transactionCommittedSignal);
3746 }
3747
3748 return NO_ERROR;
3749 }
3750
applyTransactionState(const FrameTimelineInfo & frameTimelineInfo,const Vector<ComposerState> & states,const Vector<DisplayState> & displays,uint32_t flags,const InputWindowCommands & inputWindowCommands,const int64_t desiredPresentTime,bool isAutoTimestamp,const client_cache_t & uncacheBuffer,const int64_t postTime,uint32_t permissions,bool hasListenerCallbacks,const std::vector<ListenerCallbacks> & listenerCallbacks,int originPid,int originUid,uint64_t transactionId)3751 void SurfaceFlinger::applyTransactionState(const FrameTimelineInfo& frameTimelineInfo,
3752 const Vector<ComposerState>& states,
3753 const Vector<DisplayState>& displays, uint32_t flags,
3754 const InputWindowCommands& inputWindowCommands,
3755 const int64_t desiredPresentTime, bool isAutoTimestamp,
3756 const client_cache_t& uncacheBuffer,
3757 const int64_t postTime, uint32_t permissions,
3758 bool hasListenerCallbacks,
3759 const std::vector<ListenerCallbacks>& listenerCallbacks,
3760 int originPid, int originUid, uint64_t transactionId) {
3761 uint32_t transactionFlags = 0;
3762 for (const DisplayState& display : displays) {
3763 transactionFlags |= setDisplayStateLocked(display);
3764 }
3765
3766 // start and end registration for listeners w/ no surface so they can get their callback. Note
3767 // that listeners with SurfaceControls will start registration during setClientStateLocked
3768 // below.
3769 for (const auto& listener : listenerCallbacks) {
3770 mTransactionCallbackInvoker.startRegistration(listener);
3771 mTransactionCallbackInvoker.endRegistration(listener);
3772 }
3773
3774 std::unordered_set<ListenerCallbacks, ListenerCallbacksHash> listenerCallbacksWithSurfaces;
3775 uint32_t clientStateFlags = 0;
3776 for (const ComposerState& state : states) {
3777 clientStateFlags |=
3778 setClientStateLocked(frameTimelineInfo, state, desiredPresentTime, isAutoTimestamp,
3779 postTime, permissions, listenerCallbacksWithSurfaces);
3780 if ((flags & eAnimation) && state.state.surface) {
3781 if (const auto layer = fromHandleLocked(state.state.surface).promote(); layer) {
3782 mScheduler->recordLayerHistory(layer.get(),
3783 isAutoTimestamp ? 0 : desiredPresentTime,
3784 LayerHistory::LayerUpdateType::AnimationTX);
3785 }
3786 }
3787 }
3788
3789 for (const auto& listenerCallback : listenerCallbacksWithSurfaces) {
3790 mTransactionCallbackInvoker.endRegistration(listenerCallback);
3791 }
3792
3793 // If the state doesn't require a traversal and there are callbacks, send them now
3794 if (!(clientStateFlags & eTraversalNeeded) && hasListenerCallbacks) {
3795 mTransactionCallbackInvoker.sendCallbacks();
3796 }
3797 transactionFlags |= clientStateFlags;
3798
3799 if (permissions & Permission::ACCESS_SURFACE_FLINGER) {
3800 transactionFlags |= addInputWindowCommands(inputWindowCommands);
3801 } else if (!inputWindowCommands.empty()) {
3802 ALOGE("Only privileged callers are allowed to send input commands.");
3803 }
3804
3805 if (uncacheBuffer.isValid()) {
3806 ClientCache::getInstance().erase(uncacheBuffer);
3807 }
3808
3809 // If a synchronous transaction is explicitly requested without any changes, force a transaction
3810 // anyway. This can be used as a flush mechanism for previous async transactions.
3811 // Empty animation transaction can be used to simulate back-pressure, so also force a
3812 // transaction for empty animation transactions.
3813 if (transactionFlags == 0 &&
3814 ((flags & eSynchronous) || (flags & eAnimation))) {
3815 transactionFlags = eTransactionNeeded;
3816 }
3817
3818 if (transactionFlags) {
3819 if (mInterceptor->isEnabled()) {
3820 mInterceptor->saveTransaction(states, mCurrentState.displays, displays, flags,
3821 originPid, originUid, transactionId);
3822 }
3823
3824 // We are on the main thread, we are about to preform a traversal. Clear the traversal bit
3825 // so we don't have to wake up again next frame to preform an unnecessary traversal.
3826 if (transactionFlags & eTraversalNeeded) {
3827 transactionFlags = transactionFlags & (~eTraversalNeeded);
3828 mForceTraversal = true;
3829 }
3830 if (transactionFlags) {
3831 setTransactionFlags(transactionFlags);
3832 }
3833
3834 if (flags & eAnimation) {
3835 mAnimTransactionPending = true;
3836 }
3837 }
3838 }
3839
setDisplayStateLocked(const DisplayState & s)3840 uint32_t SurfaceFlinger::setDisplayStateLocked(const DisplayState& s) {
3841 const ssize_t index = mCurrentState.displays.indexOfKey(s.token);
3842 if (index < 0) return 0;
3843
3844 uint32_t flags = 0;
3845 DisplayDeviceState& state = mCurrentState.displays.editValueAt(index);
3846
3847 const uint32_t what = s.what;
3848 if (what & DisplayState::eSurfaceChanged) {
3849 if (IInterface::asBinder(state.surface) != IInterface::asBinder(s.surface)) {
3850 state.surface = s.surface;
3851 flags |= eDisplayTransactionNeeded;
3852 }
3853 }
3854 if (what & DisplayState::eLayerStackChanged) {
3855 if (state.layerStack != s.layerStack) {
3856 state.layerStack = s.layerStack;
3857 flags |= eDisplayTransactionNeeded;
3858 }
3859 }
3860 if (what & DisplayState::eDisplayProjectionChanged) {
3861 if (state.orientation != s.orientation) {
3862 state.orientation = s.orientation;
3863 flags |= eDisplayTransactionNeeded;
3864 }
3865 if (state.orientedDisplaySpaceRect != s.orientedDisplaySpaceRect) {
3866 state.orientedDisplaySpaceRect = s.orientedDisplaySpaceRect;
3867 flags |= eDisplayTransactionNeeded;
3868 }
3869 if (state.layerStackSpaceRect != s.layerStackSpaceRect) {
3870 state.layerStackSpaceRect = s.layerStackSpaceRect;
3871 flags |= eDisplayTransactionNeeded;
3872 }
3873 }
3874 if (what & DisplayState::eDisplaySizeChanged) {
3875 if (state.width != s.width) {
3876 state.width = s.width;
3877 flags |= eDisplayTransactionNeeded;
3878 }
3879 if (state.height != s.height) {
3880 state.height = s.height;
3881 flags |= eDisplayTransactionNeeded;
3882 }
3883 }
3884
3885 return flags;
3886 }
3887
callingThreadHasUnscopedSurfaceFlingerAccess(bool usePermissionCache)3888 bool SurfaceFlinger::callingThreadHasUnscopedSurfaceFlingerAccess(bool usePermissionCache) {
3889 IPCThreadState* ipc = IPCThreadState::self();
3890 const int pid = ipc->getCallingPid();
3891 const int uid = ipc->getCallingUid();
3892 if ((uid != AID_GRAPHICS && uid != AID_SYSTEM) &&
3893 (usePermissionCache ? !PermissionCache::checkPermission(sAccessSurfaceFlinger, pid, uid)
3894 : !checkPermission(sAccessSurfaceFlinger, pid, uid))) {
3895 return false;
3896 }
3897 return true;
3898 }
3899
setClientStateLocked(const FrameTimelineInfo & frameTimelineInfo,const ComposerState & composerState,int64_t desiredPresentTime,bool isAutoTimestamp,int64_t postTime,uint32_t permissions,std::unordered_set<ListenerCallbacks,ListenerCallbacksHash> & outListenerCallbacks)3900 uint32_t SurfaceFlinger::setClientStateLocked(
3901 const FrameTimelineInfo& frameTimelineInfo, const ComposerState& composerState,
3902 int64_t desiredPresentTime, bool isAutoTimestamp, int64_t postTime, uint32_t permissions,
3903 std::unordered_set<ListenerCallbacks, ListenerCallbacksHash>& outListenerCallbacks) {
3904 const layer_state_t& s = composerState.state;
3905 const bool privileged = permissions & Permission::ACCESS_SURFACE_FLINGER;
3906
3907 std::vector<ListenerCallbacks> filteredListeners;
3908 for (auto& listener : s.listeners) {
3909 // Starts a registration but separates the callback ids according to callback type. This
3910 // allows the callback invoker to send on latch callbacks earlier.
3911 // note that startRegistration will not re-register if the listener has
3912 // already be registered for a prior surface control
3913
3914 ListenerCallbacks onCommitCallbacks = listener.filter(CallbackId::Type::ON_COMMIT);
3915 if (!onCommitCallbacks.callbackIds.empty()) {
3916 mTransactionCallbackInvoker.startRegistration(onCommitCallbacks);
3917 filteredListeners.push_back(onCommitCallbacks);
3918 outListenerCallbacks.insert(onCommitCallbacks);
3919 }
3920
3921 ListenerCallbacks onCompleteCallbacks = listener.filter(CallbackId::Type::ON_COMPLETE);
3922 if (!onCompleteCallbacks.callbackIds.empty()) {
3923 mTransactionCallbackInvoker.startRegistration(onCompleteCallbacks);
3924 filteredListeners.push_back(onCompleteCallbacks);
3925 outListenerCallbacks.insert(onCompleteCallbacks);
3926 }
3927 }
3928
3929 const uint64_t what = s.what;
3930 uint32_t flags = 0;
3931 sp<Layer> layer = nullptr;
3932 if (s.surface) {
3933 if (what & layer_state_t::eLayerCreated) {
3934 layer = handleLayerCreatedLocked(s.surface);
3935 if (layer) {
3936 // put the created layer into mLayersByLocalBinderToken.
3937 mLayersByLocalBinderToken.emplace(s.surface->localBinder(), layer);
3938 flags |= eTransactionNeeded | eTraversalNeeded;
3939 mLayersAdded = true;
3940 }
3941 } else {
3942 layer = fromHandleLocked(s.surface).promote();
3943 }
3944 } else {
3945 // The client may provide us a null handle. Treat it as if the layer was removed.
3946 ALOGW("Attempt to set client state with a null layer handle");
3947 }
3948 if (layer == nullptr) {
3949 for (auto& [listener, callbackIds] : s.listeners) {
3950 mTransactionCallbackInvoker.registerUnpresentedCallbackHandle(
3951 new CallbackHandle(listener, callbackIds, s.surface));
3952 }
3953 return 0;
3954 }
3955
3956 // Only set by BLAST adapter layers
3957 if (what & layer_state_t::eProducerDisconnect) {
3958 layer->onDisconnect();
3959 }
3960
3961 if (what & layer_state_t::ePositionChanged) {
3962 if (layer->setPosition(s.x, s.y)) {
3963 flags |= eTraversalNeeded;
3964 }
3965 }
3966 if (what & layer_state_t::eLayerChanged) {
3967 // NOTE: index needs to be calculated before we update the state
3968 const auto& p = layer->getParent();
3969 if (p == nullptr) {
3970 ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
3971 if (layer->setLayer(s.z) && idx >= 0) {
3972 mCurrentState.layersSortedByZ.removeAt(idx);
3973 mCurrentState.layersSortedByZ.add(layer);
3974 // we need traversal (state changed)
3975 // AND transaction (list changed)
3976 flags |= eTransactionNeeded|eTraversalNeeded;
3977 }
3978 } else {
3979 if (p->setChildLayer(layer, s.z)) {
3980 flags |= eTransactionNeeded|eTraversalNeeded;
3981 }
3982 }
3983 }
3984 if (what & layer_state_t::eRelativeLayerChanged) {
3985 // NOTE: index needs to be calculated before we update the state
3986 const auto& p = layer->getParent();
3987 const auto& relativeHandle = s.relativeLayerSurfaceControl ?
3988 s.relativeLayerSurfaceControl->getHandle() : nullptr;
3989 if (p == nullptr) {
3990 ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
3991 if (layer->setRelativeLayer(relativeHandle, s.z) &&
3992 idx >= 0) {
3993 mCurrentState.layersSortedByZ.removeAt(idx);
3994 mCurrentState.layersSortedByZ.add(layer);
3995 // we need traversal (state changed)
3996 // AND transaction (list changed)
3997 flags |= eTransactionNeeded|eTraversalNeeded;
3998 }
3999 } else {
4000 if (p->setChildRelativeLayer(layer, relativeHandle, s.z)) {
4001 flags |= eTransactionNeeded|eTraversalNeeded;
4002 }
4003 }
4004 }
4005 if (what & layer_state_t::eSizeChanged) {
4006 if (layer->setSize(s.w, s.h)) {
4007 flags |= eTraversalNeeded;
4008 }
4009 }
4010 if (what & layer_state_t::eAlphaChanged) {
4011 if (layer->setAlpha(s.alpha))
4012 flags |= eTraversalNeeded;
4013 }
4014 if (what & layer_state_t::eColorChanged) {
4015 if (layer->setColor(s.color))
4016 flags |= eTraversalNeeded;
4017 }
4018 if (what & layer_state_t::eColorTransformChanged) {
4019 if (layer->setColorTransform(s.colorTransform)) {
4020 flags |= eTraversalNeeded;
4021 }
4022 }
4023 if (what & layer_state_t::eBackgroundColorChanged) {
4024 if (layer->setBackgroundColor(s.color, s.bgColorAlpha, s.bgColorDataspace)) {
4025 flags |= eTraversalNeeded;
4026 }
4027 }
4028 if (what & layer_state_t::eMatrixChanged) {
4029 // TODO: b/109894387
4030 //
4031 // SurfaceFlinger's renderer is not prepared to handle cropping in the face of arbitrary
4032 // rotation. To see the problem observe that if we have a square parent, and a child
4033 // of the same size, then we rotate the child 45 degrees around it's center, the child
4034 // must now be cropped to a non rectangular 8 sided region.
4035 //
4036 // Of course we can fix this in the future. For now, we are lucky, SurfaceControl is
4037 // private API, and arbitrary rotation is used in limited use cases, for instance:
4038 // - WindowManager only uses rotation in one case, which is on a top level layer in which
4039 // cropping is not an issue.
4040 // - Launcher, as a privileged app, uses this to transition an application to PiP
4041 // (picture-in-picture) mode.
4042 //
4043 // However given that abuse of rotation matrices could lead to surfaces extending outside
4044 // of cropped areas, we need to prevent non-root clients without permission
4045 // ACCESS_SURFACE_FLINGER nor ROTATE_SURFACE_FLINGER
4046 // (a.k.a. everyone except WindowManager / tests / Launcher) from setting non rectangle
4047 // preserving transformations.
4048 const bool allowNonRectPreservingTransforms =
4049 permissions & Permission::ROTATE_SURFACE_FLINGER;
4050 if (layer->setMatrix(s.matrix, allowNonRectPreservingTransforms)) flags |= eTraversalNeeded;
4051 }
4052 if (what & layer_state_t::eTransparentRegionChanged) {
4053 if (layer->setTransparentRegionHint(s.transparentRegion))
4054 flags |= eTraversalNeeded;
4055 }
4056 if (what & layer_state_t::eFlagsChanged) {
4057 if (layer->setFlags(s.flags, s.mask))
4058 flags |= eTraversalNeeded;
4059 }
4060 if (what & layer_state_t::eCornerRadiusChanged) {
4061 if (layer->setCornerRadius(s.cornerRadius))
4062 flags |= eTraversalNeeded;
4063 }
4064 if (what & layer_state_t::eBackgroundBlurRadiusChanged && mSupportsBlur) {
4065 if (layer->setBackgroundBlurRadius(s.backgroundBlurRadius)) flags |= eTraversalNeeded;
4066 }
4067 if (what & layer_state_t::eBlurRegionsChanged) {
4068 if (layer->setBlurRegions(s.blurRegions)) flags |= eTraversalNeeded;
4069 }
4070 if (what & layer_state_t::eLayerStackChanged) {
4071 ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
4072 // We only allow setting layer stacks for top level layers,
4073 // everything else inherits layer stack from its parent.
4074 if (layer->hasParent()) {
4075 ALOGE("Attempt to set layer stack on layer with parent (%s) is invalid",
4076 layer->getDebugName());
4077 } else if (idx < 0) {
4078 ALOGE("Attempt to set layer stack on layer without parent (%s) that "
4079 "that also does not appear in the top level layer list. Something"
4080 " has gone wrong.",
4081 layer->getDebugName());
4082 } else if (layer->setLayerStack(s.layerStack)) {
4083 mCurrentState.layersSortedByZ.removeAt(idx);
4084 mCurrentState.layersSortedByZ.add(layer);
4085 // we need traversal (state changed)
4086 // AND transaction (list changed)
4087 flags |= eTransactionNeeded | eTraversalNeeded | eTransformHintUpdateNeeded;
4088 }
4089 }
4090 if (what & layer_state_t::eTransformChanged) {
4091 if (layer->setTransform(s.transform)) flags |= eTraversalNeeded;
4092 }
4093 if (what & layer_state_t::eTransformToDisplayInverseChanged) {
4094 if (layer->setTransformToDisplayInverse(s.transformToDisplayInverse))
4095 flags |= eTraversalNeeded;
4096 }
4097 if (what & layer_state_t::eCropChanged) {
4098 if (layer->setCrop(s.crop)) flags |= eTraversalNeeded;
4099 }
4100 if (what & layer_state_t::eAcquireFenceChanged) {
4101 if (layer->setAcquireFence(s.acquireFence)) flags |= eTraversalNeeded;
4102 }
4103 if (what & layer_state_t::eDataspaceChanged) {
4104 if (layer->setDataspace(s.dataspace)) flags |= eTraversalNeeded;
4105 }
4106 if (what & layer_state_t::eHdrMetadataChanged) {
4107 if (layer->setHdrMetadata(s.hdrMetadata)) flags |= eTraversalNeeded;
4108 }
4109 if (what & layer_state_t::eSurfaceDamageRegionChanged) {
4110 if (layer->setSurfaceDamageRegion(s.surfaceDamageRegion)) flags |= eTraversalNeeded;
4111 }
4112 if (what & layer_state_t::eApiChanged) {
4113 if (layer->setApi(s.api)) flags |= eTraversalNeeded;
4114 }
4115 if (what & layer_state_t::eSidebandStreamChanged) {
4116 if (layer->setSidebandStream(s.sidebandStream)) flags |= eTraversalNeeded;
4117 }
4118 if (what & layer_state_t::eInputInfoChanged) {
4119 if (privileged) {
4120 layer->setInputInfo(*s.inputHandle->getInfo());
4121 flags |= eTraversalNeeded;
4122 } else {
4123 ALOGE("Attempt to update InputWindowInfo without permission ACCESS_SURFACE_FLINGER");
4124 }
4125 }
4126 std::optional<nsecs_t> dequeueBufferTimestamp;
4127 if (what & layer_state_t::eMetadataChanged) {
4128 dequeueBufferTimestamp = s.metadata.getInt64(METADATA_DEQUEUE_TIME);
4129 auto gameMode = s.metadata.getInt32(METADATA_GAME_MODE, -1);
4130 if (gameMode != -1) {
4131 // The transaction will be received on the Task layer and needs to be applied to all
4132 // child layers. Child layers that are added at a later point will obtain the game mode
4133 // info through addChild().
