1 //===- Symbols.h ------------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines various types of Symbols.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #ifndef LLD_ELF_SYMBOLS_H
14 #define LLD_ELF_SYMBOLS_H
15
16 #include "InputFiles.h"
17 #include "InputSection.h"
18 #include "lld/Common/LLVM.h"
19 #include "lld/Common/Strings.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/Object/Archive.h"
22 #include "llvm/Object/ELF.h"
23
24 namespace lld {
25 // Returns a string representation for a symbol for diagnostics.
26 std::string toString(const elf::Symbol &);
27
28 // There are two different ways to convert an Archive::Symbol to a string:
29 // One for Microsoft name mangling and one for Itanium name mangling.
30 // Call the functions toCOFFString and toELFString, not just toString.
31 std::string toELFString(const llvm::object::Archive::Symbol &);
32
33 namespace elf {
34 class CommonSymbol;
35 class Defined;
36 class InputFile;
37 class LazyArchive;
38 class LazyObject;
39 class SharedSymbol;
40 class Symbol;
41 class Undefined;
42
43 // This is a StringRef-like container that doesn't run strlen().
44 //
45 // ELF string tables contain a lot of null-terminated strings. Most of them
46 // are not necessary for the linker because they are names of local symbols,
47 // and the linker doesn't use local symbol names for name resolution. So, we
48 // use this class to represents strings read from string tables.
49 struct StringRefZ {
StringRefZStringRefZ50 StringRefZ(const char *s) : data(s), size(-1) {}
StringRefZStringRefZ51 StringRefZ(StringRef s) : data(s.data()), size(s.size()) {}
52
53 const char *data;
54 const uint32_t size;
55 };
56
57 // The base class for real symbol classes.
58 class Symbol {
59 public:
60 enum Kind {
61 PlaceholderKind,
62 DefinedKind,
63 CommonKind,
64 SharedKind,
65 UndefinedKind,
66 LazyArchiveKind,
67 LazyObjectKind,
68 };
69
kind()70 Kind kind() const { return static_cast<Kind>(symbolKind); }
71
72 // The file from which this symbol was created.
73 InputFile *file;
74
75 protected:
76 const char *nameData;
77 mutable uint32_t nameSize;
78
79 public:
80 uint32_t dynsymIndex = 0;
81 uint32_t gotIndex = -1;
82 uint32_t pltIndex = -1;
83
84 uint32_t globalDynIndex = -1;
85
86 // This field is a index to the symbol's version definition.
87 uint32_t verdefIndex = -1;
88
89 // Version definition index.
90 uint16_t versionId;
91
92 // Symbol binding. This is not overwritten by replace() to track
93 // changes during resolution. In particular:
94 // - An undefined weak is still weak when it resolves to a shared library.
95 // - An undefined weak will not fetch archive members, but we have to
96 // remember it is weak.
97 uint8_t binding;
98
99 // The following fields have the same meaning as the ELF symbol attributes.
100 uint8_t type; // symbol type
101 uint8_t stOther; // st_other field value
102
103 uint8_t symbolKind;
104
105 // Symbol visibility. This is the computed minimum visibility of all
106 // observed non-DSO symbols.
107 uint8_t visibility : 2;
108
109 // True if the symbol was used for linking and thus need to be added to the
110 // output file's symbol table. This is true for all symbols except for
111 // unreferenced DSO symbols, lazy (archive) symbols, and bitcode symbols that
112 // are unreferenced except by other bitcode objects.
113 uint8_t isUsedInRegularObj : 1;
114
115 // Used by a Defined symbol with protected or default visibility, to record
116 // whether it is required to be exported into .dynsym. This is set when any of
117 // the following conditions hold:
118 //
119 // - If there is an interposable symbol from a DSO.
120 // - If -shared or --export-dynamic is specified, any symbol in an object
121 // file/bitcode sets this property, unless suppressed by LTO
122 // canBeOmittedFromSymbolTable().
123 uint8_t exportDynamic : 1;
124
125 // True if the symbol is in the --dynamic-list file. A Defined symbol with
126 // protected or default visibility with this property is required to be
127 // exported into .dynsym.
