1 /*
2 * Copyright 2011 INRIA Saclay
3 * Copyright 2013 Ecole Normale Superieure
4 * Copyright 2015 Sven Verdoolaege
5 *
6 * Use of this software is governed by the MIT license
7 *
8 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
9 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
10 * 91893 Orsay, France
11 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
12 */
13
14 #include <assert.h>
15 #include <stdio.h>
16 #include <stdlib.h>
17 #include <string.h>
18 #include <isl/ctx.h>
19 #include <isl/id.h>
20 #include <isl/val.h>
21 #include <isl/set.h>
22 #include <isl/union_set.h>
23 #include <isl/union_map.h>
24 #include <isl/aff.h>
25 #include <isl/flow.h>
26 #include <isl/options.h>
27 #include <isl/schedule.h>
28 #include <isl/ast.h>
29 #include <isl/id_to_ast_expr.h>
30 #include <isl/ast_build.h>
31 #include <isl/schedule.h>
32 #include <pet.h>
33 #include "ppcg.h"
34 #include "ppcg_options.h"
35 #include "cuda.h"
36 #include "opencl.h"
37 #include "cpu.h"
38
39 struct options {
40 struct pet_options *pet;
41 struct ppcg_options *ppcg;
42 char *input;
43 char *output;
44 };
45
46 const char *ppcg_version(void);
print_version(void)47 static void print_version(void)
48 {
49 printf("%s", ppcg_version());
50 }
51
ISL_ARGS_START(struct options,options_args)52 ISL_ARGS_START(struct options, options_args)
53 ISL_ARG_CHILD(struct options, pet, "pet", &pet_options_args, "pet options")
54 ISL_ARG_CHILD(struct options, ppcg, NULL, &ppcg_options_args, "ppcg options")
55 ISL_ARG_STR(struct options, output, 'o', NULL,
56 "filename", NULL, "output filename (c and opencl targets)")
57 ISL_ARG_ARG(struct options, input, "input", NULL)
58 ISL_ARG_VERSION(print_version)
59 ISL_ARGS_END
60
61 ISL_ARG_DEF(options, struct options, options_args)
62
63 /* Return a pointer to the final path component of "filename" or
64 * to "filename" itself if it does not contain any components.
65 */
66 const char *ppcg_base_name(const char *filename)
67 {
68 const char *base;
69
70 base = strrchr(filename, '/');
71 if (base)
72 return ++base;
73 else
74 return filename;
75 }
76
77 /* Copy the base name of "input" to "name" and return its length.
78 * "name" is not NULL terminated.
79 *
80 * In particular, remove all leading directory components and
81 * the final extension, if any.
82 */
ppcg_extract_base_name(char * name,const char * input)83 int ppcg_extract_base_name(char *name, const char *input)
84 {
85 const char *base;
86 const char *ext;
87 int len;
88
89 base = ppcg_base_name(input);
90 ext = strrchr(base, '.');
91 len = ext ? ext - base : strlen(base);
92
93 memcpy(name, base, len);
94
95 return len;
96 }
97
98 /* Does "scop" refer to any arrays that are declared, but not
99 * exposed to the code after the scop?
100 */
ppcg_scop_any_hidden_declarations(struct ppcg_scop * scop)101 int ppcg_scop_any_hidden_declarations(struct ppcg_scop *scop)
102 {
103 int i;
104
105 if (!scop)
106 return 0;
107
108 // This is a pet feature not available in Polly.
109 return 0;
110
111 for (i = 0; i < scop->pet->n_array; ++i)
112 if (scop->pet->arrays[i]->declared &&
113 !scop->pet->arrays[i]->exposed)
114 return 1;
115
116 return 0;
117 }
118
119 /* Collect all variable names that are in use in "scop".
120 * In particular, collect all parameters in the context and
121 * all the array names.
122 * Store these names in an isl_id_to_ast_expr by mapping
123 * them to a dummy value (0).
124 */
collect_names(struct pet_scop * scop)125 static __isl_give isl_id_to_ast_expr *collect_names(struct pet_scop *scop)
126 {
127 int i, n;
128 isl_ctx *ctx;
129 isl_ast_expr *zero;
130 isl_id_to_ast_expr *names;
131
132 ctx = isl_set_get_ctx(scop->context);
133
134 n = isl_set_dim(scop->context, isl_dim_param);
135
136 names = isl_id_to_ast_expr_alloc(ctx, n + scop->n_array);
137 zero = isl_ast_expr_from_val(isl_val_zero(ctx));
138
139 for (i = 0; i < n; ++i) {
140 isl_id *id;
141
142 id = isl_set_get_dim_id(scop->context, isl_dim_param, i);
143 names = isl_id_to_ast_expr_set(names,
144 id, isl_ast_expr_copy(zero));
145 }
146
147 for (i = 0; i < scop->n_array; ++i) {
148 struct pet_array *array = scop->arrays[i];
149 isl_id *id;
150
151 id = isl_set_get_tuple_id(array->extent);
152 names = isl_id_to_ast_expr_set(names,
153 id, isl_ast_expr_copy(zero));
154 }
155
156 isl_ast_expr_free(zero);
157
158 return names;
159 }
160
161 /* Return an isl_id called "prefix%d", with "%d" set to "i".
162 * If an isl_id with such a name already appears among the variable names
163 * of "scop", then adjust the name to "prefix%d_%d".
