• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the Base ARM implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "ARMBaseInstrInfo.h"
14 #include "ARMBaseRegisterInfo.h"
15 #include "ARMConstantPoolValue.h"
16 #include "ARMFeatures.h"
17 #include "ARMHazardRecognizer.h"
18 #include "ARMMachineFunctionInfo.h"
19 #include "ARMSubtarget.h"
20 #include "MCTargetDesc/ARMAddressingModes.h"
21 #include "MCTargetDesc/ARMBaseInfo.h"
22 #include "MVETailPredUtils.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/CodeGen/LiveVariables.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineConstantPool.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineInstr.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineMemOperand.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/CodeGen/MachineScheduler.h"
40 #include "llvm/CodeGen/MultiHazardRecognizer.h"
41 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
42 #include "llvm/CodeGen/SelectionDAGNodes.h"
43 #include "llvm/CodeGen/TargetInstrInfo.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSchedule.h"
46 #include "llvm/IR/Attributes.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DebugLoc.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/IR/GlobalValue.h"
51 #include "llvm/MC/MCAsmInfo.h"
52 #include "llvm/MC/MCInstrDesc.h"
53 #include "llvm/MC/MCInstrItineraries.h"
54 #include "llvm/Support/BranchProbability.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Compiler.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include "llvm/Target/TargetMachine.h"
62 #include <algorithm>
63 #include <cassert>
64 #include <cstdint>
65 #include <iterator>
66 #include <new>
67 #include <utility>
68 #include <vector>
69 
70 using namespace llvm;
71 
72 #define DEBUG_TYPE "arm-instrinfo"
73 
74 #define GET_INSTRINFO_CTOR_DTOR
75 #include "ARMGenInstrInfo.inc"
76 
77 static cl::opt<bool>
78 EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
79                cl::desc("Enable ARM 2-addr to 3-addr conv"));
80 
81 /// ARM_MLxEntry - Record information about MLA / MLS instructions.
82 struct ARM_MLxEntry {
83   uint16_t MLxOpc;     // MLA / MLS opcode
84   uint16_t MulOpc;     // Expanded multiplication opcode
85   uint16_t AddSubOpc;  // Expanded add / sub opcode
86   bool NegAcc;         // True if the acc is negated before the add / sub.
87   bool HasLane;        // True if instruction has an extra "lane" operand.
88 };
89 
90 static const ARM_MLxEntry ARM_MLxTable[] = {
91   // MLxOpc,          MulOpc,           AddSubOpc,       NegAcc, HasLane
92   // fp scalar ops
93   { ARM::VMLAS,       ARM::VMULS,       ARM::VADDS,      false,  false },
94   { ARM::VMLSS,       ARM::VMULS,       ARM::VSUBS,      false,  false },
95   { ARM::VMLAD,       ARM::VMULD,       ARM::VADDD,      false,  false },
96   { ARM::VMLSD,       ARM::VMULD,       ARM::VSUBD,      false,  false },
97   { ARM::VNMLAS,      ARM::VNMULS,      ARM::VSUBS,      true,   false },
98   { ARM::VNMLSS,      ARM::VMULS,       ARM::VSUBS,      true,   false },
99   { ARM::VNMLAD,      ARM::VNMULD,      ARM::VSUBD,      true,   false },
100   { ARM::VNMLSD,      ARM::VMULD,       ARM::VSUBD,      true,   false },
101 
102   // fp SIMD ops
103   { ARM::VMLAfd,      ARM::VMULfd,      ARM::VADDfd,     false,  false },
104   { ARM::VMLSfd,      ARM::VMULfd,      ARM::VSUBfd,     false,  false },
105   { ARM::VMLAfq,      ARM::VMULfq,      ARM::VADDfq,     false,  false },
106   { ARM::VMLSfq,      ARM::VMULfq,      ARM::VSUBfq,     false,  false },
107   { ARM::VMLAslfd,    ARM::VMULslfd,    ARM::VADDfd,     false,  true  },
108   { ARM::VMLSslfd,    ARM::VMULslfd,    ARM::VSUBfd,     false,  true  },
109   { ARM::VMLAslfq,    ARM::VMULslfq,    ARM::VADDfq,     false,  true  },
110   { ARM::VMLSslfq,    ARM::VMULslfq,    ARM::VSUBfq,     false,  true  },
111 };
112 
ARMBaseInstrInfo(const ARMSubtarget & STI)113 ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI)
114   : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
115     Subtarget(STI) {
116   for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) {
117     if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second)
118       llvm_unreachable("Duplicated entries?");
119     MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc);
120     MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc);
121   }
122 }
123 
124 // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl
125 // currently defaults to no prepass hazard recognizer.
126 ScheduleHazardRecognizer *
CreateTargetHazardRecognizer(const TargetSubtargetInfo * STI,const ScheduleDAG * DAG) const127 ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
128                                                const ScheduleDAG *DAG) const {
129   if (usePreRAHazardRecognizer()) {
130     const InstrItineraryData *II =
131         static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData();
132     return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched");
133   }
134   return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
135 }
136 
137 ScheduleHazardRecognizer *ARMBaseInstrInfo::
CreateTargetPostRAHazardRecognizer(const InstrItineraryData * II,const ScheduleDAG * DAG) const138 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
139                                    const ScheduleDAG *DAG) const {
140   MultiHazardRecognizer *MHR = new MultiHazardRecognizer();
141 
142   if (Subtarget.isThumb2() || Subtarget.hasVFP2Base())
143     MHR->AddHazardRecognizer(std::make_unique<ARMHazardRecognizerFPMLx>());
144 
145   auto BHR = TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
146   if (BHR)
147     MHR->AddHazardRecognizer(std::unique_ptr<ScheduleHazardRecognizer>(BHR));
148   return MHR;
149 }
150 
convertToThreeAddress(MachineFunction::iterator & MFI,MachineInstr & MI,LiveVariables * LV) const151 MachineInstr *ARMBaseInstrInfo::convertToThreeAddress(
152     MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const {
153   // FIXME: Thumb2 support.
154 
155   if (!EnableARM3Addr)
156     return nullptr;
157 
158   MachineFunction &MF = *MI.getParent()->getParent();
159   uint64_t TSFlags = MI.getDesc().TSFlags;
160   bool isPre = false;
161   switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
162   default: return nullptr;
163   case ARMII::IndexModePre:
164     isPre = true;
165     break;
166   case ARMII::IndexModePost:
167     break;
168   }
169 
170   // Try splitting an indexed load/store to an un-indexed one plus an add/sub
171   // operation.
172   unsigned MemOpc = getUnindexedOpcode(MI.getOpcode());
173   if (MemOpc == 0)
174     return nullptr;
175 
176   MachineInstr *UpdateMI = nullptr;
177   MachineInstr *MemMI = nullptr;
178   unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
179   const MCInstrDesc &MCID = MI.getDesc();
180   unsigned NumOps = MCID.getNumOperands();
181   bool isLoad = !MI.mayStore();
182   const MachineOperand &WB = isLoad ? MI.getOperand(1) : MI.getOperand(0);
183   const MachineOperand &Base = MI.getOperand(2);
184   const MachineOperand &Offset = MI.getOperand(NumOps - 3);
185   Register WBReg = WB.getReg();
186   Register BaseReg = Base.getReg();
187   Register OffReg = Offset.getReg();
188   unsigned OffImm = MI.getOperand(NumOps - 2).getImm();
189   ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI.getOperand(NumOps - 1).getImm();
190   switch (AddrMode) {
191   default: llvm_unreachable("Unknown indexed op!");
192   case ARMII::AddrMode2: {
193     bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
194     unsigned Amt = ARM_AM::getAM2Offset(OffImm);
195     if (OffReg == 0) {
196       if (ARM_AM::getSOImmVal(Amt) == -1)
197         // Can't encode it in a so_imm operand. This transformation will
198         // add more than 1 instruction. Abandon!
199         return nullptr;
200       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
201                          get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
202                      .addReg(BaseReg)
203                      .addImm(Amt)
204                      .add(predOps(Pred))
205                      .add(condCodeOp());
206     } else if (Amt != 0) {
207       ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
208       unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
209       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
210                          get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg)
211                      .addReg(BaseReg)
212                      .addReg(OffReg)
213                      .addReg(0)
214                      .addImm(SOOpc)
215                      .add(predOps(Pred))
216                      .add(condCodeOp());
217     } else
218       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
219                          get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
220                      .addReg(BaseReg)
221                      .addReg(OffReg)
222                      .add(predOps(Pred))
223                      .add(condCodeOp());
224     break;
225   }
226   case ARMII::AddrMode3 : {
227     bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
228     unsigned Amt = ARM_AM::getAM3Offset(OffImm);
229     if (OffReg == 0)
230       // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
231       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
232                          get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
233                      .addReg(BaseReg)
234                      .addImm(Amt)
235                      .add(predOps(Pred))
236                      .add(condCodeOp());
237     else
238       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
239                          get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
240                      .addReg(BaseReg)
241                      .addReg(OffReg)
242                      .add(predOps(Pred))
243                      .add(condCodeOp());
244     break;
245   }
246   }
247 
248   std::vector<MachineInstr*> NewMIs;
249   if (isPre) {
250     if (isLoad)
251       MemMI =
252           BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
253               .addReg(WBReg)
254               .addImm(0)
255               .addImm(Pred);
256     else
257       MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
258                   .addReg(MI.getOperand(1).getReg())
259                   .addReg(WBReg)
260                   .addReg(0)
261                   .addImm(0)
262                   .addImm(Pred);
263     NewMIs.push_back(MemMI);
264     NewMIs.push_back(UpdateMI);
265   } else {
266     if (isLoad)
267       MemMI =
268           BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
269               .addReg(BaseReg)
270               .addImm(0)
271               .addImm(Pred);
272     else
273       MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
274                   .addReg(MI.getOperand(1).getReg())
275                   .addReg(BaseReg)
276                   .addReg(0)
277                   .addImm(0)
278                   .addImm(Pred);
279     if (WB.isDead())
280       UpdateMI->getOperand(0).setIsDead();
281     NewMIs.push_back(UpdateMI);
282     NewMIs.push_back(MemMI);
283   }
284 
285   // Transfer LiveVariables states, kill / dead info.
286   if (LV) {
287     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
288       MachineOperand &MO = MI.getOperand(i);
289       if (MO.isReg() && Register::isVirtualRegister(MO.getReg())) {
290         Register Reg = MO.getReg();
291 
292         LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
293         if (MO.isDef()) {
294           MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
295           if (MO.isDead())
296             LV->addVirtualRegisterDead(Reg, *NewMI);
297         }
298         if (MO.isUse() && MO.isKill()) {
299           for (unsigned j = 0; j < 2; ++j) {
300             // Look at the two new MI's in reverse order.
301             MachineInstr *NewMI = NewMIs[j];
302             if (!NewMI->readsRegister(Reg))
303               continue;
304             LV->addVirtualRegisterKilled(Reg, *NewMI);
305             if (VI.removeKill(MI))
306               VI.Kills.push_back(NewMI);
307             break;
308           }
309         }
310       }
311     }
312   }
313 
314   MachineBasicBlock::iterator MBBI = MI.getIterator();
315   MFI->insert(MBBI, NewMIs[1]);
316   MFI->insert(MBBI, NewMIs[0]);
317   return NewMIs[0];
318 }
319 
320 // Branch analysis.
analyzeBranch(MachineBasicBlock & MBB,MachineBasicBlock * & TBB,MachineBasicBlock * & FBB,SmallVectorImpl<MachineOperand> & Cond,bool AllowModify) const321 bool ARMBaseInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
322                                      MachineBasicBlock *&TBB,
323                                      MachineBasicBlock *&FBB,
324                                      SmallVectorImpl<MachineOperand> &Cond,
325                                      bool AllowModify) const {
326   TBB = nullptr;
327   FBB = nullptr;
328 
329   MachineBasicBlock::instr_iterator I = MBB.instr_end();
330   if (I == MBB.instr_begin())
331     return false; // Empty blocks are easy.
332   --I;
333 
334   // Walk backwards from the end of the basic block until the branch is
335   // analyzed or we give up.
336   while (isPredicated(*I) || I->isTerminator() || I->isDebugValue()) {
337     // Flag to be raised on unanalyzeable instructions. This is useful in cases
338     // where we want to clean up on the end of the basic block before we bail
339     // out.
340     bool CantAnalyze = false;
341 
342     // Skip over DEBUG values and predicated nonterminators.
343     while (I->isDebugInstr() || !I->isTerminator()) {
344       if (I == MBB.instr_begin())
345         return false;
346       --I;
347     }
348 
349     if (isIndirectBranchOpcode(I->getOpcode()) ||
350         isJumpTableBranchOpcode(I->getOpcode())) {
351       // Indirect branches and jump tables can't be analyzed, but we still want
352       // to clean up any instructions at the tail of the basic block.
353       CantAnalyze = true;
354     } else if (isUncondBranchOpcode(I->getOpcode())) {
355       TBB = I->getOperand(0).getMBB();
356     } else if (isCondBranchOpcode(I->getOpcode())) {
357       // Bail out if we encounter multiple conditional branches.
358       if (!Cond.empty())
359         return true;
360 
361       assert(!FBB && "FBB should have been null.");
362       FBB = TBB;
363       TBB = I->getOperand(0).getMBB();
364       Cond.push_back(I->getOperand(1));
365       Cond.push_back(I->getOperand(2));
366     } else if (I->isReturn()) {
367       // Returns can't be analyzed, but we should run cleanup.
368       CantAnalyze = true;
369     } else {
370       // We encountered other unrecognized terminator. Bail out immediately.
371       return true;
372     }
373 
374     // Cleanup code - to be run for unpredicated unconditional branches and
375     //                returns.
376     if (!isPredicated(*I) &&
377           (isUncondBranchOpcode(I->getOpcode()) ||
378            isIndirectBranchOpcode(I->getOpcode()) ||
379            isJumpTableBranchOpcode(I->getOpcode()) ||
380            I->isReturn())) {
381       // Forget any previous condition branch information - it no longer applies.
382       Cond.clear();
383       FBB = nullptr;
384 
385       // If we can modify the function, delete everything below this
386       // unconditional branch.
387       if (AllowModify) {
388         MachineBasicBlock::iterator DI = std::next(I);
389         while (DI != MBB.instr_end()) {
390           MachineInstr &InstToDelete = *DI;
391           ++DI;
392           InstToDelete.eraseFromParent();
393         }
394       }
395     }
396 
397     if (CantAnalyze) {
398       // We may not be able to analyze the block, but we could still have
399       // an unconditional branch as the last instruction in the block, which
400       // just branches to layout successor. If this is the case, then just
401       // remove it if we're allowed to make modifications.
402       if (AllowModify && !isPredicated(MBB.back()) &&
403           isUncondBranchOpcode(MBB.back().getOpcode()) &&
404           TBB && MBB.isLayoutSuccessor(TBB))
405         removeBranch(MBB);
406       return true;
407     }
408 
409     if (I == MBB.instr_begin())
410       return false;
411 
412     --I;
413   }
414 
415   // We made it past the terminators without bailing out - we must have
416   // analyzed this branch successfully.
417   return false;
418 }
419 
removeBranch(MachineBasicBlock & MBB,int * BytesRemoved) const420 unsigned ARMBaseInstrInfo::removeBranch(MachineBasicBlock &MBB,
421                                         int *BytesRemoved) const {
422   assert(!BytesRemoved && "code size not handled");
423 
424   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
425   if (I == MBB.end())
426     return 0;
427 
428   if (!isUncondBranchOpcode(I->getOpcode()) &&
429       !isCondBranchOpcode(I->getOpcode()))
430     return 0;
431 
432   // Remove the branch.
433   I->eraseFromParent();
434 
435   I = MBB.end();
436 
437   if (I == MBB.begin()) return 1;
438   --I;
439   if (!isCondBranchOpcode(I->getOpcode()))
440     return 1;
441 
442   // Remove the branch.
443   I->eraseFromParent();
444   return 2;
445 }
446 
insertBranch(MachineBasicBlock & MBB,MachineBasicBlock * TBB,MachineBasicBlock * FBB,ArrayRef<MachineOperand> Cond,const DebugLoc & DL,int * BytesAdded) const447 unsigned ARMBaseInstrInfo::insertBranch(MachineBasicBlock &MBB,
448                                         MachineBasicBlock *TBB,
449                                         MachineBasicBlock *FBB,
450                                         ArrayRef<MachineOperand> Cond,
451                                         const DebugLoc &DL,
452                                         int *BytesAdded) const {
453   assert(!BytesAdded && "code size not handled");
454   ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>();
455   int BOpc   = !AFI->isThumbFunction()
456     ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB);
457   int BccOpc = !AFI->isThumbFunction()
458     ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc);
459   bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function();
460 
461   // Shouldn't be a fall through.
462   assert(TBB && "insertBranch must not be told to insert a fallthrough");
463   assert((Cond.size() == 2 || Cond.size() == 0) &&
464          "ARM branch conditions have two components!");
465 
466   // For conditional branches, we use addOperand to preserve CPSR flags.
467 
468   if (!FBB) {
469     if (Cond.empty()) { // Unconditional branch?
470       if (isThumb)
471         BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).add(predOps(ARMCC::AL));
472       else
473         BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
474     } else
475       BuildMI(&MBB, DL, get(BccOpc))
476           .addMBB(TBB)
477           .addImm(Cond[0].getImm())
478           .add(Cond[1]);
479     return 1;
480   }
481 
482   // Two-way conditional branch.
