1 //===- Tiling.cpp - Implementation of linalg Tiling -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the linalg dialect Tiling pass.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "PassDetail.h"
14 #include "mlir/Dialect/Affine/EDSC/Intrinsics.h"
15 #include "mlir/Dialect/Linalg/EDSC/FoldedIntrinsics.h"
16 #include "mlir/Dialect/Linalg/IR/LinalgTypes.h"
17 #include "mlir/Dialect/Linalg/Passes.h"
18 #include "mlir/Dialect/Linalg/Transforms/Transforms.h"
19 #include "mlir/Dialect/Linalg/Utils/Utils.h"
20 #include "mlir/Dialect/SCF/EDSC/Builders.h"
21 #include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h"
22 #include "mlir/IR/AffineExpr.h"
23 #include "mlir/IR/AffineExprVisitor.h"
24 #include "mlir/IR/AffineMap.h"
25 #include "mlir/Transforms/FoldUtils.h"
26 #include "mlir/Transforms/GreedyPatternRewriteDriver.h"
27
28 #include "llvm/Support/CommandLine.h"
29
30 using namespace mlir;
31 using namespace mlir::edsc;
32 using namespace mlir::edsc::intrinsics;
33 using namespace mlir::linalg;
34 using namespace mlir::scf;
35
36 using folded_affine_min = FoldedValueBuilder<AffineMinOp>;
37
38 #define DEBUG_TYPE "linalg-tiling"
39
isZero(Value v)40 static bool isZero(Value v) {
41 if (auto cst = v.getDefiningOp<ConstantIndexOp>())
42 return cst.getValue() == 0;
43 return false;
44 }
45
46 using LoopIndexToRangeIndexMap = DenseMap<int, int>;
47
48 // Creates a number of ranges equal to the number of non-zero in `tileSizes`.
49 // One for each loop of the LinalgOp that is tiled. The `tileSizes` argument has
50 // one entry per surrounding loop. It uses zero as the convention that a
51 // particular loop is not tiled. This convention simplifies implementations by
52 // avoiding affine map manipulations.
53 // The returned ranges correspond to the loop ranges, in the proper order, that
54 // are tiled and for which new loops will be created. Also the function returns
55 // a map from loop indices of the LinalgOp to the corresponding non-empty range
56 // indices of newly created loops.
57 static std::tuple<SmallVector<Range, 4>, LoopIndexToRangeIndexMap>
makeTiledLoopRanges(OpBuilder & b,Location loc,AffineMap map,ValueRange allShapeSizes,ValueRange allTileSizes)58 makeTiledLoopRanges(OpBuilder &b, Location loc, AffineMap map,
59 ValueRange allShapeSizes, ValueRange allTileSizes) {
60 assert(allTileSizes.size() == map.getNumResults());
61 // Apply `map` to get shape sizes in loop order.
62 auto shapeSizes = applyMapToValues(b, loc, map, allShapeSizes);
63 SmallVector<Value, 4> tileSizes(allTileSizes.begin(), allTileSizes.end());
64
65 // Traverse the tile sizes, which are in loop order, erase zeros everywhere.
66 LoopIndexToRangeIndexMap loopIndexToRangeIndex;
67 for (int idx = 0, e = tileSizes.size(), zerosCount = 0; idx < e; ++idx) {
68 if (isZero(tileSizes[idx - zerosCount])) {
69 shapeSizes.erase(shapeSizes.begin() + idx - zerosCount);
70 tileSizes.erase(tileSizes.begin() + idx - zerosCount);
71 ++zerosCount;
72 continue;
73 }
74 loopIndexToRangeIndex[idx] = idx - zerosCount;
75 }
76
77 // Create a new range with the applied tile sizes.
78 SmallVector<Range, 4> res;
79 for (unsigned idx = 0, e = tileSizes.size(); idx < e; ++idx)
80 res.push_back(
81 Range{std_constant_index(0), shapeSizes[idx], tileSizes[idx]});
82 return std::make_tuple(res, loopIndexToRangeIndex);
83 }
84 namespace {
85
86 // Helper visitor to determine whether an AffineExpr is tiled.
