• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include "glsl_symbol_table.h"
25 #include "ast.h"
26 #include "compiler/glsl_types.h"
27 #include "ir.h"
28 #include "main/mtypes.h"
29 #include "main/shaderobj.h"
30 #include "builtin_functions.h"
31 
32 static ir_rvalue *
33 convert_component(ir_rvalue *src, const glsl_type *desired_type);
34 
35 static unsigned
process_parameters(exec_list * instructions,exec_list * actual_parameters,exec_list * parameters,struct _mesa_glsl_parse_state * state)36 process_parameters(exec_list *instructions, exec_list *actual_parameters,
37                    exec_list *parameters,
38                    struct _mesa_glsl_parse_state *state)
39 {
40    void *mem_ctx = state;
41    unsigned count = 0;
42 
43    foreach_list_typed(ast_node, ast, link, parameters) {
44       /* We need to process the parameters first in order to know if we can
45        * raise or not a unitialized warning. Calling set_is_lhs silence the
46        * warning for now. Raising the warning or not will be checked at
47        * verify_parameter_modes.
48        */
49       ast->set_is_lhs(true);
50       ir_rvalue *result = ast->hir(instructions, state);
51 
52       /* Error happened processing function parameter */
53       if (!result) {
54          actual_parameters->push_tail(ir_rvalue::error_value(mem_ctx));
55          count++;
56          continue;
57       }
58 
59       ir_constant *const constant =
60          result->constant_expression_value(mem_ctx);
61 
62       if (constant != NULL)
63          result = constant;
64 
65       actual_parameters->push_tail(result);
66       count++;
67    }
68 
69    return count;
70 }
71 
72 
73 /**
74  * Generate a source prototype for a function signature
75  *
76  * \param return_type Return type of the function.  May be \c NULL.
77  * \param name        Name of the function.
78  * \param parameters  List of \c ir_instruction nodes representing the
79  *                    parameter list for the function.  This may be either a
80  *                    formal (\c ir_variable) or actual (\c ir_rvalue)
81  *                    parameter list.  Only the type is used.
82  *
83  * \return
84  * A ralloced string representing the prototype of the function.
85  */
86 char *
prototype_string(const glsl_type * return_type,const char * name,exec_list * parameters)87 prototype_string(const glsl_type *return_type, const char *name,
88                  exec_list *parameters)
89 {
90    char *str = NULL;
91 
92    if (return_type != NULL)
93       str = ralloc_asprintf(NULL, "%s ", return_type->name);
94 
95    ralloc_asprintf_append(&str, "%s(", name);
96 
97    const char *comma = "";
98    foreach_in_list(const ir_variable, param, parameters) {
99       ralloc_asprintf_append(&str, "%s%s", comma, param->type->name);
100       comma = ", ";
101    }
102 
103    ralloc_strcat(&str, ")");
104    return str;
105 }
106 
107 static bool
verify_image_parameter(YYLTYPE * loc,_mesa_glsl_parse_state * state,const ir_variable * formal,const ir_variable * actual)108 verify_image_parameter(YYLTYPE *loc, _mesa_glsl_parse_state *state,
109                        const ir_variable *formal, const ir_variable *actual)
110 {
111    /**
112     * From the ARB_shader_image_load_store specification:
113     *
114     * "The values of image variables qualified with coherent,
115     *  volatile, restrict, readonly, or writeonly may not be passed
116     *  to functions whose formal parameters lack such
117     *  qualifiers. [...] It is legal to have additional qualifiers
118     *  on a formal parameter, but not to have fewer."
119     */
120    if (actual->data.memory_coherent && !formal->data.memory_coherent) {
121       _mesa_glsl_error(loc, state,
122                        "function call parameter `%s' drops "
123                        "`coherent' qualifier", formal->name);
124       return false;
125    }
126 
127    if (actual->data.memory_volatile && !formal->data.memory_volatile) {
128       _mesa_glsl_error(loc, state,
129                        "function call parameter `%s' drops "
130                        "`volatile' qualifier", formal->name);
131       return false;
132    }
133 
134    if (actual->data.memory_restrict && !formal->data.memory_restrict) {
135       _mesa_glsl_error(loc, state,
136                        "function call parameter `%s' drops "
137                        "`restrict' qualifier", formal->name);
138       return false;
139    }
140 
141    if (actual->data.memory_read_only && !formal->data.memory_read_only) {
142       _mesa_glsl_error(loc, state,
143                        "function call parameter `%s' drops "
144                        "`readonly' qualifier", formal->name);
145       return false;
146    }
147 
148    if (actual->data.memory_write_only && !formal->data.memory_write_only) {
149       _mesa_glsl_error(loc, state,
150                        "function call parameter `%s' drops "
151                        "`writeonly' qualifier", formal->name);
152       return false;
153    }
154 
155    return true;
156 }
157 
158 static bool
verify_first_atomic_parameter(YYLTYPE * loc,_mesa_glsl_parse_state * state,ir_variable * var)159 verify_first_atomic_parameter(YYLTYPE *loc, _mesa_glsl_parse_state *state,
160                               ir_variable *var)
161 {
162    if (!var ||
163        (!var->is_in_shader_storage_block() &&
164         var->data.mode != ir_var_shader_shared)) {
165       _mesa_glsl_error(loc, state, "First argument to atomic function "
166                        "must be a buffer or shared variable");
167       return false;
168    }
169    return true;
170 }
171 
172 static bool
is_atomic_function(const char * func_name)173 is_atomic_function(const char *func_name)
174 {
175    return !strcmp(func_name, "atomicAdd") ||
176           !strcmp(func_name, "atomicMin") ||
177           !strcmp(func_name, "atomicMax") ||
178           !strcmp(func_name, "atomicAnd") ||
179           !strcmp(func_name, "atomicOr") ||
180           !strcmp(func_name, "atomicXor") ||
181           !strcmp(func_name, "atomicExchange") ||
182           !strcmp(func_name, "atomicCompSwap");
183 }
184 
185 static bool
verify_atomic_image_parameter_qualifier(YYLTYPE * loc,_mesa_glsl_parse_state * state,ir_variable * var)186 verify_atomic_image_parameter_qualifier(YYLTYPE *loc, _mesa_glsl_parse_state *state,
187                                         ir_variable *var)
188 {
189    if (!var ||
190        (var->data.image_format != PIPE_FORMAT_R32_UINT &&
191         var->data.image_format != PIPE_FORMAT_R32_SINT &&
192         var->data.image_format != PIPE_FORMAT_R32_FLOAT)) {
193       _mesa_glsl_error(loc, state, "Image atomic functions should use r32i/r32ui "
194                        "format qualifier");
195       return false;
196    }
197    return true;
198 }
199 
200 static bool
is_atomic_image_function(const char * func_name)201 is_atomic_image_function(const char *func_name)
202 {
203    return !strcmp(func_name, "imageAtomicAdd") ||
204           !strcmp(func_name, "imageAtomicMin") ||
205           !strcmp(func_name, "imageAtomicMax") ||
206           !strcmp(func_name, "imageAtomicAnd") ||
207           !strcmp(func_name, "imageAtomicOr") ||
208           !strcmp(func_name, "imageAtomicXor") ||
209           !strcmp(func_name, "imageAtomicExchange") ||
210           !strcmp(func_name, "imageAtomicCompSwap") ||
211           !strcmp(func_name, "imageAtomicIncWrap") ||
212           !strcmp(func_name, "imageAtomicDecWrap");
213 }
214 
215 
216 /**
217  * Verify that 'out' and 'inout' actual parameters are lvalues.  Also, verify
218  * that 'const_in' formal parameters (an extension in our IR) correspond to
219  * ir_constant actual parameters.
220  */
221 static bool
verify_parameter_modes(_mesa_glsl_parse_state * state,ir_function_signature * sig,exec_list & actual_ir_parameters,exec_list & actual_ast_parameters)222 verify_parameter_modes(_mesa_glsl_parse_state *state,
223                        ir_function_signature *sig,
224                        exec_list &actual_ir_parameters,
225                        exec_list &actual_ast_parameters)
226 {
227    exec_node *actual_ir_node  = actual_ir_parameters.get_head_raw();
228    exec_node *actual_ast_node = actual_ast_parameters.get_head_raw();
229 
230    foreach_in_list(const ir_variable, formal, &sig->parameters) {
231       /* The lists must be the same length. */
232       assert(!actual_ir_node->is_tail_sentinel());
233       assert(!actual_ast_node->is_tail_sentinel());
234 
235       const ir_rvalue *const actual = (ir_rvalue *) actual_ir_node;
236       const ast_expression *const actual_ast =
237          exec_node_data(ast_expression, actual_ast_node, link);
238 
239       YYLTYPE loc = actual_ast->get_location();
240 
241       /* Verify that 'const_in' parameters are ir_constants. */
242       if (formal->data.mode == ir_var_const_in &&
243           actual->ir_type != ir_type_constant) {
244          _mesa_glsl_error(&loc, state,
245                           "parameter `in %s' must be a constant expression",
246                           formal->name);
247          return false;
248       }
249 
250       /* Verify that shader_in parameters are shader inputs */
251       if (formal->data.must_be_shader_input) {
252          const ir_rvalue *val = actual;
253 
254          /* GLSL 4.40 allows swizzles, while earlier GLSL versions do not. */
255          if (val->ir_type == ir_type_swizzle) {
256             if (!state->is_version(440, 0)) {
257                _mesa_glsl_error(&loc, state,
258                                 "parameter `%s` must not be swizzled",
259                                 formal->name);
260                return false;
261             }
262             val = ((ir_swizzle *)val)->val;
263          }
264 
265          for (;;) {
266             if (val->ir_type == ir_type_dereference_array) {
267                val = ((ir_dereference_array *)val)->array;
268             } else if (val->ir_type == ir_type_dereference_record &&
269                        !state->es_shader) {
270                val = ((ir_dereference_record *)val)->record;
271             } else
272                break;
273          }
274 
275          ir_variable *var = NULL;
276          if (const ir_dereference_variable *deref_var = val->as_dereference_variable())
277             var = deref_var->variable_referenced();
278 
279          if (!var || var->data.mode != ir_var_shader_in) {
280             _mesa_glsl_error(&loc, state,
281                              "parameter `%s` must be a shader input",
282                              formal->name);
283             return false;
284          }
285 
286          var->data.must_be_shader_input = 1;
287       }
288 
289       /* Verify that 'out' and 'inout' actual parameters are lvalues. */
290       if (formal->data.mode == ir_var_function_out
291           || formal->data.mode == ir_var_function_inout) {
292          const char *mode = NULL;
293          switch (formal->data.mode) {
294          case ir_var_function_out:   mode = "out";   break;
295          case ir_var_function_inout: mode = "inout"; break;
296          default:                    assert(false);  break;
297          }
298 
299          /* This AST-based check catches errors like f(i++).  The IR-based
300           * is_lvalue() is insufficient because the actual parameter at the
301           * IR-level is just a temporary value, which is an l-value.