4134 layer->setGameModeForTree(gameMode);
4135 }
4136 if (layer->setMetadata(s.metadata)) flags |= eTraversalNeeded;
4137 }
4138 if (what & layer_state_t::eColorSpaceAgnosticChanged) {
4139 if (layer->setColorSpaceAgnostic(s.colorSpaceAgnostic)) {
4140 flags |= eTraversalNeeded;
4141 }
4142 }
4143 if (what & layer_state_t::eShadowRadiusChanged) {
4144 if (layer->setShadowRadius(s.shadowRadius)) flags |= eTraversalNeeded;
4145 }
4146 if (what & layer_state_t::eFrameRateSelectionPriority) {
4147 if (privileged && layer->setFrameRateSelectionPriority(s.frameRateSelectionPriority)) {
4148 flags |= eTraversalNeeded;
4149 }
4150 }
4151 if (what & layer_state_t::eFrameRateChanged) {
4152 if (ValidateFrameRate(s.frameRate, s.frameRateCompatibility, s.changeFrameRateStrategy,
4153 "SurfaceFlinger::setClientStateLocked", privileged)) {
4154 const auto compatibility =
4155 Layer::FrameRate::convertCompatibility(s.frameRateCompatibility);
4156 const auto strategy =
4157 Layer::FrameRate::convertChangeFrameRateStrategy(s.changeFrameRateStrategy);
4158
4159 if (layer->setFrameRate(Layer::FrameRate(Fps(s.frameRate), compatibility, strategy))) {
4160 flags |= eTraversalNeeded;
4161 }
4162 }
4163 }
4164 if (what & layer_state_t::eFixedTransformHintChanged) {
4165 if (layer->setFixedTransformHint(s.fixedTransformHint)) {
4166 flags |= eTraversalNeeded | eTransformHintUpdateNeeded;
4167 }
4168 }
4169 if (what & layer_state_t::eAutoRefreshChanged) {
4170 layer->setAutoRefresh(s.autoRefresh);
4171 }
4172 if (what & layer_state_t::eTrustedOverlayChanged) {
4173 if (privileged) {
4174 if (layer->setTrustedOverlay(s.isTrustedOverlay)) {
4175 flags |= eTraversalNeeded;
4176 }
4177 } else {
4178 ALOGE("Attempt to set trusted overlay without permission ACCESS_SURFACE_FLINGER");
4179 }
4180 }
4181 if (what & layer_state_t::eStretchChanged) {
4182 if (layer->setStretchEffect(s.stretchEffect)) {
4183 flags |= eTraversalNeeded;
4184 }
4185 }
4186 if (what & layer_state_t::eBufferCropChanged) {
4187 if (layer->setBufferCrop(s.bufferCrop)) {
4188 flags |= eTraversalNeeded;
4189 }
4190 }
4191 if (what & layer_state_t::eDestinationFrameChanged) {
4192 if (layer->setDestinationFrame(s.destinationFrame)) {
4193 flags |= eTraversalNeeded;
4194 }
4195 }
4196 // This has to happen after we reparent children because when we reparent to null we remove
4197 // child layers from current state and remove its relative z. If the children are reparented in
4198 // the same transaction, then we have to make sure we reparent the children first so we do not
4199 // lose its relative z order.
4200 if (what & layer_state_t::eReparent) {
4201 bool hadParent = layer->hasParent();
4202 auto parentHandle = (s.parentSurfaceControlForChild)
4203 ? s.parentSurfaceControlForChild->getHandle()
4204 : nullptr;
4205 if (layer->reparent(parentHandle)) {
4206 if (!hadParent) {
4207 layer->setIsAtRoot(false);
4208 mCurrentState.layersSortedByZ.remove(layer);
4209 }
4210 flags |= eTransactionNeeded | eTraversalNeeded;
4211 }
4212 }
4213 std::vector<sp<CallbackHandle>> callbackHandles;
4214 if ((what & layer_state_t::eHasListenerCallbacksChanged) && (!filteredListeners.empty())) {
4215 for (auto& [listener, callbackIds] : filteredListeners) {
4216 callbackHandles.emplace_back(new CallbackHandle(listener, callbackIds, s.surface));
4217 }
4218 }
4219 bool bufferChanged = what & layer_state_t::eBufferChanged;
4220 bool cacheIdChanged = what & layer_state_t::eCachedBufferChanged;
4221 std::shared_ptr<renderengine::ExternalTexture> buffer;
4222 if (bufferChanged && cacheIdChanged && s.buffer != nullptr) {
4223 ClientCache::getInstance().add(s.cachedBuffer, s.buffer);
4224 buffer = ClientCache::getInstance().get(s.cachedBuffer);
4225 } else if (cacheIdChanged) {
4226 buffer = ClientCache::getInstance().get(s.cachedBuffer);
4227 } else if (bufferChanged && s.buffer != nullptr) {
4228 buffer = std::make_shared<
4229 renderengine::ExternalTexture>(s.buffer, getRenderEngine(),
4230 renderengine::ExternalTexture::Usage::READABLE);
4231 }
4232 if (buffer) {
4233 const bool frameNumberChanged = what & layer_state_t::eFrameNumberChanged;
4234 const uint64_t frameNumber = frameNumberChanged
4235 ? s.frameNumber
4236 : layer->getHeadFrameNumber(-1 /* expectedPresentTime */) + 1;
4237
4238 if (layer->setBuffer(buffer, s.acquireFence, postTime, desiredPresentTime, isAutoTimestamp,
4239 s.cachedBuffer, frameNumber, dequeueBufferTimestamp, frameTimelineInfo,
4240 s.releaseBufferListener)) {
4241 flags |= eTraversalNeeded;
4242 }
4243 } else if (frameTimelineInfo.vsyncId != FrameTimelineInfo::INVALID_VSYNC_ID) {
4244 layer->setFrameTimelineVsyncForBufferlessTransaction(frameTimelineInfo, postTime);
4245 }
4246
4247 if (layer->setTransactionCompletedListeners(callbackHandles)) flags |= eTraversalNeeded;
4248 // Do not put anything that updates layer state or modifies flags after
4249 // setTransactionCompletedListener
4250 return flags;
4251 }
4252
addInputWindowCommands(const InputWindowCommands & inputWindowCommands)4253 uint32_t SurfaceFlinger::addInputWindowCommands(const InputWindowCommands& inputWindowCommands) {
4254 bool hasChanges = mInputWindowCommands.merge(inputWindowCommands);
4255 return hasChanges ? eTraversalNeeded : 0;
4256 }
4257
mirrorLayer(const sp<Client> & client,const sp<IBinder> & mirrorFromHandle,sp<IBinder> * outHandle,int32_t * outLayerId)4258 status_t SurfaceFlinger::mirrorLayer(const sp<Client>& client, const sp<IBinder>& mirrorFromHandle,
4259 sp<IBinder>* outHandle, int32_t* outLayerId) {
4260 if (!mirrorFromHandle) {
4261 return NAME_NOT_FOUND;
4262 }
4263
4264 sp<Layer> mirrorLayer;
4265 sp<Layer> mirrorFrom;
4266 std::string uniqueName = getUniqueLayerName("MirrorRoot");
4267
4268 {
4269 Mutex::Autolock _l(mStateLock);
4270 mirrorFrom = fromHandleLocked(mirrorFromHandle).promote();
4271 if (!mirrorFrom) {
4272 return NAME_NOT_FOUND;
4273 }
4274
4275 status_t result = createContainerLayer(client, std::move(uniqueName), -1, -1, 0,
4276 LayerMetadata(), outHandle, &mirrorLayer);
4277 if (result != NO_ERROR) {
4278 return result;
4279 }
4280
4281 mirrorLayer->setClonedChild(mirrorFrom->createClone());
4282 }
4283
4284 *outLayerId = mirrorLayer->sequence;
4285 return addClientLayer(client, *outHandle, nullptr, mirrorLayer, nullptr, nullptr, false,
4286 nullptr /* outTransformHint */);
4287 }
4288
createLayer(const String8 & name,const sp<Client> & client,uint32_t w,uint32_t h,PixelFormat format,uint32_t flags,LayerMetadata metadata,sp<IBinder> * handle,sp<IGraphicBufferProducer> * gbp,const sp<IBinder> & parentHandle,int32_t * outLayerId,const sp<Layer> & parentLayer,uint32_t * outTransformHint)4289 status_t SurfaceFlinger::createLayer(const String8& name, const sp<Client>& client, uint32_t w,
4290 uint32_t h, PixelFormat format, uint32_t flags,
4291 LayerMetadata metadata, sp<IBinder>* handle,
4292 sp<IGraphicBufferProducer>* gbp,
4293 const sp<IBinder>& parentHandle, int32_t* outLayerId,
4294 const sp<Layer>& parentLayer, uint32_t* outTransformHint) {
4295 if (int32_t(w|h) < 0) {
4296 ALOGE("createLayer() failed, w or h is negative (w=%d, h=%d)",
4297 int(w), int(h));
4298 return BAD_VALUE;
4299 }
4300
4301 ALOG_ASSERT(parentLayer == nullptr || parentHandle == nullptr,
4302 "Expected only one of parentLayer or parentHandle to be non-null. "
4303 "Programmer error?");
4304
4305 status_t result = NO_ERROR;
4306
4307 sp<Layer> layer;
4308
4309 std::string uniqueName = getUniqueLayerName(name.string());
4310
4311 switch (flags & ISurfaceComposerClient::eFXSurfaceMask) {
4312 case ISurfaceComposerClient::eFXSurfaceBufferQueue:
4313 case ISurfaceComposerClient::eFXSurfaceBufferState: {
4314 result = createBufferStateLayer(client, std::move(uniqueName), w, h, flags,
4315 std::move(metadata), handle, &layer);
4316 std::atomic<int32_t>* pendingBufferCounter = layer->getPendingBufferCounter();
4317 if (pendingBufferCounter) {
4318 std::string counterName = layer->getPendingBufferCounterName();
4319 mBufferCountTracker.add((*handle)->localBinder(), counterName,
4320 pendingBufferCounter);
4321 }
4322 } break;
4323 case ISurfaceComposerClient::eFXSurfaceEffect:
4324 // check if buffer size is set for color layer.
4325 if (w > 0 || h > 0) {
4326 ALOGE("createLayer() failed, w or h cannot be set for color layer (w=%d, h=%d)",
4327 int(w), int(h));
4328 return BAD_VALUE;
4329 }
4330
4331 result = createEffectLayer(client, std::move(uniqueName), w, h, flags,
4332 std::move(metadata), handle, &layer);
4333 break;
4334 case ISurfaceComposerClient::eFXSurfaceContainer:
4335 // check if buffer size is set for container layer.
4336 if (w > 0 || h > 0) {
4337 ALOGE("createLayer() failed, w or h cannot be set for container layer (w=%d, h=%d)",
4338 int(w), int(h));
4339 return BAD_VALUE;
4340 }
4341 result = createContainerLayer(client, std::move(uniqueName), w, h, flags,
4342 std::move(metadata), handle, &layer);
4343 break;
4344 default:
4345 result = BAD_VALUE;
4346 break;
4347 }
4348
4349 if (result != NO_ERROR) {
4350 return result;
4351 }
4352
4353 bool addToRoot = callingThreadHasUnscopedSurfaceFlingerAccess();
4354 result = addClientLayer(client, *handle, *gbp, layer, parentHandle, parentLayer, addToRoot,
4355 outTransformHint);
4356 if (result != NO_ERROR) {
4357 return result;
4358 }
4359 mInterceptor->saveSurfaceCreation(layer);
4360
4361 setTransactionFlags(eTransactionNeeded);
4362 *outLayerId = layer->sequence;
4363 return result;
4364 }
4365
getUniqueLayerName(const char * name)4366 std::string SurfaceFlinger::getUniqueLayerName(const char* name) {
4367 unsigned dupeCounter = 0;
4368
4369 // Tack on our counter whether there is a hit or not, so everyone gets a tag
4370 std::string uniqueName = base::StringPrintf("%s#%u", name, dupeCounter);
4371
4372 // Grab the state lock since we're accessing mCurrentState
4373 Mutex::Autolock lock(mStateLock);
4374
4375 // Loop over layers until we're sure there is no matching name
4376 bool matchFound = true;
4377 while (matchFound) {
4378 matchFound = false;
4379 mCurrentState.traverse([&](Layer* layer) {
4380 if (layer->getName() == uniqueName) {
4381 matchFound = true;
4382 uniqueName = base::StringPrintf("%s#%u", name, ++dupeCounter);
4383 }
4384 });
4385 }
4386
4387 ALOGV_IF(dupeCounter > 0, "duplicate layer name: changing %s to %s", name, uniqueName.c_str());
4388 return uniqueName;
4389 }
4390
createBufferQueueLayer(const sp<Client> & client,std::string name,uint32_t w,uint32_t h,uint32_t flags,LayerMetadata metadata,PixelFormat & format,sp<IBinder> * handle,sp<IGraphicBufferProducer> * gbp,sp<Layer> * outLayer)4391 status_t SurfaceFlinger::createBufferQueueLayer(const sp<Client>& client, std::string name,
4392 uint32_t w, uint32_t h, uint32_t flags,
4393 LayerMetadata metadata, PixelFormat& format,
4394 sp<IBinder>* handle,
4395 sp<IGraphicBufferProducer>* gbp,
4396 sp<Layer>* outLayer) {
4397 // initialize the surfaces
4398 switch (format) {
4399 case PIXEL_FORMAT_TRANSPARENT:
4400 case PIXEL_FORMAT_TRANSLUCENT:
4401 format = PIXEL_FORMAT_RGBA_8888;
4402 break;
4403 case PIXEL_FORMAT_OPAQUE:
4404 format = PIXEL_FORMAT_RGBX_8888;
4405 break;
4406 }
4407
4408 sp<BufferQueueLayer> layer;
4409 LayerCreationArgs args(this, client, std::move(name), w, h, flags, std::move(metadata));
4410 args.textureName = getNewTexture();
4411 {
4412 // Grab the SF state lock during this since it's the only safe way to access
4413 // RenderEngine when creating a BufferLayerConsumer
4414 // TODO: Check if this lock is still needed here
4415 Mutex::Autolock lock(mStateLock);
4416 layer = getFactory().createBufferQueueLayer(args);
4417 }
4418
4419 status_t err = layer->setDefaultBufferProperties(w, h, format);
4420 if (err == NO_ERROR) {
4421 *handle = layer->getHandle();
4422 *gbp = layer->getProducer();
4423 *outLayer = layer;
4424 }
4425
4426 ALOGE_IF(err, "createBufferQueueLayer() failed (%s)", strerror(-err));
4427 return err;
4428 }
4429
createBufferStateLayer(const sp<Client> & client,std::string name,uint32_t w,uint32_t h,uint32_t flags,LayerMetadata metadata,sp<IBinder> * handle,sp<Layer> * outLayer)4430 status_t SurfaceFlinger::createBufferStateLayer(const sp<Client>& client, std::string name,
4431 uint32_t w, uint32_t h, uint32_t flags,
4432 LayerMetadata metadata, sp<IBinder>* handle,
4433 sp<Layer>* outLayer) {
4434 LayerCreationArgs args(this, client, std::move(name), w, h, flags, std::move(metadata));
4435 args.textureName = getNewTexture();
4436 sp<BufferStateLayer> layer = getFactory().createBufferStateLayer(args);
4437 *handle = layer->getHandle();
4438 *outLayer = layer;
4439
4440 return NO_ERROR;
4441 }
4442
createEffectLayer(const sp<Client> & client,std::string name,uint32_t w,uint32_t h,uint32_t flags,LayerMetadata metadata,sp<IBinder> * handle,sp<Layer> * outLayer)4443 status_t SurfaceFlinger::createEffectLayer(const sp<Client>& client, std::string name, uint32_t w,
4444 uint32_t h, uint32_t flags, LayerMetadata metadata,
4445 sp<IBinder>* handle, sp<Layer>* outLayer) {
4446 *outLayer = getFactory().createEffectLayer(
4447 {this, client, std::move(name), w, h, flags, std::move(metadata)});
4448 *handle = (*outLayer)->getHandle();
4449 return NO_ERROR;
4450 }
4451
createContainerLayer(const sp<Client> & client,std::string name,uint32_t w,uint32_t h,uint32_t flags,LayerMetadata metadata,sp<IBinder> * handle,sp<Layer> * outLayer)4452 status_t SurfaceFlinger::createContainerLayer(const sp<Client>& client, std::string name,
4453 uint32_t w, uint32_t h, uint32_t flags,
4454 LayerMetadata metadata, sp<IBinder>* handle,
4455 sp<Layer>* outLayer) {
4456 *outLayer = getFactory().createContainerLayer(
4457 {this, client, std::move(name), w, h, flags, std::move(metadata)});
4458 *handle = (*outLayer)->getHandle();
4459 return NO_ERROR;
4460 }
4461
markLayerPendingRemovalLocked(const sp<Layer> & layer)4462 void SurfaceFlinger::markLayerPendingRemovalLocked(const sp<Layer>& layer) {
4463 mLayersPendingRemoval.add(layer);
4464 mLayersRemoved = true;
4465 setTransactionFlags(eTransactionNeeded);
4466 }
4467
onHandleDestroyed(sp<Layer> & layer)4468 void SurfaceFlinger::onHandleDestroyed(sp<Layer>& layer) {
4469 Mutex::Autolock lock(mStateLock);
4470 // If a layer has a parent, we allow it to out-live it's handle
4471 // with the idea that the parent holds a reference and will eventually
4472 // be cleaned up. However no one cleans up the top-level so we do so
4473 // here.
4474 if (layer->isAtRoot()) {
4475 layer->setIsAtRoot(false);
4476 mCurrentState.layersSortedByZ.remove(layer);
4477 }
4478 markLayerPendingRemovalLocked(layer);
4479
4480 auto it = mLayersByLocalBinderToken.begin();
4481 while (it != mLayersByLocalBinderToken.end()) {
4482 if (it->second == layer) {
4483 mBufferCountTracker.remove(it->first->localBinder());
4484 it = mLayersByLocalBinderToken.erase(it);
4485 } else {
4486 it++;
4487 }
4488 }
4489
4490 layer.clear();
4491 }
4492
4493 // ---------------------------------------------------------------------------
4494
onInitializeDisplays()4495 void SurfaceFlinger::onInitializeDisplays() {
4496 const auto display = getDefaultDisplayDeviceLocked();
4497 if (!display) return;
4498
4499 const sp<IBinder> token = display->getDisplayToken().promote();
4500 LOG_ALWAYS_FATAL_IF(token == nullptr);
4501
4502 // reset screen orientation and use primary layer stack
4503 Vector<ComposerState> state;
4504 Vector<DisplayState> displays;
4505 DisplayState d;
4506 d.what = DisplayState::eDisplayProjectionChanged |
4507 DisplayState::eLayerStackChanged;
4508 d.token = token;
4509 d.layerStack = 0;
4510 d.orientation = ui::ROTATION_0;
4511 d.orientedDisplaySpaceRect.makeInvalid();
4512 d.layerStackSpaceRect.makeInvalid();
4513 d.width = 0;
4514 d.height = 0;
4515 displays.add(d);
4516
4517 nsecs_t now = systemTime();
4518 // It should be on the main thread, apply it directly.
4519 applyTransactionState(FrameTimelineInfo{}, state, displays, 0, mInputWindowCommands,
4520 /* desiredPresentTime */ now, true, {}, /* postTime */ now, true, false,
4521 {}, getpid(), getuid(), 0 /* Undefined transactionId */);
4522
4523 setPowerModeInternal(display, hal::PowerMode::ON);
4524 const nsecs_t vsyncPeriod = mRefreshRateConfigs->getCurrentRefreshRate().getVsyncPeriod();
4525 mAnimFrameTracker.setDisplayRefreshPeriod(vsyncPeriod);
4526 mDefaultDisplayTransformHint = display->getTransformHint();
4527 // Use phase of 0 since phase is not known.