483   BuildMI(&MBB, DL, get(BccOpc))
484       .addMBB(TBB)
485       .addImm(Cond[0].getImm())
486       .add(Cond[1]);
487   if (isThumb)
488     BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).add(predOps(ARMCC::AL));
489   else
490     BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
491   return 2;
492 }
493 
494 bool ARMBaseInstrInfo::
reverseBranchCondition(SmallVectorImpl<MachineOperand> & Cond) const495 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
496   ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
497   Cond[0].setImm(ARMCC::getOppositeCondition(CC));
498   return false;
499 }
500 
isPredicated(const MachineInstr & MI) const501 bool ARMBaseInstrInfo::isPredicated(const MachineInstr &MI) const {
502   if (MI.isBundle()) {
503     MachineBasicBlock::const_instr_iterator I = MI.getIterator();
504     MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
505     while (++I != E && I->isInsideBundle()) {
506       int PIdx = I->findFirstPredOperandIdx();
507       if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL)
508         return true;
509     }
510     return false;
511   }
512 
513   int PIdx = MI.findFirstPredOperandIdx();
514   return PIdx != -1 && MI.getOperand(PIdx).getImm() != ARMCC::AL;
515 }
516 
createMIROperandComment(const MachineInstr & MI,const MachineOperand & Op,unsigned OpIdx,const TargetRegisterInfo * TRI) const517 std::string ARMBaseInstrInfo::createMIROperandComment(
518     const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx,
519     const TargetRegisterInfo *TRI) const {
520 
521   // First, let's see if there is a generic comment for this operand
522   std::string GenericComment =
523       TargetInstrInfo::createMIROperandComment(MI, Op, OpIdx, TRI);
524   if (!GenericComment.empty())
525     return GenericComment;
526 
527   // If not, check if we have an immediate operand.
528   if (Op.getType() != MachineOperand::MO_Immediate)
529     return std::string();
530 
531   // And print its corresponding condition code if the immediate is a
532   // predicate.
533   int FirstPredOp = MI.findFirstPredOperandIdx();
534   if (FirstPredOp != (int) OpIdx)
535     return std::string();
536 
537   std::string CC = "CC::";
538   CC += ARMCondCodeToString((ARMCC::CondCodes)Op.getImm());
539   return CC;
540 }
541 
PredicateInstruction(MachineInstr & MI,ArrayRef<MachineOperand> Pred) const542 bool ARMBaseInstrInfo::PredicateInstruction(
543     MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
544   unsigned Opc = MI.getOpcode();
545   if (isUncondBranchOpcode(Opc)) {
546     MI.setDesc(get(getMatchingCondBranchOpcode(Opc)));
547     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
548       .addImm(Pred[0].getImm())
549       .addReg(Pred[1].getReg());
550     return true;
551   }
552 
553   int PIdx = MI.findFirstPredOperandIdx();
554   if (PIdx != -1) {
555     MachineOperand &PMO = MI.getOperand(PIdx);
556     PMO.setImm(Pred[0].getImm());
557     MI.getOperand(PIdx+1).setReg(Pred[1].getReg());
558 
559     // Thumb 1 arithmetic instructions do not set CPSR when executed inside an
560     // IT block. This affects how they are printed.
561     const MCInstrDesc &MCID = MI.getDesc();
562     if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) {
563       assert(MCID.OpInfo[1].isOptionalDef() && "CPSR def isn't expected operand");
564       assert((MI.getOperand(1).isDead() ||
565               MI.getOperand(1).getReg() != ARM::CPSR) &&
566              "if conversion tried to stop defining used CPSR");
567       MI.getOperand(1).setReg(ARM::NoRegister);
568     }
569 
570     return true;
571   }
572   return false;
573 }
574 
SubsumesPredicate(ArrayRef<MachineOperand> Pred1,ArrayRef<MachineOperand> Pred2) const575 bool ARMBaseInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
576                                          ArrayRef<MachineOperand> Pred2) const {
577   if (Pred1.size() > 2 || Pred2.size() > 2)
578     return false;
579 
580   ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
581   ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
582   if (CC1 == CC2)
583     return true;
584 
585   switch (CC1) {
586   default:
587     return false;
588   case ARMCC::AL:
589     return true;
590   case ARMCC::HS:
591     return CC2 == ARMCC::HI;
592   case ARMCC::LS:
593     return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
594   case ARMCC::GE:
595     return CC2 == ARMCC::GT;
596   case ARMCC::LE:
597     return CC2 == ARMCC::LT;
598   }
599 }
600 
ClobbersPredicate(MachineInstr & MI,std::vector<MachineOperand> & Pred,bool SkipDead) const601 bool ARMBaseInstrInfo::ClobbersPredicate(MachineInstr &MI,
602                                          std::vector<MachineOperand> &Pred,
603                                          bool SkipDead) const {
604   bool Found = false;
605   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
606     const MachineOperand &MO = MI.getOperand(i);
607     bool ClobbersCPSR = MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR);
608     bool IsCPSR = MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR;
609     if (ClobbersCPSR || IsCPSR) {
610 
611       // Filter out T1 instructions that have a dead CPSR,
612       // allowing IT blocks to be generated containing T1 instructions
613       const MCInstrDesc &MCID = MI.getDesc();
614       if (MCID.TSFlags & ARMII::ThumbArithFlagSetting && MO.isDead() &&
615           SkipDead)
616         continue;
617 
618       Pred.push_back(MO);
619       Found = true;
620     }
621   }
622 
623   return Found;
624 }
625 
isCPSRDefined(const MachineInstr & MI)626 bool ARMBaseInstrInfo::isCPSRDefined(const MachineInstr &MI) {
627   for (const auto &MO : MI.operands())
628     if (MO.isReg() && MO.getReg() == ARM::CPSR && MO.isDef() && !MO.isDead())
629       return true;
630   return false;
631 }
632 
isEligibleForITBlock(const MachineInstr * MI)633 static bool isEligibleForITBlock(const MachineInstr *MI) {
634   switch (MI->getOpcode()) {
635   default: return true;
636   case ARM::tADC:   // ADC (register) T1
637   case ARM::tADDi3: // ADD (immediate) T1
638   case ARM::tADDi8: // ADD (immediate) T2
639   case ARM::tADDrr: // ADD (register) T1
640   case ARM::tAND:   // AND (register) T1
641   case ARM::tASRri: // ASR (immediate) T1
642   case ARM::tASRrr: // ASR (register) T1
643   case ARM::tBIC:   // BIC (register) T1
644   case ARM::tEOR:   // EOR (register) T1
645   case ARM::tLSLri: // LSL (immediate) T1
646   case ARM::tLSLrr: // LSL (register) T1
647   case ARM::tLSRri: // LSR (immediate) T1
648   case ARM::tLSRrr: // LSR (register) T1
649   case ARM::tMUL:   // MUL T1
650   case ARM::tMVN:   // MVN (register) T1
651   case ARM::tORR:   // ORR (register) T1
652   case ARM::tROR:   // ROR (register) T1
653   case ARM::tRSB:   // RSB (immediate) T1
654   case ARM::tSBC:   // SBC (register) T1
655   case ARM::tSUBi3: // SUB (immediate) T1
656   case ARM::tSUBi8: // SUB (immediate) T2
657   case ARM::tSUBrr: // SUB (register) T1
658     return !ARMBaseInstrInfo::isCPSRDefined(*MI);
659   }
660 }
661 
662 /// isPredicable - Return true if the specified instruction can be predicated.
663 /// By default, this returns true for every instruction with a
664 /// PredicateOperand.
isPredicable(const MachineInstr & MI) const665 bool ARMBaseInstrInfo::isPredicable(const MachineInstr &MI) const {
666   if (!MI.isPredicable())
667     return false;
668 
669   if (MI.isBundle())
670     return false;
671 
672   if (!isEligibleForITBlock(&MI))
673     return false;
674 
675   const ARMFunctionInfo *AFI =
676       MI.getParent()->getParent()->getInfo<ARMFunctionInfo>();
677 
678   // Neon instructions in Thumb2 IT blocks are deprecated, see ARMARM.
679   // In their ARM encoding, they can't be encoded in a conditional form.
680   if ((MI.getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON)
681     return false;
682 
683   if (AFI->isThumb2Function()) {
684     if (getSubtarget().restrictIT())
685       return isV8EligibleForIT(&MI);
686   }
687 
688   return true;
689 }
690 
691 namespace llvm {
692 
IsCPSRDead(const MachineInstr * MI)693 template <> bool IsCPSRDead<MachineInstr>(const MachineInstr *MI) {
694   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
695     const MachineOperand &MO = MI->getOperand(i);
696     if (!MO.isReg() || MO.isUndef() || MO.isUse())
697       continue;
698     if (MO.getReg() != ARM::CPSR)
699       continue;
700     if (!MO.isDead())
701       return false;
702   }
703   // all definitions of CPSR are dead
704   return true;
705 }
706 
707 } // end namespace llvm
708 
709 /// GetInstSize - Return the size of the specified MachineInstr.
710 ///
getInstSizeInBytes(const MachineInstr & MI) const711 unsigned ARMBaseInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
712   const MachineBasicBlock &MBB = *MI.getParent();
713   const MachineFunction *MF = MBB.getParent();
714   const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
715 
716   const MCInstrDesc &MCID = MI.getDesc();
717   if (MCID.getSize())
718     return MCID.getSize();
719 
720   switch (MI.getOpcode()) {
721   default:
722     // pseudo-instruction sizes are zero.
723     return 0;
724   case TargetOpcode::BUNDLE:
725     return getInstBundleLength(MI);
726   case ARM::MOVi16_ga_pcrel:
727   case ARM::MOVTi16_ga_pcrel:
728   case ARM::t2MOVi16_ga_pcrel:
729   case ARM::t2MOVTi16_ga_pcrel:
730     return 4;
731   case ARM::MOVi32imm:
732   case ARM::t2MOVi32imm:
733     return 8;
734   case ARM::CONSTPOOL_ENTRY:
735   case ARM::JUMPTABLE_INSTS:
736   case ARM::JUMPTABLE_ADDRS:
737   case ARM::JUMPTABLE_TBB:
738   case ARM::JUMPTABLE_TBH:
739     // If this machine instr is a constant pool entry, its size is recorded as
740     // operand #2.
741     return MI.getOperand(2).getImm();
742   case ARM::Int_eh_sjlj_longjmp:
743     return 16;
744   case ARM::tInt_eh_sjlj_longjmp:
745     return 10;
746   case ARM::tInt_WIN_eh_sjlj_longjmp:
747     return 12;
748   case ARM::Int_eh_sjlj_setjmp:
749   case ARM::Int_eh_sjlj_setjmp_nofp:
750     return 20;
751   case ARM::tInt_eh_sjlj_setjmp:
752   case ARM::t2Int_eh_sjlj_setjmp:
753   case ARM::t2Int_eh_sjlj_setjmp_nofp:
754     return 12;
755   case ARM::SPACE:
756     return MI.getOperand(1).getImm();
757   case ARM::INLINEASM:
758   case ARM::INLINEASM_BR: {
759     // If this machine instr is an inline asm, measure it.
760     unsigned Size = getInlineAsmLength(MI.getOperand(0).getSymbolName(), *MAI);
761     if (!MF->getInfo<ARMFunctionInfo>()->isThumbFunction())
762       Size = alignTo(Size, 4);
763     return Size;
764   }
765   }
766 }
767 
getInstBundleLength(const MachineInstr & MI) const768 unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr &MI) const {
769   unsigned Size = 0;
770   MachineBasicBlock::const_instr_iterator I = MI.getIterator();
771   MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
772   while (++I != E && I->isInsideBundle()) {
773     assert(!I->isBundle() && "No nested bundle!");
774     Size += getInstSizeInBytes(*I);
775   }
776   return Size;
777 }
778 
copyFromCPSR(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,unsigned DestReg,bool KillSrc,const ARMSubtarget & Subtarget) const779 void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock &MBB,
780                                     MachineBasicBlock::iterator I,
781                                     unsigned DestReg, bool KillSrc,
782                                     const ARMSubtarget &Subtarget) const {
783   unsigned Opc = Subtarget.isThumb()
784                      ? (Subtarget.isMClass() ? ARM::t2MRS_M : ARM::t2MRS_AR)
785                      : ARM::MRS;
786 
787   MachineInstrBuilder MIB =
788       BuildMI(MBB, I, I->getDebugLoc(), get(Opc), DestReg);
789 
790   // There is only 1 A/R class MRS instruction, and it always refers to
791   // APSR. However, there are lots of other possibilities on M-class cores.
792   if (Subtarget.isMClass())
793     MIB.addImm(0x800);
794 
795   MIB.add(predOps(ARMCC::AL))
796      .addReg(ARM::CPSR, RegState::Implicit | getKillRegState(KillSrc));
797 }
798 
copyToCPSR(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,unsigned SrcReg,bool KillSrc,const ARMSubtarget & Subtarget) const799 void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock &MBB,
800                                   MachineBasicBlock::iterator I,
801                                   unsigned SrcReg, bool KillSrc,
802                                   const ARMSubtarget &Subtarget) const {
803   unsigned Opc = Subtarget.isThumb()
804                      ? (Subtarget.isMClass() ? ARM::t2MSR_M : ARM::t2MSR_AR)
805                      : ARM::MSR;
806 
807   MachineInstrBuilder MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Opc));
808 
809   if (Subtarget.isMClass())
810     MIB.addImm(0x800);
811   else
812     MIB.addImm(8);
813 
814   MIB.addReg(SrcReg, getKillRegState(KillSrc))
815      .add(predOps(ARMCC::AL))
816      .addReg(ARM::CPSR, RegState::Implicit | RegState::Define);
817 }
818 
addUnpredicatedMveVpredNOp(MachineInstrBuilder & MIB)819 void llvm::addUnpredicatedMveVpredNOp(MachineInstrBuilder &MIB) {
820   MIB.addImm(ARMVCC::None);
821   MIB.addReg(0);
822 }
823 
addUnpredicatedMveVpredROp(MachineInstrBuilder & MIB,Register DestReg)824 void llvm::addUnpredicatedMveVpredROp(MachineInstrBuilder &MIB,
825                                       Register DestReg) {
826   addUnpredicatedMveVpredNOp(MIB);
827   MIB.addReg(DestReg, RegState::Undef);
828 }
829 
addPredicatedMveVpredNOp(MachineInstrBuilder & MIB,unsigned Cond)830 void llvm::addPredicatedMveVpredNOp(MachineInstrBuilder &MIB, unsigned Cond) {
831   MIB.addImm(Cond);
832   MIB.addReg(ARM::VPR, RegState::Implicit);
833 }
834 
addPredicatedMveVpredROp(MachineInstrBuilder & MIB,unsigned Cond,unsigned Inactive)835 void llvm::addPredicatedMveVpredROp(MachineInstrBuilder &MIB,
836                                     unsigned Cond, unsigned Inactive) {
837   addPredicatedMveVpredNOp(MIB, Cond);
838   MIB.addReg(Inactive);
839 }
840 
copyPhysReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,const DebugLoc & DL,MCRegister DestReg,MCRegister SrcReg,bool KillSrc) const841 void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
842                                    MachineBasicBlock::iterator I,
843                                    const DebugLoc &DL, MCRegister DestReg,
844                                    MCRegister SrcReg, bool KillSrc) const {
845   bool GPRDest = ARM::GPRRegClass.contains(DestReg);
846   bool GPRSrc = ARM::GPRRegClass.contains(SrcReg);
847 
848   if (GPRDest && GPRSrc) {
849     BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg)
850         .addReg(SrcReg, getKillRegState(KillSrc))
851         .add(predOps(ARMCC::AL))
852         .add(condCodeOp());
853     return;
854   }
855 
856   bool SPRDest = ARM::SPRRegClass.contains(DestReg);
857   bool SPRSrc = ARM::SPRRegClass.contains(SrcReg);
858 
859   unsigned Opc = 0;
860   if (SPRDest && SPRSrc)
861     Opc = ARM::VMOVS;
862   else if (GPRDest && SPRSrc)
863     Opc = ARM::VMOVRS;
864   else if (SPRDest && GPRSrc)
865     Opc = ARM::VMOVSR;
866   else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && Subtarget.hasFP64())
867     Opc = ARM::VMOVD;
868   else if (ARM::QPRRegClass.contains(DestReg, SrcReg))
869     Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR;
870 
871   if (Opc) {
872     MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg);
873     MIB.addReg(SrcReg, getKillRegState(KillSrc));
874     if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR)
875       MIB.addReg(SrcReg, getKillRegState(KillSrc));
876     if (Opc == ARM::MVE_VORR)
877       addUnpredicatedMveVpredROp(MIB, DestReg);
878     else
879       MIB.add(predOps(ARMCC::AL));
880     return;
881   }
882 
883   // Handle register classes that require multiple instructions.
884   unsigned BeginIdx = 0;
885   unsigned SubRegs = 0;
886   int Spacing = 1;
887 
888   // Use VORRq when possible.
889   if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) {
890     Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR;
891     BeginIdx = ARM::qsub_0;
892     SubRegs = 2;
893   } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) {
894     Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR;
895     BeginIdx = ARM::qsub_0;
896     SubRegs = 4;
897   // Fall back to VMOVD.