302           */
303          if (actual_ast->non_lvalue_description != NULL) {
304             _mesa_glsl_error(&loc, state,
305                              "function parameter '%s %s' references a %s",
306                              mode, formal->name,
307                              actual_ast->non_lvalue_description);
308             return false;
309          }
310 
311          ir_variable *var = actual->variable_referenced();
312 
313          if (var && formal->data.mode == ir_var_function_inout) {
314             if ((var->data.mode == ir_var_auto ||
315                  var->data.mode == ir_var_shader_out) &&
316                 !var->data.assigned &&
317                 !is_gl_identifier(var->name)) {
318                _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
319                                   var->name);
320             }
321          }
322 
323          if (var)
324             var->data.assigned = true;
325 
326          if (var && var->data.read_only) {
327             _mesa_glsl_error(&loc, state,
328                              "function parameter '%s %s' references the "
329                              "read-only variable '%s'",
330                              mode, formal->name,
331                              actual->variable_referenced()->name);
332             return false;
333          } else if (!actual->is_lvalue(state)) {
334             _mesa_glsl_error(&loc, state,
335                              "function parameter '%s %s' is not an lvalue",
336                              mode, formal->name);
337             return false;
338          }
339       } else {
340          assert(formal->data.mode == ir_var_function_in ||
341                 formal->data.mode == ir_var_const_in);
342          ir_variable *var = actual->variable_referenced();
343          if (var) {
344             if ((var->data.mode == ir_var_auto ||
345                  var->data.mode == ir_var_shader_out) &&
346                 !var->data.assigned &&
347                 !is_gl_identifier(var->name)) {
348                _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
349                                   var->name);
350             }
351          }
352       }
353 
354       if (formal->type->is_image() &&
355           actual->variable_referenced()) {
356          if (!verify_image_parameter(&loc, state, formal,
357                                      actual->variable_referenced()))
358             return false;
359       }
360 
361       actual_ir_node  = actual_ir_node->next;
362       actual_ast_node = actual_ast_node->next;
363    }
364 
365    /* The first parameter of atomic functions must be a buffer variable */
366    const char *func_name = sig->function_name();
367    bool is_atomic = is_atomic_function(func_name);
368    if (is_atomic) {
369       const ir_rvalue *const actual =
370          (ir_rvalue *) actual_ir_parameters.get_head_raw();
371 
372       const ast_expression *const actual_ast =
373          exec_node_data(ast_expression,
374                         actual_ast_parameters.get_head_raw(), link);
375       YYLTYPE loc = actual_ast->get_location();
376 
377       if (!verify_first_atomic_parameter(&loc, state,
378                                          actual->variable_referenced())) {
379          return false;
380       }
381    } else if (is_atomic_image_function(func_name)) {
382       const ir_rvalue *const actual =
383          (ir_rvalue *) actual_ir_parameters.get_head_raw();
384 
385       const ast_expression *const actual_ast =
386          exec_node_data(ast_expression,
387                         actual_ast_parameters.get_head_raw(), link);
388       YYLTYPE loc = actual_ast->get_location();
389 
390       if (!verify_atomic_image_parameter_qualifier(&loc, state,
391                                          actual->variable_referenced())) {
392          return false;
393       }
394    }
395 
396    return true;
397 }
398 
399 struct copy_index_deref_data {
400    void *mem_ctx;
401    exec_list *before_instructions;
402 };
403 
404 static void
copy_index_derefs_to_temps(ir_instruction * ir,void * data)405 copy_index_derefs_to_temps(ir_instruction *ir, void *data)
406 {
407    struct copy_index_deref_data *d = (struct copy_index_deref_data *)data;
408 
409    if (ir->ir_type == ir_type_dereference_array) {
410       ir_dereference_array *a = (ir_dereference_array *) ir;
411       ir = a->array->as_dereference();
412 
413       ir_rvalue *idx = a->array_index;
414       ir_variable *var = idx->variable_referenced();
415 
416       /* If the index is read only it cannot change so there is no need
417        * to copy it.
418        */
419       if (!var || var->data.read_only || var->data.memory_read_only)
420          return;
421 
422       ir_variable *tmp = new(d->mem_ctx) ir_variable(idx->type, "idx_tmp",
423                                                       ir_var_temporary);
424       d->before_instructions->push_tail(tmp);
425 
426       ir_dereference_variable *const deref_tmp_1 =
427          new(d->mem_ctx) ir_dereference_variable(tmp);
428       ir_assignment *const assignment =
429          new(d->mem_ctx) ir_assignment(deref_tmp_1,
430                                        idx->clone(d->mem_ctx, NULL));
431       d->before_instructions->push_tail(assignment);
432 
433       /* Replace the array index with a dereference of the new temporary */
434       ir_dereference_variable *const deref_tmp_2 =
435          new(d->mem_ctx) ir_dereference_variable(tmp);
436       a->array_index = deref_tmp_2;
437    }
438 }
439 
440 static void
fix_parameter(void * mem_ctx,ir_rvalue * actual,const glsl_type * formal_type,exec_list * before_instructions,exec_list * after_instructions,bool parameter_is_inout)441 fix_parameter(void *mem_ctx, ir_rvalue *actual, const glsl_type *formal_type,
442               exec_list *before_instructions, exec_list *after_instructions,
443               bool parameter_is_inout)
444 {
445    ir_expression *const expr = actual->as_expression();
446 
447    /* If the types match exactly and the parameter is not a vector-extract,
448     * nothing needs to be done to fix the parameter.
449     */
450    if (formal_type == actual->type
451        && (expr == NULL || expr->operation != ir_binop_vector_extract)
452        && actual->as_dereference_variable())
453       return;
454 
455    /* An array index could also be an out variable so we need to make a copy
456     * of them before the function is called.
457     */
458    if (!actual->as_dereference_variable()) {
459       struct copy_index_deref_data data;
460       data.mem_ctx = mem_ctx;
461       data.before_instructions = before_instructions;
462 
463       visit_tree(actual, copy_index_derefs_to_temps, &data);
464    }
465 
466    /* To convert an out parameter, we need to create a temporary variable to
467     * hold the value before conversion, and then perform the conversion after
468     * the function call returns.
469     *
470     * This has the effect of transforming code like this:
471     *
472     *   void f(out int x);
473     *   float value;
474     *   f(value);
475     *
476     * Into IR that's equivalent to this:
477     *
478     *   void f(out int x);
479     *   float value;
480     *   int out_parameter_conversion;
481     *   f(out_parameter_conversion);
482     *   value = float(out_parameter_conversion);
483     *
484     * If the parameter is an ir_expression of ir_binop_vector_extract,
485     * additional conversion is needed in the post-call re-write.
486     */
487    ir_variable *tmp =
488       new(mem_ctx) ir_variable(formal_type, "inout_tmp", ir_var_temporary);
489 
490    before_instructions->push_tail(tmp);
491 
492    /* If the parameter is an inout parameter, copy the value of the actual
493     * parameter to the new temporary.  Note that no type conversion is allowed
494     * here because inout parameters must match types exactly.
495     */
496    if (parameter_is_inout) {
497       /* Inout parameters should never require conversion, since that would
498        * require an implicit conversion to exist both to and from the formal
499        * parameter type, and there are no bidirectional implicit conversions.
500        */
501       assert (actual->type == formal_type);
502 
503       ir_dereference_variable *const deref_tmp_1 =
504          new(mem_ctx) ir_dereference_variable(tmp);
505       ir_assignment *const assignment =
506          new(mem_ctx) ir_assignment(deref_tmp_1, actual->clone(mem_ctx, NULL));
507       before_instructions->push_tail(assignment);
508    }
509 
510    /* Replace the parameter in the call with a dereference of the new
511     * temporary.
512     */
513    ir_dereference_variable *const deref_tmp_2 =
514       new(mem_ctx) ir_dereference_variable(tmp);
515    actual->replace_with(deref_tmp_2);
516 
517 
518    /* Copy the temporary variable to the actual parameter with optional
519     * type conversion applied.
520     */
521    ir_rvalue *rhs = new(mem_ctx) ir_dereference_variable(tmp);
522    if (actual->type != formal_type)
523       rhs = convert_component(rhs, actual->type);
524 
525    ir_rvalue *lhs = actual;
526    if (expr != NULL && expr->operation == ir_binop_vector_extract) {
527       lhs = new(mem_ctx) ir_dereference_array(expr->operands[0]->clone(mem_ctx,
528                                                                        NULL),
529                                               expr->operands[1]->clone(mem_ctx,
530                                                                        NULL));
531    }
532 
533    ir_assignment *const assignment_2 = new(mem_ctx) ir_assignment(lhs, rhs);
534    after_instructions->push_tail(assignment_2);
535 }
536 
537 /**
538  * Generate a function call.
539  *
540  * For non-void functions, this returns a dereference of the temporary
541  * variable which stores the return value for the call.  For void functions,
542  * this returns NULL.
543  */
544 static ir_rvalue *
generate_call(exec_list * instructions,ir_function_signature * sig,exec_list * actual_parameters,ir_variable * sub_var,ir_rvalue * array_idx,struct _mesa_glsl_parse_state * state)545 generate_call(exec_list *instructions, ir_function_signature *sig,
546               exec_list *actual_parameters,
547               ir_variable *sub_var,
548               ir_rvalue *array_idx,
549               struct _mesa_glsl_parse_state *state)
550 {
551    void *ctx = state;
552    exec_list post_call_conversions;
553 
554    /* Perform implicit conversion of arguments.  For out parameters, we need
555     * to place them in a temporary variable and do the conversion after the
556     * call takes place.  Since we haven't emitted the call yet, we'll place
557     * the post-call conversions in a temporary exec_list, and emit them later.
558     */
559    foreach_two_lists(formal_node, &sig->parameters,
560                      actual_node, actual_parameters) {
561       ir_rvalue *actual = (ir_rvalue *) actual_node;
562       ir_variable *formal = (ir_variable *) formal_node;
563 
564       if (formal->type->is_numeric() || formal->type->is_boolean()) {
565          switch (formal->data.mode) {
566          case ir_var_const_in:
567          case ir_var_function_in: {
568             ir_rvalue *converted
569                = convert_component(actual, formal->type);
570             actual->replace_with(converted);
571             break;
572          }
573          case ir_var_function_out:
574          case ir_var_function_inout:
575             fix_parameter(ctx, actual, formal->type,
576                           instructions, &post_call_conversions,
577                           formal->data.mode == ir_var_function_inout);
578             break;
579          default:
580             assert (!"Illegal formal parameter mode");
581             break;
582          }
583       }
584    }
585 
586    /* Section 4.3.2 (Const) of the GLSL 1.10.59 spec says:
587     *
588     *     "Initializers for const declarations must be formed from literal
589     *     values, other const variables (not including function call
590     *     paramaters), or expressions of these.
591     *
592     *     Constructors may be used in such expressions, but function calls may
593     *     not."
594     *
595     * Section 4.3.3 (Constant Expressions) of the GLSL 1.20.8 spec says:
596     *
597     *     "A constant expression is one of
598     *
599     *         ...
600     *
601     *         - a built-in function call whose arguments are all constant
602     *           expressions, with the exception of the texture lookup
603     *           functions, the noise functions, and ftransform. The built-in
604     *           functions dFdx, dFdy, and fwidth must return 0 when evaluated
605     *           inside an initializer with an argument that is a constant
606     *           expression."
607     *
608     * Section 5.10 (Constant Expressions) of the GLSL ES 1.00.17 spec says:
609     *
610     *     "A constant expression is one of
611     *
612     *         ...
613     *
614     *         - a built-in function call whose arguments are all constant
615     *           expressions, with the exception of the texture lookup
616     *           functions."
617     *
618     * Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec says:
619     *
620     *     "A constant expression is one of
621     *
622     *         ...
623     *
624     *         - a built-in function call whose arguments are all constant
625     *           expressions, with the exception of the texture lookup
626     *           functions.  The built-in functions dFdx, dFdy, and fwidth must
627     *           return 0 when evaluated inside an initializer with an argument
628     *           that is a constant expression."
629     *
630     * If the function call is a constant expression, don't generate any
631     * instructions; just generate an ir_constant.
632     */
633    if (state->is_version(120, 100) ||
634        state->ctx->Const.AllowGLSLBuiltinConstantExpression) {
635       ir_constant *value = sig->constant_expression_value(ctx,
636                                                           actual_parameters,
637                                                           NULL);
638       if (value != NULL) {
639          return value;
640       }
641    }
642 
643    ir_dereference_variable *deref = NULL;
644    if (!sig->return_type->is_void()) {
645       /* Create a new temporary to hold the return value. */
646       char *const name = ir_variable::temporaries_allocate_names
647          ? ralloc_asprintf(ctx, "%s_retval", sig->function_name())
648          : NULL;
649 
650       ir_variable *var;
651 
652       var = new(ctx) ir_variable(sig->return_type, name, ir_var_temporary);
653       instructions->push_tail(var);
654 
655       ralloc_free(name);
656 
657       deref = new(ctx) ir_dereference_variable(var);
658    }
659 
660    ir_call *call = new(ctx) ir_call(sig, deref,
661                                     actual_parameters, sub_var, array_idx);
662    instructions->push_tail(call);
663 
664    /* Also emit any necessary out-parameter conversions. */
665    instructions->append_list(&post_call_conversions);
666 
667    return deref ? deref->clone(ctx, NULL) : NULL;
668 }
669 
670 /**
671  * Given a function name and parameter list, find the matching signature.