4528 // Use latency of 0, which will snap to the ideal latency.
4529 DisplayStatInfo stats{0 /* vsyncTime */, vsyncPeriod};
4530 setCompositorTimingSnapped(stats, 0);
4531 }
4532
initializeDisplays()4533 void SurfaceFlinger::initializeDisplays() {
4534 // Async since we may be called from the main thread.
4535 static_cast<void>(schedule([this]() MAIN_THREAD { onInitializeDisplays(); }));
4536 }
4537
setPowerModeInternal(const sp<DisplayDevice> & display,hal::PowerMode mode)4538 void SurfaceFlinger::setPowerModeInternal(const sp<DisplayDevice>& display, hal::PowerMode mode) {
4539 if (display->isVirtual()) {
4540 ALOGE("%s: Invalid operation on virtual display", __FUNCTION__);
4541 return;
4542 }
4543
4544 const auto displayId = display->getPhysicalId();
4545 ALOGD("Setting power mode %d on display %s", mode, to_string(displayId).c_str());
4546
4547 const hal::PowerMode currentMode = display->getPowerMode();
4548 if (mode == currentMode) {
4549 return;
4550 }
4551
4552 display->setPowerMode(mode);
4553
4554 if (mInterceptor->isEnabled()) {
4555 mInterceptor->savePowerModeUpdate(display->getSequenceId(), static_cast<int32_t>(mode));
4556 }
4557 const auto vsyncPeriod = mRefreshRateConfigs->getCurrentRefreshRate().getVsyncPeriod();
4558 if (currentMode == hal::PowerMode::OFF) {
4559 // Keep uclamp in a separate syscall and set it before changing to RT due to b/190237315.
4560 // We can merge the syscall later.
4561 if (SurfaceFlinger::setSchedAttr(true) != NO_ERROR) {
4562 ALOGW("Couldn't set uclamp.min on display on: %s\n", strerror(errno));
4563 }
4564 if (SurfaceFlinger::setSchedFifo(true) != NO_ERROR) {
4565 ALOGW("Couldn't set SCHED_FIFO on display on: %s\n", strerror(errno));
4566 }
4567 getHwComposer().setPowerMode(displayId, mode);
4568 if (display->isPrimary() && mode != hal::PowerMode::DOZE_SUSPEND) {
4569 getHwComposer().setVsyncEnabled(displayId, mHWCVsyncPendingState);
4570 mScheduler->onScreenAcquired(mAppConnectionHandle);
4571 mScheduler->resyncToHardwareVsync(true, vsyncPeriod);
4572 }
4573
4574 mVisibleRegionsDirty = true;
4575 mHasPoweredOff = true;
4576 repaintEverything();
4577 } else if (mode == hal::PowerMode::OFF) {
4578 // Turn off the display
4579 if (SurfaceFlinger::setSchedFifo(false) != NO_ERROR) {
4580 ALOGW("Couldn't set SCHED_OTHER on display off: %s\n", strerror(errno));
4581 }
4582 if (SurfaceFlinger::setSchedAttr(false) != NO_ERROR) {
4583 ALOGW("Couldn't set uclamp.min on display off: %s\n", strerror(errno));
4584 }
4585 if (display->isPrimary() && currentMode != hal::PowerMode::DOZE_SUSPEND) {
4586 mScheduler->disableHardwareVsync(true);
4587 mScheduler->onScreenReleased(mAppConnectionHandle);
4588 }
4589
4590 // Make sure HWVsync is disabled before turning off the display
4591 getHwComposer().setVsyncEnabled(displayId, hal::Vsync::DISABLE);
4592
4593 getHwComposer().setPowerMode(displayId, mode);
4594 mVisibleRegionsDirty = true;
4595 // from this point on, SF will stop drawing on this display
4596 } else if (mode == hal::PowerMode::DOZE || mode == hal::PowerMode::ON) {
4597 // Update display while dozing
4598 getHwComposer().setPowerMode(displayId, mode);
4599 if (display->isPrimary() && currentMode == hal::PowerMode::DOZE_SUSPEND) {
4600 mScheduler->onScreenAcquired(mAppConnectionHandle);
4601 mScheduler->resyncToHardwareVsync(true, vsyncPeriod);
4602 }
4603 } else if (mode == hal::PowerMode::DOZE_SUSPEND) {
4604 // Leave display going to doze
4605 if (display->isPrimary()) {
4606 mScheduler->disableHardwareVsync(true);
4607 mScheduler->onScreenReleased(mAppConnectionHandle);
4608 }
4609 getHwComposer().setPowerMode(displayId, mode);
4610 } else {
4611 ALOGE("Attempting to set unknown power mode: %d\n", mode);
4612 getHwComposer().setPowerMode(displayId, mode);
4613 }
4614
4615 if (display->isPrimary()) {
4616 mTimeStats->setPowerMode(mode);
4617 mRefreshRateStats->setPowerMode(mode);
4618 mScheduler->setDisplayPowerState(mode == hal::PowerMode::ON);
4619 }
4620
4621 ALOGD("Finished setting power mode %d on display %s", mode, to_string(displayId).c_str());
4622 }
4623
setPowerMode(const sp<IBinder> & displayToken,int mode)4624 void SurfaceFlinger::setPowerMode(const sp<IBinder>& displayToken, int mode) {
4625 schedule([=]() MAIN_THREAD {
4626 const auto display = getDisplayDeviceLocked(displayToken);
4627 if (!display) {
4628 ALOGE("Attempt to set power mode %d for invalid display token %p", mode,
4629 displayToken.get());
4630 } else if (display->isVirtual()) {
4631 ALOGW("Attempt to set power mode %d for virtual display", mode);
4632 } else {
4633 setPowerModeInternal(display, static_cast<hal::PowerMode>(mode));
4634 }
4635 }).wait();
4636 }
4637
doDump(int fd,const DumpArgs & args,bool asProto)4638 status_t SurfaceFlinger::doDump(int fd, const DumpArgs& args, bool asProto) {
4639 std::string result;
4640
4641 IPCThreadState* ipc = IPCThreadState::self();
4642 const int pid = ipc->getCallingPid();
4643 const int uid = ipc->getCallingUid();
4644
4645 if ((uid != AID_SHELL) &&
4646 !PermissionCache::checkPermission(sDump, pid, uid)) {
4647 StringAppendF(&result, "Permission Denial: can't dump SurfaceFlinger from pid=%d, uid=%d\n",
4648 pid, uid);
4649 } else {
4650 static const std::unordered_map<std::string, Dumper> dumpers = {
4651 {"--display-id"s, dumper(&SurfaceFlinger::dumpDisplayIdentificationData)},
4652 {"--dispsync"s, dumper([this](std::string& s) { mScheduler->dumpVsync(s); })},
4653 {"--edid"s, argsDumper(&SurfaceFlinger::dumpRawDisplayIdentificationData)},
4654 {"--frame-events"s, dumper(&SurfaceFlinger::dumpFrameEventsLocked)},
4655 {"--latency"s, argsDumper(&SurfaceFlinger::dumpStatsLocked)},
4656 {"--latency-clear"s, argsDumper(&SurfaceFlinger::clearStatsLocked)},
4657 {"--list"s, dumper(&SurfaceFlinger::listLayersLocked)},
4658 {"--planner"s, argsDumper(&SurfaceFlinger::dumpPlannerInfo)},
4659 {"--static-screen"s, dumper(&SurfaceFlinger::dumpStaticScreenStats)},
4660 {"--timestats"s, protoDumper(&SurfaceFlinger::dumpTimeStats)},
4661 {"--vsync"s, dumper(&SurfaceFlinger::dumpVSync)},
4662 {"--wide-color"s, dumper(&SurfaceFlinger::dumpWideColorInfo)},
4663 {"--frametimeline"s, argsDumper(&SurfaceFlinger::dumpFrameTimeline)},
4664 };
4665
4666 const auto flag = args.empty() ? ""s : std::string(String8(args[0]));
4667
4668 bool dumpLayers = true;
4669 {
4670 TimedLock lock(mStateLock, s2ns(1), __FUNCTION__);
4671 if (!lock.locked()) {
4672 StringAppendF(&result, "Dumping without lock after timeout: %s (%d)\n",
4673 strerror(-lock.status), lock.status);
4674 }
4675
4676 if (const auto it = dumpers.find(flag); it != dumpers.end()) {
4677 (it->second)(args, asProto, result);
4678 dumpLayers = false;
4679 } else if (!asProto) {
4680 dumpAllLocked(args, result);
4681 }
4682 }
4683
4684 if (dumpLayers) {
4685 const LayersProto layersProto = dumpProtoFromMainThread();
4686 if (asProto) {
4687 result.append(layersProto.SerializeAsString());
4688 } else {
4689 // Dump info that we need to access from the main thread
4690 const auto layerTree = LayerProtoParser::generateLayerTree(layersProto);
4691 result.append(LayerProtoParser::layerTreeToString(layerTree));
4692 result.append("\n");
4693 dumpOffscreenLayers(result);
4694 }
4695 }
4696 }
4697 write(fd, result.c_str(), result.size());
4698 return NO_ERROR;
4699 }
4700
dumpCritical(int fd,const DumpArgs &,bool asProto)4701 status_t SurfaceFlinger::dumpCritical(int fd, const DumpArgs&, bool asProto) {
4702 if (asProto && mTracing.isEnabled()) {
4703 mTracing.writeToFile();
4704 }
4705
4706 return doDump(fd, DumpArgs(), asProto);
4707 }
4708
listLayersLocked(std::string & result) const4709 void SurfaceFlinger::listLayersLocked(std::string& result) const {
4710 mCurrentState.traverseInZOrder(
4711 [&](Layer* layer) { StringAppendF(&result, "%s\n", layer->getDebugName()); });
4712 }
4713
dumpStatsLocked(const DumpArgs & args,std::string & result) const4714 void SurfaceFlinger::dumpStatsLocked(const DumpArgs& args, std::string& result) const {
4715 StringAppendF(&result, "%" PRId64 "\n", getVsyncPeriodFromHWC());
4716
4717 if (args.size() > 1) {
4718 const auto name = String8(args[1]);
4719 mCurrentState.traverseInZOrder([&](Layer* layer) {
4720 if (layer->getName() == name.string()) {
4721 layer->dumpFrameStats(result);
4722 }
4723 });
4724 } else {
4725 mAnimFrameTracker.dumpStats(result);
4726 }
4727 }
4728
clearStatsLocked(const DumpArgs & args,std::string &)4729 void SurfaceFlinger::clearStatsLocked(const DumpArgs& args, std::string&) {
4730 const bool clearAll = args.size() < 2;
4731 const auto name = clearAll ? String8() : String8(args[1]);
4732
4733 mCurrentState.traverse([&](Layer* layer) {
4734 if (clearAll || layer->getName() == name.string()) {
4735 layer->clearFrameStats();
4736 }
4737 });
4738
4739 mAnimFrameTracker.clearStats();
4740 }
4741
dumpTimeStats(const DumpArgs & args,bool asProto,std::string & result) const4742 void SurfaceFlinger::dumpTimeStats(const DumpArgs& args, bool asProto, std::string& result) const {
4743 mTimeStats->parseArgs(asProto, args, result);
4744 }
4745
dumpFrameTimeline(const DumpArgs & args,std::string & result) const4746 void SurfaceFlinger::dumpFrameTimeline(const DumpArgs& args, std::string& result) const {
4747 mFrameTimeline->parseArgs(args, result);
4748 }
4749
4750 // This should only be called from the main thread. Otherwise it would need
4751 // the lock and should use mCurrentState rather than mDrawingState.
logFrameStats()4752 void SurfaceFlinger::logFrameStats() {
4753 mDrawingState.traverse([&](Layer* layer) {
4754 layer->logFrameStats();
4755 });
4756
4757 mAnimFrameTracker.logAndResetStats("<win-anim>");
4758 }
4759
appendSfConfigString(std::string & result) const4760 void SurfaceFlinger::appendSfConfigString(std::string& result) const {
4761 result.append(" [sf");
4762
4763 StringAppendF(&result, " PRESENT_TIME_OFFSET=%" PRId64, dispSyncPresentTimeOffset);
4764 StringAppendF(&result, " FORCE_HWC_FOR_RBG_TO_YUV=%d", useHwcForRgbToYuv);
4765 StringAppendF(&result, " MAX_VIRT_DISPLAY_DIM=%zu",
4766 getHwComposer().getMaxVirtualDisplayDimension());
4767 StringAppendF(&result, " RUNNING_WITHOUT_SYNC_FRAMEWORK=%d", !hasSyncFramework);
4768 StringAppendF(&result, " NUM_FRAMEBUFFER_SURFACE_BUFFERS=%" PRId64,
4769 maxFrameBufferAcquiredBuffers);
4770 result.append("]");
4771 }
4772
dumpVSync(std::string & result) const4773 void SurfaceFlinger::dumpVSync(std::string& result) const {
4774 mScheduler->dump(result);
4775
4776 mRefreshRateStats->dump(result);
4777 result.append("\n");
4778
4779 mVsyncConfiguration->dump(result);
4780 StringAppendF(&result,
4781 " present offset: %9" PRId64 " ns\t VSYNC period: %9" PRId64 " ns\n\n",
4782 dispSyncPresentTimeOffset, getVsyncPeriodFromHWC());
4783
4784 mRefreshRateConfigs->dump(result);
4785
4786 StringAppendF(&result, "(mode override by backdoor: %s)\n\n",
4787 mDebugDisplayModeSetByBackdoor ? "yes" : "no");
4788
4789 mScheduler->dump(mAppConnectionHandle, result);
4790 mScheduler->dumpVsync(result);
4791 }
4792
dumpPlannerInfo(const DumpArgs & args,std::string & result) const4793 void SurfaceFlinger::dumpPlannerInfo(const DumpArgs& args, std::string& result) const {
4794 for (const auto& [token, display] : mDisplays) {
4795 const auto compositionDisplay = display->getCompositionDisplay();
4796 compositionDisplay->dumpPlannerInfo(args, result);
4797 }
4798 }
4799
dumpStaticScreenStats(std::string & result) const4800 void SurfaceFlinger::dumpStaticScreenStats(std::string& result) const {
4801 result.append("Static screen stats:\n");
4802 for (size_t b = 0; b < SurfaceFlingerBE::NUM_BUCKETS - 1; ++b) {
4803 float bucketTimeSec = getBE().mFrameBuckets[b] / 1e9;
4804 float percent = 100.0f *
4805 static_cast<float>(getBE().mFrameBuckets[b]) / getBE().mTotalTime;
4806 StringAppendF(&result, " < %zd frames: %.3f s (%.1f%%)\n", b + 1, bucketTimeSec, percent);
4807 }
4808 float bucketTimeSec = getBE().mFrameBuckets[SurfaceFlingerBE::NUM_BUCKETS - 1] / 1e9;
4809 float percent = 100.0f *
4810 static_cast<float>(getBE().mFrameBuckets[SurfaceFlingerBE::NUM_BUCKETS - 1]) / getBE().mTotalTime;
4811 StringAppendF(&result, " %zd+ frames: %.3f s (%.1f%%)\n", SurfaceFlingerBE::NUM_BUCKETS - 1,
4812 bucketTimeSec, percent);
4813 }
4814
recordBufferingStats(const std::string & layerName,std::vector<OccupancyTracker::Segment> && history)4815 void SurfaceFlinger::recordBufferingStats(const std::string& layerName,
4816 std::vector<OccupancyTracker::Segment>&& history) {
4817 Mutex::Autolock lock(getBE().mBufferingStatsMutex);
4818 auto& stats = getBE().mBufferingStats[layerName];
4819 for (const auto& segment : history) {
4820 if (!segment.usedThirdBuffer) {
4821 stats.twoBufferTime += segment.totalTime;
4822 }
4823 if (segment.occupancyAverage < 1.0f) {
4824 stats.doubleBufferedTime += segment.totalTime;
4825 } else if (segment.occupancyAverage < 2.0f) {
4826 stats.tripleBufferedTime += segment.totalTime;
4827 }
4828 ++stats.numSegments;
4829 stats.totalTime += segment.totalTime;
4830 }
4831 }
4832
dumpFrameEventsLocked(std::string & result)4833 void SurfaceFlinger::dumpFrameEventsLocked(std::string& result) {
4834 result.append("Layer frame timestamps:\n");
4835 // Traverse all layers to dump frame-events for each layer
4836 mCurrentState.traverseInZOrder(
4837 [&] (Layer* layer) { layer->dumpFrameEvents(result); });
4838 }
4839
dumpBufferingStats(std::string & result) const4840 void SurfaceFlinger::dumpBufferingStats(std::string& result) const {
4841 result.append("Buffering stats:\n");
4842 result.append(" [Layer name] <Active time> <Two buffer> "
4843 "<Double buffered> <Triple buffered>\n");
4844 Mutex::Autolock lock(getBE().mBufferingStatsMutex);
4845 typedef std::tuple<std::string, float, float, float> BufferTuple;
4846 std::map<float, BufferTuple, std::greater<float>> sorted;
4847 for (const auto& statsPair : getBE().mBufferingStats) {
4848 const char* name = statsPair.first.c_str();
4849 const SurfaceFlingerBE::BufferingStats& stats = statsPair.second;
4850 if (stats.numSegments == 0) {
4851 continue;
4852 }
4853 float activeTime = ns2ms(stats.totalTime) / 1000.0f;
4854 float twoBufferRatio = static_cast<float>(stats.twoBufferTime) /
4855 stats.totalTime;
4856 float doubleBufferRatio = static_cast<float>(
4857 stats.doubleBufferedTime) / stats.totalTime;
4858 float tripleBufferRatio = static_cast<float>(
4859 stats.tripleBufferedTime) / stats.totalTime;
4860 sorted.insert({activeTime, {name, twoBufferRatio,
4861 doubleBufferRatio, tripleBufferRatio}});
4862 }
4863 for (const auto& sortedPair : sorted) {
4864 float activeTime = sortedPair.first;
4865 const BufferTuple& values = sortedPair.second;
4866 StringAppendF(&result, " [%s] %.2f %.3f %.3f %.3f\n", std::get<0>(values).c_str(),
4867 activeTime, std::get<1>(values), std::get<2>(values), std::get<3>(values));
4868 }
4869 result.append("\n");
4870 }
4871
dumpDisplayIdentificationData(std::string & result) const4872 void SurfaceFlinger::dumpDisplayIdentificationData(std::string& result) const {
4873 for (const auto& [token, display] : mDisplays) {
4874 const auto displayId = PhysicalDisplayId::tryCast(display->getId());
4875 if (!displayId) {
4876 continue;
4877 }
4878 const auto hwcDisplayId = getHwComposer().fromPhysicalDisplayId(*displayId);
4879 if (!hwcDisplayId) {
4880 continue;
4881 }
4882
4883 StringAppendF(&result,
4884 "Display %s (HWC display %" PRIu64 "): ", to_string(*displayId).c_str(),
4885 *hwcDisplayId);
4886 uint8_t port;
4887 DisplayIdentificationData data;
4888 if (!getHwComposer().getDisplayIdentificationData(*hwcDisplayId, &port, &data)) {
4889 result.append("no identification data\n");
4890 continue;
4891 }
4892
4893 if (!isEdid(data)) {
4894 result.append("unknown identification data\n");
4895 continue;
4896 }
4897
4898 const auto edid = parseEdid(data);
4899 if (!edid) {
4900 result.append("invalid EDID\n");
4901 continue;
4902 }
4903
4904 StringAppendF(&result, "port=%u pnpId=%s displayName=\"", port, edid->pnpId.data());
4905 result.append(edid->displayName.data(), edid->displayName.length());
4906 result.append("\"\n");
4907 }
4908 }
4909
dumpRawDisplayIdentificationData(const DumpArgs & args,std::string & result) const4910 void SurfaceFlinger::dumpRawDisplayIdentificationData(const DumpArgs& args,
4911 std::string& result) const {
4912 hal::HWDisplayId hwcDisplayId;
4913 uint8_t port;
4914 DisplayIdentificationData data;
4915
4916 if (args.size() > 1 && base::ParseUint(String8(args[1]), &hwcDisplayId) &&
4917 getHwComposer().getDisplayIdentificationData(hwcDisplayId, &port, &data)) {
4918 result.append(reinterpret_cast<const char*>(data.data()), data.size());
4919 }
4920 }
4921
dumpWideColorInfo(std::string & result) const4922 void SurfaceFlinger::dumpWideColorInfo(std::string& result) const {
4923 StringAppendF(&result, "Device has wide color built-in display: %d\n", hasWideColorDisplay);
4924 StringAppendF(&result, "Device uses color management: %d\n", useColorManagement);
4925 StringAppendF(&result, "DisplayColorSetting: %s\n",
4926 decodeDisplayColorSetting(mDisplayColorSetting).c_str());
4927
4928 // TODO: print out if wide-color mode is active or not
4929
4930 for (const auto& [token, display] : mDisplays) {
4931 const auto displayId = PhysicalDisplayId::tryCast(display->getId());
4932 if (!displayId) {
4933 continue;
4934 }
4935
4936 StringAppendF(&result, "Display %s color modes:\n", to_string(*displayId).c_str());
4937 std::vector<ColorMode> modes = getHwComposer().getColorModes(*displayId);
4938 for (auto&& mode : modes) {
4939 StringAppendF(&result, " %s (%d)\n", decodeColorMode(mode).c_str(), mode);
4940 }
4941
4942 ColorMode currentMode = display->getCompositionDisplay()->getState().colorMode;
4943 StringAppendF(&result, " Current color mode: %s (%d)\n",
4944 decodeColorMode(currentMode).c_str(), currentMode);
4945 }
4946 result.append("\n");
4947 }
4948
dumpDrawingStateProto(uint32_t traceFlags) const4949 LayersProto SurfaceFlinger::dumpDrawingStateProto(uint32_t traceFlags) const {
4950 // If context is SurfaceTracing thread, mTracingLock blocks display transactions on main thread.