898   } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) {
899     Opc = ARM::VMOVD;
900     BeginIdx = ARM::dsub_0;
901     SubRegs = 2;
902   } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) {
903     Opc = ARM::VMOVD;
904     BeginIdx = ARM::dsub_0;
905     SubRegs = 3;
906   } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) {
907     Opc = ARM::VMOVD;
908     BeginIdx = ARM::dsub_0;
909     SubRegs = 4;
910   } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) {
911     Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr;
912     BeginIdx = ARM::gsub_0;
913     SubRegs = 2;
914   } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) {
915     Opc = ARM::VMOVD;
916     BeginIdx = ARM::dsub_0;
917     SubRegs = 2;
918     Spacing = 2;
919   } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) {
920     Opc = ARM::VMOVD;
921     BeginIdx = ARM::dsub_0;
922     SubRegs = 3;
923     Spacing = 2;
924   } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) {
925     Opc = ARM::VMOVD;
926     BeginIdx = ARM::dsub_0;
927     SubRegs = 4;
928     Spacing = 2;
929   } else if (ARM::DPRRegClass.contains(DestReg, SrcReg) &&
930              !Subtarget.hasFP64()) {
931     Opc = ARM::VMOVS;
932     BeginIdx = ARM::ssub_0;
933     SubRegs = 2;
934   } else if (SrcReg == ARM::CPSR) {
935     copyFromCPSR(MBB, I, DestReg, KillSrc, Subtarget);
936     return;
937   } else if (DestReg == ARM::CPSR) {
938     copyToCPSR(MBB, I, SrcReg, KillSrc, Subtarget);
939     return;
940   } else if (DestReg == ARM::VPR) {
941     assert(ARM::GPRRegClass.contains(SrcReg));
942     BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_P0), DestReg)
943         .addReg(SrcReg, getKillRegState(KillSrc))
944         .add(predOps(ARMCC::AL));
945     return;
946   } else if (SrcReg == ARM::VPR) {
947     assert(ARM::GPRRegClass.contains(DestReg));
948     BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_P0), DestReg)
949         .addReg(SrcReg, getKillRegState(KillSrc))
950         .add(predOps(ARMCC::AL));
951     return;
952   } else if (DestReg == ARM::FPSCR_NZCV) {
953     assert(ARM::GPRRegClass.contains(SrcReg));
954     BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_FPSCR_NZCVQC), DestReg)
955         .addReg(SrcReg, getKillRegState(KillSrc))
956         .add(predOps(ARMCC::AL));
957     return;
958   } else if (SrcReg == ARM::FPSCR_NZCV) {
959     assert(ARM::GPRRegClass.contains(DestReg));
960     BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_FPSCR_NZCVQC), DestReg)
961         .addReg(SrcReg, getKillRegState(KillSrc))
962         .add(predOps(ARMCC::AL));
963     return;
964   }
965 
966   assert(Opc && "Impossible reg-to-reg copy");
967 
968   const TargetRegisterInfo *TRI = &getRegisterInfo();
969   MachineInstrBuilder Mov;
970 
971   // Copy register tuples backward when the first Dest reg overlaps with SrcReg.
972   if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) {
973     BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing);
974     Spacing = -Spacing;
975   }
976 #ifndef NDEBUG
977   SmallSet<unsigned, 4> DstRegs;
978 #endif
979   for (unsigned i = 0; i != SubRegs; ++i) {
980     Register Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing);
981     Register Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing);
982     assert(Dst && Src && "Bad sub-register");
983 #ifndef NDEBUG
984     assert(!DstRegs.count(Src) && "destructive vector copy");
985     DstRegs.insert(Dst);
986 #endif
987     Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src);
988     // VORR (NEON or MVE) takes two source operands.
989     if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR) {
990       Mov.addReg(Src);
991     }
992     // MVE VORR takes predicate operands in place of an ordinary condition.
993     if (Opc == ARM::MVE_VORR)
994       addUnpredicatedMveVpredROp(Mov, Dst);
995     else
996       Mov = Mov.add(predOps(ARMCC::AL));
997     // MOVr can set CC.
998     if (Opc == ARM::MOVr)
999       Mov = Mov.add(condCodeOp());
1000   }
1001   // Add implicit super-register defs and kills to the last instruction.
1002   Mov->addRegisterDefined(DestReg, TRI);
1003   if (KillSrc)
1004     Mov->addRegisterKilled(SrcReg, TRI);
1005 }
1006 
1007 Optional<DestSourcePair>
isCopyInstrImpl(const MachineInstr & MI) const1008 ARMBaseInstrInfo::isCopyInstrImpl(const MachineInstr &MI) const {
1009   // VMOVRRD is also a copy instruction but it requires
1010   // special way of handling. It is more complex copy version
1011   // and since that we are not considering it. For recognition
1012   // of such instruction isExtractSubregLike MI interface fuction
1013   // could be used.
1014   // VORRq is considered as a move only if two inputs are
1015   // the same register.
1016   if (!MI.isMoveReg() ||
1017       (MI.getOpcode() == ARM::VORRq &&
1018        MI.getOperand(1).getReg() != MI.getOperand(2).getReg()))
1019     return None;
1020   return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
1021 }
1022 
1023 Optional<ParamLoadedValue>
describeLoadedValue(const MachineInstr & MI,Register Reg) const1024 ARMBaseInstrInfo::describeLoadedValue(const MachineInstr &MI,
1025                                       Register Reg) const {
1026   if (auto DstSrcPair = isCopyInstrImpl(MI)) {
1027     Register DstReg = DstSrcPair->Destination->getReg();
1028 
1029     // TODO: We don't handle cases where the forwarding reg is narrower/wider
1030     // than the copy registers. Consider for example:
1031     //
1032     //   s16 = VMOVS s0
1033     //   s17 = VMOVS s1
1034     //   call @callee(d0)
1035     //
1036     // We'd like to describe the call site value of d0 as d8, but this requires
1037     // gathering and merging the descriptions for the two VMOVS instructions.
1038     //
1039     // We also don't handle the reverse situation, where the forwarding reg is
1040     // narrower than the copy destination:
1041     //
1042     //   d8 = VMOVD d0
1043     //   call @callee(s1)
1044     //
1045     // We need to produce a fragment description (the call site value of s1 is
1046     // /not/ just d8).
1047     if (DstReg != Reg)
1048       return None;
1049   }
1050   return TargetInstrInfo::describeLoadedValue(MI, Reg);
1051 }
1052 
1053 const MachineInstrBuilder &
AddDReg(MachineInstrBuilder & MIB,unsigned Reg,unsigned SubIdx,unsigned State,const TargetRegisterInfo * TRI) const1054 ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg,
1055                           unsigned SubIdx, unsigned State,
1056                           const TargetRegisterInfo *TRI) const {
1057   if (!SubIdx)
1058     return MIB.addReg(Reg, State);
1059 
1060   if (Register::isPhysicalRegister(Reg))
1061     return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
1062   return MIB.addReg(Reg, State, SubIdx);
1063 }
1064 
1065 void ARMBaseInstrInfo::
storeRegToStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,Register SrcReg,bool isKill,int FI,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const1066 storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
1067                     Register SrcReg, bool isKill, int FI,
1068                     const TargetRegisterClass *RC,
1069                     const TargetRegisterInfo *TRI) const {
1070   MachineFunction &MF = *MBB.getParent();
1071   MachineFrameInfo &MFI = MF.getFrameInfo();
1072   Align Alignment = MFI.getObjectAlign(FI);
1073 
1074   MachineMemOperand *MMO = MF.getMachineMemOperand(
1075       MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
1076       MFI.getObjectSize(FI), Alignment);
1077 
1078   switch (TRI->getSpillSize(*RC)) {
1079     case 2:
1080       if (ARM::HPRRegClass.hasSubClassEq(RC)) {
1081         BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRH))
1082             .addReg(SrcReg, getKillRegState(isKill))
1083             .addFrameIndex(FI)
1084             .addImm(0)
1085             .addMemOperand(MMO)
1086             .add(predOps(ARMCC::AL));
1087       } else
1088         llvm_unreachable("Unknown reg class!");
1089       break;
1090     case 4:
1091       if (ARM::GPRRegClass.hasSubClassEq(RC)) {
1092         BuildMI(MBB, I, DebugLoc(), get(ARM::STRi12))
1093             .addReg(SrcReg, getKillRegState(isKill))
1094             .addFrameIndex(FI)
1095             .addImm(0)
1096             .addMemOperand(MMO)
1097             .add(predOps(ARMCC::AL));
1098       } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
1099         BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRS))
1100             .addReg(SrcReg, getKillRegState(isKill))
1101             .addFrameIndex(FI)
1102             .addImm(0)
1103             .addMemOperand(MMO)
1104             .add(predOps(ARMCC::AL));
1105       } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) {
1106         BuildMI(MBB, I, DebugLoc(), get(ARM::VSTR_P0_off))
1107             .addReg(SrcReg, getKillRegState(isKill))
1108             .addFrameIndex(FI)
1109             .addImm(0)
1110             .addMemOperand(MMO)
1111             .add(predOps(ARMCC::AL));
1112       } else
1113         llvm_unreachable("Unknown reg class!");
1114       break;
1115     case 8:
1116       if (ARM::DPRRegClass.hasSubClassEq(RC)) {
1117         BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRD))
1118             .addReg(SrcReg, getKillRegState(isKill))
1119             .addFrameIndex(FI)
1120             .addImm(0)
1121             .addMemOperand(MMO)
1122             .add(predOps(ARMCC::AL));
1123       } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
1124         if (Subtarget.hasV5TEOps()) {
1125           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STRD));
1126           AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
1127           AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
1128           MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO)
1129              .add(predOps(ARMCC::AL));
1130         } else {
1131           // Fallback to STM instruction, which has existed since the dawn of
1132           // time.
1133           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STMIA))
1134                                         .addFrameIndex(FI)
1135                                         .addMemOperand(MMO)
1136                                         .add(predOps(ARMCC::AL));
1137           AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
1138           AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
1139         }
1140       } else
1141         llvm_unreachable("Unknown reg class!");
1142       break;
1143     case 16:
1144       if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) {
1145         // Use aligned spills if the stack can be realigned.
1146         if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) {
1147           BuildMI(MBB, I, DebugLoc(), get(ARM::VST1q64))
1148               .addFrameIndex(FI)
1149               .addImm(16)
1150               .addReg(SrcReg, getKillRegState(isKill))
1151               .addMemOperand(MMO)
1152               .add(predOps(ARMCC::AL));
1153         } else {
1154           BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMQIA))
1155               .addReg(SrcReg, getKillRegState(isKill))
1156               .addFrameIndex(FI)
1157               .addMemOperand(MMO)
1158               .add(predOps(ARMCC::AL));
1159         }
1160       } else if (ARM::QPRRegClass.hasSubClassEq(RC) &&
1161                  Subtarget.hasMVEIntegerOps()) {
1162         auto MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::MVE_VSTRWU32));
1163         MIB.addReg(SrcReg, getKillRegState(isKill))
1164           .addFrameIndex(FI)
1165           .addImm(0)
1166           .addMemOperand(MMO);
1167         addUnpredicatedMveVpredNOp(MIB);
1168       } else
1169         llvm_unreachable("Unknown reg class!");
1170       break;
1171     case 24:
1172       if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
1173         // Use aligned spills if the stack can be realigned.
1174         if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1175             Subtarget.hasNEON()) {
1176           BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64TPseudo))
1177               .addFrameIndex(FI)
1178               .addImm(16)
1179               .addReg(SrcReg, getKillRegState(isKill))
1180               .addMemOperand(MMO)
1181               .add(predOps(ARMCC::AL));
1182         } else {
1183           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(),
1184                                             get(ARM::VSTMDIA))
1185                                         .addFrameIndex(FI)
1186                                         .add(predOps(ARMCC::AL))
1187                                         .addMemOperand(MMO);
1188           MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1189           MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1190           AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1191         }
1192       } else
1193         llvm_unreachable("Unknown reg class!");
1194       break;
1195     case 32:
1196       if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
1197         if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1198             Subtarget.hasNEON()) {
1199           // FIXME: It's possible to only store part of the QQ register if the
1200           // spilled def has a sub-register index.
1201           BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64QPseudo))
1202               .addFrameIndex(FI)
1203               .addImm(16)
1204               .addReg(SrcReg, getKillRegState(isKill))
1205               .addMemOperand(MMO)
1206               .add(predOps(ARMCC::AL));
1207         } else {
1208           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(),
1209                                             get(ARM::VSTMDIA))
1210                                         .addFrameIndex(FI)
1211                                         .add(predOps(ARMCC::AL))
1212                                         .addMemOperand(MMO);
1213           MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1214           MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1215           MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1216                 AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
1217         }
1218       } else
1219         llvm_unreachable("Unknown reg class!");
1220       break;
1221     case 64:
1222       if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1223         MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMDIA))
1224                                       .addFrameIndex(FI)
1225                                       .add(predOps(ARMCC::AL))
1226                                       .addMemOperand(MMO);
1227         MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1228         MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1229         MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1230         MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
1231         MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI);
1232         MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI);
1233         MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI);
1234               AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI);
1235       } else
1236         llvm_unreachable("Unknown reg class!");
1237       break;
1238     default:
1239       llvm_unreachable("Unknown reg class!");
1240   }
1241 }
1242 
isStoreToStackSlot(const MachineInstr & MI,int & FrameIndex) const1243 unsigned ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
1244                                               int &FrameIndex) const {
1245   switch (MI.getOpcode()) {
1246   default: break;
1247   case ARM::STRrs:
1248   case ARM::t2STRs: // FIXME: don't use t2STRs to access frame.
1249     if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
1250         MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
1251         MI.getOperand(3).getImm() == 0) {
1252       FrameIndex = MI.getOperand(1).getIndex();
1253       return MI.getOperand(0).getReg();
1254     }
1255     break;
1256   case ARM::STRi12:
1257   case ARM::t2STRi12:
1258   case ARM::tSTRspi:
1259   case ARM::VSTRD:
1260   case ARM::VSTRS:
1261     if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
1262         MI.getOperand(2).getImm() == 0) {
1263       FrameIndex = MI.getOperand(1).getIndex();
1264       return MI.getOperand(0).getReg();
1265     }
1266     break;
1267   case ARM::VSTR_P0_off:
1268     if (MI.getOperand(0).isFI() && MI.getOperand(1).isImm() &&
1269         MI.getOperand(1).getImm() == 0) {
1270       FrameIndex = MI.getOperand(0).getIndex();
1271       return ARM::P0;
1272     }
1273     break;
1274   case ARM::VST1q64:
1275   case ARM::VST1d64TPseudo:
1276   case ARM::VST1d64QPseudo:
1277     if (MI.getOperand(0).isFI() && MI.getOperand(2).getSubReg() == 0) {
1278       FrameIndex = MI.getOperand(0).getIndex();
1279       return MI.getOperand(2).getReg();
1280     }
1281     break;
1282   case ARM::VSTMQIA:
1283     if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1284       FrameIndex = MI.getOperand(1).getIndex();
1285       return MI.getOperand(0).getReg();
1286     }
1287     break;
1288   }
1289 
1290   return 0;
1291 }
1292 
isStoreToStackSlotPostFE(const MachineInstr & MI,int & FrameIndex) const1293 unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
1294                                                     int &FrameIndex) const {
1295   SmallVector<const MachineMemOperand *, 1> Accesses;
1296   if (MI.mayStore() && hasStoreToStackSlot(MI, Accesses) &&
1297       Accesses.size() == 1) {
1298     FrameIndex =
1299         cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
1300             ->getFrameIndex();
1301     return true;
1302   }
1303   return false;
1304 }
1305 
1306 void ARMBaseInstrInfo::
loadRegFromStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,Register DestReg,int FI,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const1307 loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
1308                      Register DestReg, int FI,
1309                      const TargetRegisterClass *RC,
1310                      const TargetRegisterInfo *TRI) const {
1311   DebugLoc DL;
1312   if (I != MBB.end()) DL = I->getDebugLoc();
1313   MachineFunction &MF = *MBB.getParent();
1314   MachineFrameInfo &MFI = MF.getFrameInfo();
1315   const Align Alignment = MFI.getObjectAlign(FI);
1316   MachineMemOperand *MMO = MF.getMachineMemOperand(
1317       MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
1318       MFI.getObjectSize(FI), Alignment);
1319 
1320   switch (TRI->getSpillSize(*RC)) {
1321   case 2:
1322     if (ARM::HPRRegClass.hasSubClassEq(RC)) {
1323       BuildMI(MBB, I, DL, get(ARM::VLDRH), DestReg)
1324           .addFrameIndex(FI)
1325           .addImm(0)
1326           .addMemOperand(MMO)
1327           .add(predOps(ARMCC::AL));
1328     } else
1329       llvm_unreachable("Unknown reg class!");
1330     break;
1331   case 4:
1332     if (ARM::GPRRegClass.hasSubClassEq(RC)) {
1333       BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg)
1334           .addFrameIndex(FI)
1335           .addImm(0)
1336           .addMemOperand(MMO)
1337           .add(predOps(ARMCC::AL));
1338     } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
1339       BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg)
1340           .addFrameIndex(FI)
1341           .addImm(0)
1342           .addMemOperand(MMO)
1343           .add(predOps(ARMCC::AL));
1344     } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) {
1345       BuildMI(MBB, I, DL, get(ARM::VLDR_P0_off), DestReg)
1346           .addFrameIndex(FI)
1347           .addImm(0)
1348           .addMemOperand(MMO)
1349           .add(predOps(ARMCC::AL));
1350     } else
1351       llvm_unreachable("Unknown reg class!");
1352     break;
1353   case 8:
1354     if (ARM::DPRRegClass.hasSubClassEq(RC)) {
1355       BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg)
1356           .addFrameIndex(FI)
1357           .addImm(0)
1358           .addMemOperand(MMO)
1359           .add(predOps(ARMCC::AL));
1360     } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
1361       MachineInstrBuilder MIB;
1362 
1363       if (Subtarget.hasV5TEOps()) {
1364         MIB = BuildMI(MBB, I, DL, get(ARM::LDRD));
1365         AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1366         AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1367         MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO)
1368            .add(predOps(ARMCC::AL));
1369       } else {
1370         // Fallback to LDM instruction, which has existed since the dawn of
1371         // time.
