• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2010 Jerome Glisse <glisse@freedesktop.org>
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * on the rights to use, copy, modify, merge, publish, distribute, sub
8  * license, and/or sell copies of the Software, and to permit persons to whom
9  * the Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18  * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21  * USE OR OTHER DEALINGS IN THE SOFTWARE.
22  */
23 #include "r600_sq.h"
24 #include "r600_opcodes.h"
25 #include "r600_formats.h"
26 #include "r600_shader.h"
27 #include "r600d.h"
28 
29 #include <errno.h>
30 #include "util/u_bitcast.h"
31 #include "util/u_dump.h"
32 #include "util/u_memory.h"
33 #include "util/u_math.h"
34 #include "pipe/p_shader_tokens.h"
35 
36 #include "sb/sb_public.h"
37 
38 #define NUM_OF_CYCLES 3
39 #define NUM_OF_COMPONENTS 4
40 
alu_writes(struct r600_bytecode_alu * alu)41 static inline bool alu_writes(struct r600_bytecode_alu *alu)
42 {
43 	return alu->dst.write || alu->is_op3;
44 }
45 
r600_bytecode_get_num_operands(const struct r600_bytecode_alu * alu)46 static inline unsigned int r600_bytecode_get_num_operands(const struct r600_bytecode_alu *alu)
47 {
48 	return r600_isa_alu(alu->op)->src_count;
49 }
50 
r600_bytecode_cf(void)51 static struct r600_bytecode_cf *r600_bytecode_cf(void)
52 {
53 	struct r600_bytecode_cf *cf = CALLOC_STRUCT(r600_bytecode_cf);
54 
55 	if (!cf)
56 		return NULL;
57 	list_inithead(&cf->list);
58 	list_inithead(&cf->alu);
59 	list_inithead(&cf->vtx);
60 	list_inithead(&cf->tex);
61 	list_inithead(&cf->gds);
62 	return cf;
63 }
64 
r600_bytecode_alu(void)65 static struct r600_bytecode_alu *r600_bytecode_alu(void)
66 {
67 	struct r600_bytecode_alu *alu = CALLOC_STRUCT(r600_bytecode_alu);
68 
69 	if (!alu)
70 		return NULL;
71 	list_inithead(&alu->list);
72 	return alu;
73 }
74 
r600_bytecode_vtx(void)75 static struct r600_bytecode_vtx *r600_bytecode_vtx(void)
76 {
77 	struct r600_bytecode_vtx *vtx = CALLOC_STRUCT(r600_bytecode_vtx);
78 
79 	if (!vtx)
80 		return NULL;
81 	list_inithead(&vtx->list);
82 	return vtx;
83 }
84 
r600_bytecode_tex(void)85 static struct r600_bytecode_tex *r600_bytecode_tex(void)
86 {
87 	struct r600_bytecode_tex *tex = CALLOC_STRUCT(r600_bytecode_tex);
88 
89 	if (!tex)
90 		return NULL;
91 	list_inithead(&tex->list);
92 	return tex;
93 }
94 
r600_bytecode_gds(void)95 static struct r600_bytecode_gds *r600_bytecode_gds(void)
96 {
97 	struct r600_bytecode_gds *gds = CALLOC_STRUCT(r600_bytecode_gds);
98 
99 	if (gds == NULL)
100 		return NULL;
101 	list_inithead(&gds->list);
102 	return gds;
103 }
104 
stack_entry_size(enum radeon_family chip)105 static unsigned stack_entry_size(enum radeon_family chip) {
106 	/* Wavefront size:
107 	 *   64: R600/RV670/RV770/Cypress/R740/Barts/Turks/Caicos/
108 	 *       Aruba/Sumo/Sumo2/redwood/juniper
109 	 *   32: R630/R730/R710/Palm/Cedar
110 	 *   16: R610/Rs780
111 	 *
112 	 * Stack row size:
113 	 * 	Wavefront Size                        16  32  48  64
114 	 * 	Columns per Row (R6xx/R7xx/R8xx only)  8   8   4   4
115 	 * 	Columns per Row (R9xx+)                8   4   4   4 */
116 
117 	switch (chip) {
118 	/* FIXME: are some chips missing here? */
119 	/* wavefront size 16 */
120 	case CHIP_RV610:
121 	case CHIP_RS780:
122 	case CHIP_RV620:
123 	case CHIP_RS880:
124 	/* wavefront size 32 */
125 	case CHIP_RV630:
126 	case CHIP_RV635:
127 	case CHIP_RV730:
128 	case CHIP_RV710:
129 	case CHIP_PALM:
130 	case CHIP_CEDAR:
131 		return 8;
132 
133 	/* wavefront size 64 */
134 	default:
135 		return 4;
136 	}
137 }
138 
r600_bytecode_init(struct r600_bytecode * bc,enum chip_class chip_class,enum radeon_family family,bool has_compressed_msaa_texturing)139 void r600_bytecode_init(struct r600_bytecode *bc,
140 			enum chip_class chip_class,
141 			enum radeon_family family,
142 			bool has_compressed_msaa_texturing)
143 {
144 	static unsigned next_shader_id = 0;
145 
146 	bc->debug_id = ++next_shader_id;
147 
148 	if ((chip_class == R600) &&
149 	    (family != CHIP_RV670 && family != CHIP_RS780 && family != CHIP_RS880)) {
150 		bc->ar_handling = AR_HANDLE_RV6XX;
151 		bc->r6xx_nop_after_rel_dst = 1;
152 	} else {
153 		bc->ar_handling = AR_HANDLE_NORMAL;
154 		bc->r6xx_nop_after_rel_dst = 0;
155 	}
156 
157 	list_inithead(&bc->cf);
158 	bc->chip_class = chip_class;
159 	bc->family = family;
160 	bc->has_compressed_msaa_texturing = has_compressed_msaa_texturing;
161 	bc->stack.entry_size = stack_entry_size(family);
162 }
163 
r600_bytecode_add_cf(struct r600_bytecode * bc)164 int r600_bytecode_add_cf(struct r600_bytecode *bc)
165 {
166 	struct r600_bytecode_cf *cf = r600_bytecode_cf();
167 
168 	if (!cf)
169 		return -ENOMEM;
170 	list_addtail(&cf->list, &bc->cf);
171 	if (bc->cf_last) {
172 		cf->id = bc->cf_last->id + 2;
173 		if (bc->cf_last->eg_alu_extended) {
174 			/* take into account extended alu size */
175 			cf->id += 2;
176 			bc->ndw += 2;
177 		}
178 	}
179 	bc->cf_last = cf;
180 	bc->ncf++;
181 	bc->ndw += 2;
182 	bc->force_add_cf = 0;
183 	bc->ar_loaded = 0;
184 	return 0;
185 }
186 
r600_bytecode_add_output(struct r600_bytecode * bc,const struct r600_bytecode_output * output)187 int r600_bytecode_add_output(struct r600_bytecode *bc,
188 		const struct r600_bytecode_output *output)
189 {
190 	int r;
191 
192 	if (output->gpr >= bc->ngpr)
193 		bc->ngpr = output->gpr + 1;
194 
195 	if (bc->cf_last && (bc->cf_last->op == output->op ||
196 		(bc->cf_last->op == CF_OP_EXPORT &&
197 		output->op == CF_OP_EXPORT_DONE)) &&
198 		output->type == bc->cf_last->output.type &&
199 		output->elem_size == bc->cf_last->output.elem_size &&
200 		output->swizzle_x == bc->cf_last->output.swizzle_x &&
201 		output->swizzle_y == bc->cf_last->output.swizzle_y &&
202 		output->swizzle_z == bc->cf_last->output.swizzle_z &&
203 		output->swizzle_w == bc->cf_last->output.swizzle_w &&
204 		output->comp_mask == bc->cf_last->output.comp_mask &&
205 		(output->burst_count + bc->cf_last->output.burst_count) <= 16) {
206 
207 		if ((output->gpr + output->burst_count) == bc->cf_last->output.gpr &&
208 			(output->array_base + output->burst_count) == bc->cf_last->output.array_base) {
209 
210 			bc->cf_last->op = bc->cf_last->output.op = output->op;
211 			bc->cf_last->output.gpr = output->gpr;
212 			bc->cf_last->output.array_base = output->array_base;
213 			bc->cf_last->output.burst_count += output->burst_count;
214 			return 0;
215 
216 		} else if (output->gpr == (bc->cf_last->output.gpr + bc->cf_last->output.burst_count) &&
217 			output->array_base == (bc->cf_last->output.array_base + bc->cf_last->output.burst_count)) {
218 
219 			bc->cf_last->op = bc->cf_last->output.op = output->op;
220 			bc->cf_last->output.burst_count += output->burst_count;
221 			return 0;
222 		}
223 	}
224 
225 	r = r600_bytecode_add_cf(bc);
226 	if (r)
227 		return r;
228 	bc->cf_last->op = output->op;
229 	memcpy(&bc->cf_last->output, output, sizeof(struct r600_bytecode_output));
230 	bc->cf_last->barrier = 1;
231 	return 0;
232 }
233 
r600_bytecode_add_pending_output(struct r600_bytecode * bc,const struct r600_bytecode_output * output)234 int r600_bytecode_add_pending_output(struct r600_bytecode *bc,
235 		const struct r600_bytecode_output *output)
236 {
237 	assert(bc->n_pending_outputs + 1 < ARRAY_SIZE(bc->pending_outputs));
238 	bc->pending_outputs[bc->n_pending_outputs++] = *output;
239 
240 	return 0;
241 }
242 
r600_bytecode_need_wait_ack(struct r600_bytecode * bc,boolean need_wait_ack)243 void r600_bytecode_need_wait_ack(struct r600_bytecode *bc, boolean need_wait_ack)
244 {
245 	bc->need_wait_ack = need_wait_ack;
246 }
247 
r600_bytecode_get_need_wait_ack(struct r600_bytecode * bc)248 boolean r600_bytecode_get_need_wait_ack(struct r600_bytecode *bc)
249 {
250 	return bc->need_wait_ack;
251 }
252 
253 /* alu instructions that can ony exits once per group */
is_alu_once_inst(struct r600_bytecode_alu * alu)254 static int is_alu_once_inst(struct r600_bytecode_alu *alu)
255 {
256 	return r600_isa_alu(alu->op)->flags & (AF_KILL | AF_PRED) || alu->is_lds_idx_op || alu->op == ALU_OP0_GROUP_BARRIER;
257 }
258 
is_alu_reduction_inst(struct r600_bytecode * bc,struct r600_bytecode_alu * alu)259 static int is_alu_reduction_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
260 {
261 	return (r600_isa_alu(alu->op)->flags & AF_REPL) &&
262 			(r600_isa_alu_slots(bc->isa->hw_class, alu->op) == AF_4V);
263 }
264 
is_alu_mova_inst(struct r600_bytecode_alu * alu)265 static int is_alu_mova_inst(struct r600_bytecode_alu *alu)
266 {
267 	return r600_isa_alu(alu->op)->flags & AF_MOVA;
268 }
269 
alu_uses_rel(struct r600_bytecode_alu * alu)270 static int alu_uses_rel(struct r600_bytecode_alu *alu)
271 {
272 	unsigned num_src = r600_bytecode_get_num_operands(alu);
273 	unsigned src;
274 
275 	if (alu->dst.rel) {
276 		return 1;
277 	}
278 
279 	for (src = 0; src < num_src; ++src) {
280 		if (alu->src[src].rel) {
281 			return 1;
282 		}
283 	}
284 	return 0;
285 }
286 
is_lds_read(int sel)287 static int is_lds_read(int sel)
288 {
289   return sel == EG_V_SQ_ALU_SRC_LDS_OQ_A_POP || sel == EG_V_SQ_ALU_SRC_LDS_OQ_B_POP;
290 }
291 
alu_uses_lds(struct r600_bytecode_alu * alu)292 static int alu_uses_lds(struct r600_bytecode_alu *alu)
293 {
294 	unsigned num_src = r600_bytecode_get_num_operands(alu);
295 	unsigned src;
296 
297 	for (src = 0; src < num_src; ++src) {
298 		if (is_lds_read(alu->src[src].sel)) {
299 			return 1;
300 		}
301 	}
302 	return 0;
303 }
304 
is_alu_64bit_inst(struct r600_bytecode_alu * alu)305 static int is_alu_64bit_inst(struct r600_bytecode_alu *alu)
306 {
307 	const struct alu_op_info *op = r600_isa_alu(alu->op);
308 	return (op->flags & AF_64);
309 }
310 
is_alu_vec_unit_inst(struct r600_bytecode * bc,struct r600_bytecode_alu * alu)311 static int is_alu_vec_unit_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
312 {
313 	unsigned slots = r600_isa_alu_slots(bc->isa->hw_class, alu->op);
314 	return !(slots & AF_S);
315 }
316 
is_alu_trans_unit_inst(struct r600_bytecode * bc,struct r600_bytecode_alu * alu)317 static int is_alu_trans_unit_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
318 {
319 	unsigned slots = r600_isa_alu_slots(bc->isa->hw_class, alu->op);
320 	return !(slots & AF_V);
321 }
322 
323 /* alu instructions that can execute on any unit */
is_alu_any_unit_inst(struct r600_bytecode * bc,struct r600_bytecode_alu * alu)324 static int is_alu_any_unit_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
325 {
326 	unsigned slots = r600_isa_alu_slots(bc->isa->hw_class, alu->op);
327 	return slots == AF_VS;
328 }
329 
is_nop_inst(struct r600_bytecode_alu * alu)330 static int is_nop_inst(struct r600_bytecode_alu *alu)
331 {
332 	return alu->op == ALU_OP0_NOP;
333 }
334 
assign_alu_units(struct r600_bytecode * bc,struct r600_bytecode_alu * alu_first,struct r600_bytecode_alu * assignment[5])335 static int assign_alu_units(struct r600_bytecode *bc, struct r600_bytecode_alu *alu_first,
336 			    struct r600_bytecode_alu *assignment[5])
337 {
338 	struct r600_bytecode_alu *alu;
339 	unsigned i, chan, trans;
340 	int max_slots = bc->chip_class == CAYMAN ? 4 : 5;
341 
342 	for (i = 0; i < max_slots; i++)
343 		assignment[i] = NULL;
344 
345 	for (alu = alu_first; alu; alu = LIST_ENTRY(struct r600_bytecode_alu, alu->list.next, list)) {
346 		chan = alu->dst.chan;
347 		if (max_slots == 4)
348 			trans = 0;
349 		else if (is_alu_trans_unit_inst(bc, alu))
350 			trans = 1;
351 		else if (is_alu_vec_unit_inst(bc, alu))
352 			trans = 0;
353 		else if (assignment[chan])
354 			trans = 1; /* Assume ALU_INST_PREFER_VECTOR. */
355 		else
356 			trans = 0;
357 
358 		if (trans) {
359 			if (assignment[4]) {
360 				assert(0); /* ALU.Trans has already been allocated. */
361 				return -1;
362 			}
363 			assignment[4] = alu;
364 		} else {
365 			if (assignment[chan]) {
366 				assert(0); /* ALU.chan has already been allocated. */
367 				return -1;
368 			}
369 			assignment[chan] = alu;
370 		}
371 
372 		if (alu->last)