672  */
673 static ir_function_signature *
match_function_by_name(const char * name,exec_list * actual_parameters,struct _mesa_glsl_parse_state * state)674 match_function_by_name(const char *name,
675                        exec_list *actual_parameters,
676                        struct _mesa_glsl_parse_state *state)
677 {
678    ir_function *f = state->symbols->get_function(name);
679    ir_function_signature *local_sig = NULL;
680    ir_function_signature *sig = NULL;
681 
682    /* Is the function hidden by a record type constructor? */
683    if (state->symbols->get_type(name))
684       return sig; /* no match */
685 
686    /* Is the function hidden by a variable (impossible in 1.10)? */
687    if (!state->symbols->separate_function_namespace
688        && state->symbols->get_variable(name))
689       return sig; /* no match */
690 
691    if (f != NULL) {
692       /* In desktop GL, the presence of a user-defined signature hides any
693        * built-in signatures, so we must ignore them.  In contrast, in ES2
694        * user-defined signatures add new overloads, so we must consider them.
695        */
696       bool allow_builtins = state->es_shader || !f->has_user_signature();
697 
698       /* Look for a match in the local shader.  If exact, we're done. */
699       bool is_exact = false;
700       sig = local_sig = f->matching_signature(state, actual_parameters,
701                                               allow_builtins, &is_exact);
702       if (is_exact)
703          return sig;
704 
705       if (!allow_builtins)
706          return sig;
707    }
708 
709    /* Local shader has no exact candidates; check the built-ins. */
710    sig = _mesa_glsl_find_builtin_function(state, name, actual_parameters);
711 
712    /* if _mesa_glsl_find_builtin_function failed, fall back to the result
713     * of choose_best_inexact_overload() instead. This should only affect
714     * GLES.
715     */
716    return sig ? sig : local_sig;
717 }
718 
719 static ir_function_signature *
match_subroutine_by_name(const char * name,exec_list * actual_parameters,struct _mesa_glsl_parse_state * state,ir_variable ** var_r)720 match_subroutine_by_name(const char *name,
721                          exec_list *actual_parameters,
722                          struct _mesa_glsl_parse_state *state,
723                          ir_variable **var_r)
724 {
725    void *ctx = state;
726    ir_function_signature *sig = NULL;
727    ir_function *f, *found = NULL;
728    const char *new_name;
729    ir_variable *var;
730    bool is_exact = false;
731 
732    new_name =
733       ralloc_asprintf(ctx, "%s_%s",
734                       _mesa_shader_stage_to_subroutine_prefix(state->stage),
735                       name);
736    var = state->symbols->get_variable(new_name);
737    if (!var)
738       return NULL;
739 
740    for (int i = 0; i < state->num_subroutine_types; i++) {
741       f = state->subroutine_types[i];
742       if (strcmp(f->name, var->type->without_array()->name))
743          continue;
744       found = f;
745       break;
746    }
747 
748    if (!found)
749       return NULL;
750    *var_r = var;
751    sig = found->matching_signature(state, actual_parameters,
752                                    false, &is_exact);
753    return sig;
754 }
755 
756 static ir_rvalue *
generate_array_index(void * mem_ctx,exec_list * instructions,struct _mesa_glsl_parse_state * state,YYLTYPE loc,const ast_expression * array,ast_expression * idx,const char ** function_name,exec_list * actual_parameters)757 generate_array_index(void *mem_ctx, exec_list *instructions,
758                      struct _mesa_glsl_parse_state *state, YYLTYPE loc,
759                      const ast_expression *array, ast_expression *idx,
760                      const char **function_name, exec_list *actual_parameters)
761 {
762    if (array->oper == ast_array_index) {
763       /* This handles arrays of arrays */
764       ir_rvalue *outer_array = generate_array_index(mem_ctx, instructions,
765                                                     state, loc,
766                                                     array->subexpressions[0],
767                                                     array->subexpressions[1],
768                                                     function_name,
769                                                     actual_parameters);
770       ir_rvalue *outer_array_idx = idx->hir(instructions, state);
771 
772       YYLTYPE index_loc = idx->get_location();
773       return _mesa_ast_array_index_to_hir(mem_ctx, state, outer_array,
774                                           outer_array_idx, loc,
775                                           index_loc);
776    } else {
777       ir_variable *sub_var = NULL;
778       *function_name = array->primary_expression.identifier;
779 
780       if (!match_subroutine_by_name(*function_name, actual_parameters,
781                                     state, &sub_var)) {
782          _mesa_glsl_error(&loc, state, "Unknown subroutine `%s'",
783                           *function_name);
784          *function_name = NULL; /* indicate error condition to caller */
785          return NULL;
786       }
787 
788       ir_rvalue *outer_array_idx = idx->hir(instructions, state);
789       return new(mem_ctx) ir_dereference_array(sub_var, outer_array_idx);
790    }
791 }
792 
793 static bool
function_exists(_mesa_glsl_parse_state * state,struct glsl_symbol_table * symbols,const char * name)794 function_exists(_mesa_glsl_parse_state *state,
795                 struct glsl_symbol_table *symbols, const char *name)
796 {
797    ir_function *f = symbols->get_function(name);
798    if (f != NULL) {
799       foreach_in_list(ir_function_signature, sig, &f->signatures) {
800          if (sig->is_builtin() && !sig->is_builtin_available(state))
801             continue;
802          return true;
803       }
804    }
805    return false;
806 }
807 
808 static void
print_function_prototypes(_mesa_glsl_parse_state * state,YYLTYPE * loc,ir_function * f)809 print_function_prototypes(_mesa_glsl_parse_state *state, YYLTYPE *loc,
810                           ir_function *f)
811 {
812    if (f == NULL)
813       return;
814 
815    foreach_in_list(ir_function_signature, sig, &f->signatures) {
816       if (sig->is_builtin() && !sig->is_builtin_available(state))
817          continue;
818 
819       char *str = prototype_string(sig->return_type, f->name,
820                                    &sig->parameters);
821       _mesa_glsl_error(loc, state, "   %s", str);
822       ralloc_free(str);
823    }
824 }
825 
826 /**
827  * Raise a "no matching function" error, listing all possible overloads the
828  * compiler considered so developers can figure out what went wrong.
829  */
830 static void
no_matching_function_error(const char * name,YYLTYPE * loc,exec_list * actual_parameters,_mesa_glsl_parse_state * state)831 no_matching_function_error(const char *name,
832                            YYLTYPE *loc,
833                            exec_list *actual_parameters,
834                            _mesa_glsl_parse_state *state)
835 {
836    gl_shader *sh = _mesa_glsl_get_builtin_function_shader();
837 
838    if (!function_exists(state, state->symbols, name)
839        && (!state->uses_builtin_functions
840            || !function_exists(state, sh->symbols, name))) {
841       _mesa_glsl_error(loc, state, "no function with name '%s'", name);
842    } else {
843       char *str = prototype_string(NULL, name, actual_parameters);
844       _mesa_glsl_error(loc, state,
845                        "no matching function for call to `%s';"
846                        " candidates are:",
847                        str);
848       ralloc_free(str);
849 
850       print_function_prototypes(state, loc,
851                                 state->symbols->get_function(name));
852 
853       if (state->uses_builtin_functions) {
854          print_function_prototypes(state, loc,
855                                    sh->symbols->get_function(name));
856       }
857    }
858 }
859 
860 /**
861  * Perform automatic type conversion of constructor parameters
862  *
863  * This implements the rules in the "Conversion and Scalar Constructors"
864  * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules.
865  */
866 static ir_rvalue *
convert_component(ir_rvalue * src,const glsl_type * desired_type)867 convert_component(ir_rvalue *src, const glsl_type *desired_type)
868 {
869    void *ctx = ralloc_parent(src);
870    const unsigned a = desired_type->base_type;
871    const unsigned b = src->type->base_type;
872    ir_expression *result = NULL;
873 
874    if (src->type->is_error())
875       return src;
876 
877    assert(a <= GLSL_TYPE_IMAGE);
878    assert(b <= GLSL_TYPE_IMAGE);
879 
880    if (a == b)
881       return src;
882 
883    switch (a) {
884    case GLSL_TYPE_UINT:
885       switch (b) {
886       case GLSL_TYPE_INT:
887          result = new(ctx) ir_expression(ir_unop_i2u, src);
888          break;
889       case GLSL_TYPE_FLOAT:
890          result = new(ctx) ir_expression(ir_unop_f2u, src);
891          break;
892       case GLSL_TYPE_BOOL:
893          result = new(ctx) ir_expression(ir_unop_i2u,
894                                          new(ctx) ir_expression(ir_unop_b2i,
895                                                                 src));
896          break;
897       case GLSL_TYPE_DOUBLE:
898          result = new(ctx) ir_expression(ir_unop_d2u, src);
899          break;
900       case GLSL_TYPE_UINT64:
901          result = new(ctx) ir_expression(ir_unop_u642u, src);
902          break;
903       case GLSL_TYPE_INT64:
904          result = new(ctx) ir_expression(ir_unop_i642u, src);
905          break;
906       case GLSL_TYPE_SAMPLER:
907          result = new(ctx) ir_expression(ir_unop_unpack_sampler_2x32, src);
908          break;
909       case GLSL_TYPE_IMAGE:
910          result = new(ctx) ir_expression(ir_unop_unpack_image_2x32, src);
911          break;
912       }
913       break;
914    case GLSL_TYPE_INT:
915       switch (b) {
916       case GLSL_TYPE_UINT:
917          result = new(ctx) ir_expression(ir_unop_u2i, src);
918          break;
919       case GLSL_TYPE_FLOAT:
920          result = new(ctx) ir_expression(ir_unop_f2i, src);
921          break;
922       case GLSL_TYPE_BOOL:
923          result = new(ctx) ir_expression(ir_unop_b2i, src);
924          break;
925       case GLSL_TYPE_DOUBLE:
926          result = new(ctx) ir_expression(ir_unop_d2i, src);
927          break;
928       case GLSL_TYPE_UINT64:
929          result = new(ctx) ir_expression(ir_unop_u642i, src);
930          break;
931       case GLSL_TYPE_INT64:
932          result = new(ctx) ir_expression(ir_unop_i642i, src);
933          break;
934       }
935       break;
936    case GLSL_TYPE_FLOAT:
937       switch (b) {
938       case GLSL_TYPE_UINT:
939          result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
940          break;
941       case GLSL_TYPE_INT:
942          result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
943          break;
944       case GLSL_TYPE_BOOL:
945          result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
946          break;
947       case GLSL_TYPE_DOUBLE:
948          result = new(ctx) ir_expression(ir_unop_d2f, desired_type, src, NULL);
949          break;
950       case GLSL_TYPE_UINT64:
951          result = new(ctx) ir_expression(ir_unop_u642f, desired_type, src, NULL);
952          break;
953       case GLSL_TYPE_INT64:
954          result = new(ctx) ir_expression(ir_unop_i642f, desired_type, src, NULL);
955          break;
956       }
957       break;
958    case GLSL_TYPE_BOOL:
959       switch (b) {
960       case GLSL_TYPE_UINT:
961          result = new(ctx) ir_expression(ir_unop_i2b,
962                                          new(ctx) ir_expression(ir_unop_u2i,
963                                                                 src));
964          break;
965       case GLSL_TYPE_INT:
966          result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL);
967          break;
968       case GLSL_TYPE_FLOAT:
969          result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL);
970          break;
971       case GLSL_TYPE_DOUBLE:
972          result = new(ctx) ir_expression(ir_unop_d2b, desired_type, src, NULL);
973          break;
974       case GLSL_TYPE_UINT64:
975          result = new(ctx) ir_expression(ir_unop_i642b,
976                                          new(ctx) ir_expression(ir_unop_u642i64,
977                                                                 src));
978          break;
979       case GLSL_TYPE_INT64:
980          result = new(ctx) ir_expression(ir_unop_i642b, desired_type, src, NULL);