1372         MIB = BuildMI(MBB, I, DL, get(ARM::LDMIA))
1373                   .addFrameIndex(FI)
1374                   .addMemOperand(MMO)
1375                   .add(predOps(ARMCC::AL));
1376         MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1377         MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1378       }
1379 
1380       if (Register::isPhysicalRegister(DestReg))
1381         MIB.addReg(DestReg, RegState::ImplicitDefine);
1382     } else
1383       llvm_unreachable("Unknown reg class!");
1384     break;
1385   case 16:
1386     if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) {
1387       if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) {
1388         BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg)
1389             .addFrameIndex(FI)
1390             .addImm(16)
1391             .addMemOperand(MMO)
1392             .add(predOps(ARMCC::AL));
1393       } else {
1394         BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg)
1395             .addFrameIndex(FI)
1396             .addMemOperand(MMO)
1397             .add(predOps(ARMCC::AL));
1398       }
1399     } else if (ARM::QPRRegClass.hasSubClassEq(RC) &&
1400                Subtarget.hasMVEIntegerOps()) {
1401       auto MIB = BuildMI(MBB, I, DL, get(ARM::MVE_VLDRWU32), DestReg);
1402       MIB.addFrameIndex(FI)
1403         .addImm(0)
1404         .addMemOperand(MMO);
1405       addUnpredicatedMveVpredNOp(MIB);
1406     } else
1407       llvm_unreachable("Unknown reg class!");
1408     break;
1409   case 24:
1410     if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
1411       if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1412           Subtarget.hasNEON()) {
1413         BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg)
1414             .addFrameIndex(FI)
1415             .addImm(16)
1416             .addMemOperand(MMO)
1417             .add(predOps(ARMCC::AL));
1418       } else {
1419         MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1420                                       .addFrameIndex(FI)
1421                                       .addMemOperand(MMO)
1422                                       .add(predOps(ARMCC::AL));
1423         MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1424         MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1425         MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1426         if (Register::isPhysicalRegister(DestReg))
1427           MIB.addReg(DestReg, RegState::ImplicitDefine);
1428       }
1429     } else
1430       llvm_unreachable("Unknown reg class!");
1431     break;
1432    case 32:
1433     if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
1434       if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1435           Subtarget.hasNEON()) {
1436         BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg)
1437             .addFrameIndex(FI)
1438             .addImm(16)
1439             .addMemOperand(MMO)
1440             .add(predOps(ARMCC::AL));
1441       } else {
1442         MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1443                                       .addFrameIndex(FI)
1444                                       .add(predOps(ARMCC::AL))
1445                                       .addMemOperand(MMO);
1446         MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1447         MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1448         MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1449         MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1450         if (Register::isPhysicalRegister(DestReg))
1451           MIB.addReg(DestReg, RegState::ImplicitDefine);
1452       }
1453     } else
1454       llvm_unreachable("Unknown reg class!");
1455     break;
1456   case 64:
1457     if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1458       MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1459                                     .addFrameIndex(FI)
1460                                     .add(predOps(ARMCC::AL))
1461                                     .addMemOperand(MMO);
1462       MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1463       MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1464       MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1465       MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1466       MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI);
1467       MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI);
1468       MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI);
1469       MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI);
1470       if (Register::isPhysicalRegister(DestReg))
1471         MIB.addReg(DestReg, RegState::ImplicitDefine);
1472     } else
1473       llvm_unreachable("Unknown reg class!");
1474     break;
1475   default:
1476     llvm_unreachable("Unknown regclass!");
1477   }
1478 }
1479 
isLoadFromStackSlot(const MachineInstr & MI,int & FrameIndex) const1480 unsigned ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
1481                                                int &FrameIndex) const {
1482   switch (MI.getOpcode()) {
1483   default: break;
1484   case ARM::LDRrs:
1485   case ARM::t2LDRs:  // FIXME: don't use t2LDRs to access frame.
1486     if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
1487         MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
1488         MI.getOperand(3).getImm() == 0) {
1489       FrameIndex = MI.getOperand(1).getIndex();
1490       return MI.getOperand(0).getReg();
1491     }
1492     break;
1493   case ARM::LDRi12:
1494   case ARM::t2LDRi12:
1495   case ARM::tLDRspi:
1496   case ARM::VLDRD:
1497   case ARM::VLDRS:
1498     if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
1499         MI.getOperand(2).getImm() == 0) {
1500       FrameIndex = MI.getOperand(1).getIndex();
1501       return MI.getOperand(0).getReg();
1502     }
1503     break;
1504   case ARM::VLDR_P0_off:
1505     if (MI.getOperand(0).isFI() && MI.getOperand(1).isImm() &&
1506         MI.getOperand(1).getImm() == 0) {
1507       FrameIndex = MI.getOperand(0).getIndex();
1508       return ARM::P0;
1509     }
1510     break;
1511   case ARM::VLD1q64:
1512   case ARM::VLD1d8TPseudo:
1513   case ARM::VLD1d16TPseudo:
1514   case ARM::VLD1d32TPseudo:
1515   case ARM::VLD1d64TPseudo:
1516   case ARM::VLD1d8QPseudo:
1517   case ARM::VLD1d16QPseudo:
1518   case ARM::VLD1d32QPseudo:
1519   case ARM::VLD1d64QPseudo:
1520     if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1521       FrameIndex = MI.getOperand(1).getIndex();
1522       return MI.getOperand(0).getReg();
1523     }
1524     break;
1525   case ARM::VLDMQIA:
1526     if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1527       FrameIndex = MI.getOperand(1).getIndex();
1528       return MI.getOperand(0).getReg();
1529     }
1530     break;
1531   }
1532 
1533   return 0;
1534 }
1535 
isLoadFromStackSlotPostFE(const MachineInstr & MI,int & FrameIndex) const1536 unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
1537                                                      int &FrameIndex) const {
1538   SmallVector<const MachineMemOperand *, 1> Accesses;
1539   if (MI.mayLoad() && hasLoadFromStackSlot(MI, Accesses) &&
1540       Accesses.size() == 1) {
1541     FrameIndex =
1542         cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
1543             ->getFrameIndex();
1544     return true;
1545   }
1546   return false;
1547 }
1548 
1549 /// Expands MEMCPY to either LDMIA/STMIA or LDMIA_UPD/STMID_UPD
1550 /// depending on whether the result is used.
expandMEMCPY(MachineBasicBlock::iterator MI) const1551 void ARMBaseInstrInfo::expandMEMCPY(MachineBasicBlock::iterator MI) const {
1552   bool isThumb1 = Subtarget.isThumb1Only();
1553   bool isThumb2 = Subtarget.isThumb2();
1554   const ARMBaseInstrInfo *TII = Subtarget.getInstrInfo();
1555 
1556   DebugLoc dl = MI->getDebugLoc();
1557   MachineBasicBlock *BB = MI->getParent();
1558 
1559   MachineInstrBuilder LDM, STM;
1560   if (isThumb1 || !MI->getOperand(1).isDead()) {
1561     MachineOperand LDWb(MI->getOperand(1));
1562     LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA_UPD
1563                                                  : isThumb1 ? ARM::tLDMIA_UPD
1564                                                             : ARM::LDMIA_UPD))
1565               .add(LDWb);
1566   } else {
1567     LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA : ARM::LDMIA));
1568   }
1569 
1570   if (isThumb1 || !MI->getOperand(0).isDead()) {
1571     MachineOperand STWb(MI->getOperand(0));
1572     STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA_UPD
1573                                                  : isThumb1 ? ARM::tSTMIA_UPD
1574                                                             : ARM::STMIA_UPD))
1575               .add(STWb);
1576   } else {
1577     STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA : ARM::STMIA));
1578   }
1579 
1580   MachineOperand LDBase(MI->getOperand(3));
1581   LDM.add(LDBase).add(predOps(ARMCC::AL));
1582 
1583   MachineOperand STBase(MI->getOperand(2));
1584   STM.add(STBase).add(predOps(ARMCC::AL));
1585 
1586   // Sort the scratch registers into ascending order.
1587   const TargetRegisterInfo &TRI = getRegisterInfo();
1588   SmallVector<unsigned, 6> ScratchRegs;
1589   for(unsigned I = 5; I < MI->getNumOperands(); ++I)
1590     ScratchRegs.push_back(MI->getOperand(I).getReg());
1591   llvm::sort(ScratchRegs,
1592              [&TRI](const unsigned &Reg1, const unsigned &Reg2) -> bool {
1593                return TRI.getEncodingValue(Reg1) <
1594                       TRI.getEncodingValue(Reg2);
1595              });
1596 
1597   for (const auto &Reg : ScratchRegs) {
1598     LDM.addReg(Reg, RegState::Define);
1599     STM.addReg(Reg, RegState::Kill);
1600   }
1601 
1602   BB->erase(MI);
1603 }
1604 
expandPostRAPseudo(MachineInstr & MI) const1605 bool ARMBaseInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1606   if (MI.getOpcode() == TargetOpcode::LOAD_STACK_GUARD) {
1607     assert(getSubtarget().getTargetTriple().isOSBinFormatMachO() &&
1608            "LOAD_STACK_GUARD currently supported only for MachO.");
1609     expandLoadStackGuard(MI);
1610     MI.getParent()->erase(MI);
1611     return true;
1612   }
1613 
1614   if (MI.getOpcode() == ARM::MEMCPY) {
1615     expandMEMCPY(MI);
1616     return true;
1617   }
1618 
1619   // This hook gets to expand COPY instructions before they become
1620   // copyPhysReg() calls.  Look for VMOVS instructions that can legally be
1621   // widened to VMOVD.  We prefer the VMOVD when possible because it may be
1622   // changed into a VORR that can go down the NEON pipeline.
1623   if (!MI.isCopy() || Subtarget.dontWidenVMOVS() || !Subtarget.hasFP64())
1624     return false;
1625 
1626   // Look for a copy between even S-registers.  That is where we keep floats
1627   // when using NEON v2f32 instructions for f32 arithmetic.
1628   Register DstRegS = MI.getOperand(0).getReg();
1629   Register SrcRegS = MI.getOperand(1).getReg();
1630   if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS))
1631     return false;
1632 
1633   const TargetRegisterInfo *TRI = &getRegisterInfo();
1634   unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0,
1635                                               &ARM::DPRRegClass);
1636   unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0,
1637                                               &ARM::DPRRegClass);
1638   if (!DstRegD || !SrcRegD)
1639     return false;
1640 
1641   // We want to widen this into a DstRegD = VMOVD SrcRegD copy.  This is only
1642   // legal if the COPY already defines the full DstRegD, and it isn't a
1643   // sub-register insertion.
1644   if (!MI.definesRegister(DstRegD, TRI) || MI.readsRegister(DstRegD, TRI))
1645     return false;
1646 
1647   // A dead copy shouldn't show up here, but reject it just in case.
1648   if (MI.getOperand(0).isDead())
1649     return false;
1650 
1651   // All clear, widen the COPY.
1652   LLVM_DEBUG(dbgs() << "widening:    " << MI);
1653   MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
1654 
1655   // Get rid of the old implicit-def of DstRegD.  Leave it if it defines a Q-reg
1656   // or some other super-register.
1657   int ImpDefIdx = MI.findRegisterDefOperandIdx(DstRegD);
1658   if (ImpDefIdx != -1)
1659     MI.RemoveOperand(ImpDefIdx);
1660 
1661   // Change the opcode and operands.
1662   MI.setDesc(get(ARM::VMOVD));
1663   MI.getOperand(0).setReg(DstRegD);
1664   MI.getOperand(1).setReg(SrcRegD);
1665   MIB.add(predOps(ARMCC::AL));
1666 
1667   // We are now reading SrcRegD instead of SrcRegS.  This may upset the
1668   // register scavenger and machine verifier, so we need to indicate that we
1669   // are reading an undefined value from SrcRegD, but a proper value from
1670   // SrcRegS.
1671   MI.getOperand(1).setIsUndef();
1672   MIB.addReg(SrcRegS, RegState::Implicit);
1673 
1674   // SrcRegD may actually contain an unrelated value in the ssub_1
1675   // sub-register.  Don't kill it.  Only kill the ssub_0 sub-register.
1676   if (MI.getOperand(1).isKill()) {
1677     MI.getOperand(1).setIsKill(false);
1678     MI.addRegisterKilled(SrcRegS, TRI, true);
1679   }
1680 
1681   LLVM_DEBUG(dbgs() << "replaced by: " << MI);
1682   return true;
1683 }
1684 
1685 /// Create a copy of a const pool value. Update CPI to the new index and return
1686 /// the label UID.
duplicateCPV(MachineFunction & MF,unsigned & CPI)1687 static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) {
1688   MachineConstantPool *MCP = MF.getConstantPool();
1689   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1690 
1691   const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
1692   assert(MCPE.isMachineConstantPoolEntry() &&
1693          "Expecting a machine constantpool entry!");
1694   ARMConstantPoolValue *ACPV =
1695     static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
1696 
1697   unsigned PCLabelId = AFI->createPICLabelUId();
1698   ARMConstantPoolValue *NewCPV = nullptr;
1699 
1700   // FIXME: The below assumes PIC relocation model and that the function
1701   // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
1702   // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
1703   // instructions, so that's probably OK, but is PIC always correct when
1704   // we get here?
1705   if (ACPV->isGlobalValue())
1706     NewCPV = ARMConstantPoolConstant::Create(
1707         cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId, ARMCP::CPValue,
1708         4, ACPV->getModifier(), ACPV->mustAddCurrentAddress());
1709   else if (ACPV->isExtSymbol())
1710     NewCPV = ARMConstantPoolSymbol::
1711       Create(MF.getFunction().getContext(),
1712              cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4);
1713   else if (ACPV->isBlockAddress())
1714     NewCPV = ARMConstantPoolConstant::
1715       Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId,
1716              ARMCP::CPBlockAddress, 4);
1717   else if (ACPV->isLSDA())
1718     NewCPV = ARMConstantPoolConstant::Create(&MF.getFunction(), PCLabelId,
1719                                              ARMCP::CPLSDA, 4);
1720   else if (ACPV->isMachineBasicBlock())
1721     NewCPV = ARMConstantPoolMBB::
1722       Create(MF.getFunction().getContext(),
1723              cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4);
1724   else
1725     llvm_unreachable("Unexpected ARM constantpool value type!!");
1726   CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlign());
1727   return PCLabelId;
1728 }
1729 
reMaterialize(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,Register DestReg,unsigned SubIdx,const MachineInstr & Orig,const TargetRegisterInfo & TRI) const1730 void ARMBaseInstrInfo::reMaterialize(MachineBasicBlock &MBB,
1731                                      MachineBasicBlock::iterator I,
1732                                      Register DestReg, unsigned SubIdx,
1733                                      const MachineInstr &Orig,
1734                                      const TargetRegisterInfo &TRI) const {
1735   unsigned Opcode = Orig.getOpcode();
1736   switch (Opcode) {
1737   default: {
1738     MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
1739     MI->substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
1740     MBB.insert(I, MI);
1741     break;
1742   }
1743   case ARM::tLDRpci_pic:
1744   case ARM::t2LDRpci_pic: {
1745     MachineFunction &MF = *MBB.getParent();
1746     unsigned CPI = Orig.getOperand(1).getIndex();
1747     unsigned PCLabelId = duplicateCPV(MF, CPI);
1748     BuildMI(MBB, I, Orig.getDebugLoc(), get(Opcode), DestReg)
1749         .addConstantPoolIndex(CPI)
1750         .addImm(PCLabelId)
1751         .cloneMemRefs(Orig);
1752     break;
1753   }
1754   }
1755 }
1756 
1757 MachineInstr &
duplicate(MachineBasicBlock & MBB,MachineBasicBlock::iterator InsertBefore,const MachineInstr & Orig) const1758 ARMBaseInstrInfo::duplicate(MachineBasicBlock &MBB,
1759     MachineBasicBlock::iterator InsertBefore,
1760     const MachineInstr &Orig) const {
1761   MachineInstr &Cloned = TargetInstrInfo::duplicate(MBB, InsertBefore, Orig);
1762   MachineBasicBlock::instr_iterator I = Cloned.getIterator();
1763   for (;;) {
1764     switch (I->getOpcode()) {
1765     case ARM::tLDRpci_pic:
1766     case ARM::t2LDRpci_pic: {
1767       MachineFunction &MF = *MBB.getParent();
1768       unsigned CPI = I->getOperand(1).getIndex();
1769       unsigned PCLabelId = duplicateCPV(MF, CPI);
1770       I->getOperand(1).setIndex(CPI);
1771       I->getOperand(2).setImm(PCLabelId);
1772       break;
1773     }
1774     }
1775     if (!I->isBundledWithSucc())
1776       break;
1777     ++I;
1778   }
1779   return Cloned;
1780 }
1781 
produceSameValue(const MachineInstr & MI0,const MachineInstr & MI1,const MachineRegisterInfo * MRI) const1782 bool ARMBaseInstrInfo::produceSameValue(const MachineInstr &MI0,
1783                                         const MachineInstr &MI1,
1784                                         const MachineRegisterInfo *MRI) const {
1785   unsigned Opcode = MI0.getOpcode();
1786   if (Opcode == ARM::t2LDRpci ||
1787       Opcode == ARM::t2LDRpci_pic ||
1788       Opcode == ARM::tLDRpci ||
1789       Opcode == ARM::tLDRpci_pic ||
1790       Opcode == ARM::LDRLIT_ga_pcrel ||
1791       Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1792       Opcode == ARM::tLDRLIT_ga_pcrel ||
1793       Opcode == ARM::MOV_ga_pcrel ||
1794       Opcode == ARM::MOV_ga_pcrel_ldr ||
1795       Opcode == ARM::t2MOV_ga_pcrel) {
1796     if (MI1.getOpcode() != Opcode)
1797       return false;
1798     if (MI0.getNumOperands() != MI1.getNumOperands())
1799       return false;
1800 
1801     const MachineOperand &MO0 = MI0.getOperand(1);
1802     const MachineOperand &MO1 = MI1.getOperand(1);
1803     if (MO0.getOffset() != MO1.getOffset())
1804       return false;
1805 
1806     if (Opcode == ARM::LDRLIT_ga_pcrel ||
1807         Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1808         Opcode == ARM::tLDRLIT_ga_pcrel ||
1809         Opcode == ARM::MOV_ga_pcrel ||
1810         Opcode == ARM::MOV_ga_pcrel_ldr ||
1811         Opcode == ARM::t2MOV_ga_pcrel)
1812       // Ignore the PC labels.