87 // This is achieved by traversing every AffineDimExpr with position `pos` and
88 // checking whether the corresponding `tileSizes[pos]` is non-zero.
89 // This also enforces only positive coefficients occur in multiplications.
90 //
91 // Example:
92 // `d0 + 2 * d1 + d3` is tiled by [0, 0, 0, 2] but not by [0, 0, 2, 0]
93 //
94 struct TileCheck : public AffineExprVisitor<TileCheck> {
TileCheck__anon84f7a5700111::TileCheck95 TileCheck(ValueRange tileSizes) : isTiled(false), tileSizes(tileSizes) {}
96
visitDimExpr__anon84f7a5700111::TileCheck97 void visitDimExpr(AffineDimExpr expr) {
98 isTiled |= !isZero(tileSizes[expr.getPosition()]);
99 }
visitAffineBinaryOpExpr__anon84f7a5700111::TileCheck100 void visitAffineBinaryOpExpr(AffineBinaryOpExpr expr) {
101 visit(expr.getLHS());
102 visit(expr.getRHS());
103 if (expr.getKind() == mlir::AffineExprKind::Mul)
104 assert(expr.getRHS().cast<AffineConstantExpr>().getValue() > 0 &&
105 "nonpositive multiplying coefficient");
106 }
107 bool isTiled;
108 ValueRange tileSizes;
109 };
110
111 } // namespace
112
113 // IndexedGenericOp explicitly uses induction variables in the loop body. The
114 // values of the indices that are used in the loop body for any given access of
115 // input/output memref before `subview` op was applied should be invariant with
116 // respect to tiling.
117 //
118 // Therefore, if the operation is tiled, we have to transform the indices
119 // accordingly, i.e. offset them by the values of the corresponding induction
120 // variables that are captured implicitly in the body of the op.
121 //
122 // Example. `linalg.indexed_generic` before tiling:
123 //
124 // #id_2d = (i, j) -> (i, j)
125 // #pointwise_2d_trait = {
126 // indexing_maps = [#id_2d, #id_2d],
127 // iterator_types = ["parallel", "parallel"],
128 // n_views = [1, 1]
129 // }
130 // linalg.indexed_generic #pointwise_2d_trait %operand, %result {
131 // ^bb0(%i: index, %j: index, %operand_in: f32, %result_in: f32):
132 // <some operations that use %i, %j>
133 // }: memref<50x100xf32>, memref<50x100xf32>
134 //
135 // After tiling pass with tiles sizes 10 and 25:
136 //
137 // #strided = (i, j)[s0, s1, s2] -> (i * s1 + s0 + j * s2)
138 //
139 // %c1 = constant 1 : index
140 // %c0 = constant 0 : index
141 // %c25 = constant 25 : index
142 // %c10 = constant 10 : index
143 // operand_dim_0 = dim %operand, 0 : memref<50x100xf32>
144 // operand_dim_1 = dim %operand, 1 : memref<50x100xf32>
145 // scf.for %k = %c0 to operand_dim_0 step %c10 {
146 // scf.for %l = %c0 to operand_dim_1 step %c25 {
147 // %4 = std.subview %operand[%k, %l][%c10, %c25][%c1, %c1]
148 // : memref<50x100xf32> to memref<?x?xf32, #strided>
149 // %5 = std.subview %result[%k, %l][%c10, %c25][%c1, %c1]
150 // : memref<50x100xf32> to memref<?x?xf32, #strided>
151 // linalg.indexed_generic pointwise_2d_trait %4, %5 {
152 // ^bb0(%i: index, %j: index, %operand_in: f32, %result_in: f32):
153 // // Indices `k` and `l` are implicitly captured in the body.
