• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- RegionUtils.cpp - Region-related transformation utilities ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/Transforms/RegionUtils.h"
10 #include "mlir/IR/Block.h"
11 #include "mlir/IR/Operation.h"
12 #include "mlir/IR/RegionGraphTraits.h"
13 #include "mlir/IR/Value.h"
14 #include "mlir/Interfaces/ControlFlowInterfaces.h"
15 #include "mlir/Interfaces/SideEffectInterfaces.h"
16 
17 #include "llvm/ADT/DepthFirstIterator.h"
18 #include "llvm/ADT/PostOrderIterator.h"
19 #include "llvm/ADT/SmallSet.h"
20 
21 using namespace mlir;
22 
replaceAllUsesInRegionWith(Value orig,Value replacement,Region & region)23 void mlir::replaceAllUsesInRegionWith(Value orig, Value replacement,
24                                       Region &region) {
25   for (auto &use : llvm::make_early_inc_range(orig.getUses())) {
26     if (region.isAncestor(use.getOwner()->getParentRegion()))
27       use.set(replacement);
28   }
29 }
30 
visitUsedValuesDefinedAbove(Region & region,Region & limit,function_ref<void (OpOperand *)> callback)31 void mlir::visitUsedValuesDefinedAbove(
32     Region &region, Region &limit, function_ref<void(OpOperand *)> callback) {
33   assert(limit.isAncestor(&region) &&
34          "expected isolation limit to be an ancestor of the given region");
35 
36   // Collect proper ancestors of `limit` upfront to avoid traversing the region
37   // tree for every value.
38   SmallPtrSet<Region *, 4> properAncestors;
39   for (auto *reg = limit.getParentRegion(); reg != nullptr;
40        reg = reg->getParentRegion()) {
41     properAncestors.insert(reg);
42   }
43 
44   region.walk([callback, &properAncestors](Operation *op) {
45     for (OpOperand &operand : op->getOpOperands())
46       // Callback on values defined in a proper ancestor of region.
47       if (properAncestors.count(operand.get().getParentRegion()))
48         callback(&operand);
49   });
50 }
51 
visitUsedValuesDefinedAbove(MutableArrayRef<Region> regions,function_ref<void (OpOperand *)> callback)52 void mlir::visitUsedValuesDefinedAbove(
53     MutableArrayRef<Region> regions, function_ref<void(OpOperand *)> callback) {
54   for (Region &region : regions)
55     visitUsedValuesDefinedAbove(region, region, callback);
56 }
57 
getUsedValuesDefinedAbove(Region & region,Region & limit,llvm::SetVector<Value> & values)58 void mlir::getUsedValuesDefinedAbove(Region &region, Region &limit,
59                                      llvm::SetVector<Value> &values) {
60   visitUsedValuesDefinedAbove(region, limit, [&](OpOperand *operand) {
61     values.insert(operand->get());
62   });
63 }
64 
getUsedValuesDefinedAbove(MutableArrayRef<Region> regions,llvm::SetVector<Value> & values)65 void mlir::getUsedValuesDefinedAbove(MutableArrayRef<Region> regions,
66                                      llvm::SetVector<Value> &values) {
67   for (Region &region : regions)
68     getUsedValuesDefinedAbove(region, region, values);
69 }
70 
71 //===----------------------------------------------------------------------===//
72 // Unreachable Block Elimination
73 //===----------------------------------------------------------------------===//
74 
75 /// Erase the unreachable blocks within the provided regions. Returns success
76 /// if any blocks were erased, failure otherwise.
77 // TODO: We could likely merge this with the DCE algorithm below.
eraseUnreachableBlocks(MutableArrayRef<Region> regions)78 static LogicalResult eraseUnreachableBlocks(MutableArrayRef<Region> regions) {
79   // Set of blocks found to be reachable within a given region.
80   llvm::df_iterator_default_set<Block *, 16> reachable;
81   // If any blocks were found to be dead.