164 */
generate_name(struct ppcg_scop * scop,const char * prefix,int i)165 static __isl_give isl_id *generate_name(struct ppcg_scop *scop,
166 const char *prefix, int i)
167 {
168 int j;
169 char name[16];
170 isl_ctx *ctx;
171 isl_id *id;
172 int has_name;
173
174 ctx = isl_set_get_ctx(scop->context);
175 snprintf(name, sizeof(name), "%s%d", prefix, i);
176 id = isl_id_alloc(ctx, name, NULL);
177
178 j = 0;
179 while ((has_name = isl_id_to_ast_expr_has(scop->names, id)) == 1) {
180 isl_id_free(id);
181 snprintf(name, sizeof(name), "%s%d_%d", prefix, i, j++);
182 id = isl_id_alloc(ctx, name, NULL);
183 }
184
185 return has_name < 0 ? isl_id_free(id) : id;
186 }
187
188 /* Return a list of "n" isl_ids of the form "prefix%d".
189 * If an isl_id with such a name already appears among the variable names
190 * of "scop", then adjust the name to "prefix%d_%d".
191 */
ppcg_scop_generate_names(struct ppcg_scop * scop,int n,const char * prefix)192 __isl_give isl_id_list *ppcg_scop_generate_names(struct ppcg_scop *scop,
193 int n, const char *prefix)
194 {
195 int i;
196 isl_ctx *ctx;
197 isl_id_list *names;
198
199 ctx = isl_set_get_ctx(scop->context);
200 names = isl_id_list_alloc(ctx, n);
201 for (i = 0; i < n; ++i) {
202 isl_id *id;
203
204 id = generate_name(scop, prefix, i);
205 names = isl_id_list_add(names, id);
206 }
207
208 return names;
209 }
210
211 /* Is "stmt" not a kill statement?
212 */
is_not_kill(struct pet_stmt * stmt)213 static int is_not_kill(struct pet_stmt *stmt)
214 {
215 return !pet_stmt_is_kill(stmt);
216 }
217
218 /* Collect the iteration domains of the statements in "scop" that
219 * satisfy "pred".
220 */
collect_domains(struct pet_scop * scop,int (* pred)(struct pet_stmt * stmt))221 static __isl_give isl_union_set *collect_domains(struct pet_scop *scop,
222 int (*pred)(struct pet_stmt *stmt))
223 {
224 int i;
225 isl_set *domain_i;
226 isl_union_set *domain;
227
228 if (!scop)
229 return NULL;
230
231 domain = isl_union_set_empty(isl_set_get_space(scop->context));
232
233 for (i = 0; i < scop->n_stmt; ++i) {
234 struct pet_stmt *stmt = scop->stmts[i];
235
236 if (!pred(stmt))
237 continue;
238
239 if (stmt->n_arg > 0)
240 isl_die(isl_union_set_get_ctx(domain),
241 isl_error_unsupported,
242 "data dependent conditions not supported",
243 return isl_union_set_free(domain));
244
245 domain_i = isl_set_copy(scop->stmts[i]->domain);
246 domain = isl_union_set_add_set(domain, domain_i);
247 }
248
249 return domain;
250 }
251
252 /* Collect the iteration domains of the statements in "scop",
253 * skipping kill statements.
254 */
collect_non_kill_domains(struct pet_scop * scop)255 static __isl_give isl_union_set *collect_non_kill_domains(struct pet_scop *scop)
256 {
257 return collect_domains(scop, &is_not_kill);
258 }
259
260 /* This function is used as a callback to pet_expr_foreach_call_expr
261 * to detect if there is any call expression in the input expression.
262 * Assign the value 1 to the integer that "user" points to and
263 * abort the search since we have found what we were looking for.
264 */
set_has_call(__isl_keep pet_expr * expr,void * user)265 static int set_has_call(__isl_keep pet_expr *expr, void *user)
266 {
267 int *has_call = user;
268
269 *has_call = 1;
270
271 return -1;
272 }
273
274 /* Does "expr" contain any call expressions?
275 */
expr_has_call(__isl_keep pet_expr * expr)276 static int expr_has_call(__isl_keep pet_expr *expr)
277 {
278 int has_call = 0;
279
280 if (pet_expr_foreach_call_expr(expr, &set_has_call, &has_call) < 0 &&
281 !has_call)
282 return -1;
283
284 return has_call;
285 }
286
287 /* This function is a callback for pet_tree_foreach_expr.
288 * If "expr" contains any call (sub)expressions, then set *has_call
289 * and abort the search.
290 */
check_call(__isl_keep pet_expr * expr,void * user)291 static int check_call(__isl_keep pet_expr *expr, void *user)
292 {
293 int *has_call = user;
294
295 if (expr_has_call(expr))
296 *has_call = 1;
297
298 return *has_call ? -1 : 0;
299 }
300
301 /* Does "stmt" contain any call expressions?
302 */
has_call(struct pet_stmt * stmt)303 static int has_call(struct pet_stmt *stmt)
304 {
305 int has_call = 0;
306
307 if (pet_tree_foreach_expr(stmt->body, &check_call, &has_call) < 0 &&
308 !has_call)
309 return -1;
310
311 return has_call;
312 }
313
314 /* Collect the iteration domains of the statements in "scop"
315 * that contain a call expression.
316 */
collect_call_domains(struct pet_scop * scop)317 static __isl_give isl_union_set *collect_call_domains(struct pet_scop *scop)
318 {
319 return collect_domains(scop, &has_call);
320 }
321
322 /* Given a union of "tagged" access relations of the form
323 *
324 * [S_i[...] -> R_j[]] -> A_k[...]