4951 const auto display = ON_MAIN_THREAD(getDefaultDisplayDeviceLocked());
4952
4953 LayersProto layersProto;
4954 for (const sp<Layer>& layer : mDrawingState.layersSortedByZ) {
4955 layer->writeToProto(layersProto, traceFlags, display.get());
4956 }
4957
4958 return layersProto;
4959 }
4960
dumpHwc(std::string & result) const4961 void SurfaceFlinger::dumpHwc(std::string& result) const {
4962 getHwComposer().dump(result);
4963 }
4964
dumpOffscreenLayersProto(LayersProto & layersProto,uint32_t traceFlags) const4965 void SurfaceFlinger::dumpOffscreenLayersProto(LayersProto& layersProto, uint32_t traceFlags) const {
4966 // Add a fake invisible root layer to the proto output and parent all the offscreen layers to
4967 // it.
4968 LayerProto* rootProto = layersProto.add_layers();
4969 const int32_t offscreenRootLayerId = INT32_MAX - 2;
4970 rootProto->set_id(offscreenRootLayerId);
4971 rootProto->set_name("Offscreen Root");
4972 rootProto->set_parent(-1);
4973
4974 for (Layer* offscreenLayer : mOffscreenLayers) {
4975 // Add layer as child of the fake root
4976 rootProto->add_children(offscreenLayer->sequence);
4977
4978 // Add layer
4979 LayerProto* layerProto =
4980 offscreenLayer->writeToProto(layersProto, traceFlags, nullptr /*device*/);
4981 layerProto->set_parent(offscreenRootLayerId);
4982 }
4983 }
4984
dumpProtoFromMainThread(uint32_t traceFlags)4985 LayersProto SurfaceFlinger::dumpProtoFromMainThread(uint32_t traceFlags) {
4986 return schedule([=] { return dumpDrawingStateProto(traceFlags); }).get();
4987 }
4988
dumpOffscreenLayers(std::string & result)4989 void SurfaceFlinger::dumpOffscreenLayers(std::string& result) {
4990 result.append("Offscreen Layers:\n");
4991 result.append(schedule([this] {
4992 std::string result;
4993 for (Layer* offscreenLayer : mOffscreenLayers) {
4994 offscreenLayer->traverse(LayerVector::StateSet::Drawing,
4995 [&](Layer* layer) {
4996 layer->dumpCallingUidPid(result);
4997 });
4998 }
4999 return result;
5000 }).get());
5001 }
5002
dumpAllLocked(const DumpArgs & args,std::string & result) const5003 void SurfaceFlinger::dumpAllLocked(const DumpArgs& args, std::string& result) const {
5004 const bool colorize = !args.empty() && args[0] == String16("--color");
5005 Colorizer colorizer(colorize);
5006
5007 // figure out if we're stuck somewhere
5008 const nsecs_t now = systemTime();
5009 const nsecs_t inTransaction(mDebugInTransaction);
5010 nsecs_t inTransactionDuration = (inTransaction) ? now-inTransaction : 0;
5011
5012 /*
5013 * Dump library configuration.
5014 */
5015
5016 colorizer.bold(result);
5017 result.append("Build configuration:");
5018 colorizer.reset(result);
5019 appendSfConfigString(result);
5020 result.append("\n");
5021
5022 result.append("\nDisplay identification data:\n");
5023 dumpDisplayIdentificationData(result);
5024
5025 result.append("\nWide-Color information:\n");
5026 dumpWideColorInfo(result);
5027
5028 colorizer.bold(result);
5029 result.append("Sync configuration: ");
5030 colorizer.reset(result);
5031 result.append(SyncFeatures::getInstance().toString());
5032 result.append("\n\n");
5033
5034 colorizer.bold(result);
5035 result.append("Scheduler:\n");
5036 colorizer.reset(result);
5037 dumpVSync(result);
5038 result.append("\n");
5039
5040 dumpStaticScreenStats(result);
5041 result.append("\n");
5042
5043 StringAppendF(&result, "Total missed frame count: %u\n", mFrameMissedCount.load());
5044 StringAppendF(&result, "HWC missed frame count: %u\n", mHwcFrameMissedCount.load());
5045 StringAppendF(&result, "GPU missed frame count: %u\n\n", mGpuFrameMissedCount.load());
5046
5047 dumpBufferingStats(result);
5048
5049 /*
5050 * Dump the visible layer list
5051 */
5052 colorizer.bold(result);
5053 StringAppendF(&result, "Visible layers (count = %zu)\n", mNumLayers.load());
5054 StringAppendF(&result, "GraphicBufferProducers: %zu, max %zu\n",
5055 mGraphicBufferProducerList.size(), mMaxGraphicBufferProducerListSize);
5056 colorizer.reset(result);
5057
5058 {
5059 StringAppendF(&result, "Composition layers\n");
5060 mDrawingState.traverseInZOrder([&](Layer* layer) {
5061 auto* compositionState = layer->getCompositionState();
5062 if (!compositionState || !compositionState->isVisible) return;
5063
5064 android::base::StringAppendF(&result, "* Layer %p (%s)\n", layer,
5065 layer->getDebugName() ? layer->getDebugName()
5066 : "<unknown>");
5067 compositionState->dump(result);
5068 });
5069 }
5070
5071 /*
5072 * Dump Display state
5073 */
5074
5075 colorizer.bold(result);
5076 StringAppendF(&result, "Displays (%zu entries)\n", mDisplays.size());
5077 colorizer.reset(result);
5078 for (const auto& [token, display] : mDisplays) {
5079 display->dump(result);
5080 }
5081 result.append("\n");
5082
5083 /*
5084 * Dump CompositionEngine state
5085 */
5086
5087 mCompositionEngine->dump(result);
5088
5089 /*
5090 * Dump SurfaceFlinger global state
5091 */
5092
5093 colorizer.bold(result);
5094 result.append("SurfaceFlinger global state:\n");
5095 colorizer.reset(result);
5096
5097 getRenderEngine().dump(result);
5098
5099 result.append("ClientCache state:\n");
5100 ClientCache::getInstance().dump(result);
5101 DebugEGLImageTracker::getInstance()->dump(result);
5102
5103 if (const auto display = getDefaultDisplayDeviceLocked()) {
5104 display->getCompositionDisplay()->getState().undefinedRegion.dump(result,
5105 "undefinedRegion");
5106 StringAppendF(&result, " orientation=%s, isPoweredOn=%d\n",
5107 toCString(display->getOrientation()), display->isPoweredOn());
5108 }
5109 StringAppendF(&result,
5110 " transaction-flags : %08x\n"
5111 " gpu_to_cpu_unsupported : %d\n",
5112 mTransactionFlags.load(), !mGpuToCpuSupported);
5113
5114 if (const auto display = getDefaultDisplayDeviceLocked()) {
5115 std::string fps, xDpi, yDpi;
5116 if (const auto activeMode = display->getActiveMode()) {
5117 fps = to_string(activeMode->getFps());
5118 xDpi = base::StringPrintf("%.2f", activeMode->getDpiX());
5119 yDpi = base::StringPrintf("%.2f", activeMode->getDpiY());
5120 } else {
5121 fps = "unknown";
5122 xDpi = "unknown";
5123 yDpi = "unknown";
5124 }
5125 StringAppendF(&result,
5126 " refresh-rate : %s\n"
5127 " x-dpi : %s\n"
5128 " y-dpi : %s\n",
5129 fps.c_str(), xDpi.c_str(), yDpi.c_str());
5130 }
5131
5132 StringAppendF(&result, " transaction time: %f us\n", inTransactionDuration / 1000.0);
5133
5134 /*
5135 * Tracing state
5136 */
5137 mTracing.dump(result);
5138 result.append("\n");
5139
5140 /*
5141 * HWC layer minidump
5142 */
5143 for (const auto& [token, display] : mDisplays) {
5144 const auto displayId = HalDisplayId::tryCast(display->getId());
5145 if (!displayId) {
5146 continue;
5147 }
5148
5149 StringAppendF(&result, "Display %s HWC layers:\n", to_string(*displayId).c_str());
5150 Layer::miniDumpHeader(result);
5151
5152 const DisplayDevice& ref = *display;
5153 mCurrentState.traverseInZOrder([&](Layer* layer) { layer->miniDump(result, ref); });
5154 result.append("\n");
5155 }
5156
5157 {
5158 DumpArgs plannerArgs;
5159 plannerArgs.add(); // first argument is ignored
5160 plannerArgs.add(String16("--layers"));
5161 dumpPlannerInfo(plannerArgs, result);
5162 }
5163
5164 /*
5165 * Dump HWComposer state
5166 */
5167 colorizer.bold(result);
5168 result.append("h/w composer state:\n");
5169 colorizer.reset(result);
5170 bool hwcDisabled = mDebugDisableHWC || mDebugRegion;
5171 StringAppendF(&result, " h/w composer %s\n", hwcDisabled ? "disabled" : "enabled");
5172 getHwComposer().dump(result);
5173
5174 /*
5175 * Dump gralloc state
5176 */
5177 const GraphicBufferAllocator& alloc(GraphicBufferAllocator::get());
5178 alloc.dump(result);
5179
5180 result.append(mTimeStats->miniDump());
5181 result.append("\n");
5182 }
5183
calculateColorMatrix(float saturation)5184 mat4 SurfaceFlinger::calculateColorMatrix(float saturation) {
5185 if (saturation == 1) {
5186 return mat4();
5187 }
5188
5189 float3 luminance{0.213f, 0.715f, 0.072f};
5190 luminance *= 1.0f - saturation;
5191 mat4 saturationMatrix = mat4(vec4{luminance.r + saturation, luminance.r, luminance.r, 0.0f},
5192 vec4{luminance.g, luminance.g + saturation, luminance.g, 0.0f},
5193 vec4{luminance.b, luminance.b, luminance.b + saturation, 0.0f},
5194 vec4{0.0f, 0.0f, 0.0f, 1.0f});
5195 return saturationMatrix;
5196 }
5197
updateColorMatrixLocked()5198 void SurfaceFlinger::updateColorMatrixLocked() {
5199 mat4 colorMatrix =
5200 mClientColorMatrix * calculateColorMatrix(mGlobalSaturationFactor) * mDaltonizer();
5201
5202 if (mCurrentState.colorMatrix != colorMatrix) {
5203 mCurrentState.colorMatrix = colorMatrix;
5204 mCurrentState.colorMatrixChanged = true;
5205 setTransactionFlags(eTransactionNeeded);
5206 }
5207 }
5208
CheckTransactCodeCredentials(uint32_t code)5209 status_t SurfaceFlinger::CheckTransactCodeCredentials(uint32_t code) {
5210 #pragma clang diagnostic push
5211 #pragma clang diagnostic error "-Wswitch-enum"
5212 switch (static_cast<ISurfaceComposerTag>(code)) {
5213 case ENABLE_VSYNC_INJECTIONS:
5214 case INJECT_VSYNC:
5215 if (!hasMockHwc()) return PERMISSION_DENIED;
5216 [[fallthrough]];
5217 // These methods should at minimum make sure that the client requested
5218 // access to SF.
5219 case BOOT_FINISHED:
5220 case CLEAR_ANIMATION_FRAME_STATS:
5221 case CREATE_DISPLAY:
5222 case DESTROY_DISPLAY:
5223 case GET_ANIMATION_FRAME_STATS:
5224 case OVERRIDE_HDR_TYPES:
5225 case GET_HDR_CAPABILITIES:
5226 case SET_DESIRED_DISPLAY_MODE_SPECS:
5227 case GET_DESIRED_DISPLAY_MODE_SPECS:
5228 case SET_ACTIVE_COLOR_MODE:
5229 case GET_AUTO_LOW_LATENCY_MODE_SUPPORT:
5230 case SET_AUTO_LOW_LATENCY_MODE:
5231 case GET_GAME_CONTENT_TYPE_SUPPORT:
5232 case SET_GAME_CONTENT_TYPE:
5233 case SET_POWER_MODE:
5234 case GET_DISPLAYED_CONTENT_SAMPLING_ATTRIBUTES:
5235 case SET_DISPLAY_CONTENT_SAMPLING_ENABLED:
5236 case GET_DISPLAYED_CONTENT_SAMPLE:
5237 case ADD_TUNNEL_MODE_ENABLED_LISTENER:
5238 case REMOVE_TUNNEL_MODE_ENABLED_LISTENER:
5239 case NOTIFY_POWER_BOOST:
5240 case SET_GLOBAL_SHADOW_SETTINGS:
5241 case ACQUIRE_FRAME_RATE_FLEXIBILITY_TOKEN: {
5242 // ACQUIRE_FRAME_RATE_FLEXIBILITY_TOKEN and OVERRIDE_HDR_TYPES are used by CTS tests,
5243 // which acquire the necessary permission dynamically. Don't use the permission cache
5244 // for this check.
5245 bool usePermissionCache =
5246 code != ACQUIRE_FRAME_RATE_FLEXIBILITY_TOKEN && code != OVERRIDE_HDR_TYPES;
5247 if (!callingThreadHasUnscopedSurfaceFlingerAccess(usePermissionCache)) {
5248 IPCThreadState* ipc = IPCThreadState::self();
5249 ALOGE("Permission Denial: can't access SurfaceFlinger pid=%d, uid=%d",
5250 ipc->getCallingPid(), ipc->getCallingUid());
5251 return PERMISSION_DENIED;
5252 }
5253 return OK;
5254 }
5255 case GET_LAYER_DEBUG_INFO: {
5256 IPCThreadState* ipc = IPCThreadState::self();
5257 const int pid = ipc->getCallingPid();
5258 const int uid = ipc->getCallingUid();
5259 if ((uid != AID_SHELL) && !PermissionCache::checkPermission(sDump, pid, uid)) {
5260 ALOGE("Layer debug info permission denied for pid=%d, uid=%d", pid, uid);
5261 return PERMISSION_DENIED;
5262 }
5263 return OK;
5264 }
5265 // Used by apps to hook Choreographer to SurfaceFlinger.
5266 case CREATE_DISPLAY_EVENT_CONNECTION:
5267 // The following calls are currently used by clients that do not
5268 // request necessary permissions. However, they do not expose any secret
5269 // information, so it is OK to pass them.
5270 case AUTHENTICATE_SURFACE:
5271 case GET_ACTIVE_COLOR_MODE:
5272 case GET_ACTIVE_DISPLAY_MODE:
5273 case GET_PHYSICAL_DISPLAY_IDS:
5274 case GET_PHYSICAL_DISPLAY_TOKEN:
5275 case GET_DISPLAY_COLOR_MODES:
5276 case GET_DISPLAY_NATIVE_PRIMARIES:
5277 case GET_STATIC_DISPLAY_INFO:
5278 case GET_DYNAMIC_DISPLAY_INFO:
5279 case GET_DISPLAY_MODES:
5280 case GET_DISPLAY_STATE:
5281 case GET_DISPLAY_STATS:
5282 case GET_SUPPORTED_FRAME_TIMESTAMPS:
5283 // Calling setTransactionState is safe, because you need to have been
5284 // granted a reference to Client* and Handle* to do anything with it.
5285 case SET_TRANSACTION_STATE:
5286 case CREATE_CONNECTION:
5287 case GET_COLOR_MANAGEMENT:
5288 case GET_COMPOSITION_PREFERENCE:
5289 case GET_PROTECTED_CONTENT_SUPPORT:
5290 case IS_WIDE_COLOR_DISPLAY:
5291 // setFrameRate() is deliberately available for apps to call without any
5292 // special permissions.
5293 case SET_FRAME_RATE:
5294 case GET_DISPLAY_BRIGHTNESS_SUPPORT:
5295 // captureLayers and captureDisplay will handle the permission check in the function
5296 case CAPTURE_LAYERS:
5297 case CAPTURE_DISPLAY:
5298 case SET_FRAME_TIMELINE_INFO:
5299 case GET_GPU_CONTEXT_PRIORITY:
5300 case GET_MAX_ACQUIRED_BUFFER_COUNT: {
5301 // This is not sensitive information, so should not require permission control.