82   bool erasedDeadBlocks = false;
83 
84   SmallVector<Region *, 1> worklist;
85   worklist.reserve(regions.size());
86   for (Region &region : regions)
87     worklist.push_back(&region);
88   while (!worklist.empty()) {
89     Region *region = worklist.pop_back_val();
90     if (region->empty())
91       continue;
92 
93     // If this is a single block region, just collect the nested regions.
94     if (std::next(region->begin()) == region->end()) {
95       for (Operation &op : region->front())
96         for (Region &region : op.getRegions())
97           worklist.push_back(&region);
98       continue;
99     }
100 
101     // Mark all reachable blocks.
102     reachable.clear();
103     for (Block *block : depth_first_ext(&region->front(), reachable))
104       (void)block /* Mark all reachable blocks */;
105 
106     // Collect all of the dead blocks and push the live regions onto the
107     // worklist.
108     for (Block &block : llvm::make_early_inc_range(*region)) {
109       if (!reachable.count(&block)) {
110         block.dropAllDefinedValueUses();
111         block.erase();
112         erasedDeadBlocks = true;
113         continue;
114       }
115 
116       // Walk any regions within this block.
117       for (Operation &op : block)
118         for (Region &region : op.getRegions())
119           worklist.push_back(&region);
120     }
121   }
122 
123   return success(erasedDeadBlocks);
124 }
125 
126 //===----------------------------------------------------------------------===//
127 // Dead Code Elimination
128 //===----------------------------------------------------------------------===//
129 
130 namespace {
131 /// Data structure used to track which values have already been proved live.
132 ///
133 /// Because Operation's can have multiple results, this data structure tracks
134 /// liveness for both Value's and Operation's to avoid having to look through
135 /// all Operation results when analyzing a use.
136 ///
137 /// This data structure essentially tracks the dataflow lattice.
138 /// The set of values/ops proved live increases monotonically to a fixed-point.
139 class LiveMap {
140 public:
141   /// Value methods.
wasProvenLive(Value value)142   bool wasProvenLive(Value value) { return liveValues.count(value); }
setProvedLive(Value value)143   void setProvedLive(Value value) {
144     changed |= liveValues.insert(value).second;
145   }
146 
147   /// Operation methods.
wasProvenLive(Operation * op)148   bool wasProvenLive(Operation *op) { return liveOps.count(op); }
setProvedLive(Operation * op)149   void setProvedLive(Operation *op) { changed |= liveOps.insert(op).second; }
150 
151   /// Methods for tracking if we have reached a fixed-point.
resetChanged()152   void resetChanged() { changed = false; }
hasChanged()153   bool hasChanged() { return changed; }
154 
155 private:
156   bool changed = false;
157   DenseSet<Value> liveValues;
158   DenseSet<Operation *> liveOps;
159 };
160 } // namespace
161 
isUseSpeciallyKnownDead(OpOperand & use,LiveMap & liveMap)162 static bool isUseSpeciallyKnownDead(OpOperand &use, LiveMap &liveMap) {
163   Operation *owner = use.getOwner();
164   unsigned operandIndex = use.getOperandNumber();
165   // This pass generally treats all uses of an op as live if the op itself is
166   // considered live. However, for successor operands to terminators we need a
167   // finer-grained notion where we deduce liveness for operands individually.
168   // The reason for this is easiest to think about in terms of a classical phi
169   // node based SSA IR, where each successor operand is really an operand to a
170   // *separate* phi node, rather than all operands to the branch itself as with
171   // the block argument representation that MLIR uses.
172   //
173   // And similarly, because each successor operand is really an operand to a phi
174   // node, rather than to the terminator op itself, a terminator op can't e.g.
175   // "print" the value of a successor operand.