128 uint8_t inDynamicList : 1;
129
130 // False if LTO shouldn't inline whatever this symbol points to. If a symbol
131 // is overwritten after LTO, LTO shouldn't inline the symbol because it
132 // doesn't know the final contents of the symbol.
133 uint8_t canInline : 1;
134
135 // Used by Undefined and SharedSymbol to track if there has been at least one
136 // undefined reference to the symbol. The binding may change to STB_WEAK if
137 // the first undefined reference from a non-shared object is weak.
138 uint8_t referenced : 1;
139
140 // True if this symbol is specified by --trace-symbol option.
141 uint8_t traced : 1;
142
143 inline void replace(const Symbol &newSym);
144
145 bool includeInDynsym() const;
146 uint8_t computeBinding() const;
isWeak()147 bool isWeak() const { return binding == llvm::ELF::STB_WEAK; }
148
isUndefined()149 bool isUndefined() const { return symbolKind == UndefinedKind; }
isCommon()150 bool isCommon() const { return symbolKind == CommonKind; }
isDefined()151 bool isDefined() const { return symbolKind == DefinedKind; }
isShared()152 bool isShared() const { return symbolKind == SharedKind; }
isPlaceholder()153 bool isPlaceholder() const { return symbolKind == PlaceholderKind; }
154
isLocal()155 bool isLocal() const { return binding == llvm::ELF::STB_LOCAL; }
156
isLazy()157 bool isLazy() const {
158 return symbolKind == LazyArchiveKind || symbolKind == LazyObjectKind;
159 }
160
161 // True if this is an undefined weak symbol. This only works once
162 // all input files have been added.
isUndefWeak()163 bool isUndefWeak() const {
164 // See comment on lazy symbols for details.
165 return isWeak() && (isUndefined() || isLazy());
166 }
167
getName()168 StringRef getName() const {
169 if (nameSize == (uint32_t)-1)
170 nameSize = strlen(nameData);
171 return {nameData, nameSize};
172 }
173
setName(StringRef s)174 void setName(StringRef s) {
175 nameData = s.data();
176 nameSize = s.size();
177 }
178
179 void parseSymbolVersion();
180
181 // Get the NUL-terminated version suffix ("", "@...", or "@@...").
182 //
183 // For @@, the name has been truncated by insert(). For @, the name has been
184 // truncated by Symbol::parseSymbolVersion().
getVersionSuffix()185 const char *getVersionSuffix() const {
186 (void)getName();
187 return nameData + nameSize;
188 }
189
isInGot()190 bool isInGot() const { return gotIndex != -1U; }
isInPlt()191 bool isInPlt() const { return pltIndex != -1U; }
192
193 uint64_t getVA(int64_t addend = 0) const;
194
195 uint64_t getGotOffset() const;
196 uint64_t getGotVA() const;
197 uint64_t getGotPltOffset() const;
198 uint64_t getGotPltVA() const;
199 uint64_t getPltVA() const;
200 uint64_t getSize() const;
201 OutputSection *getOutputSection() const;
202
203 // The following two functions are used for symbol resolution.
204 //
205 // You are expected to call mergeProperties for all symbols in input
206 // files so that attributes that are attached to names rather than
207 // indivisual symbol (such as visibility) are merged together.
208 //
209 // Every time you read a new symbol from an input, you are supposed
210 // to call resolve() with the new symbol. That function replaces
211 // "this" object as a result of name resolution if the new symbol is
212 // more appropriate to be included in the output.
213 //
214 // For example, if "this" is an undefined symbol and a new symbol is
215 // a defined symbol, "this" is replaced with the new symbol.
216 void mergeProperties(const Symbol &other);
217 void resolve(const Symbol &other);
218
219 // If this is a lazy symbol, fetch an input file and add the symbol
220 // in the file to the symbol table. Calling this function on
221 // non-lazy object causes a runtime error.
