1 /*
2 * Copyright 2015 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "include/core/SkPathBuilder.h"
9 #include "include/core/SkRRect.h"
10 #include "include/private/SkPathRef.h"
11 #include "include/private/SkSafe32.h"
12 #include "src/core/SkGeometry.h"
13 #include "src/core/SkPathPriv.h"
14 // need SkDVector
15 #include "src/pathops/SkPathOpsPoint.h"
16
SkPathBuilder()17 SkPathBuilder::SkPathBuilder() {
18 this->reset();
19 }
20
SkPathBuilder(SkPathFillType ft)21 SkPathBuilder::SkPathBuilder(SkPathFillType ft) {
22 this->reset();
23 fFillType = ft;
24 }
25
SkPathBuilder(const SkPath & src)26 SkPathBuilder::SkPathBuilder(const SkPath& src) {
27 *this = src;
28 }
29
~SkPathBuilder()30 SkPathBuilder::~SkPathBuilder() {
31 }
32
reset()33 SkPathBuilder& SkPathBuilder::reset() {
34 fPts.reset();
35 fVerbs.reset();
36 fConicWeights.reset();
37 fFillType = SkPathFillType::kWinding;
38 fIsVolatile = false;
39
40 // these are internal state
41
42 fSegmentMask = 0;
43 fLastMovePoint = {0, 0};
44 fNeedsMoveVerb = true;
45
46 // testing
47 fOverrideConvexity = SkPathConvexity::kUnknown;
48
49 return *this;
50 }
51
operator =(const SkPath & src)52 SkPathBuilder& SkPathBuilder::operator=(const SkPath& src) {
53 this->reset().setFillType(src.getFillType());
54
55 for (auto [verb, pts, w] : SkPathPriv::Iterate(src)) {
56 switch (verb) {
57 case SkPathVerb::kMove: this->moveTo(pts[0]); break;
58 case SkPathVerb::kLine: this->lineTo(pts[1]); break;
59 case SkPathVerb::kQuad: this->quadTo(pts[1], pts[2]); break;
60 case SkPathVerb::kConic: this->conicTo(pts[1], pts[2], w[0]); break;
61 case SkPathVerb::kCubic: this->cubicTo(pts[1], pts[2], pts[3]); break;
62 case SkPathVerb::kClose: this->close(); break;
63 }
64 }
65 return *this;
66 }
67
incReserve(int extraPtCount,int extraVbCount)68 void SkPathBuilder::incReserve(int extraPtCount, int extraVbCount) {
69 fPts.setReserve( Sk32_sat_add(fPts.count(), extraPtCount));
70 fVerbs.setReserve(Sk32_sat_add(fVerbs.count(), extraVbCount));
71 }
72
computeBounds() const73 SkRect SkPathBuilder::computeBounds() const {
74 SkRect bounds;
75 bounds.setBounds(fPts.begin(), fPts.count());
76 return bounds;
77 }
78
79 /*
80 * Some old behavior in SkPath -- should we keep it?
81 *
82 * After each edit (i.e. adding a verb)
83 this->setConvexityType(SkPathConvexity::kUnknown);
84 this->setFirstDirection(SkPathPriv::kUnknown_FirstDirection);
85 */
86
moveTo(SkPoint pt)87 SkPathBuilder& SkPathBuilder::moveTo(SkPoint pt) {
88 fPts.push_back(pt);
89 fVerbs.push_back((uint8_t)SkPathVerb::kMove);
90
91 fLastMovePoint = pt;
92 fNeedsMoveVerb = false;
93 return *this;
94 }
95
lineTo(SkPoint pt)96 SkPathBuilder& SkPathBuilder::lineTo(SkPoint pt) {
97 this->ensureMove();
98
99 fPts.push_back(pt);
100 fVerbs.push_back((uint8_t)SkPathVerb::kLine);
101
102 fSegmentMask |= kLine_SkPathSegmentMask;
103 return *this;
104 }
105
quadTo(SkPoint pt1,SkPoint pt2)106 SkPathBuilder& SkPathBuilder::quadTo(SkPoint pt1, SkPoint pt2) {
107 this->ensureMove();
108
109 SkPoint* p = fPts.append(2);
110 p[0] = pt1;
111 p[1] = pt2;
112 fVerbs.push_back((uint8_t)SkPathVerb::kQuad);
113
114 fSegmentMask |= kQuad_SkPathSegmentMask;
115 return *this;
116 }
117
conicTo(SkPoint pt1,SkPoint pt2,SkScalar w)118 SkPathBuilder& SkPathBuilder::conicTo(SkPoint pt1, SkPoint pt2, SkScalar w) {
119 this->ensureMove();
120
121 SkPoint* p = fPts.append(2);
122 p[0] = pt1;
123 p[1] = pt2;
124 fVerbs.push_back((uint8_t)SkPathVerb::kConic);
125 fConicWeights.push_back(w);
126
127 fSegmentMask |= kConic_SkPathSegmentMask;
128 return *this;
129 }
130
cubicTo(SkPoint pt1,SkPoint pt2,SkPoint pt3)131 SkPathBuilder& SkPathBuilder::cubicTo(SkPoint pt1, SkPoint pt2, SkPoint pt3) {