176   if (owner->isKnownTerminator()) {
177     if (BranchOpInterface branchInterface = dyn_cast<BranchOpInterface>(owner))
178       if (auto arg = branchInterface.getSuccessorBlockArgument(operandIndex))
179         return !liveMap.wasProvenLive(*arg);
180     return false;
181   }
182   return false;
183 }
184 
processValue(Value value,LiveMap & liveMap)185 static void processValue(Value value, LiveMap &liveMap) {
186   bool provedLive = llvm::any_of(value.getUses(), [&](OpOperand &use) {
187     if (isUseSpeciallyKnownDead(use, liveMap))
188       return false;
189     return liveMap.wasProvenLive(use.getOwner());
190   });
191   if (provedLive)
192     liveMap.setProvedLive(value);
193 }
194 
isOpIntrinsicallyLive(Operation * op)195 static bool isOpIntrinsicallyLive(Operation *op) {
196   // This pass doesn't modify the CFG, so terminators are never deleted.
197   if (!op->isKnownNonTerminator())
198     return true;
199   // If the op has a side effect, we treat it as live.
200   // TODO: Properly handle region side effects.
201   return !MemoryEffectOpInterface::hasNoEffect(op) || op->getNumRegions() != 0;
202 }
203 
204 static void propagateLiveness(Region &region, LiveMap &liveMap);
205 
propagateTerminatorLiveness(Operation * op,LiveMap & liveMap)206 static void propagateTerminatorLiveness(Operation *op, LiveMap &liveMap) {
207   // Terminators are always live.
208   liveMap.setProvedLive(op);
209 
210   // Check to see if we can reason about the successor operands and mutate them.
211   BranchOpInterface branchInterface = dyn_cast<BranchOpInterface>(op);
212   if (!branchInterface) {
213     for (Block *successor : op->getSuccessors())
214       for (BlockArgument arg : successor->getArguments())
215         liveMap.setProvedLive(arg);
216     return;
217   }
218 
219   // If we can't reason about the operands to a successor, conservatively mark
220   // all arguments as live.
221   for (unsigned i = 0, e = op->getNumSuccessors(); i != e; ++i) {
222     if (!branchInterface.getMutableSuccessorOperands(i))
223       for (BlockArgument arg : op->getSuccessor(i)->getArguments())
224         liveMap.setProvedLive(arg);
225   }
226 }
227 
propagateLiveness(Operation * op,LiveMap & liveMap)228 static void propagateLiveness(Operation *op, LiveMap &liveMap) {
229   // All Value's are either a block argument or an op result.
230   // We call processValue on those cases.
231 
232   // Recurse on any regions the op has.
233   for (Region &region : op->getRegions())
234     propagateLiveness(region, liveMap);
235 
236   // Process terminator operations.
237   if (op->isKnownTerminator())
238     return propagateTerminatorLiveness(op, liveMap);
239 
240   // Process the op itself.
241   if (isOpIntrinsicallyLive(op)) {
242     liveMap.setProvedLive(op);
243     return;
244   }
245   for (Value value : op->getResults())
246     processValue(value, liveMap);
247   bool provedLive = llvm::any_of(op->getResults(), [&](Value value) {
248     return liveMap.wasProvenLive(value);
249   });
250   if (provedLive)
251     liveMap.setProvedLive(op);
252 }
253 
propagateLiveness(Region & region,LiveMap & liveMap)254 static void propagateLiveness(Region &region, LiveMap &liveMap) {
255   if (region.empty())
256     return;
257 
258   for (Block *block : llvm::post_order(&region.front())) {
259     // We process block arguments after the ops in the block, to promote
260     // faster convergence to a fixed point (we try to visit uses before defs).