154 // %transformed_i = addi %i, %k : index // index `i` is offset by %k
155 // %transformed_j = addi %j, %l : index // index `j` is offset by %l
156 // // Every use of %i, %j is replaced with %transformed_i, %transformed_j
157 // <some operations that use %transformed_i, %transformed_j>
158 // }: memref<?x?xf32, #strided>, memref<?x?xf32, #strided>
159 // }
160 // }
161 //
162 // TODO: Investigate whether mixing implicit and explicit indices
163 // does not lead to losing information.
transformIndexedGenericOpIndices(OpBuilder & b,LinalgOp op,SmallVectorImpl<Value> & ivs,const LoopIndexToRangeIndexMap & loopIndexToRangeIndex)164 static void transformIndexedGenericOpIndices(
165 OpBuilder &b, LinalgOp op, SmallVectorImpl<Value> &ivs,
166 const LoopIndexToRangeIndexMap &loopIndexToRangeIndex) {
167 auto indexedGenericOp = dyn_cast<IndexedGenericOp>(op.getOperation());
168 if (!indexedGenericOp)
169 return;
170
171 // `linalg.indexed_generic` comes in two flavours. One has a region with a
172 // single block that defines the loop body. The other has a `fun` attribute
173 // that refers to an existing function symbol. The `fun` function call will be
174 // inserted in the loop body in that case.
175 //
176 // TODO: Add support for `linalg.indexed_generic` with `fun` attribute.
177 auto ®ion = indexedGenericOp.region();
178 if (region.empty()) {
179 indexedGenericOp.emitOpError("expected a region");
180 return;
181 }
182 auto &block = region.front();
183
184 OpBuilder::InsertionGuard g(b);
185 b.setInsertionPointToStart(&block);
186 for (unsigned i = 0; i < indexedGenericOp.getNumLoops(); ++i) {
187 auto rangeIndex = loopIndexToRangeIndex.find(i);
188 if (rangeIndex == loopIndexToRangeIndex.end())
189 continue;
190 Value oldIndex = block.getArgument(i);
191 // Offset the index argument `i` by the value of the corresponding induction
192 // variable and replace all uses of the previous value.
193 Value newIndex = b.create<AddIOp>(indexedGenericOp.getLoc(), oldIndex,
194 ivs[rangeIndex->second]);
195 for (auto &use : oldIndex.getUses()) {
196 if (use.getOwner() == newIndex.getDefiningOp())
197 continue;
198 use.set(newIndex);
199 }
200 }
201 }
202
isTiled(AffineExpr expr,ValueRange tileSizes)203 static bool isTiled(AffineExpr expr, ValueRange tileSizes) {
204 if (!expr)
205 return false;
206 TileCheck t(tileSizes);
207 t.visit(expr);
208 return t.isTiled;
209 }
210
211 // Checks whether the `map varies with respect to a non-zero `tileSize`.
isTiled(AffineMap map,ValueRange tileSizes)212 static bool isTiled(AffineMap map, ValueRange tileSizes) {
213 if (!map)
214 return false;
215 for (unsigned r = 0; r < map.getNumResults(); ++r)
216 if (isTiled(map.getResult(r), tileSizes))
217 return true;
218 return false;
219 }
220
221 static SmallVector<Value, 4>
makeTiledShapes(OpBuilder & b,Location loc,LinalgOp linalgOp,ValueRange operands,AffineMap map,ValueRange ivs,ValueRange tileSizes,ValueRange allShapeSizes)222 makeTiledShapes(OpBuilder &b, Location loc, LinalgOp linalgOp,
223 ValueRange operands, AffineMap map, ValueRange ivs,
224 ValueRange tileSizes, ValueRange allShapeSizes) {
225 assert(operands.size() == linalgOp.getShapedOperands().size());
226 assert(ivs.size() == static_cast<size_t>(llvm::count_if(
227 llvm::make_range(tileSizes.begin(), tileSizes.end()),
228 [](Value v) { return !isZero(v); })) &&
229 "expected as many ivs as non-zero sizes");
230
231 using namespace edsc::op;
232
233 auto shapeSizes = applyMapToValues(b, loc, map, allShapeSizes);
234 // Construct (potentially temporary) mins and maxes on which to apply maps
235 // that define tile subshapes.
236 SmallVector<Value, 8> lbs, subShapeSizes;
237 for (unsigned idx = 0, idxIvs = 0, e = tileSizes.size(); idx < e; ++idx) {
238 bool isTiled = !isZero(tileSizes[idx]);
239 lbs.push_back(isTiled ? ivs[idxIvs++] : (Value)std_constant_index(0));
240 // Before composing, we need to make range a closed interval.