325 *
326 * project out the "tags" (R_j[]).
327 * That is, return a union of relations of the form
328 *
329 * S_i[...] -> A_k[...]
330 */
project_out_tags(__isl_take isl_union_map * umap)331 static __isl_give isl_union_map *project_out_tags(
332 __isl_take isl_union_map *umap)
333 {
334 return isl_union_map_domain_factor_domain(umap);
335 }
336
337 /* Construct a function from tagged iteration domains to the corresponding
338 * untagged iteration domains with as range of the wrapped map in the domain
339 * the reference tags that appear in any of the reads, writes or kills.
340 * Store the result in ps->tagger.
341 *
342 * For example, if the statement with iteration space S[i,j]
343 * contains two array references R_1[] and R_2[], then ps->tagger will contain
344 *
345 * { [S[i,j] -> R_1[]] -> S[i,j]; [S[i,j] -> R_2[]] -> S[i,j] }
346 */
compute_tagger(struct ppcg_scop * ps)347 void compute_tagger(struct ppcg_scop *ps)
348 {
349 isl_union_map *tagged;
350 isl_union_pw_multi_aff *tagger;
351
352 tagged = isl_union_map_copy(ps->tagged_reads);
353 tagged = isl_union_map_union(tagged,
354 isl_union_map_copy(ps->tagged_may_writes));
355 tagged = isl_union_map_union(tagged,
356 isl_union_map_copy(ps->tagged_must_kills));
357 tagged = isl_union_map_universe(tagged);
358 tagged = isl_union_set_unwrap(isl_union_map_domain(tagged));
359
360 tagger = isl_union_map_domain_map_union_pw_multi_aff(tagged);
361
362 ps->tagger = tagger;
363 }
364
365 /* Compute the live out accesses, i.e., the writes that are
366 * potentially not killed by any kills or any other writes, and
367 * store them in ps->live_out.
368 *
369 * We compute the "dependence" of any "kill" (an explicit kill
370 * or a must write) on any may write.
371 * The elements accessed by the may writes with a "depending" kill
372 * also accessing the element are definitely killed.
373 * The remaining may writes can potentially be live out.
374 *
375 * The result of the dependence analysis is
376 *
377 * { IW -> [IK -> A] }
378 *
379 * with IW the instance of the write statement, IK the instance of kill
380 * statement and A the element that was killed.
381 * The range factor range is
382 *
383 * { IW -> A }
384 *
385 * containing all such pairs for which there is a kill statement instance,
386 * i.e., all pairs that have been killed.
387 */
compute_live_out(struct ppcg_scop * ps)388 static void compute_live_out(struct ppcg_scop *ps)
389 {
390 isl_schedule *schedule;
391 isl_union_map *kills;
392 isl_union_map *exposed;
393 isl_union_map *covering;
394 isl_union_access_info *access;
395 isl_union_flow *flow;
396
397 schedule = isl_schedule_copy(ps->schedule);
398 kills = isl_union_map_union(isl_union_map_copy(ps->must_writes),
399 isl_union_map_copy(ps->must_kills));
400 access = isl_union_access_info_from_sink(kills);
401 access = isl_union_access_info_set_may_source(access,
402 isl_union_map_copy(ps->may_writes));
403 access = isl_union_access_info_set_schedule(access, schedule);
404 flow = isl_union_access_info_compute_flow(access);
405 covering = isl_union_flow_get_full_may_dependence(flow);
406 isl_union_flow_free(flow);
407
408 covering = isl_union_map_range_factor_range(covering);
409 exposed = isl_union_map_copy(ps->may_writes);
410 exposed = isl_union_map_subtract(exposed, covering);
411 ps->live_out = exposed;
412 }
413
414 /* Compute the tagged flow dependences and the live_in accesses and store
415 * the results in ps->tagged_dep_flow and ps->live_in.
416 *
417 * We allow both the must writes and the must kills to serve as
418 * definite sources such that a subsequent read would not depend
419 * on any earlier write. The resulting flow dependences with
420 * a must kill as source reflect possibly uninitialized reads.
421 * No dependences need to be introduced to protect such reads
422 * (other than those imposed by potential flows from may writes
423 * that follow the kill). We therefore remove those flow dependences.
424 * This is also useful for the dead code elimination, which assumes
425 * the flow sources are non-kill instances.
426 */
compute_tagged_flow_dep_only(struct ppcg_scop * ps)427 static void compute_tagged_flow_dep_only(struct ppcg_scop *ps)
428 {
429 isl_union_pw_multi_aff *tagger;
430 isl_schedule *schedule;
431 isl_union_map *live_in;
432 isl_union_access_info *access;
433 isl_union_flow *flow;
434 isl_union_map *must_source;
435 isl_union_map *kills;
436 isl_union_map *tagged_flow;
437
438 tagger = isl_union_pw_multi_aff_copy(ps->tagger);
439 schedule = isl_schedule_copy(ps->schedule);
440 schedule = isl_schedule_pullback_union_pw_multi_aff(schedule, tagger);
441 kills = isl_union_map_copy(ps->tagged_must_kills);
442 must_source = isl_union_map_copy(ps->tagged_must_writes);
443 must_source = isl_union_map_union(must_source,
444 isl_union_map_copy(kills));
445 access = isl_union_access_info_from_sink(
446 isl_union_map_copy(ps->tagged_reads));
447 access = isl_union_access_info_set_must_source(access, must_source);
448 access = isl_union_access_info_set_may_source(access,
449 isl_union_map_copy(ps->tagged_may_writes));
450 access = isl_union_access_info_set_schedule(access, schedule);
451 flow = isl_union_access_info_compute_flow(access);
452 tagged_flow = isl_union_flow_get_may_dependence(flow);
453 tagged_flow = isl_union_map_subtract_domain(tagged_flow,
454 isl_union_map_domain(kills));
455 ps->tagged_dep_flow = tagged_flow;
456 live_in = isl_union_flow_get_may_no_source(flow);
457 ps->live_in = project_out_tags(live_in);
458 isl_union_flow_free(flow);
459 }
460
461 /* Compute ps->dep_flow from ps->tagged_dep_flow
462 * by projecting out the reference tags.