132 this->ensureMove();
133
134 SkPoint* p = fPts.append(3);
135 p[0] = pt1;
136 p[1] = pt2;
137 p[2] = pt3;
138 fVerbs.push_back((uint8_t)SkPathVerb::kCubic);
139
140 fSegmentMask |= kCubic_SkPathSegmentMask;
141 return *this;
142 }
143
close()144 SkPathBuilder& SkPathBuilder::close() {
145 if (fVerbs.count() > 0) {
146 this->ensureMove();
147
148 fVerbs.push_back((uint8_t)SkPathVerb::kClose);
149
150 // fLastMovePoint stays where it is -- the previous moveTo
151 fNeedsMoveVerb = true;
152 }
153 return *this;
154 }
155
156 ///////////////////////////////////////////////////////////////////////////////////////////
157
rLineTo(SkPoint p1)158 SkPathBuilder& SkPathBuilder::rLineTo(SkPoint p1) {
159 this->ensureMove();
160 return this->lineTo(fPts.back() + p1);
161 }
162
rQuadTo(SkPoint p1,SkPoint p2)163 SkPathBuilder& SkPathBuilder::rQuadTo(SkPoint p1, SkPoint p2) {
164 this->ensureMove();
165 SkPoint base = fPts.back();
166 return this->quadTo(base + p1, base + p2);
167 }
168
rConicTo(SkPoint p1,SkPoint p2,SkScalar w)169 SkPathBuilder& SkPathBuilder::rConicTo(SkPoint p1, SkPoint p2, SkScalar w) {
170 this->ensureMove();
171 SkPoint base = fPts.back();
172 return this->conicTo(base + p1, base + p2, w);
173 }
174
rCubicTo(SkPoint p1,SkPoint p2,SkPoint p3)175 SkPathBuilder& SkPathBuilder::rCubicTo(SkPoint p1, SkPoint p2, SkPoint p3) {
176 this->ensureMove();
177 SkPoint base = fPts.back();
178 return this->cubicTo(base + p1, base + p2, base + p3);
179 }
180
181 ///////////////////////////////////////////////////////////////////////////////////////////
182
make(sk_sp<SkPathRef> pr) const183 SkPath SkPathBuilder::make(sk_sp<SkPathRef> pr) const {
184 auto convexity = SkPathConvexity::kUnknown;
185 SkPathFirstDirection dir = SkPathFirstDirection::kUnknown;
186
187 switch (fIsA) {
188 case kIsA_Oval:
189 pr->setIsOval( true, fIsACCW, fIsAStart);
190 convexity = SkPathConvexity::kConvex;
191 dir = fIsACCW ? SkPathFirstDirection::kCCW : SkPathFirstDirection::kCW;
192 break;
193 case kIsA_RRect:
194 pr->setIsRRect(true, fIsACCW, fIsAStart);
195 convexity = SkPathConvexity::kConvex;
196 dir = fIsACCW ? SkPathFirstDirection::kCCW : SkPathFirstDirection::kCW;
197 break;
198 default: break;
199 }
200
201 if (fOverrideConvexity != SkPathConvexity::kUnknown) {
202 convexity = fOverrideConvexity;
203 }
204
205 // Wonder if we can combine convexity and dir internally...
206 // unknown, convex_cw, convex_ccw, concave
207 // Do we ever have direction w/o convexity, or viceversa (inside path)?
208 //
209 return SkPath(std::move(pr), fFillType, fIsVolatile, convexity, dir);
210 }
211
snapshot() const212 SkPath SkPathBuilder::snapshot() const {
213 return this->make(sk_sp<SkPathRef>(new SkPathRef(fPts,
214 fVerbs,
215 fConicWeights,
216 fSegmentMask)));
217 }
218
detach()219 SkPath SkPathBuilder::detach() {
220 auto path = this->make(sk_sp<SkPathRef>(new SkPathRef(std::move(fPts),
221 std::move(fVerbs),
222 std::move(fConicWeights),
223 fSegmentMask)));
224 this->reset();
225 return path;
226 }
227
228 ///////////////////////////////////////////////////////////////////////////////////////////////////
229
arc_is_lone_point(const SkRect & oval,SkScalar startAngle,SkScalar sweepAngle,SkPoint * pt)230 static bool arc_is_lone_point(const SkRect& oval, SkScalar startAngle, SkScalar sweepAngle,
231 SkPoint* pt) {
232 if (0 == sweepAngle && (0 == startAngle || SkIntToScalar(360) == startAngle)) {
233 // Chrome uses this path to move into and out of ovals. If not
234 // treated as a special case the moves can distort the oval's
235 // bounding box (and break the circle special case).