261     for (Operation &op : llvm::reverse(block->getOperations()))
262       propagateLiveness(&op, liveMap);
263     for (Value value : block->getArguments())
264       processValue(value, liveMap);
265   }
266 }
267 
eraseTerminatorSuccessorOperands(Operation * terminator,LiveMap & liveMap)268 static void eraseTerminatorSuccessorOperands(Operation *terminator,
269                                              LiveMap &liveMap) {
270   BranchOpInterface branchOp = dyn_cast<BranchOpInterface>(terminator);
271   if (!branchOp)
272     return;
273 
274   for (unsigned succI = 0, succE = terminator->getNumSuccessors();
275        succI < succE; succI++) {
276     // Iterating successors in reverse is not strictly needed, since we
277     // aren't erasing any successors. But it is slightly more efficient
278     // since it will promote later operands of the terminator being erased
279     // first, reducing the quadratic-ness.
280     unsigned succ = succE - succI - 1;
281     Optional<MutableOperandRange> succOperands =
282         branchOp.getMutableSuccessorOperands(succ);
283     if (!succOperands)
284       continue;
285     Block *successor = terminator->getSuccessor(succ);
286 
287     for (unsigned argI = 0, argE = succOperands->size(); argI < argE; ++argI) {
288       // Iterating args in reverse is needed for correctness, to avoid
289       // shifting later args when earlier args are erased.
290       unsigned arg = argE - argI - 1;
291       if (!liveMap.wasProvenLive(successor->getArgument(arg)))
292         succOperands->erase(arg);
293     }
294   }
295 }
296 
deleteDeadness(MutableArrayRef<Region> regions,LiveMap & liveMap)297 static LogicalResult deleteDeadness(MutableArrayRef<Region> regions,
298                                     LiveMap &liveMap) {
299   bool erasedAnything = false;
300   for (Region &region : regions) {
301     if (region.empty())
302       continue;
303 
304     // We do the deletion in an order that deletes all uses before deleting
305     // defs.
306     // MLIR's SSA structural invariants guarantee that except for block
307     // arguments, the use-def graph is acyclic, so this is possible with a
308     // single walk of ops and then a final pass to clean up block arguments.
309     //
310     // To do this, we visit ops in an order that visits domtree children
311     // before domtree parents. A CFG post-order (with reverse iteration with a
312     // block) satisfies that without needing an explicit domtree calculation.
313     for (Block *block : llvm::post_order(&region.front())) {
314       eraseTerminatorSuccessorOperands(block->getTerminator(), liveMap);
315       for (Operation &childOp :
316            llvm::make_early_inc_range(llvm::reverse(block->getOperations()))) {
317         erasedAnything |=
318             succeeded(deleteDeadness(childOp.getRegions(), liveMap));
319         if (!liveMap.wasProvenLive(&childOp)) {
320           erasedAnything = true;
321           childOp.erase();
322         }
323       }
324     }
325     // Delete block arguments.
326     // The entry block has an unknown contract with their enclosing block, so
327     // skip it.
328     for (Block &block : llvm::drop_begin(region.getBlocks(), 1)) {
329       // Iterate in reverse to avoid shifting later arguments when deleting
330       // earlier arguments.
331       for (unsigned i = 0, e = block.getNumArguments(); i < e; i++)
332         if (!liveMap.wasProvenLive(block.getArgument(e - i - 1))) {
333           block.eraseArgument(e - i - 1);
334           erasedAnything = true;
335         }
336     }
337   }
338   return success(erasedAnything);
339 }
340 
341 // This function performs a simple dead code elimination algorithm over the
342 // given regions.
343 //
344 // The overall goal is to prove that Values are dead, which allows deleting ops
345 // and block arguments.
346 //
347 // This uses an optimistic algorithm that assumes everything is dead until
348 // proved otherwise, allowing it to delete recursively dead cycles.
349 //
350 // This is a simple fixed-point dataflow analysis algorithm on a lattice
351 // {Dead,Alive}. Because liveness flows backward, we generally try to
352 // iterate everything backward to speed up convergence to the fixed-point. This
353 // allows for being able to delete recursively dead cycles of the use-def graph,
354 // including block arguments.