463 */
derive_flow_dep_from_tagged_flow_dep(struct ppcg_scop * ps)464 static void derive_flow_dep_from_tagged_flow_dep(struct ppcg_scop *ps)
465 {
466 ps->dep_flow = isl_union_map_copy(ps->tagged_dep_flow);
467 ps->dep_flow = isl_union_map_factor_domain(ps->dep_flow);
468 }
469
470 /* Compute the flow dependences and the live_in accesses and store
471 * the results in ps->dep_flow and ps->live_in.
472 * A copy of the flow dependences, tagged with the reference tags
473 * is stored in ps->tagged_dep_flow.
474 *
475 * We first compute ps->tagged_dep_flow, i.e., the tagged flow dependences
476 * and then project out the tags.
477 */
compute_tagged_flow_dep(struct ppcg_scop * ps)478 static void compute_tagged_flow_dep(struct ppcg_scop *ps)
479 {
480 compute_tagged_flow_dep_only(ps);
481 derive_flow_dep_from_tagged_flow_dep(ps);
482 }
483
484 /* Compute the order dependences that prevent the potential live ranges
485 * from overlapping.
486 *
487 * In particular, construct a union of relations
488 *
489 * [R[...] -> R_1[]] -> [W[...] -> R_2[]]
490 *
491 * where [R[...] -> R_1[]] is the range of one or more live ranges
492 * (i.e., a read) and [W[...] -> R_2[]] is the domain of one or more
493 * live ranges (i.e., a write). Moreover, the read and the write
494 * access the same memory element and the read occurs before the write
495 * in the original schedule.
496 * The scheduler allows some of these dependences to be violated, provided
497 * the adjacent live ranges are all local (i.e., their domain and range
498 * are mapped to the same point by the current schedule band).
499 *
500 * Note that if a live range is not local, then we need to make
501 * sure it does not overlap with _any_ other live range, and not
502 * just with the "previous" and/or the "next" live range.
503 * We therefore add order dependences between reads and
504 * _any_ later potential write.
505 *
506 * We also need to be careful about writes without a corresponding read.
507 * They are already prevented from moving past non-local preceding
508 * intervals, but we also need to prevent them from moving past non-local
509 * following intervals. We therefore also add order dependences from
510 * potential writes that do not appear in any intervals
511 * to all later potential writes.
512 * Note that dead code elimination should have removed most of these
513 * dead writes, but the dead code elimination may not remove all dead writes,
514 * so we need to consider them to be safe.
515 *
516 * The order dependences are computed by computing the "dataflow"
517 * from the above unmatched writes and the reads to the may writes.
518 * The unmatched writes and the reads are treated as may sources
519 * such that they would not kill order dependences from earlier
520 * such writes and reads.
521 */
compute_order_dependences(struct ppcg_scop * ps)522 static void compute_order_dependences(struct ppcg_scop *ps)
523 {
524 isl_union_map *reads;
525 isl_union_map *shared_access;
526 isl_union_set *matched;
527 isl_union_map *unmatched;
528 isl_union_pw_multi_aff *tagger;
529 isl_schedule *schedule;
530 isl_union_access_info *access;
531 isl_union_flow *flow;
532
533 tagger = isl_union_pw_multi_aff_copy(ps->tagger);
534 schedule = isl_schedule_copy(ps->schedule);
535 schedule = isl_schedule_pullback_union_pw_multi_aff(schedule, tagger);
536 reads = isl_union_map_copy(ps->tagged_reads);
537 matched = isl_union_map_domain(isl_union_map_copy(ps->tagged_dep_flow));
538 unmatched = isl_union_map_copy(ps->tagged_may_writes);
539 unmatched = isl_union_map_subtract_domain(unmatched, matched);
540 reads = isl_union_map_union(reads, unmatched);
541 access = isl_union_access_info_from_sink(
542 isl_union_map_copy(ps->tagged_may_writes));
543 access = isl_union_access_info_set_may_source(access, reads);
544 access = isl_union_access_info_set_schedule(access, schedule);
545 flow = isl_union_access_info_compute_flow(access);
546 shared_access = isl_union_flow_get_may_dependence(flow);
547 isl_union_flow_free(flow);
548
549 ps->tagged_dep_order = isl_union_map_copy(shared_access);
550 ps->dep_order = isl_union_map_factor_domain(shared_access);
551 }
552
553 /* Compute those validity dependences of the program represented by "scop"
554 * that should be unconditionally enforced even when live-range reordering
555 * is used.
556 *
557 * In particular, compute the external false dependences
558 * as well as order dependences between sources with the same sink.