981          break;
982       }
983       break;
984    case GLSL_TYPE_DOUBLE:
985       switch (b) {
986       case GLSL_TYPE_INT:
987          result = new(ctx) ir_expression(ir_unop_i2d, src);
988          break;
989       case GLSL_TYPE_UINT:
990          result = new(ctx) ir_expression(ir_unop_u2d, src);
991          break;
992       case GLSL_TYPE_BOOL:
993          result = new(ctx) ir_expression(ir_unop_f2d,
994                                          new(ctx) ir_expression(ir_unop_b2f,
995                                                                 src));
996          break;
997       case GLSL_TYPE_FLOAT:
998          result = new(ctx) ir_expression(ir_unop_f2d, desired_type, src, NULL);
999          break;
1000       case GLSL_TYPE_UINT64:
1001          result = new(ctx) ir_expression(ir_unop_u642d, desired_type, src, NULL);
1002          break;
1003       case GLSL_TYPE_INT64:
1004          result = new(ctx) ir_expression(ir_unop_i642d, desired_type, src, NULL);
1005          break;
1006       }
1007       break;
1008    case GLSL_TYPE_UINT64:
1009       switch (b) {
1010       case GLSL_TYPE_INT:
1011          result = new(ctx) ir_expression(ir_unop_i2u64, src);
1012          break;
1013       case GLSL_TYPE_UINT:
1014          result = new(ctx) ir_expression(ir_unop_u2u64, src);
1015          break;
1016       case GLSL_TYPE_BOOL:
1017          result = new(ctx) ir_expression(ir_unop_i642u64,
1018                                          new(ctx) ir_expression(ir_unop_b2i64,
1019                                                                 src));
1020          break;
1021       case GLSL_TYPE_FLOAT:
1022          result = new(ctx) ir_expression(ir_unop_f2u64, src);
1023          break;
1024       case GLSL_TYPE_DOUBLE:
1025          result = new(ctx) ir_expression(ir_unop_d2u64, src);
1026          break;
1027       case GLSL_TYPE_INT64:
1028          result = new(ctx) ir_expression(ir_unop_i642u64, src);
1029          break;
1030       }
1031       break;
1032    case GLSL_TYPE_INT64:
1033       switch (b) {
1034       case GLSL_TYPE_INT:
1035          result = new(ctx) ir_expression(ir_unop_i2i64, src);
1036          break;
1037       case GLSL_TYPE_UINT:
1038          result = new(ctx) ir_expression(ir_unop_u2i64, src);
1039          break;
1040       case GLSL_TYPE_BOOL:
1041          result = new(ctx) ir_expression(ir_unop_b2i64, src);
1042          break;
1043       case GLSL_TYPE_FLOAT:
1044          result = new(ctx) ir_expression(ir_unop_f2i64, src);
1045          break;
1046       case GLSL_TYPE_DOUBLE:
1047          result = new(ctx) ir_expression(ir_unop_d2i64, src);
1048          break;
1049       case GLSL_TYPE_UINT64:
1050          result = new(ctx) ir_expression(ir_unop_u642i64, src);
1051          break;
1052       }
1053       break;
1054    case GLSL_TYPE_SAMPLER:
1055       switch (b) {
1056       case GLSL_TYPE_UINT:
1057          result = new(ctx)
1058             ir_expression(ir_unop_pack_sampler_2x32, desired_type, src);
1059          break;
1060       }
1061       break;
1062    case GLSL_TYPE_IMAGE:
1063       switch (b) {
1064       case GLSL_TYPE_UINT:
1065          result = new(ctx)
1066             ir_expression(ir_unop_pack_image_2x32, desired_type, src);
1067          break;
1068       }
1069       break;
1070    }
1071 
1072    assert(result != NULL);
1073    assert(result->type == desired_type);
1074 
1075    /* Try constant folding; it may fold in the conversion we just added. */
1076    ir_constant *const constant = result->constant_expression_value(ctx);
1077    return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
1078 }
1079 
1080 
1081 /**
1082  * Perform automatic type and constant conversion of constructor parameters
1083  *
1084  * This implements the rules in the "Implicit Conversions" rules, not the
1085  * "Conversion and Scalar Constructors".
1086  *
1087  * After attempting the implicit conversion, an attempt to convert into a
1088  * constant valued expression is also done.
1089  *
1090  * The \c from \c ir_rvalue is converted "in place".
1091  *
1092  * \param from   Operand that is being converted
1093  * \param to     Base type the operand will be converted to
1094  * \param state  GLSL compiler state
1095  *
1096  * \return
1097  * If the attempt to convert into a constant expression succeeds, \c true is
1098  * returned. Otherwise \c false is returned.
1099  */
1100 static bool
implicitly_convert_component(ir_rvalue * & from,const glsl_base_type to,struct _mesa_glsl_parse_state * state)1101 implicitly_convert_component(ir_rvalue * &from, const glsl_base_type to,
1102                              struct _mesa_glsl_parse_state *state)
1103 {
1104    void *mem_ctx = state;
1105    ir_rvalue *result = from;
1106 
1107    if (to != from->type->base_type) {
1108       const glsl_type *desired_type =
1109          glsl_type::get_instance(to,
1110                                  from->type->vector_elements,
1111                                  from->type->matrix_columns);
1112 
1113       if (from->type->can_implicitly_convert_to(desired_type, state)) {
1114          /* Even though convert_component() implements the constructor
1115           * conversion rules (not the implicit conversion rules), its safe
1116           * to use it here because we already checked that the implicit
1117           * conversion is legal.
1118           */
1119          result = convert_component(from, desired_type);
1120       }
1121    }
1122 
1123    ir_rvalue *const constant = result->constant_expression_value(mem_ctx);
1124 
1125    if (constant != NULL)
1126       result = constant;
1127 
1128    if (from != result) {
1129       from->replace_with(result);
1130       from = result;
1131    }
1132 
1133    return constant != NULL;
1134 }
1135 
1136 
1137 /**
1138  * Dereference a specific component from a scalar, vector, or matrix
1139  */
1140 static ir_rvalue *
dereference_component(ir_rvalue * src,unsigned component)1141 dereference_component(ir_rvalue *src, unsigned component)
1142 {
1143    void *ctx = ralloc_parent(src);
1144    assert(component < src->type->components());
1145 
1146    /* If the source is a constant, just create a new constant instead of a
1147     * dereference of the existing constant.
1148     */
1149    ir_constant *constant = src->as_constant();
1150    if (constant)
1151       return new(ctx) ir_constant(constant, component);
1152 
1153    if (src->type->is_scalar()) {
1154       return src;
1155    } else if (src->type->is_vector()) {
1156       return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
1157    } else {
1158       assert(src->type->is_matrix());
1159 
1160       /* Dereference a row of the matrix, then call this function again to get
1161        * a specific element from that row.
1162        */
1163       const int c = component / src->type->column_type()->vector_elements;
1164       const int r = component % src->type->column_type()->vector_elements;
1165       ir_constant *const col_index = new(ctx) ir_constant(c);
1166       ir_dereference *const col = new(ctx) ir_dereference_array(src,
1167                                                                 col_index);
1168 
1169       col->type = src->type->column_type();
1170 
1171       return dereference_component(col, r);
1172    }
1173 
1174    assert(!"Should not get here.");
1175    return NULL;
1176 }
1177 
1178 
1179 static ir_rvalue *
process_vec_mat_constructor(exec_list * instructions,const glsl_type * constructor_type,YYLTYPE * loc,exec_list * parameters,struct _mesa_glsl_parse_state * state)1180 process_vec_mat_constructor(exec_list *instructions,
1181                             const glsl_type *constructor_type,
1182                             YYLTYPE *loc, exec_list *parameters,
1183                             struct _mesa_glsl_parse_state *state)
1184 {
1185    void *ctx = state;
1186 
1187    /* The ARB_shading_language_420pack spec says:
1188     *
1189     * "If an initializer is a list of initializers enclosed in curly braces,
1190     *  the variable being declared must be a vector, a matrix, an array, or a
1191     *  structure.
1192     *
1193     *      int i = { 1 }; // illegal, i is not an aggregate"
1194     */
1195    if (constructor_type->vector_elements <= 1) {
1196       _mesa_glsl_error(loc, state, "aggregates can only initialize vectors, "
1197                        "matrices, arrays, and structs");
1198       return ir_rvalue::error_value(ctx);
1199    }
1200 
1201    exec_list actual_parameters;
1202    const unsigned parameter_count =
1203       process_parameters(instructions, &actual_parameters, parameters, state);
1204 
1205    if (parameter_count == 0
1206        || (constructor_type->is_vector() &&
1207            constructor_type->vector_elements != parameter_count)
1208        || (constructor_type->is_matrix() &&
1209            constructor_type->matrix_columns != parameter_count)) {
1210       _mesa_glsl_error(loc, state, "%s constructor must have %u parameters",
1211                        constructor_type->is_vector() ? "vector" : "matrix",
1212                        constructor_type->vector_elements);
1213       return ir_rvalue::error_value(ctx);
1214    }
1215 
1216    bool all_parameters_are_constant = true;
1217 
1218    /* Type cast each parameter and, if possible, fold constants. */
1219    foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
1220       /* Apply implicit conversions (not the scalar constructor rules, see the
1221        * spec quote above!) and attempt to convert the parameter to a constant
1222        * valued expression. After doing so, track whether or not all the
1223        * parameters to the constructor are trivially constant valued
1224        * expressions.
1225        */
1226       all_parameters_are_constant &=
1227          implicitly_convert_component(ir, constructor_type->base_type, state);
1228 
1229       if (constructor_type->is_matrix()) {
1230          if (ir->type != constructor_type->column_type()) {
1231             _mesa_glsl_error(loc, state, "type error in matrix constructor: "
1232                              "expected: %s, found %s",
1233                              constructor_type->column_type()->name,
1234                              ir->type->name);
1235             return ir_rvalue::error_value(ctx);
1236          }
1237       } else if (ir->type != constructor_type->get_scalar_type()) {
1238          _mesa_glsl_error(loc, state, "type error in vector constructor: "
1239                           "expected: %s, found %s",
1240                           constructor_type->get_scalar_type()->name,
1241                           ir->type->name);
1242          return ir_rvalue::error_value(ctx);
1243       }
1244    }
1245 
1246    if (all_parameters_are_constant)
1247       return new(ctx) ir_constant(constructor_type, &actual_parameters);
1248 
1249    ir_variable *var = new(ctx) ir_variable(constructor_type, "vec_mat_ctor",
1250                                            ir_var_temporary);
1251    instructions->push_tail(var);
1252 
1253    int i = 0;
1254 
1255    foreach_in_list(ir_rvalue, rhs, &actual_parameters) {
1256       ir_instruction *assignment = NULL;
1257 
1258       if (var->type->is_matrix()) {
1259          ir_rvalue *lhs =
1260             new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
1261          assignment = new(ctx) ir_assignment(lhs, rhs);
1262       } else {
1263          /* use writemask rather than index for vector */
1264          assert(var->type->is_vector());
1265          assert(i < 4);
1266          ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
1267          assignment = new(ctx) ir_assignment(lhs, rhs, NULL,
1268                                              (unsigned)(1 << i));
1269       }
1270 
1271       instructions->push_tail(assignment);
1272 
1273       i++;
1274    }
1275 
1276    return new(ctx) ir_dereference_variable(var);
1277 }
1278 
1279 
1280 static ir_rvalue *
process_array_constructor(exec_list * instructions,const glsl_type * constructor_type,YYLTYPE * loc,exec_list * parameters,struct _mesa_glsl_parse_state * state)1281 process_array_constructor(exec_list *instructions,
1282                           const glsl_type *constructor_type,
1283                           YYLTYPE *loc, exec_list *parameters,
1284                           struct _mesa_glsl_parse_state *state)
1285 {
1286    void *ctx = state;
1287    /* Array constructors come in two forms: sized and unsized.  Sized array
1288     * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
1289     * variables.  In this case the number of parameters must exactly match the
1290     * specified size of the array.