355 //
356 // This function returns success if any operations or arguments were deleted,
357 // failure otherwise.
runRegionDCE(MutableArrayRef<Region> regions)358 static LogicalResult runRegionDCE(MutableArrayRef<Region> regions) {
359   LiveMap liveMap;
360   do {
361     liveMap.resetChanged();
362 
363     for (Region &region : regions)
364       propagateLiveness(region, liveMap);
365   } while (liveMap.hasChanged());
366 
367   return deleteDeadness(regions, liveMap);
368 }
369 
370 //===----------------------------------------------------------------------===//
371 // Block Merging
372 //===----------------------------------------------------------------------===//
373 
374 //===----------------------------------------------------------------------===//
375 // BlockEquivalenceData
376 
377 namespace {
378 /// This class contains the information for comparing the equivalencies of two
379 /// blocks. Blocks are considered equivalent if they contain the same operations
380 /// in the same order. The only allowed divergence is for operands that come
381 /// from sources outside of the parent block, i.e. the uses of values produced
382 /// within the block must be equivalent.
383 ///   e.g.,
384 /// Equivalent:
385 ///  ^bb1(%arg0: i32)
386 ///    return %arg0, %foo : i32, i32
387 ///  ^bb2(%arg1: i32)
388 ///    return %arg1, %bar : i32, i32
389 /// Not Equivalent:
390 ///  ^bb1(%arg0: i32)
391 ///    return %foo, %arg0 : i32, i32
392 ///  ^bb2(%arg1: i32)
393 ///    return %arg1, %bar : i32, i32
394 struct BlockEquivalenceData {
395   BlockEquivalenceData(Block *block);
396 
397   /// Return the order index for the given value that is within the block of
398   /// this data.
399   unsigned getOrderOf(Value value) const;
400 
401   /// The block this data refers to.
402   Block *block;
403   /// A hash value for this block.
404   llvm::hash_code hash;
405   /// A map of result producing operations to their relative orders within this
406   /// block. The order of an operation is the number of defined values that are
407   /// produced within the block before this operation.
408   DenseMap<Operation *, unsigned> opOrderIndex;
409 };
410 } // end anonymous namespace
411 
BlockEquivalenceData(Block * block)412 BlockEquivalenceData::BlockEquivalenceData(Block *block)
413     : block(block), hash(0) {
414   unsigned orderIt = block->getNumArguments();
415   for (Operation &op : *block) {
416     if (unsigned numResults = op.getNumResults()) {
417       opOrderIndex.try_emplace(&op, orderIt);
418       orderIt += numResults;
419     }
420     auto opHash = OperationEquivalence::computeHash(
421         &op, OperationEquivalence::Flags::IgnoreOperands);
422     hash = llvm::hash_combine(hash, opHash);
423   }
424 }
425 
getOrderOf(Value value) const426 unsigned BlockEquivalenceData::getOrderOf(Value value) const {
427   assert(value.getParentBlock() == block && "expected value of this block");
428 
429   // Arguments use the argument number as the order index.
430   if (BlockArgument arg = value.dyn_cast<BlockArgument>())
431     return arg.getArgNumber();
432 
433   // Otherwise, the result order is offset from the parent op's order.
434   OpResult result = value.cast<OpResult>();
435   auto opOrderIt = opOrderIndex.find(result.getDefiningOp());
436   assert(opOrderIt != opOrderIndex.end() && "expected op to have an order");
437   return opOrderIt->second + result.getResultNumber();
438 }
439 
440 //===----------------------------------------------------------------------===//
441 // BlockMergeCluster
442 
443 namespace {
444 /// This class represents a cluster of blocks to be merged together.
445 class BlockMergeCluster {
446 public:
BlockMergeCluster(BlockEquivalenceData && leaderData)447   BlockMergeCluster(BlockEquivalenceData &&leaderData)
448       : leaderData(std::move(leaderData)) {}
449 
450   /// Attempt to add the given block to this cluster. Returns success if the
451   /// block was merged, failure otherwise.