559 * The anti-dependences are already taken care of by the order dependences.
560 * The external false dependences are only used to ensure that live-in and
561 * live-out data is not overwritten by any writes inside the scop.
562 * The independences are removed from the external false dependences,
563 * but not from the order dependences between sources with the same sink.
564 *
565 * In particular, the reads from live-in data need to precede any
566 * later write to the same memory element.
567 * As to live-out data, the last writes need to remain the last writes.
568 * That is, any earlier write in the original schedule needs to precede
569 * the last write to the same memory element in the computed schedule.
570 * The possible last writes have been computed by compute_live_out.
571 * They may include kills, but if the last access is a kill,
572 * then the corresponding dependences will effectively be ignored
573 * since we do not schedule any kill statements.
574 *
575 * Note that the set of live-in and live-out accesses may be
576 * an overapproximation. There may therefore be potential writes
577 * before a live-in access and after a live-out access.
578 *
579 * In the presence of may-writes, there may be multiple live-ranges
580 * with the same sink, accessing the same memory element.
581 * The sources of these live-ranges need to be executed
582 * in the same relative order as in the original program
583 * since we do not know which of the may-writes will actually
584 * perform a write. Consider all sources that share a sink and
585 * that may write to the same memory element and compute
586 * the order dependences among them.
587 */
compute_forced_dependences(struct ppcg_scop * ps)588 static void compute_forced_dependences(struct ppcg_scop *ps)
589 {
590 isl_union_map *shared_access;
591 isl_union_map *exposed;
592 isl_union_map *live_in;
593 isl_union_map *sink_access;
594 isl_union_map *shared_sink;
595 isl_union_access_info *access;
596 isl_union_flow *flow;
597 isl_schedule *schedule;
598
599 exposed = isl_union_map_copy(ps->live_out);
600 schedule = isl_schedule_copy(ps->schedule);
601 access = isl_union_access_info_from_sink(exposed);
602 access = isl_union_access_info_set_may_source(access,
603 isl_union_map_copy(ps->may_writes));
604 access = isl_union_access_info_set_schedule(access, schedule);
605 flow = isl_union_access_info_compute_flow(access);
606 shared_access = isl_union_flow_get_may_dependence(flow);
607 isl_union_flow_free(flow);
608 ps->dep_forced = shared_access;
609
610 schedule = isl_schedule_copy(ps->schedule);
611 access = isl_union_access_info_from_sink(
612 isl_union_map_copy(ps->may_writes));
613 access = isl_union_access_info_set_may_source(access,
614 isl_union_map_copy(ps->live_in));
615 access = isl_union_access_info_set_schedule(access, schedule);
616 flow = isl_union_access_info_compute_flow(access);
617 live_in = isl_union_flow_get_may_dependence(flow);
618 isl_union_flow_free(flow);
619
620 ps->dep_forced = isl_union_map_union(ps->dep_forced, live_in);
621 ps->dep_forced = isl_union_map_subtract(ps->dep_forced,
622 isl_union_map_copy(ps->independence));
623
624 schedule = isl_schedule_copy(ps->schedule);
625 sink_access = isl_union_map_copy(ps->tagged_dep_flow);
626 sink_access = isl_union_map_range_product(sink_access,
627 isl_union_map_copy(ps->tagged_may_writes));
628 sink_access = isl_union_map_domain_factor_domain(sink_access);
629 access = isl_union_access_info_from_sink(
630 isl_union_map_copy(sink_access));
631 access = isl_union_access_info_set_may_source(access, sink_access);
632 access = isl_union_access_info_set_schedule(access, schedule);
633 flow = isl_union_access_info_compute_flow(access);
634 shared_sink = isl_union_flow_get_may_dependence(flow);
635 isl_union_flow_free(flow);
636 ps->dep_forced = isl_union_map_union(ps->dep_forced, shared_sink);
637 }
638
639 /* Remove independence from the tagged flow dependences.
640 * Since the user has guaranteed that source and sink of an independence
641 * can be executed in any order, there cannot be a flow dependence
642 * between them, so they can be removed from the set of flow dependences.
643 * However, if the source of such a flow dependence is a must write,
644 * then it may have killed other potential sources, which would have
645 * to be recovered if we were to remove those flow dependences.
646 * We therefore keep the flow dependences that originate in a must write,
647 * even if it corresponds to a known independence.
648 */
remove_independences_from_tagged_flow(struct ppcg_scop * ps)649 static void remove_independences_from_tagged_flow(struct ppcg_scop *ps)
650 {
651 isl_union_map *tf;
652 isl_union_set *indep;
653 isl_union_set *mw;
654
655 tf = isl_union_map_copy(ps->tagged_dep_flow);
656 tf = isl_union_map_zip(tf);
657 indep = isl_union_map_wrap(isl_union_map_copy(ps->independence));
658 tf = isl_union_map_intersect_domain(tf, indep);
659 tf = isl_union_map_zip(tf);
660 mw = isl_union_map_domain(isl_union_map_copy(ps->tagged_must_writes));
661 tf = isl_union_map_subtract_domain(tf, mw);
662 ps->tagged_dep_flow = isl_union_map_subtract(ps->tagged_dep_flow, tf);
663 }
664
665 /* Compute the dependences of the program represented by "scop"
666 * in case live range reordering is allowed.
667 *
668 * We compute the actual live ranges and the corresponding order
669 * false dependences.