1291     *
1292     * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
1293     * are vec4 variables.  In this case the size of the array being constructed
1294     * is determined by the number of parameters.
1295     *
1296     * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
1297     *
1298     *    "There must be exactly the same number of arguments as the size of
1299     *    the array being constructed. If no size is present in the
1300     *    constructor, then the array is explicitly sized to the number of
1301     *    arguments provided. The arguments are assigned in order, starting at
1302     *    element 0, to the elements of the constructed array. Each argument
1303     *    must be the same type as the element type of the array, or be a type
1304     *    that can be converted to the element type of the array according to
1305     *    Section 4.1.10 "Implicit Conversions.""
1306     */
1307    exec_list actual_parameters;
1308    const unsigned parameter_count =
1309       process_parameters(instructions, &actual_parameters, parameters, state);
1310    bool is_unsized_array = constructor_type->is_unsized_array();
1311 
1312    if ((parameter_count == 0) ||
1313        (!is_unsized_array && (constructor_type->length != parameter_count))) {
1314       const unsigned min_param = is_unsized_array
1315          ? 1 : constructor_type->length;
1316 
1317       _mesa_glsl_error(loc, state, "array constructor must have %s %u "
1318                        "parameter%s",
1319                        is_unsized_array ? "at least" : "exactly",
1320                        min_param, (min_param <= 1) ? "" : "s");
1321       return ir_rvalue::error_value(ctx);
1322    }
1323 
1324    if (is_unsized_array) {
1325       constructor_type =
1326          glsl_type::get_array_instance(constructor_type->fields.array,
1327                                        parameter_count);
1328       assert(constructor_type != NULL);
1329       assert(constructor_type->length == parameter_count);
1330    }
1331 
1332    bool all_parameters_are_constant = true;
1333    const glsl_type *element_type = constructor_type->fields.array;
1334 
1335    /* Type cast each parameter and, if possible, fold constants. */
1336    foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
1337       /* Apply implicit conversions (not the scalar constructor rules, see the
1338        * spec quote above!) and attempt to convert the parameter to a constant
1339        * valued expression. After doing so, track whether or not all the
1340        * parameters to the constructor are trivially constant valued
1341        * expressions.
1342        */
1343       all_parameters_are_constant &=
1344          implicitly_convert_component(ir, element_type->base_type, state);
1345 
1346       if (constructor_type->fields.array->is_unsized_array()) {
1347          /* As the inner parameters of the constructor are created without
1348           * knowledge of each other we need to check to make sure unsized
1349           * parameters of unsized constructors all end up with the same size.
1350           *
1351           * e.g we make sure to fail for a constructor like this:
1352           * vec4[][] a = vec4[][](vec4[](vec4(0.0), vec4(1.0)),
1353           *                       vec4[](vec4(0.0), vec4(1.0), vec4(1.0)),
1354           *                       vec4[](vec4(0.0), vec4(1.0)));
1355           */
1356          if (element_type->is_unsized_array()) {
1357             /* This is the first parameter so just get the type */
1358             element_type = ir->type;
1359          } else if (element_type != ir->type) {
1360             _mesa_glsl_error(loc, state, "type error in array constructor: "
1361                              "expected: %s, found %s",
1362                              element_type->name,
1363                              ir->type->name);
1364             return ir_rvalue::error_value(ctx);
1365          }
1366       } else if (ir->type != constructor_type->fields.array) {
1367          _mesa_glsl_error(loc, state, "type error in array constructor: "
1368                           "expected: %s, found %s",
1369                           constructor_type->fields.array->name,
1370                           ir->type->name);
1371          return ir_rvalue::error_value(ctx);
1372       } else {
1373          element_type = ir->type;
1374       }
1375    }
1376 
1377    if (constructor_type->fields.array->is_unsized_array()) {
1378       constructor_type =
1379          glsl_type::get_array_instance(element_type,
1380                                        parameter_count);
1381       assert(constructor_type != NULL);
1382       assert(constructor_type->length == parameter_count);
1383    }
1384 
1385    if (all_parameters_are_constant)
1386       return new(ctx) ir_constant(constructor_type, &actual_parameters);
1387 
1388    ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor",
1389                                            ir_var_temporary);
1390    instructions->push_tail(var);
1391 
1392    int i = 0;
1393    foreach_in_list(ir_rvalue, rhs, &actual_parameters) {
1394       ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
1395                                                      new(ctx) ir_constant(i));
1396 
1397       ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs);
1398       instructions->push_tail(assignment);
1399 
1400       i++;
1401    }
1402 
1403    return new(ctx) ir_dereference_variable(var);
1404 }
1405 
1406 
1407 /**
1408  * Determine if a list consists of a single scalar r-value
1409  */
1410 static bool
single_scalar_parameter(exec_list * parameters)1411 single_scalar_parameter(exec_list *parameters)
1412 {
1413    const ir_rvalue *const p = (ir_rvalue *) parameters->get_head_raw();
1414    assert(((ir_rvalue *)p)->as_rvalue() != NULL);
1415 
1416    return (p->type->is_scalar() && p->next->is_tail_sentinel());
1417 }
1418 
1419 
1420 /**
1421  * Generate inline code for a vector constructor
1422  *
1423  * The generated constructor code will consist of a temporary variable
1424  * declaration of the same type as the constructor.  A sequence of assignments
1425  * from constructor parameters to the temporary will follow.
1426  *
1427  * \return
1428  * An \c ir_dereference_variable of the temprorary generated in the constructor
1429  * body.
1430  */
1431 static ir_rvalue *
emit_inline_vector_constructor(const glsl_type * type,exec_list * instructions,exec_list * parameters,void * ctx)1432 emit_inline_vector_constructor(const glsl_type *type,
1433                                exec_list *instructions,
1434                                exec_list *parameters,
1435                                void *ctx)
1436 {
1437    assert(!parameters->is_empty());
1438 
1439    ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary);
1440    instructions->push_tail(var);
1441 
1442    /* There are three kinds of vector constructors.
1443     *
1444     *  - Construct a vector from a single scalar by replicating that scalar to
1445     *    all components of the vector.
1446     *
1447     *  - Construct a vector from at least a matrix. This case should already
1448     *    have been taken care of in ast_function_expression::hir by breaking
1449     *    down the matrix into a series of column vectors.
1450     *
1451     *  - Construct a vector from an arbirary combination of vectors and
1452     *    scalars.  The components of the constructor parameters are assigned
1453     *    to the vector in order until the vector is full.
1454     */
1455    const unsigned lhs_components = type->components();
1456    if (single_scalar_parameter(parameters)) {
1457       ir_rvalue *first_param = (ir_rvalue *)parameters->get_head_raw();
1458       ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0,
1459                                            lhs_components);
1460       ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var);
1461       const unsigned mask = (1U << lhs_components) - 1;
1462 
1463       assert(rhs->type == lhs->type);
1464 
1465       ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, mask);
1466       instructions->push_tail(inst);
1467    } else {
1468       unsigned base_component = 0;
1469       unsigned base_lhs_component = 0;
1470       ir_constant_data data;
1471       unsigned constant_mask = 0, constant_components = 0;
1472 
1473       memset(&data, 0, sizeof(data));
1474 
1475       foreach_in_list(ir_rvalue, param, parameters) {
1476          unsigned rhs_components = param->type->components();
1477 
1478          /* Do not try to assign more components to the vector than it has! */
1479          if ((rhs_components + base_lhs_component) > lhs_components) {
1480             rhs_components = lhs_components - base_lhs_component;
1481          }
1482 
1483          const ir_constant *const c = param->as_constant();
1484          if (c != NULL) {
1485             for (unsigned i = 0; i < rhs_components; i++) {
1486                switch (c->type->base_type) {
1487                case GLSL_TYPE_UINT:
1488                   data.u[i + base_component] = c->get_uint_component(i);
1489                   break;
1490                case GLSL_TYPE_INT:
1491                   data.i[i + base_component] = c->get_int_component(i);
1492                   break;
1493                case GLSL_TYPE_FLOAT:
1494                   data.f[i + base_component] = c->get_float_component(i);
1495                   break;
1496                case GLSL_TYPE_DOUBLE:
1497                   data.d[i + base_component] = c->get_double_component(i);
1498                   break;
1499                case GLSL_TYPE_BOOL:
1500                   data.b[i + base_component] = c->get_bool_component(i);
1501                   break;
1502                case GLSL_TYPE_UINT64:
1503                   data.u64[i + base_component] = c->get_uint64_component(i);
1504                   break;
1505                case GLSL_TYPE_INT64:
1506                   data.i64[i + base_component] = c->get_int64_component(i);
1507                   break;
1508                default:
1509                   assert(!"Should not get here.");
1510                   break;
1511                }
1512             }
1513 
1514             /* Mask of fields to be written in the assignment. */
1515             constant_mask |= ((1U << rhs_components) - 1) << base_lhs_component;
1516             constant_components += rhs_components;
1517 
1518             base_component += rhs_components;
1519          }
1520          /* Advance the component index by the number of components
1521           * that were just assigned.
1522           */
1523          base_lhs_component += rhs_components;
1524       }
1525 
1526       if (constant_mask != 0) {
1527          ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
1528          const glsl_type *rhs_type =
1529             glsl_type::get_instance(var->type->base_type,
1530                                     constant_components,
1531                                     1);
1532          ir_rvalue *rhs = new(ctx) ir_constant(rhs_type, &data);
1533 
1534          ir_instruction *inst =
1535             new(ctx) ir_assignment(lhs, rhs, NULL, constant_mask);
1536          instructions->push_tail(inst);
1537       }
1538 
1539       base_component = 0;
1540       foreach_in_list(ir_rvalue, param, parameters) {
1541          unsigned rhs_components = param->type->components();
1542 
1543          /* Do not try to assign more components to the vector than it has! */
1544          if ((rhs_components + base_component) > lhs_components) {
1545             rhs_components = lhs_components - base_component;
1546          }
1547 
1548          /* If we do not have any components left to copy, break out of the
1549           * loop. This can happen when initializing a vec4 with a mat3 as the
1550           * mat3 would have been broken into a series of column vectors.
1551           */
1552          if (rhs_components == 0) {
1553             break;
1554          }
1555 
1556          const ir_constant *const c = param->as_constant();
1557          if (c == NULL) {
1558             /* Mask of fields to be written in the assignment. */
1559             const unsigned write_mask = ((1U << rhs_components) - 1)
1560                << base_component;
1561 
1562             ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
1563 
1564             /* Generate a swizzle so that LHS and RHS sizes match. */
1565             ir_rvalue *rhs =
1566                new(ctx) ir_swizzle(param, 0, 1, 2, 3, rhs_components);
1567 
1568             ir_instruction *inst =
1569                new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
1570             instructions->push_tail(inst);
1571          }
1572 
1573          /* Advance the component index by the number of components that were
1574           * just assigned.
1575           */
1576          base_component += rhs_components;
1577       }
1578    }
1579    return new(ctx) ir_dereference_variable(var);
1580 }
1581 
1582 
1583 /**
1584  * Generate assignment of a portion of a vector to a portion of a matrix column
1585  *
1586  * \param src_base  First component of the source to be used in assignment
1587  * \param column    Column of destination to be assiged
1588  * \param row_base  First component of the destination column to be assigned
1589  * \param count     Number of components to be assigned
1590  *
1591  * \note
1592  * \c src_base + \c count must be less than or equal to the number of
1593  * components in the source vector.
1594  */
1595 static ir_instruction *
assign_to_matrix_column(ir_variable * var,unsigned column,unsigned row_base,ir_rvalue * src,unsigned src_base,unsigned count,void * mem_ctx)1596 assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base,
1597                         ir_rvalue *src, unsigned src_base, unsigned count,
1598                         void *mem_ctx)
1599 {
1600    ir_constant *col_idx = new(mem_ctx) ir_constant(column);
1601    ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var,
1602                                                                   col_idx);
1603 
1604    assert(column_ref->type->components() >= (row_base + count));
1605    assert(src->type->components() >= (src_base + count));
1606 
1607    /* Generate a swizzle that extracts the number of components from the source
1608     * that are to be assigned to the column of the matrix.