373 			break;
374 	}
375 	return 0;
376 }
377 
378 struct alu_bank_swizzle {
379 	int	hw_gpr[NUM_OF_CYCLES][NUM_OF_COMPONENTS];
380 	int	hw_cfile_addr[4];
381 	int	hw_cfile_elem[4];
382 };
383 
384 static const unsigned cycle_for_bank_swizzle_vec[][3] = {
385 	[SQ_ALU_VEC_012] = { 0, 1, 2 },
386 	[SQ_ALU_VEC_021] = { 0, 2, 1 },
387 	[SQ_ALU_VEC_120] = { 1, 2, 0 },
388 	[SQ_ALU_VEC_102] = { 1, 0, 2 },
389 	[SQ_ALU_VEC_201] = { 2, 0, 1 },
390 	[SQ_ALU_VEC_210] = { 2, 1, 0 }
391 };
392 
393 static const unsigned cycle_for_bank_swizzle_scl[][3] = {
394 	[SQ_ALU_SCL_210] = { 2, 1, 0 },
395 	[SQ_ALU_SCL_122] = { 1, 2, 2 },
396 	[SQ_ALU_SCL_212] = { 2, 1, 2 },
397 	[SQ_ALU_SCL_221] = { 2, 2, 1 }
398 };
399 
init_bank_swizzle(struct alu_bank_swizzle * bs)400 static void init_bank_swizzle(struct alu_bank_swizzle *bs)
401 {
402 	int i, cycle, component;
403 	/* set up gpr use */
404 	for (cycle = 0; cycle < NUM_OF_CYCLES; cycle++)
405 		for (component = 0; component < NUM_OF_COMPONENTS; component++)
406 			 bs->hw_gpr[cycle][component] = -1;
407 	for (i = 0; i < 4; i++)
408 		bs->hw_cfile_addr[i] = -1;
409 	for (i = 0; i < 4; i++)
410 		bs->hw_cfile_elem[i] = -1;
411 }
412 
reserve_gpr(struct alu_bank_swizzle * bs,unsigned sel,unsigned chan,unsigned cycle)413 static int reserve_gpr(struct alu_bank_swizzle *bs, unsigned sel, unsigned chan, unsigned cycle)
414 {
415 	if (bs->hw_gpr[cycle][chan] == -1)
416 		bs->hw_gpr[cycle][chan] = sel;
417 	else if (bs->hw_gpr[cycle][chan] != (int)sel) {
418 		/* Another scalar operation has already used the GPR read port for the channel. */
419 		return -1;
420 	}
421 	return 0;
422 }
423 
reserve_cfile(const struct r600_bytecode * bc,struct alu_bank_swizzle * bs,unsigned sel,unsigned chan)424 static int reserve_cfile(const struct r600_bytecode *bc,
425 			 struct alu_bank_swizzle *bs, unsigned sel, unsigned chan)
426 {
427 	int res, num_res = 4;
428 	if (bc->chip_class >= R700) {
429 		num_res = 2;
430 		chan /= 2;
431 	}
432 	for (res = 0; res < num_res; ++res) {
433 		if (bs->hw_cfile_addr[res] == -1) {
434 			bs->hw_cfile_addr[res] = sel;
435 			bs->hw_cfile_elem[res] = chan;
436 			return 0;
437 		} else if (bs->hw_cfile_addr[res] == sel &&
438 			bs->hw_cfile_elem[res] == chan)
439 			return 0; /* Read for this scalar element already reserved, nothing to do here. */
440 	}
441 	/* All cfile read ports are used, cannot reference vector element. */
442 	return -1;
443 }
444 
is_gpr(unsigned sel)445 static int is_gpr(unsigned sel)
446 {
447 	return (sel <= 127);
448 }
449 
450 /* CB constants start at 512, and get translated to a kcache index when ALU
451  * clauses are constructed. Note that we handle kcache constants the same way
452  * as (the now gone) cfile constants, is that really required? */
is_cfile(unsigned sel)453 static int is_cfile(unsigned sel)
454 {
455 	return (sel > 255 && sel < 512) ||
456 		(sel > 511 && sel < 4607) || /* Kcache before translation. */
457 		(sel > 127 && sel < 192); /* Kcache after translation. */
458 }
459 
is_const(int sel)460 static int is_const(int sel)
461 {
462 	return is_cfile(sel) ||
463 		(sel >= V_SQ_ALU_SRC_0 &&
464 		sel <= V_SQ_ALU_SRC_LITERAL);
465 }
466 
check_vector(const struct r600_bytecode * bc,const struct r600_bytecode_alu * alu,struct alu_bank_swizzle * bs,int bank_swizzle)467 static int check_vector(const struct r600_bytecode *bc, const struct r600_bytecode_alu *alu,
468 			struct alu_bank_swizzle *bs, int bank_swizzle)
469 {
470 	int r, src, num_src, sel, elem, cycle;
471 
472 	num_src = r600_bytecode_get_num_operands(alu);
473 	for (src = 0; src < num_src; src++) {
474 		sel = alu->src[src].sel;
475 		elem = alu->src[src].chan;
476 		if (is_gpr(sel)) {
477 			cycle = cycle_for_bank_swizzle_vec[bank_swizzle][src];
478 			if (src == 1 && sel == alu->src[0].sel && elem == alu->src[0].chan)
479 				/* Nothing to do; special-case optimization,
480 				 * second source uses first source’s reservation. */
481 				continue;
482 			else {
483 				r = reserve_gpr(bs, sel, elem, cycle);
484 				if (r)
485 					return r;
486 			}
487 		} else if (is_cfile(sel)) {
488 			r = reserve_cfile(bc, bs, (alu->src[src].kc_bank<<16) + sel, elem);
489 			if (r)
490 				return r;
491 		}
492 		/* No restrictions on PV, PS, literal or special constants. */
493 	}
494 	return 0;
495 }
496 
check_scalar(const struct r600_bytecode * bc,const struct r600_bytecode_alu * alu,struct alu_bank_swizzle * bs,int bank_swizzle)497 static int check_scalar(const struct r600_bytecode *bc, const struct r600_bytecode_alu *alu,
498 			struct alu_bank_swizzle *bs, int bank_swizzle)
499 {
500 	int r, src, num_src, const_count, sel, elem, cycle;
501 
502 	num_src = r600_bytecode_get_num_operands(alu);
503 	for (const_count = 0, src = 0; src < num_src; ++src) {
504 		sel = alu->src[src].sel;
505 		elem = alu->src[src].chan;
506 		if (is_const(sel)) { /* Any constant, including literal and inline constants. */
507 			if (const_count >= 2)
508 				/* More than two references to a constant in
509 				 * transcendental operation. */
510 				return -1;
511 			else
512 				const_count++;
513 		}
514 		if (is_cfile(sel)) {
515 			r = reserve_cfile(bc, bs, (alu->src[src].kc_bank<<16) + sel, elem);
516 			if (r)
517 				return r;
518 		}
519 	}
520 	for (src = 0; src < num_src; ++src) {
521 		sel = alu->src[src].sel;
522 		elem = alu->src[src].chan;
523 		if (is_gpr(sel)) {
524 			cycle = cycle_for_bank_swizzle_scl[bank_swizzle][src];
525 			if (cycle < const_count)
526 				/* Cycle for GPR load conflicts with
527 				 * constant load in transcendental operation. */
528 				return -1;
529 			r = reserve_gpr(bs, sel, elem, cycle);
530 			if (r)
531 				return r;
532 		}
533 		/* PV PS restrictions */
534 		if (const_count && (sel == 254 || sel == 255)) {
535 			cycle = cycle_for_bank_swizzle_scl[bank_swizzle][src];
536 			if (cycle < const_count)
537 				return -1;
538 		}
539 	}
540 	return 0;
541 }
542 
check_and_set_bank_swizzle(const struct r600_bytecode * bc,struct r600_bytecode_alu * slots[5])543 static int check_and_set_bank_swizzle(const struct r600_bytecode *bc,
544 				      struct r600_bytecode_alu *slots[5])
545 {
546 	struct alu_bank_swizzle bs;
547 	int bank_swizzle[5];
548 	int i, r = 0, forced = 1;
549 	boolean scalar_only = bc->chip_class == CAYMAN ? false : true;
550 	int max_slots = bc->chip_class == CAYMAN ? 4 : 5;
551 
552 	for (i = 0; i < max_slots; i++) {
553 		if (slots[i]) {
554 			if (slots[i]->bank_swizzle_force) {
555 				slots[i]->bank_swizzle = slots[i]->bank_swizzle_force;
556 			} else {
557 				forced = 0;
558 			}
559 		}
560 
561 		if (i < 4 && slots[i])
562 			scalar_only = false;
563 	}
564 	if (forced)
565 		return 0;
566 
567 	/* Just check every possible combination of bank swizzle.
568 	 * Not very efficent, but works on the first try in most of the cases. */
569 	for (i = 0; i < 4; i++)
570 		if (!slots[i] || !slots[i]->bank_swizzle_force)
571 			bank_swizzle[i] = SQ_ALU_VEC_012;
572 		else
573 			bank_swizzle[i] = slots[i]->bank_swizzle;
574 
575 	bank_swizzle[4] = SQ_ALU_SCL_210;
576 	while(bank_swizzle[4] <= SQ_ALU_SCL_221) {
577 
578 		init_bank_swizzle(&bs);
579 		if (scalar_only == false) {
580 			for (i = 0; i < 4; i++) {
581 				if (slots[i]) {
582 					r = check_vector(bc, slots[i], &bs, bank_swizzle[i]);
583 					if (r)
584 						break;
585 				}
586 			}
587 		} else
588 			r = 0;
589 
590 		if (!r && max_slots == 5 && slots[4]) {
591 			r = check_scalar(bc, slots[4], &bs, bank_swizzle[4]);
592 		}
593 		if (!r) {
594 			for (i = 0; i < max_slots; i++) {
595 				if (slots[i])
596 					slots[i]->bank_swizzle = bank_swizzle[i];
597 			}
598 			return 0;
599 		}
600 
601 		if (scalar_only) {
602 			bank_swizzle[4]++;
603 		} else {
604 			for (i = 0; i < max_slots; i++) {
605 				if (!slots[i] || !slots[i]->bank_swizzle_force) {
606 					bank_swizzle[i]++;
607 					if (bank_swizzle[i] <= SQ_ALU_VEC_210)
608 						break;
609 					else if (i < max_slots - 1)
610 						bank_swizzle[i] = SQ_ALU_VEC_012;
611 					else
612 						return -1;
613 				}
614 			}
615 		}
616 	}
617 
618 	/* Couldn't find a working swizzle. */
619 	return -1;
620 }
621 
replace_gpr_with_pv_ps(struct r600_bytecode * bc,struct r600_bytecode_alu * slots[5],struct r600_bytecode_alu * alu_prev)622 static int replace_gpr_with_pv_ps(struct r600_bytecode *bc,
623 				  struct r600_bytecode_alu *slots[5], struct r600_bytecode_alu *alu_prev)
624 {
625 	struct r600_bytecode_alu *prev[5];
626 	int gpr[5], chan[5];
627 	int i, j, r, src, num_src;
628 	int max_slots = bc->chip_class == CAYMAN ? 4 : 5;
629 
630 	r = assign_alu_units(bc, alu_prev, prev);
631 	if (r)
632 		return r;
633 
634 	for (i = 0; i < max_slots; ++i) {
635 		if (prev[i] && alu_writes(prev[i]) && !prev[i]->dst.rel) {
636 
637 			if (is_alu_64bit_inst(prev[i])) {
638 				gpr[i] = -1;
639 				continue;
640 			}
641 
642 			gpr[i] = prev[i]->dst.sel;
643 			/* cube writes more than PV.X */
644 			if (is_alu_reduction_inst(bc, prev[i]))
645 				chan[i] = 0;
646 			else
647 				chan[i] = prev[i]->dst.chan;
648 		} else
649 			gpr[i] = -1;
650 	}
651 
652 	for (i = 0; i < max_slots; ++i) {
653 		struct r600_bytecode_alu *alu = slots[i];
654 		if (!alu)
655 			continue;
656 
657 		if (is_alu_64bit_inst(alu))
658 			continue;
659 		num_src = r600_bytecode_get_num_operands(alu);
660 		for (src = 0; src < num_src; ++src) {
661 			if (!is_gpr(alu->src[src].sel) || alu->src[src].rel)
662 				continue;
663 
664 			if (bc->chip_class < CAYMAN) {
665 				if (alu->src[src].sel == gpr[4] &&
666 				    alu->src[src].chan == chan[4] &&
667 				    alu_prev->pred_sel == alu->pred_sel) {
668 					alu->src[src].sel = V_SQ_ALU_SRC_PS;
669 					alu->src[src].chan = 0;
670 					continue;
671 				}
672 			}
673 
674 			for (j = 0; j < 4; ++j) {
675 				if (alu->src[src].sel == gpr[j] &&
676 					alu->src[src].chan == j &&
677 				      alu_prev->pred_sel == alu->pred_sel) {
678 					alu->src[src].sel = V_SQ_ALU_SRC_PV;
679 					alu->src[src].chan = chan[j];
680 					break;
681 				}
682 			}
683 		}
684 	}
685 
686 	return 0;
687 }
688 
r600_bytecode_special_constants(uint32_t value,unsigned * sel,unsigned * neg,unsigned abs)689 void r600_bytecode_special_constants(uint32_t value, unsigned *sel, unsigned *neg, unsigned abs)
690 {
691 	switch(value) {
692 	case 0:
693 		*sel = V_SQ_ALU_SRC_0;
694 		break;
695 	case 1:
696 		*sel = V_SQ_ALU_SRC_1_INT;
697 		break;
698 	case -1:
699 		*sel = V_SQ_ALU_SRC_M_1_INT;
700 		break;
701 	case 0x3F800000: /* 1.0f */
702 		*sel = V_SQ_ALU_SRC_1;
703 		break;
704 	case 0x3F000000: /* 0.5f */
705 		*sel = V_SQ_ALU_SRC_0_5;
706 		break;
707 	case 0xBF800000: /* -1.0f */
708 		*sel = V_SQ_ALU_SRC_1;
709 		*neg ^= !abs;
710 		break;
711 	case 0xBF000000: /* -0.5f */
712 		*sel = V_SQ_ALU_SRC_0_5;
713 		*neg ^= !abs;
714 		break;
715 	default:
716 		*sel = V_SQ_ALU_SRC_LITERAL;
717 		break;
718 	}
719 }
720 
721 /* compute how many literal are needed */
r600_bytecode_alu_nliterals(struct r600_bytecode_alu * alu,uint32_t literal[4],unsigned * nliteral)722 static int r600_bytecode_alu_nliterals(struct r600_bytecode_alu *alu,
723 				 uint32_t literal[4], unsigned *nliteral)
724 {
725 	unsigned num_src = r600_bytecode_get_num_operands(alu);
726 	unsigned i, j;
727 
728 	for (i = 0; i < num_src; ++i) {
729 		if (alu->src[i].sel == V_SQ_ALU_SRC_LITERAL) {
730 			uint32_t value = alu->src[i].value;
731 			unsigned found = 0;
732 			for (j = 0; j < *nliteral; ++j) {
733 				if (literal[j] == value) {
734 					found = 1;
735 					break;
736 				}
737 			}
738 			if (!found) {
739 				if (*nliteral >= 4)
740 					return -EINVAL;
741 				literal[(*nliteral)++] = value;
742 			}
743 		}
744 	}
745 	return 0;
746 }
747 
r600_bytecode_alu_adjust_literals(struct r600_bytecode_alu * alu,uint32_t literal[4],unsigned nliteral)748 static void r600_bytecode_alu_adjust_literals(struct r600_bytecode_alu *alu,
749 					      uint32_t literal[4], unsigned nliteral)
750 {
751 	unsigned num_src = r600_bytecode_get_num_operands(alu);