452   LogicalResult addToCluster(BlockEquivalenceData &blockData);
453 
454   /// Try to merge all of the blocks within this cluster into the leader block.
455   LogicalResult merge();
456 
457 private:
458   /// The equivalence data for the leader of the cluster.
459   BlockEquivalenceData leaderData;
460 
461   /// The set of blocks that can be merged into the leader.
462   llvm::SmallSetVector<Block *, 1> blocksToMerge;
463 
464   /// A set of operand+index pairs that correspond to operands that need to be
465   /// replaced by arguments when the cluster gets merged.
466   std::set<std::pair<int, int>> operandsToMerge;
467 };
468 } // end anonymous namespace
469 
addToCluster(BlockEquivalenceData & blockData)470 LogicalResult BlockMergeCluster::addToCluster(BlockEquivalenceData &blockData) {
471   if (leaderData.hash != blockData.hash)
472     return failure();
473   Block *leaderBlock = leaderData.block, *mergeBlock = blockData.block;
474   if (leaderBlock->getArgumentTypes() != mergeBlock->getArgumentTypes())
475     return failure();
476 
477   // A set of operands that mismatch between the leader and the new block.
478   SmallVector<std::pair<int, int>, 8> mismatchedOperands;
479   auto lhsIt = leaderBlock->begin(), lhsE = leaderBlock->end();
480   auto rhsIt = blockData.block->begin(), rhsE = blockData.block->end();
481   for (int opI = 0; lhsIt != lhsE && rhsIt != rhsE; ++lhsIt, ++rhsIt, ++opI) {
482     // Check that the operations are equivalent.
483     if (!OperationEquivalence::isEquivalentTo(
484             &*lhsIt, &*rhsIt, OperationEquivalence::Flags::IgnoreOperands))
485       return failure();
486 
487     // Compare the operands of the two operations. If the operand is within
488     // the block, it must refer to the same operation.
489     auto lhsOperands = lhsIt->getOperands(), rhsOperands = rhsIt->getOperands();
490     for (int operand : llvm::seq<int>(0, lhsIt->getNumOperands())) {
491       Value lhsOperand = lhsOperands[operand];
492       Value rhsOperand = rhsOperands[operand];
493       if (lhsOperand == rhsOperand)
494         continue;
495       // Check that the types of the operands match.
496       if (lhsOperand.getType() != rhsOperand.getType())
497         return failure();
498 
499       // Check that these uses are both external, or both internal.
500       bool lhsIsInBlock = lhsOperand.getParentBlock() == leaderBlock;
501       bool rhsIsInBlock = rhsOperand.getParentBlock() == mergeBlock;
502       if (lhsIsInBlock != rhsIsInBlock)
503         return failure();
504       // Let the operands differ if they are defined in a different block. These
505       // will become new arguments if the blocks get merged.
506       if (!lhsIsInBlock) {
507         mismatchedOperands.emplace_back(opI, operand);
508         continue;
509       }
510 
511       // Otherwise, these operands must have the same logical order within the
512       // parent block.
513       if (leaderData.getOrderOf(lhsOperand) != blockData.getOrderOf(rhsOperand))
514         return failure();
515     }
516 
517     // If the lhs or rhs has external uses, the blocks cannot be merged as the
518     // merged version of this operation will not be either the lhs or rhs
519     // alone (thus semantically incorrect), but some mix dependening on which
520     // block preceeded this.
521     // TODO allow merging of operations when one block does not dominate the
522     // other
523     if (rhsIt->isUsedOutsideOfBlock(mergeBlock) ||
524         lhsIt->isUsedOutsideOfBlock(leaderBlock)) {
525       return failure();
526     }
527   }
528   // Make sure that the block sizes are equivalent.
529   if (lhsIt != lhsE || rhsIt != rhsE)
530     return failure();
531 
532   // If we get here, the blocks are equivalent and can be merged.