1609     */
1610    if (count < src->type->vector_elements) {
1611       src = new(mem_ctx) ir_swizzle(src,
1612                                     src_base + 0, src_base + 1,
1613                                     src_base + 2, src_base + 3,
1614                                     count);
1615    }
1616 
1617    /* Mask of fields to be written in the assignment. */
1618    const unsigned write_mask = ((1U << count) - 1) << row_base;
1619 
1620    return new(mem_ctx) ir_assignment(column_ref, src, NULL, write_mask);
1621 }
1622 
1623 
1624 /**
1625  * Generate inline code for a matrix constructor
1626  *
1627  * The generated constructor code will consist of a temporary variable
1628  * declaration of the same type as the constructor.  A sequence of assignments
1629  * from constructor parameters to the temporary will follow.
1630  *
1631  * \return
1632  * An \c ir_dereference_variable of the temprorary generated in the constructor
1633  * body.
1634  */
1635 static ir_rvalue *
emit_inline_matrix_constructor(const glsl_type * type,exec_list * instructions,exec_list * parameters,void * ctx)1636 emit_inline_matrix_constructor(const glsl_type *type,
1637                                exec_list *instructions,
1638                                exec_list *parameters,
1639                                void *ctx)
1640 {
1641    assert(!parameters->is_empty());
1642 
1643    ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary);
1644    instructions->push_tail(var);
1645 
1646    /* There are three kinds of matrix constructors.
1647     *
1648     *  - Construct a matrix from a single scalar by replicating that scalar to
1649     *    along the diagonal of the matrix and setting all other components to
1650     *    zero.
1651     *
1652     *  - Construct a matrix from an arbirary combination of vectors and
1653     *    scalars.  The components of the constructor parameters are assigned
1654     *    to the matrix in column-major order until the matrix is full.
1655     *
1656     *  - Construct a matrix from a single matrix.  The source matrix is copied
1657     *    to the upper left portion of the constructed matrix, and the remaining
1658     *    elements take values from the identity matrix.
1659     */
1660    ir_rvalue *const first_param = (ir_rvalue *) parameters->get_head_raw();
1661    if (single_scalar_parameter(parameters)) {
1662       /* Assign the scalar to the X component of a vec4, and fill the remaining
1663        * components with zero.
1664        */
1665       glsl_base_type param_base_type = first_param->type->base_type;
1666       assert(first_param->type->is_float() || first_param->type->is_double());
1667       ir_variable *rhs_var =
1668          new(ctx) ir_variable(glsl_type::get_instance(param_base_type, 4, 1),
1669                               "mat_ctor_vec",
1670                               ir_var_temporary);
1671       instructions->push_tail(rhs_var);
1672 
1673       ir_constant_data zero;
1674       for (unsigned i = 0; i < 4; i++)
1675          if (first_param->type->is_float())
1676             zero.f[i] = 0.0;
1677          else
1678             zero.d[i] = 0.0;
1679 
1680       ir_instruction *inst =
1681          new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var),
1682                                 new(ctx) ir_constant(rhs_var->type, &zero));
1683       instructions->push_tail(inst);
1684 
1685       ir_dereference *const rhs_ref =
1686          new(ctx) ir_dereference_variable(rhs_var);
1687 
1688       inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL, 0x01);
1689       instructions->push_tail(inst);
1690 
1691       /* Assign the temporary vector to each column of the destination matrix
1692        * with a swizzle that puts the X component on the diagonal of the
1693        * matrix.  In some cases this may mean that the X component does not
1694        * get assigned into the column at all (i.e., when the matrix has more
1695        * columns than rows).
1696        */
1697       static const unsigned rhs_swiz[4][4] = {
1698          { 0, 1, 1, 1 },
1699          { 1, 0, 1, 1 },
1700          { 1, 1, 0, 1 },
1701          { 1, 1, 1, 0 }
1702       };
1703 
1704       const unsigned cols_to_init = MIN2(type->matrix_columns,
1705                                          type->vector_elements);
1706       for (unsigned i = 0; i < cols_to_init; i++) {
1707          ir_constant *const col_idx = new(ctx) ir_constant(i);
1708          ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var,
1709                                                                   col_idx);
1710 
1711          ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1712          ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i],
1713                                                     type->vector_elements);
1714 
1715          inst = new(ctx) ir_assignment(col_ref, rhs);
1716          instructions->push_tail(inst);
1717       }
1718 
1719       for (unsigned i = cols_to_init; i < type->matrix_columns; i++) {
1720          ir_constant *const col_idx = new(ctx) ir_constant(i);
1721          ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var,
1722                                                                   col_idx);
1723 
1724          ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1725          ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1,
1726                                                     type->vector_elements);
1727 
1728          inst = new(ctx) ir_assignment(col_ref, rhs);
1729          instructions->push_tail(inst);
1730       }
1731    } else if (first_param->type->is_matrix()) {
1732       /* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
1733        *
1734        *     "If a matrix is constructed from a matrix, then each component
1735        *     (column i, row j) in the result that has a corresponding
1736        *     component (column i, row j) in the argument will be initialized
1737        *     from there. All other components will be initialized to the
1738        *     identity matrix. If a matrix argument is given to a matrix
1739        *     constructor, it is an error to have any other arguments."
1740        */
1741       assert(first_param->next->is_tail_sentinel());
1742       ir_rvalue *const src_matrix = first_param;
1743 
1744       /* If the source matrix is smaller, pre-initialize the relavent parts of
1745        * the destination matrix to the identity matrix.
1746        */
1747       if ((src_matrix->type->matrix_columns < var->type->matrix_columns) ||
1748           (src_matrix->type->vector_elements < var->type->vector_elements)) {
1749 
1750          /* If the source matrix has fewer rows, every column of the
1751           * destination must be initialized.  Otherwise only the columns in
1752           * the destination that do not exist in the source must be
1753           * initialized.
1754           */
1755          unsigned col =
1756             (src_matrix->type->vector_elements < var->type->vector_elements)
1757             ? 0 : src_matrix->type->matrix_columns;
1758 
1759          const glsl_type *const col_type = var->type->column_type();
1760          for (/* empty */; col < var->type->matrix_columns; col++) {
1761             ir_constant_data ident;
1762 
1763             if (!col_type->is_double()) {
1764                ident.f[0] = 0.0f;
1765                ident.f[1] = 0.0f;
1766                ident.f[2] = 0.0f;
1767                ident.f[3] = 0.0f;
1768                ident.f[col] = 1.0f;
1769             } else {
1770                ident.d[0] = 0.0;
1771                ident.d[1] = 0.0;
1772                ident.d[2] = 0.0;
1773                ident.d[3] = 0.0;
1774                ident.d[col] = 1.0;
1775             }
1776 
1777             ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident);
1778 
1779             ir_rvalue *const lhs =
1780                new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col));
1781 
1782             ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs);
1783             instructions->push_tail(inst);
1784          }
1785       }
1786 
1787       /* Assign columns from the source matrix to the destination matrix.
1788        *
1789        * Since the parameter will be used in the RHS of multiple assignments,
1790        * generate a temporary and copy the paramter there.
1791        */
1792       ir_variable *const rhs_var =
1793          new(ctx) ir_variable(first_param->type, "mat_ctor_mat",
1794                               ir_var_temporary);
1795       instructions->push_tail(rhs_var);
1796 
1797       ir_dereference *const rhs_var_ref =
1798          new(ctx) ir_dereference_variable(rhs_var);
1799       ir_instruction *const inst =
1800          new(ctx) ir_assignment(rhs_var_ref, first_param);
1801       instructions->push_tail(inst);
1802 
1803       const unsigned last_row = MIN2(src_matrix->type->vector_elements,
1804                                      var->type->vector_elements);
1805       const unsigned last_col = MIN2(src_matrix->type->matrix_columns,
1806                                      var->type->matrix_columns);
1807 
1808       unsigned swiz[4] = { 0, 0, 0, 0 };
1809       for (unsigned i = 1; i < last_row; i++)
1810          swiz[i] = i;
1811 
1812       const unsigned write_mask = (1U << last_row) - 1;
1813 
1814       for (unsigned i = 0; i < last_col; i++) {
1815          ir_dereference *const lhs =
1816             new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
1817          ir_rvalue *const rhs_col =
1818             new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i));
1819 
1820          /* If one matrix has columns that are smaller than the columns of the
1821           * other matrix, wrap the column access of the larger with a swizzle
1822           * so that the LHS and RHS of the assignment have the same size (and
1823           * therefore have the same type).
1824           *
1825           * It would be perfectly valid to unconditionally generate the
1826           * swizzles, this this will typically result in a more compact IR
1827           * tree.
1828           */
1829          ir_rvalue *rhs;
1830          if (lhs->type->vector_elements != rhs_col->type->vector_elements) {
1831             rhs = new(ctx) ir_swizzle(rhs_col, swiz, last_row);
1832          } else {
1833             rhs = rhs_col;
1834          }
1835 
1836          ir_instruction *inst =
1837             new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
1838          instructions->push_tail(inst);
1839       }
1840    } else {
1841       const unsigned cols = type->matrix_columns;
1842       const unsigned rows = type->vector_elements;
1843       unsigned remaining_slots = rows * cols;
1844       unsigned col_idx = 0;
1845       unsigned row_idx = 0;
1846 
1847       foreach_in_list(ir_rvalue, rhs, parameters) {
1848          unsigned rhs_components = rhs->type->components();
1849          unsigned rhs_base = 0;
1850 
1851          if (remaining_slots == 0)
1852             break;
1853 
1854          /* Since the parameter might be used in the RHS of two assignments,
1855           * generate a temporary and copy the paramter there.
1856           */
1857          ir_variable *rhs_var =
1858             new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary);
1859          instructions->push_tail(rhs_var);
1860 
1861          ir_dereference *rhs_var_ref =
1862             new(ctx) ir_dereference_variable(rhs_var);
1863          ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs);
1864          instructions->push_tail(inst);
1865 
1866          do {
1867             /* Assign the current parameter to as many components of the matrix
1868              * as it will fill.
1869              *
1870              * NOTE: A single vector parameter can span two matrix columns.  A
1871              * single vec4, for example, can completely fill a mat2.
1872              */
1873             unsigned count = MIN2(rows - row_idx,
1874                                   rhs_components - rhs_base);
1875 
1876             rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
1877             ir_instruction *inst = assign_to_matrix_column(var, col_idx,
1878                                                            row_idx,
1879                                                            rhs_var_ref,
1880                                                            rhs_base,
1881                                                            count, ctx);
1882             instructions->push_tail(inst);
1883             rhs_base += count;
1884             row_idx += count;
1885             remaining_slots -= count;
1886 
1887             /* Sometimes, there is still data left in the parameters and
1888              * components left to be set in the destination but in other
1889              * column.
1890              */
1891             if (row_idx >= rows) {
1892                row_idx = 0;
1893                col_idx++;
1894             }
1895          } while(remaining_slots > 0 && rhs_base < rhs_components);
1896       }
1897    }
1898 
1899    return new(ctx) ir_dereference_variable(var);
1900 }
1901 
1902 
1903 static ir_rvalue *
emit_inline_record_constructor(const glsl_type * type,exec_list * instructions,exec_list * parameters,void * mem_ctx)1904 emit_inline_record_constructor(const glsl_type *type,
1905                                exec_list *instructions,
1906                                exec_list *parameters,
1907                                void *mem_ctx)
1908 {
1909    ir_variable *const var =
1910       new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary);
1911    ir_dereference_variable *const d =
1912       new(mem_ctx) ir_dereference_variable(var);
1913 
1914    instructions->push_tail(var);
1915 
1916    exec_node *node = parameters->get_head_raw();
1917    for (unsigned i = 0; i < type->length; i++) {
1918       assert(!node->is_tail_sentinel());
1919 
1920       ir_dereference *const lhs =
1921          new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL),
1922                                             type->fields.structure[i].name);
1923 
1924       ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue();
1925       assert(rhs != NULL);
1926 
1927       ir_instruction *const assign = new(mem_ctx) ir_assignment(lhs, rhs);
1928 
1929       instructions->push_tail(assign);
1930       node = node->next;
1931    }
1932 
1933    return d;
1934 }
1935 
1936 
1937 static ir_rvalue *
process_record_constructor(exec_list * instructions,const glsl_type * constructor_type,YYLTYPE * loc,exec_list * parameters,struct _mesa_glsl_parse_state * state)1938 process_record_constructor(exec_list *instructions,
1939                            const glsl_type *constructor_type,
1940                            YYLTYPE *loc, exec_list *parameters,
1941                            struct _mesa_glsl_parse_state *state)
1942 {
1943    void *ctx = state;
1944    /* From page 32 (page 38 of the PDF) of the GLSL 1.20 spec:
1945     *
1946     *    "The arguments to the constructor will be used to set the structure's
1947     *     fields, in order, using one argument per field. Each argument must
1948     *     be the same type as the field it sets, or be a type that can be
1949     *     converted to the field's type according to Section 4.1.10 “Implicit
1950     *     Conversions.”"