236 pt->set(oval.fRight, oval.centerY());
237 return true;
238 } else if (0 == oval.width() && 0 == oval.height()) {
239 // Chrome will sometimes create 0 radius round rects. Having degenerate
240 // quad segments in the path prevents the path from being recognized as
241 // a rect.
242 // TODO: optimizing the case where only one of width or height is zero
243 // should also be considered. This case, however, doesn't seem to be
244 // as common as the single point case.
245 pt->set(oval.fRight, oval.fTop);
246 return true;
247 }
248 return false;
249 }
250
251 // Return the unit vectors pointing at the start/stop points for the given start/sweep angles
252 //
angles_to_unit_vectors(SkScalar startAngle,SkScalar sweepAngle,SkVector * startV,SkVector * stopV,SkRotationDirection * dir)253 static void angles_to_unit_vectors(SkScalar startAngle, SkScalar sweepAngle,
254 SkVector* startV, SkVector* stopV, SkRotationDirection* dir) {
255 SkScalar startRad = SkDegreesToRadians(startAngle),
256 stopRad = SkDegreesToRadians(startAngle + sweepAngle);
257
258 startV->fY = SkScalarSinSnapToZero(startRad);
259 startV->fX = SkScalarCosSnapToZero(startRad);
260 stopV->fY = SkScalarSinSnapToZero(stopRad);
261 stopV->fX = SkScalarCosSnapToZero(stopRad);
262
263 /* If the sweep angle is nearly (but less than) 360, then due to precision
264 loss in radians-conversion and/or sin/cos, we may end up with coincident
265 vectors, which will fool SkBuildQuadArc into doing nothing (bad) instead
266 of drawing a nearly complete circle (good).
267 e.g. canvas.drawArc(0, 359.99, ...)
268 -vs- canvas.drawArc(0, 359.9, ...)
269 We try to detect this edge case, and tweak the stop vector
270 */
271 if (*startV == *stopV) {
272 SkScalar sw = SkScalarAbs(sweepAngle);
273 if (sw < SkIntToScalar(360) && sw > SkIntToScalar(359)) {
274 // make a guess at a tiny angle (in radians) to tweak by
275 SkScalar deltaRad = SkScalarCopySign(SK_Scalar1/512, sweepAngle);
276 // not sure how much will be enough, so we use a loop
277 do {
278 stopRad -= deltaRad;
279 stopV->fY = SkScalarSinSnapToZero(stopRad);
280 stopV->fX = SkScalarCosSnapToZero(stopRad);
281 } while (*startV == *stopV);
282 }
283 }
284 *dir = sweepAngle > 0 ? kCW_SkRotationDirection : kCCW_SkRotationDirection;
285 }
286
287 /**
288 * If this returns 0, then the caller should just line-to the singlePt, else it should
289 * ignore singlePt and append the specified number of conics.
290 */
build_arc_conics(const SkRect & oval,const SkVector & start,const SkVector & stop,SkRotationDirection dir,SkConic conics[SkConic::kMaxConicsForArc],SkPoint * singlePt)291 static int build_arc_conics(const SkRect& oval, const SkVector& start, const SkVector& stop,
292 SkRotationDirection dir, SkConic conics[SkConic::kMaxConicsForArc],
293 SkPoint* singlePt) {
294 SkMatrix matrix;
295
296 matrix.setScale(SkScalarHalf(oval.width()), SkScalarHalf(oval.height()));
297 matrix.postTranslate(oval.centerX(), oval.centerY());
298
299 int count = SkConic::BuildUnitArc(start, stop, dir, &matrix, conics);
300 if (0 == count) {
301 matrix.mapXY(stop.x(), stop.y(), singlePt);
302 }
303 return count;
304 }
305
nearly_equal(const SkPoint & a,const SkPoint & b)306 static bool nearly_equal(const SkPoint& a, const SkPoint& b) {
307 return SkScalarNearlyEqual(a.fX, b.fX)
308 && SkScalarNearlyEqual(a.fY, b.fY);
309 }
310
arcTo(const SkRect & oval,SkScalar startAngle,SkScalar sweepAngle,bool forceMoveTo)311 SkPathBuilder& SkPathBuilder::arcTo(const SkRect& oval, SkScalar startAngle, SkScalar sweepAngle,
312 bool forceMoveTo) {
313 if (oval.width() < 0 || oval.height() < 0) {
314 return *this;
315 }
316
317 if (fVerbs.count() == 0) {
318 forceMoveTo = true;
319 }
320
321 SkPoint lonePt;
322 if (arc_is_lone_point(oval, startAngle, sweepAngle, &lonePt)) {
323 return forceMoveTo ? this->moveTo(lonePt) : this->lineTo(lonePt);
324 }
325
326 SkVector startV, stopV;
327 SkRotationDirection dir;
328 angles_to_unit_vectors(startAngle, sweepAngle, &startV, &stopV, &dir);
329
330 SkPoint singlePt;
331
332 // Adds a move-to to 'pt' if forceMoveTo is true. Otherwise a lineTo unless we're sufficiently
333 // close to 'pt' currently. This prevents spurious lineTos when adding a series of contiguous
334 // arcs from the same oval.