1813       return MO0.getGlobal() == MO1.getGlobal();
1814 
1815     const MachineFunction *MF = MI0.getParent()->getParent();
1816     const MachineConstantPool *MCP = MF->getConstantPool();
1817     int CPI0 = MO0.getIndex();
1818     int CPI1 = MO1.getIndex();
1819     const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0];
1820     const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1];
1821     bool isARMCP0 = MCPE0.isMachineConstantPoolEntry();
1822     bool isARMCP1 = MCPE1.isMachineConstantPoolEntry();
1823     if (isARMCP0 && isARMCP1) {
1824       ARMConstantPoolValue *ACPV0 =
1825         static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal);
1826       ARMConstantPoolValue *ACPV1 =
1827         static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal);
1828       return ACPV0->hasSameValue(ACPV1);
1829     } else if (!isARMCP0 && !isARMCP1) {
1830       return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal;
1831     }
1832     return false;
1833   } else if (Opcode == ARM::PICLDR) {
1834     if (MI1.getOpcode() != Opcode)
1835       return false;
1836     if (MI0.getNumOperands() != MI1.getNumOperands())
1837       return false;
1838 
1839     Register Addr0 = MI0.getOperand(1).getReg();
1840     Register Addr1 = MI1.getOperand(1).getReg();
1841     if (Addr0 != Addr1) {
1842       if (!MRI || !Register::isVirtualRegister(Addr0) ||
1843           !Register::isVirtualRegister(Addr1))
1844         return false;
1845 
1846       // This assumes SSA form.
1847       MachineInstr *Def0 = MRI->getVRegDef(Addr0);
1848       MachineInstr *Def1 = MRI->getVRegDef(Addr1);
1849       // Check if the loaded value, e.g. a constantpool of a global address, are
1850       // the same.
1851       if (!produceSameValue(*Def0, *Def1, MRI))
1852         return false;
1853     }
1854 
1855     for (unsigned i = 3, e = MI0.getNumOperands(); i != e; ++i) {
1856       // %12 = PICLDR %11, 0, 14, %noreg
1857       const MachineOperand &MO0 = MI0.getOperand(i);
1858       const MachineOperand &MO1 = MI1.getOperand(i);
1859       if (!MO0.isIdenticalTo(MO1))
1860         return false;
1861     }
1862     return true;
1863   }
1864 
1865   return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
1866 }
1867 
1868 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
1869 /// determine if two loads are loading from the same base address. It should
1870 /// only return true if the base pointers are the same and the only differences
1871 /// between the two addresses is the offset. It also returns the offsets by
1872 /// reference.
1873 ///
1874 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
1875 /// is permanently disabled.
areLoadsFromSameBasePtr(SDNode * Load1,SDNode * Load2,int64_t & Offset1,int64_t & Offset2) const1876 bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1877                                                int64_t &Offset1,
1878                                                int64_t &Offset2) const {
1879   // Don't worry about Thumb: just ARM and Thumb2.
1880   if (Subtarget.isThumb1Only()) return false;
1881 
1882   if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
1883     return false;
1884 
1885   switch (Load1->getMachineOpcode()) {
1886   default:
1887     return false;
1888   case ARM::LDRi12:
1889   case ARM::LDRBi12:
1890   case ARM::LDRD:
1891   case ARM::LDRH:
1892   case ARM::LDRSB:
1893   case ARM::LDRSH:
1894   case ARM::VLDRD:
1895   case ARM::VLDRS:
1896   case ARM::t2LDRi8:
1897   case ARM::t2LDRBi8:
1898   case ARM::t2LDRDi8:
1899   case ARM::t2LDRSHi8:
1900   case ARM::t2LDRi12:
1901   case ARM::t2LDRBi12:
1902   case ARM::t2LDRSHi12:
1903     break;
1904   }
1905 
1906   switch (Load2->getMachineOpcode()) {
1907   default:
1908     return false;
1909   case ARM::LDRi12:
1910   case ARM::LDRBi12:
1911   case ARM::LDRD:
1912   case ARM::LDRH:
1913   case ARM::LDRSB:
1914   case ARM::LDRSH:
1915   case ARM::VLDRD:
1916   case ARM::VLDRS:
1917   case ARM::t2LDRi8:
1918   case ARM::t2LDRBi8:
1919   case ARM::t2LDRSHi8:
1920   case ARM::t2LDRi12:
1921   case ARM::t2LDRBi12:
1922   case ARM::t2LDRSHi12:
1923     break;
1924   }
1925 
1926   // Check if base addresses and chain operands match.
1927   if (Load1->getOperand(0) != Load2->getOperand(0) ||
1928       Load1->getOperand(4) != Load2->getOperand(4))
1929     return false;
1930 
1931   // Index should be Reg0.
1932   if (Load1->getOperand(3) != Load2->getOperand(3))
1933     return false;
1934 
1935   // Determine the offsets.
1936   if (isa<ConstantSDNode>(Load1->getOperand(1)) &&
1937       isa<ConstantSDNode>(Load2->getOperand(1))) {
1938     Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue();
1939     Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue();
1940     return true;
1941   }
1942 
1943   return false;
1944 }
1945 
1946 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
1947 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
1948 /// be scheduled togther. On some targets if two loads are loading from
1949 /// addresses in the same cache line, it's better if they are scheduled
1950 /// together. This function takes two integers that represent the load offsets
1951 /// from the common base address. It returns true if it decides it's desirable
1952 /// to schedule the two loads together. "NumLoads" is the number of loads that
1953 /// have already been scheduled after Load1.
1954 ///
1955 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
1956 /// is permanently disabled.
shouldScheduleLoadsNear(SDNode * Load1,SDNode * Load2,int64_t Offset1,int64_t Offset2,unsigned NumLoads) const1957 bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
1958                                                int64_t Offset1, int64_t Offset2,
1959                                                unsigned NumLoads) const {
1960   // Don't worry about Thumb: just ARM and Thumb2.
1961   if (Subtarget.isThumb1Only()) return false;
1962 
1963   assert(Offset2 > Offset1);
1964 
1965   if ((Offset2 - Offset1) / 8 > 64)
1966     return false;
1967 
1968   // Check if the machine opcodes are different. If they are different
1969   // then we consider them to not be of the same base address,
1970   // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12.
1971   // In this case, they are considered to be the same because they are different
1972   // encoding forms of the same basic instruction.
1973   if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) &&
1974       !((Load1->getMachineOpcode() == ARM::t2LDRBi8 &&
1975          Load2->getMachineOpcode() == ARM::t2LDRBi12) ||
1976         (Load1->getMachineOpcode() == ARM::t2LDRBi12 &&
1977          Load2->getMachineOpcode() == ARM::t2LDRBi8)))
1978     return false;  // FIXME: overly conservative?
1979 
1980   // Four loads in a row should be sufficient.
1981   if (NumLoads >= 3)
1982     return false;
1983 
1984   return true;
1985 }
1986 
isSchedulingBoundary(const MachineInstr & MI,const MachineBasicBlock * MBB,const MachineFunction & MF) const1987 bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
1988                                             const MachineBasicBlock *MBB,
1989                                             const MachineFunction &MF) const {
1990   // Debug info is never a scheduling boundary. It's necessary to be explicit
1991   // due to the special treatment of IT instructions below, otherwise a
1992   // dbg_value followed by an IT will result in the IT instruction being
1993   // considered a scheduling hazard, which is wrong. It should be the actual
1994   // instruction preceding the dbg_value instruction(s), just like it is
1995   // when debug info is not present.
1996   if (MI.isDebugInstr())
1997     return false;
1998 
1999   // Terminators and labels can't be scheduled around.
2000   if (MI.isTerminator() || MI.isPosition())
2001     return true;
2002 
2003   // INLINEASM_BR can jump to another block
2004   if (MI.getOpcode() == TargetOpcode::INLINEASM_BR)
2005     return true;
2006 
2007   // Treat the start of the IT block as a scheduling boundary, but schedule
2008   // t2IT along with all instructions following it.
2009   // FIXME: This is a big hammer. But the alternative is to add all potential
2010   // true and anti dependencies to IT block instructions as implicit operands
2011   // to the t2IT instruction. The added compile time and complexity does not
2012   // seem worth it.
2013   MachineBasicBlock::const_iterator I = MI;
2014   // Make sure to skip any debug instructions
2015   while (++I != MBB->end() && I->isDebugInstr())
2016     ;
2017   if (I != MBB->end() && I->getOpcode() == ARM::t2IT)
2018     return true;
2019 
2020   // Don't attempt to schedule around any instruction that defines
2021   // a stack-oriented pointer, as it's unlikely to be profitable. This
2022   // saves compile time, because it doesn't require every single
2023   // stack slot reference to depend on the instruction that does the
2024   // modification.
2025   // Calls don't actually change the stack pointer, even if they have imp-defs.
2026   // No ARM calling conventions change the stack pointer. (X86 calling
2027   // conventions sometimes do).
2028   if (!MI.isCall() && MI.definesRegister(ARM::SP))
2029     return true;
2030 
2031   return false;
2032 }
2033 
2034 bool ARMBaseInstrInfo::
isProfitableToIfCvt(MachineBasicBlock & MBB,unsigned NumCycles,unsigned ExtraPredCycles,BranchProbability Probability) const2035 isProfitableToIfCvt(MachineBasicBlock &MBB,
2036                     unsigned NumCycles, unsigned ExtraPredCycles,
2037                     BranchProbability Probability) const {
2038   if (!NumCycles)
2039     return false;
2040 
2041   // If we are optimizing for size, see if the branch in the predecessor can be
2042   // lowered to cbn?z by the constant island lowering pass, and return false if
2043   // so. This results in a shorter instruction sequence.
2044   if (MBB.getParent()->getFunction().hasOptSize()) {
2045     MachineBasicBlock *Pred = *MBB.pred_begin();
2046     if (!Pred->empty()) {
2047       MachineInstr *LastMI = &*Pred->rbegin();
2048       if (LastMI->getOpcode() == ARM::t2Bcc) {
2049         const TargetRegisterInfo *TRI = &getRegisterInfo();
2050         MachineInstr *CmpMI = findCMPToFoldIntoCBZ(LastMI, TRI);
2051         if (CmpMI)
2052           return false;
2053       }
2054     }
2055   }
2056   return isProfitableToIfCvt(MBB, NumCycles, ExtraPredCycles,
2057                              MBB, 0, 0, Probability);
2058 }
2059 
2060 bool ARMBaseInstrInfo::
isProfitableToIfCvt(MachineBasicBlock & TBB,unsigned TCycles,unsigned TExtra,MachineBasicBlock & FBB,unsigned FCycles,unsigned FExtra,BranchProbability Probability) const2061 isProfitableToIfCvt(MachineBasicBlock &TBB,
2062                     unsigned TCycles, unsigned TExtra,
2063                     MachineBasicBlock &FBB,
2064                     unsigned FCycles, unsigned FExtra,
2065                     BranchProbability Probability) const {
2066   if (!TCycles)
2067     return false;
2068 
2069   // In thumb code we often end up trading one branch for a IT block, and
2070   // if we are cloning the instruction can increase code size. Prevent
2071   // blocks with multiple predecesors from being ifcvted to prevent this
2072   // cloning.
2073   if (Subtarget.isThumb2() && TBB.getParent()->getFunction().hasMinSize()) {
2074     if (TBB.pred_size() != 1 || FBB.pred_size() != 1)
2075       return false;
2076   }
2077 
2078   // Attempt to estimate the relative costs of predication versus branching.
2079   // Here we scale up each component of UnpredCost to avoid precision issue when
2080   // scaling TCycles/FCycles by Probability.
2081   const unsigned ScalingUpFactor = 1024;
2082 
2083   unsigned PredCost = (TCycles + FCycles + TExtra + FExtra) * ScalingUpFactor;
2084   unsigned UnpredCost;
2085   if (!Subtarget.hasBranchPredictor()) {
2086     // When we don't have a branch predictor it's always cheaper to not take a
2087     // branch than take it, so we have to take that into account.
2088     unsigned NotTakenBranchCost = 1;
2089     unsigned TakenBranchCost = Subtarget.getMispredictionPenalty();
2090     unsigned TUnpredCycles, FUnpredCycles;
2091     if (!FCycles) {
2092       // Triangle: TBB is the fallthrough
2093       TUnpredCycles = TCycles + NotTakenBranchCost;
2094       FUnpredCycles = TakenBranchCost;
2095     } else {
2096       // Diamond: TBB is the block that is branched to, FBB is the fallthrough
2097       TUnpredCycles = TCycles + TakenBranchCost;
2098       FUnpredCycles = FCycles + NotTakenBranchCost;
2099       // The branch at the end of FBB will disappear when it's predicated, so
2100       // discount it from PredCost.
2101       PredCost -= 1 * ScalingUpFactor;
2102     }
2103     // The total cost is the cost of each path scaled by their probabilites
2104     unsigned TUnpredCost = Probability.scale(TUnpredCycles * ScalingUpFactor);
2105     unsigned FUnpredCost = Probability.getCompl().scale(FUnpredCycles * ScalingUpFactor);
2106     UnpredCost = TUnpredCost + FUnpredCost;
2107     // When predicating assume that the first IT can be folded away but later
2108     // ones cost one cycle each
2109     if (Subtarget.isThumb2() && TCycles + FCycles > 4) {
2110       PredCost += ((TCycles + FCycles - 4) / 4) * ScalingUpFactor;
2111     }
2112   } else {
2113     unsigned TUnpredCost = Probability.scale(TCycles * ScalingUpFactor);
2114     unsigned FUnpredCost =
2115       Probability.getCompl().scale(FCycles * ScalingUpFactor);
2116     UnpredCost = TUnpredCost + FUnpredCost;
2117     UnpredCost += 1 * ScalingUpFactor; // The branch itself
2118     UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10;
2119   }
2120 
2121   return PredCost <= UnpredCost;
2122 }
2123 
2124 unsigned
extraSizeToPredicateInstructions(const MachineFunction & MF,unsigned NumInsts) const2125 ARMBaseInstrInfo::extraSizeToPredicateInstructions(const MachineFunction &MF,
2126                                                    unsigned NumInsts) const {
2127   // Thumb2 needs a 2-byte IT instruction to predicate up to 4 instructions.
2128   // ARM has a condition code field in every predicable instruction, using it
2129   // doesn't change code size.
2130   if (!Subtarget.isThumb2())
2131     return 0;
2132 
2133   // It's possible that the size of the IT is restricted to a single block.
2134   unsigned MaxInsts = Subtarget.restrictIT() ? 1 : 4;
2135   return divideCeil(NumInsts, MaxInsts) * 2;
2136 }
2137 
2138 unsigned
predictBranchSizeForIfCvt(MachineInstr & MI) const2139 ARMBaseInstrInfo::predictBranchSizeForIfCvt(MachineInstr &MI) const {
2140   // If this branch is likely to be folded into the comparison to form a
2141   // CB(N)Z, then removing it won't reduce code size at all, because that will
2142   // just replace the CB(N)Z with a CMP.
2143   if (MI.getOpcode() == ARM::t2Bcc &&
2144       findCMPToFoldIntoCBZ(&MI, &getRegisterInfo()))
2145     return 0;
2146 
2147   unsigned Size = getInstSizeInBytes(MI);
2148 
2149   // For Thumb2, all branches are 32-bit instructions during the if conversion
2150   // pass, but may be replaced with 16-bit instructions during size reduction.
2151   // Since the branches considered by if conversion tend to be forward branches
2152   // over small basic blocks, they are very likely to be in range for the
2153   // narrow instructions, so we assume the final code size will be half what it
2154   // currently is.
2155   if (Subtarget.isThumb2())
2156     Size /= 2;
2157 
2158   return Size;
2159 }
2160 
2161 bool
isProfitableToUnpredicate(MachineBasicBlock & TMBB,MachineBasicBlock & FMBB) const2162 ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB,
2163                                             MachineBasicBlock &FMBB) const {
2164   // Reduce false anti-dependencies to let the target's out-of-order execution
2165   // engine do its thing.
2166   return Subtarget.isProfitableToUnpredicate();
2167 }
2168 
2169 /// getInstrPredicate - If instruction is predicated, returns its predicate
2170 /// condition, otherwise returns AL. It also returns the condition code
2171 /// register by reference.
getInstrPredicate(const MachineInstr & MI,Register & PredReg)2172 ARMCC::CondCodes llvm::getInstrPredicate(const MachineInstr &MI,
2173                                          Register &PredReg) {
2174   int PIdx = MI.findFirstPredOperandIdx();
2175   if (PIdx == -1) {
2176     PredReg = 0;
2177     return ARMCC::AL;
2178   }
2179 
2180   PredReg = MI.getOperand(PIdx+1).getReg();
2181   return (ARMCC::CondCodes)MI.getOperand(PIdx).getImm();
2182 }
2183 
getMatchingCondBranchOpcode(unsigned Opc)2184 unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc) {
2185   if (Opc == ARM::B)
2186     return ARM::Bcc;
2187   if (Opc == ARM::tB)
2188     return ARM::tBcc;
2189   if (Opc == ARM::t2B)
2190     return ARM::t2Bcc;
2191 
2192   llvm_unreachable("Unknown unconditional branch opcode!");
2193 }
2194 
commuteInstructionImpl(MachineInstr & MI,bool NewMI,unsigned OpIdx1,unsigned OpIdx2) const2195 MachineInstr *ARMBaseInstrInfo::commuteInstructionImpl(MachineInstr &MI,
2196                                                        bool NewMI,
2197                                                        unsigned OpIdx1,
2198                                                        unsigned OpIdx2) const {
2199   switch (MI.getOpcode()) {
2200   case ARM::MOVCCr:
2201   case ARM::t2MOVCCr: {
2202     // MOVCC can be commuted by inverting the condition.
2203     Register PredReg;
2204     ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg);
2205     // MOVCC AL can't be inverted. Shouldn't happen.
2206     if (CC == ARMCC::AL || PredReg != ARM::CPSR)
2207       return nullptr;
2208     MachineInstr *CommutedMI =
2209         TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2210     if (!CommutedMI)
2211       return nullptr;
2212     // After swapping the MOVCC operands, also invert the condition.
2213     CommutedMI->getOperand(CommutedMI->findFirstPredOperandIdx())
2214         .setImm(ARMCC::getOppositeCondition(CC));
2215     return CommutedMI;
2216   }
2217   }
2218   return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2219 }
2220 
2221 /// Identify instructions that can be folded into a MOVCC instruction, and
2222 /// return the defining instruction.