222 void fetch() const;
223
224 private:
isExportDynamic(Kind k,uint8_t visibility)225 static bool isExportDynamic(Kind k, uint8_t visibility) {
226 if (k == SharedKind)
227 return visibility == llvm::ELF::STV_DEFAULT;
228 return config->shared || config->exportDynamic;
229 }
230
231 void resolveUndefined(const Undefined &other);
232 void resolveCommon(const CommonSymbol &other);
233 void resolveDefined(const Defined &other);
234 template <class LazyT> void resolveLazy(const LazyT &other);
235 void resolveShared(const SharedSymbol &other);
236
237 int compare(const Symbol *other) const;
238
239 inline size_t getSymbolSize() const;
240
241 protected:
Symbol(Kind k,InputFile * file,StringRefZ name,uint8_t binding,uint8_t stOther,uint8_t type)242 Symbol(Kind k, InputFile *file, StringRefZ name, uint8_t binding,
243 uint8_t stOther, uint8_t type)
244 : file(file), nameData(name.data), nameSize(name.size), binding(binding),
245 type(type), stOther(stOther), symbolKind(k), visibility(stOther & 3),
246 isUsedInRegularObj(!file || file->kind() == InputFile::ObjKind),
247 exportDynamic(isExportDynamic(k, visibility)), inDynamicList(false),
248 canInline(false), referenced(false), traced(false), needsPltAddr(false),
249 isInIplt(false), gotInIgot(false), isPreemptible(false),
250 used(!config->gcSections), needsTocRestore(false),
251 scriptDefined(false) {}
252
253 public:
254 // True the symbol should point to its PLT entry.
255 // For SharedSymbol only.
256 uint8_t needsPltAddr : 1;
257
258 // True if this symbol is in the Iplt sub-section of the Plt and the Igot
259 // sub-section of the .got.plt or .got.
260 uint8_t isInIplt : 1;
261
262 // True if this symbol needs a GOT entry and its GOT entry is actually in
263 // Igot. This will be true only for certain non-preemptible ifuncs.
264 uint8_t gotInIgot : 1;
265
266 // True if this symbol is preemptible at load time.
267 uint8_t isPreemptible : 1;
268
269 // True if an undefined or shared symbol is used from a live section.
270 //
271 // NOTE: In Writer.cpp the field is used to mark local defined symbols
272 // which are referenced by relocations when -r or --emit-relocs is given.
273 uint8_t used : 1;
274
275 // True if a call to this symbol needs to be followed by a restore of the
276 // PPC64 toc pointer.
277 uint8_t needsTocRestore : 1;
278
279 // True if this symbol is defined by a linker script.
280 uint8_t scriptDefined : 1;
281
282 // The partition whose dynamic symbol table contains this symbol's definition.
283 uint8_t partition = 1;
284
isSection()285 bool isSection() const { return type == llvm::ELF::STT_SECTION; }
isTls()286 bool isTls() const { return type == llvm::ELF::STT_TLS; }
isFunc()287 bool isFunc() const { return type == llvm::ELF::STT_FUNC; }
isGnuIFunc()288 bool isGnuIFunc() const { return type == llvm::ELF::STT_GNU_IFUNC; }
isObject()289 bool isObject() const { return type == llvm::ELF::STT_OBJECT; }
isFile()290 bool isFile() const { return type == llvm::ELF::STT_FILE; }
291 };
292
293 // Represents a symbol that is defined in the current output file.
294 class Defined : public Symbol {
295 public:
Defined(InputFile * file,StringRefZ name,uint8_t binding,uint8_t stOther,uint8_t type,uint64_t value,uint64_t size,SectionBase * section)296 Defined(InputFile *file, StringRefZ name, uint8_t binding, uint8_t stOther,
297 uint8_t type, uint64_t value, uint64_t size, SectionBase *section)
298 : Symbol(DefinedKind, file, name, binding, stOther, type), value(value),
299 size(size), section(section) {}
300
classof(const Symbol * s)301 static bool classof(const Symbol *s) { return s->isDefined(); }
302
303 uint64_t value;
304 uint64_t size;
305 SectionBase *section;
306 };
307
308 // Represents a common symbol.
309 //
310 // On Unix, it is traditionally allowed to write variable definitions
311 // without initialization expressions (such as "int foo;") to header
312 // files. Such definition is called "tentative definition".