335 auto addPt = [forceMoveTo, this](const SkPoint& pt) {
336 if (forceMoveTo) {
337 this->moveTo(pt);
338 } else if (!nearly_equal(fPts.back(), pt)) {
339 this->lineTo(pt);
340 }
341 };
342
343 // At this point, we know that the arc is not a lone point, but startV == stopV
344 // indicates that the sweepAngle is too small such that angles_to_unit_vectors
345 // cannot handle it.
346 if (startV == stopV) {
347 SkScalar endAngle = SkDegreesToRadians(startAngle + sweepAngle);
348 SkScalar radiusX = oval.width() / 2;
349 SkScalar radiusY = oval.height() / 2;
350 // We do not use SkScalar[Sin|Cos]SnapToZero here. When sin(startAngle) is 0 and sweepAngle
351 // is very small and radius is huge, the expected behavior here is to draw a line. But
352 // calling SkScalarSinSnapToZero will make sin(endAngle) be 0 which will then draw a dot.
353 singlePt.set(oval.centerX() + radiusX * SkScalarCos(endAngle),
354 oval.centerY() + radiusY * SkScalarSin(endAngle));
355 addPt(singlePt);
356 return *this;
357 }
358
359 SkConic conics[SkConic::kMaxConicsForArc];
360 int count = build_arc_conics(oval, startV, stopV, dir, conics, &singlePt);
361 if (count) {
362 this->incReserve(count * 2 + 1);
363 const SkPoint& pt = conics[0].fPts[0];
364 addPt(pt);
365 for (int i = 0; i < count; ++i) {
366 this->conicTo(conics[i].fPts[1], conics[i].fPts[2], conics[i].fW);
367 }
368 } else {
369 addPt(singlePt);
370 }
371 return *this;
372 }
373
addArc(const SkRect & oval,SkScalar startAngle,SkScalar sweepAngle)374 SkPathBuilder& SkPathBuilder::addArc(const SkRect& oval, SkScalar startAngle, SkScalar sweepAngle) {
375 if (oval.isEmpty() || 0 == sweepAngle) {
376 return *this;
377 }
378
379 const SkScalar kFullCircleAngle = SkIntToScalar(360);
380
381 if (sweepAngle >= kFullCircleAngle || sweepAngle <= -kFullCircleAngle) {
382 // We can treat the arc as an oval if it begins at one of our legal starting positions.
383 // See SkPath::addOval() docs.
384 SkScalar startOver90 = startAngle / 90.f;
385 SkScalar startOver90I = SkScalarRoundToScalar(startOver90);
386 SkScalar error = startOver90 - startOver90I;
387 if (SkScalarNearlyEqual(error, 0)) {
388 // Index 1 is at startAngle == 0.
389 SkScalar startIndex = std::fmod(startOver90I + 1.f, 4.f);
390 startIndex = startIndex < 0 ? startIndex + 4.f : startIndex;
391 return this->addOval(oval, sweepAngle > 0 ? SkPathDirection::kCW : SkPathDirection::kCCW,
392 (unsigned) startIndex);
393 }
394 }
395 return this->arcTo(oval, startAngle, sweepAngle, true);
396 }
397
arcTo(SkPoint p1,SkPoint p2,SkScalar radius)398 SkPathBuilder& SkPathBuilder::arcTo(SkPoint p1, SkPoint p2, SkScalar radius) {
399 this->ensureMove();
400
401 if (radius == 0) {
402 return this->lineTo(p1);
403 }
404
405 // need to know our prev pt so we can construct tangent vectors
406 SkPoint start = fPts.back();
407
408 // need double precision for these calcs.
409 SkDVector befored, afterd;
410 befored.set({p1.fX - start.fX, p1.fY - start.fY}).normalize();
411 afterd.set({p2.fX - p1.fX, p2.fY - p1.fY}).normalize();
412 double cosh = befored.dot(afterd);
413 double sinh = befored.cross(afterd);
414
415 if (!befored.isFinite() || !afterd.isFinite() || SkScalarNearlyZero(SkDoubleToScalar(sinh))) {
416 return this->lineTo(p1);
417 }
418
419 // safe to convert back to floats now
420 SkVector before = befored.asSkVector();
421 SkVector after = afterd.asSkVector();
422 SkScalar dist = SkScalarAbs(SkDoubleToScalar(radius * (1 - cosh) / sinh));
423 SkScalar xx = p1.fX - dist * before.fX;
424 SkScalar yy = p1.fY - dist * before.fY;
425 after.setLength(dist);
426 this->lineTo(xx, yy);
427 SkScalar weight = SkScalarSqrt(SkDoubleToScalar(SK_ScalarHalf + cosh * 0.5));
428 return this->conicTo(p1, p1 + after, weight);
429 }
430
431 // This converts the SVG arc to conics.
432 // Partly adapted from Niko's code in kdelibs/kdecore/svgicons.