752 	unsigned i, j;
753 
754 	for (i = 0; i < num_src; ++i) {
755 		if (alu->src[i].sel == V_SQ_ALU_SRC_LITERAL) {
756 			uint32_t value = alu->src[i].value;
757 			for (j = 0; j < nliteral; ++j) {
758 				if (literal[j] == value) {
759 					alu->src[i].chan = j;
760 					break;
761 				}
762 			}
763 		}
764 	}
765 }
766 
merge_inst_groups(struct r600_bytecode * bc,struct r600_bytecode_alu * slots[5],struct r600_bytecode_alu * alu_prev)767 static int merge_inst_groups(struct r600_bytecode *bc, struct r600_bytecode_alu *slots[5],
768 			     struct r600_bytecode_alu *alu_prev)
769 {
770 	struct r600_bytecode_alu *prev[5];
771 	struct r600_bytecode_alu *result[5] = { NULL };
772 
773 	uint32_t literal[4], prev_literal[4];
774 	unsigned nliteral = 0, prev_nliteral = 0;
775 
776 	int i, j, r, src, num_src;
777 	int num_once_inst = 0;
778 	int have_mova = 0, have_rel = 0;
779 	int max_slots = bc->chip_class == CAYMAN ? 4 : 5;
780 
781 	r = assign_alu_units(bc, alu_prev, prev);
782 	if (r)
783 		return r;
784 
785 	for (i = 0; i < max_slots; ++i) {
786 		if (prev[i]) {
787 		      if (prev[i]->pred_sel)
788 			      return 0;
789 		      if (is_alu_once_inst(prev[i]))
790 			      return 0;
791 		}
792 		if (slots[i]) {
793 			if (slots[i]->pred_sel)
794 				return 0;
795 			if (is_alu_once_inst(slots[i]))
796 				return 0;
797 		}
798 	}
799 
800 	for (i = 0; i < max_slots; ++i) {
801 		struct r600_bytecode_alu *alu;
802 
803 		if (num_once_inst > 0)
804 		   return 0;
805 
806 		/* check number of literals */
807 		if (prev[i]) {
808 			if (r600_bytecode_alu_nliterals(prev[i], literal, &nliteral))
809 				return 0;
810 			if (r600_bytecode_alu_nliterals(prev[i], prev_literal, &prev_nliteral))
811 				return 0;
812 			if (is_alu_mova_inst(prev[i])) {
813 				if (have_rel)
814 					return 0;
815 				have_mova = 1;
816 			}
817 
818 			if (alu_uses_rel(prev[i])) {
819 				if (have_mova) {
820 					return 0;
821 				}
822 				have_rel = 1;
823 			}
824 			if (alu_uses_lds(prev[i]))
825 				return 0;
826 
827 			num_once_inst += is_alu_once_inst(prev[i]);
828 		}
829 		if (slots[i] && r600_bytecode_alu_nliterals(slots[i], literal, &nliteral))
830 			return 0;
831 
832 		/* Let's check used slots. */
833 		if (prev[i] && !slots[i]) {
834 			result[i] = prev[i];
835 			continue;
836 		} else if (prev[i] && slots[i]) {
837 			if (max_slots == 5 && result[4] == NULL && prev[4] == NULL && slots[4] == NULL) {
838 				/* Trans unit is still free try to use it. */
839 				if (is_alu_any_unit_inst(bc, slots[i]) && !alu_uses_lds(slots[i])) {
840 					result[i] = prev[i];
841 					result[4] = slots[i];
842 				} else if (is_alu_any_unit_inst(bc, prev[i])) {
843 					if (slots[i]->dst.sel == prev[i]->dst.sel &&
844 					    alu_writes(slots[i]) &&
845 					    alu_writes(prev[i]))
846 						return 0;
847 
848 					result[i] = slots[i];
849 					result[4] = prev[i];
850 				} else
851 					return 0;
852 			} else
853 				return 0;
854 		} else if(!slots[i]) {
855 			continue;
856 		} else {
857 			if (max_slots == 5 && slots[i] && prev[4] &&
858 					slots[i]->dst.sel == prev[4]->dst.sel &&
859 					slots[i]->dst.chan == prev[4]->dst.chan &&
860 					alu_writes(slots[i]) &&
861 					alu_writes(prev[4]))
862 				return 0;
863 
864 			result[i] = slots[i];
865 		}
866 
867 		alu = slots[i];
868 		num_once_inst += is_alu_once_inst(alu);
869 
870 		/* don't reschedule NOPs */
871 		if (is_nop_inst(alu))
872 			return 0;
873 
874 		if (is_alu_mova_inst(alu)) {
875 			if (have_rel) {
876 				return 0;
877 			}
878 			have_mova = 1;
879 		}
880 
881 		if (alu_uses_rel(alu)) {
882 			if (have_mova) {
883 				return 0;
884 			}
885 			have_rel = 1;
886 		}
887 
888 		if (alu->op == ALU_OP0_SET_CF_IDX0 ||
889 			alu->op == ALU_OP0_SET_CF_IDX1)
890 			return 0; /* data hazard with MOVA */
891 
892 		/* Let's check source gprs */
893 		num_src = r600_bytecode_get_num_operands(alu);
894 		for (src = 0; src < num_src; ++src) {
895 
896 			/* Constants don't matter. */
897 			if (!is_gpr(alu->src[src].sel))
898 				continue;
899 
900 			for (j = 0; j < max_slots; ++j) {
901 				if (!prev[j] || !alu_writes(prev[j]))
902 					continue;
903 
904 				/* If it's relative then we can't determin which gpr is really used. */
905 				if (prev[j]->dst.chan == alu->src[src].chan &&
906 					(prev[j]->dst.sel == alu->src[src].sel ||
907 					prev[j]->dst.rel || alu->src[src].rel))
908 					return 0;
909 			}
910 		}
911 	}
912 
913 	/* more than one PRED_ or KILL_ ? */
914 	if (num_once_inst > 1)
915 		return 0;
916 
917 	/* check if the result can still be swizzlet */
918 	r = check_and_set_bank_swizzle(bc, result);
919 	if (r)
920 		return 0;
921 
922 	/* looks like everything worked out right, apply the changes */
923 
924 	/* undo adding previus literals */
925 	bc->cf_last->ndw -= align(prev_nliteral, 2);
926 
927 	/* sort instructions */
928 	for (i = 0; i < max_slots; ++i) {
929 		slots[i] = result[i];
930 		if (result[i]) {
931 			list_del(&result[i]->list);
932 			result[i]->last = 0;
933 			list_addtail(&result[i]->list, &bc->cf_last->alu);
934 		}
935 	}
936 
937 	/* determine new last instruction */
938 	LIST_ENTRY(struct r600_bytecode_alu, bc->cf_last->alu.prev, list)->last = 1;
939 
940 	/* determine new first instruction */
941 	for (i = 0; i < max_slots; ++i) {
942 		if (result[i]) {
943 			bc->cf_last->curr_bs_head = result[i];
944 			break;
945 		}
946 	}
947 
948 	bc->cf_last->prev_bs_head = bc->cf_last->prev2_bs_head;
949 	bc->cf_last->prev2_bs_head = NULL;
950 
951 	return 0;
952 }
953 
954 /* we'll keep kcache sets sorted by bank & addr */
r600_bytecode_alloc_kcache_line(struct r600_bytecode * bc,struct r600_bytecode_kcache * kcache,unsigned bank,unsigned line,unsigned index_mode)955 static int r600_bytecode_alloc_kcache_line(struct r600_bytecode *bc,
956 		struct r600_bytecode_kcache *kcache,
957 		unsigned bank, unsigned line, unsigned index_mode)
958 {
959 	int i, kcache_banks = bc->chip_class >= EVERGREEN ? 4 : 2;
960 
961 	for (i = 0; i < kcache_banks; i++) {
962 		if (kcache[i].mode) {
963 			int d;
964 
965 			if (kcache[i].bank < bank)
966 				continue;
967 
968 			if ((kcache[i].bank == bank && kcache[i].addr > line+1) ||
969 					kcache[i].bank > bank) {
970 				/* try to insert new line */
971 				if (kcache[kcache_banks-1].mode) {
972 					/* all sets are in use */
973 					return -ENOMEM;
974 				}
975 
976 				memmove(&kcache[i+1],&kcache[i], (kcache_banks-i-1)*sizeof(struct r600_bytecode_kcache));
977 				kcache[i].mode = V_SQ_CF_KCACHE_LOCK_1;
978 				kcache[i].bank = bank;
979 				kcache[i].addr = line;
980 				kcache[i].index_mode = index_mode;
981 				return 0;
982 			}
983 
984 			d = line - kcache[i].addr;
985 
986 			if (d == -1) {
987 				kcache[i].addr--;
988 				if (kcache[i].mode == V_SQ_CF_KCACHE_LOCK_2) {
989 					/* we are prepending the line to the current set,
990 					 * discarding the existing second line,
991 					 * so we'll have to insert line+2 after it */
992 					line += 2;
993 					continue;
994 				} else if (kcache[i].mode == V_SQ_CF_KCACHE_LOCK_1) {
995 					kcache[i].mode = V_SQ_CF_KCACHE_LOCK_2;
996 					return 0;
997 				} else {
998 					/* V_SQ_CF_KCACHE_LOCK_LOOP_INDEX is not supported */
999 					return -ENOMEM;
1000 				}
1001 			} else if (d == 1) {
1002 				kcache[i].mode = V_SQ_CF_KCACHE_LOCK_2;
1003 				return 0;
1004 			} else if (d == 0)
1005 				return 0;
1006 		} else { /* free kcache set - use it */
1007 			kcache[i].mode = V_SQ_CF_KCACHE_LOCK_1;
1008 			kcache[i].bank = bank;
1009 			kcache[i].addr = line;
1010 			kcache[i].index_mode = index_mode;
1011 			return 0;
1012 		}
1013 	}
1014 	return -ENOMEM;
1015 }
1016 
r600_bytecode_alloc_inst_kcache_lines(struct r600_bytecode * bc,struct r600_bytecode_kcache * kcache,struct r600_bytecode_alu * alu)1017 static int r600_bytecode_alloc_inst_kcache_lines(struct r600_bytecode *bc,
1018 		struct r600_bytecode_kcache *kcache,
1019 		struct r600_bytecode_alu *alu)
1020 {
1021 	int i, r;
1022 
1023 	for (i = 0; i < 3; i++) {
1024 		unsigned bank, line, sel = alu->src[i].sel, index_mode;
1025 
1026 		if (sel < 512)
1027 			continue;
1028 
1029 		bank = alu->src[i].kc_bank;
1030 		assert(bank < R600_MAX_HW_CONST_BUFFERS);
1031 		line = (sel-512)>>4;
1032 		index_mode = alu->src[i].kc_rel ? 1 : 0; // V_SQ_CF_INDEX_0 / V_SQ_CF_INDEX_NONE
1033 
1034 		if ((r = r600_bytecode_alloc_kcache_line(bc, kcache, bank, line, index_mode)))
1035 			return r;
1036 	}
1037 	return 0;
1038 }
1039 
r600_bytecode_assign_kcache_banks(struct r600_bytecode_alu * alu,struct r600_bytecode_kcache * kcache)1040 static int r600_bytecode_assign_kcache_banks(
1041 		struct r600_bytecode_alu *alu,
1042 		struct r600_bytecode_kcache * kcache)
1043 {
1044 	int i, j;
1045 
1046 	/* Alter the src operands to refer to the kcache. */
1047 	for (i = 0; i < 3; ++i) {
1048 		static const unsigned int base[] = {128, 160, 256, 288};
1049 		unsigned int line, sel = alu->src[i].sel, found = 0;
1050 
1051 		if (sel < 512)
1052 			continue;
1053 
1054 		sel -= 512;
1055 		line = sel>>4;
1056 
1057 		for (j = 0; j < 4 && !found; ++j) {
1058 			switch (kcache[j].mode) {
1059 			case V_SQ_CF_KCACHE_NOP:
1060 			case V_SQ_CF_KCACHE_LOCK_LOOP_INDEX:
1061 				R600_ERR("unexpected kcache line mode\n");
1062 				return -ENOMEM;
1063 			default:
1064 				if (kcache[j].bank == alu->src[i].kc_bank &&
1065 						kcache[j].addr <= line &&
1066 						line < kcache[j].addr + kcache[j].mode) {
1067 					alu->src[i].sel = sel - (kcache[j].addr<<4);
1068 					alu->src[i].sel += base[j];
1069 					found=1;
1070 			    }
1071 			}
1072 		}
1073 	}
1074 	return 0;
1075 }
1076 
r600_bytecode_alloc_kcache_lines(struct r600_bytecode * bc,struct r600_bytecode_alu * alu,unsigned type)1077 static int r600_bytecode_alloc_kcache_lines(struct r600_bytecode *bc,
1078 		struct r600_bytecode_alu *alu,
1079 		unsigned type)
1080 {
1081 	struct r600_bytecode_kcache kcache_sets[4];
1082 	struct r600_bytecode_kcache *kcache = kcache_sets;
1083 	int r;
1084 
1085 	memcpy(kcache, bc->cf_last->kcache, 4 * sizeof(struct r600_bytecode_kcache));
1086 
1087 	if ((r = r600_bytecode_alloc_inst_kcache_lines(bc, kcache, alu))) {
1088 		/* can't alloc, need to start new clause */
1089 		if ((r = r600_bytecode_add_cf(bc))) {
1090 			return r;
1091 		}
1092 		bc->cf_last->op = type;
1093 
1094 		/* retry with the new clause */
1095 		kcache = bc->cf_last->kcache;
1096 		if ((r = r600_bytecode_alloc_inst_kcache_lines(bc, kcache, alu))) {
1097 			/* can't alloc again- should never happen */
1098 			return r;
1099 		}
1100 	} else {
1101 		/* update kcache sets */
1102 		memcpy(bc->cf_last->kcache, kcache, 4 * sizeof(struct r600_bytecode_kcache));
1103 	}
1104 
1105 	/* if we actually used more than 2 kcache sets, or have relative indexing - use ALU_EXTENDED on eg+ */
1106 	if (kcache[2].mode != V_SQ_CF_KCACHE_NOP ||
1107 		kcache[0].index_mode || kcache[1].index_mode || kcache[2].index_mode || kcache[3].index_mode) {
1108 		if (bc->chip_class < EVERGREEN)
1109 			return -ENOMEM;
1110 		bc->cf_last->eg_alu_extended = 1;
1111 	}
1112 
1113 	return 0;
1114 }
1115 
insert_nop_r6xx(struct r600_bytecode * bc)1116 static int insert_nop_r6xx(struct r600_bytecode *bc)
1117 {
1118 	struct r600_bytecode_alu alu;
1119 	int r, i;
1120 
1121 	for (i = 0; i < 4; i++) {
1122 		memset(&alu, 0, sizeof(alu));
1123 		alu.op = ALU_OP0_NOP;
1124 		alu.src[0].chan = i;
1125 		alu.dst.chan = i;
1126 		alu.last = (i == 3);
1127 		r = r600_bytecode_add_alu(bc, &alu);
1128 		if (r)
1129 			return r;
1130 	}
1131 	return 0;
1132 }
1133 
1134 /* load AR register from gpr (bc->ar_reg) with MOVA_INT */
load_ar_r6xx(struct r600_bytecode * bc)1135 static int load_ar_r6xx(struct r600_bytecode *bc)
1136 {
1137 	struct r600_bytecode_alu alu;
1138 	int r;
1139 
1140 	if (bc->ar_loaded)
1141 		return 0;
1142 
1143 	/* hack to avoid making MOVA the last instruction in the clause */
1144 	if ((bc->cf_last->ndw>>1) >= 110)
1145 		bc->force_add_cf = 1;
1146 
1147 	memset(&alu, 0, sizeof(alu));