670 *
671 * The independences are removed from the flow dependences
672 * (provided the source is not a must-write) as well as
673 * from the external false dependences (by compute_forced_dependences).
674 */
compute_live_range_reordering_dependences(struct ppcg_scop * ps)675 static void compute_live_range_reordering_dependences(struct ppcg_scop *ps)
676 {
677 compute_tagged_flow_dep_only(ps);
678 remove_independences_from_tagged_flow(ps);
679 derive_flow_dep_from_tagged_flow_dep(ps);
680 compute_order_dependences(ps);
681 compute_forced_dependences(ps);
682 }
683
684 /* Compute the potential flow dependences and the potential live in
685 * accesses.
686 */
compute_flow_dep(struct ppcg_scop * ps)687 static void compute_flow_dep(struct ppcg_scop *ps)
688 {
689 isl_union_access_info *access;
690 isl_union_flow *flow;
691
692 access = isl_union_access_info_from_sink(isl_union_map_copy(ps->reads));
693 access = isl_union_access_info_set_must_source(access,
694 isl_union_map_copy(ps->must_writes));
695 access = isl_union_access_info_set_may_source(access,
696 isl_union_map_copy(ps->may_writes));
697 access = isl_union_access_info_set_schedule(access,
698 isl_schedule_copy(ps->schedule));
699 flow = isl_union_access_info_compute_flow(access);
700
701 ps->dep_flow = isl_union_flow_get_may_dependence(flow);
702 ps->live_in = isl_union_flow_get_may_no_source(flow);
703 isl_union_flow_free(flow);
704 }
705
706 /* Compute the dependences of the program represented by "scop".
707 * Store the computed potential flow dependences
708 * in scop->dep_flow and the reads with potentially no corresponding writes in
709 * scop->live_in.
710 * Store the potential live out accesses in scop->live_out.
711 * Store the potential false (anti and output) dependences in scop->dep_false.
712 *
713 * If live range reordering is allowed, then we compute a separate
714 * set of order dependences and a set of external false dependences
715 * in compute_live_range_reordering_dependences.
716 */
compute_dependences(struct ppcg_scop * scop)717 void compute_dependences(struct ppcg_scop *scop)
718 {
719 isl_union_map *may_source;
720 isl_union_access_info *access;
721 isl_union_flow *flow;
722
723 if (!scop)
724 return;
725
726 compute_live_out(scop);
727
728 if (scop->options->live_range_reordering)
729 compute_live_range_reordering_dependences(scop);
730 else if (scop->options->target != PPCG_TARGET_C)
731 compute_tagged_flow_dep(scop);
732 else
733 compute_flow_dep(scop);
734
735 may_source = isl_union_map_union(isl_union_map_copy(scop->may_writes),
736 isl_union_map_copy(scop->reads));
737 access = isl_union_access_info_from_sink(
738 isl_union_map_copy(scop->may_writes));
739 access = isl_union_access_info_set_must_source(access,
740 isl_union_map_copy(scop->must_writes));
741 access = isl_union_access_info_set_may_source(access, may_source);
742 access = isl_union_access_info_set_schedule(access,
743 isl_schedule_copy(scop->schedule));
744 flow = isl_union_access_info_compute_flow(access);
745
746 scop->dep_false = isl_union_flow_get_may_dependence(flow);
747 scop->dep_false = isl_union_map_coalesce(scop->dep_false);
748 isl_union_flow_free(flow);
749 }
750
751 /* Eliminate dead code from ps->domain.
752 *
753 * In particular, intersect both ps->domain and the domain of
754 * ps->schedule with the (parts of) iteration
755 * domains that are needed to produce the output or for statement
756 * iterations that call functions.
757 * Also intersect the range of the dataflow dependences with
758 * this domain such that the removed instances will no longer
759 * be considered as targets of dataflow.
760 *
761 * We start with the iteration domains that call functions
762 * and the set of iterations that last write to an array
763 * (except those that are later killed).
764 *
765 * Then we add those statement iterations that produce
766 * something needed by the "live" statements iterations.
767 * We keep doing this until no more statement iterations can be added.
768 * To ensure that the procedure terminates, we compute the affine
769 * hull of the live iterations (bounded to the original iteration
770 * domains) each time we have added extra iterations.
771 */
eliminate_dead_code(struct ppcg_scop * ps)772 void eliminate_dead_code(struct ppcg_scop *ps)
773 {
774 isl_union_set *live;
775 isl_union_map *dep;
776 isl_union_pw_multi_aff *tagger;
777
778 live = isl_union_map_domain(isl_union_map_copy(ps->live_out));
779 if (!isl_union_set_is_empty(ps->call)) {
780 live = isl_union_set_union(live, isl_union_set_copy(ps->call));
781 live = isl_union_set_coalesce(live);
782 }
783
784 dep = isl_union_map_copy(ps->dep_flow);
785 dep = isl_union_map_reverse(dep);
786
787 for (;;) {
788 isl_union_set *extra;
789
790 extra = isl_union_set_apply(isl_union_set_copy(live),
791 isl_union_map_copy(dep));
792 if (isl_union_set_is_subset(extra, live)) {
793 isl_union_set_free(extra);
794 break;
795 }
796
797 live = isl_union_set_union(live, extra);
798 live = isl_union_set_affine_hull(live);
799 live = isl_union_set_intersect(live,
800 isl_union_set_copy(ps->domain));
801 }
802
803 isl_union_map_free(dep);
804
805 ps->domain = isl_union_set_intersect(ps->domain,
806 isl_union_set_copy(live));
807 ps->schedule = isl_schedule_intersect_domain(ps->schedule,
808 isl_union_set_copy(live));
809 ps->dep_flow = isl_union_map_intersect_range(ps->dep_flow,
810 isl_union_set_copy(live));
811 tagger = isl_union_pw_multi_aff_copy(ps->tagger);
812 live = isl_union_set_preimage_union_pw_multi_aff(live, tagger);
813 ps->tagged_dep_flow = isl_union_map_intersect_range(ps->tagged_dep_flow,
814 live);
815 }
816
817 /* Intersect "set" with the set described by "str", taking the NULL
818 * string to represent the universal set.