433 // Then transcribed from webkit/chrome's SVGPathNormalizer::decomposeArcToCubic()
434 // See also SVG implementation notes:
435 // http://www.w3.org/TR/SVG/implnote.html#ArcConversionEndpointToCenter
436 // Note that arcSweep bool value is flipped from the original implementation.
arcTo(SkPoint rad,SkScalar angle,SkPathBuilder::ArcSize arcLarge,SkPathDirection arcSweep,SkPoint endPt)437 SkPathBuilder& SkPathBuilder::arcTo(SkPoint rad, SkScalar angle, SkPathBuilder::ArcSize arcLarge,
438 SkPathDirection arcSweep, SkPoint endPt) {
439 this->ensureMove();
440
441 SkPoint srcPts[2] = { fPts.back(), endPt };
442
443 // If rx = 0 or ry = 0 then this arc is treated as a straight line segment (a "lineto")
444 // joining the endpoints.
445 // http://www.w3.org/TR/SVG/implnote.html#ArcOutOfRangeParameters
446 if (!rad.fX || !rad.fY) {
447 return this->lineTo(endPt);
448 }
449 // If the current point and target point for the arc are identical, it should be treated as a
450 // zero length path. This ensures continuity in animations.
451 if (srcPts[0] == srcPts[1]) {
452 return this->lineTo(endPt);
453 }
454 SkScalar rx = SkScalarAbs(rad.fX);
455 SkScalar ry = SkScalarAbs(rad.fY);
456 SkVector midPointDistance = srcPts[0] - srcPts[1];
457 midPointDistance *= 0.5f;
458
459 SkMatrix pointTransform;
460 pointTransform.setRotate(-angle);
461
462 SkPoint transformedMidPoint;
463 pointTransform.mapPoints(&transformedMidPoint, &midPointDistance, 1);
464 SkScalar squareRx = rx * rx;
465 SkScalar squareRy = ry * ry;
466 SkScalar squareX = transformedMidPoint.fX * transformedMidPoint.fX;
467 SkScalar squareY = transformedMidPoint.fY * transformedMidPoint.fY;
468
469 // Check if the radii are big enough to draw the arc, scale radii if not.
470 // http://www.w3.org/TR/SVG/implnote.html#ArcCorrectionOutOfRangeRadii
471 SkScalar radiiScale = squareX / squareRx + squareY / squareRy;
472 if (radiiScale > 1) {
473 radiiScale = SkScalarSqrt(radiiScale);
474 rx *= radiiScale;
475 ry *= radiiScale;
476 }
477
478 pointTransform.setScale(1 / rx, 1 / ry);
479 pointTransform.preRotate(-angle);
480
481 SkPoint unitPts[2];
482 pointTransform.mapPoints(unitPts, srcPts, (int) SK_ARRAY_COUNT(unitPts));
483 SkVector delta = unitPts[1] - unitPts[0];
484
485 SkScalar d = delta.fX * delta.fX + delta.fY * delta.fY;
486 SkScalar scaleFactorSquared = std::max(1 / d - 0.25f, 0.f);
487
488 SkScalar scaleFactor = SkScalarSqrt(scaleFactorSquared);
489 if ((arcSweep == SkPathDirection::kCCW) != SkToBool(arcLarge)) { // flipped from the original implementation
490 scaleFactor = -scaleFactor;
491 }
492 delta.scale(scaleFactor);
493 SkPoint centerPoint = unitPts[0] + unitPts[1];
494 centerPoint *= 0.5f;
495 centerPoint.offset(-delta.fY, delta.fX);
496 unitPts[0] -= centerPoint;
497 unitPts[1] -= centerPoint;
498 SkScalar theta1 = SkScalarATan2(unitPts[0].fY, unitPts[0].fX);
499 SkScalar theta2 = SkScalarATan2(unitPts[1].fY, unitPts[1].fX);
500 SkScalar thetaArc = theta2 - theta1;
501 if (thetaArc < 0 && (arcSweep == SkPathDirection::kCW)) { // arcSweep flipped from the original implementation
502 thetaArc += SK_ScalarPI * 2;
503 } else if (thetaArc > 0 && (arcSweep != SkPathDirection::kCW)) { // arcSweep flipped from the original implementation
504 thetaArc -= SK_ScalarPI * 2;
505 }
506
507 // Very tiny angles cause our subsequent math to go wonky (skbug.com/9272)
508 // so we do a quick check here. The precise tolerance amount is just made up.
509 // PI/million happens to fix the bug in 9272, but a larger value is probably
510 // ok too.