1148 	alu.op = ALU_OP1_MOVA_GPR_INT;
1149 	alu.src[0].sel = bc->ar_reg;
1150 	alu.src[0].chan = bc->ar_chan;
1151 	alu.last = 1;
1152 	alu.index_mode = INDEX_MODE_LOOP;
1153 	r = r600_bytecode_add_alu(bc, &alu);
1154 	if (r)
1155 		return r;
1156 
1157 	/* no requirement to set uses waterfall on MOVA_GPR_INT */
1158 	bc->ar_loaded = 1;
1159 	return 0;
1160 }
1161 
1162 /* load AR register from gpr (bc->ar_reg) with MOVA_INT */
load_ar(struct r600_bytecode * bc)1163 static int load_ar(struct r600_bytecode *bc)
1164 {
1165 	struct r600_bytecode_alu alu;
1166 	int r;
1167 
1168 	if (bc->ar_handling)
1169 		return load_ar_r6xx(bc);
1170 
1171 	if (bc->ar_loaded)
1172 		return 0;
1173 
1174 	/* hack to avoid making MOVA the last instruction in the clause */
1175 	if ((bc->cf_last->ndw>>1) >= 110)
1176 		bc->force_add_cf = 1;
1177 
1178 	memset(&alu, 0, sizeof(alu));
1179 	alu.op = ALU_OP1_MOVA_INT;
1180 	alu.src[0].sel = bc->ar_reg;
1181 	alu.src[0].chan = bc->ar_chan;
1182 	alu.last = 1;
1183 	r = r600_bytecode_add_alu(bc, &alu);
1184 	if (r)
1185 		return r;
1186 
1187 	bc->cf_last->r6xx_uses_waterfall = 1;
1188 	bc->ar_loaded = 1;
1189 	return 0;
1190 }
1191 
r600_bytecode_add_alu_type(struct r600_bytecode * bc,const struct r600_bytecode_alu * alu,unsigned type)1192 int r600_bytecode_add_alu_type(struct r600_bytecode *bc,
1193 		const struct r600_bytecode_alu *alu, unsigned type)
1194 {
1195 	struct r600_bytecode_alu *nalu = r600_bytecode_alu();
1196 	struct r600_bytecode_alu *lalu;
1197 	int i, r;
1198 
1199 	if (!nalu)
1200 		return -ENOMEM;
1201 	memcpy(nalu, alu, sizeof(struct r600_bytecode_alu));
1202 
1203 	if (alu->is_op3) {
1204 		/* will fail later since alu does not support it. */
1205 		assert(!alu->src[0].abs && !alu->src[1].abs && !alu->src[2].abs);
1206 	}
1207 
1208 	if (bc->cf_last != NULL && bc->cf_last->op != type) {
1209 		/* check if we could add it anyway */
1210 		if (bc->cf_last->op == CF_OP_ALU &&
1211 			type == CF_OP_ALU_PUSH_BEFORE) {
1212 			LIST_FOR_EACH_ENTRY(lalu, &bc->cf_last->alu, list) {
1213 				if (lalu->execute_mask) {
1214 					bc->force_add_cf = 1;
1215 					break;
1216 				}
1217 			}
1218 		} else
1219 			bc->force_add_cf = 1;
1220 	}
1221 
1222 	/* cf can contains only alu or only vtx or only tex */
1223 	if (bc->cf_last == NULL || bc->force_add_cf) {
1224 		r = r600_bytecode_add_cf(bc);
1225 		if (r) {
1226 			free(nalu);
1227 			return r;
1228 		}
1229 	}
1230 	bc->cf_last->op = type;
1231 
1232 	/* Load index register if required */
1233 	if (bc->chip_class >= EVERGREEN) {
1234 		for (i = 0; i < 3; i++)
1235 			if (nalu->src[i].kc_bank &&  nalu->src[i].kc_rel)
1236 				egcm_load_index_reg(bc, 0, true);
1237 	}
1238 
1239 	/* Check AR usage and load it if required */
1240 	for (i = 0; i < 3; i++)
1241 		if (nalu->src[i].rel && !bc->ar_loaded)
1242 			load_ar(bc);
1243 
1244 	if (nalu->dst.rel && !bc->ar_loaded)
1245 		load_ar(bc);
1246 
1247 	/* Setup the kcache for this ALU instruction. This will start a new
1248 	 * ALU clause if needed. */
1249 	if ((r = r600_bytecode_alloc_kcache_lines(bc, nalu, type))) {
1250 		free(nalu);
1251 		return r;
1252 	}
1253 
1254 	if (!bc->cf_last->curr_bs_head) {
1255 		bc->cf_last->curr_bs_head = nalu;
1256 	}
1257 	/* number of gpr == the last gpr used in any alu */
1258 	for (i = 0; i < 3; i++) {
1259 		if (nalu->src[i].sel >= bc->ngpr && nalu->src[i].sel < 128) {
1260 			bc->ngpr = nalu->src[i].sel + 1;
1261 		}
1262 		if (nalu->src[i].sel == V_SQ_ALU_SRC_LITERAL)
1263 			r600_bytecode_special_constants(nalu->src[i].value,
1264 				&nalu->src[i].sel, &nalu->src[i].neg, nalu->src[i].abs);
1265 	}
1266 	if (nalu->dst.sel >= bc->ngpr) {
1267 		bc->ngpr = nalu->dst.sel + 1;
1268 	}
1269 	list_addtail(&nalu->list, &bc->cf_last->alu);
1270 	/* each alu use 2 dwords */
1271 	bc->cf_last->ndw += 2;
1272 	bc->ndw += 2;
1273 
1274 	/* process cur ALU instructions for bank swizzle */
1275 	if (nalu->last) {
1276 		uint32_t literal[4];
1277 		unsigned nliteral;
1278 		struct r600_bytecode_alu *slots[5];
1279 		int max_slots = bc->chip_class == CAYMAN ? 4 : 5;
1280 		r = assign_alu_units(bc, bc->cf_last->curr_bs_head, slots);
1281 		if (r)
1282 			return r;
1283 
1284 		if (bc->cf_last->prev_bs_head) {
1285 			r = merge_inst_groups(bc, slots, bc->cf_last->prev_bs_head);
1286 			if (r)
1287 				return r;
1288 		}
1289 
1290 		if (bc->cf_last->prev_bs_head) {
1291 			r = replace_gpr_with_pv_ps(bc, slots, bc->cf_last->prev_bs_head);
1292 			if (r)
1293 				return r;
1294 		}
1295 
1296 		r = check_and_set_bank_swizzle(bc, slots);
1297 		if (r)
1298 			return r;
1299 
1300 		for (i = 0, nliteral = 0; i < max_slots; i++) {
1301 			if (slots[i]) {
1302 				r = r600_bytecode_alu_nliterals(slots[i], literal, &nliteral);
1303 				if (r)
1304 					return r;
1305 			}
1306 		}
1307 		bc->cf_last->ndw += align(nliteral, 2);
1308 
1309 		/* at most 128 slots, one add alu can add 5 slots + 4 constants(2 slots)
1310 		 * worst case */
1311 		if ((bc->cf_last->ndw >> 1) >= 120) {
1312 			bc->force_add_cf = 1;
1313 		}
1314 
1315 		bc->cf_last->prev2_bs_head = bc->cf_last->prev_bs_head;
1316 		bc->cf_last->prev_bs_head = bc->cf_last->curr_bs_head;
1317 		bc->cf_last->curr_bs_head = NULL;
1318 	}
1319 
1320 	if (nalu->dst.rel && bc->r6xx_nop_after_rel_dst)
1321 		insert_nop_r6xx(bc);
1322 
1323 	/* Might need to insert spill write ops after current clause */
1324 	if (nalu->last && bc->n_pending_outputs) {
1325 		while (bc->n_pending_outputs) {
1326 			r = r600_bytecode_add_output(bc, &bc->pending_outputs[--bc->n_pending_outputs]);
1327 			if (r)
1328 				return r;
1329 		}
1330 	}
1331 
1332 	return 0;
1333 }
1334 
r600_bytecode_add_alu(struct r600_bytecode * bc,const struct r600_bytecode_alu * alu)1335 int r600_bytecode_add_alu(struct r600_bytecode *bc, const struct r600_bytecode_alu *alu)
1336 {
1337 	return r600_bytecode_add_alu_type(bc, alu, CF_OP_ALU);
1338 }
1339 
r600_bytecode_num_tex_and_vtx_instructions(const struct r600_bytecode * bc)1340 static unsigned r600_bytecode_num_tex_and_vtx_instructions(const struct r600_bytecode *bc)
1341 {
1342 	switch (bc->chip_class) {
1343 	case R600:
1344 		return 8;
1345 
1346 	case R700:
1347 	case EVERGREEN:
1348 	case CAYMAN:
1349 		return 16;
1350 
1351 	default:
1352 		R600_ERR("Unknown chip class %d.\n", bc->chip_class);
1353 		return 8;
1354 	}
1355 }
1356 
last_inst_was_not_vtx_fetch(struct r600_bytecode * bc)1357 static inline boolean last_inst_was_not_vtx_fetch(struct r600_bytecode *bc)
1358 {
1359 	return !((r600_isa_cf(bc->cf_last->op)->flags & CF_FETCH) &&
1360 		 bc->cf_last->op != CF_OP_GDS &&
1361 		 (bc->chip_class == CAYMAN ||
1362 		  bc->cf_last->op != CF_OP_TEX));
1363 }
1364 
r600_bytecode_add_vtx_internal(struct r600_bytecode * bc,const struct r600_bytecode_vtx * vtx,bool use_tc)1365 static int r600_bytecode_add_vtx_internal(struct r600_bytecode *bc, const struct r600_bytecode_vtx *vtx,
1366 					  bool use_tc)
1367 {
1368 	struct r600_bytecode_vtx *nvtx = r600_bytecode_vtx();
1369 	int r;
1370 
1371 	if (!nvtx)
1372 		return -ENOMEM;
1373 	memcpy(nvtx, vtx, sizeof(struct r600_bytecode_vtx));
1374 
1375 	/* Load index register if required */
1376 	if (bc->chip_class >= EVERGREEN) {
1377 		if (vtx->buffer_index_mode)
1378 			egcm_load_index_reg(bc, vtx->buffer_index_mode - 1, false);
1379 	}
1380 
1381 	/* cf can contains only alu or only vtx or only tex */
1382 	if (bc->cf_last == NULL ||
1383 	    last_inst_was_not_vtx_fetch(bc) ||
1384 	    bc->force_add_cf) {
1385 		r = r600_bytecode_add_cf(bc);
1386 		if (r) {
1387 			free(nvtx);
1388 			return r;
1389 		}
1390 		switch (bc->chip_class) {
1391 		case R600:
1392 		case R700:
1393 			bc->cf_last->op = CF_OP_VTX;
1394 			break;
1395 		case EVERGREEN:
1396 			if (use_tc)
1397 				bc->cf_last->op = CF_OP_TEX;
1398 			else
1399 				bc->cf_last->op = CF_OP_VTX;
1400 			break;
1401 		case CAYMAN:
1402 			bc->cf_last->op = CF_OP_TEX;
1403 			break;
1404 		default:
1405 			R600_ERR("Unknown chip class %d.\n", bc->chip_class);
1406 			free(nvtx);
1407 			return -EINVAL;
1408 		}
1409 	}
1410 	list_addtail(&nvtx->list, &bc->cf_last->vtx);
1411 	/* each fetch use 4 dwords */
1412 	bc->cf_last->ndw += 4;
1413 	bc->ndw += 4;
1414 	if ((bc->cf_last->ndw / 4) >= r600_bytecode_num_tex_and_vtx_instructions(bc))
1415 		bc->force_add_cf = 1;
1416 
1417 	bc->ngpr = MAX2(bc->ngpr, vtx->src_gpr + 1);
1418 	bc->ngpr = MAX2(bc->ngpr, vtx->dst_gpr + 1);
1419 
1420 	return 0;
1421 }
1422 
r600_bytecode_add_vtx(struct r600_bytecode * bc,const struct r600_bytecode_vtx * vtx)1423 int r600_bytecode_add_vtx(struct r600_bytecode *bc, const struct r600_bytecode_vtx *vtx)
1424 {
1425 	return r600_bytecode_add_vtx_internal(bc, vtx, false);
1426 }
1427 
r600_bytecode_add_vtx_tc(struct r600_bytecode * bc,const struct r600_bytecode_vtx * vtx)1428 int r600_bytecode_add_vtx_tc(struct r600_bytecode *bc, const struct r600_bytecode_vtx *vtx)
1429 {
1430 	return r600_bytecode_add_vtx_internal(bc, vtx, true);
1431 }
1432 
r600_bytecode_add_tex(struct r600_bytecode * bc,const struct r600_bytecode_tex * tex)1433 int r600_bytecode_add_tex(struct r600_bytecode *bc, const struct r600_bytecode_tex *tex)
1434 {
1435 	struct r600_bytecode_tex *ntex = r600_bytecode_tex();
1436 	int r;
1437 
1438 	if (!ntex)
1439 		return -ENOMEM;
1440 	memcpy(ntex, tex, sizeof(struct r600_bytecode_tex));
1441 
1442 	/* Load index register if required */
1443 	if (bc->chip_class >= EVERGREEN) {
1444 		if (tex->sampler_index_mode || tex->resource_index_mode)
1445 			egcm_load_index_reg(bc, 1, false);
1446 	}
1447 
1448 	/* we can't fetch data und use it as texture lookup address in the same TEX clause */
1449 	if (bc->cf_last != NULL &&
1450 		bc->cf_last->op == CF_OP_TEX) {
1451 		struct r600_bytecode_tex *ttex;
1452 		LIST_FOR_EACH_ENTRY(ttex, &bc->cf_last->tex, list) {
1453 			if (ttex->dst_gpr == ntex->src_gpr &&
1454                             (ttex->dst_sel_x < 4 || ttex->dst_sel_y < 4 ||
1455                              ttex->dst_sel_z < 4 || ttex->dst_sel_w < 4)) {
1456 				bc->force_add_cf = 1;
1457 				break;
1458 			}
1459 		}
1460 		/* slight hack to make gradients always go into same cf */
1461 		if (ntex->op == FETCH_OP_SET_GRADIENTS_H)
1462 			bc->force_add_cf = 1;
1463 	}
1464 
1465 	/* cf can contains only alu or only vtx or only tex */
1466 	if (bc->cf_last == NULL ||
1467 		bc->cf_last->op != CF_OP_TEX ||
1468 	        bc->force_add_cf) {
1469 		r = r600_bytecode_add_cf(bc);
1470 		if (r) {
1471 			free(ntex);
1472 			return r;
1473 		}
1474 		bc->cf_last->op = CF_OP_TEX;
1475 	}
1476 	if (ntex->src_gpr >= bc->ngpr) {
1477 		bc->ngpr = ntex->src_gpr + 1;
1478 	}
1479 	if (ntex->dst_gpr >= bc->ngpr) {
1480 		bc->ngpr = ntex->dst_gpr + 1;
1481 	}
1482 	list_addtail(&ntex->list, &bc->cf_last->tex);
1483 	/* each texture fetch use 4 dwords */
1484 	bc->cf_last->ndw += 4;
1485 	bc->ndw += 4;
1486 	if ((bc->cf_last->ndw / 4) >= r600_bytecode_num_tex_and_vtx_instructions(bc))
1487 		bc->force_add_cf = 1;
1488 	return 0;
1489 }
1490 
r600_bytecode_add_gds(struct r600_bytecode * bc,const struct r600_bytecode_gds * gds)1491 int r600_bytecode_add_gds(struct r600_bytecode *bc, const struct r600_bytecode_gds *gds)
1492 {
1493 	struct r600_bytecode_gds *ngds = r600_bytecode_gds();
1494 	int r;
1495 
1496 	if (ngds == NULL)
1497 		return -ENOMEM;
1498 	memcpy(ngds, gds, sizeof(struct r600_bytecode_gds));
1499 
1500 	if (bc->chip_class >= EVERGREEN) {
1501 		if (gds->uav_index_mode)
1502 			egcm_load_index_reg(bc, gds->uav_index_mode - 1, false);
1503 	}
1504 
1505 	if (bc->cf_last == NULL ||
1506 	    bc->cf_last->op != CF_OP_GDS ||
1507 	    bc->force_add_cf) {
1508 		r = r600_bytecode_add_cf(bc);
1509 		if (r) {
1510 			free(ngds);
1511 			return r;
1512 		}
1513 		bc->cf_last->op = CF_OP_GDS;
1514 	}
1515 
1516 	list_addtail(&ngds->list, &bc->cf_last->gds);
1517 	bc->cf_last->ndw += 4; /* each GDS uses 4 dwords */
1518 	if ((bc->cf_last->ndw / 4) >= r600_bytecode_num_tex_and_vtx_instructions(bc))