241 Value size = isTiled ? tileSizes[idx] : shapeSizes[idx];
242 subShapeSizes.push_back(size - std_constant_index(1));
243 }
244
245 auto *op = linalgOp.getOperation();
246
247 SmallVector<Value, 4> res;
248 res.reserve(op->getNumOperands());
249 for (auto en : llvm::enumerate(operands)) {
250 Value shapedOp = en.value();
251 ShapedType shapedType = shapedOp.getType().cast<ShapedType>();
252 unsigned rank = shapedType.getRank();
253 AffineMap map = linalgOp.getIndexingMap(en.index());
254 // If the shape is not tiled, we can use it as is.
255 if (!isTiled(map, tileSizes)) {
256 res.push_back(shapedOp);
257 continue;
258 }
259
260 // Construct a new subview / subtensor for the tile.
261 SmallVector<Value, 4> offsets, sizes, strides;
262 offsets.reserve(rank);
263 sizes.reserve(rank);
264 strides.reserve(rank);
265 for (unsigned r = 0; r < rank; ++r) {
266 if (!isTiled(map.getSubMap({r}), tileSizes)) {
267 offsets.push_back(std_constant_index(0));
268 sizes.push_back(std_dim(shapedOp, r));
269 strides.push_back(std_constant_index(1));
270 continue;
271 }
272
273 // Tiling creates a new slice at the proper index, the slice step is 1
274 // (i.e. the op does not subsample, stepping occurs in the loop).
275 auto m = map.getSubMap({r});
276 auto offset = applyMapToValues(b, loc, m, lbs).front();
277 offsets.push_back(offset);
278 auto closedIntSize = applyMapToValues(b, loc, m, subShapeSizes).front();
279 // Resulting size needs to be made half open interval again.
280 auto size = closedIntSize + std_constant_index(1);
281
282 // The size of the subview / subtensor should be trimmed to avoid
283 // out-of-bounds accesses, unless we statically know the subshape size
284 // divides the shape size evenly.
285 int64_t shapeSize = shapedType.getDimSize(r);
286 auto sizeCst = size.getDefiningOp<ConstantIndexOp>();
287 if (ShapedType::isDynamic(shapeSize) || !sizeCst ||
288 (shapeSize % sizeCst.getValue()) != 0) {
289 // Compute min(size, dim - offset) to avoid out-of-bounds accesses.
290 auto minMap = AffineMap::get(
291 /*dimCount=*/3, /*symbolCount=*/0,
292 {getAffineDimExpr(/*position=*/0, b.getContext()),
293 getAffineDimExpr(/*position=*/1, b.getContext()) -
294 getAffineDimExpr(/*position=*/2, b.getContext())},
295 b.getContext());
296 auto d = std_dim(shapedOp, r);
297 size =
298 affine_min(b.getIndexType(), minMap, ValueRange{size, d, offset});
299 }
300
301 sizes.push_back(size);
302 strides.push_back(std_constant_index(1));
303 }
304
305 if (shapedType.isa<MemRefType>())
306 res.push_back(
307 b.create<SubViewOp>(loc, shapedOp, offsets, sizes, strides));
308 else
309 res.push_back(
310 b.create<SubTensorOp>(loc, shapedOp, offsets, sizes, strides));
311 }
312
313 return res;
314 }
315
316 template <typename LoopTy>
317 static Optional<TiledLinalgOp>
tileLinalgOpImpl(OpBuilder & b,LinalgOp op,ValueRange tileSizes,const LinalgTilingOptions & options)318 tileLinalgOpImpl(OpBuilder &b, LinalgOp op, ValueRange tileSizes,
319 const LinalgTilingOptions &options) {
320 auto nLoops = op.getNumLoops();
321 // Initial tile sizes may be too big, only take the first nLoops.