2223 MachineInstr *
canFoldIntoMOVCC(Register Reg,const MachineRegisterInfo & MRI,const TargetInstrInfo * TII) const2224 ARMBaseInstrInfo::canFoldIntoMOVCC(Register Reg, const MachineRegisterInfo &MRI,
2225                                    const TargetInstrInfo *TII) const {
2226   if (!Reg.isVirtual())
2227     return nullptr;
2228   if (!MRI.hasOneNonDBGUse(Reg))
2229     return nullptr;
2230   MachineInstr *MI = MRI.getVRegDef(Reg);
2231   if (!MI)
2232     return nullptr;
2233   // Check if MI can be predicated and folded into the MOVCC.
2234   if (!isPredicable(*MI))
2235     return nullptr;
2236   // Check if MI has any non-dead defs or physreg uses. This also detects
2237   // predicated instructions which will be reading CPSR.
2238   for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) {
2239     const MachineOperand &MO = MI->getOperand(i);
2240     // Reject frame index operands, PEI can't handle the predicated pseudos.
2241     if (MO.isFI() || MO.isCPI() || MO.isJTI())
2242       return nullptr;
2243     if (!MO.isReg())
2244       continue;
2245     // MI can't have any tied operands, that would conflict with predication.
2246     if (MO.isTied())
2247       return nullptr;
2248     if (Register::isPhysicalRegister(MO.getReg()))
2249       return nullptr;
2250     if (MO.isDef() && !MO.isDead())
2251       return nullptr;
2252   }
2253   bool DontMoveAcrossStores = true;
2254   if (!MI->isSafeToMove(/* AliasAnalysis = */ nullptr, DontMoveAcrossStores))
2255     return nullptr;
2256   return MI;
2257 }
2258 
analyzeSelect(const MachineInstr & MI,SmallVectorImpl<MachineOperand> & Cond,unsigned & TrueOp,unsigned & FalseOp,bool & Optimizable) const2259 bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr &MI,
2260                                      SmallVectorImpl<MachineOperand> &Cond,
2261                                      unsigned &TrueOp, unsigned &FalseOp,
2262                                      bool &Optimizable) const {
2263   assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
2264          "Unknown select instruction");
2265   // MOVCC operands:
2266   // 0: Def.
2267   // 1: True use.
2268   // 2: False use.
2269   // 3: Condition code.
2270   // 4: CPSR use.
2271   TrueOp = 1;
2272   FalseOp = 2;
2273   Cond.push_back(MI.getOperand(3));
2274   Cond.push_back(MI.getOperand(4));
2275   // We can always fold a def.
2276   Optimizable = true;
2277   return false;
2278 }
2279 
2280 MachineInstr *
optimizeSelect(MachineInstr & MI,SmallPtrSetImpl<MachineInstr * > & SeenMIs,bool PreferFalse) const2281 ARMBaseInstrInfo::optimizeSelect(MachineInstr &MI,
2282                                  SmallPtrSetImpl<MachineInstr *> &SeenMIs,
2283                                  bool PreferFalse) const {
2284   assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
2285          "Unknown select instruction");
2286   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
2287   MachineInstr *DefMI = canFoldIntoMOVCC(MI.getOperand(2).getReg(), MRI, this);
2288   bool Invert = !DefMI;
2289   if (!DefMI)
2290     DefMI = canFoldIntoMOVCC(MI.getOperand(1).getReg(), MRI, this);
2291   if (!DefMI)
2292     return nullptr;
2293 
2294   // Find new register class to use.
2295   MachineOperand FalseReg = MI.getOperand(Invert ? 2 : 1);
2296   Register DestReg = MI.getOperand(0).getReg();
2297   const TargetRegisterClass *PreviousClass = MRI.getRegClass(FalseReg.getReg());
2298   if (!MRI.constrainRegClass(DestReg, PreviousClass))
2299     return nullptr;
2300 
2301   // Create a new predicated version of DefMI.
2302   // Rfalse is the first use.
2303   MachineInstrBuilder NewMI =
2304       BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), DefMI->getDesc(), DestReg);
2305 
2306   // Copy all the DefMI operands, excluding its (null) predicate.
2307   const MCInstrDesc &DefDesc = DefMI->getDesc();
2308   for (unsigned i = 1, e = DefDesc.getNumOperands();
2309        i != e && !DefDesc.OpInfo[i].isPredicate(); ++i)
2310     NewMI.add(DefMI->getOperand(i));
2311 
2312   unsigned CondCode = MI.getOperand(3).getImm();
2313   if (Invert)
2314     NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode)));
2315   else
2316     NewMI.addImm(CondCode);
2317   NewMI.add(MI.getOperand(4));
2318 
2319   // DefMI is not the -S version that sets CPSR, so add an optional %noreg.
2320   if (NewMI->hasOptionalDef())
2321     NewMI.add(condCodeOp());
2322 
2323   // The output register value when the predicate is false is an implicit
2324   // register operand tied to the first def.
2325   // The tie makes the register allocator ensure the FalseReg is allocated the
2326   // same register as operand 0.
2327   FalseReg.setImplicit();
2328   NewMI.add(FalseReg);
2329   NewMI->tieOperands(0, NewMI->getNumOperands() - 1);
2330 
2331   // Update SeenMIs set: register newly created MI and erase removed DefMI.
2332   SeenMIs.insert(NewMI);
2333   SeenMIs.erase(DefMI);
2334 
2335   // If MI is inside a loop, and DefMI is outside the loop, then kill flags on
2336   // DefMI would be invalid when tranferred inside the loop.  Checking for a
2337   // loop is expensive, but at least remove kill flags if they are in different
2338   // BBs.
2339   if (DefMI->getParent() != MI.getParent())
2340     NewMI->clearKillInfo();
2341 
2342   // The caller will erase MI, but not DefMI.
2343   DefMI->eraseFromParent();
2344   return NewMI;
2345 }
2346 
2347 /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the
2348 /// instruction is encoded with an 'S' bit is determined by the optional CPSR
2349 /// def operand.
2350 ///
2351 /// This will go away once we can teach tblgen how to set the optional CPSR def
2352 /// operand itself.
2353 struct AddSubFlagsOpcodePair {
2354   uint16_t PseudoOpc;
2355   uint16_t MachineOpc;
2356 };
2357 
2358 static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = {
2359   {ARM::ADDSri, ARM::ADDri},
2360   {ARM::ADDSrr, ARM::ADDrr},
2361   {ARM::ADDSrsi, ARM::ADDrsi},
2362   {ARM::ADDSrsr, ARM::ADDrsr},
2363 
2364   {ARM::SUBSri, ARM::SUBri},
2365   {ARM::SUBSrr, ARM::SUBrr},
2366   {ARM::SUBSrsi, ARM::SUBrsi},
2367   {ARM::SUBSrsr, ARM::SUBrsr},
2368 
2369   {ARM::RSBSri, ARM::RSBri},
2370   {ARM::RSBSrsi, ARM::RSBrsi},
2371   {ARM::RSBSrsr, ARM::RSBrsr},
2372 
2373   {ARM::tADDSi3, ARM::tADDi3},
2374   {ARM::tADDSi8, ARM::tADDi8},
2375   {ARM::tADDSrr, ARM::tADDrr},
2376   {ARM::tADCS, ARM::tADC},
2377 
2378   {ARM::tSUBSi3, ARM::tSUBi3},
2379   {ARM::tSUBSi8, ARM::tSUBi8},
2380   {ARM::tSUBSrr, ARM::tSUBrr},
2381   {ARM::tSBCS, ARM::tSBC},
2382   {ARM::tRSBS, ARM::tRSB},
2383   {ARM::tLSLSri, ARM::tLSLri},
2384 
2385   {ARM::t2ADDSri, ARM::t2ADDri},
2386   {ARM::t2ADDSrr, ARM::t2ADDrr},
2387   {ARM::t2ADDSrs, ARM::t2ADDrs},
2388 
2389   {ARM::t2SUBSri, ARM::t2SUBri},
2390   {ARM::t2SUBSrr, ARM::t2SUBrr},
2391   {ARM::t2SUBSrs, ARM::t2SUBrs},
2392 
2393   {ARM::t2RSBSri, ARM::t2RSBri},
2394   {ARM::t2RSBSrs, ARM::t2RSBrs},
2395 };
2396 
convertAddSubFlagsOpcode(unsigned OldOpc)2397 unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) {
2398   for (unsigned i = 0, e = array_lengthof(AddSubFlagsOpcodeMap); i != e; ++i)
2399     if (OldOpc == AddSubFlagsOpcodeMap[i].PseudoOpc)
2400       return AddSubFlagsOpcodeMap[i].MachineOpc;
2401   return 0;
2402 }
2403 
emitARMRegPlusImmediate(MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,const DebugLoc & dl,Register DestReg,Register BaseReg,int NumBytes,ARMCC::CondCodes Pred,Register PredReg,const ARMBaseInstrInfo & TII,unsigned MIFlags)2404 void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB,
2405                                    MachineBasicBlock::iterator &MBBI,
2406                                    const DebugLoc &dl, Register DestReg,
2407                                    Register BaseReg, int NumBytes,
2408                                    ARMCC::CondCodes Pred, Register PredReg,
2409                                    const ARMBaseInstrInfo &TII,
2410                                    unsigned MIFlags) {
2411   if (NumBytes == 0 && DestReg != BaseReg) {
2412     BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg)
2413         .addReg(BaseReg, RegState::Kill)
2414         .add(predOps(Pred, PredReg))
2415         .add(condCodeOp())
2416         .setMIFlags(MIFlags);
2417     return;
2418   }
2419 
2420   bool isSub = NumBytes < 0;
2421   if (isSub) NumBytes = -NumBytes;
2422 
2423   while (NumBytes) {
2424     unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
2425     unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt);
2426     assert(ThisVal && "Didn't extract field correctly");
2427 
2428     // We will handle these bits from offset, clear them.
2429     NumBytes &= ~ThisVal;
2430 
2431     assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?");
2432 
2433     // Build the new ADD / SUB.
2434     unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri;
2435     BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
2436         .addReg(BaseReg, RegState::Kill)
2437         .addImm(ThisVal)
2438         .add(predOps(Pred, PredReg))
2439         .add(condCodeOp())
2440         .setMIFlags(MIFlags);
2441     BaseReg = DestReg;
2442   }
2443 }
2444 
tryFoldSPUpdateIntoPushPop(const ARMSubtarget & Subtarget,MachineFunction & MF,MachineInstr * MI,unsigned NumBytes)2445 bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget,
2446                                       MachineFunction &MF, MachineInstr *MI,
2447                                       unsigned NumBytes) {
2448   // This optimisation potentially adds lots of load and store
2449   // micro-operations, it's only really a great benefit to code-size.
2450   if (!Subtarget.hasMinSize())
2451     return false;
2452 
2453   // If only one register is pushed/popped, LLVM can use an LDR/STR
2454   // instead. We can't modify those so make sure we're dealing with an
2455   // instruction we understand.
2456   bool IsPop = isPopOpcode(MI->getOpcode());
2457   bool IsPush = isPushOpcode(MI->getOpcode());
2458   if (!IsPush && !IsPop)
2459     return false;
2460 
2461   bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD ||
2462                       MI->getOpcode() == ARM::VLDMDIA_UPD;
2463   bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH ||
2464                      MI->getOpcode() == ARM::tPOP ||
2465                      MI->getOpcode() == ARM::tPOP_RET;
2466 
2467   assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP &&
2468                           MI->getOperand(1).getReg() == ARM::SP)) &&
2469          "trying to fold sp update into non-sp-updating push/pop");
2470 
2471   // The VFP push & pop act on D-registers, so we can only fold an adjustment
2472   // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try
2473   // if this is violated.
2474   if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0)
2475     return false;
2476 
2477   // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
2478   // pred) so the list starts at 4. Thumb1 starts after the predicate.
2479   int RegListIdx = IsT1PushPop ? 2 : 4;
2480 
2481   // Calculate the space we'll need in terms of registers.
2482   unsigned RegsNeeded;
2483   const TargetRegisterClass *RegClass;
2484   if (IsVFPPushPop) {
2485     RegsNeeded = NumBytes / 8;
2486     RegClass = &ARM::DPRRegClass;
2487   } else {
2488     RegsNeeded = NumBytes / 4;
2489     RegClass = &ARM::GPRRegClass;
2490   }
2491 
2492   // We're going to have to strip all list operands off before
2493   // re-adding them since the order matters, so save the existing ones
2494   // for later.
2495   SmallVector<MachineOperand, 4> RegList;
2496 
2497   // We're also going to need the first register transferred by this
2498   // instruction, which won't necessarily be the first register in the list.
2499   unsigned FirstRegEnc = -1;
2500 
2501   const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo();
2502   for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) {
2503     MachineOperand &MO = MI->getOperand(i);
2504     RegList.push_back(MO);
2505 
2506     if (MO.isReg() && !MO.isImplicit() &&
2507         TRI->getEncodingValue(MO.getReg()) < FirstRegEnc)
2508       FirstRegEnc = TRI->getEncodingValue(MO.getReg());
2509   }
2510 
2511   const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF);
2512 
2513   // Now try to find enough space in the reglist to allocate NumBytes.
2514   for (int CurRegEnc = FirstRegEnc - 1; CurRegEnc >= 0 && RegsNeeded;
2515        --CurRegEnc) {
2516     unsigned CurReg = RegClass->getRegister(CurRegEnc);
2517     if (IsT1PushPop && CurRegEnc > TRI->getEncodingValue(ARM::R7))
2518       continue;
2519     if (!IsPop) {
2520       // Pushing any register is completely harmless, mark the register involved
2521       // as undef since we don't care about its value and must not restore it
2522       // during stack unwinding.
2523       RegList.push_back(MachineOperand::CreateReg(CurReg, false, false,
2524                                                   false, false, true));
2525       --RegsNeeded;
2526       continue;
2527     }
2528 
2529     // However, we can only pop an extra register if it's not live. For
2530     // registers live within the function we might clobber a return value
2531     // register; the other way a register can be live here is if it's
2532     // callee-saved.
2533     if (isCalleeSavedRegister(CurReg, CSRegs) ||
2534         MI->getParent()->computeRegisterLiveness(TRI, CurReg, MI) !=
2535         MachineBasicBlock::LQR_Dead) {
2536       // VFP pops don't allow holes in the register list, so any skip is fatal
2537       // for our transformation. GPR pops do, so we should just keep looking.
2538       if (IsVFPPushPop)
2539         return false;
2540       else
2541         continue;
2542     }
2543 
2544     // Mark the unimportant registers as <def,dead> in the POP.
2545     RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false,
2546                                                 true));
2547     --RegsNeeded;
2548   }
2549 
2550   if (RegsNeeded > 0)
2551     return false;
2552 
2553   // Finally we know we can profitably perform the optimisation so go
2554   // ahead: strip all existing registers off and add them back again
2555   // in the right order.
2556   for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i)
2557     MI->RemoveOperand(i);
2558 
2559   // Add the complete list back in.
2560   MachineInstrBuilder MIB(MF, &*MI);
2561   for (int i = RegList.size() - 1; i >= 0; --i)
2562     MIB.add(RegList[i]);
2563 
2564   return true;
2565 }
2566 
rewriteARMFrameIndex(MachineInstr & MI,unsigned FrameRegIdx,Register FrameReg,int & Offset,const ARMBaseInstrInfo & TII)2567 bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
2568                                 Register FrameReg, int &Offset,
2569                                 const ARMBaseInstrInfo &TII) {
2570   unsigned Opcode = MI.getOpcode();
2571   const MCInstrDesc &Desc = MI.getDesc();
2572   unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
2573   bool isSub = false;
2574 
2575   // Memory operands in inline assembly always use AddrMode2.
2576   if (Opcode == ARM::INLINEASM || Opcode == ARM::INLINEASM_BR)
2577     AddrMode = ARMII::AddrMode2;
2578 
2579   if (Opcode == ARM::ADDri) {
2580     Offset += MI.getOperand(FrameRegIdx+1).getImm();
2581     if (Offset == 0) {
2582       // Turn it into a move.
2583       MI.setDesc(TII.get(ARM::MOVr));
2584       MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2585       MI.RemoveOperand(FrameRegIdx+1);
2586       Offset = 0;
2587       return true;
2588     } else if (Offset < 0) {
2589       Offset = -Offset;
2590       isSub = true;
2591       MI.setDesc(TII.get(ARM::SUBri));
2592     }
2593 
2594     // Common case: small offset, fits into instruction.
2595     if (ARM_AM::getSOImmVal(Offset) != -1) {
2596       // Replace the FrameIndex with sp / fp
2597       MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2598       MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
2599       Offset = 0;
2600       return true;
2601     }
2602 
2603     // Otherwise, pull as much of the immedidate into this ADDri/SUBri
2604     // as possible.
2605     unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
2606     unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt);
2607 
2608     // We will handle these bits from offset, clear them.
2609     Offset &= ~ThisImmVal;
2610 
2611     // Get the properly encoded SOImmVal field.
2612     assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 &&
2613            "Bit extraction didn't work?");
2614     MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
2615  } else {
2616     unsigned ImmIdx = 0;
2617     int InstrOffs = 0;
2618     unsigned NumBits = 0;
2619     unsigned Scale = 1;
2620     switch (AddrMode) {
2621     case ARMII::AddrMode_i12:
2622       ImmIdx = FrameRegIdx + 1;
2623       InstrOffs = MI.getOperand(ImmIdx).getImm();
2624       NumBits = 12;
2625       break;
2626     case ARMII::AddrMode2:
2627       ImmIdx = FrameRegIdx+2;
2628       InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
2629       if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2630         InstrOffs *= -1;
2631       NumBits = 12;
2632       break;
2633     case ARMII::AddrMode3:
2634       ImmIdx = FrameRegIdx+2;
2635       InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
2636       if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2637         InstrOffs *= -1;
2638       NumBits = 8;
2639       break;
2640     case ARMII::AddrMode4:
2641     case ARMII::AddrMode6:
2642       // Can't fold any offset even if it's zero.