533   operandsToMerge.insert(mismatchedOperands.begin(), mismatchedOperands.end());
534   blocksToMerge.insert(blockData.block);
535   return success();
536 }
537 
538 /// Returns true if the predecessor terminators of the given block can not have
539 /// their operands updated.
ableToUpdatePredOperands(Block * block)540 static bool ableToUpdatePredOperands(Block *block) {
541   for (auto it = block->pred_begin(), e = block->pred_end(); it != e; ++it) {
542     auto branch = dyn_cast<BranchOpInterface>((*it)->getTerminator());
543     if (!branch || !branch.getMutableSuccessorOperands(it.getSuccessorIndex()))
544       return false;
545   }
546   return true;
547 }
548 
merge()549 LogicalResult BlockMergeCluster::merge() {
550   // Don't consider clusters that don't have blocks to merge.
551   if (blocksToMerge.empty())
552     return failure();
553 
554   Block *leaderBlock = leaderData.block;
555   if (!operandsToMerge.empty()) {
556     // If the cluster has operands to merge, verify that the predecessor
557     // terminators of each of the blocks can have their successor operands
558     // updated.
559     // TODO: We could try and sub-partition this cluster if only some blocks
560     // cause the mismatch.
561     if (!ableToUpdatePredOperands(leaderBlock) ||
562         !llvm::all_of(blocksToMerge, ableToUpdatePredOperands))
563       return failure();
564 
565     // Collect the iterators for each of the blocks to merge. We will walk all
566     // of the iterators at once to avoid operand index invalidation.
567     SmallVector<Block::iterator, 2> blockIterators;
568     blockIterators.reserve(blocksToMerge.size() + 1);
569     blockIterators.push_back(leaderBlock->begin());
570     for (Block *mergeBlock : blocksToMerge)
571       blockIterators.push_back(mergeBlock->begin());
572 
573     // Update each of the predecessor terminators with the new arguments.
574     SmallVector<SmallVector<Value, 8>, 2> newArguments(
575         1 + blocksToMerge.size(),
576         SmallVector<Value, 8>(operandsToMerge.size()));
577     unsigned curOpIndex = 0;
578     for (auto it : llvm::enumerate(operandsToMerge)) {
579       unsigned nextOpOffset = it.value().first - curOpIndex;
580       curOpIndex = it.value().first;
581 
582       // Process the operand for each of the block iterators.
583       for (unsigned i = 0, e = blockIterators.size(); i != e; ++i) {
584         Block::iterator &blockIter = blockIterators[i];
585         std::advance(blockIter, nextOpOffset);
586         auto &operand = blockIter->getOpOperand(it.value().second);
587         newArguments[i][it.index()] = operand.get();
588 
589         // Update the operand and insert an argument if this is the leader.
590         if (i == 0)
591           operand.set(leaderBlock->addArgument(operand.get().getType()));
592       }
593     }
594     // Update the predecessors for each of the blocks.
595     auto updatePredecessors = [&](Block *block, unsigned clusterIndex) {
596       for (auto predIt = block->pred_begin(), predE = block->pred_end();
597            predIt != predE; ++predIt) {
598         auto branch = cast<BranchOpInterface>((*predIt)->getTerminator());
599         unsigned succIndex = predIt.getSuccessorIndex();
600         branch.getMutableSuccessorOperands(succIndex)->append(
601             newArguments[clusterIndex]);
602       }
603     };
604     updatePredecessors(leaderBlock, /*clusterIndex=*/0);
605     for (unsigned i = 0, e = blocksToMerge.size(); i != e; ++i)
606       updatePredecessors(blocksToMerge[i], /*clusterIndex=*/i + 1);
607   }
608 
609   // Replace all uses of the merged blocks with the leader and erase them.