1951     *
1952     * From page 35 (page 41 of the PDF) of the GLSL 4.20 spec:
1953     *
1954     *    "In all cases, the innermost initializer (i.e., not a list of
1955     *     initializers enclosed in curly braces) applied to an object must
1956     *     have the same type as the object being initialized or be a type that
1957     *     can be converted to the object's type according to section 4.1.10
1958     *     "Implicit Conversions". In the latter case, an implicit conversion
1959     *     will be done on the initializer before the assignment is done."
1960     */
1961    exec_list actual_parameters;
1962 
1963    const unsigned parameter_count =
1964          process_parameters(instructions, &actual_parameters, parameters,
1965                             state);
1966 
1967    if (parameter_count != constructor_type->length) {
1968       _mesa_glsl_error(loc, state,
1969                        "%s parameters in constructor for `%s'",
1970                        parameter_count > constructor_type->length
1971                        ? "too many": "insufficient",
1972                        constructor_type->name);
1973       return ir_rvalue::error_value(ctx);
1974    }
1975 
1976    bool all_parameters_are_constant = true;
1977 
1978    int i = 0;
1979    /* Type cast each parameter and, if possible, fold constants. */
1980    foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
1981 
1982       const glsl_struct_field *struct_field =
1983          &constructor_type->fields.structure[i];
1984 
1985       /* Apply implicit conversions (not the scalar constructor rules, see the
1986        * spec quote above!) and attempt to convert the parameter to a constant
1987        * valued expression. After doing so, track whether or not all the
1988        * parameters to the constructor are trivially constant valued
1989        * expressions.
1990        */
1991       all_parameters_are_constant &=
1992          implicitly_convert_component(ir, struct_field->type->base_type,
1993                                       state);
1994 
1995       if (ir->type != struct_field->type) {
1996          _mesa_glsl_error(loc, state,
1997                           "parameter type mismatch in constructor for `%s.%s' "
1998                           "(%s vs %s)",
1999                           constructor_type->name,
2000                           struct_field->name,
2001                           ir->type->name,
2002                           struct_field->type->name);
2003          return ir_rvalue::error_value(ctx);
2004       }
2005 
2006       i++;
2007    }
2008 
2009    if (all_parameters_are_constant) {
2010       return new(ctx) ir_constant(constructor_type, &actual_parameters);
2011    } else {
2012       return emit_inline_record_constructor(constructor_type, instructions,
2013                                             &actual_parameters, state);
2014    }
2015 }
2016 
2017 ir_rvalue *
handle_method(exec_list * instructions,struct _mesa_glsl_parse_state * state)2018 ast_function_expression::handle_method(exec_list *instructions,
2019                                        struct _mesa_glsl_parse_state *state)
2020 {
2021    const ast_expression *field = subexpressions[0];
2022    ir_rvalue *op;
2023    ir_rvalue *result;
2024    void *ctx = state;
2025    /* Handle "method calls" in GLSL 1.20 - namely, array.length() */
2026    YYLTYPE loc = get_location();
2027    state->check_version(120, 300, &loc, "methods not supported");
2028 
2029    const char *method;
2030    method = field->primary_expression.identifier;
2031 
2032    /* This would prevent to raise "uninitialized variable" warnings when
2033     * calling array.length.
2034     */
2035    field->subexpressions[0]->set_is_lhs(true);
2036    op = field->subexpressions[0]->hir(instructions, state);
2037    if (strcmp(method, "length") == 0) {
2038       if (!this->expressions.is_empty()) {
2039          _mesa_glsl_error(&loc, state, "length method takes no arguments");
2040          goto fail;
2041       }
2042 
2043       if (op->type->is_array()) {
2044          if (op->type->is_unsized_array()) {
2045             if (!state->has_shader_storage_buffer_objects()) {
2046                _mesa_glsl_error(&loc, state,
2047                                 "length called on unsized array"
2048                                 " only available with"
2049                                 " ARB_shader_storage_buffer_object");
2050             }
2051             /* Calculate length of an unsized array in run-time */
2052             result = new(ctx) ir_expression(ir_unop_ssbo_unsized_array_length,
2053                                             op);
2054          } else {
2055             result = new(ctx) ir_constant(op->type->array_size());
2056          }
2057       } else if (op->type->is_vector()) {
2058          if (state->has_420pack()) {
2059             /* .length() returns int. */
2060             result = new(ctx) ir_constant((int) op->type->vector_elements);
2061          } else {
2062             _mesa_glsl_error(&loc, state, "length method on matrix only"
2063                              " available with ARB_shading_language_420pack");
2064             goto fail;
2065          }
2066       } else if (op->type->is_matrix()) {
2067          if (state->has_420pack()) {
2068             /* .length() returns int. */
2069             result = new(ctx) ir_constant((int) op->type->matrix_columns);
2070          } else {
2071             _mesa_glsl_error(&loc, state, "length method on matrix only"
2072                              " available with ARB_shading_language_420pack");
2073             goto fail;
2074          }
2075       } else {
2076          _mesa_glsl_error(&loc, state, "length called on scalar.");
2077          goto fail;
2078       }
2079    } else {
2080       _mesa_glsl_error(&loc, state, "unknown method: `%s'", method);
2081       goto fail;
2082    }
2083    return result;
2084  fail:
2085    return ir_rvalue::error_value(ctx);
2086 }
2087 
is_valid_constructor(const glsl_type * type,struct _mesa_glsl_parse_state * state)2088 static inline bool is_valid_constructor(const glsl_type *type,
2089                                         struct _mesa_glsl_parse_state *state)
2090 {
2091    return type->is_numeric() || type->is_boolean() ||
2092           (state->has_bindless() && (type->is_sampler() || type->is_image()));
2093 }
2094 
2095 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)2096 ast_function_expression::hir(exec_list *instructions,
2097                              struct _mesa_glsl_parse_state *state)
2098 {
2099    void *ctx = state;
2100    /* There are three sorts of function calls.
2101     *
2102     * 1. constructors - The first subexpression is an ast_type_specifier.
2103     * 2. methods - Only the .length() method of array types.
2104     * 3. functions - Calls to regular old functions.
2105     *
2106     */
2107    if (is_constructor()) {
2108       const ast_type_specifier *type =
2109          (ast_type_specifier *) subexpressions[0];
2110       YYLTYPE loc = type->get_location();
2111       const char *name;
2112 
2113       const glsl_type *const constructor_type = type->glsl_type(& name, state);
2114 
2115       /* constructor_type can be NULL if a variable with the same name as the
2116        * structure has come into scope.
2117        */
2118       if (constructor_type == NULL) {
2119          _mesa_glsl_error(& loc, state, "unknown type `%s' (structure name "
2120                           "may be shadowed by a variable with the same name)",
2121                           type->type_name);
2122          return ir_rvalue::error_value(ctx);
2123       }
2124 
2125 
2126       /* Constructors for opaque types are illegal.
2127        *
2128        * From section 4.1.7 of the ARB_bindless_texture spec:
2129        *
2130        * "Samplers are represented using 64-bit integer handles, and may be "
2131        *  converted to and from 64-bit integers using constructors."
2132        *
2133        * From section 4.1.X of the ARB_bindless_texture spec:
2134        *
2135        * "Images are represented using 64-bit integer handles, and may be
2136        *  converted to and from 64-bit integers using constructors."
2137        */
2138       if (constructor_type->contains_atomic() ||
2139           (!state->has_bindless() && constructor_type->contains_opaque())) {
2140          _mesa_glsl_error(& loc, state, "cannot construct %s type `%s'",
2141                           state->has_bindless() ? "atomic" : "opaque",
2142                           constructor_type->name);
2143          return ir_rvalue::error_value(ctx);
2144       }
2145 
2146       if (constructor_type->is_subroutine()) {
2147          _mesa_glsl_error(& loc, state,
2148                           "subroutine name cannot be a constructor `%s'",
2149                           constructor_type->name);
2150          return ir_rvalue::error_value(ctx);
2151       }
2152 
2153       if (constructor_type->is_array()) {
2154          if (!state->check_version(state->allow_glsl_120_subset_in_110 ? 110 : 120,
2155                                    300, &loc, "array constructors forbidden")) {
2156             return ir_rvalue::error_value(ctx);
2157          }
2158 
2159          return process_array_constructor(instructions, constructor_type,
2160                                           & loc, &this->expressions, state);
2161       }
2162 
2163 
2164       /* There are two kinds of constructor calls.  Constructors for arrays and
2165        * structures must have the exact number of arguments with matching types
2166        * in the correct order.  These constructors follow essentially the same
2167        * type matching rules as functions.
2168        *
2169        * Constructors for built-in language types, such as mat4 and vec2, are
2170        * free form.  The only requirements are that the parameters must provide
2171        * enough values of the correct scalar type and that no arguments are
2172        * given past the last used argument.
2173        *
2174        * When using the C-style initializer syntax from GLSL 4.20, constructors
2175        * must have the exact number of arguments with matching types in the
2176        * correct order.
2177        */
2178       if (constructor_type->is_struct()) {
2179          return process_record_constructor(instructions, constructor_type,
2180                                            &loc, &this->expressions,
2181                                            state);
2182       }
2183 
2184       if (!is_valid_constructor(constructor_type, state))
2185          return ir_rvalue::error_value(ctx);
2186 
2187       /* Total number of components of the type being constructed. */
2188       const unsigned type_components = constructor_type->components();
2189 
2190       /* Number of components from parameters that have actually been
2191        * consumed.  This is used to perform several kinds of error checking.
2192        */
2193       unsigned components_used = 0;
2194 
2195       unsigned matrix_parameters = 0;
2196       unsigned nonmatrix_parameters = 0;
2197       exec_list actual_parameters;
2198 
2199       foreach_list_typed(ast_node, ast, link, &this->expressions) {
2200          ir_rvalue *result = ast->hir(instructions, state);
2201 
2202          /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
2203           *
2204           *    "It is an error to provide extra arguments beyond this
2205           *    last used argument."
2206           */
2207          if (components_used >= type_components) {
2208             _mesa_glsl_error(& loc, state, "too many parameters to `%s' "
2209                              "constructor",
2210                              constructor_type->name);
2211             return ir_rvalue::error_value(ctx);
2212          }
2213 
2214          if (!is_valid_constructor(result->type, state)) {
2215             _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
2216                              "non-numeric data type",
2217                              constructor_type->name);
2218             return ir_rvalue::error_value(ctx);
2219          }
2220 
2221          /* Count the number of matrix and nonmatrix parameters.  This
2222           * is used below to enforce some of the constructor rules.
2223           */
2224          if (result->type->is_matrix())
2225             matrix_parameters++;
2226          else
2227             nonmatrix_parameters++;
2228 
2229          actual_parameters.push_tail(result);
2230          components_used += result->type->components();
2231       }
2232 
2233       /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
2234        *
2235        *    "It is an error to construct matrices from other matrices. This
2236        *    is reserved for future use."
2237        */
2238       if (matrix_parameters > 0
2239           && constructor_type->is_matrix()
2240           && !state->check_version(120, 100, &loc,
2241                                    "cannot construct `%s' from a matrix",
2242                                    constructor_type->name)) {
2243          return ir_rvalue::error_value(ctx);
2244       }
2245 
2246       /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
2247        *
2248        *    "If a matrix argument is given to a matrix constructor, it is
2249        *    an error to have any other arguments."