1519 		bc->force_add_cf = 1;
1520 	return 0;
1521 }
1522 
r600_bytecode_add_cfinst(struct r600_bytecode * bc,unsigned op)1523 int r600_bytecode_add_cfinst(struct r600_bytecode *bc, unsigned op)
1524 {
1525 	int r;
1526 
1527 	/* Emit WAIT_ACK before control flow to ensure pending writes are always acked. */
1528 	if (op != CF_OP_MEM_SCRATCH && bc->need_wait_ack) {
1529 		bc->need_wait_ack = false;
1530 		r = r600_bytecode_add_cfinst(bc, CF_OP_WAIT_ACK);
1531 	}
1532 
1533 	r = r600_bytecode_add_cf(bc);
1534 	if (r)
1535 		return r;
1536 
1537 	bc->cf_last->cond = V_SQ_CF_COND_ACTIVE;
1538 	bc->cf_last->op = op;
1539 	return 0;
1540 }
1541 
cm_bytecode_add_cf_end(struct r600_bytecode * bc)1542 int cm_bytecode_add_cf_end(struct r600_bytecode *bc)
1543 {
1544 	return r600_bytecode_add_cfinst(bc, CF_OP_CF_END);
1545 }
1546 
1547 /* common to all 3 families */
r600_bytecode_vtx_build(struct r600_bytecode * bc,struct r600_bytecode_vtx * vtx,unsigned id)1548 static int r600_bytecode_vtx_build(struct r600_bytecode *bc, struct r600_bytecode_vtx *vtx, unsigned id)
1549 {
1550 	if (r600_isa_fetch(vtx->op)->flags & FF_MEM)
1551 		return r700_bytecode_fetch_mem_build(bc, vtx, id);
1552 	bc->bytecode[id] = S_SQ_VTX_WORD0_VTX_INST(r600_isa_fetch_opcode(bc->isa->hw_class, vtx->op)) |
1553 			S_SQ_VTX_WORD0_BUFFER_ID(vtx->buffer_id) |
1554 			S_SQ_VTX_WORD0_FETCH_TYPE(vtx->fetch_type) |
1555 			S_SQ_VTX_WORD0_SRC_GPR(vtx->src_gpr) |
1556 			S_SQ_VTX_WORD0_SRC_SEL_X(vtx->src_sel_x);
1557 	if (bc->chip_class < CAYMAN)
1558 		bc->bytecode[id] |= S_SQ_VTX_WORD0_MEGA_FETCH_COUNT(vtx->mega_fetch_count);
1559 	id++;
1560 	bc->bytecode[id++] = S_SQ_VTX_WORD1_DST_SEL_X(vtx->dst_sel_x) |
1561 				S_SQ_VTX_WORD1_DST_SEL_Y(vtx->dst_sel_y) |
1562 				S_SQ_VTX_WORD1_DST_SEL_Z(vtx->dst_sel_z) |
1563 				S_SQ_VTX_WORD1_DST_SEL_W(vtx->dst_sel_w) |
1564 				S_SQ_VTX_WORD1_USE_CONST_FIELDS(vtx->use_const_fields) |
1565 				S_SQ_VTX_WORD1_DATA_FORMAT(vtx->data_format) |
1566 				S_SQ_VTX_WORD1_NUM_FORMAT_ALL(vtx->num_format_all) |
1567 				S_SQ_VTX_WORD1_FORMAT_COMP_ALL(vtx->format_comp_all) |
1568 				S_SQ_VTX_WORD1_SRF_MODE_ALL(vtx->srf_mode_all) |
1569 				S_SQ_VTX_WORD1_GPR_DST_GPR(vtx->dst_gpr);
1570 	bc->bytecode[id] = S_SQ_VTX_WORD2_OFFSET(vtx->offset)|
1571 				S_SQ_VTX_WORD2_ENDIAN_SWAP(vtx->endian);
1572 	if (bc->chip_class >= EVERGREEN)
1573 		bc->bytecode[id] |= ((vtx->buffer_index_mode & 0x3) << 21); // S_SQ_VTX_WORD2_BIM(vtx->buffer_index_mode);
1574 	if (bc->chip_class < CAYMAN)
1575 		bc->bytecode[id] |= S_SQ_VTX_WORD2_MEGA_FETCH(1);
1576 	id++;
1577 	bc->bytecode[id++] = 0;
1578 	return 0;
1579 }
1580 
1581 /* common to all 3 families */
r600_bytecode_tex_build(struct r600_bytecode * bc,struct r600_bytecode_tex * tex,unsigned id)1582 static int r600_bytecode_tex_build(struct r600_bytecode *bc, struct r600_bytecode_tex *tex, unsigned id)
1583 {
1584 	bc->bytecode[id] = S_SQ_TEX_WORD0_TEX_INST(
1585 					r600_isa_fetch_opcode(bc->isa->hw_class, tex->op)) |
1586 			    EG_S_SQ_TEX_WORD0_INST_MOD(tex->inst_mod) |
1587 				S_SQ_TEX_WORD0_RESOURCE_ID(tex->resource_id) |
1588 				S_SQ_TEX_WORD0_SRC_GPR(tex->src_gpr) |
1589 				S_SQ_TEX_WORD0_SRC_REL(tex->src_rel);
1590 	if (bc->chip_class >= EVERGREEN)
1591 		bc->bytecode[id] |= ((tex->sampler_index_mode & 0x3) << 27) | // S_SQ_TEX_WORD0_SIM(tex->sampler_index_mode);
1592 				((tex->resource_index_mode & 0x3) << 25); // S_SQ_TEX_WORD0_RIM(tex->resource_index_mode)
1593 	id++;
1594 	bc->bytecode[id++] = S_SQ_TEX_WORD1_DST_GPR(tex->dst_gpr) |
1595 				S_SQ_TEX_WORD1_DST_REL(tex->dst_rel) |
1596 				S_SQ_TEX_WORD1_DST_SEL_X(tex->dst_sel_x) |
1597 				S_SQ_TEX_WORD1_DST_SEL_Y(tex->dst_sel_y) |
1598 				S_SQ_TEX_WORD1_DST_SEL_Z(tex->dst_sel_z) |
1599 				S_SQ_TEX_WORD1_DST_SEL_W(tex->dst_sel_w) |
1600 				S_SQ_TEX_WORD1_LOD_BIAS(tex->lod_bias) |
1601 				S_SQ_TEX_WORD1_COORD_TYPE_X(tex->coord_type_x) |
1602 				S_SQ_TEX_WORD1_COORD_TYPE_Y(tex->coord_type_y) |
1603 				S_SQ_TEX_WORD1_COORD_TYPE_Z(tex->coord_type_z) |
1604 				S_SQ_TEX_WORD1_COORD_TYPE_W(tex->coord_type_w);
1605 	bc->bytecode[id++] = S_SQ_TEX_WORD2_OFFSET_X(tex->offset_x) |
1606 				S_SQ_TEX_WORD2_OFFSET_Y(tex->offset_y) |
1607 				S_SQ_TEX_WORD2_OFFSET_Z(tex->offset_z) |
1608 				S_SQ_TEX_WORD2_SAMPLER_ID(tex->sampler_id) |
1609 				S_SQ_TEX_WORD2_SRC_SEL_X(tex->src_sel_x) |
1610 				S_SQ_TEX_WORD2_SRC_SEL_Y(tex->src_sel_y) |
1611 				S_SQ_TEX_WORD2_SRC_SEL_Z(tex->src_sel_z) |
1612 				S_SQ_TEX_WORD2_SRC_SEL_W(tex->src_sel_w);
1613 	bc->bytecode[id++] = 0;
1614 	return 0;
1615 }
1616 
1617 /* r600 only, r700/eg bits in r700_asm.c */
r600_bytecode_alu_build(struct r600_bytecode * bc,struct r600_bytecode_alu * alu,unsigned id)1618 static int r600_bytecode_alu_build(struct r600_bytecode *bc, struct r600_bytecode_alu *alu, unsigned id)
1619 {
1620 	unsigned opcode = r600_isa_alu_opcode(bc->isa->hw_class, alu->op);
1621 
1622 	/* don't replace gpr by pv or ps for destination register */
1623 	bc->bytecode[id++] = S_SQ_ALU_WORD0_SRC0_SEL(alu->src[0].sel) |
1624 				S_SQ_ALU_WORD0_SRC0_REL(alu->src[0].rel) |
1625 				S_SQ_ALU_WORD0_SRC0_CHAN(alu->src[0].chan) |
1626 				S_SQ_ALU_WORD0_SRC0_NEG(alu->src[0].neg) |
1627 				S_SQ_ALU_WORD0_SRC1_SEL(alu->src[1].sel) |
1628 				S_SQ_ALU_WORD0_SRC1_REL(alu->src[1].rel) |
1629 				S_SQ_ALU_WORD0_SRC1_CHAN(alu->src[1].chan) |
1630 				S_SQ_ALU_WORD0_SRC1_NEG(alu->src[1].neg) |
1631 				S_SQ_ALU_WORD0_INDEX_MODE(alu->index_mode) |
1632 				S_SQ_ALU_WORD0_PRED_SEL(alu->pred_sel) |
1633 				S_SQ_ALU_WORD0_LAST(alu->last);
1634 
1635 	if (alu->is_op3) {
1636 		assert(!alu->src[0].abs && !alu->src[1].abs && !alu->src[2].abs);
1637 		bc->bytecode[id++] = S_SQ_ALU_WORD1_DST_GPR(alu->dst.sel) |
1638 					S_SQ_ALU_WORD1_DST_CHAN(alu->dst.chan) |
1639 					S_SQ_ALU_WORD1_DST_REL(alu->dst.rel) |
1640 					S_SQ_ALU_WORD1_CLAMP(alu->dst.clamp) |
1641 					S_SQ_ALU_WORD1_OP3_SRC2_SEL(alu->src[2].sel) |
1642 					S_SQ_ALU_WORD1_OP3_SRC2_REL(alu->src[2].rel) |
1643 					S_SQ_ALU_WORD1_OP3_SRC2_CHAN(alu->src[2].chan) |
1644 					S_SQ_ALU_WORD1_OP3_SRC2_NEG(alu->src[2].neg) |
1645 					S_SQ_ALU_WORD1_OP3_ALU_INST(opcode) |
1646 					S_SQ_ALU_WORD1_BANK_SWIZZLE(alu->bank_swizzle);
1647 	} else {
1648 		bc->bytecode[id++] = S_SQ_ALU_WORD1_DST_GPR(alu->dst.sel) |
1649 					S_SQ_ALU_WORD1_DST_CHAN(alu->dst.chan) |
1650 					S_SQ_ALU_WORD1_DST_REL(alu->dst.rel) |
1651 					S_SQ_ALU_WORD1_CLAMP(alu->dst.clamp) |
1652 					S_SQ_ALU_WORD1_OP2_SRC0_ABS(alu->src[0].abs) |
1653 					S_SQ_ALU_WORD1_OP2_SRC1_ABS(alu->src[1].abs) |
1654 					S_SQ_ALU_WORD1_OP2_WRITE_MASK(alu->dst.write) |
1655 					S_SQ_ALU_WORD1_OP2_OMOD(alu->omod) |
1656 					S_SQ_ALU_WORD1_OP2_ALU_INST(opcode) |
1657 					S_SQ_ALU_WORD1_BANK_SWIZZLE(alu->bank_swizzle) |
1658 					S_SQ_ALU_WORD1_OP2_UPDATE_EXECUTE_MASK(alu->execute_mask) |
1659 					S_SQ_ALU_WORD1_OP2_UPDATE_PRED(alu->update_pred);
1660 	}
1661 	return 0;
1662 }
1663 
r600_bytecode_cf_vtx_build(uint32_t * bytecode,const struct r600_bytecode_cf * cf)1664 static void r600_bytecode_cf_vtx_build(uint32_t *bytecode, const struct r600_bytecode_cf *cf)
1665 {
1666 	*bytecode++ = S_SQ_CF_WORD0_ADDR(cf->addr >> 1);
1667 	*bytecode++ = S_SQ_CF_WORD1_CF_INST(r600_isa_cf_opcode(ISA_CC_R600, cf->op)) |
1668 			S_SQ_CF_WORD1_BARRIER(1) |
1669 			S_SQ_CF_WORD1_COUNT((cf->ndw / 4) - 1)|
1670 			S_SQ_CF_WORD1_END_OF_PROGRAM(cf->end_of_program);
1671 }
1672 
1673 /* common for r600/r700 - eg in eg_asm.c */
r600_bytecode_cf_build(struct r600_bytecode * bc,struct r600_bytecode_cf * cf)1674 static int r600_bytecode_cf_build(struct r600_bytecode *bc, struct r600_bytecode_cf *cf)
1675 {
1676 	unsigned id = cf->id;
1677 	const struct cf_op_info *cfop = r600_isa_cf(cf->op);
1678 	unsigned opcode = r600_isa_cf_opcode(bc->isa->hw_class, cf->op);
1679 
1680 
1681 	if (cf->op == CF_NATIVE) {
1682 		bc->bytecode[id++] = cf->isa[0];
1683 		bc->bytecode[id++] = cf->isa[1];
1684 	} else if (cfop->flags & CF_ALU) {
1685 		bc->bytecode[id++] = S_SQ_CF_ALU_WORD0_ADDR(cf->addr >> 1) |
1686 			S_SQ_CF_ALU_WORD0_KCACHE_MODE0(cf->kcache[0].mode) |
1687 			S_SQ_CF_ALU_WORD0_KCACHE_BANK0(cf->kcache[0].bank) |
1688 			S_SQ_CF_ALU_WORD0_KCACHE_BANK1(cf->kcache[1].bank);
1689 
1690 		bc->bytecode[id++] = S_SQ_CF_ALU_WORD1_CF_INST(opcode) |
1691 			S_SQ_CF_ALU_WORD1_KCACHE_MODE1(cf->kcache[1].mode) |
1692 			S_SQ_CF_ALU_WORD1_KCACHE_ADDR0(cf->kcache[0].addr) |
1693 			S_SQ_CF_ALU_WORD1_KCACHE_ADDR1(cf->kcache[1].addr) |
1694 					S_SQ_CF_ALU_WORD1_BARRIER(1) |
1695 					S_SQ_CF_ALU_WORD1_USES_WATERFALL(bc->chip_class == R600 ? cf->r6xx_uses_waterfall : 0) |
1696 					S_SQ_CF_ALU_WORD1_COUNT((cf->ndw / 2) - 1);
1697 	} else if (cfop->flags & CF_FETCH) {
1698 		if (bc->chip_class == R700)
1699 			r700_bytecode_cf_vtx_build(&bc->bytecode[id], cf);
1700 		else
1701 			r600_bytecode_cf_vtx_build(&bc->bytecode[id], cf);
1702 	} else if (cfop->flags & CF_EXP) {
1703 		bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD0_RW_GPR(cf->output.gpr) |
1704 			S_SQ_CF_ALLOC_EXPORT_WORD0_ELEM_SIZE(cf->output.elem_size) |
1705 			S_SQ_CF_ALLOC_EXPORT_WORD0_ARRAY_BASE(cf->output.array_base) |
1706 			S_SQ_CF_ALLOC_EXPORT_WORD0_TYPE(cf->output.type) |
1707 			S_SQ_CF_ALLOC_EXPORT_WORD0_INDEX_GPR(cf->output.index_gpr);
1708 		bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD1_BURST_COUNT(cf->output.burst_count - 1) |
1709 			S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_X(cf->output.swizzle_x) |
1710 			S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_Y(cf->output.swizzle_y) |
1711 			S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_Z(cf->output.swizzle_z) |
1712 			S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_W(cf->output.swizzle_w) |
1713 			S_SQ_CF_ALLOC_EXPORT_WORD1_BARRIER(cf->barrier) |
1714 			S_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(opcode) |
1715 			S_SQ_CF_ALLOC_EXPORT_WORD1_END_OF_PROGRAM(cf->end_of_program);
1716 	} else if (cfop->flags & CF_MEM) {
1717 		bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD0_RW_GPR(cf->output.gpr) |
1718 			S_SQ_CF_ALLOC_EXPORT_WORD0_ELEM_SIZE(cf->output.elem_size) |
1719 			S_SQ_CF_ALLOC_EXPORT_WORD0_ARRAY_BASE(cf->output.array_base) |
1720 			S_SQ_CF_ALLOC_EXPORT_WORD0_TYPE(cf->output.type) |
1721 			S_SQ_CF_ALLOC_EXPORT_WORD0_INDEX_GPR(cf->output.index_gpr);
1722 		bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD1_BURST_COUNT(cf->output.burst_count - 1) |
1723 			S_SQ_CF_ALLOC_EXPORT_WORD1_BARRIER(cf->barrier) |
1724 			S_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(opcode) |
1725 			S_SQ_CF_ALLOC_EXPORT_WORD1_END_OF_PROGRAM(cf->end_of_program) |
1726 			S_SQ_CF_ALLOC_EXPORT_WORD1_BUF_ARRAY_SIZE(cf->output.array_size) |
1727 			S_SQ_CF_ALLOC_EXPORT_WORD1_BUF_COMP_MASK(cf->output.comp_mask);
1728 	} else {
1729 		bc->bytecode[id++] = S_SQ_CF_WORD0_ADDR(cf->cf_addr >> 1);
1730 		bc->bytecode[id++] = S_SQ_CF_WORD1_CF_INST(opcode) |
1731 					S_SQ_CF_WORD1_BARRIER(1) |
1732 			                S_SQ_CF_WORD1_COND(cf->cond) |
1733 			                S_SQ_CF_WORD1_POP_COUNT(cf->pop_count) |
1734 					S_SQ_CF_WORD1_END_OF_PROGRAM(cf->end_of_program);
1735 	}
1736 	return 0;
1737 }
1738 
r600_bytecode_build(struct r600_bytecode * bc)1739 int r600_bytecode_build(struct r600_bytecode *bc)
1740 {
1741 	struct r600_bytecode_cf *cf;
1742 	struct r600_bytecode_alu *alu;
1743 	struct r600_bytecode_vtx *vtx;
1744 	struct r600_bytecode_tex *tex;
1745 	struct r600_bytecode_gds *gds;
1746 	uint32_t literal[4];
1747 	unsigned nliteral;
1748 	unsigned addr;
1749 	int i, r;
1750 
1751 	if (!bc->nstack) { // If not 0, Stack_size already provided by llvm
1752 		if (bc->stack.max_entries)
1753 			bc->nstack = bc->stack.max_entries;
1754 		else if (bc->type == PIPE_SHADER_VERTEX ||
1755 			 bc->type == PIPE_SHADER_TESS_EVAL ||
1756 			 bc->type == PIPE_SHADER_TESS_CTRL)
1757 			bc->nstack = 1;
1758 	}
1759 
1760 	/* first path compute addr of each CF block */
1761 	/* addr start after all the CF instructions */
1762 	addr = bc->cf_last->id + 2;
1763 	LIST_FOR_EACH_ENTRY(cf, &bc->cf, list) {