511 if (SkScalarAbs(thetaArc) < (SK_ScalarPI / (1000 * 1000))) {
512 return this->lineTo(endPt);
513 }
514
515 pointTransform.setRotate(angle);
516 pointTransform.preScale(rx, ry);
517
518 // the arc may be slightly bigger than 1/4 circle, so allow up to 1/3rd
519 int segments = SkScalarCeilToInt(SkScalarAbs(thetaArc / (2 * SK_ScalarPI / 3)));
520 SkScalar thetaWidth = thetaArc / segments;
521 SkScalar t = SkScalarTan(0.5f * thetaWidth);
522 if (!SkScalarIsFinite(t)) {
523 return *this;
524 }
525 SkScalar startTheta = theta1;
526 SkScalar w = SkScalarSqrt(SK_ScalarHalf + SkScalarCos(thetaWidth) * SK_ScalarHalf);
527 auto scalar_is_integer = [](SkScalar scalar) -> bool {
528 return scalar == SkScalarFloorToScalar(scalar);
529 };
530 bool expectIntegers = SkScalarNearlyZero(SK_ScalarPI/2 - SkScalarAbs(thetaWidth)) &&
531 scalar_is_integer(rx) && scalar_is_integer(ry) &&
532 scalar_is_integer(endPt.fX) && scalar_is_integer(endPt.fY);
533
534 for (int i = 0; i < segments; ++i) {
535 SkScalar endTheta = startTheta + thetaWidth,
536 sinEndTheta = SkScalarSinSnapToZero(endTheta),
537 cosEndTheta = SkScalarCosSnapToZero(endTheta);
538
539 unitPts[1].set(cosEndTheta, sinEndTheta);
540 unitPts[1] += centerPoint;
541 unitPts[0] = unitPts[1];
542 unitPts[0].offset(t * sinEndTheta, -t * cosEndTheta);
543 SkPoint mapped[2];
544 pointTransform.mapPoints(mapped, unitPts, (int) SK_ARRAY_COUNT(unitPts));
545 /*
546 Computing the arc width introduces rounding errors that cause arcs to start
547 outside their marks. A round rect may lose convexity as a result. If the input
548 values are on integers, place the conic on integers as well.
549 */
550 if (expectIntegers) {
551 for (SkPoint& point : mapped) {
552 point.fX = SkScalarRoundToScalar(point.fX);
553 point.fY = SkScalarRoundToScalar(point.fY);
554 }
555 }
556 this->conicTo(mapped[0], mapped[1], w);
557 startTheta = endTheta;
558 }
559
560 #ifndef SK_LEGACY_PATH_ARCTO_ENDPOINT
561 // The final point should match the input point (by definition); replace it to
562 // ensure that rounding errors in the above math don't cause any problems.
563 fPts.back() = endPt;
564 #endif
565 return *this;
566 }
567
568 ///////////////////////////////////////////////////////////////////////////////////////////
569
570 namespace {
571 template <unsigned N> class PointIterator {
572 public:
PointIterator(SkPathDirection dir,unsigned startIndex)573 PointIterator(SkPathDirection dir, unsigned startIndex)
574 : fCurrent(startIndex % N)
575 , fAdvance(dir == SkPathDirection::kCW ? 1 : N - 1)
576 {}
577
current() const578 const SkPoint& current() const {
579 SkASSERT(fCurrent < N);
580 return fPts[fCurrent];
581 }
582
next()583 const SkPoint& next() {
584 fCurrent = (fCurrent + fAdvance) % N;
585 return this->current();
586 }
587
588 protected:
589 SkPoint fPts[N];
590
591 private:
592 unsigned fCurrent;
593 unsigned fAdvance;
594 };
595
596 class RectPointIterator : public PointIterator<4> {
597 public:
RectPointIterator(const SkRect & rect,SkPathDirection dir,unsigned startIndex)598 RectPointIterator(const SkRect& rect, SkPathDirection dir, unsigned startIndex)
599 : PointIterator(dir, startIndex) {
600
601 fPts[0] = SkPoint::Make(rect.fLeft, rect.fTop);
602 fPts[1] = SkPoint::Make(rect.fRight, rect.fTop);
603 fPts[2] = SkPoint::Make(rect.fRight, rect.fBottom);
604 fPts[3] = SkPoint::Make(rect.fLeft, rect.fBottom);
605 }
606 };
607
608 class OvalPointIterator : public PointIterator<4> {
609 public:
OvalPointIterator(const SkRect & oval,SkPathDirection dir,unsigned startIndex)610 OvalPointIterator(const SkRect& oval, SkPathDirection dir, unsigned startIndex)
611 : PointIterator(dir, startIndex) {
612
613 const SkScalar cx = oval.centerX();
614 const SkScalar cy = oval.centerY();
615
616 fPts[0] = SkPoint::Make(cx, oval.fTop);
617 fPts[1] = SkPoint::Make(oval.fRight, cy);
618 fPts[2] = SkPoint::Make(cx, oval.fBottom);
619 fPts[3] = SkPoint::Make(oval.fLeft, cy);
620 }
621 };
622
623 class RRectPointIterator : public PointIterator<8> {
624 public:
RRectPointIterator(const SkRRect & rrect,SkPathDirection dir,unsigned startIndex)625 RRectPointIterator(const SkRRect& rrect, SkPathDirection dir, unsigned startIndex)
626 : PointIterator(dir, startIndex)
627 {
628 const SkRect& bounds = rrect.getBounds();
629 const SkScalar L = bounds.fLeft;
630 const SkScalar T = bounds.fTop;
631 const SkScalar R = bounds.fRight;
632 const SkScalar B = bounds.fBottom;
633
634 fPts[0] = SkPoint::Make(L + rrect.radii(SkRRect::kUpperLeft_Corner).fX, T);
635 fPts[1] = SkPoint::Make(R - rrect.radii(SkRRect::kUpperRight_Corner).fX, T);
636 fPts[2] = SkPoint::Make(R, T + rrect.radii(SkRRect::kUpperRight_Corner).fY);
637 fPts[3] = SkPoint::Make(R, B - rrect.radii(SkRRect::kLowerRight_Corner).fY);
638 fPts[4] = SkPoint::Make(R - rrect.radii(SkRRect::kLowerRight_Corner).fX, B);
639 fPts[5] = SkPoint::Make(L + rrect.radii(SkRRect::kLowerLeft_Corner).fX, B);
640 fPts[6] = SkPoint::Make(L, B - rrect.radii(SkRRect::kLowerLeft_Corner).fY);
641 fPts[7] = SkPoint::Make(L, T + rrect.radii(SkRRect::kUpperLeft_Corner).fY);
642 }
643 };
644 } // anonymous namespace
645
646
addRect(const SkRect & rect,SkPathDirection dir,unsigned index)647 SkPathBuilder& SkPathBuilder::addRect(const SkRect& rect, SkPathDirection dir, unsigned index) {
648 const int kPts = 4; // moveTo + 3 lines
649 const int kVerbs = 5; // moveTo + 3 lines + close
650 this->incReserve(kPts, kVerbs);
651
652 RectPointIterator iter(rect, dir, index);
653
654 this->moveTo(iter.current());
655 this->lineTo(iter.next());
656 this->lineTo(iter.next());
657 this->lineTo(iter.next());
658 return this->close();
659 }
660
addOval(const SkRect & oval,SkPathDirection dir,unsigned index)661 SkPathBuilder& SkPathBuilder::addOval(const SkRect& oval, SkPathDirection dir, unsigned index) {
662 const IsA prevIsA = fIsA;
663
664 const int kPts = 9; // moveTo + 4 conics(2 pts each)
665 const int kVerbs = 6; // moveTo + 4 conics + close
666 this->incReserve(kPts, kVerbs);
667
668 OvalPointIterator ovalIter(oval, dir, index);
669 RectPointIterator rectIter(oval, dir, index + (dir == SkPathDirection::kCW ? 0 : 1));
670
671 // The corner iterator pts are tracking "behind" the oval/radii pts.
672
673 this->moveTo(ovalIter.current());
674 for (unsigned i = 0; i < 4; ++i) {
675 this->conicTo(rectIter.next(), ovalIter.next(), SK_ScalarRoot2Over2);
676 }
677 this->close();
678
679 if (prevIsA == kIsA_JustMoves) {
680 fIsA = kIsA_Oval;
681 fIsACCW = (dir == SkPathDirection::kCCW);
682 fIsAStart = index % 4;
683 }
684 return *this;
685 }
686
addRRect(const SkRRect & rrect,SkPathDirection dir,unsigned index)687 SkPathBuilder& SkPathBuilder::addRRect(const SkRRect& rrect, SkPathDirection dir, unsigned index) {
688 const IsA prevIsA = fIsA;
689 const SkRect& bounds = rrect.getBounds();
690
691 if (rrect.isRect() || rrect.isEmpty()) {
692 // degenerate(rect) => radii points are collapsing
693 this->addRect(bounds, dir, (index + 1) / 2);
694 } else if (rrect.isOval()) {
695 // degenerate(oval) => line points are collapsing
696 this->addOval(bounds, dir, index / 2);
697 } else {
698 // we start with a conic on odd indices when moving CW vs. even indices when moving CCW
699 const bool startsWithConic = ((index & 1) == (dir == SkPathDirection::kCW));
700 const SkScalar weight = SK_ScalarRoot2Over2;
701
702 const int kVerbs = startsWithConic
703 ? 9 // moveTo + 4x conicTo + 3x lineTo + close
704 : 10; // moveTo + 4x lineTo + 4x conicTo + close
705 this->incReserve(kVerbs);
706
707 RRectPointIterator rrectIter(rrect, dir, index);
708 // Corner iterator indices follow the collapsed radii model,
709 // adjusted such that the start pt is "behind" the radii start pt.
710 const unsigned rectStartIndex = index / 2 + (dir == SkPathDirection::kCW ? 0 : 1);
711 RectPointIterator rectIter(bounds, dir, rectStartIndex);
712
713 this->moveTo(rrectIter.current());
714 if (startsWithConic) {
715 for (unsigned i = 0; i < 3; ++i) {
716 this->conicTo(rectIter.next(), rrectIter.next(), weight);
717 this->lineTo(rrectIter.next());
718 }
719 this->conicTo(rectIter.next(), rrectIter.next(), weight);
720 // final lineTo handled by close().