322 tileSizes = tileSizes.take_front(nLoops);
323
324 if (llvm::all_of(tileSizes, isZero))
325 return llvm::None;
326
327 if (auto convOp = dyn_cast<linalg::ConvOp>(op.getOperation())) {
328 // For conv op only support tiling along batch dimension (which is the first
329 // loop).
330 if (convOp.padding() && !llvm::all_of(tileSizes.drop_front(), isZero))
331 return llvm::None;
332 }
333
334 // 1. Build the tiled loop ranges.
335 auto allShapeSizes = op.createFlatListOfOperandDims(b, op.getLoc());
336 AffineMap shapeSizesToLoopsMap = op.getShapesToLoopsMap();
337 if (!shapeSizesToLoopsMap)
338 return llvm::None;
339
340 SmallVector<Range, 4> loopRanges;
341 LoopIndexToRangeIndexMap loopIndexToRangeIndex;
342 std::tie(loopRanges, loopIndexToRangeIndex) = makeTiledLoopRanges(
343 b, op.getLoc(), shapeSizesToLoopsMap, allShapeSizes, tileSizes);
344 SmallVector<Attribute, 4> iteratorTypes;
345 for (auto attr :
346 enumerate(op.iterator_types().cast<ArrayAttr>().getValue())) {
347 if (loopIndexToRangeIndex.count(attr.index()))
348 iteratorTypes.push_back(attr.value());
349 }
350 // If interchangeVector is empty, use the identity. Build the permutation map
351 // otherwise.
352 auto invPermutationMap =
353 AffineMap::getMultiDimIdentityMap(tileSizes.size(), b.getContext());
354 if (!options.interchangeVector.empty()) {
355 // Based on the pruned iterations (due to zero tile size), recompute the
356 // interchange vector.
357 SmallVector<unsigned, 4> interchangeVector;
358 interchangeVector.reserve(options.interchangeVector.size());
359 for (auto pos : options.interchangeVector) {
360 auto it = loopIndexToRangeIndex.find(pos);
361 if (it == loopIndexToRangeIndex.end())
362 continue;
363 interchangeVector.push_back(it->second);
364 }
365 // Interchange vector is guaranteed to be a permutation,
366 // `inversePermutation` must succeed.
367 invPermutationMap = inversePermutation(
368 AffineMap::getPermutationMap(interchangeVector, b.getContext()));
369 assert(invPermutationMap);
370 applyPermutationToVector(loopRanges, interchangeVector);
371 applyPermutationToVector(iteratorTypes, interchangeVector);
372 }
373
374 // 2. Create the tiled loops.
375 LinalgOp res = op;
376 SmallVector<Value, 4> ivs, tensorResults;
377 auto initTensors = op.getInitTensors();
378 GenerateLoopNest<LoopTy>::doit(
379 loopRanges, /*iterArgInitValues*/ initTensors, iteratorTypes,
380 [&](ValueRange localIvs, ValueRange iterArgs) -> scf::ValueVector {
381 auto &b = ScopedContext::getBuilderRef();
382 auto loc = ScopedContext::getLocation();
383 ivs.assign(localIvs.begin(), localIvs.end());
384
385 // When an `interchangeVector` is present, it has been applied to the
386 // loop ranges and the iterator types. Apply its inverse to the
387 // resulting loop `ivs` to match the op definition.
388 SmallVector<Value, 4> interchangedIvs;
389 if (!options.interchangeVector.empty())
390 interchangedIvs = applyMapToValues(b, loc, invPermutationMap, ivs);
391 else
392 interchangedIvs.assign(ivs.begin(), ivs.end());
393
394 assert(op.getNumInitTensors() == iterArgs.size() &&
395 "num init tensors must match number of loop iter arguments");
396 // This uses knowledge about position of the init tensor in the list
397 // of operands.
398 auto operands = llvm::to_vector<4>(op.getShapedOperands());
399 std::copy(iterArgs.begin(), iterArgs.end(),
400 operands.begin() + op.getNumInputsAndOutputBuffers());
401
402 SmallVector<Value, 4> tiledOperands =
403 makeTiledShapes(b, loc, op, operands, shapeSizesToLoopsMap,
404 interchangedIvs, tileSizes, allShapeSizes);
405 auto nonShapedOperands = op.getAssumedNonShapedOperands();
406 tiledOperands.append(nonShapedOperands.begin(),
407 nonShapedOperands.end());
408
409 // If LinalgOp has results, they must all be tied to init tensors.