1764 		if (r600_isa_cf(cf->op)->flags & CF_FETCH) {
1765 			addr += 3;
1766 			addr &= 0xFFFFFFFCUL;
1767 		}
1768 		cf->addr = addr;
1769 		addr += cf->ndw;
1770 		bc->ndw = cf->addr + cf->ndw;
1771 	}
1772 	free(bc->bytecode);
1773 	bc->bytecode = calloc(4, bc->ndw);
1774 	if (bc->bytecode == NULL)
1775 		return -ENOMEM;
1776 	LIST_FOR_EACH_ENTRY(cf, &bc->cf, list) {
1777 		const struct cf_op_info *cfop = r600_isa_cf(cf->op);
1778 		addr = cf->addr;
1779 		if (bc->chip_class >= EVERGREEN)
1780 			r = eg_bytecode_cf_build(bc, cf);
1781 		else
1782 			r = r600_bytecode_cf_build(bc, cf);
1783 		if (r)
1784 			return r;
1785 		if (cfop->flags & CF_ALU) {
1786 			nliteral = 0;
1787 			memset(literal, 0, sizeof(literal));
1788 			LIST_FOR_EACH_ENTRY(alu, &cf->alu, list) {
1789 				r = r600_bytecode_alu_nliterals(alu, literal, &nliteral);
1790 				if (r)
1791 					return r;
1792 				r600_bytecode_alu_adjust_literals(alu, literal, nliteral);
1793 				r600_bytecode_assign_kcache_banks(alu, cf->kcache);
1794 
1795 				switch(bc->chip_class) {
1796 				case R600:
1797 					r = r600_bytecode_alu_build(bc, alu, addr);
1798 					break;
1799 				case R700:
1800 					r = r700_bytecode_alu_build(bc, alu, addr);
1801 					break;
1802 				case EVERGREEN:
1803 				case CAYMAN:
1804 					r = eg_bytecode_alu_build(bc, alu, addr);
1805 					break;
1806 				default:
1807 					R600_ERR("unknown chip class %d.\n", bc->chip_class);
1808 					return -EINVAL;
1809 				}
1810 				if (r)
1811 					return r;
1812 				addr += 2;
1813 				if (alu->last) {
1814 					for (i = 0; i < align(nliteral, 2); ++i) {
1815 						bc->bytecode[addr++] = literal[i];
1816 					}
1817 					nliteral = 0;
1818 					memset(literal, 0, sizeof(literal));
1819 				}
1820 			}
1821 		} else if (cf->op == CF_OP_VTX) {
1822 			LIST_FOR_EACH_ENTRY(vtx, &cf->vtx, list) {
1823 				r = r600_bytecode_vtx_build(bc, vtx, addr);
1824 				if (r)
1825 					return r;
1826 				addr += 4;
1827 			}
1828 		} else if (cf->op == CF_OP_GDS) {
1829 			assert(bc->chip_class >= EVERGREEN);
1830 			LIST_FOR_EACH_ENTRY(gds, &cf->gds, list) {
1831 				r = eg_bytecode_gds_build(bc, gds, addr);
1832 				if (r)
1833 					return r;
1834 				addr += 4;
1835 			}
1836 		} else if (cf->op == CF_OP_TEX) {
1837 			LIST_FOR_EACH_ENTRY(vtx, &cf->vtx, list) {
1838 				assert(bc->chip_class >= EVERGREEN);
1839 				r = r600_bytecode_vtx_build(bc, vtx, addr);
1840 				if (r)
1841 					return r;
1842 				addr += 4;
1843 			}
1844 			LIST_FOR_EACH_ENTRY(tex, &cf->tex, list) {
1845 				r = r600_bytecode_tex_build(bc, tex, addr);
1846 				if (r)
1847 					return r;
1848 				addr += 4;
1849 			}
1850 		}
1851 	}
1852 	return 0;
1853 }
1854 
r600_bytecode_clear(struct r600_bytecode * bc)1855 void r600_bytecode_clear(struct r600_bytecode *bc)
1856 {
1857 	struct r600_bytecode_cf *cf = NULL, *next_cf;
1858 
1859 	free(bc->bytecode);
1860 	bc->bytecode = NULL;
1861 
1862 	LIST_FOR_EACH_ENTRY_SAFE(cf, next_cf, &bc->cf, list) {
1863 		struct r600_bytecode_alu *alu = NULL, *next_alu;
1864 		struct r600_bytecode_tex *tex = NULL, *next_tex;
1865 		struct r600_bytecode_tex *vtx = NULL, *next_vtx;
1866 		struct r600_bytecode_gds *gds = NULL, *next_gds;
1867 
1868 		LIST_FOR_EACH_ENTRY_SAFE(alu, next_alu, &cf->alu, list) {
1869 			free(alu);
1870 		}
1871 
1872 		list_inithead(&cf->alu);
1873 
1874 		LIST_FOR_EACH_ENTRY_SAFE(tex, next_tex, &cf->tex, list) {
1875 			free(tex);
1876 		}
1877 
1878 		list_inithead(&cf->tex);
1879 
1880 		LIST_FOR_EACH_ENTRY_SAFE(vtx, next_vtx, &cf->vtx, list) {
1881 			free(vtx);
1882 		}
1883 
1884 		list_inithead(&cf->vtx);
1885 
1886 		LIST_FOR_EACH_ENTRY_SAFE(gds, next_gds, &cf->gds, list) {
1887 			free(gds);
1888 		}
1889 
1890 		list_inithead(&cf->gds);
1891 
1892 		free(cf);
1893 	}
1894 
1895 	list_inithead(&cf->list);
1896 }
1897 
print_swizzle(unsigned swz)1898 static int print_swizzle(unsigned swz)
1899 {
1900 	const char * swzchars = "xyzw01?_";
1901 	assert(swz<8 && swz != 6);
1902 	return fprintf(stderr, "%c", swzchars[swz]);
1903 }
1904 
print_sel(unsigned sel,unsigned rel,unsigned index_mode,unsigned need_brackets)1905 static int print_sel(unsigned sel, unsigned rel, unsigned index_mode,
1906 		unsigned need_brackets)
1907 {
1908 	int o = 0;
1909 	if (rel && index_mode >= 5 && sel < 128)
1910 		o += fprintf(stderr, "G");
1911 	if (rel || need_brackets) {
1912 		o += fprintf(stderr, "[");
1913 	}
1914 	o += fprintf(stderr, "%d", sel);
1915 	if (rel) {
1916 		if (index_mode == 0 || index_mode == 6)
1917 			o += fprintf(stderr, "+AR");
1918 		else if (index_mode == 4)
1919 			o += fprintf(stderr, "+AL");
1920 	}
1921 	if (rel || need_brackets) {
1922 		o += fprintf(stderr, "]");
1923 	}
1924 	return o;
1925 }
1926 
print_dst(struct r600_bytecode_alu * alu)1927 static int print_dst(struct r600_bytecode_alu *alu)
1928 {
1929 	int o = 0;
1930 	unsigned sel = alu->dst.sel;
1931 	char reg_char = 'R';
1932 	if (sel > 128 - 4) { /* clause temporary gpr */
1933 		sel -= 128 - 4;
1934 		reg_char = 'T';
1935 	}
1936 
1937 	if (alu_writes(alu)) {
1938 		o += fprintf(stderr, "%c", reg_char);
1939 		o += print_sel(alu->dst.sel, alu->dst.rel, alu->index_mode, 0);
1940 	} else {
1941 		o += fprintf(stderr, "__");
1942 	}
1943 	o += fprintf(stderr, ".");
1944 	o += print_swizzle(alu->dst.chan);
1945 	return o;
1946 }
1947 
print_src(struct r600_bytecode_alu * alu,unsigned idx)1948 static int print_src(struct r600_bytecode_alu *alu, unsigned idx)
1949 {
1950 	int o = 0;
1951 	struct r600_bytecode_alu_src *src = &alu->src[idx];
1952 	unsigned sel = src->sel, need_sel = 1, need_chan = 1, need_brackets = 0;
1953 
1954 	if (src->neg)
1955 		o += fprintf(stderr,"-");
1956 	if (src->abs)
1957 		o += fprintf(stderr,"|");
1958 
1959 	if (sel < 128 - 4) {
1960 		o += fprintf(stderr, "R");
1961 	} else if (sel < 128) {
1962 		o += fprintf(stderr, "T");
1963 		sel -= 128 - 4;
1964 	} else if (sel < 160) {
1965 		o += fprintf(stderr, "KC0");
1966 		need_brackets = 1;
1967 		sel -= 128;
1968 	} else if (sel < 192) {
1969 		o += fprintf(stderr, "KC1");
1970 		need_brackets = 1;
1971 		sel -= 160;
1972 	} else if (sel >= 512) {
1973 		o += fprintf(stderr, "C%d", src->kc_bank);
1974 		need_brackets = 1;
1975 		sel -= 512;
1976 	} else if (sel >= 448) {
1977 		o += fprintf(stderr, "Param");
1978 		sel -= 448;
1979 		need_chan = 0;
1980 	} else if (sel >= 288) {
1981 		o += fprintf(stderr, "KC3");
1982 		need_brackets = 1;
1983 		sel -= 288;
1984 	} else if (sel >= 256) {
1985 		o += fprintf(stderr, "KC2");
1986 		need_brackets = 1;
1987 		sel -= 256;
1988 	} else {
1989 		need_sel = 0;
1990 		need_chan = 0;
1991 		switch (sel) {
1992 		case EG_V_SQ_ALU_SRC_LDS_DIRECT_A:
1993 			o += fprintf(stderr, "LDS_A[0x%08X]", src->value);
1994 			break;
1995 		case EG_V_SQ_ALU_SRC_LDS_DIRECT_B:
1996 			o += fprintf(stderr, "LDS_B[0x%08X]", src->value);
1997 			break;
1998 		case EG_V_SQ_ALU_SRC_LDS_OQ_A:
1999 			o += fprintf(stderr, "LDS_OQ_A");
2000 			need_chan = 1;
2001 			break;
2002 		case EG_V_SQ_ALU_SRC_LDS_OQ_B:
2003 			o += fprintf(stderr, "LDS_OQ_B");
2004 			need_chan = 1;
2005 			break;
2006 		case EG_V_SQ_ALU_SRC_LDS_OQ_A_POP:
2007 			o += fprintf(stderr, "LDS_OQ_A_POP");
2008 			need_chan = 1;
2009 			break;
2010 		case EG_V_SQ_ALU_SRC_LDS_OQ_B_POP:
2011 			o += fprintf(stderr, "LDS_OQ_B_POP");
2012 			need_chan = 1;
2013 			break;
2014 		case EG_V_SQ_ALU_SRC_TIME_LO:
2015 			o += fprintf(stderr, "TIME_LO");
2016 			break;
2017 		case EG_V_SQ_ALU_SRC_TIME_HI:
2018 			o += fprintf(stderr, "TIME_HI");
2019 			break;
2020 		case EG_V_SQ_ALU_SRC_SE_ID:
2021 			o += fprintf(stderr, "SE_ID");
2022 			break;
2023 		case EG_V_SQ_ALU_SRC_SIMD_ID:
2024 			o += fprintf(stderr, "SIMD_ID");
2025 			break;
2026 		case EG_V_SQ_ALU_SRC_HW_WAVE_ID:
2027 			o += fprintf(stderr, "HW_WAVE_ID");
2028 			break;
2029 		case V_SQ_ALU_SRC_PS:
2030 			o += fprintf(stderr, "PS");
2031 			break;
2032 		case V_SQ_ALU_SRC_PV:
2033 			o += fprintf(stderr, "PV");
2034 			need_chan = 1;
2035 			break;
2036 		case V_SQ_ALU_SRC_LITERAL:
2037 			o += fprintf(stderr, "[0x%08X %f]", src->value, u_bitcast_u2f(src->value));
2038 			break;
2039 		case V_SQ_ALU_SRC_0_5:
2040 			o += fprintf(stderr, "0.5");
2041 			break;
2042 		case V_SQ_ALU_SRC_M_1_INT:
2043 			o += fprintf(stderr, "-1");
2044 			break;
2045 		case V_SQ_ALU_SRC_1_INT:
2046 			o += fprintf(stderr, "1");
2047 			break;
2048 		case V_SQ_ALU_SRC_1:
2049 			o += fprintf(stderr, "1.0");
2050 			break;
2051 		case V_SQ_ALU_SRC_0:
2052 			o += fprintf(stderr, "0");
2053 			break;
2054 		default:
2055 			o += fprintf(stderr, "??IMM_%d", sel);
2056 			break;
2057 		}
2058 	}
2059 
2060 	if (need_sel)
2061 		o += print_sel(sel, src->rel, alu->index_mode, need_brackets);
2062 
2063 	if (need_chan) {
2064 		o += fprintf(stderr, ".");
2065 		o += print_swizzle(src->chan);
2066 	}
2067 
2068 	if (src->abs)
2069 		o += fprintf(stderr,"|");
2070 
2071 	return o;
2072 }
2073 
print_indent(int p,int c)2074 static int print_indent(int p, int c)
2075 {
2076 	int o = 0;
2077 	while (p++ < c)
2078 		o += fprintf(stderr, " ");
2079 	return o;
2080 }
2081 
r600_bytecode_disasm(struct r600_bytecode * bc)2082 void r600_bytecode_disasm(struct r600_bytecode *bc)
2083 {
2084 	const char *index_mode[] = {"CF_INDEX_NONE", "CF_INDEX_0", "CF_INDEX_1"};
2085 	static int index = 0;
2086 	struct r600_bytecode_cf *cf = NULL;
2087 	struct r600_bytecode_alu *alu = NULL;
2088 	struct r600_bytecode_vtx *vtx = NULL;
2089 	struct r600_bytecode_tex *tex = NULL;
2090 	struct r600_bytecode_gds *gds = NULL;
2091 
2092 	unsigned i, id, ngr = 0, last;
2093 	uint32_t literal[4];
2094 	unsigned nliteral;
2095 	char chip = '6';
2096 
2097 	switch (bc->chip_class) {
2098 	case R700:
2099 		chip = '7';
2100 		break;
2101 	case EVERGREEN:
2102 		chip = 'E';
2103 		break;
2104 	case CAYMAN:
2105 		chip = 'C';
2106 		break;
2107 	case R600:
2108 	default:
2109 		chip = '6';
2110 		break;
2111 	}
2112 	fprintf(stderr, "bytecode %d dw -- %d gprs -- %d nstack -------------\n",
2113 	        bc->ndw, bc->ngpr, bc->nstack);
2114 	fprintf(stderr, "shader %d -- %c\n", index++, chip);
2115 
2116 	LIST_FOR_EACH_ENTRY(cf, &bc->cf, list) {
2117 		id = cf->id;
2118 		if (cf->op == CF_NATIVE) {
2119 			fprintf(stderr, "%04d %08X %08X CF_NATIVE\n", id, bc->bytecode[id],
2120 					bc->bytecode[id + 1]);
2121 		} else {
2122 			const struct cf_op_info *cfop = r600_isa_cf(cf->op);
2123 			if (cfop->flags & CF_ALU) {
2124 				if (cf->eg_alu_extended) {
2125 					fprintf(stderr, "%04d %08X %08X  %s\n", id, bc->bytecode[id],
2126 							bc->bytecode[id + 1], "ALU_EXT");
2127 					id += 2;
2128 				}
2129 				fprintf(stderr, "%04d %08X %08X  %s ", id, bc->bytecode[id],
2130 						bc->bytecode[id + 1], cfop->name);
2131 				fprintf(stderr, "%d @%d ", cf->ndw / 2, cf->addr);
2132 				for (i = 0; i < 4; ++i) {
2133 					if (cf->kcache[i].mode) {
2134 						int c_start = (cf->kcache[i].addr << 4);
2135 						int c_end = c_start + (cf->kcache[i].mode << 4);
2136 						fprintf(stderr, "KC%d[CB%d:%d-%d%s%s] ",
2137 						        i, cf->kcache[i].bank, c_start, c_end,
2138 						        cf->kcache[i].index_mode ? " " : "",
2139 						        cf->kcache[i].index_mode ? index_mode[cf->kcache[i].index_mode] : "");
2140 					}
2141 				}
2142 				fprintf(stderr, "\n");
2143 			} else if (cfop->flags & CF_FETCH) {
2144 				fprintf(stderr, "%04d %08X %08X  %s ", id, bc->bytecode[id],
2145 						bc->bytecode[id + 1], cfop->name);
2146 				fprintf(stderr, "%d @%d ", cf->ndw / 4, cf->addr);
2147 				if (cf->vpm)
2148 					fprintf(stderr, "VPM ");
2149 				if (cf->end_of_program)
2150 					fprintf(stderr, "EOP ");
2151 				fprintf(stderr, "\n");
2152 
2153 			} else if (cfop->flags & CF_EXP) {
2154 				int o = 0;
2155 				const char *exp_type[] = {"PIXEL", "POS  ", "PARAM"};
2156 				o += fprintf(stderr, "%04d %08X %08X  %s ", id, bc->bytecode[id],
2157 						bc->bytecode[id + 1], cfop->name);
2158 				o += print_indent(o, 43);
2159 				o += fprintf(stderr, "%s ", exp_type[cf->output.type]);