610   for (Block *block : blocksToMerge) {
611     block->replaceAllUsesWith(leaderBlock);
612     block->erase();
613   }
614   return success();
615 }
616 
617 /// Identify identical blocks within the given region and merge them, inserting
618 /// new block arguments as necessary. Returns success if any blocks were merged,
619 /// failure otherwise.
mergeIdenticalBlocks(Region & region)620 static LogicalResult mergeIdenticalBlocks(Region &region) {
621   if (region.empty() || llvm::hasSingleElement(region))
622     return failure();
623 
624   // Identify sets of blocks, other than the entry block, that branch to the
625   // same successors. We will use these groups to create clusters of equivalent
626   // blocks.
627   DenseMap<SuccessorRange, SmallVector<Block *, 1>> matchingSuccessors;
628   for (Block &block : llvm::drop_begin(region, 1))
629     matchingSuccessors[block.getSuccessors()].push_back(&block);
630 
631   bool mergedAnyBlocks = false;
632   for (ArrayRef<Block *> blocks : llvm::make_second_range(matchingSuccessors)) {
633     if (blocks.size() == 1)
634       continue;
635 
636     SmallVector<BlockMergeCluster, 1> clusters;
637     for (Block *block : blocks) {
638       BlockEquivalenceData data(block);
639 
640       // Don't allow merging if this block has any regions.
641       // TODO: Add support for regions if necessary.
642       bool hasNonEmptyRegion = llvm::any_of(*block, [](Operation &op) {
643         return llvm::any_of(op.getRegions(),
644                             [](Region &region) { return !region.empty(); });
645       });
646       if (hasNonEmptyRegion)
647         continue;
648 
649       // Try to add this block to an existing cluster.
650       bool addedToCluster = false;
651       for (auto &cluster : clusters)
652         if ((addedToCluster = succeeded(cluster.addToCluster(data))))
653           break;
654       if (!addedToCluster)
655         clusters.emplace_back(std::move(data));
656     }
657     for (auto &cluster : clusters)
658       mergedAnyBlocks |= succeeded(cluster.merge());
659   }
660 
661   return success(mergedAnyBlocks);
662 }
663 
664 /// Identify identical blocks within the given regions and merge them, inserting
665 /// new block arguments as necessary.
mergeIdenticalBlocks(MutableArrayRef<Region> regions)666 static LogicalResult mergeIdenticalBlocks(MutableArrayRef<Region> regions) {
667   llvm::SmallSetVector<Region *, 1> worklist;
668   for (auto &region : regions)
669     worklist.insert(&region);
670   bool anyChanged = false;
671   while (!worklist.empty()) {
672     Region *region = worklist.pop_back_val();
673     if (succeeded(mergeIdenticalBlocks(*region))) {
674       worklist.insert(region);
675       anyChanged = true;
676     }
677 
678     // Add any nested regions to the worklist.
679     for (Block &block : *region)
680       for (auto &op : block)
681         for (auto &nestedRegion : op.getRegions())
682           worklist.insert(&nestedRegion);
683   }
684 
685   return success(anyChanged);
686 }
687 
688 //===----------------------------------------------------------------------===//
689 // Region Simplification
690 //===----------------------------------------------------------------------===//
691 
692 /// Run a set of structural simplifications over the given regions. This
693 /// includes transformations like unreachable block elimination, dead argument
694 /// elimination, as well as some other DCE. This function returns success if any
695 /// of the regions were simplified, failure otherwise.
simplifyRegions(MutableArrayRef<Region> regions)696 LogicalResult mlir::simplifyRegions(MutableArrayRef<Region> regions) {
697   bool eliminatedBlocks = succeeded(eraseUnreachableBlocks(regions));
698   bool eliminatedOpsOrArgs = succeeded(runRegionDCE(regions));
699   bool mergedIdenticalBlocks = succeeded(mergeIdenticalBlocks(regions));
700   return success(eliminatedBlocks || eliminatedOpsOrArgs ||
701                  mergedIdenticalBlocks);
702 }
703