721 } else {
722 for (unsigned i = 0; i < 4; ++i) {
723 this->lineTo(rrectIter.next());
724 this->conicTo(rectIter.next(), rrectIter.next(), weight);
725 }
726 }
727 this->close();
728 }
729
730 if (prevIsA == kIsA_JustMoves) {
731 fIsA = kIsA_RRect;
732 fIsACCW = (dir == SkPathDirection::kCCW);
733 fIsAStart = index % 8;
734 }
735 return *this;
736 }
737
addCircle(SkScalar x,SkScalar y,SkScalar r,SkPathDirection dir)738 SkPathBuilder& SkPathBuilder::addCircle(SkScalar x, SkScalar y, SkScalar r, SkPathDirection dir) {
739 if (r >= 0) {
740 this->addOval(SkRect::MakeLTRB(x - r, y - r, x + r, y + r), dir);
741 }
742 return *this;
743 }
744
addPolygon(const SkPoint pts[],int count,bool isClosed)745 SkPathBuilder& SkPathBuilder::addPolygon(const SkPoint pts[], int count, bool isClosed) {
746 if (count <= 0) {
747 return *this;
748 }
749
750 this->moveTo(pts[0]);
751 this->polylineTo(&pts[1], count - 1);
752 if (isClosed) {
753 this->close();
754 }
755 return *this;
756 }
757
polylineTo(const SkPoint pts[],int count)758 SkPathBuilder& SkPathBuilder::polylineTo(const SkPoint pts[], int count) {
759 if (count > 0) {
760 this->ensureMove();
761
762 this->incReserve(count, count);
763 memcpy(fPts.append(count), pts, count * sizeof(SkPoint));
764 memset(fVerbs.append(count), (uint8_t)SkPathVerb::kLine, count);
765 fSegmentMask |= kLine_SkPathSegmentMask;
766 }
767 return *this;
768 }
769
770 //////////////////////////////////////////////////////////////////////////////////////////////////
771
offset(SkScalar dx,SkScalar dy)772 SkPathBuilder& SkPathBuilder::offset(SkScalar dx, SkScalar dy) {
773 for (auto& p : fPts) {
774 p += {dx, dy};
775 }
776 return *this;
777 }
778
addPath(const SkPath & src)779 SkPathBuilder& SkPathBuilder::addPath(const SkPath& src) {
780 SkPath::RawIter iter(src);
781 SkPoint pts[4];
782 SkPath::Verb verb;
783
784 while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
785 switch (verb) {
786 case SkPath::kMove_Verb: this->moveTo (pts[0]); break;
787 case SkPath::kLine_Verb: this->lineTo (pts[1]); break;
788 case SkPath::kQuad_Verb: this->quadTo (pts[1], pts[2]); break;
789 case SkPath::kCubic_Verb: this->cubicTo(pts[1], pts[2], pts[3]); break;
790 case SkPath::kConic_Verb: this->conicTo(pts[1], pts[2], iter.conicWeight()); break;
791 case SkPath::kClose_Verb: this->close(); break;
792 case SkPath::kDone_Verb: SkUNREACHABLE;
793 }
794 }
795
796 return *this;
797 }
798
privateReverseAddPath(const SkPath & src)799 SkPathBuilder& SkPathBuilder::privateReverseAddPath(const SkPath& src) {
800
801 const uint8_t* verbsBegin = src.fPathRef->verbsBegin();
802 const uint8_t* verbs = src.fPathRef->verbsEnd();
803 const SkPoint* pts = src.fPathRef->pointsEnd();
804 const SkScalar* conicWeights = src.fPathRef->conicWeightsEnd();
805
806 bool needMove = true;
807 bool needClose = false;
808 while (verbs > verbsBegin) {
809 uint8_t v = *--verbs;
810 int n = SkPathPriv::PtsInVerb(v);
811
812 if (needMove) {
813 --pts;
814 this->moveTo(pts->fX, pts->fY);
815 needMove = false;
816 }
817 pts -= n;
818 switch ((SkPathVerb)v) {
819 case SkPathVerb::kMove:
820 if (needClose) {
821 this->close();
822 needClose = false;
823 }
824 needMove = true;
825 pts += 1; // so we see the point in "if (needMove)" above
826 break;
827 case SkPathVerb::kLine:
828 this->lineTo(pts[0]);
829 break;
830 case SkPathVerb::kQuad:
831 this->quadTo(pts[1], pts[0]);
832 break;
833 case SkPathVerb::kConic:
834 this->conicTo(pts[1], pts[0], *--conicWeights);
835 break;
836 case SkPathVerb::kCubic:
837 this->cubicTo(pts[2], pts[1], pts[0]);
838 break;
839 case SkPathVerb::kClose:
840 needClose = true;
841 break;
842 default:
843 SkDEBUGFAIL("unexpected verb");
844 }
845 }
846 return *this;
847 }
848