2160 				if (cf->output.burst_count > 1) {
2161 					o += fprintf(stderr, "%d-%d ", cf->output.array_base,
2162 							cf->output.array_base + cf->output.burst_count - 1);
2163 
2164 					o += print_indent(o, 55);
2165 					o += fprintf(stderr, "R%d-%d.", cf->output.gpr,
2166 							cf->output.gpr + cf->output.burst_count - 1);
2167 				} else {
2168 					o += fprintf(stderr, "%d ", cf->output.array_base);
2169 					o += print_indent(o, 55);
2170 					o += fprintf(stderr, "R%d.", cf->output.gpr);
2171 				}
2172 
2173 				o += print_swizzle(cf->output.swizzle_x);
2174 				o += print_swizzle(cf->output.swizzle_y);
2175 				o += print_swizzle(cf->output.swizzle_z);
2176 				o += print_swizzle(cf->output.swizzle_w);
2177 
2178 				print_indent(o, 67);
2179 
2180 				fprintf(stderr, " ES:%X ", cf->output.elem_size);
2181 				if (cf->mark)
2182 					fprintf(stderr, "MARK ");
2183 				if (!cf->barrier)
2184 					fprintf(stderr, "NO_BARRIER ");
2185 				if (cf->end_of_program)
2186 					fprintf(stderr, "EOP ");
2187 				fprintf(stderr, "\n");
2188 			} else if (r600_isa_cf(cf->op)->flags & CF_MEM) {
2189 				int o = 0;
2190 				const char *exp_type[] = {"WRITE", "WRITE_IND", "WRITE_ACK",
2191 						"WRITE_IND_ACK"};
2192 				o += fprintf(stderr, "%04d %08X %08X  %s ", id,
2193 						bc->bytecode[id], bc->bytecode[id + 1], cfop->name);
2194 				o += print_indent(o, 43);
2195 				o += fprintf(stderr, "%s ", exp_type[cf->output.type]);
2196 
2197 				if (r600_isa_cf(cf->op)->flags & CF_RAT) {
2198 					o += fprintf(stderr, "RAT%d", cf->rat.id);
2199 					if (cf->rat.index_mode) {
2200 						o += fprintf(stderr, "[IDX%d]", cf->rat.index_mode - 1);
2201 					}
2202 					o += fprintf(stderr, " INST: %d ", cf->rat.inst);
2203 				}
2204 
2205 				if (cf->output.burst_count > 1) {
2206 					o += fprintf(stderr, "%d-%d ", cf->output.array_base,
2207 							cf->output.array_base + cf->output.burst_count - 1);
2208 					o += print_indent(o, 55);
2209 					o += fprintf(stderr, "R%d-%d.", cf->output.gpr,
2210 							cf->output.gpr + cf->output.burst_count - 1);
2211 				} else {
2212 					o += fprintf(stderr, "%d ", cf->output.array_base);
2213 					o += print_indent(o, 55);
2214 					o += fprintf(stderr, "R%d.", cf->output.gpr);
2215 				}
2216 				for (i = 0; i < 4; ++i) {
2217 					if (cf->output.comp_mask & (1 << i))
2218 						o += print_swizzle(i);
2219 					else
2220 						o += print_swizzle(7);
2221 				}
2222 
2223 				if (cf->output.type == V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_WRITE_IND ||
2224 				    cf->output.type == V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_READ_IND)
2225 					o += fprintf(stderr, " R%d", cf->output.index_gpr);
2226 
2227 				o += print_indent(o, 67);
2228 
2229 				fprintf(stderr, " ES:%i ", cf->output.elem_size);
2230 				if (cf->output.array_size != 0xFFF)
2231 					fprintf(stderr, "AS:%i ", cf->output.array_size);
2232 				if (cf->mark)
2233 					fprintf(stderr, "MARK ");
2234 				if (!cf->barrier)
2235 					fprintf(stderr, "NO_BARRIER ");
2236 				if (cf->end_of_program)
2237 					fprintf(stderr, "EOP ");
2238 
2239 				if (cf->output.mark)
2240 					fprintf(stderr, "MARK ");
2241 
2242 				fprintf(stderr, "\n");
2243 			} else {
2244 				fprintf(stderr, "%04d %08X %08X  %s ", id, bc->bytecode[id],
2245 						bc->bytecode[id + 1], cfop->name);
2246 				fprintf(stderr, "@%d ", cf->cf_addr);
2247 				if (cf->cond)
2248 					fprintf(stderr, "CND:%X ", cf->cond);
2249 				if (cf->pop_count)
2250 					fprintf(stderr, "POP:%X ", cf->pop_count);
2251 				if (cf->count && (cfop->flags & CF_EMIT))
2252 					fprintf(stderr, "STREAM%d ", cf->count);
2253 				if (cf->vpm)
2254 					fprintf(stderr, "VPM ");
2255 				if (cf->end_of_program)
2256 					fprintf(stderr, "EOP ");
2257 				fprintf(stderr, "\n");
2258 			}
2259 		}
2260 
2261 		id = cf->addr;
2262 		nliteral = 0;
2263 		last = 1;
2264 		LIST_FOR_EACH_ENTRY(alu, &cf->alu, list) {
2265 			const char *omod_str[] = {"","*2","*4","/2"};
2266 			const struct alu_op_info *aop = r600_isa_alu(alu->op);
2267 			int o = 0;
2268 
2269 			r600_bytecode_alu_nliterals(alu, literal, &nliteral);
2270 			o += fprintf(stderr, " %04d %08X %08X  ", id, bc->bytecode[id], bc->bytecode[id+1]);
2271 			if (last)
2272 				o += fprintf(stderr, "%4d ", ++ngr);
2273 			else
2274 				o += fprintf(stderr, "     ");
2275 			o += fprintf(stderr, "%c%c %c ", alu->execute_mask ? 'M':' ',
2276 					alu->update_pred ? 'P':' ',
2277 					alu->pred_sel ? alu->pred_sel==2 ? '0':'1':' ');
2278 
2279 			o += fprintf(stderr, "%s%s%s ", aop->name,
2280 					omod_str[alu->omod], alu->dst.clamp ? "_sat":"");
2281 
2282 			o += print_indent(o,60);
2283 			o += print_dst(alu);
2284 			for (i = 0; i < aop->src_count; ++i) {
2285 				o += fprintf(stderr, i == 0 ? ",  ": ", ");
2286 				o += print_src(alu, i);
2287 			}
2288 
2289 			if (alu->bank_swizzle) {
2290 				o += print_indent(o,75);
2291 				o += fprintf(stderr, "  BS:%d", alu->bank_swizzle);
2292 			}
2293 
2294 			fprintf(stderr, "\n");
2295 			id += 2;
2296 
2297 			if (alu->last) {
2298 				for (i = 0; i < nliteral; i++, id++) {
2299 					float *f = (float*)(bc->bytecode + id);
2300 					o = fprintf(stderr, " %04d %08X", id, bc->bytecode[id]);
2301 					print_indent(o, 60);
2302 					fprintf(stderr, " %f (%d)\n", *f, *(bc->bytecode + id));
2303 				}
2304 				id += nliteral & 1;
2305 				nliteral = 0;
2306 			}
2307 			last = alu->last;
2308 		}
2309 
2310 		LIST_FOR_EACH_ENTRY(tex, &cf->tex, list) {
2311 			int o = 0;
2312 			o += fprintf(stderr, " %04d %08X %08X %08X   ", id, bc->bytecode[id],
2313 					bc->bytecode[id + 1], bc->bytecode[id + 2]);
2314 
2315 			o += fprintf(stderr, "%s ", r600_isa_fetch(tex->op)->name);
2316 
2317 			o += print_indent(o, 50);
2318 
2319 			o += fprintf(stderr, "R%d.", tex->dst_gpr);
2320 			o += print_swizzle(tex->dst_sel_x);
2321 			o += print_swizzle(tex->dst_sel_y);
2322 			o += print_swizzle(tex->dst_sel_z);
2323 			o += print_swizzle(tex->dst_sel_w);
2324 
2325 			o += fprintf(stderr, ", R%d.", tex->src_gpr);
2326 			o += print_swizzle(tex->src_sel_x);
2327 			o += print_swizzle(tex->src_sel_y);
2328 			o += print_swizzle(tex->src_sel_z);
2329 			o += print_swizzle(tex->src_sel_w);
2330 
2331 			o += fprintf(stderr, ",  RID:%d", tex->resource_id);
2332 			o += fprintf(stderr, ", SID:%d  ", tex->sampler_id);
2333 
2334 			if (tex->sampler_index_mode)
2335 				fprintf(stderr, "SQ_%s ", index_mode[tex->sampler_index_mode]);
2336 
2337 			if (tex->lod_bias)
2338 				fprintf(stderr, "LB:%d ", tex->lod_bias);
2339 
2340 			fprintf(stderr, "CT:%c%c%c%c ",
2341 					tex->coord_type_x ? 'N' : 'U',
2342 					tex->coord_type_y ? 'N' : 'U',
2343 					tex->coord_type_z ? 'N' : 'U',
2344 					tex->coord_type_w ? 'N' : 'U');
2345 
2346 			if (tex->offset_x)
2347 				fprintf(stderr, "OX:%d ", tex->offset_x);
2348 			if (tex->offset_y)
2349 				fprintf(stderr, "OY:%d ", tex->offset_y);
2350 			if (tex->offset_z)
2351 				fprintf(stderr, "OZ:%d ", tex->offset_z);
2352 
2353 			id += 4;
2354 			fprintf(stderr, "\n");
2355 		}
2356 
2357 		LIST_FOR_EACH_ENTRY(vtx, &cf->vtx, list) {
2358 			int o = 0;
2359 			const char * fetch_type[] = {"VERTEX", "INSTANCE", ""};
2360 			o += fprintf(stderr, " %04d %08X %08X %08X   ", id, bc->bytecode[id],
2361 					bc->bytecode[id + 1], bc->bytecode[id + 2]);
2362 
2363 			o += fprintf(stderr, "%s ", r600_isa_fetch(vtx->op)->name);
2364 
2365 			o += print_indent(o, 50);
2366 
2367 			o += fprintf(stderr, "R%d.", vtx->dst_gpr);
2368 			o += print_swizzle(vtx->dst_sel_x);
2369 			o += print_swizzle(vtx->dst_sel_y);
2370 			o += print_swizzle(vtx->dst_sel_z);
2371 			o += print_swizzle(vtx->dst_sel_w);
2372 
2373 			o += fprintf(stderr, ", R%d.", vtx->src_gpr);
2374 			o += print_swizzle(vtx->src_sel_x);
2375 			if (r600_isa_fetch(vtx->op)->flags & FF_MEM)
2376 				o += print_swizzle(vtx->src_sel_y);
2377 
2378 			if (vtx->offset)
2379 				fprintf(stderr, " +%db", vtx->offset);
2380 
2381 			o += print_indent(o, 55);
2382 
2383 			fprintf(stderr, ",  RID:%d ", vtx->buffer_id);
2384 
2385 			fprintf(stderr, "%s ", fetch_type[vtx->fetch_type]);
2386 
2387 			if (bc->chip_class < CAYMAN && vtx->mega_fetch_count)
2388 				fprintf(stderr, "MFC:%d ", vtx->mega_fetch_count);
2389 
2390 			if (bc->chip_class >= EVERGREEN && vtx->buffer_index_mode)
2391 				fprintf(stderr, "SQ_%s ", index_mode[vtx->buffer_index_mode]);
2392 
2393 			if (r600_isa_fetch(vtx->op)->flags & FF_MEM) {
2394 				if (vtx->uncached)
2395 					fprintf(stderr, "UNCACHED ");
2396 				if (vtx->indexed)
2397 					fprintf(stderr, "INDEXED:%d ", vtx->indexed);
2398 
2399 				fprintf(stderr, "ELEM_SIZE:%d ", vtx->elem_size);
2400 				if (vtx->burst_count)
2401 					fprintf(stderr, "BURST_COUNT:%d ", vtx->burst_count);
2402 				fprintf(stderr, "ARRAY_BASE:%d ", vtx->array_base);
2403 				fprintf(stderr, "ARRAY_SIZE:%d ", vtx->array_size);
2404 			}
2405 
2406 			fprintf(stderr, "UCF:%d ", vtx->use_const_fields);
2407 			fprintf(stderr, "FMT(DTA:%d ", vtx->data_format);
2408 			fprintf(stderr, "NUM:%d ", vtx->num_format_all);
2409 			fprintf(stderr, "COMP:%d ", vtx->format_comp_all);
2410 			fprintf(stderr, "MODE:%d)\n", vtx->srf_mode_all);
2411 
2412 			id += 4;
2413 		}
2414 
2415 		LIST_FOR_EACH_ENTRY(gds, &cf->gds, list) {
2416 			int o = 0;
2417 			o += fprintf(stderr, " %04d %08X %08X %08X   ", id, bc->bytecode[id],
2418 					bc->bytecode[id + 1], bc->bytecode[id + 2]);
2419 
2420 			o += fprintf(stderr, "%s ", r600_isa_fetch(gds->op)->name);
2421 
2422 			if (gds->op != FETCH_OP_TF_WRITE) {
2423 				o += fprintf(stderr, "R%d.", gds->dst_gpr);
2424 				o += print_swizzle(gds->dst_sel_x);
2425 				o += print_swizzle(gds->dst_sel_y);
2426 				o += print_swizzle(gds->dst_sel_z);
2427 				o += print_swizzle(gds->dst_sel_w);
2428 			}
2429 
2430 			o += fprintf(stderr, ", R%d.", gds->src_gpr);
2431 			o += print_swizzle(gds->src_sel_x);
2432 			o += print_swizzle(gds->src_sel_y);
2433 			o += print_swizzle(gds->src_sel_z);
2434 
2435 			if (gds->op != FETCH_OP_TF_WRITE) {
2436 				o += fprintf(stderr, ", R%d.", gds->src_gpr2);
2437 			}
2438 			if (gds->alloc_consume) {
2439 				o += fprintf(stderr, " UAV: %d", gds->uav_id);
2440 				if (gds->uav_index_mode)
2441 					o += fprintf(stderr, "[%s]", index_mode[gds->uav_index_mode]);
2442 			}
2443 			fprintf(stderr, "\n");
2444 			id += 4;
2445 		}
2446 	}
2447 
2448 	fprintf(stderr, "--------------------------------------\n");
2449 }
2450 
r600_vertex_data_type(enum pipe_format pformat,unsigned * format,unsigned * num_format,unsigned * format_comp,unsigned * endian)2451 void r600_vertex_data_type(enum pipe_format pformat,
2452 				  unsigned *format,
2453 				  unsigned *num_format, unsigned *format_comp, unsigned *endian)
2454 {
2455 	const struct util_format_description *desc;
2456 	unsigned i;
2457 
2458 	*format = 0;
2459 	*num_format = 0;
2460 	*format_comp = 0;
2461 	*endian = ENDIAN_NONE;
2462 
2463 	if (pformat == PIPE_FORMAT_R11G11B10_FLOAT) {
2464 		*format = FMT_10_11_11_FLOAT;
2465 		*endian = r600_endian_swap(32);
2466 		return;
2467 	}
2468 
2469 	if (pformat == PIPE_FORMAT_B5G6R5_UNORM) {
2470 		*format = FMT_5_6_5;
2471 		*endian = r600_endian_swap(16);
2472 		return;
2473 	}
2474 
2475 	if (pformat == PIPE_FORMAT_B5G5R5A1_UNORM) {
2476 		*format = FMT_1_5_5_5;
2477 		*endian = r600_endian_swap(16);
2478 		return;
2479 	}
2480 
2481 	if (pformat == PIPE_FORMAT_A1B5G5R5_UNORM) {
2482 		*format = FMT_5_5_5_1;
2483 		return;
2484 	}
2485 
2486 	desc = util_format_description(pformat);
2487 	if (desc->layout != UTIL_FORMAT_LAYOUT_PLAIN) {
2488 		goto out_unknown;
2489 	}
2490 
2491 	/* Find the first non-VOID channel. */
2492 	for (i = 0; i < 4; i++) {
2493 		if (desc->channel[i].type != UTIL_FORMAT_TYPE_VOID) {
2494 			break;
2495 		}
2496 	}
2497 
2498 	*endian = r600_endian_swap(desc->channel[i].size);
2499 
2500 	switch (desc->channel[i].type) {
2501 	/* Half-floats, floats, ints */
2502 	case UTIL_FORMAT_TYPE_FLOAT:
2503 		switch (desc->channel[i].size) {
2504 		case 16:
2505 			switch (desc->nr_channels) {
2506 			case 1:
2507 				*format = FMT_16_FLOAT;
2508 				break;
2509 			case 2:
2510 				*format = FMT_16_16_FLOAT;
2511 				break;
2512 			case 3:
2513 			case 4:
2514 				*format = FMT_16_16_16_16_FLOAT;
2515 				break;
2516 			}
2517 			break;
2518 		case 32:
2519 			switch (desc->nr_channels) {
2520 			case 1:
2521 				*format = FMT_32_FLOAT;
2522 				break;
2523 			case 2:
2524 				*format = FMT_32_32_FLOAT;
2525 				break;
2526 			case 3:
2527 				*format = FMT_32_32_32_FLOAT;
2528 				break;
2529 			case 4:
2530 				*format = FMT_32_32_32_32_FLOAT;
2531 				break;
2532 			}
2533 			break;
2534 		default:
2535 			goto out_unknown;
2536 		}
2537 		break;
2538 		/* Unsigned ints */
2539 	case UTIL_FORMAT_TYPE_UNSIGNED:
2540 		/* Signed ints */
2541 	case UTIL_FORMAT_TYPE_SIGNED:
2542 		switch (desc->channel[i].size) {
2543 		case 4:
2544 			switch (desc->nr_channels) {
2545 			case 2:
2546 				*format = FMT_4_4;
2547 				break;
2548 			case 4:
2549 				*format = FMT_4_4_4_4;
2550 				break;
2551 			}
2552 			break;
2553 		case 8:
2554 			switch (desc->nr_channels) {
2555 			case 1:
2556 				*format = FMT_8;
2557 				break;
2558 			case 2:
2559 				*format = FMT_8_8;
2560 				break;
2561 			case 3:
2562 			case 4:
2563 				*format = FMT_8_8_8_8;
2564 				break;
2565 			}
2566 			break;
2567 		case 10:
2568 			if (desc->nr_channels != 4)
2569 				goto out_unknown;
2570 
2571 			*format = FMT_2_10_10_10;
2572 			break;
2573 		case 16:
2574 			switch (desc->nr_channels) {
2575 			case 1:
2576 				*format = FMT_16;
2577 				break;
2578 			case 2:
2579 				*format = FMT_16_16;
2580 				break;
2581 			case 3:
2582 			case 4:
2583 				*format = FMT_16_16_16_16;
2584 				break;
2585 			}
2586 			break;
2587 		case 32:
2588 			switch (desc->nr_channels) {
2589 			case 1:
2590 				*format = FMT_32;
2591 				break;
2592 			case 2:
2593 				*format = FMT_32_32;
2594 				break;
2595 			case 3:
2596 				*format = FMT_32_32_32;
2597 				break;
2598 			case 4:
2599 				*format = FMT_32_32_32_32;
2600 				break;
2601 			}
2602 			break;
2603 		default:
2604 			goto out_unknown;
2605 		}
2606 		break;
2607 	default:
2608 		goto out_unknown;
2609 	}
2610 
2611 	if (desc->channel[i].type == UTIL_FORMAT_TYPE_SIGNED) {
2612 		*format_comp = 1;
2613 	}
2614 
2615 	*num_format = 0;
2616 	if (desc->channel[i].type == UTIL_FORMAT_TYPE_UNSIGNED ||
2617 	    desc->channel[i].type == UTIL_FORMAT_TYPE_SIGNED) {
2618 		if (!desc->channel[i].normalized) {
2619 			if (desc->channel[i].pure_integer)
2620 				*num_format = 1;
2621 			else
2622 				*num_format = 2;
2623 		}
2624 	}
2625 	return;
2626 out_unknown:
2627 	R600_ERR("unsupported vertex format %s\n", util_format_name(pformat));
2628 }
2629 
r600_create_vertex_fetch_shader(struct pipe_context * ctx,unsigned count,const struct pipe_vertex_element * elements)2630 void *r600_create_vertex_fetch_shader(struct pipe_context *ctx,
2631 				      unsigned count,
2632 				      const struct pipe_vertex_element *elements)
2633 {
2634 	struct r600_context *rctx = (struct r600_context *)ctx;
2635 	struct r600_bytecode bc;
2636 	struct r600_bytecode_vtx vtx;
2637 	const struct util_format_description *desc;
2638 	unsigned fetch_resource_start = rctx->b.chip_class >= EVERGREEN ? 0 : 160;
2639 	unsigned format, num_format, format_comp, endian;
2640 	uint32_t *bytecode;
2641 	int i, j, r, fs_size;
2642 	struct r600_fetch_shader *shader;
2643 	unsigned no_sb = rctx->screen->b.debug_flags & DBG_NO_SB;
2644 	unsigned sb_disasm = !no_sb || (rctx->screen->b.debug_flags & DBG_SB_DISASM);
2645 
2646 	assert(count < 32);
2647 
2648 	memset(&bc, 0, sizeof(bc));
2649 	r600_bytecode_init(&bc, rctx->b.chip_class, rctx->b.family,
2650 			   rctx->screen->has_compressed_msaa_texturing);
2651 
2652 	bc.isa = rctx->isa;
2653 
2654 	for (i = 0; i < count; i++) {
2655 		if (elements[i].instance_divisor > 1) {
2656 			if (rctx->b.chip_class == CAYMAN) {
2657 				for (j = 0; j < 4; j++) {
2658 					struct r600_bytecode_alu alu;
2659 					memset(&alu, 0, sizeof(alu));
2660 					alu.op = ALU_OP2_MULHI_UINT;
2661 					alu.src[0].sel = 0;
2662 					alu.src[0].chan = 3;
2663 					alu.src[1].sel = V_SQ_ALU_SRC_LITERAL;
2664 					alu.src[1].value = (1ll << 32) / elements[i].instance_divisor + 1;
2665 					alu.dst.sel = i + 1;
2666 					alu.dst.chan = j;
2667 					alu.dst.write = j == 3;
2668 					alu.last = j == 3;
2669 					if ((r = r600_bytecode_add_alu(&bc, &alu))) {
2670 						r600_bytecode_clear(&bc);
2671 						return NULL;
2672 					}
2673 				}
2674 			} else {
2675 				struct r600_bytecode_alu alu;
2676 				memset(&alu, 0, sizeof(alu));
2677 				alu.op = ALU_OP2_MULHI_UINT;
2678 				alu.src[0].sel = 0;
2679 				alu.src[0].chan = 3;
2680 				alu.src[1].sel = V_SQ_ALU_SRC_LITERAL;
2681 				alu.src[1].value = (1ll << 32) / elements[i].instance_divisor + 1;
2682 				alu.dst.sel = i + 1;
2683 				alu.dst.chan = 3;
2684 				alu.dst.write = 1;
2685 				alu.last = 1;
2686 				if ((r = r600_bytecode_add_alu(&bc, &alu))) {
2687 					r600_bytecode_clear(&bc);
2688 					return NULL;
2689 				}
2690 			}
2691 		}
2692 	}
2693 
2694 	for (i = 0; i < count; i++) {
2695 		r600_vertex_data_type(elements[i].src_format,
2696 				      &format, &num_format, &format_comp, &endian);
2697 
2698 		desc = util_format_description(elements[i].src_format);
2699 		if (!desc) {
2700 			r600_bytecode_clear(&bc);
2701 			R600_ERR("unknown format %d\n", elements[i].src_format);
2702 			return NULL;
2703 		}
2704 
2705 		if (elements[i].src_offset > 65535) {
2706 			r600_bytecode_clear(&bc);
2707 			R600_ERR("too big src_offset: %u\n", elements[i].src_offset);
2708 			return NULL;
2709 		}
2710 
2711 		memset(&vtx, 0, sizeof(vtx));
2712 		vtx.buffer_id = elements[i].vertex_buffer_index + fetch_resource_start;
2713 		vtx.fetch_type = elements[i].instance_divisor ? SQ_VTX_FETCH_INSTANCE_DATA : SQ_VTX_FETCH_VERTEX_DATA;
2714 		vtx.src_gpr = elements[i].instance_divisor > 1 ? i + 1 : 0;
2715 		vtx.src_sel_x = elements[i].instance_divisor ? 3 : 0;
2716 		vtx.mega_fetch_count = 0x1F;
2717 		vtx.dst_gpr = i + 1;
2718 		vtx.dst_sel_x = desc->swizzle[0];
2719 		vtx.dst_sel_y = desc->swizzle[1];
2720 		vtx.dst_sel_z = desc->swizzle[2];
2721 		vtx.dst_sel_w = desc->swizzle[3];
2722 		vtx.data_format = format;
2723 		vtx.num_format_all = num_format;
2724 		vtx.format_comp_all = format_comp;
2725 		vtx.offset = elements[i].src_offset;
2726 		vtx.endian = endian;
2727 
2728 		if ((r = r600_bytecode_add_vtx(&bc, &vtx))) {
2729 			r600_bytecode_clear(&bc);
2730 			return NULL;
2731 		}
2732 	}
2733 
2734 	r600_bytecode_add_cfinst(&bc, CF_OP_RET);
2735 
2736 	if ((r = r600_bytecode_build(&bc))) {
2737 		r600_bytecode_clear(&bc);
2738 		return NULL;
2739 	}
2740 
2741 	if (rctx->screen->b.debug_flags & DBG_FS) {
2742 		fprintf(stderr, "--------------------------------------------------------------\n");
2743 		fprintf(stderr, "Vertex elements state:\n");
2744 		for (i = 0; i < count; i++) {
2745 			fprintf(stderr, "   ");
2746 			util_dump_vertex_element(stderr, elements+i);
2747 			fprintf(stderr, "\n");
2748 		}
2749 
2750 		if (!sb_disasm) {
2751 			r600_bytecode_disasm(&bc);
2752 
2753 			fprintf(stderr, "______________________________________________________________\n");
2754 		} else {
2755 			r600_sb_bytecode_process(rctx, &bc, NULL, 1 /*dump*/, 0 /*optimize*/);
2756 		}
2757 	}
2758 
2759 	fs_size = bc.ndw*4;
2760 
2761 	/* Allocate the CSO. */
2762 	shader = CALLOC_STRUCT(r600_fetch_shader);
2763 	if (!shader) {
2764 		r600_bytecode_clear(&bc);
2765 		return NULL;
2766 	}
2767 
2768 	u_suballocator_alloc(rctx->allocator_fetch_shader, fs_size, 256,
2769 			     &shader->offset,
2770 			     (struct pipe_resource**)&shader->buffer);
2771 	if (!shader->buffer) {
2772 		r600_bytecode_clear(&bc);
2773 		FREE(shader);
2774 		return NULL;
2775 	}
2776 
2777 	bytecode = r600_buffer_map_sync_with_rings
2778 		(&rctx->b, shader->buffer,
2779 		PIPE_MAP_WRITE | PIPE_MAP_UNSYNCHRONIZED | RADEON_MAP_TEMPORARY);
2780 	bytecode += shader->offset / 4;
2781 
2782 	if (R600_BIG_ENDIAN) {
2783 		for (i = 0; i < fs_size / 4; ++i) {
2784 			bytecode[i] = util_cpu_to_le32(bc.bytecode[i]);
2785 		}
2786 	} else {
2787 		memcpy(bytecode, bc.bytecode, fs_size);
2788 	}
2789 	rctx->b.ws->buffer_unmap(shader->buffer->buf);
2790 
2791 	r600_bytecode_clear(&bc);
2792 	return shader;
2793 }
2794 
r600_bytecode_alu_read(struct r600_bytecode * bc,struct r600_bytecode_alu * alu,uint32_t word0,uint32_t word1)2795 void r600_bytecode_alu_read(struct r600_bytecode *bc,
2796 		struct r600_bytecode_alu *alu, uint32_t word0, uint32_t word1)
2797 {
2798 	/* WORD0 */
2799 	alu->src[0].sel = G_SQ_ALU_WORD0_SRC0_SEL(word0);
2800 	alu->src[0].rel = G_SQ_ALU_WORD0_SRC0_REL(word0);
2801 	alu->src[0].chan = G_SQ_ALU_WORD0_SRC0_CHAN(word0);
2802 	alu->src[0].neg = G_SQ_ALU_WORD0_SRC0_NEG(word0);
2803 	alu->src[1].sel = G_SQ_ALU_WORD0_SRC1_SEL(word0);
2804 	alu->src[1].rel = G_SQ_ALU_WORD0_SRC1_REL(word0);
2805 	alu->src[1].chan = G_SQ_ALU_WORD0_SRC1_CHAN(word0);
2806 	alu->src[1].neg = G_SQ_ALU_WORD0_SRC1_NEG(word0);
2807 	alu->index_mode = G_SQ_ALU_WORD0_INDEX_MODE(word0);
2808 	alu->pred_sel = G_SQ_ALU_WORD0_PRED_SEL(word0);
2809 	alu->last = G_SQ_ALU_WORD0_LAST(word0);
2810 
2811 	/* WORD1 */
2812 	alu->bank_swizzle = G_SQ_ALU_WORD1_BANK_SWIZZLE(word1);
2813 	if (alu->bank_swizzle)
2814 		alu->bank_swizzle_force = alu->bank_swizzle;
2815 	alu->dst.sel = G_SQ_ALU_WORD1_DST_GPR(word1);
2816 	alu->dst.rel = G_SQ_ALU_WORD1_DST_REL(word1);
2817 	alu->dst.chan = G_SQ_ALU_WORD1_DST_CHAN(word1);
2818 	alu->dst.clamp = G_SQ_ALU_WORD1_CLAMP(word1);
2819 	if (G_SQ_ALU_WORD1_ENCODING(word1)) /*ALU_DWORD1_OP3*/
2820 	{
2821 		alu->is_op3 = 1;
2822 		alu->src[2].sel = G_SQ_ALU_WORD1_OP3_SRC2_SEL(word1);
2823 		alu->src[2].rel = G_SQ_ALU_WORD1_OP3_SRC2_REL(word1);
2824 		alu->src[2].chan = G_SQ_ALU_WORD1_OP3_SRC2_CHAN(word1);
2825 		alu->src[2].neg = G_SQ_ALU_WORD1_OP3_SRC2_NEG(word1);
2826 		alu->op = r600_isa_alu_by_opcode(bc->isa,
2827 				G_SQ_ALU_WORD1_OP3_ALU_INST(word1), /* is_op3 = */ 1);
2828 
2829 	}
2830 	else /*ALU_DWORD1_OP2*/
2831 	{
2832 		alu->src[0].abs = G_SQ_ALU_WORD1_OP2_SRC0_ABS(word1);
2833 		alu->src[1].abs = G_SQ_ALU_WORD1_OP2_SRC1_ABS(word1);
2834 		alu->op = r600_isa_alu_by_opcode(bc->isa,
2835 				G_SQ_ALU_WORD1_OP2_ALU_INST(word1), /* is_op3 = */ 0);
2836 		alu->omod = G_SQ_ALU_WORD1_OP2_OMOD(word1);
2837 		alu->dst.write = G_SQ_ALU_WORD1_OP2_WRITE_MASK(word1);
2838 		alu->update_pred = G_SQ_ALU_WORD1_OP2_UPDATE_PRED(word1);
2839 		alu->execute_mask =
2840 			G_SQ_ALU_WORD1_OP2_UPDATE_EXECUTE_MASK(word1);
2841 	}
2842 }
2843 
2844 #if 0
2845 void r600_bytecode_export_read(struct r600_bytecode *bc,
2846 		struct r600_bytecode_output *output, uint32_t word0, uint32_t word1)
2847 {
2848 	output->array_base = G_SQ_CF_ALLOC_EXPORT_WORD0_ARRAY_BASE(word0);
2849 	output->type = G_SQ_CF_ALLOC_EXPORT_WORD0_TYPE(word0);
2850 	output->gpr = G_SQ_CF_ALLOC_EXPORT_WORD0_RW_GPR(word0);
2851 	output->elem_size = G_SQ_CF_ALLOC_EXPORT_WORD0_ELEM_SIZE(word0);
2852 
2853 	output->swizzle_x = G_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_X(word1);
2854 	output->swizzle_y = G_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_Y(word1);
2855 	output->swizzle_z = G_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_Z(word1);
2856 	output->swizzle_w = G_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_W(word1);
2857 	output->burst_count = G_SQ_CF_ALLOC_EXPORT_WORD1_BURST_COUNT(word1);
2858 	output->end_of_program = G_SQ_CF_ALLOC_EXPORT_WORD1_END_OF_PROGRAM(word1);
2859     output->op = r600_isa_cf_by_opcode(bc->isa,
2860 			G_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(word1), 0);
2861 	output->barrier = G_SQ_CF_ALLOC_EXPORT_WORD1_BARRIER(word1);
2862 	output->array_size = G_SQ_CF_ALLOC_EXPORT_WORD1_BUF_ARRAY_SIZE(word1);
2863 	output->comp_mask = G_SQ_CF_ALLOC_EXPORT_WORD1_BUF_COMP_MASK(word1);
2864 }
2865 #endif
2866