2643       return false;
2644     case ARMII::AddrMode5:
2645       ImmIdx = FrameRegIdx+1;
2646       InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
2647       if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2648         InstrOffs *= -1;
2649       NumBits = 8;
2650       Scale = 4;
2651       break;
2652     case ARMII::AddrMode5FP16:
2653       ImmIdx = FrameRegIdx+1;
2654       InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
2655       if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2656         InstrOffs *= -1;
2657       NumBits = 8;
2658       Scale = 2;
2659       break;
2660     case ARMII::AddrModeT2_i7:
2661     case ARMII::AddrModeT2_i7s2:
2662     case ARMII::AddrModeT2_i7s4:
2663       ImmIdx = FrameRegIdx+1;
2664       InstrOffs = MI.getOperand(ImmIdx).getImm();
2665       NumBits = 7;
2666       Scale = (AddrMode == ARMII::AddrModeT2_i7s2 ? 2 :
2667                AddrMode == ARMII::AddrModeT2_i7s4 ? 4 : 1);
2668       break;
2669     default:
2670       llvm_unreachable("Unsupported addressing mode!");
2671     }
2672 
2673     Offset += InstrOffs * Scale;
2674     assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
2675     if (Offset < 0) {
2676       Offset = -Offset;
2677       isSub = true;
2678     }
2679 
2680     // Attempt to fold address comp. if opcode has offset bits
2681     if (NumBits > 0) {
2682       // Common case: small offset, fits into instruction.
2683       MachineOperand &ImmOp = MI.getOperand(ImmIdx);
2684       int ImmedOffset = Offset / Scale;
2685       unsigned Mask = (1 << NumBits) - 1;
2686       if ((unsigned)Offset <= Mask * Scale) {
2687         // Replace the FrameIndex with sp
2688         MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2689         // FIXME: When addrmode2 goes away, this will simplify (like the
2690         // T2 version), as the LDR.i12 versions don't need the encoding
2691         // tricks for the offset value.
2692         if (isSub) {
2693           if (AddrMode == ARMII::AddrMode_i12)
2694             ImmedOffset = -ImmedOffset;
2695           else
2696             ImmedOffset |= 1 << NumBits;
2697         }
2698         ImmOp.ChangeToImmediate(ImmedOffset);
2699         Offset = 0;
2700         return true;
2701       }
2702 
2703       // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
2704       ImmedOffset = ImmedOffset & Mask;
2705       if (isSub) {
2706         if (AddrMode == ARMII::AddrMode_i12)
2707           ImmedOffset = -ImmedOffset;
2708         else
2709           ImmedOffset |= 1 << NumBits;
2710       }
2711       ImmOp.ChangeToImmediate(ImmedOffset);
2712       Offset &= ~(Mask*Scale);
2713     }
2714   }
2715 
2716   Offset = (isSub) ? -Offset : Offset;
2717   return Offset == 0;
2718 }
2719 
2720 /// analyzeCompare - For a comparison instruction, return the source registers
2721 /// in SrcReg and SrcReg2 if having two register operands, and the value it
2722 /// compares against in CmpValue. Return true if the comparison instruction
2723 /// can be analyzed.
analyzeCompare(const MachineInstr & MI,Register & SrcReg,Register & SrcReg2,int & CmpMask,int & CmpValue) const2724 bool ARMBaseInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
2725                                       Register &SrcReg2, int &CmpMask,
2726                                       int &CmpValue) const {
2727   switch (MI.getOpcode()) {
2728   default: break;
2729   case ARM::CMPri:
2730   case ARM::t2CMPri:
2731   case ARM::tCMPi8:
2732     SrcReg = MI.getOperand(0).getReg();
2733     SrcReg2 = 0;
2734     CmpMask = ~0;
2735     CmpValue = MI.getOperand(1).getImm();
2736     return true;
2737   case ARM::CMPrr:
2738   case ARM::t2CMPrr:
2739   case ARM::tCMPr:
2740     SrcReg = MI.getOperand(0).getReg();
2741     SrcReg2 = MI.getOperand(1).getReg();
2742     CmpMask = ~0;
2743     CmpValue = 0;
2744     return true;
2745   case ARM::TSTri:
2746   case ARM::t2TSTri:
2747     SrcReg = MI.getOperand(0).getReg();
2748     SrcReg2 = 0;
2749     CmpMask = MI.getOperand(1).getImm();
2750     CmpValue = 0;
2751     return true;
2752   }
2753 
2754   return false;
2755 }
2756 
2757 /// isSuitableForMask - Identify a suitable 'and' instruction that
2758 /// operates on the given source register and applies the same mask
2759 /// as a 'tst' instruction. Provide a limited look-through for copies.
2760 /// When successful, MI will hold the found instruction.
isSuitableForMask(MachineInstr * & MI,Register SrcReg,int CmpMask,bool CommonUse)2761 static bool isSuitableForMask(MachineInstr *&MI, Register SrcReg,
2762                               int CmpMask, bool CommonUse) {
2763   switch (MI->getOpcode()) {
2764     case ARM::ANDri:
2765     case ARM::t2ANDri:
2766       if (CmpMask != MI->getOperand(2).getImm())
2767         return false;
2768       if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg())
2769         return true;
2770       break;
2771   }
2772 
2773   return false;
2774 }
2775 
2776 /// getCmpToAddCondition - assume the flags are set by CMP(a,b), return
2777 /// the condition code if we modify the instructions such that flags are
2778 /// set by ADD(a,b,X).
getCmpToAddCondition(ARMCC::CondCodes CC)2779 inline static ARMCC::CondCodes getCmpToAddCondition(ARMCC::CondCodes CC) {
2780   switch (CC) {
2781   default: return ARMCC::AL;
2782   case ARMCC::HS: return ARMCC::LO;
2783   case ARMCC::LO: return ARMCC::HS;
2784   case ARMCC::VS: return ARMCC::VS;
2785   case ARMCC::VC: return ARMCC::VC;
2786   }
2787 }
2788 
2789 /// isRedundantFlagInstr - check whether the first instruction, whose only
2790 /// purpose is to update flags, can be made redundant.
2791 /// CMPrr can be made redundant by SUBrr if the operands are the same.
2792 /// CMPri can be made redundant by SUBri if the operands are the same.
2793 /// CMPrr(r0, r1) can be made redundant by ADDr[ri](r0, r1, X).
2794 /// This function can be extended later on.
isRedundantFlagInstr(const MachineInstr * CmpI,Register SrcReg,Register SrcReg2,int ImmValue,const MachineInstr * OI,bool & IsThumb1)2795 inline static bool isRedundantFlagInstr(const MachineInstr *CmpI,
2796                                         Register SrcReg, Register SrcReg2,
2797                                         int ImmValue, const MachineInstr *OI,
2798                                         bool &IsThumb1) {
2799   if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) &&
2800       (OI->getOpcode() == ARM::SUBrr || OI->getOpcode() == ARM::t2SUBrr) &&
2801       ((OI->getOperand(1).getReg() == SrcReg &&
2802         OI->getOperand(2).getReg() == SrcReg2) ||
2803        (OI->getOperand(1).getReg() == SrcReg2 &&
2804         OI->getOperand(2).getReg() == SrcReg))) {
2805     IsThumb1 = false;
2806     return true;
2807   }
2808 
2809   if (CmpI->getOpcode() == ARM::tCMPr && OI->getOpcode() == ARM::tSUBrr &&
2810       ((OI->getOperand(2).getReg() == SrcReg &&
2811         OI->getOperand(3).getReg() == SrcReg2) ||
2812        (OI->getOperand(2).getReg() == SrcReg2 &&
2813         OI->getOperand(3).getReg() == SrcReg))) {
2814     IsThumb1 = true;
2815     return true;
2816   }
2817 
2818   if ((CmpI->getOpcode() == ARM::CMPri || CmpI->getOpcode() == ARM::t2CMPri) &&
2819       (OI->getOpcode() == ARM::SUBri || OI->getOpcode() == ARM::t2SUBri) &&
2820       OI->getOperand(1).getReg() == SrcReg &&
2821       OI->getOperand(2).getImm() == ImmValue) {
2822     IsThumb1 = false;
2823     return true;
2824   }
2825 
2826   if (CmpI->getOpcode() == ARM::tCMPi8 &&
2827       (OI->getOpcode() == ARM::tSUBi8 || OI->getOpcode() == ARM::tSUBi3) &&
2828       OI->getOperand(2).getReg() == SrcReg &&
2829       OI->getOperand(3).getImm() == ImmValue) {
2830     IsThumb1 = true;
2831     return true;
2832   }
2833 
2834   if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) &&
2835       (OI->getOpcode() == ARM::ADDrr || OI->getOpcode() == ARM::t2ADDrr ||
2836        OI->getOpcode() == ARM::ADDri || OI->getOpcode() == ARM::t2ADDri) &&
2837       OI->getOperand(0).isReg() && OI->getOperand(1).isReg() &&
2838       OI->getOperand(0).getReg() == SrcReg &&
2839       OI->getOperand(1).getReg() == SrcReg2) {
2840     IsThumb1 = false;
2841     return true;
2842   }
2843 
2844   if (CmpI->getOpcode() == ARM::tCMPr &&
2845       (OI->getOpcode() == ARM::tADDi3 || OI->getOpcode() == ARM::tADDi8 ||
2846        OI->getOpcode() == ARM::tADDrr) &&
2847       OI->getOperand(0).getReg() == SrcReg &&
2848       OI->getOperand(2).getReg() == SrcReg2) {
2849     IsThumb1 = true;
2850     return true;
2851   }
2852 
2853   return false;
2854 }
2855 
isOptimizeCompareCandidate(MachineInstr * MI,bool & IsThumb1)2856 static bool isOptimizeCompareCandidate(MachineInstr *MI, bool &IsThumb1) {
2857   switch (MI->getOpcode()) {
2858   default: return false;
2859   case ARM::tLSLri:
2860   case ARM::tLSRri:
2861   case ARM::tLSLrr:
2862   case ARM::tLSRrr:
2863   case ARM::tSUBrr:
2864   case ARM::tADDrr:
2865   case ARM::tADDi3:
2866   case ARM::tADDi8:
2867   case ARM::tSUBi3:
2868   case ARM::tSUBi8:
2869   case ARM::tMUL:
2870   case ARM::tADC:
2871   case ARM::tSBC:
2872   case ARM::tRSB:
2873   case ARM::tAND:
2874   case ARM::tORR:
2875   case ARM::tEOR:
2876   case ARM::tBIC:
2877   case ARM::tMVN:
2878   case ARM::tASRri:
2879   case ARM::tASRrr:
2880   case ARM::tROR:
2881     IsThumb1 = true;
2882     LLVM_FALLTHROUGH;
2883   case ARM::RSBrr:
2884   case ARM::RSBri:
2885   case ARM::RSCrr:
2886   case ARM::RSCri:
2887   case ARM::ADDrr:
2888   case ARM::ADDri:
2889   case ARM::ADCrr:
2890   case ARM::ADCri:
2891   case ARM::SUBrr:
2892   case ARM::SUBri:
2893   case ARM::SBCrr:
2894   case ARM::SBCri:
2895   case ARM::t2RSBri:
2896   case ARM::t2ADDrr:
2897   case ARM::t2ADDri:
2898   case ARM::t2ADCrr:
2899   case ARM::t2ADCri:
2900   case ARM::t2SUBrr:
2901   case ARM::t2SUBri:
2902   case ARM::t2SBCrr:
2903   case ARM::t2SBCri:
2904   case ARM::ANDrr:
2905   case ARM::ANDri:
2906   case ARM::t2ANDrr:
2907   case ARM::t2ANDri:
2908   case ARM::ORRrr:
2909   case ARM::ORRri:
2910   case ARM::t2ORRrr:
2911   case ARM::t2ORRri:
2912   case ARM::EORrr:
2913   case ARM::EORri:
2914   case ARM::t2EORrr:
2915   case ARM::t2EORri:
2916   case ARM::t2LSRri:
2917   case ARM::t2LSRrr:
2918   case ARM::t2LSLri:
2919   case ARM::t2LSLrr:
2920     return true;
2921   }
2922 }
2923 
2924 /// optimizeCompareInstr - Convert the instruction supplying the argument to the
2925 /// comparison into one that sets the zero bit in the flags register;
2926 /// Remove a redundant Compare instruction if an earlier instruction can set the
2927 /// flags in the same way as Compare.
2928 /// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two
2929 /// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the
2930 /// condition code of instructions which use the flags.
optimizeCompareInstr(MachineInstr & CmpInstr,Register SrcReg,Register SrcReg2,int CmpMask,int CmpValue,const MachineRegisterInfo * MRI) const2931 bool ARMBaseInstrInfo::optimizeCompareInstr(
2932     MachineInstr &CmpInstr, Register SrcReg, Register SrcReg2, int CmpMask,
2933     int CmpValue, const MachineRegisterInfo *MRI) const {
2934   // Get the unique definition of SrcReg.
2935   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
2936   if (!MI) return false;
2937 
2938   // Masked compares sometimes use the same register as the corresponding 'and'.
2939   if (CmpMask != ~0) {
2940     if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(*MI)) {
2941       MI = nullptr;
2942       for (MachineRegisterInfo::use_instr_iterator
2943            UI = MRI->use_instr_begin(SrcReg), UE = MRI->use_instr_end();
2944            UI != UE; ++UI) {
2945         if (UI->getParent() != CmpInstr.getParent())
2946           continue;
2947         MachineInstr *PotentialAND = &*UI;
2948         if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) ||
2949             isPredicated(*PotentialAND))
2950           continue;
2951         MI = PotentialAND;
2952         break;
2953       }
2954       if (!MI) return false;
2955     }
2956   }
2957 
2958   // Get ready to iterate backward from CmpInstr.
2959   MachineBasicBlock::iterator I = CmpInstr, E = MI,
2960                               B = CmpInstr.getParent()->begin();
2961 
2962   // Early exit if CmpInstr is at the beginning of the BB.
2963   if (I == B) return false;
2964 
2965   // There are two possible candidates which can be changed to set CPSR:
2966   // One is MI, the other is a SUB or ADD instruction.
2967   // For CMPrr(r1,r2), we are looking for SUB(r1,r2), SUB(r2,r1), or
2968   // ADDr[ri](r1, r2, X).
2969   // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue).
2970   MachineInstr *SubAdd = nullptr;
2971   if (SrcReg2 != 0)
2972     // MI is not a candidate for CMPrr.
2973     MI = nullptr;
2974   else if (MI->getParent() != CmpInstr.getParent() || CmpValue != 0) {
2975     // Conservatively refuse to convert an instruction which isn't in the same
2976     // BB as the comparison.
2977     // For CMPri w/ CmpValue != 0, a SubAdd may still be a candidate.
2978     // Thus we cannot return here.
2979     if (CmpInstr.getOpcode() == ARM::CMPri ||
2980         CmpInstr.getOpcode() == ARM::t2CMPri ||
2981         CmpInstr.getOpcode() == ARM::tCMPi8)
2982       MI = nullptr;
2983     else
2984       return false;
2985   }
2986 
2987   bool IsThumb1 = false;
2988   if (MI && !isOptimizeCompareCandidate(MI, IsThumb1))
2989     return false;
2990 
2991   // We also want to do this peephole for cases like this: if (a*b == 0),
2992   // and optimise away the CMP instruction from the generated code sequence:
2993   // MULS, MOVS, MOVS, CMP. Here the MOVS instructions load the boolean values
2994   // resulting from the select instruction, but these MOVS instructions for
2995   // Thumb1 (V6M) are flag setting and are thus preventing this optimisation.
2996   // However, if we only have MOVS instructions in between the CMP and the
2997   // other instruction (the MULS in this example), then the CPSR is dead so we
2998   // can safely reorder the sequence into: MOVS, MOVS, MULS, CMP. We do this
2999   // reordering and then continue the analysis hoping we can eliminate the
3000   // CMP. This peephole works on the vregs, so is still in SSA form. As a
3001   // consequence, the movs won't redefine/kill the MUL operands which would
3002   // make this reordering illegal.
3003   const TargetRegisterInfo *TRI = &getRegisterInfo();
3004   if (MI && IsThumb1) {
3005     --I;
3006     if (I != E && !MI->readsRegister(ARM::CPSR, TRI)) {
3007       bool CanReorder = true;
3008       for (; I != E; --I) {
3009         if (I->getOpcode() != ARM::tMOVi8) {
3010           CanReorder = false;
3011           break;
3012         }
3013       }
3014       if (CanReorder) {
3015         MI = MI->removeFromParent();
3016         E = CmpInstr;
3017         CmpInstr.getParent()->insert(E, MI);
3018       }
3019     }
3020     I = CmpInstr;
3021     E = MI;
3022   }
3023 
3024   // Check that CPSR isn't set between the comparison instruction and the one we
3025   // want to change. At the same time, search for SubAdd.
3026   bool SubAddIsThumb1 = false;
3027   do {
3028     const MachineInstr &Instr = *--I;
3029 
3030     // Check whether CmpInstr can be made redundant by the current instruction.
3031     if (isRedundantFlagInstr(&CmpInstr, SrcReg, SrcReg2, CmpValue, &Instr,
3032                              SubAddIsThumb1)) {
3033       SubAdd = &*I;
3034       break;
3035     }
3036 
3037     // Allow E (which was initially MI) to be SubAdd but do not search before E.
3038     if (I == E)
3039       break;
3040 
3041     if (Instr.modifiesRegister(ARM::CPSR, TRI) ||
3042         Instr.readsRegister(ARM::CPSR, TRI))
3043       // This instruction modifies or uses CPSR after the one we want to
3044       // change. We can't do this transformation.
3045       return false;
3046 
3047     if (I == B) {
3048       // In some cases, we scan the use-list of an instruction for an AND;
3049       // that AND is in the same BB, but may not be scheduled before the
3050       // corresponding TST.  In that case, bail out.
3051       //
3052       // FIXME: We could try to reschedule the AND.
3053       return false;
3054     }
3055   } while (true);
3056 
3057   // Return false if no candidates exist.
3058   if (!MI && !SubAdd)
3059     return false;
3060 
3061   // If we found a SubAdd, use it as it will be closer to the CMP
3062   if (SubAdd) {
3063     MI = SubAdd;
3064     IsThumb1 = SubAddIsThumb1;
3065   }
3066 
3067   // We can't use a predicated instruction - it doesn't always write the flags.