5302 return OK;
5303 }
5304 case SET_DISPLAY_BRIGHTNESS:
5305 case ADD_HDR_LAYER_INFO_LISTENER:
5306 case REMOVE_HDR_LAYER_INFO_LISTENER: {
5307 IPCThreadState* ipc = IPCThreadState::self();
5308 const int pid = ipc->getCallingPid();
5309 const int uid = ipc->getCallingUid();
5310 if ((uid != AID_GRAPHICS) &&
5311 !PermissionCache::checkPermission(sControlDisplayBrightness, pid, uid)) {
5312 ALOGE("Permission Denial: can't control brightness pid=%d, uid=%d", pid, uid);
5313 return PERMISSION_DENIED;
5314 }
5315 return OK;
5316 }
5317 case ADD_FPS_LISTENER:
5318 case REMOVE_FPS_LISTENER:
5319 case ADD_REGION_SAMPLING_LISTENER:
5320 case REMOVE_REGION_SAMPLING_LISTENER: {
5321 // codes that require permission check
5322 IPCThreadState* ipc = IPCThreadState::self();
5323 const int pid = ipc->getCallingPid();
5324 const int uid = ipc->getCallingUid();
5325 if ((uid != AID_GRAPHICS) &&
5326 !PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) {
5327 ALOGE("Permission Denial: can't read framebuffer pid=%d, uid=%d", pid, uid);
5328 return PERMISSION_DENIED;
5329 }
5330 return OK;
5331 }
5332 case ADD_TRANSACTION_TRACE_LISTENER:
5333 case CAPTURE_DISPLAY_BY_ID: {
5334 IPCThreadState* ipc = IPCThreadState::self();
5335 const int uid = ipc->getCallingUid();
5336 if (uid == AID_ROOT || uid == AID_GRAPHICS || uid == AID_SYSTEM || uid == AID_SHELL) {
5337 return OK;
5338 }
5339 return PERMISSION_DENIED;
5340 }
5341 case ON_PULL_ATOM: {
5342 const int uid = IPCThreadState::self()->getCallingUid();
5343 if (uid == AID_SYSTEM) {
5344 return OK;
5345 }
5346 return PERMISSION_DENIED;
5347 }
5348 }
5349
5350 // These codes are used for the IBinder protocol to either interrogate the recipient
5351 // side of the transaction for its canonical interface descriptor or to dump its state.
5352 // We let them pass by default.
5353 if (code == IBinder::INTERFACE_TRANSACTION || code == IBinder::DUMP_TRANSACTION ||
5354 code == IBinder::PING_TRANSACTION || code == IBinder::SHELL_COMMAND_TRANSACTION ||
5355 code == IBinder::SYSPROPS_TRANSACTION) {
5356 return OK;
5357 }
5358 // Numbers from 1000 to 1040 are currently used for backdoors. The code
5359 // in onTransact verifies that the user is root, and has access to use SF.
5360 if (code >= 1000 && code <= 1040) {
5361 ALOGV("Accessing SurfaceFlinger through backdoor code: %u", code);
5362 return OK;
5363 }
5364 ALOGE("Permission Denial: SurfaceFlinger did not recognize request code: %u", code);
5365 return PERMISSION_DENIED;
5366 #pragma clang diagnostic pop
5367 }
5368
onTransact(uint32_t code,const Parcel & data,Parcel * reply,uint32_t flags)5369 status_t SurfaceFlinger::onTransact(uint32_t code, const Parcel& data, Parcel* reply,
5370 uint32_t flags) {
5371 status_t credentialCheck = CheckTransactCodeCredentials(code);
5372 if (credentialCheck != OK) {
5373 return credentialCheck;
5374 }
5375
5376 status_t err = BnSurfaceComposer::onTransact(code, data, reply, flags);
5377 if (err == UNKNOWN_TRANSACTION || err == PERMISSION_DENIED) {
5378 CHECK_INTERFACE(ISurfaceComposer, data, reply);
5379 IPCThreadState* ipc = IPCThreadState::self();
5380 const int uid = ipc->getCallingUid();
5381 if (CC_UNLIKELY(uid != AID_SYSTEM
5382 && !PermissionCache::checkCallingPermission(sHardwareTest))) {
5383 const int pid = ipc->getCallingPid();
5384 ALOGE("Permission Denial: "
5385 "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
5386 return PERMISSION_DENIED;
5387 }
5388 int n;
5389 switch (code) {
5390 case 1000: // SHOW_CPU, NOT SUPPORTED ANYMORE
5391 case 1001: // SHOW_FPS, NOT SUPPORTED ANYMORE
5392 return NO_ERROR;
5393 case 1002: // SHOW_UPDATES
5394 n = data.readInt32();
5395 mDebugRegion = n ? n : (mDebugRegion ? 0 : 1);
5396 invalidateHwcGeometry();
5397 repaintEverything();
5398 return NO_ERROR;
5399 case 1004:{ // repaint everything
5400 repaintEverything();
5401 return NO_ERROR;
5402 }
5403 case 1005:{ // force transaction
5404 Mutex::Autolock _l(mStateLock);
5405 setTransactionFlags(
5406 eTransactionNeeded|
5407 eDisplayTransactionNeeded|
5408 eTraversalNeeded);
5409 return NO_ERROR;
5410 }
5411 case 1006:{ // send empty update
5412 signalRefresh();
5413 return NO_ERROR;
5414 }
5415 case 1008: // toggle use of hw composer
5416 n = data.readInt32();
5417 mDebugDisableHWC = n != 0;
5418 invalidateHwcGeometry();
5419 repaintEverything();
5420 return NO_ERROR;
5421 case 1009: // toggle use of transform hint
5422 n = data.readInt32();
5423 mDebugDisableTransformHint = n != 0;
5424 invalidateHwcGeometry();
5425 repaintEverything();
5426 return NO_ERROR;
5427 case 1010: // interrogate.
5428 reply->writeInt32(0);
5429 reply->writeInt32(0);
5430 reply->writeInt32(mDebugRegion);
5431 reply->writeInt32(0);
5432 reply->writeInt32(mDebugDisableHWC);
5433 return NO_ERROR;
5434 case 1013: {
5435 const auto display = getDefaultDisplayDevice();
5436 if (!display) {
5437 return NAME_NOT_FOUND;
5438 }
5439
5440 reply->writeInt32(display->getPageFlipCount());
5441 return NO_ERROR;
5442 }
5443 case 1014: {
5444 Mutex::Autolock _l(mStateLock);
5445 // daltonize
5446 n = data.readInt32();
5447 switch (n % 10) {
5448 case 1:
5449 mDaltonizer.setType(ColorBlindnessType::Protanomaly);
5450 break;
5451 case 2:
5452 mDaltonizer.setType(ColorBlindnessType::Deuteranomaly);
5453 break;
5454 case 3:
5455 mDaltonizer.setType(ColorBlindnessType::Tritanomaly);
5456 break;
5457 default:
5458 mDaltonizer.setType(ColorBlindnessType::None);
5459 break;
5460 }
5461 if (n >= 10) {
5462 mDaltonizer.setMode(ColorBlindnessMode::Correction);
5463 } else {
5464 mDaltonizer.setMode(ColorBlindnessMode::Simulation);
5465 }
5466
5467 updateColorMatrixLocked();
5468 return NO_ERROR;
5469 }
5470 case 1015: {
5471 Mutex::Autolock _l(mStateLock);
5472 // apply a color matrix
5473 n = data.readInt32();
5474 if (n) {
5475 // color matrix is sent as a column-major mat4 matrix
5476 for (size_t i = 0 ; i < 4; i++) {
5477 for (size_t j = 0; j < 4; j++) {
5478 mClientColorMatrix[i][j] = data.readFloat();
5479 }
5480 }
5481 } else {
5482 mClientColorMatrix = mat4();
5483 }
5484
5485 // Check that supplied matrix's last row is {0,0,0,1} so we can avoid
5486 // the division by w in the fragment shader
5487 float4 lastRow(transpose(mClientColorMatrix)[3]);
5488 if (any(greaterThan(abs(lastRow - float4{0, 0, 0, 1}), float4{1e-4f}))) {
5489 ALOGE("The color transform's last row must be (0, 0, 0, 1)");
5490 }
5491
5492 updateColorMatrixLocked();
5493 return NO_ERROR;
5494 }
5495 case 1016: { // Unused.
5496 return NAME_NOT_FOUND;
5497 }
5498 case 1017: {
5499 n = data.readInt32();
5500 mForceFullDamage = n != 0;
5501 return NO_ERROR;
5502 }
5503 case 1018: { // Modify Choreographer's duration
5504 n = data.readInt32();
5505 mScheduler->setDuration(mAppConnectionHandle, std::chrono::nanoseconds(n), 0ns);
5506 return NO_ERROR;
5507 }
5508 case 1019: { // Modify SurfaceFlinger's duration
5509 n = data.readInt32();
5510 mScheduler->setDuration(mSfConnectionHandle, std::chrono::nanoseconds(n), 0ns);
5511 return NO_ERROR;
5512 }
5513 case 1020: { // Layer updates interceptor
5514 n = data.readInt32();
5515 if (n) {
5516 ALOGV("Interceptor enabled");
5517 mInterceptor->enable(mDrawingState.layersSortedByZ, mDrawingState.displays);
5518 }
5519 else{
5520 ALOGV("Interceptor disabled");
5521 mInterceptor->disable();
5522 }
5523 return NO_ERROR;
5524 }
5525 case 1021: { // Disable HWC virtual displays
5526 const bool enable = data.readInt32() != 0;
5527 static_cast<void>(schedule([this, enable] { enableHalVirtualDisplays(enable); }));
5528 return NO_ERROR;
5529 }
5530 case 1022: { // Set saturation boost
5531 Mutex::Autolock _l(mStateLock);
5532 mGlobalSaturationFactor = std::max(0.0f, std::min(data.readFloat(), 2.0f));
5533
5534 updateColorMatrixLocked();
5535 return NO_ERROR;
5536 }
5537 case 1023: { // Set native mode
5538 int32_t colorMode;
5539
5540 mDisplayColorSetting = static_cast<DisplayColorSetting>(data.readInt32());
5541 if (data.readInt32(&colorMode) == NO_ERROR) {
5542 mForceColorMode = static_cast<ColorMode>(colorMode);
5543 }
5544 invalidateHwcGeometry();
5545 repaintEverything();
5546 return NO_ERROR;
5547 }
5548 // Deprecate, use 1030 to check whether the device is color managed.
5549 case 1024: {
5550 return NAME_NOT_FOUND;
5551 }
5552 case 1025: { // Set layer tracing
5553 n = data.readInt32();
5554 bool tracingEnabledChanged;
5555 if (n) {
5556 ALOGD("LayerTracing enabled");
5557 tracingEnabledChanged = mTracing.enable();
5558 if (tracingEnabledChanged) {
5559 schedule([&]() MAIN_THREAD { mTracing.notify("start"); }).wait();
5560 }
5561 } else {
5562 ALOGD("LayerTracing disabled");
5563 tracingEnabledChanged = mTracing.disable();
5564 }
5565 mTracingEnabledChanged = tracingEnabledChanged;
5566 reply->writeInt32(NO_ERROR);
5567 return NO_ERROR;
5568 }
5569 case 1026: { // Get layer tracing status
5570 reply->writeBool(mTracing.isEnabled());
5571 return NO_ERROR;
5572 }
5573 // Is a DisplayColorSetting supported?
5574 case 1027: {
5575 const auto display = getDefaultDisplayDevice();
5576 if (!display) {
5577 return NAME_NOT_FOUND;
5578 }
5579
5580 DisplayColorSetting setting = static_cast<DisplayColorSetting>(data.readInt32());
5581 switch (setting) {
5582 case DisplayColorSetting::kManaged:
5583 reply->writeBool(useColorManagement);
5584 break;
5585 case DisplayColorSetting::kUnmanaged:
5586 reply->writeBool(true);
5587 break;
5588 case DisplayColorSetting::kEnhanced:
5589 reply->writeBool(display->hasRenderIntent(RenderIntent::ENHANCE));
5590 break;
5591 default: // vendor display color setting
5592 reply->writeBool(
5593 display->hasRenderIntent(static_cast<RenderIntent>(setting)));
5594 break;
5595 }
5596 return NO_ERROR;
5597 }
5598 case 1028: { // Unused.
5599 return NAME_NOT_FOUND;
5600 }
5601 // Set buffer size for SF tracing (value in KB)
5602 case 1029: {
5603 n = data.readInt32();
5604 if (n <= 0 || n > MAX_TRACING_MEMORY) {
5605 ALOGW("Invalid buffer size: %d KB", n);
5606 reply->writeInt32(BAD_VALUE);
5607 return BAD_VALUE;
5608 }
5609
5610 ALOGD("Updating trace buffer to %d KB", n);
5611 mTracing.setBufferSize(n * 1024);
5612 reply->writeInt32(NO_ERROR);
5613 return NO_ERROR;
5614 }
5615 // Is device color managed?
5616 case 1030: {
5617 reply->writeBool(useColorManagement);
5618 return NO_ERROR;
5619 }
5620 // Override default composition data space
5621 // adb shell service call SurfaceFlinger 1031 i32 1 DATASPACE_NUMBER DATASPACE_NUMBER \
5622 // && adb shell stop zygote && adb shell start zygote
5623 // to restore: adb shell service call SurfaceFlinger 1031 i32 0 && \
5624 // adb shell stop zygote && adb shell start zygote
5625 case 1031: {
5626 Mutex::Autolock _l(mStateLock);
5627 n = data.readInt32();
5628 if (n) {
5629 n = data.readInt32();
5630 if (n) {
5631 Dataspace dataspace = static_cast<Dataspace>(n);
5632 if (!validateCompositionDataspace(dataspace)) {
5633 return BAD_VALUE;
5634 }
5635 mDefaultCompositionDataspace = dataspace;
5636 }
5637 n = data.readInt32();
5638 if (n) {
5639 Dataspace dataspace = static_cast<Dataspace>(n);
5640 if (!validateCompositionDataspace(dataspace)) {
5641 return BAD_VALUE;
5642 }
5643 mWideColorGamutCompositionDataspace = dataspace;
5644 }
5645 } else {
5646 // restore composition data space.
5647 mDefaultCompositionDataspace = defaultCompositionDataspace;
5648 mWideColorGamutCompositionDataspace = wideColorGamutCompositionDataspace;
5649 }
5650 return NO_ERROR;
5651 }
5652 // Set trace flags
5653 case 1033: {
5654 n = data.readUint32();
5655 ALOGD("Updating trace flags to 0x%x", n);
5656 mTracing.setTraceFlags(n);
5657 reply->writeInt32(NO_ERROR);
5658 return NO_ERROR;
5659 }
5660 case 1034: {
5661 switch (n = data.readInt32()) {
5662 case 0:
5663 case 1:
5664 enableRefreshRateOverlay(static_cast<bool>(n));
5665 break;
5666 default: {
5667 Mutex::Autolock lock(mStateLock);
5668 reply->writeBool(mRefreshRateOverlay != nullptr);
5669 }
5670 }
5671 return NO_ERROR;
5672 }
5673 case 1035: {
5674 const int modeId = data.readInt32();
5675 mDebugDisplayModeSetByBackdoor = false;
5676
5677 const auto displayId = [&]() -> std::optional<PhysicalDisplayId> {
5678 uint64_t inputDisplayId = 0;
5679 if (data.readUint64(&inputDisplayId) == NO_ERROR) {
5680 const auto token = getPhysicalDisplayToken(
5681 static_cast<PhysicalDisplayId>(inputDisplayId));
5682 if (!token) {
5683 ALOGE("No display with id: %" PRIu64, inputDisplayId);
5684 return std::nullopt;
5685 }
5686
5687 return std::make_optional<PhysicalDisplayId>(inputDisplayId);
5688 }
5689
5690 return getInternalDisplayId();
5691 }();
5692
5693 if (!displayId) {
5694 ALOGE("No display found");
5695 return NO_ERROR;
5696 }
5697
5698 status_t result = setActiveMode(getPhysicalDisplayToken(*displayId), modeId);
5699 if (result != NO_ERROR) {
5700 return result;
5701 }
5702
5703 mDebugDisplayModeSetByBackdoor = true;
5704
5705 return NO_ERROR;
5706 }
5707 case 1036: {
5708 if (data.readInt32() > 0) {
5709 status_t result =
5710 acquireFrameRateFlexibilityToken(&mDebugFrameRateFlexibilityToken);
5711 if (result != NO_ERROR) {
5712 return result;
5713 }
5714 } else {
5715 mDebugFrameRateFlexibilityToken = nullptr;
5716 }
5717 return NO_ERROR;
5718 }
5719 // Inject a hotplug connected event for the primary display. This will deallocate and
5720 // reallocate the display state including framebuffers.
5721 case 1037: {
5722 std::optional<hal::HWDisplayId> hwcId;
5723 {
5724 Mutex::Autolock lock(mStateLock);
5725 hwcId = getHwComposer().getInternalHwcDisplayId();
5726 }
5727 onComposerHalHotplug(*hwcId, hal::Connection::CONNECTED);
5728 return NO_ERROR;
5729 }
5730 // Modify the max number of display frames stored within FrameTimeline
5731 case 1038: {
5732 n = data.readInt32();
5733 if (n < 0 || n > MAX_ALLOWED_DISPLAY_FRAMES) {
5734 ALOGW("Invalid max size. Maximum allowed is %d", MAX_ALLOWED_DISPLAY_FRAMES);
5735 return BAD_VALUE;
5736 }
5737 if (n == 0) {
5738 // restore to default
5739 mFrameTimeline->reset();
5740 return NO_ERROR;
5741 }
5742 mFrameTimeline->setMaxDisplayFrames(n);
5743 return NO_ERROR;
5744 }
5745 case 1039: {
5746 PhysicalDisplayId displayId = [&]() {
5747 Mutex::Autolock lock(mStateLock);
5748 return getDefaultDisplayDeviceLocked()->getPhysicalId();
5749 }();
5750
5751 auto inUid = static_cast<uid_t>(data.readInt32());
5752 const auto refreshRate = data.readFloat();
5753 mScheduler->setPreferredRefreshRateForUid(FrameRateOverride{inUid, refreshRate});
5754 mScheduler->onFrameRateOverridesChanged(mAppConnectionHandle, displayId);
5755 return NO_ERROR;
5756 }
5757 // Toggle caching feature
5758 // First argument is an int32 - nonzero enables caching and zero disables caching
5759 // Second argument is an optional uint64 - if present, then limits enabling/disabling
5760 // caching to a particular physical display
5761 case 1040: {
5762 status_t error =
5763 schedule([&] {
5764 n = data.readInt32();
5765 std::optional<PhysicalDisplayId> inputId = std::nullopt;
5766 if (uint64_t inputDisplayId;
5767 data.readUint64(&inputDisplayId) == NO_ERROR) {
5768 const auto token = getPhysicalDisplayToken(
5769 static_cast<PhysicalDisplayId>(inputDisplayId));
5770 if (!token) {
5771 ALOGE("No display with id: %" PRIu64, inputDisplayId);
5772 return NAME_NOT_FOUND;
5773 }
5774
5775 inputId = std::make_optional<PhysicalDisplayId>(inputDisplayId);
5776 }
5777 {
5778 Mutex::Autolock lock(mStateLock);
5779 mLayerCachingEnabled = n != 0;
5780 for (const auto& [_, display] : mDisplays) {
5781 if (!inputId || *inputId == display->getPhysicalId()) {
5782 display->enableLayerCaching(mLayerCachingEnabled);
5783 }
5784 }
5785 }
5786 return OK;
5787 }).get();
5788
5789 if (error != OK) {
5790 return error;
5791 }
5792 invalidateHwcGeometry();
5793 repaintEverything();
5794 return NO_ERROR;
5795 }
5796 }
5797 }
5798 return err;
5799 }
5800
repaintEverything()5801 void SurfaceFlinger::repaintEverything() {
5802 mRepaintEverything = true;
5803 signalTransaction();
5804 }
5805
repaintEverythingForHWC()5806 void SurfaceFlinger::repaintEverythingForHWC() {
5807 mRepaintEverything = true;
5808 mPowerAdvisor.notifyDisplayUpdateImminent();
5809 mEventQueue->invalidate();
5810 }
5811
kernelTimerChanged(bool expired)5812 void SurfaceFlinger::kernelTimerChanged(bool expired) {
5813 static bool updateOverlay =
5814 property_get_bool("debug.sf.kernel_idle_timer_update_overlay", true);
5815 if (!updateOverlay) return;
5816 if (Mutex::Autolock lock(mStateLock); !mRefreshRateOverlay) return;
5817
5818 // Update the overlay on the main thread to avoid race conditions with
5819 // mRefreshRateConfigs->getCurrentRefreshRate()
5820 static_cast<void>(schedule([=] {
5821 const auto desiredActiveMode = getDesiredActiveMode();
5822 const std::optional<DisplayModeId> desiredModeId =
5823 desiredActiveMode ? std::make_optional(desiredActiveMode->modeId) : std::nullopt;
5824
5825 const bool timerExpired = mKernelIdleTimerEnabled && expired;
5826 const auto newRefreshRate =
5827 mRefreshRateConfigs->onKernelTimerChanged(desiredModeId, timerExpired);
5828 if (newRefreshRate) {
5829 if (Mutex::Autolock lock(mStateLock); mRefreshRateOverlay) {
5830 mRefreshRateOverlay->changeRefreshRate(*newRefreshRate);
5831 }
5832 mEventQueue->invalidate();
5833 }
5834 }));
5835 }
5836
toggleKernelIdleTimer()5837 void SurfaceFlinger::toggleKernelIdleTimer() {
5838 using KernelIdleTimerAction = scheduler::RefreshRateConfigs::KernelIdleTimerAction;
5839
5840 // If the support for kernel idle timer is disabled in SF code, don't do anything.