313 //
314 // Using tentative definition is usually considered a bad practice
315 // because you should write only declarations (such as "extern int
316 // foo;") to header files. Nevertheless, the linker and the compiler
317 // have to do something to support bad code by allowing duplicate
318 // definitions for this particular case.
319 //
320 // Common symbols represent variable definitions without initializations.
321 // The compiler creates common symbols when it sees variable definitions
322 // without initialization (you can suppress this behavior and let the
323 // compiler create a regular defined symbol by -fno-common).
324 //
325 // The linker allows common symbols to be replaced by regular defined
326 // symbols. If there are remaining common symbols after name resolution is
327 // complete, they are converted to regular defined symbols in a .bss
328 // section. (Therefore, the later passes don't see any CommonSymbols.)
329 class CommonSymbol : public Symbol {
330 public:
CommonSymbol(InputFile * file,StringRefZ name,uint8_t binding,uint8_t stOther,uint8_t type,uint64_t alignment,uint64_t size)331 CommonSymbol(InputFile *file, StringRefZ name, uint8_t binding,
332 uint8_t stOther, uint8_t type, uint64_t alignment, uint64_t size)
333 : Symbol(CommonKind, file, name, binding, stOther, type),
334 alignment(alignment), size(size) {}
335
classof(const Symbol * s)336 static bool classof(const Symbol *s) { return s->isCommon(); }
337
338 uint32_t alignment;
339 uint64_t size;
340 };
341
342 class Undefined : public Symbol {
343 public:
344 Undefined(InputFile *file, StringRefZ name, uint8_t binding, uint8_t stOther,
345 uint8_t type, uint32_t discardedSecIdx = 0)
Symbol(UndefinedKind,file,name,binding,stOther,type)346 : Symbol(UndefinedKind, file, name, binding, stOther, type),
347 discardedSecIdx(discardedSecIdx) {}
348
classof(const Symbol * s)349 static bool classof(const Symbol *s) { return s->kind() == UndefinedKind; }
350
351 // The section index if in a discarded section, 0 otherwise.
352 uint32_t discardedSecIdx;
353 };
354
355 class SharedSymbol : public Symbol {
356 public:
classof(const Symbol * s)357 static bool classof(const Symbol *s) { return s->kind() == SharedKind; }
358
SharedSymbol(InputFile & file,StringRef name,uint8_t binding,uint8_t stOther,uint8_t type,uint64_t value,uint64_t size,uint32_t alignment,uint32_t verdefIndex)359 SharedSymbol(InputFile &file, StringRef name, uint8_t binding,
360 uint8_t stOther, uint8_t type, uint64_t value, uint64_t size,
361 uint32_t alignment, uint32_t verdefIndex)
362 : Symbol(SharedKind, &file, name, binding, stOther, type), value(value),
363 size(size), alignment(alignment) {
364 this->verdefIndex = verdefIndex;
365 // GNU ifunc is a mechanism to allow user-supplied functions to
366 // resolve PLT slot values at load-time. This is contrary to the
367 // regular symbol resolution scheme in which symbols are resolved just
368 // by name. Using this hook, you can program how symbols are solved
369 // for you program. For example, you can make "memcpy" to be resolved
370 // to a SSE-enabled version of memcpy only when a machine running the
371 // program supports the SSE instruction set.
372 //
373 // Naturally, such symbols should always be called through their PLT
374 // slots. What GNU ifunc symbols point to are resolver functions, and
375 // calling them directly doesn't make sense (unless you are writing a
376 // loader).
377 //
378 // For DSO symbols, we always call them through PLT slots anyway.
379 // So there's no difference between GNU ifunc and regular function
380 // symbols if they are in DSOs. So we can handle GNU_IFUNC as FUNC.
381 if (this->type == llvm::ELF::STT_GNU_IFUNC)
382 this->type = llvm::ELF::STT_FUNC;
383 }
384
getFile()385 SharedFile &getFile() const { return *cast<SharedFile>(file); }
386
387 uint64_t value; // st_value
388 uint64_t size; // st_size
389 uint32_t alignment;
390 };
391
392 // LazyArchive and LazyObject represent a symbols that is not yet in the link,
393 // but we know where to find it if needed. If the resolver finds both Undefined
394 // and Lazy for the same name, it will ask the Lazy to load a file.
