• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- Bufferize.cpp - Bufferization for std ops --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements bufferization of std ops.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "mlir/Transforms/Bufferize.h"
14 #include "PassDetail.h"
15 #include "mlir/Dialect/SCF/SCF.h"
16 #include "mlir/Dialect/StandardOps/IR/Ops.h"
17 #include "mlir/Dialect/StandardOps/Transforms/Passes.h"
18 #include "mlir/IR/BlockAndValueMapping.h"
19 #include "mlir/Transforms/DialectConversion.h"
20 
21 using namespace mlir;
22 
23 namespace {
24 class BufferizeDimOp : public OpConversionPattern<DimOp> {
25 public:
26   using OpConversionPattern::OpConversionPattern;
27   LogicalResult
matchAndRewrite(DimOp op,ArrayRef<Value> operands,ConversionPatternRewriter & rewriter) const28   matchAndRewrite(DimOp op, ArrayRef<Value> operands,
29                   ConversionPatternRewriter &rewriter) const override {
30     DimOp::Adaptor adaptor(operands);
31     rewriter.replaceOpWithNewOp<DimOp>(op, adaptor.memrefOrTensor(),
32                                        adaptor.index());
33     return success();
34   }
35 };
36 } // namespace
37 
38 namespace {
39 class BufferizeDynamicTensorFromElementsOp
40     : public OpConversionPattern<DynamicTensorFromElementsOp> {
41 public:
42   using OpConversionPattern::OpConversionPattern;
43 
44   LogicalResult
matchAndRewrite(DynamicTensorFromElementsOp op,ArrayRef<Value> operands,ConversionPatternRewriter & rewriter) const45   matchAndRewrite(DynamicTensorFromElementsOp op, ArrayRef<Value> operands,
46                   ConversionPatternRewriter &rewriter) const final {
47     // Allocate memory.
48     Location loc = op.getLoc();
49     DynamicTensorFromElementsOp::Adaptor transformed(operands);
50     RankedTensorType tensorType = op.getType().cast<RankedTensorType>();
51     MemRefType memrefType =
52         MemRefType::get(tensorType.getShape(), tensorType.getElementType());
53     Value result =
54         rewriter.create<AllocOp>(loc, memrefType, transformed.dynamicExtents());
55 
56     // Collect loop bounds.
57     int64_t rank = tensorType.getRank();
58     Value zero = rewriter.create<ConstantIndexOp>(loc, 0);
59     Value one = rewriter.create<ConstantIndexOp>(loc, 1);
60     SmallVector<Value, 4> lowerBounds(rank, zero);
61     SmallVector<Value, 4> steps(rank, one);
62     SmallVector<Value, 4> upperBounds;
63     int nextDynamicIndex = 0;
64     for (int i = 0; i < rank; i++) {
65       Value upperBound =
66           tensorType.isDynamicDim(i)
67               ? transformed.dynamicExtents()[nextDynamicIndex++]
68               : rewriter.create<ConstantIndexOp>(loc, memrefType.getDimSize(i));
69       upperBounds.push_back(upperBound);
70     }
71 
72     // Generate tensor elements with a parallel loop.
73     rewriter.create<scf::ParallelOp>(
74         loc, lowerBounds, upperBounds, steps,
75         [&](OpBuilder &b, Location loc, ValueRange ivs) {
76           BlockAndValueMapping mapping;
77           mapping.map(op.body().getArguments(), ivs);
78           for (auto &nestedOp : op.getBody()->without_terminator())
79             b.clone(nestedOp, mapping);
80           auto yieldOp = cast<YieldOp>(op.getBody()->getTerminator());
81           b.create<StoreOp>(loc, mapping.lookup(yieldOp.value()), result, ivs);
82           b.create<scf::YieldOp>(loc);
83         });
84 
85     rewriter.replaceOp(op, {result});
86     return success();
87   }
88 };
89 } // namespace
90 
91 namespace {
92 class BufferizeExtractElementOp : public OpConversionPattern<ExtractElementOp> {
93 public:
94   using OpConversionPattern::OpConversionPattern;
95   LogicalResult
matchAndRewrite(ExtractElementOp op,ArrayRef<Value> operands,ConversionPatternRewriter & rewriter) const96   matchAndRewrite(ExtractElementOp op, ArrayRef<Value> operands,
97                   ConversionPatternRewriter &rewriter) const override {
98     ExtractElementOp::Adaptor adaptor(operands);
99     rewriter.replaceOpWithNewOp<LoadOp>(op, adaptor.aggregate(),
100                                         adaptor.indices());
101     return success();
102   }
103 };
104 } // namespace
105 
106 namespace {
107 class BufferizeSelectOp : public OpConversionPattern<SelectOp> {
108 public:
109   using OpConversionPattern::OpConversionPattern;
110   LogicalResult