819 */
set_intersect_str(__isl_take isl_set * set,const char * str)820 static __isl_give isl_set *set_intersect_str(__isl_take isl_set *set,
821 const char *str)
822 {
823 isl_ctx *ctx;
824 isl_set *set2;
825
826 if (!str)
827 return set;
828
829 ctx = isl_set_get_ctx(set);
830 set2 = isl_set_read_from_str(ctx, str);
831 set = isl_set_intersect(set, set2);
832
833 return set;
834 }
835
ppcg_scop_free(struct ppcg_scop * ps)836 void *ppcg_scop_free(struct ppcg_scop *ps)
837 {
838 if (!ps)
839 return NULL;
840
841 isl_set_free(ps->context);
842 isl_union_set_free(ps->domain);
843 isl_union_set_free(ps->call);
844 isl_union_map_free(ps->tagged_reads);
845 isl_union_map_free(ps->reads);
846 isl_union_map_free(ps->live_in);
847 isl_union_map_free(ps->tagged_may_writes);
848 isl_union_map_free(ps->tagged_must_writes);
849 isl_union_map_free(ps->may_writes);
850 isl_union_map_free(ps->must_writes);
851 isl_union_map_free(ps->live_out);
852 isl_union_map_free(ps->tagged_must_kills);
853 isl_union_map_free(ps->must_kills);
854 isl_union_map_free(ps->tagged_dep_flow);
855 isl_union_map_free(ps->dep_flow);
856 isl_union_map_free(ps->dep_false);
857 isl_union_map_free(ps->dep_forced);
858 isl_union_map_free(ps->tagged_dep_order);
859 isl_union_map_free(ps->dep_order);
860 isl_schedule_free(ps->schedule);
861 isl_union_pw_multi_aff_free(ps->tagger);
862 isl_union_map_free(ps->independence);
863 isl_id_to_ast_expr_free(ps->names);
864
865 free(ps);
866
867 return NULL;
868 }
869
870 /* Extract a ppcg_scop from a pet_scop.
871 *
872 * The constructed ppcg_scop refers to elements from the pet_scop
873 * so the pet_scop should not be freed before the ppcg_scop.
874 */
ppcg_scop_from_pet_scop(struct pet_scop * scop,struct ppcg_options * options)875 static struct ppcg_scop *ppcg_scop_from_pet_scop(struct pet_scop *scop,
876 struct ppcg_options *options)
877 {
878 int i;
879 isl_ctx *ctx;
880 struct ppcg_scop *ps;
881
882 if (!scop)
883 return NULL;
884
885 ctx = isl_set_get_ctx(scop->context);
886
887 ps = isl_calloc_type(ctx, struct ppcg_scop);
888 if (!ps)
889 return NULL;
890
891 ps->names = collect_names(scop);
892 ps->options = options;
893 ps->start = pet_loc_get_start(scop->loc);
894 ps->end = pet_loc_get_end(scop->loc);
895 ps->context = isl_set_copy(scop->context);
896 ps->context = set_intersect_str(ps->context, options->ctx);
897 if (options->non_negative_parameters) {
898 isl_space *space = isl_set_get_space(ps->context);
899 isl_set *nn = isl_set_nat_universe(space);
900 ps->context = isl_set_intersect(ps->context, nn);
901 }
902 ps->domain = collect_non_kill_domains(scop);
903 ps->call = collect_call_domains(scop);
904 ps->tagged_reads = pet_scop_get_tagged_may_reads(scop);
905 ps->reads = pet_scop_get_may_reads(scop);
906 ps->tagged_may_writes = pet_scop_get_tagged_may_writes(scop);
907 ps->may_writes = pet_scop_get_may_writes(scop);
908 ps->tagged_must_writes = pet_scop_get_tagged_must_writes(scop);
909 ps->must_writes = pet_scop_get_must_writes(scop);
910 ps->tagged_must_kills = pet_scop_get_tagged_must_kills(scop);
911 ps->must_kills = pet_scop_get_must_kills(scop);
912 ps->schedule = isl_schedule_copy(scop->schedule);
913 ps->pet = scop;
914 ps->independence = isl_union_map_empty(isl_set_get_space(ps->context));
915 for (i = 0; i < scop->n_independence; ++i)
916 ps->independence = isl_union_map_union(ps->independence,
917 isl_union_map_copy(scop->independences[i]->filter));
918
919 compute_tagger(ps);
920 compute_dependences(ps);
921 eliminate_dead_code(ps);
922
923 if (!ps->context || !ps->domain || !ps->call || !ps->reads ||
924 !ps->may_writes || !ps->must_writes || !ps->tagged_must_kills ||
925 !ps->must_kills || !ps->schedule || !ps->independence || !ps->names)
926 return ppcg_scop_free(ps);
927
928 return ps;
929 }
930
931 /* Internal data structure for ppcg_transform.