2250        */
2251       if ((matrix_parameters > 0)
2252           && ((matrix_parameters + nonmatrix_parameters) > 1)
2253           && constructor_type->is_matrix()) {
2254          _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
2255                           "matrix must be only parameter",
2256                           constructor_type->name);
2257          return ir_rvalue::error_value(ctx);
2258       }
2259 
2260       /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
2261        *
2262        *    "In these cases, there must be enough components provided in the
2263        *    arguments to provide an initializer for every component in the
2264        *    constructed value."
2265        */
2266       if (components_used < type_components && components_used != 1
2267           && matrix_parameters == 0) {
2268          _mesa_glsl_error(& loc, state, "too few components to construct "
2269                           "`%s'",
2270                           constructor_type->name);
2271          return ir_rvalue::error_value(ctx);
2272       }
2273 
2274       /* Matrices can never be consumed as is by any constructor but matrix
2275        * constructors. If the constructor type is not matrix, always break the
2276        * matrix up into a series of column vectors.
2277        */
2278       if (!constructor_type->is_matrix()) {
2279          foreach_in_list_safe(ir_rvalue, matrix, &actual_parameters) {
2280             if (!matrix->type->is_matrix())
2281                continue;
2282 
2283             /* Create a temporary containing the matrix. */
2284             ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp",
2285                                                     ir_var_temporary);
2286             instructions->push_tail(var);
2287             instructions->push_tail(
2288                new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
2289                                       matrix));
2290             var->constant_value = matrix->constant_expression_value(ctx);
2291 
2292             /* Replace the matrix with dereferences of its columns. */
2293             for (int i = 0; i < matrix->type->matrix_columns; i++) {
2294                matrix->insert_before(
2295                   new (ctx) ir_dereference_array(var,
2296                                                  new(ctx) ir_constant(i)));
2297             }
2298             matrix->remove();
2299          }
2300       }
2301 
2302       bool all_parameters_are_constant = true;
2303 
2304       /* Type cast each parameter and, if possible, fold constants.*/
2305       foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
2306          const glsl_type *desired_type;
2307 
2308          /* From section 5.4.1 of the ARB_bindless_texture spec:
2309           *
2310           * "In the following four constructors, the low 32 bits of the sampler
2311           *  type correspond to the .x component of the uvec2 and the high 32
2312           *  bits correspond to the .y component."
2313           *
2314           *  uvec2(any sampler type)     // Converts a sampler type to a
2315           *                              //   pair of 32-bit unsigned integers
2316           *  any sampler type(uvec2)     // Converts a pair of 32-bit unsigned integers to
2317           *                              //   a sampler type
2318           *  uvec2(any image type)       // Converts an image type to a
2319           *                              //   pair of 32-bit unsigned integers
2320           *  any image type(uvec2)       // Converts a pair of 32-bit unsigned integers to
2321           *                              //   an image type
2322           */
2323          if (ir->type->is_sampler() || ir->type->is_image()) {
2324             /* Convert a sampler/image type to a pair of 32-bit unsigned
2325              * integers as defined by ARB_bindless_texture.
2326              */
2327             if (constructor_type != glsl_type::uvec2_type) {
2328                _mesa_glsl_error(&loc, state, "sampler and image types can only "
2329                                 "be converted to a pair of 32-bit unsigned "
2330                                 "integers");
2331             }
2332             desired_type = glsl_type::uvec2_type;
2333          } else if (constructor_type->is_sampler() ||
2334                     constructor_type->is_image()) {
2335             /* Convert a pair of 32-bit unsigned integers to a sampler or image
2336              * type as defined by ARB_bindless_texture.
2337              */
2338             if (ir->type != glsl_type::uvec2_type) {
2339                _mesa_glsl_error(&loc, state, "sampler and image types can only "
2340                                 "be converted from a pair of 32-bit unsigned "
2341                                 "integers");
2342             }
2343             desired_type = constructor_type;
2344          } else {
2345             desired_type =
2346                glsl_type::get_instance(constructor_type->base_type,
2347                                        ir->type->vector_elements,
2348                                        ir->type->matrix_columns);
2349          }
2350 
2351          ir_rvalue *result = convert_component(ir, desired_type);
2352 
2353          /* Attempt to convert the parameter to a constant valued expression.
2354           * After doing so, track whether or not all the parameters to the
2355           * constructor are trivially constant valued expressions.
2356           */
2357          ir_rvalue *const constant = result->constant_expression_value(ctx);
2358 
2359          if (constant != NULL)
2360             result = constant;
2361          else
2362             all_parameters_are_constant = false;
2363 
2364          if (result != ir) {
2365             ir->replace_with(result);
2366          }
2367       }
2368 
2369       /* If all of the parameters are trivially constant, create a
2370        * constant representing the complete collection of parameters.
2371        */
2372       if (all_parameters_are_constant) {
2373          return new(ctx) ir_constant(constructor_type, &actual_parameters);
2374       } else if (constructor_type->is_scalar()) {
2375          return dereference_component((ir_rvalue *)
2376                                       actual_parameters.get_head_raw(),
2377                                       0);
2378       } else if (constructor_type->is_vector()) {
2379          return emit_inline_vector_constructor(constructor_type,
2380                                                instructions,
2381                                                &actual_parameters,
2382                                                ctx);
2383       } else {
2384          assert(constructor_type->is_matrix());
2385          return emit_inline_matrix_constructor(constructor_type,
2386                                                instructions,
2387                                                &actual_parameters,
2388                                                ctx);
2389       }
2390    } else if (subexpressions[0]->oper == ast_field_selection) {
2391       return handle_method(instructions, state);
2392    } else {
2393       const ast_expression *id = subexpressions[0];
2394       const char *func_name = NULL;
2395       YYLTYPE loc = get_location();
2396       exec_list actual_parameters;
2397       ir_variable *sub_var = NULL;
2398       ir_rvalue *array_idx = NULL;
2399 
2400       process_parameters(instructions, &actual_parameters, &this->expressions,
2401                          state);
2402 
2403       if (id->oper == ast_array_index) {
2404          array_idx = generate_array_index(ctx, instructions, state, loc,
2405                                           id->subexpressions[0],
2406                                           id->subexpressions[1], &func_name,
2407                                           &actual_parameters);
2408       } else if (id->oper == ast_identifier) {
2409          func_name = id->primary_expression.identifier;
2410       } else {
2411          _mesa_glsl_error(&loc, state, "function name is not an identifier");
2412       }
2413 
2414       /* an error was emitted earlier */
2415       if (!func_name)
2416          return ir_rvalue::error_value(ctx);
2417 
2418       ir_function_signature *sig =
2419          match_function_by_name(func_name, &actual_parameters, state);
2420 
2421       ir_rvalue *value = NULL;
2422       if (sig == NULL) {
2423          sig = match_subroutine_by_name(func_name, &actual_parameters,
2424                                         state, &sub_var);
2425       }
2426 
2427       if (sig == NULL) {
2428          no_matching_function_error(func_name, &loc,
2429                                     &actual_parameters, state);
2430          value = ir_rvalue::error_value(ctx);
2431       } else if (!verify_parameter_modes(state, sig,
2432                                          actual_parameters,
2433                                          this->expressions)) {
2434          /* an error has already been emitted */
2435          value = ir_rvalue::error_value(ctx);
2436       } else if (sig->is_builtin() && strcmp(func_name, "ftransform") == 0) {
2437          /* ftransform refers to global variables, and we don't have any code
2438           * for remapping the variable references in the built-in shader.
2439           */
2440          ir_variable *mvp =
2441             state->symbols->get_variable("gl_ModelViewProjectionMatrix");
2442          ir_variable *vtx = state->symbols->get_variable("gl_Vertex");
2443          value = new(ctx) ir_expression(ir_binop_mul, glsl_type::vec4_type,
2444                                         new(ctx) ir_dereference_variable(mvp),
2445                                         new(ctx) ir_dereference_variable(vtx));
2446       } else {
2447          bool is_begin_interlock = false;
2448          bool is_end_interlock = false;
2449          if (sig->is_builtin() &&
2450              state->stage == MESA_SHADER_FRAGMENT &&
2451              state->ARB_fragment_shader_interlock_enable) {
2452             is_begin_interlock = strcmp(func_name, "beginInvocationInterlockARB") == 0;
2453             is_end_interlock = strcmp(func_name, "endInvocationInterlockARB") == 0;
2454          }
2455 
2456          if (sig->is_builtin() &&
2457              ((state->stage == MESA_SHADER_TESS_CTRL &&
2458                strcmp(func_name, "barrier") == 0) ||
2459               is_begin_interlock || is_end_interlock)) {
2460             if (state->current_function == NULL ||
2461                 strcmp(state->current_function->function_name(), "main") != 0) {
2462                _mesa_glsl_error(&loc, state,
2463                                 "%s() may only be used in main()", func_name);
2464             }
2465 
2466             if (state->found_return) {
2467                _mesa_glsl_error(&loc, state,
2468                                 "%s() may not be used after return", func_name);
2469             }
2470 
2471             if (instructions != &state->current_function->body) {
2472                _mesa_glsl_error(&loc, state,
2473                                 "%s() may not be used in control flow", func_name);
2474             }
2475          }
2476 
2477          /* There can be only one begin/end interlock pair in the function. */
2478          if (is_begin_interlock) {
2479             if (state->found_begin_interlock)
2480                _mesa_glsl_error(&loc, state,
2481                                 "beginInvocationInterlockARB may not be used twice");
2482             state->found_begin_interlock = true;
2483          } else if (is_end_interlock) {
2484             if (!state->found_begin_interlock)
2485                _mesa_glsl_error(&loc, state,
2486                                 "endInvocationInterlockARB may not be used "
2487                                 "before beginInvocationInterlockARB");
2488             if (state->found_end_interlock)
2489                _mesa_glsl_error(&loc, state,
2490                                 "endInvocationInterlockARB may not be used twice");
2491             state->found_end_interlock = true;
2492          }
2493 
2494          value = generate_call(instructions, sig, &actual_parameters, sub_var,
2495                                array_idx, state);
2496          if (!value) {
2497             ir_variable *const tmp = new(ctx) ir_variable(glsl_type::void_type,
2498                                                           "void_var",
2499                                                           ir_var_temporary);
2500             instructions->push_tail(tmp);
2501             value = new(ctx) ir_dereference_variable(tmp);
2502          }
2503       }
2504 
2505       return value;
2506    }
2507 
2508    unreachable("not reached");
2509 }
2510 
2511 bool
has_sequence_subexpression() const2512 ast_function_expression::has_sequence_subexpression() const
2513 {
2514    foreach_list_typed(const ast_node, ast, link, &this->expressions) {
2515       if (ast->has_sequence_subexpression())
2516          return true;
2517    }
2518 
2519    return false;
2520 }
2521 
2522 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)2523 ast_aggregate_initializer::hir(exec_list *instructions,
2524                                struct _mesa_glsl_parse_state *state)
2525 {
2526    void *ctx = state;
2527    YYLTYPE loc = this->get_location();
2528 
2529    if (!this->constructor_type) {
2530       _mesa_glsl_error(&loc, state, "type of C-style initializer unknown");
2531       return ir_rvalue::error_value(ctx);
2532    }
2533    const glsl_type *const constructor_type = this->constructor_type;
2534 
2535    if (!state->has_420pack()) {
2536       _mesa_glsl_error(&loc, state, "C-style initialization requires the "
2537                        "GL_ARB_shading_language_420pack extension");
2538       return ir_rvalue::error_value(ctx);
2539    }
2540 
2541    if (constructor_type->is_array()) {
2542       return process_array_constructor(instructions, constructor_type, &loc,
2543                                        &this->expressions, state);
2544    }
2545 
2546    if (constructor_type->is_struct()) {
2547       return process_record_constructor(instructions, constructor_type, &loc,
2548                                         &this->expressions, state);
2549    }
2550 
2551    return process_vec_mat_constructor(instructions, constructor_type, &loc,
2552                                       &this->expressions, state);
2553 }
2554