395 //
396 // A special complication is the handling of weak undefined symbols. They should
397 // not load a file, but we have to remember we have seen both the weak undefined
398 // and the lazy. We represent that with a lazy symbol with a weak binding. This
399 // means that code looking for undefined symbols normally also has to take lazy
400 // symbols into consideration.
401
402 // This class represents a symbol defined in an archive file. It is
403 // created from an archive file header, and it knows how to load an
404 // object file from an archive to replace itself with a defined
405 // symbol.
406 class LazyArchive : public Symbol {
407 public:
LazyArchive(InputFile & file,const llvm::object::Archive::Symbol s)408 LazyArchive(InputFile &file, const llvm::object::Archive::Symbol s)
409 : Symbol(LazyArchiveKind, &file, s.getName(), llvm::ELF::STB_GLOBAL,
410 llvm::ELF::STV_DEFAULT, llvm::ELF::STT_NOTYPE),
411 sym(s) {}
412
classof(const Symbol * s)413 static bool classof(const Symbol *s) { return s->kind() == LazyArchiveKind; }
414
415 MemoryBufferRef getMemberBuffer();
416
417 const llvm::object::Archive::Symbol sym;
418 };
419
420 // LazyObject symbols represents symbols in object files between
421 // --start-lib and --end-lib options.
422 class LazyObject : public Symbol {
423 public:
LazyObject(InputFile & file,StringRef name)424 LazyObject(InputFile &file, StringRef name)
425 : Symbol(LazyObjectKind, &file, name, llvm::ELF::STB_GLOBAL,
426 llvm::ELF::STV_DEFAULT, llvm::ELF::STT_NOTYPE) {}
427
classof(const Symbol * s)428 static bool classof(const Symbol *s) { return s->kind() == LazyObjectKind; }
429 };
430
431 // Some linker-generated symbols need to be created as
432 // Defined symbols.
433 struct ElfSym {
434 // __bss_start
435 static Defined *bss;
436
437 // etext and _etext
438 static Defined *etext1;
439 static Defined *etext2;
440
441 // edata and _edata
442 static Defined *edata1;
443 static Defined *edata2;
444
445 // end and _end
446 static Defined *end1;
447 static Defined *end2;
448
449 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention to
450 // be at some offset from the base of the .got section, usually 0 or
451 // the end of the .got.
452 static Defined *globalOffsetTable;
453
454 // _gp, _gp_disp and __gnu_local_gp symbols. Only for MIPS.
455 static Defined *mipsGp;
456 static Defined *mipsGpDisp;
457 static Defined *mipsLocalGp;
458
459 // __rel{,a}_iplt_{start,end} symbols.
460 static Defined *relaIpltStart;
461 static Defined *relaIpltEnd;
462
463 // __global_pointer$ for RISC-V.
464 static Defined *riscvGlobalPointer;
465
466 // _TLS_MODULE_BASE_ on targets that support TLSDESC.
467 static Defined *tlsModuleBase;
468 };
469
470 // A buffer class that is large enough to hold any Symbol-derived
471 // object. We allocate memory using this class and instantiate a symbol
472 // using the placement new.
473 union SymbolUnion {
474 alignas(Defined) char a[sizeof(Defined)];
475 alignas(CommonSymbol) char b[sizeof(CommonSymbol)];
476 alignas(Undefined) char c[sizeof(Undefined)];
477 alignas(SharedSymbol) char d[sizeof(SharedSymbol)];
478 alignas(LazyArchive) char e[sizeof(LazyArchive)];
479 alignas(LazyObject) char f[sizeof(LazyObject)];
480 };
481
482 // It is important to keep the size of SymbolUnion small for performance and
483 // memory usage reasons. 80 bytes is a soft limit based on the size of Defined
484 // on a 64-bit system.