matchAndRewrite(SelectOp op,ArrayRef<Value> operands,ConversionPatternRewriter & rewriter) const111   matchAndRewrite(SelectOp op, ArrayRef<Value> operands,
112                   ConversionPatternRewriter &rewriter) const override {
113     if (!op.condition().getType().isa<IntegerType>())
114       return rewriter.notifyMatchFailure(op, "requires scalar condition");
115 
116     SelectOp::Adaptor adaptor(operands);
117     rewriter.replaceOpWithNewOp<SelectOp>(
118         op, adaptor.condition(), adaptor.true_value(), adaptor.false_value());
119     return success();
120   }
121 };
122 } // namespace
123 
124 namespace {
125 class BufferizeTensorCastOp : public OpConversionPattern<TensorCastOp> {
126 public:
127   using OpConversionPattern::OpConversionPattern;
128   LogicalResult
matchAndRewrite(TensorCastOp op,ArrayRef<Value> operands,ConversionPatternRewriter & rewriter) const129   matchAndRewrite(TensorCastOp op, ArrayRef<Value> operands,
130                   ConversionPatternRewriter &rewriter) const override {
131     auto resultType = getTypeConverter()->convertType(op.getType());
132     rewriter.replaceOpWithNewOp<MemRefCastOp>(op, resultType, operands[0]);
133     return success();
134   }
135 };
136 } // namespace
137 
138 namespace {
139 class BufferizeTensorFromElementsOp
140     : public OpConversionPattern<TensorFromElementsOp> {
141 public:
142   using OpConversionPattern::OpConversionPattern;
143   LogicalResult
matchAndRewrite(TensorFromElementsOp op,ArrayRef<Value> operands,ConversionPatternRewriter & rewriter) const144   matchAndRewrite(TensorFromElementsOp op, ArrayRef<Value> operands,
145                   ConversionPatternRewriter &rewriter) const override {
146     int numberOfElements = op.elements().size();
147     auto resultType = MemRefType::get(
148         {numberOfElements}, op.getType().cast<TensorType>().getElementType());
149     Value result = rewriter.create<AllocOp>(op.getLoc(), resultType);
150     for (auto element : llvm::enumerate(op.elements())) {
151       Value index =
152           rewriter.create<ConstantIndexOp>(op.getLoc(), element.index());
153       rewriter.create<StoreOp>(op.getLoc(), element.value(), result, index);
154     }
155     rewriter.replaceOp(op, {result});
156     return success();
157   }
158 };
159 } // namespace
160 
populateStdBufferizePatterns(MLIRContext * context,BufferizeTypeConverter & typeConverter,OwningRewritePatternList & patterns)161 void mlir::populateStdBufferizePatterns(MLIRContext *context,
162                                         BufferizeTypeConverter &typeConverter,
163                                         OwningRewritePatternList &patterns) {
164   patterns.insert<
165       // clang-format off
166       BufferizeDimOp,
167       BufferizeDynamicTensorFromElementsOp,
168       BufferizeExtractElementOp,
169       BufferizeSelectOp,
170       BufferizeTensorCastOp,
171       BufferizeTensorFromElementsOp
172       // clang-format on
173       >(typeConverter, context);
174 }
175 
176 namespace {
177 struct StdBufferizePass : public StdBufferizeBase<StdBufferizePass> {
runOnFunction__anonb36373770811::StdBufferizePass178   void runOnFunction() override {
179     auto *context = &getContext();
180     BufferizeTypeConverter typeConverter;
181     OwningRewritePatternList patterns;
182     ConversionTarget target(*context);
183 
184     target.addLegalDialect<StandardOpsDialect>();
185     target.addLegalDialect<scf::SCFDialect>();
186 
187     populateStdBufferizePatterns(context, typeConverter, patterns);
188     target.addIllegalOp<DynamicTensorFromElementsOp, ExtractElementOp,
189                         TensorCastOp, TensorFromElementsOp>();
190     // We only bufferize the case of tensor selected type and scalar condition,
191     // as that boils down to a select over memref descriptors (don't need to
192     // touch the data).
193     target.addDynamicallyLegalOp<SelectOp>([&](SelectOp op) {
194       return typeConverter.isLegal(op.getType()) ||
195              !op.condition().getType().isa<IntegerType>();
196     });
197     target.addDynamicallyLegalOp<DimOp>(
198         [&](DimOp op) { return typeConverter.isLegal(op); });
199     if (failed(
200             applyPartialConversion(getFunction(), target, std::move(patterns))))
201       signalPassFailure();
202   }
203 };
204 } // namespace
205 
createStdBufferizePass()206 std::unique_ptr<Pass> mlir::createStdBufferizePass() {
207   return std::make_unique<StdBufferizePass>();
208 }
209