410 // We enforce this to ensure all tiled ops have been rewritten in
411 // "init tensor" form. This ensures tiling has anchor values into which
412 // to subtensor / subtensor_insert. Otherwise tiling would need to
413 // allocate which is not acceptable.
414 // This would not be the case with a special terminator op that
415 // generates the whole tensor (instead of inserting a subtensor). But
416 // the generator-based abstraction has other issues.
417 assert(op.getNumInitTensors() == op->getNumResults() &&
418 "expected same number of init tensors as number of results");
419
420 // Handle init tensor operands.
421 // This uses knowledge about position of the init tensor in the list
422 // of operands.
423 // TODO: InterfaceAdaptor ?
424 SmallVector<Type, 4> resultTensorTypes;
425 for (auto idx : llvm::seq<unsigned>(0, op.getNumInitTensors()))
426 resultTensorTypes.push_back(
427 tiledOperands[op.getNumInputsAndOutputBuffers() + idx].getType());
428
429 res = op.clone(b, loc, resultTensorTypes, tiledOperands);
430
431 // Insert a subtensor_insert for each init subtensor.
432 for (unsigned idx = 0, e = op.getNumInitTensors(); idx != e; ++idx) {
433 Value initTensor =
434 tiledOperands[op.getNumInputsAndOutputBuffers() + idx];
435 if (auto subtensor = initTensor.getDefiningOp<SubTensorOp>()) {
436 tensorResults.push_back(b.create<SubTensorInsertOp>(
437 loc, subtensor.source().getType(), res->getResult(idx),
438 subtensor.source(), subtensor.offsets(), subtensor.sizes(),
439 subtensor.strides(), subtensor.static_offsets(),
440 subtensor.static_sizes(), subtensor.static_strides()));
441 } else {
442 tensorResults.push_back(res->getResult(idx));
443 }
444 }
445 return scf::ValueVector(tensorResults.begin(), tensorResults.end());
446 },
447 options.distribution);
448
449 // 3. Transforms index arguments of `linalg.generic` w.r.t. to the tiling.
450 transformIndexedGenericOpIndices(b, res, ivs, loopIndexToRangeIndex);
451
452 // 4. Gather the newly created loops and return them with the new op.
453 SmallVector<Operation *, 8> loops;
454 loops.reserve(ivs.size());
455 for (auto iv : ivs) {
456 if (iv.isa<BlockArgument>()) {
457 loops.push_back(iv.cast<BlockArgument>().getOwner()->getParentOp());
458 assert(loops.back() && "no owner found for induction variable!");
459 } else {
460 // TODO: Instead of doing this, try to recover the ops used instead of the
461 // loop.
462 loops.push_back(nullptr);
463 }
464 }
465
466 // 5. Get the tensor results from the outermost loop if available. Otherwise
467 // use the previously captured `tensorResults`.
468 Operation *outermostLoop = nullptr;
469 for (Operation *loop : loops)
470 if ((outermostLoop = loop))
471 break;
472
473 return TiledLinalgOp{
474 res, loops, outermostLoop ? outermostLoop->getResults() : tensorResults};
475 }
476
477 template <typename LoopTy>
tileLinalgOpImpl(OpBuilder & b,LinalgOp op,const LinalgTilingOptions & options)478 Optional<TiledLinalgOp> static tileLinalgOpImpl(
479 OpBuilder &b, LinalgOp op, const LinalgTilingOptions &options) {
480 OpBuilder::InsertionGuard g(b);
481 b.setInsertionPoint(op);
482 ScopedContext scope(b, op.getLoc());
483
484 // Enforce the convention that "tiling by zero" skips tiling a particular
485 // dimension. This convention is significantly simpler to handle instead of
486 // adjusting affine maps to account for missing dimensions.