5841 if (!mSupportKernelIdleTimer) {
5842 return;
5843 }
5844 const KernelIdleTimerAction action = mRefreshRateConfigs->getIdleTimerAction();
5845
5846 switch (action) {
5847 case KernelIdleTimerAction::TurnOff:
5848 if (mKernelIdleTimerEnabled) {
5849 ATRACE_INT("KernelIdleTimer", 0);
5850 base::SetProperty(KERNEL_IDLE_TIMER_PROP, "false");
5851 mKernelIdleTimerEnabled = false;
5852 }
5853 break;
5854 case KernelIdleTimerAction::TurnOn:
5855 if (!mKernelIdleTimerEnabled) {
5856 ATRACE_INT("KernelIdleTimer", 1);
5857 base::SetProperty(KERNEL_IDLE_TIMER_PROP, "true");
5858 mKernelIdleTimerEnabled = true;
5859 }
5860 break;
5861 }
5862 }
5863
5864 // A simple RAII class to disconnect from an ANativeWindow* when it goes out of scope
5865 class WindowDisconnector {
5866 public:
WindowDisconnector(ANativeWindow * window,int api)5867 WindowDisconnector(ANativeWindow* window, int api) : mWindow(window), mApi(api) {}
~WindowDisconnector()5868 ~WindowDisconnector() {
5869 native_window_api_disconnect(mWindow, mApi);
5870 }
5871
5872 private:
5873 ANativeWindow* mWindow;
5874 const int mApi;
5875 };
5876
pickDataspaceFromColorMode(const ColorMode colorMode)5877 static Dataspace pickDataspaceFromColorMode(const ColorMode colorMode) {
5878 switch (colorMode) {
5879 case ColorMode::DISPLAY_P3:
5880 case ColorMode::BT2100_PQ:
5881 case ColorMode::BT2100_HLG:
5882 case ColorMode::DISPLAY_BT2020:
5883 return Dataspace::DISPLAY_P3;
5884 default:
5885 return Dataspace::V0_SRGB;
5886 }
5887 }
5888
hasCaptureBlackoutContentPermission()5889 static bool hasCaptureBlackoutContentPermission() {
5890 IPCThreadState* ipc = IPCThreadState::self();
5891 const int pid = ipc->getCallingPid();
5892 const int uid = ipc->getCallingUid();
5893 return uid == AID_GRAPHICS || uid == AID_SYSTEM ||
5894 PermissionCache::checkPermission(sCaptureBlackoutContent, pid, uid);
5895 }
5896
validateScreenshotPermissions(const CaptureArgs & captureArgs)5897 static status_t validateScreenshotPermissions(const CaptureArgs& captureArgs) {
5898 IPCThreadState* ipc = IPCThreadState::self();
5899 const int pid = ipc->getCallingPid();
5900 const int uid = ipc->getCallingUid();
5901 if (uid == AID_GRAPHICS || PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) {
5902 return OK;
5903 }
5904
5905 // If the caller doesn't have the correct permissions but is only attempting to screenshot
5906 // itself, we allow it to continue.
5907 if (captureArgs.uid == uid) {
5908 return OK;
5909 }
5910
5911 ALOGE("Permission Denial: can't take screenshot pid=%d, uid=%d", pid, uid);
5912 return PERMISSION_DENIED;
5913 }
5914
setSchedFifo(bool enabled)5915 status_t SurfaceFlinger::setSchedFifo(bool enabled) {
5916 static constexpr int kFifoPriority = 2;
5917 static constexpr int kOtherPriority = 0;
5918
5919 struct sched_param param = {0};
5920 int sched_policy;
5921 if (enabled) {
5922 sched_policy = SCHED_FIFO;
5923 param.sched_priority = kFifoPriority;
5924 } else {
5925 sched_policy = SCHED_OTHER;
5926 param.sched_priority = kOtherPriority;
5927 }
5928
5929 if (sched_setscheduler(0, sched_policy, ¶m) != 0) {
5930 return -errno;
5931 }
5932
5933 return NO_ERROR;
5934 }
5935
setSchedAttr(bool enabled)5936 status_t SurfaceFlinger::setSchedAttr(bool enabled) {
5937 static const unsigned int kUclampMin =
5938 base::GetUintProperty<unsigned int>("ro.surface_flinger.uclamp.min", 0U);
5939
5940 if (!kUclampMin) {
5941 // uclamp.min set to 0 (default), skip setting
5942 return NO_ERROR;
5943 }
5944
5945 // Currently, there is no wrapper in bionic: b/183240349.
5946 struct sched_attr {
5947 uint32_t size;
5948 uint32_t sched_policy;
5949 uint64_t sched_flags;
5950 int32_t sched_nice;
5951 uint32_t sched_priority;
5952 uint64_t sched_runtime;
5953 uint64_t sched_deadline;
5954 uint64_t sched_period;
5955 uint32_t sched_util_min;
5956 uint32_t sched_util_max;
5957 };
5958
5959 sched_attr attr = {};
5960 attr.size = sizeof(attr);
5961
5962 attr.sched_flags = (SCHED_FLAG_KEEP_ALL | SCHED_FLAG_UTIL_CLAMP);
5963 attr.sched_util_min = enabled ? kUclampMin : 0;
5964 attr.sched_util_max = 1024;
5965
5966 if (syscall(__NR_sched_setattr, 0, &attr, 0)) {
5967 return -errno;
5968 }
5969
5970 return NO_ERROR;
5971 }
5972
captureDisplay(const DisplayCaptureArgs & args,const sp<IScreenCaptureListener> & captureListener)5973 status_t SurfaceFlinger::captureDisplay(const DisplayCaptureArgs& args,
5974 const sp<IScreenCaptureListener>& captureListener) {
5975 ATRACE_CALL();
5976
5977 status_t validate = validateScreenshotPermissions(args);
5978 if (validate != OK) {
5979 return validate;
5980 }
5981
5982 if (!args.displayToken) return BAD_VALUE;
5983
5984 wp<const DisplayDevice> displayWeak;
5985 ui::LayerStack layerStack;
5986 ui::Size reqSize(args.width, args.height);
5987 ui::Dataspace dataspace;
5988 {
5989 Mutex::Autolock lock(mStateLock);
5990 sp<DisplayDevice> display = getDisplayDeviceLocked(args.displayToken);
5991 if (!display) return NAME_NOT_FOUND;
5992 displayWeak = display;
5993 layerStack = display->getLayerStack();
5994
5995 // set the requested width/height to the logical display layer stack rect size by default
5996 if (args.width == 0 || args.height == 0) {
5997 reqSize = display->getLayerStackSpaceRect().getSize();
5998 }
5999
6000 // The dataspace is depended on the color mode of display, that could use non-native mode
6001 // (ex. displayP3) to enhance the content, but some cases are checking native RGB in bytes,
6002 // and failed if display is not in native mode. This provide a way to force using native
6003 // colors when capture.
6004 dataspace = args.dataspace;
6005 if (dataspace == ui::Dataspace::UNKNOWN) {
6006 const ui::ColorMode colorMode = display->getCompositionDisplay()->getState().colorMode;
6007 dataspace = pickDataspaceFromColorMode(colorMode);
6008 }
6009 }
6010
6011 RenderAreaFuture renderAreaFuture = ftl::defer([=] {
6012 return DisplayRenderArea::create(displayWeak, args.sourceCrop, reqSize, dataspace,
6013 args.useIdentityTransform, args.captureSecureLayers);
6014 });
6015
6016 auto traverseLayers = [this, args, layerStack](const LayerVector::Visitor& visitor) {
6017 traverseLayersInLayerStack(layerStack, args.uid, visitor);
6018 };
6019
6020 return captureScreenCommon(std::move(renderAreaFuture), traverseLayers, reqSize,
6021 args.pixelFormat, args.allowProtected, args.grayscale,
6022 captureListener);
6023 }
6024
captureDisplay(uint64_t displayIdOrLayerStack,const sp<IScreenCaptureListener> & captureListener)6025 status_t SurfaceFlinger::captureDisplay(uint64_t displayIdOrLayerStack,
6026 const sp<IScreenCaptureListener>& captureListener) {
6027 ui::LayerStack layerStack;
6028 wp<const DisplayDevice> displayWeak;
6029 ui::Size size;
6030 ui::Dataspace dataspace;
6031 {
6032 Mutex::Autolock lock(mStateLock);
6033 auto display = getDisplayDeviceLocked(PhysicalDisplayId{displayIdOrLayerStack});
6034
6035 // Fall back to first display whose layer stack matches.
6036 if (!display) {
6037 const auto layerStack = static_cast<ui::LayerStack>(displayIdOrLayerStack);
6038 display = findDisplay(WithLayerStack(layerStack));
6039 }
6040
6041 if (!display) {
6042 return NAME_NOT_FOUND;
6043 }
6044
6045 layerStack = display->getLayerStack();
6046 displayWeak = display;
6047
6048 size = display->getLayerStackSpaceRect().getSize();
6049
6050 dataspace =
6051 pickDataspaceFromColorMode(display->getCompositionDisplay()->getState().colorMode);
6052 }
6053
6054 RenderAreaFuture renderAreaFuture = ftl::defer([=] {
6055 return DisplayRenderArea::create(displayWeak, Rect(), size, dataspace,
6056 false /* useIdentityTransform */,
6057 false /* captureSecureLayers */);
6058 });
6059
6060 auto traverseLayers = [this, layerStack](const LayerVector::Visitor& visitor) {
6061 traverseLayersInLayerStack(layerStack, CaptureArgs::UNSET_UID, visitor);
6062 };
6063
6064 return captureScreenCommon(std::move(renderAreaFuture), traverseLayers, size,
6065 ui::PixelFormat::RGBA_8888, false /* allowProtected */,
6066 false /* grayscale */, captureListener);
6067 }
6068
captureLayers(const LayerCaptureArgs & args,const sp<IScreenCaptureListener> & captureListener)6069 status_t SurfaceFlinger::captureLayers(const LayerCaptureArgs& args,
6070 const sp<IScreenCaptureListener>& captureListener) {
6071 ATRACE_CALL();
6072
6073 status_t validate = validateScreenshotPermissions(args);
6074 if (validate != OK) {
6075 return validate;
6076 }
6077
6078 ui::Size reqSize;
6079 sp<Layer> parent;
6080 Rect crop(args.sourceCrop);
6081 std::unordered_set<sp<Layer>, ISurfaceComposer::SpHash<Layer>> excludeLayers;
6082 Rect layerStackSpaceRect;
6083 ui::Dataspace dataspace;
6084 bool captureSecureLayers;
6085
6086 // Call this before holding mStateLock to avoid any deadlocking.
6087 bool canCaptureBlackoutContent = hasCaptureBlackoutContentPermission();
6088
6089 {
6090 Mutex::Autolock lock(mStateLock);
6091
6092 parent = fromHandleLocked(args.layerHandle).promote();
6093 if (parent == nullptr || parent->isRemovedFromCurrentState()) {
6094 ALOGE("captureLayers called with an invalid or removed parent");
6095 return NAME_NOT_FOUND;
6096 }
6097
6098 if (!canCaptureBlackoutContent &&
6099 parent->getDrawingState().flags & layer_state_t::eLayerSecure) {
6100 ALOGW("Attempting to capture secure layer: PERMISSION_DENIED");
6101 return PERMISSION_DENIED;
6102 }
6103
6104 Rect parentSourceBounds = parent->getCroppedBufferSize(parent->getDrawingState());
6105 if (args.sourceCrop.width() <= 0) {
6106 crop.left = 0;
6107 crop.right = parentSourceBounds.getWidth();
6108 }
6109
6110 if (args.sourceCrop.height() <= 0) {
6111 crop.top = 0;
6112 crop.bottom = parentSourceBounds.getHeight();
6113 }
6114
6115 if (crop.isEmpty() || args.frameScaleX <= 0.0f || args.frameScaleY <= 0.0f) {
6116 // Error out if the layer has no source bounds (i.e. they are boundless) and a source
6117 // crop was not specified, or an invalid frame scale was provided.
6118 return BAD_VALUE;
6119 }
6120 reqSize = ui::Size(crop.width() * args.frameScaleX, crop.height() * args.frameScaleY);
6121
6122 for (const auto& handle : args.excludeHandles) {
6123 sp<Layer> excludeLayer = fromHandleLocked(handle).promote();
6124 if (excludeLayer != nullptr) {
6125 excludeLayers.emplace(excludeLayer);
6126 } else {
6127 ALOGW("Invalid layer handle passed as excludeLayer to captureLayers");
6128 return NAME_NOT_FOUND;
6129 }
6130 }
6131
6132 const auto display = findDisplay(WithLayerStack(parent->getLayerStack()));
6133 if (!display) {
6134 return NAME_NOT_FOUND;
6135 }
6136
6137 layerStackSpaceRect = display->getLayerStackSpaceRect();
6138
6139 // The dataspace is depended on the color mode of display, that could use non-native mode
6140 // (ex. displayP3) to enhance the content, but some cases are checking native RGB in bytes,
6141 // and failed if display is not in native mode. This provide a way to force using native
6142 // colors when capture.
6143 dataspace = args.dataspace;
6144 if (dataspace == ui::Dataspace::UNKNOWN) {
6145 const ui::ColorMode colorMode = display->getCompositionDisplay()->getState().colorMode;
6146 dataspace = pickDataspaceFromColorMode(colorMode);
6147 }
6148
6149 captureSecureLayers = args.captureSecureLayers && display->isSecure();
6150 } // mStateLock
6151
6152 // really small crop or frameScale
6153 if (reqSize.width <= 0) {
6154 reqSize.width = 1;
6155 }
6156 if (reqSize.height <= 0) {
6157 reqSize.height = 1;
6158 }
6159
6160 bool childrenOnly = args.childrenOnly;
6161 RenderAreaFuture renderAreaFuture = ftl::defer([=]() -> std::unique_ptr<RenderArea> {
6162 return std::make_unique<LayerRenderArea>(*this, parent, crop, reqSize, dataspace,
6163 childrenOnly, layerStackSpaceRect,
6164 captureSecureLayers);
6165 });
6166
6167 auto traverseLayers = [parent, args, excludeLayers](const LayerVector::Visitor& visitor) {
6168 parent->traverseChildrenInZOrder(LayerVector::StateSet::Drawing, [&](Layer* layer) {
6169 if (!layer->isVisible()) {
6170 return;
6171 } else if (args.childrenOnly && layer == parent.get()) {
6172 return;
6173 } else if (args.uid != CaptureArgs::UNSET_UID && args.uid != layer->getOwnerUid()) {
6174 return;
6175 }
6176
6177 sp<Layer> p = layer;
6178 while (p != nullptr) {
6179 if (excludeLayers.count(p) != 0) {
6180 return;
6181 }
6182 p = p->getParent();
6183 }
6184
6185 visitor(layer);
6186 });
6187 };
6188
6189 return captureScreenCommon(std::move(renderAreaFuture), traverseLayers, reqSize,
6190 args.pixelFormat, args.allowProtected, args.grayscale,
6191 captureListener);
6192 }
6193
captureScreenCommon(RenderAreaFuture renderAreaFuture,TraverseLayersFunction traverseLayers,ui::Size bufferSize,ui::PixelFormat reqPixelFormat,bool allowProtected,bool grayscale,const sp<IScreenCaptureListener> & captureListener)6194 status_t SurfaceFlinger::captureScreenCommon(RenderAreaFuture renderAreaFuture,
6195 TraverseLayersFunction traverseLayers,
6196 ui::Size bufferSize, ui::PixelFormat reqPixelFormat,
6197 bool allowProtected, bool grayscale,
6198 const sp<IScreenCaptureListener>& captureListener) {
6199 ATRACE_CALL();
6200
6201 // Loop over all visible layers to see whether there's any protected layer. A protected layer is
6202 // typically a layer with DRM contents, or have the GRALLOC_USAGE_PROTECTED set on the buffer.
6203 // A protected layer has no implication on whether it's secure, which is explicitly set by
6204 // application to avoid being screenshot or drawn via unsecure display.