932 */
933 struct ppcg_transform_data {
934 struct ppcg_options *options;
935 __isl_give isl_printer *(*transform)(__isl_take isl_printer *p,
936 struct ppcg_scop *scop, void *user);
937 void *user;
938 };
939
940 /* Should we print the original code?
941 * That is, does "scop" involve any data dependent conditions or
942 * nested expressions that cannot be handled by pet_stmt_build_ast_exprs?
943 */
print_original(struct pet_scop * scop,struct ppcg_options * options)944 static int print_original(struct pet_scop *scop, struct ppcg_options *options)
945 {
946 if (!pet_scop_can_build_ast_exprs(scop)) {
947 if (options->debug->verbose)
948 fprintf(stdout, "Printing original code because "
949 "some index expressions cannot currently "
950 "be printed\n");
951 return 1;
952 }
953
954 if (pet_scop_has_data_dependent_conditions(scop)) {
955 if (options->debug->verbose)
956 fprintf(stdout, "Printing original code because "
957 "input involves data dependent conditions\n");
958 return 1;
959 }
960
961 return 0;
962 }
963
964 /* Callback for pet_transform_C_source that transforms
965 * the given pet_scop to a ppcg_scop before calling the
966 * ppcg_transform callback.
967 *
968 * If "scop" contains any data dependent conditions or if we may
969 * not be able to print the transformed program, then just print
970 * the original code.
971 */
transform(__isl_take isl_printer * p,struct pet_scop * scop,void * user)972 static __isl_give isl_printer *transform(__isl_take isl_printer *p,
973 struct pet_scop *scop, void *user)
974 {
975 struct ppcg_transform_data *data = user;
976 struct ppcg_scop *ps;
977
978 if (print_original(scop, data->options)) {
979 p = pet_scop_print_original(scop, p);
980 pet_scop_free(scop);
981 return p;
982 }
983
984 scop = pet_scop_align_params(scop);
985 ps = ppcg_scop_from_pet_scop(scop, data->options);
986
987 p = data->transform(p, ps, data->user);
988
989 ppcg_scop_free(ps);
990 pet_scop_free(scop);
991
992 return p;
993 }
994
995 /* Transform the C source file "input" by rewriting each scop
996 * through a call to "transform".
997 * The transformed C code is written to "out".
998 *
999 * This is a wrapper around pet_transform_C_source that transforms
1000 * the pet_scop to a ppcg_scop before calling "fn".
1001 */
ppcg_transform(isl_ctx * ctx,const char * input,FILE * out,struct ppcg_options * options,__isl_give isl_printer * (* fn)(__isl_take isl_printer * p,struct ppcg_scop * scop,void * user),void * user)1002 int ppcg_transform(isl_ctx *ctx, const char *input, FILE *out,
1003 struct ppcg_options *options,
1004 __isl_give isl_printer *(*fn)(__isl_take isl_printer *p,
1005 struct ppcg_scop *scop, void *user), void *user)
1006 {
1007 struct ppcg_transform_data data = { options, fn, user };
1008 return pet_transform_C_source(ctx, input, out, &transform, &data);
1009 }
1010
1011 /* Check consistency of options.
1012 *
1013 * Return -1 on error.
1014 */
check_options(isl_ctx * ctx)1015 static int check_options(isl_ctx *ctx)
1016 {
1017 struct options *options;
1018
1019 options = isl_ctx_peek_options(ctx, &options_args);
1020 if (!options)
1021 isl_die(ctx, isl_error_internal,
1022 "unable to find options", return -1);
1023
1024 if (options->ppcg->openmp &&
1025 !isl_options_get_ast_build_atomic_upper_bound(ctx))
1026 isl_die(ctx, isl_error_invalid,
1027 "OpenMP requires atomic bounds", return -1);
1028
1029 return 0;
1030 }
1031
1032 #if 0
1033 int main(int argc, char **argv)
1034 {
1035 int r;
1036 isl_ctx *ctx;
1037 struct options *options;
1038
1039 options = options_new_with_defaults();
1040 assert(options);
1041
1042 ctx = isl_ctx_alloc_with_options(&options_args, options);
1043 ppcg_options_set_target_defaults(options->ppcg);
1044 isl_options_set_ast_build_detect_min_max(ctx, 1);
1045 isl_options_set_ast_print_macro_once(ctx, 1);
1046 isl_options_set_schedule_whole_component(ctx, 0);
1047 isl_options_set_schedule_maximize_band_depth(ctx, 1);
1048 isl_options_set_schedule_maximize_coincidence(ctx, 1);
1049 pet_options_set_encapsulate_dynamic_control(ctx, 1);
1050 argc = options_parse(options, argc, argv, ISL_ARG_ALL);
1051
1052 if (check_options(ctx) < 0)
1053 r = EXIT_FAILURE;
1054 else if (options->ppcg->target == PPCG_TARGET_CUDA)
1055 r = generate_cuda(ctx, options->ppcg, options->input);
1056 else if (options->ppcg->target == PPCG_TARGET_OPENCL)
1057 r = generate_opencl(ctx, options->ppcg, options->input,
1058 options->output);
1059 else
1060 r = generate_cpu(ctx, options->ppcg, options->input,
1061 options->output);
1062
1063 isl_ctx_free(ctx);
1064
1065 return r;
1066 }
1067 #endif
1068