487 auto nLoops = op.getNumLoops();
488 SmallVector<Value, 4> tileSizeVector =
489 options.tileSizeComputationFunction(b, op);
490 if (tileSizeVector.size() < nLoops) {
491 auto zero = std_constant_index(0);
492 tileSizeVector.append(nLoops - tileSizeVector.size(), zero);
493 }
494
495 return tileLinalgOpImpl<LoopTy>(b, op, tileSizeVector, options);
496 }
497
498 Optional<TiledLinalgOp>
tileLinalgOp(OpBuilder & b,LinalgOp op,const LinalgTilingOptions & options)499 mlir::linalg::tileLinalgOp(OpBuilder &b, LinalgOp op,
500 const LinalgTilingOptions &options) {
501 switch (options.loopType) {
502 case LinalgTilingLoopType::Loops:
503 return tileLinalgOpImpl<scf::ForOp>(b, op, options);
504 case LinalgTilingLoopType::ParallelLoops:
505 return tileLinalgOpImpl<scf::ParallelOp>(b, op, options);
506 default:;
507 }
508 return llvm::None;
509 }
510
511 namespace {
512 /// Helper classes for type list expansion.
513 template <typename... OpTypes>
514 class CanonicalizationPatternList;
515
516 template <>
517 class CanonicalizationPatternList<> {
518 public:
insert(OwningRewritePatternList & patterns,MLIRContext * ctx)519 static void insert(OwningRewritePatternList &patterns, MLIRContext *ctx) {}
520 };
521
522 template <typename OpTy, typename... OpTypes>
523 class CanonicalizationPatternList<OpTy, OpTypes...> {
524 public:
insert(OwningRewritePatternList & patterns,MLIRContext * ctx)525 static void insert(OwningRewritePatternList &patterns, MLIRContext *ctx) {
526 OpTy::getCanonicalizationPatterns(patterns, ctx);
527 CanonicalizationPatternList<OpTypes...>::insert(patterns, ctx);
528 }
529 };
530
531 /// Helper classes for type list expansion.
532 template <typename... OpTypes>
533 class RewritePatternList;
534
535 template <>
536 class RewritePatternList<> {
537 public:
insert(OwningRewritePatternList & patterns,const LinalgTilingOptions & options,MLIRContext * ctx)538 static void insert(OwningRewritePatternList &patterns,
539 const LinalgTilingOptions &options, MLIRContext *ctx) {}
540 };
541
542 template <typename OpTy, typename... OpTypes>
543 class RewritePatternList<OpTy, OpTypes...> {
544 public:
insert(OwningRewritePatternList & patterns,const LinalgTilingOptions & options,MLIRContext * ctx)545 static void insert(OwningRewritePatternList &patterns,
546 const LinalgTilingOptions &options, MLIRContext *ctx) {
547 patterns.insert<LinalgTilingPattern<OpTy>>(
548 ctx, options, LinalgMarker({}, Identifier::get("tiled", ctx)));
549 RewritePatternList<OpTypes...>::insert(patterns, options, ctx);
550 }
551 };
552 } // namespace
553
554 OwningRewritePatternList
getLinalgTilingCanonicalizationPatterns(MLIRContext * ctx)555 mlir::linalg::getLinalgTilingCanonicalizationPatterns(MLIRContext *ctx) {
556 OwningRewritePatternList patterns;
557 populateLinalgTilingCanonicalizationPatterns(patterns, ctx);
558 return patterns;
559 }
560
populateLinalgTilingCanonicalizationPatterns(OwningRewritePatternList & patterns,MLIRContext * ctx)561 void mlir::linalg::populateLinalgTilingCanonicalizationPatterns(
562 OwningRewritePatternList &patterns, MLIRContext *ctx) {
563 AffineApplyOp::getCanonicalizationPatterns(patterns, ctx);
564 AffineForOp::getCanonicalizationPatterns(patterns, ctx);
565 AffineMinOp::getCanonicalizationPatterns(patterns, ctx);
566 AffineMaxOp::getCanonicalizationPatterns(patterns, ctx);
567 scf::ForOp::getCanonicalizationPatterns(patterns, ctx);
568 scf::ParallelOp::getCanonicalizationPatterns(patterns, ctx);
569 ConstantIndexOp::getCanonicalizationPatterns(patterns, ctx);
570 SubTensorOp::getCanonicalizationPatterns(patterns, ctx);
571 SubViewOp::getCanonicalizationPatterns(patterns, ctx);
572 TensorCastOp::getCanonicalizationPatterns(patterns, ctx);
573 ViewOp::getCanonicalizationPatterns(patterns, ctx);
574 CanonicalizationPatternList<
575 #define GET_OP_LIST
576 #include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc"
577 >::insert(patterns, ctx);
578 }
579
580 /// Populate the given list with patterns that apply Linalg tiling.