6205 const bool supportsProtected = getRenderEngine().supportsProtectedContent();
6206 bool hasProtectedLayer = false;
6207 if (allowProtected && supportsProtected) {
6208 hasProtectedLayer = schedule([=]() {
6209 bool protectedLayerFound = false;
6210 traverseLayers([&](Layer* layer) {
6211 protectedLayerFound = protectedLayerFound ||
6212 (layer->isVisible() && layer->isProtected());
6213 });
6214 return protectedLayerFound;
6215 }).get();
6216 }
6217
6218 const uint32_t usage = GRALLOC_USAGE_HW_COMPOSER | GRALLOC_USAGE_HW_RENDER |
6219 GRALLOC_USAGE_HW_TEXTURE |
6220 (hasProtectedLayer && allowProtected && supportsProtected
6221 ? GRALLOC_USAGE_PROTECTED
6222 : GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_SW_WRITE_OFTEN);
6223 sp<GraphicBuffer> buffer =
6224 getFactory().createGraphicBuffer(bufferSize.getWidth(), bufferSize.getHeight(),
6225 static_cast<android_pixel_format>(reqPixelFormat),
6226 1 /* layerCount */, usage, "screenshot");
6227
6228 const status_t bufferStatus = buffer->initCheck();
6229 LOG_ALWAYS_FATAL_IF(bufferStatus != OK, "captureScreenCommon: Buffer failed to allocate: %d",
6230 bufferStatus);
6231 const auto texture = std::make_shared<
6232 renderengine::ExternalTexture>(buffer, getRenderEngine(),
6233 renderengine::ExternalTexture::Usage::WRITEABLE);
6234 return captureScreenCommon(std::move(renderAreaFuture), traverseLayers, texture,
6235 false /* regionSampling */, grayscale, captureListener);
6236 }
6237
captureScreenCommon(RenderAreaFuture renderAreaFuture,TraverseLayersFunction traverseLayers,const std::shared_ptr<renderengine::ExternalTexture> & buffer,bool regionSampling,bool grayscale,const sp<IScreenCaptureListener> & captureListener)6238 status_t SurfaceFlinger::captureScreenCommon(
6239 RenderAreaFuture renderAreaFuture, TraverseLayersFunction traverseLayers,
6240 const std::shared_ptr<renderengine::ExternalTexture>& buffer, bool regionSampling,
6241 bool grayscale, const sp<IScreenCaptureListener>& captureListener) {
6242 ATRACE_CALL();
6243
6244 if (captureListener == nullptr) {
6245 ALOGE("capture screen must provide a capture listener callback");
6246 return BAD_VALUE;
6247 }
6248
6249 bool canCaptureBlackoutContent = hasCaptureBlackoutContentPermission();
6250
6251 static_cast<void>(schedule([=, renderAreaFuture = std::move(renderAreaFuture)]() mutable {
6252 if (mRefreshPending) {
6253 ALOGW("Skipping screenshot for now");
6254 captureScreenCommon(std::move(renderAreaFuture), traverseLayers, buffer, regionSampling,
6255 grayscale, captureListener);
6256 return;
6257 }
6258 ScreenCaptureResults captureResults;
6259 std::unique_ptr<RenderArea> renderArea = renderAreaFuture.get();
6260 if (!renderArea) {
6261 ALOGW("Skipping screen capture because of invalid render area.");
6262 captureResults.result = NO_MEMORY;
6263 captureListener->onScreenCaptureCompleted(captureResults);
6264 return;
6265 }
6266
6267 status_t result = NO_ERROR;
6268 renderArea->render([&] {
6269 result = renderScreenImplLocked(*renderArea, traverseLayers, buffer,
6270 canCaptureBlackoutContent, regionSampling, grayscale,
6271 captureResults);
6272 });
6273
6274 captureResults.result = result;
6275 captureListener->onScreenCaptureCompleted(captureResults);
6276 }));
6277
6278 return NO_ERROR;
6279 }
6280
renderScreenImplLocked(const RenderArea & renderArea,TraverseLayersFunction traverseLayers,const std::shared_ptr<renderengine::ExternalTexture> & buffer,bool canCaptureBlackoutContent,bool regionSampling,bool grayscale,ScreenCaptureResults & captureResults)6281 status_t SurfaceFlinger::renderScreenImplLocked(
6282 const RenderArea& renderArea, TraverseLayersFunction traverseLayers,
6283 const std::shared_ptr<renderengine::ExternalTexture>& buffer,
6284 bool canCaptureBlackoutContent, bool regionSampling, bool grayscale,
6285 ScreenCaptureResults& captureResults) {
6286 ATRACE_CALL();
6287
6288 traverseLayers([&](Layer* layer) {
6289 captureResults.capturedSecureLayers =
6290 captureResults.capturedSecureLayers || (layer->isVisible() && layer->isSecure());
6291 });
6292
6293 const bool useProtected = buffer->getBuffer()->getUsage() & GRALLOC_USAGE_PROTECTED;
6294
6295 // We allow the system server to take screenshots of secure layers for
6296 // use in situations like the Screen-rotation animation and place
6297 // the impetus on WindowManager to not persist them.
6298 if (captureResults.capturedSecureLayers && !canCaptureBlackoutContent) {
6299 ALOGW("FB is protected: PERMISSION_DENIED");
6300 return PERMISSION_DENIED;
6301 }
6302
6303 captureResults.buffer = buffer->getBuffer();
6304 captureResults.capturedDataspace = renderArea.getReqDataSpace();
6305
6306 const auto reqWidth = renderArea.getReqWidth();
6307 const auto reqHeight = renderArea.getReqHeight();
6308 const auto sourceCrop = renderArea.getSourceCrop();
6309 const auto transform = renderArea.getTransform();
6310 const auto rotation = renderArea.getRotationFlags();
6311 const auto& layerStackSpaceRect = renderArea.getLayerStackSpaceRect();
6312
6313 renderengine::DisplaySettings clientCompositionDisplay;
6314 std::vector<compositionengine::LayerFE::LayerSettings> clientCompositionLayers;
6315
6316 // assume that bounds are never offset, and that they are the same as the
6317 // buffer bounds.
6318 clientCompositionDisplay.physicalDisplay = Rect(reqWidth, reqHeight);
6319 clientCompositionDisplay.clip = sourceCrop;
6320 clientCompositionDisplay.orientation = rotation;
6321
6322 clientCompositionDisplay.outputDataspace = renderArea.getReqDataSpace();
6323 clientCompositionDisplay.maxLuminance = DisplayDevice::sDefaultMaxLumiance;
6324
6325 const float colorSaturation = grayscale ? 0 : 1;
6326 clientCompositionDisplay.colorTransform = calculateColorMatrix(colorSaturation);
6327
6328 const float alpha = RenderArea::getCaptureFillValue(renderArea.getCaptureFill());
6329
6330 compositionengine::LayerFE::LayerSettings fillLayer;
6331 fillLayer.source.buffer.buffer = nullptr;
6332 fillLayer.source.solidColor = half3(0.0, 0.0, 0.0);
6333 fillLayer.geometry.boundaries =
6334 FloatRect(sourceCrop.left, sourceCrop.top, sourceCrop.right, sourceCrop.bottom);
6335 fillLayer.alpha = half(alpha);
6336 clientCompositionLayers.push_back(fillLayer);
6337
6338 const auto display = renderArea.getDisplayDevice();
6339 std::vector<Layer*> renderedLayers;
6340 Region clearRegion = Region::INVALID_REGION;
6341 bool disableBlurs = false;
6342 traverseLayers([&](Layer* layer) {
6343 disableBlurs |= layer->getDrawingState().sidebandStream != nullptr;
6344
6345 Region clip(renderArea.getBounds());
6346 compositionengine::LayerFE::ClientCompositionTargetSettings targetSettings{
6347 clip,
6348 layer->needsFilteringForScreenshots(display.get(), transform) ||
6349 renderArea.needsFiltering(),
6350 renderArea.isSecure(),
6351 useProtected,
6352 clearRegion,
6353 layerStackSpaceRect,
6354 clientCompositionDisplay.outputDataspace,
6355 true, /* realContentIsVisible */
6356 false, /* clearContent */
6357 disableBlurs ? compositionengine::LayerFE::ClientCompositionTargetSettings::
6358 BlurSetting::Disabled
6359 : compositionengine::LayerFE::ClientCompositionTargetSettings::
6360 BlurSetting::Enabled,
6361 };
6362 std::vector<compositionengine::LayerFE::LayerSettings> results =
6363 layer->prepareClientCompositionList(targetSettings);
6364 if (results.size() > 0) {
6365 for (auto& settings : results) {
6366 settings.geometry.positionTransform =
6367 transform.asMatrix4() * settings.geometry.positionTransform;
6368 // There's no need to process blurs when we're executing region sampling,
6369 // we're just trying to understand what we're drawing, and doing so without
6370 // blurs is already a pretty good approximation.
6371 if (regionSampling) {
6372 settings.backgroundBlurRadius = 0;
6373 }
6374 }
6375
6376 clientCompositionLayers.insert(clientCompositionLayers.end(),
6377 std::make_move_iterator(results.begin()),
6378 std::make_move_iterator(results.end()));
6379 renderedLayers.push_back(layer);
6380 }
6381
6382 });
6383
6384 std::vector<const renderengine::LayerSettings*> clientCompositionLayerPointers(
6385 clientCompositionLayers.size());
6386 std::transform(clientCompositionLayers.begin(), clientCompositionLayers.end(),
6387 clientCompositionLayerPointers.begin(),
6388 std::pointer_traits<renderengine::LayerSettings*>::pointer_to);
6389
6390 clientCompositionDisplay.clearRegion = clearRegion;
6391 // Use an empty fence for the buffer fence, since we just created the buffer so
6392 // there is no need for synchronization with the GPU.
6393 base::unique_fd bufferFence;
6394 base::unique_fd drawFence;
6395 getRenderEngine().useProtectedContext(useProtected);
6396
6397 const constexpr bool kUseFramebufferCache = false;
6398 getRenderEngine().drawLayers(clientCompositionDisplay, clientCompositionLayerPointers, buffer,
6399 kUseFramebufferCache, std::move(bufferFence), &drawFence);
6400
6401 if (drawFence >= 0) {
6402 sp<Fence> releaseFence = new Fence(dup(drawFence));
6403 for (auto* layer : renderedLayers) {
6404 layer->onLayerDisplayed(releaseFence);
6405 }
6406 }
6407
6408 captureResults.fence = new Fence(drawFence.release());
6409 // Always switch back to unprotected context.
6410 getRenderEngine().useProtectedContext(false);
6411
6412 return NO_ERROR;
6413 }
6414
setInputWindowsFinished()6415 void SurfaceFlinger::setInputWindowsFinished() {
6416 Mutex::Autolock _l(mStateLock);
6417 signalSynchronousTransactions(CountDownLatch::eSyncInputWindows);
6418 }
6419
6420 // ---------------------------------------------------------------------------
6421
traverse(const LayerVector::Visitor & visitor) const6422 void SurfaceFlinger::State::traverse(const LayerVector::Visitor& visitor) const {
6423 layersSortedByZ.traverse(visitor);
6424 }
6425
traverseInZOrder(const LayerVector::Visitor & visitor) const6426 void SurfaceFlinger::State::traverseInZOrder(const LayerVector::Visitor& visitor) const {
6427 layersSortedByZ.traverseInZOrder(stateSet, visitor);
6428 }
6429
traverseInReverseZOrder(const LayerVector::Visitor & visitor) const6430 void SurfaceFlinger::State::traverseInReverseZOrder(const LayerVector::Visitor& visitor) const {
6431 layersSortedByZ.traverseInReverseZOrder(stateSet, visitor);
6432 }
6433
traverseLayersInLayerStack(ui::LayerStack layerStack,const int32_t uid,const LayerVector::Visitor & visitor)6434 void SurfaceFlinger::traverseLayersInLayerStack(ui::LayerStack layerStack, const int32_t uid,
6435 const LayerVector::Visitor& visitor) {
6436 // We loop through the first level of layers without traversing,
6437 // as we need to determine which layers belong to the requested display.
6438 for (const auto& layer : mDrawingState.layersSortedByZ) {
6439 if (!layer->belongsToDisplay(layerStack)) {
6440 continue;
6441 }
6442 // relative layers are traversed in Layer::traverseInZOrder
6443 layer->traverseInZOrder(LayerVector::StateSet::Drawing, [&](Layer* layer) {
6444 if (layer->getPrimaryDisplayOnly()) {
6445 return;
6446 }
6447 if (!layer->isVisible()) {
6448 return;
6449 }
6450 if (uid != CaptureArgs::UNSET_UID && layer->getOwnerUid() != uid) {
6451 return;
6452 }
6453 visitor(layer);
6454 });
6455 }
6456 }
6457
setDesiredDisplayModeSpecsInternal(const sp<DisplayDevice> & display,const std::optional<scheduler::RefreshRateConfigs::Policy> & policy,bool overridePolicy)6458 status_t SurfaceFlinger::setDesiredDisplayModeSpecsInternal(
6459 const sp<DisplayDevice>& display,
6460 const std::optional<scheduler::RefreshRateConfigs::Policy>& policy, bool overridePolicy) {
6461 Mutex::Autolock lock(mStateLock);
6462
6463 LOG_ALWAYS_FATAL_IF(!display->isPrimary() && overridePolicy,
6464 "Can only set override policy on the primary display");
6465 LOG_ALWAYS_FATAL_IF(!policy && !overridePolicy, "Can only clear the override policy");
6466
6467 if (mDebugDisplayModeSetByBackdoor) {
6468 // ignore this request as mode is overridden by backdoor
6469 return NO_ERROR;
6470 }
6471
6472 if (!display->isPrimary()) {
6473 // TODO(b/144711714): For non-primary displays we should be able to set an active mode
6474 // as well. For now, just call directly to initiateModeChange but ideally
6475 // it should go thru setDesiredActiveMode, similar to primary display.
6476 ALOGV("%s for non-primary display", __func__);
6477 const auto displayId = display->getPhysicalId();
6478
6479 hal::VsyncPeriodChangeConstraints constraints;
6480 constraints.desiredTimeNanos = systemTime();
6481 constraints.seamlessRequired = false;
6482
6483 hal::VsyncPeriodChangeTimeline timeline = {0, 0, 0};
6484 if (display->initiateModeChange(policy->defaultMode, constraints, &timeline) != NO_ERROR) {
6485 return BAD_VALUE;
6486 }
6487 if (timeline.refreshRequired) {
6488 repaintEverythingForHWC();
6489 }
6490
6491 display->setActiveMode(policy->defaultMode);
6492 const nsecs_t vsyncPeriod = display->getMode(policy->defaultMode)->getVsyncPeriod();
6493 mScheduler->onNonPrimaryDisplayModeChanged(mAppConnectionHandle, displayId,
6494 policy->defaultMode, vsyncPeriod);
6495 return NO_ERROR;
6496 }
6497
6498 status_t setPolicyResult = overridePolicy
6499 ? mRefreshRateConfigs->setOverridePolicy(policy)
6500 : mRefreshRateConfigs->setDisplayManagerPolicy(*policy);
6501 if (setPolicyResult < 0) {
6502 return BAD_VALUE;
6503 }
6504 if (setPolicyResult == scheduler::RefreshRateConfigs::CURRENT_POLICY_UNCHANGED) {
6505 return NO_ERROR;
6506 }
6507 scheduler::RefreshRateConfigs::Policy currentPolicy = mRefreshRateConfigs->getCurrentPolicy();
6508
6509 ALOGV("Setting desired display mode specs: %s", currentPolicy.toString().c_str());
6510
6511 // TODO(b/140204874): Leave the event in until we do proper testing with all apps that might
6512 // be depending in this callback.
6513 const auto activeMode = display->getActiveMode();
6514 const nsecs_t vsyncPeriod = activeMode->getVsyncPeriod();
6515 const auto physicalId = display->getPhysicalId();
6516 mScheduler->onPrimaryDisplayModeChanged(mAppConnectionHandle, physicalId, activeMode->getId(),
6517 vsyncPeriod);
6518 toggleKernelIdleTimer();
6519
6520 auto modeId = mScheduler->getPreferredModeId();
6521 auto preferredRefreshRate = modeId
6522 ? mRefreshRateConfigs->getRefreshRateFromModeId(*modeId)
6523 // NOTE: Choose the default mode ID, if Scheduler doesn't have one in mind.
6524 : mRefreshRateConfigs->getRefreshRateFromModeId(currentPolicy.defaultMode);
6525 ALOGV("trying to switch to Scheduler preferred mode %d (%s)",
6526 preferredRefreshRate.getModeId().value(), preferredRefreshRate.getName().c_str());
6527
6528 if (isDisplayModeAllowed(preferredRefreshRate.getModeId())) {
6529 ALOGV("switching to Scheduler preferred display mode %d",
6530 preferredRefreshRate.getModeId().value());
6531 setDesiredActiveMode({preferredRefreshRate.getModeId(), Scheduler::ModeEvent::Changed});
6532 } else {
6533 LOG_ALWAYS_FATAL("Desired display mode not allowed: %d",
6534 preferredRefreshRate.getModeId().value());
6535 }
6536
6537 return NO_ERROR;
6538 }
6539
setDesiredDisplayModeSpecs(const sp<IBinder> & displayToken,ui::DisplayModeId defaultMode,bool allowGroupSwitching,float primaryRefreshRateMin,float primaryRefreshRateMax,float appRequestRefreshRateMin,float appRequestRefreshRateMax)6540 status_t SurfaceFlinger::setDesiredDisplayModeSpecs(
6541 const sp<IBinder>& displayToken, ui::DisplayModeId defaultMode, bool allowGroupSwitching,
6542 float primaryRefreshRateMin, float primaryRefreshRateMax, float appRequestRefreshRateMin,
6543 float appRequestRefreshRateMax) {
6544 ATRACE_CALL();
6545
6546 if (!displayToken) {
6547 return BAD_VALUE;
6548 }
6549
6550 auto future = schedule([=]() -> status_t {
6551 const auto display = ON_MAIN_THREAD(getDisplayDeviceLocked(displayToken));
6552 if (!display) {
6553 ALOGE("Attempt to set desired display modes for invalid display token %p",
6554 displayToken.get());
6555 return NAME_NOT_FOUND;
6556 } else if (display->isVirtual()) {
6557 ALOGW("Attempt to set desired display modes for virtual display");
6558 return INVALID_OPERATION;
6559 } else {
6560 using Policy = scheduler::RefreshRateConfigs::Policy;
6561 const Policy policy{DisplayModeId(defaultMode),
6562 allowGroupSwitching,
6563 {Fps(primaryRefreshRateMin), Fps(primaryRefreshRateMax)},
6564 {Fps(appRequestRefreshRateMin), Fps(appRequestRefreshRateMax)}};
6565 constexpr bool kOverridePolicy = false;
6566
6567 return setDesiredDisplayModeSpecsInternal(display, policy, kOverridePolicy);
6568 }
6569 });
6570
6571 return future.get();
6572 }
6573
getDesiredDisplayModeSpecs(const sp<IBinder> & displayToken,ui::DisplayModeId * outDefaultMode,bool * outAllowGroupSwitching,float * outPrimaryRefreshRateMin,float * outPrimaryRefreshRateMax,float * outAppRequestRefreshRateMin,float * outAppRequestRefreshRateMax)6574 status_t SurfaceFlinger::getDesiredDisplayModeSpecs(const sp<IBinder>& displayToken,
6575 ui::DisplayModeId* outDefaultMode,
6576 bool* outAllowGroupSwitching,
6577 float* outPrimaryRefreshRateMin,
6578 float* outPrimaryRefreshRateMax,
6579 float* outAppRequestRefreshRateMin,
6580 float* outAppRequestRefreshRateMax) {
6581 ATRACE_CALL();
6582
6583 if (!displayToken || !outDefaultMode || !outPrimaryRefreshRateMin ||
6584 !outPrimaryRefreshRateMax || !outAppRequestRefreshRateMin || !outAppRequestRefreshRateMax) {
6585 return BAD_VALUE;
6586 }
6587
6588 Mutex::Autolock lock(mStateLock);
6589 const auto display = getDisplayDeviceLocked(displayToken);
6590 if (!display) {
6591 return NAME_NOT_FOUND;
6592 }
6593
6594 if (display->isPrimary()) {
6595 scheduler::RefreshRateConfigs::Policy policy =
6596 mRefreshRateConfigs->getDisplayManagerPolicy();
6597 *outDefaultMode = policy.defaultMode.value();
6598 *outAllowGroupSwitching = policy.allowGroupSwitching;
6599 *outPrimaryRefreshRateMin = policy.primaryRange.min.getValue();
6600 *outPrimaryRefreshRateMax = policy.primaryRange.max.getValue();
6601 *outAppRequestRefreshRateMin = policy.appRequestRange.min.getValue();
6602 *outAppRequestRefreshRateMax = policy.appRequestRange.max.getValue();
6603 return NO_ERROR;
6604 } else if (display->isVirtual()) {
6605 return INVALID_OPERATION;
6606 } else {
6607 const auto activeMode = display->getActiveMode();
6608 *outDefaultMode = activeMode->getId().value();
6609 *outAllowGroupSwitching = false;
6610 auto vsyncPeriod = activeMode->getVsyncPeriod();
6611 *outPrimaryRefreshRateMin = Fps::fromPeriodNsecs(vsyncPeriod).getValue();
6612 *outPrimaryRefreshRateMax = Fps::fromPeriodNsecs(vsyncPeriod).getValue();
6613 *outAppRequestRefreshRateMin = Fps::fromPeriodNsecs(vsyncPeriod).getValue();
6614 *outAppRequestRefreshRateMax = Fps::fromPeriodNsecs(vsyncPeriod).getValue();
6615 return NO_ERROR;
6616 }
6617 }
6618
fromHandle(const sp<IBinder> & handle)6619 wp<Layer> SurfaceFlinger::fromHandle(const sp<IBinder>& handle) {
6620 Mutex::Autolock _l(mStateLock);
6621 return fromHandleLocked(handle);
6622 }
6623
fromHandleLocked(const sp<IBinder> & handle) const6624 wp<Layer> SurfaceFlinger::fromHandleLocked(const sp<IBinder>& handle) const {
6625 BBinder* b = nullptr;
6626 if (handle) {
6627 b = handle->localBinder();
6628 }
6629 if (b == nullptr) {
6630 return nullptr;
6631 }
6632 auto it = mLayersByLocalBinderToken.find(b);
6633 if (it != mLayersByLocalBinderToken.end()) {
6634 return it->second;
6635 }
6636 return nullptr;
6637 }
6638
onLayerFirstRef(Layer * layer)6639 void SurfaceFlinger::onLayerFirstRef(Layer* layer) {
6640 mNumLayers++;
6641 if (!layer->isRemovedFromCurrentState()) {
6642 mScheduler->registerLayer(layer);
6643 }
6644 }
6645
onLayerDestroyed(Layer * layer)6646 void SurfaceFlinger::onLayerDestroyed(Layer* layer) {
6647 mNumLayers--;
6648 removeHierarchyFromOffscreenLayers(layer);
6649 if (!layer->isRemovedFromCurrentState()) {
6650 mScheduler->deregisterLayer(layer);
6651 }
6652 }
6653
6654 // WARNING: ONLY CALL THIS FROM LAYER DTOR
6655 // Here we add children in the current state to offscreen layers and remove the
6656 // layer itself from the offscreen layer list. Since
6657 // this is the dtor, it is safe to access the current state. This keeps us
6658 // from dangling children layers such that they are not reachable from the
6659 // Drawing state nor the offscreen layer list
6660 // See b/141111965
removeHierarchyFromOffscreenLayers(Layer * layer)6661 void SurfaceFlinger::removeHierarchyFromOffscreenLayers(Layer* layer) {
6662 for (auto& child : layer->getCurrentChildren()) {
6663 mOffscreenLayers.emplace(child.get());
6664 }
6665 mOffscreenLayers.erase(layer);
6666 }
6667
removeFromOffscreenLayers(Layer * layer)6668 void SurfaceFlinger::removeFromOffscreenLayers(Layer* layer) {
6669 mOffscreenLayers.erase(layer);
6670 }
6671
setGlobalShadowSettings(const half4 & ambientColor,const half4 & spotColor,float lightPosY,float lightPosZ,float lightRadius)6672 status_t SurfaceFlinger::setGlobalShadowSettings(const half4& ambientColor, const half4& spotColor,
6673 float lightPosY, float lightPosZ,
6674 float lightRadius) {
6675 Mutex::Autolock _l(mStateLock);
6676 mCurrentState.globalShadowSettings.ambientColor = vec4(ambientColor);
6677 mCurrentState.globalShadowSettings.spotColor = vec4(spotColor);
6678 mCurrentState.globalShadowSettings.lightPos.y = lightPosY;
6679 mCurrentState.globalShadowSettings.lightPos.z = lightPosZ;
6680 mCurrentState.globalShadowSettings.lightRadius = lightRadius;
6681
6682 // these values are overridden when calculating the shadow settings for a layer.