485 static_assert(sizeof(SymbolUnion) <= 80, "SymbolUnion too large");
486
487 template <typename T> struct AssertSymbol {
488 static_assert(std::is_trivially_destructible<T>(),
489 "Symbol types must be trivially destructible");
490 static_assert(sizeof(T) <= sizeof(SymbolUnion), "SymbolUnion too small");
491 static_assert(alignof(T) <= alignof(SymbolUnion),
492 "SymbolUnion not aligned enough");
493 };
494
assertSymbols()495 static inline void assertSymbols() {
496 AssertSymbol<Defined>();
497 AssertSymbol<CommonSymbol>();
498 AssertSymbol<Undefined>();
499 AssertSymbol<SharedSymbol>();
500 AssertSymbol<LazyArchive>();
501 AssertSymbol<LazyObject>();
502 }
503
504 void printTraceSymbol(const Symbol *sym);
505
getSymbolSize()506 size_t Symbol::getSymbolSize() const {
507 switch (kind()) {
508 case CommonKind:
509 return sizeof(CommonSymbol);
510 case DefinedKind:
511 return sizeof(Defined);
512 case LazyArchiveKind:
513 return sizeof(LazyArchive);
514 case LazyObjectKind:
515 return sizeof(LazyObject);
516 case SharedKind:
517 return sizeof(SharedSymbol);
518 case UndefinedKind:
519 return sizeof(Undefined);
520 case PlaceholderKind:
521 return sizeof(Symbol);
522 }
523 llvm_unreachable("unknown symbol kind");
524 }
525
526 // replace() replaces "this" object with a given symbol by memcpy'ing
527 // it over to "this". This function is called as a result of name
528 // resolution, e.g. to replace an undefind symbol with a defined symbol.
replace(const Symbol & newSym)529 void Symbol::replace(const Symbol &newSym) {
530 using llvm::ELF::STT_TLS;
531
532 // st_value of STT_TLS represents the assigned offset, not the actual address
533 // which is used by STT_FUNC and STT_OBJECT. STT_TLS symbols can only be
534 // referenced by special TLS relocations. It is usually an error if a STT_TLS
535 // symbol is replaced by a non-STT_TLS symbol, vice versa. There are two
536 // exceptions: (a) a STT_NOTYPE lazy/undefined symbol can be replaced by a
537 // STT_TLS symbol, (b) a STT_TLS undefined symbol can be replaced by a
538 // STT_NOTYPE lazy symbol.
539 if (symbolKind != PlaceholderKind && !newSym.isLazy() &&
540 (type == STT_TLS) != (newSym.type == STT_TLS) &&
541 type != llvm::ELF::STT_NOTYPE)
542 error("TLS attribute mismatch: " + toString(*this) + "\n>>> defined in " +
543 toString(newSym.file) + "\n>>> defined in " + toString(file));
544
545 Symbol old = *this;
546 memcpy(this, &newSym, newSym.getSymbolSize());
547
548 // old may be a placeholder. The referenced fields must be initialized in
549 // SymbolTable::insert.
550 versionId = old.versionId;
551 visibility = old.visibility;
552 isUsedInRegularObj = old.isUsedInRegularObj;
553 exportDynamic = old.exportDynamic;
554 inDynamicList = old.inDynamicList;
555 canInline = old.canInline;
556 referenced = old.referenced;
557 traced = old.traced;
558 isPreemptible = old.isPreemptible;
559 scriptDefined = old.scriptDefined;
560 partition = old.partition;
561
562 // Symbol length is computed lazily. If we already know a symbol length,
563 // propagate it.
564 if (nameData == old.nameData && nameSize == 0 && old.nameSize != 0)
565 nameSize = old.nameSize;
566
567 // Print out a log message if --trace-symbol was specified.
568 // This is for debugging.
569 if (traced)
570 printTraceSymbol(this);
571 }
572
573 void maybeWarnUnorderableSymbol(const Symbol *sym);
574 bool computeIsPreemptible(const Symbol &sym);
575 void reportBackrefs();
576
577 // A mapping from a symbol to an InputFile referencing it backward. Used by
578 // --warn-backrefs.
579 extern llvm::DenseMap<const Symbol *,
580 std::pair<const InputFile *, const InputFile *>>
581 backwardReferences;
582
583 } // namespace elf
584 } // namespace lld
585
586 #endif
587