insertTilingPatterns(OwningRewritePatternList & patterns,const LinalgTilingOptions & options,MLIRContext * ctx)581 static void insertTilingPatterns(OwningRewritePatternList &patterns,
582 const LinalgTilingOptions &options,
583 MLIRContext *ctx) {
584 RewritePatternList<
585 #define GET_OP_LIST
586 #include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc"
587 >::insert(patterns, options, ctx);
588 }
589
applyTilingToLoopPatterns(LinalgTilingLoopType loopType,FuncOp funcOp,ArrayRef<int64_t> tileSizes)590 static void applyTilingToLoopPatterns(LinalgTilingLoopType loopType,
591 FuncOp funcOp,
592 ArrayRef<int64_t> tileSizes) {
593 auto options =
594 LinalgTilingOptions().setTileSizes(tileSizes).setLoopType(loopType);
595 MLIRContext *ctx = funcOp.getContext();
596 OwningRewritePatternList patterns;
597 insertTilingPatterns(patterns, options, ctx);
598 applyPatternsAndFoldGreedily(funcOp, std::move(patterns));
599 applyPatternsAndFoldGreedily(funcOp,
600 getLinalgTilingCanonicalizationPatterns(ctx));
601 // Drop the marker.
602 funcOp.walk([](LinalgOp op) {
603 op.removeAttr(LinalgTransforms::kLinalgTransformMarker);
604 });
605 }
606
607 namespace {
608 struct LinalgTilingPass : public LinalgTilingBase<LinalgTilingPass> {
609 LinalgTilingPass() = default;
LinalgTilingPass__anon84f7a5700611::LinalgTilingPass610 LinalgTilingPass(ArrayRef<int64_t> sizes) { tileSizes = sizes; }
611
runOnFunction__anon84f7a5700611::LinalgTilingPass612 void runOnFunction() override {
613 applyTilingToLoopPatterns(LinalgTilingLoopType::Loops, getFunction(),
614 tileSizes);
615 }
616 };
617
618 struct LinalgTilingToParallelLoopsPass
619 : public LinalgTilingToParallelLoopsBase<LinalgTilingToParallelLoopsPass> {
620 LinalgTilingToParallelLoopsPass() = default;
LinalgTilingToParallelLoopsPass__anon84f7a5700611::LinalgTilingToParallelLoopsPass621 LinalgTilingToParallelLoopsPass(ArrayRef<int64_t> sizes) {
622 tileSizes = sizes;
623 }
624
runOnFunction__anon84f7a5700611::LinalgTilingToParallelLoopsPass625 void runOnFunction() override {
626 applyTilingToLoopPatterns(LinalgTilingLoopType::ParallelLoops,
627 getFunction(), tileSizes);
628 }
629 };
630
631 } // namespace
632
633 std::unique_ptr<OperationPass<FuncOp>>
createLinalgTilingPass(ArrayRef<int64_t> tileSizes)634 mlir::createLinalgTilingPass(ArrayRef<int64_t> tileSizes) {
635 return std::make_unique<LinalgTilingPass>(tileSizes);
636 }
637
638 std::unique_ptr<OperationPass<FuncOp>>
createLinalgTilingToParallelLoopsPass(ArrayRef<int64_t> tileSizes)639 mlir::createLinalgTilingToParallelLoopsPass(ArrayRef<int64_t> tileSizes) {
640 return std::make_unique<LinalgTilingToParallelLoopsPass>(tileSizes);
641 }
642