6683 mCurrentState.globalShadowSettings.lightPos.x = 0.f;
6684 mCurrentState.globalShadowSettings.length = 0.f;
6685 return NO_ERROR;
6686 }
6687
getGenericLayerMetadataKeyMap() const6688 const std::unordered_map<std::string, uint32_t>& SurfaceFlinger::getGenericLayerMetadataKeyMap()
6689 const {
6690 // TODO(b/149500060): Remove this fixed/static mapping. Please prefer taking
6691 // on the work to remove the table in that bug rather than adding more to
6692 // it.
6693 static const std::unordered_map<std::string, uint32_t> genericLayerMetadataKeyMap{
6694 {"org.chromium.arc.V1_0.TaskId", METADATA_TASK_ID},
6695 {"org.chromium.arc.V1_0.CursorInfo", METADATA_MOUSE_CURSOR},
6696 };
6697 return genericLayerMetadataKeyMap;
6698 }
6699
setFrameRate(const sp<IGraphicBufferProducer> & surface,float frameRate,int8_t compatibility,int8_t changeFrameRateStrategy)6700 status_t SurfaceFlinger::setFrameRate(const sp<IGraphicBufferProducer>& surface, float frameRate,
6701 int8_t compatibility, int8_t changeFrameRateStrategy) {
6702 if (!ValidateFrameRate(frameRate, compatibility, changeFrameRateStrategy,
6703 "SurfaceFlinger::setFrameRate")) {
6704 return BAD_VALUE;
6705 }
6706
6707 static_cast<void>(schedule([=] {
6708 Mutex::Autolock lock(mStateLock);
6709 if (authenticateSurfaceTextureLocked(surface)) {
6710 sp<Layer> layer = (static_cast<MonitoredProducer*>(surface.get()))->getLayer();
6711 if (layer == nullptr) {
6712 ALOGE("Attempt to set frame rate on a layer that no longer exists");
6713 return BAD_VALUE;
6714 }
6715 const auto strategy =
6716 Layer::FrameRate::convertChangeFrameRateStrategy(changeFrameRateStrategy);
6717 if (layer->setFrameRate(
6718 Layer::FrameRate(Fps{frameRate},
6719 Layer::FrameRate::convertCompatibility(compatibility),
6720 strategy))) {
6721 setTransactionFlags(eTraversalNeeded);
6722 }
6723 } else {
6724 ALOGE("Attempt to set frame rate on an unrecognized IGraphicBufferProducer");
6725 return BAD_VALUE;
6726 }
6727 return NO_ERROR;
6728 }));
6729
6730 return NO_ERROR;
6731 }
6732
acquireFrameRateFlexibilityToken(sp<IBinder> * outToken)6733 status_t SurfaceFlinger::acquireFrameRateFlexibilityToken(sp<IBinder>* outToken) {
6734 if (!outToken) {
6735 return BAD_VALUE;
6736 }
6737
6738 auto future = schedule([this] {
6739 status_t result = NO_ERROR;
6740 sp<IBinder> token;
6741
6742 if (mFrameRateFlexibilityTokenCount == 0) {
6743 const auto display = ON_MAIN_THREAD(getDefaultDisplayDeviceLocked());
6744
6745 // This is a little racy, but not in a way that hurts anything. As we grab the
6746 // defaultMode from the display manager policy, we could be setting a new display
6747 // manager policy, leaving us using a stale defaultMode. The defaultMode doesn't
6748 // matter for the override policy though, since we set allowGroupSwitching to
6749 // true, so it's not a problem.
6750 scheduler::RefreshRateConfigs::Policy overridePolicy;
6751 overridePolicy.defaultMode = mRefreshRateConfigs->getDisplayManagerPolicy().defaultMode;
6752 overridePolicy.allowGroupSwitching = true;
6753 constexpr bool kOverridePolicy = true;
6754 result = setDesiredDisplayModeSpecsInternal(display, overridePolicy, kOverridePolicy);
6755 }
6756
6757 if (result == NO_ERROR) {
6758 mFrameRateFlexibilityTokenCount++;
6759 // Handing out a reference to the SurfaceFlinger object, as we're doing in the line
6760 // below, is something to consider carefully. The lifetime of the
6761 // FrameRateFlexibilityToken isn't tied to SurfaceFlinger object lifetime, so if this
6762 // SurfaceFlinger object were to be destroyed while the token still exists, the token
6763 // destructor would be accessing a stale SurfaceFlinger reference, and crash. This is ok
6764 // in this case, for two reasons:
6765 // 1. Once SurfaceFlinger::run() is called by main_surfaceflinger.cpp, the only way
6766 // the program exits is via a crash. So we won't have a situation where the
6767 // SurfaceFlinger object is dead but the process is still up.
6768 // 2. The frame rate flexibility token is acquired/released only by CTS tests, so even
6769 // if condition 1 were changed, the problem would only show up when running CTS tests,
6770 // not on end user devices, so we could spot it and fix it without serious impact.
6771 token = new FrameRateFlexibilityToken(
6772 [this]() { onFrameRateFlexibilityTokenReleased(); });
6773 ALOGD("Frame rate flexibility token acquired. count=%d",
6774 mFrameRateFlexibilityTokenCount);
6775 }
6776
6777 return std::make_pair(result, token);
6778 });
6779
6780 status_t result;
6781 std::tie(result, *outToken) = future.get();
6782 return result;
6783 }
6784
onFrameRateFlexibilityTokenReleased()6785 void SurfaceFlinger::onFrameRateFlexibilityTokenReleased() {
6786 static_cast<void>(schedule([this] {
6787 LOG_ALWAYS_FATAL_IF(mFrameRateFlexibilityTokenCount == 0,
6788 "Failed tracking frame rate flexibility tokens");
6789 mFrameRateFlexibilityTokenCount--;
6790 ALOGD("Frame rate flexibility token released. count=%d", mFrameRateFlexibilityTokenCount);
6791 if (mFrameRateFlexibilityTokenCount == 0) {
6792 const auto display = ON_MAIN_THREAD(getDefaultDisplayDeviceLocked());
6793 constexpr bool kOverridePolicy = true;
6794 status_t result = setDesiredDisplayModeSpecsInternal(display, {}, kOverridePolicy);
6795 LOG_ALWAYS_FATAL_IF(result < 0, "Failed releasing frame rate flexibility token");
6796 }
6797 }));
6798 }
6799
setFrameTimelineInfo(const sp<IGraphicBufferProducer> & surface,const FrameTimelineInfo & frameTimelineInfo)6800 status_t SurfaceFlinger::setFrameTimelineInfo(const sp<IGraphicBufferProducer>& surface,
6801 const FrameTimelineInfo& frameTimelineInfo) {
6802 Mutex::Autolock lock(mStateLock);
6803 if (!authenticateSurfaceTextureLocked(surface)) {
6804 ALOGE("Attempt to set frame timeline info on an unrecognized IGraphicBufferProducer");
6805 return BAD_VALUE;
6806 }
6807
6808 sp<Layer> layer = (static_cast<MonitoredProducer*>(surface.get()))->getLayer();
6809 if (layer == nullptr) {
6810 ALOGE("Attempt to set frame timeline info on a layer that no longer exists");
6811 return BAD_VALUE;
6812 }
6813
6814 layer->setFrameTimelineInfoForBuffer(frameTimelineInfo);
6815 return NO_ERROR;
6816 }
6817
enableRefreshRateOverlay(bool enable)6818 void SurfaceFlinger::enableRefreshRateOverlay(bool enable) {
6819 static_cast<void>(schedule([=] {
6820 std::unique_ptr<RefreshRateOverlay> overlay;
6821 if (enable) {
6822 overlay = std::make_unique<RefreshRateOverlay>(*this, mRefreshRateOverlaySpinner);
6823 }
6824
6825 {
6826 Mutex::Autolock lock(mStateLock);
6827
6828 // Destroy the layer of the current overlay, if any, outside the lock.
6829 mRefreshRateOverlay.swap(overlay);
6830 if (!mRefreshRateOverlay) return;
6831
6832 if (const auto display = getDefaultDisplayDeviceLocked()) {
6833 mRefreshRateOverlay->setViewport(display->getSize());
6834 mRefreshRateOverlay->changeRefreshRate(display->getActiveMode()->getFps());
6835 }
6836 }
6837 }));
6838 }
6839
addTransactionTraceListener(const sp<gui::ITransactionTraceListener> & listener)6840 status_t SurfaceFlinger::addTransactionTraceListener(
6841 const sp<gui::ITransactionTraceListener>& listener) {
6842 if (!listener) {
6843 return BAD_VALUE;
6844 }
6845
6846 mInterceptor->addTransactionTraceListener(listener);
6847
6848 return NO_ERROR;
6849 }
6850
getGPUContextPriority()6851 int SurfaceFlinger::getGPUContextPriority() {
6852 return getRenderEngine().getContextPriority();
6853 }
6854
calculateMaxAcquiredBufferCount(Fps refreshRate,std::chrono::nanoseconds presentLatency)6855 int SurfaceFlinger::calculateMaxAcquiredBufferCount(Fps refreshRate,
6856 std::chrono::nanoseconds presentLatency) {
6857 auto pipelineDepth = presentLatency.count() / refreshRate.getPeriodNsecs();
6858 if (presentLatency.count() % refreshRate.getPeriodNsecs()) {
6859 pipelineDepth++;
6860 }
6861 return std::max(1ll, pipelineDepth - 1);
6862 }
6863
getMaxAcquiredBufferCount(int * buffers) const6864 status_t SurfaceFlinger::getMaxAcquiredBufferCount(int* buffers) const {
6865 const auto maxSupportedRefreshRate = mRefreshRateConfigs->getSupportedRefreshRateRange().max;
6866 *buffers = getMaxAcquiredBufferCountForRefreshRate(maxSupportedRefreshRate);
6867 return NO_ERROR;
6868 }
6869
getMaxAcquiredBufferCountForCurrentRefreshRate(uid_t uid) const6870 int SurfaceFlinger::getMaxAcquiredBufferCountForCurrentRefreshRate(uid_t uid) const {
6871 const auto refreshRate = [&] {
6872 const auto frameRateOverride = mScheduler->getFrameRateOverride(uid);
6873 if (frameRateOverride.has_value()) {
6874 return frameRateOverride.value();
6875 }
6876 return mRefreshRateConfigs->getCurrentRefreshRate().getFps();
6877 }();
6878 return getMaxAcquiredBufferCountForRefreshRate(refreshRate);
6879 }
6880
getMaxAcquiredBufferCountForRefreshRate(Fps refreshRate) const6881 int SurfaceFlinger::getMaxAcquiredBufferCountForRefreshRate(Fps refreshRate) const {
6882 const auto vsyncConfig = mVsyncConfiguration->getConfigsForRefreshRate(refreshRate).late;
6883 const auto presentLatency = vsyncConfig.appWorkDuration + vsyncConfig.sfWorkDuration;
6884 return calculateMaxAcquiredBufferCount(refreshRate, presentLatency);
6885 }
6886
traverseStatesWithBuffers(std::function<void (const layer_state_t &)> visitor)6887 void SurfaceFlinger::TransactionState::traverseStatesWithBuffers(
6888 std::function<void(const layer_state_t&)> visitor) {
6889 for (const auto& state : states) {
6890 if (state.state.hasBufferChanges() && state.state.hasValidBuffer() && state.state.surface) {
6891 visitor(state.state);
6892 }
6893 }
6894 }
6895
setLayerCreatedState(const sp<IBinder> & handle,const wp<Layer> & layer,const wp<IBinder> & parent,const wp<Layer> parentLayer,const wp<IBinder> & producer,bool addToRoot)6896 void SurfaceFlinger::setLayerCreatedState(const sp<IBinder>& handle, const wp<Layer>& layer,
6897 const wp<IBinder>& parent, const wp<Layer> parentLayer,
6898 const wp<IBinder>& producer, bool addToRoot) {
6899 Mutex::Autolock lock(mCreatedLayersLock);
6900 mCreatedLayers[handle->localBinder()] =
6901 std::make_unique<LayerCreatedState>(layer, parent, parentLayer, producer, addToRoot);
6902 }
6903
getLayerCreatedState(const sp<IBinder> & handle)6904 auto SurfaceFlinger::getLayerCreatedState(const sp<IBinder>& handle) {
6905 Mutex::Autolock lock(mCreatedLayersLock);
6906 BBinder* b = nullptr;
6907 if (handle) {
6908 b = handle->localBinder();
6909 }
6910
6911 if (b == nullptr) {
6912 return std::unique_ptr<LayerCreatedState>(nullptr);
6913 }
6914
6915 auto it = mCreatedLayers.find(b);
6916 if (it == mCreatedLayers.end()) {
6917 ALOGE("Can't find layer from handle %p", handle.get());
6918 return std::unique_ptr<LayerCreatedState>(nullptr);
6919 }
6920
6921 auto state = std::move(it->second);
6922 mCreatedLayers.erase(it);
6923 return state;
6924 }
6925
handleLayerCreatedLocked(const sp<IBinder> & handle)6926 sp<Layer> SurfaceFlinger::handleLayerCreatedLocked(const sp<IBinder>& handle) {
6927 const auto& state = getLayerCreatedState(handle);
6928 if (!state) {
6929 return nullptr;
6930 }
6931
6932 sp<Layer> layer = state->layer.promote();
6933 if (!layer) {
6934 ALOGE("Invalid layer %p", state->layer.unsafe_get());
6935 return nullptr;
6936 }
6937
6938 sp<Layer> parent;
6939 bool allowAddRoot = state->addToRoot;
6940 if (state->initialParent != nullptr) {
6941 parent = fromHandleLocked(state->initialParent.promote()).promote();
6942 if (parent == nullptr) {
6943 ALOGE("Invalid parent %p", state->initialParent.unsafe_get());
6944 allowAddRoot = false;
6945 }
6946 } else if (state->initialParentLayer != nullptr) {
6947 parent = state->initialParentLayer.promote();
6948 allowAddRoot = false;
6949 }
6950
6951 if (parent == nullptr && allowAddRoot) {
6952 layer->setIsAtRoot(true);
6953 mCurrentState.layersSortedByZ.add(layer);
6954 } else if (parent == nullptr) {
6955 layer->onRemovedFromCurrentState();
6956 } else if (parent->isRemovedFromCurrentState()) {
6957 parent->addChild(layer);
6958 layer->onRemovedFromCurrentState();
6959 } else {
6960 parent->addChild(layer);
6961 }
6962
6963 layer->updateTransformHint(mDefaultDisplayTransformHint);
6964
6965 if (state->initialProducer != nullptr) {
6966 mGraphicBufferProducerList.insert(state->initialProducer);
6967 LOG_ALWAYS_FATAL_IF(mGraphicBufferProducerList.size() > mMaxGraphicBufferProducerListSize,
6968 "Suspected IGBP leak: %zu IGBPs (%zu max), %zu Layers",
6969 mGraphicBufferProducerList.size(), mMaxGraphicBufferProducerListSize,
6970 mNumLayers.load());
6971 if (mGraphicBufferProducerList.size() > mGraphicBufferProducerListSizeLogThreshold) {
6972 ALOGW("Suspected IGBP leak: %zu IGBPs (%zu max), %zu Layers",
6973 mGraphicBufferProducerList.size(), mMaxGraphicBufferProducerListSize,
6974 mNumLayers.load());
6975 }
6976 }
6977
6978 return layer;
6979 }
6980
scheduleRegionSamplingThread()6981 void SurfaceFlinger::scheduleRegionSamplingThread() {
6982 static_cast<void>(schedule([&] { notifyRegionSamplingThread(); }));
6983 }
6984
notifyRegionSamplingThread()6985 void SurfaceFlinger::notifyRegionSamplingThread() {
6986 if (!mLumaSampling || !mRegionSamplingThread) {
6987 return;
6988 }
6989
6990 mRegionSamplingThread->onCompositionComplete(mEventQueue->nextExpectedInvalidate());
6991 }
6992
6993 } // namespace android
6994
6995 #if defined(__gl_h_)
6996 #error "don't include gl/gl.h in this file"
6997 #endif
6998
6999 #if defined(__gl2_h_)
7000 #error "don't include gl2/gl2.h in this file"
7001 #endif
7002
7003 // TODO(b/129481165): remove the #pragma below and fix conversion issues
7004 #pragma clang diagnostic pop // ignored "-Wconversion -Wextra"
7005