3068   if (isPredicated(*MI))
3069     return false;
3070 
3071   // Scan forward for the use of CPSR
3072   // When checking against MI: if it's a conditional code that requires
3073   // checking of the V bit or C bit, then this is not safe to do.
3074   // It is safe to remove CmpInstr if CPSR is redefined or killed.
3075   // If we are done with the basic block, we need to check whether CPSR is
3076   // live-out.
3077   SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4>
3078       OperandsToUpdate;
3079   bool isSafe = false;
3080   I = CmpInstr;
3081   E = CmpInstr.getParent()->end();
3082   while (!isSafe && ++I != E) {
3083     const MachineInstr &Instr = *I;
3084     for (unsigned IO = 0, EO = Instr.getNumOperands();
3085          !isSafe && IO != EO; ++IO) {
3086       const MachineOperand &MO = Instr.getOperand(IO);
3087       if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) {
3088         isSafe = true;
3089         break;
3090       }
3091       if (!MO.isReg() || MO.getReg() != ARM::CPSR)
3092         continue;
3093       if (MO.isDef()) {
3094         isSafe = true;
3095         break;
3096       }
3097       // Condition code is after the operand before CPSR except for VSELs.
3098       ARMCC::CondCodes CC;
3099       bool IsInstrVSel = true;
3100       switch (Instr.getOpcode()) {
3101       default:
3102         IsInstrVSel = false;
3103         CC = (ARMCC::CondCodes)Instr.getOperand(IO - 1).getImm();
3104         break;
3105       case ARM::VSELEQD:
3106       case ARM::VSELEQS:
3107       case ARM::VSELEQH:
3108         CC = ARMCC::EQ;
3109         break;
3110       case ARM::VSELGTD:
3111       case ARM::VSELGTS:
3112       case ARM::VSELGTH:
3113         CC = ARMCC::GT;
3114         break;
3115       case ARM::VSELGED:
3116       case ARM::VSELGES:
3117       case ARM::VSELGEH:
3118         CC = ARMCC::GE;
3119         break;
3120       case ARM::VSELVSD:
3121       case ARM::VSELVSS:
3122       case ARM::VSELVSH:
3123         CC = ARMCC::VS;
3124         break;
3125       }
3126 
3127       if (SubAdd) {
3128         // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based
3129         // on CMP needs to be updated to be based on SUB.
3130         // If we have ADD(r1, r2, X) and CMP(r1, r2), the condition code also
3131         // needs to be modified.
3132         // Push the condition code operands to OperandsToUpdate.
3133         // If it is safe to remove CmpInstr, the condition code of these
3134         // operands will be modified.
3135         unsigned Opc = SubAdd->getOpcode();
3136         bool IsSub = Opc == ARM::SUBrr || Opc == ARM::t2SUBrr ||
3137                      Opc == ARM::SUBri || Opc == ARM::t2SUBri ||
3138                      Opc == ARM::tSUBrr || Opc == ARM::tSUBi3 ||
3139                      Opc == ARM::tSUBi8;
3140         unsigned OpI = Opc != ARM::tSUBrr ? 1 : 2;
3141         if (!IsSub ||
3142             (SrcReg2 != 0 && SubAdd->getOperand(OpI).getReg() == SrcReg2 &&
3143              SubAdd->getOperand(OpI + 1).getReg() == SrcReg)) {
3144           // VSel doesn't support condition code update.
3145           if (IsInstrVSel)
3146             return false;
3147           // Ensure we can swap the condition.
3148           ARMCC::CondCodes NewCC = (IsSub ? getSwappedCondition(CC) : getCmpToAddCondition(CC));
3149           if (NewCC == ARMCC::AL)
3150             return false;
3151           OperandsToUpdate.push_back(
3152               std::make_pair(&((*I).getOperand(IO - 1)), NewCC));
3153         }
3154       } else {
3155         // No SubAdd, so this is x = <op> y, z; cmp x, 0.
3156         switch (CC) {
3157         case ARMCC::EQ: // Z
3158         case ARMCC::NE: // Z
3159         case ARMCC::MI: // N
3160         case ARMCC::PL: // N
3161         case ARMCC::AL: // none
3162           // CPSR can be used multiple times, we should continue.
3163           break;
3164         case ARMCC::HS: // C
3165         case ARMCC::LO: // C
3166         case ARMCC::VS: // V
3167         case ARMCC::VC: // V
3168         case ARMCC::HI: // C Z
3169         case ARMCC::LS: // C Z
3170         case ARMCC::GE: // N V
3171         case ARMCC::LT: // N V
3172         case ARMCC::GT: // Z N V
3173         case ARMCC::LE: // Z N V
3174           // The instruction uses the V bit or C bit which is not safe.
3175           return false;
3176         }
3177       }
3178     }
3179   }
3180 
3181   // If CPSR is not killed nor re-defined, we should check whether it is
3182   // live-out. If it is live-out, do not optimize.
3183   if (!isSafe) {
3184     MachineBasicBlock *MBB = CmpInstr.getParent();
3185     for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
3186              SE = MBB->succ_end(); SI != SE; ++SI)
3187       if ((*SI)->isLiveIn(ARM::CPSR))
3188         return false;
3189   }
3190 
3191   // Toggle the optional operand to CPSR (if it exists - in Thumb1 we always
3192   // set CPSR so this is represented as an explicit output)
3193   if (!IsThumb1) {
3194     MI->getOperand(5).setReg(ARM::CPSR);
3195     MI->getOperand(5).setIsDef(true);
3196   }
3197   assert(!isPredicated(*MI) && "Can't use flags from predicated instruction");
3198   CmpInstr.eraseFromParent();
3199 
3200   // Modify the condition code of operands in OperandsToUpdate.
3201   // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
3202   // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
3203   for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++)
3204     OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second);
3205 
3206   MI->clearRegisterDeads(ARM::CPSR);
3207 
3208   return true;
3209 }
3210 
shouldSink(const MachineInstr & MI) const3211 bool ARMBaseInstrInfo::shouldSink(const MachineInstr &MI) const {
3212   // Do not sink MI if it might be used to optimize a redundant compare.
3213   // We heuristically only look at the instruction immediately following MI to
3214   // avoid potentially searching the entire basic block.
3215   if (isPredicated(MI))
3216     return true;
3217   MachineBasicBlock::const_iterator Next = &MI;
3218   ++Next;
3219   Register SrcReg, SrcReg2;
3220   int CmpMask, CmpValue;
3221   bool IsThumb1;
3222   if (Next != MI.getParent()->end() &&
3223       analyzeCompare(*Next, SrcReg, SrcReg2, CmpMask, CmpValue) &&
3224       isRedundantFlagInstr(&*Next, SrcReg, SrcReg2, CmpValue, &MI, IsThumb1))
3225     return false;
3226   return true;
3227 }
3228 
FoldImmediate(MachineInstr & UseMI,MachineInstr & DefMI,Register Reg,MachineRegisterInfo * MRI) const3229 bool ARMBaseInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
3230                                      Register Reg,
3231                                      MachineRegisterInfo *MRI) const {
3232   // Fold large immediates into add, sub, or, xor.
3233   unsigned DefOpc = DefMI.getOpcode();
3234   if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm)
3235     return false;
3236   if (!DefMI.getOperand(1).isImm())
3237     // Could be t2MOVi32imm @xx
3238     return false;
3239 
3240   if (!MRI->hasOneNonDBGUse(Reg))
3241     return false;
3242 
3243   const MCInstrDesc &DefMCID = DefMI.getDesc();
3244   if (DefMCID.hasOptionalDef()) {
3245     unsigned NumOps = DefMCID.getNumOperands();
3246     const MachineOperand &MO = DefMI.getOperand(NumOps - 1);
3247     if (MO.getReg() == ARM::CPSR && !MO.isDead())
3248       // If DefMI defines CPSR and it is not dead, it's obviously not safe
3249       // to delete DefMI.
3250       return false;
3251   }
3252 
3253   const MCInstrDesc &UseMCID = UseMI.getDesc();
3254   if (UseMCID.hasOptionalDef()) {
3255     unsigned NumOps = UseMCID.getNumOperands();
3256     if (UseMI.getOperand(NumOps - 1).getReg() == ARM::CPSR)
3257       // If the instruction sets the flag, do not attempt this optimization
3258       // since it may change the semantics of the code.
3259       return false;
3260   }
3261 
3262   unsigned UseOpc = UseMI.getOpcode();
3263   unsigned NewUseOpc = 0;
3264   uint32_t ImmVal = (uint32_t)DefMI.getOperand(1).getImm();
3265   uint32_t SOImmValV1 = 0, SOImmValV2 = 0;
3266   bool Commute = false;
3267   switch (UseOpc) {
3268   default: return false;
3269   case ARM::SUBrr:
3270   case ARM::ADDrr:
3271   case ARM::ORRrr:
3272   case ARM::EORrr:
3273   case ARM::t2SUBrr:
3274   case ARM::t2ADDrr:
3275   case ARM::t2ORRrr:
3276   case ARM::t2EORrr: {
3277     Commute = UseMI.getOperand(2).getReg() != Reg;
3278     switch (UseOpc) {
3279     default: break;
3280     case ARM::ADDrr:
3281     case ARM::SUBrr:
3282       if (UseOpc == ARM::SUBrr && Commute)
3283         return false;
3284 
3285       // ADD/SUB are special because they're essentially the same operation, so
3286       // we can handle a larger range of immediates.
3287       if (ARM_AM::isSOImmTwoPartVal(ImmVal))
3288         NewUseOpc = UseOpc == ARM::ADDrr ? ARM::ADDri : ARM::SUBri;
3289       else if (ARM_AM::isSOImmTwoPartVal(-ImmVal)) {
3290         ImmVal = -ImmVal;
3291         NewUseOpc = UseOpc == ARM::ADDrr ? ARM::SUBri : ARM::ADDri;
3292       } else
3293         return false;
3294       SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
3295       SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
3296       break;
3297     case ARM::ORRrr:
3298     case ARM::EORrr:
3299       if (!ARM_AM::isSOImmTwoPartVal(ImmVal))
3300         return false;
3301       SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
3302       SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
3303       switch (UseOpc) {
3304       default: break;
3305       case ARM::ORRrr: NewUseOpc = ARM::ORRri; break;
3306       case ARM::EORrr: NewUseOpc = ARM::EORri; break;
3307       }
3308       break;
3309     case ARM::t2ADDrr:
3310     case ARM::t2SUBrr: {
3311       if (UseOpc == ARM::t2SUBrr && Commute)
3312         return false;
3313 
3314       // ADD/SUB are special because they're essentially the same operation, so
3315       // we can handle a larger range of immediates.
3316       const bool ToSP = DefMI.getOperand(0).getReg() == ARM::SP;
3317       const unsigned t2ADD = ToSP ? ARM::t2ADDspImm : ARM::t2ADDri;
3318       const unsigned t2SUB = ToSP ? ARM::t2SUBspImm : ARM::t2SUBri;
3319       if (ARM_AM::isT2SOImmTwoPartVal(ImmVal))
3320         NewUseOpc = UseOpc == ARM::t2ADDrr ? t2ADD : t2SUB;
3321       else if (ARM_AM::isT2SOImmTwoPartVal(-ImmVal)) {
3322         ImmVal = -ImmVal;
3323         NewUseOpc = UseOpc == ARM::t2ADDrr ? t2SUB : t2ADD;
3324       } else
3325         return false;
3326       SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
3327       SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
3328       break;
3329     }
3330     case ARM::t2ORRrr:
3331     case ARM::t2EORrr:
3332       if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal))
3333         return false;
3334       SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
3335       SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
3336       switch (UseOpc) {
3337       default: break;
3338       case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break;
3339       case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break;
3340       }
3341       break;
3342     }
3343   }
3344   }
3345 
3346   unsigned OpIdx = Commute ? 2 : 1;
3347   Register Reg1 = UseMI.getOperand(OpIdx).getReg();
3348   bool isKill = UseMI.getOperand(OpIdx).isKill();
3349   const TargetRegisterClass *TRC = MRI->getRegClass(Reg);
3350   Register NewReg = MRI->createVirtualRegister(TRC);
3351   BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), get(NewUseOpc),
3352           NewReg)
3353       .addReg(Reg1, getKillRegState(isKill))
3354       .addImm(SOImmValV1)
3355       .add(predOps(ARMCC::AL))
3356       .add(condCodeOp());
3357   UseMI.setDesc(get(NewUseOpc));
3358   UseMI.getOperand(1).setReg(NewReg);
3359   UseMI.getOperand(1).setIsKill();
3360   UseMI.getOperand(2).ChangeToImmediate(SOImmValV2);
3361   DefMI.eraseFromParent();
3362   // FIXME: t2ADDrr should be split, as different rulles apply when writing to SP.
3363   // Just as t2ADDri, that was split to [t2ADDri, t2ADDspImm].
3364   // Then the below code will not be needed, as the input/output register
3365   // classes will be rgpr or gprSP.
3366   // For now, we fix the UseMI operand explicitly here:
3367   switch(NewUseOpc){
3368     case ARM::t2ADDspImm:
3369     case ARM::t2SUBspImm:
3370     case ARM::t2ADDri:
3371     case ARM::t2SUBri:
3372       MRI->constrainRegClass(UseMI.getOperand(0).getReg(), TRC);
3373   }
3374   return true;
3375 }
3376 
getNumMicroOpsSwiftLdSt(const InstrItineraryData * ItinData,const MachineInstr & MI)3377 static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData,
3378                                         const MachineInstr &MI) {
3379   switch (MI.getOpcode()) {
3380   default: {
3381     const MCInstrDesc &Desc = MI.getDesc();
3382     int UOps = ItinData->getNumMicroOps(Desc.getSchedClass());
3383     assert(UOps >= 0 && "bad # UOps");
3384     return UOps;
3385   }
3386 
3387   case ARM::LDRrs:
3388   case ARM::LDRBrs:
3389   case ARM::STRrs:
3390   case ARM::STRBrs: {
3391     unsigned ShOpVal = MI.getOperand(3).getImm();
3392     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3393     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3394     if (!isSub &&
3395         (ShImm == 0 ||
3396          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3397           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3398       return 1;
3399     return 2;
3400   }
3401 
3402   case ARM::LDRH:
3403   case ARM::STRH: {
3404     if (!MI.getOperand(2).getReg())
3405       return 1;
3406 
3407     unsigned ShOpVal = MI.getOperand(3).getImm();
3408     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3409     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3410     if (!isSub &&
3411         (ShImm == 0 ||
3412          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3413           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3414       return 1;
3415     return 2;
3416   }
3417 
3418   case ARM::LDRSB:
3419   case ARM::LDRSH:
3420     return (ARM_AM::getAM3Op(MI.getOperand(3).getImm()) == ARM_AM::sub) ? 3 : 2;
3421 
3422   case ARM::LDRSB_POST:
3423   case ARM::LDRSH_POST: {
3424     Register Rt = MI.getOperand(0).getReg();
3425     Register Rm = MI.getOperand(3).getReg();
3426     return (Rt == Rm) ? 4 : 3;
3427   }
3428 
3429   case ARM::LDR_PRE_REG:
3430   case ARM::LDRB_PRE_REG: {
3431     Register Rt = MI.getOperand(0).getReg();
3432     Register Rm = MI.getOperand(3).getReg();
3433     if (Rt == Rm)
3434       return 3;
3435     unsigned ShOpVal = MI.getOperand(4).getImm();
3436     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3437     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3438     if (!isSub &&
3439         (ShImm == 0 ||
3440          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3441           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3442       return 2;
3443     return 3;
3444   }
3445 
3446   case ARM::STR_PRE_REG:
3447   case ARM::STRB_PRE_REG: {
3448     unsigned ShOpVal = MI.getOperand(4).getImm();
3449     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3450     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3451     if (!isSub &&
3452         (ShImm == 0 ||
3453          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3454           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3455       return 2;
3456     return 3;
3457   }
3458 
3459   case ARM::LDRH_PRE:
3460   case ARM::STRH_PRE: {
3461     Register Rt = MI.getOperand(0).getReg();
3462     Register Rm = MI.getOperand(3).getReg();
3463     if (!Rm)
3464       return 2;
3465     if (Rt == Rm)
3466       return 3;
3467     return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 3 : 2;
3468   }
3469 
3470   case ARM::LDR_POST_REG:
3471   case ARM::LDRB_POST_REG:
3472   case ARM::LDRH_POST: {
3473     Register Rt = MI.getOperand(0).getReg();
3474     Register Rm = MI.getOperand(3).getReg();
3475     return (Rt == Rm) ? 3 : 2;
3476   }
3477 
3478   case ARM::LDR_PRE_IMM:
3479   case ARM::LDRB_PRE_IMM:
3480   case ARM::LDR_POST_IMM:
3481   case ARM::LDRB_POST_IMM:
3482   case ARM::STRB_POST_IMM:
3483   case ARM::STRB_POST_REG:
3484   case ARM::STRB_PRE_IMM:
3485   case ARM::STRH_POST:
3486   case ARM::STR_POST_IMM:
3487   case ARM::STR_POST_REG:
3488   case ARM::STR_PRE_IMM:
3489     return 2;
3490 
3491   case ARM::LDRSB_PRE:
3492   case ARM::LDRSH_PRE: {
3493     Register Rm = MI.getOperand(3).getReg();
3494     if (Rm == 0)
3495       return 3;
3496     Register Rt = MI.getOperand(0).getReg();
3497     if (Rt == Rm)
3498       return 4;
3499     unsigned ShOpVal = MI.getOperand(4).getImm();
3500     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3501     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3502     if (!isSub &&
3503         (ShImm == 0 ||
3504          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3505           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3506       return 3;
3507     return 4;
3508   }
3509 
3510   case ARM::LDRD: {
3511     Register Rt = MI.getOperand(0).getReg();
3512     Register Rn = MI.getOperand(2).getReg();
3513     Register Rm = MI.getOperand(3).getReg();
3514     if (Rm)
3515       return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
3516                                                                           : 3;
3517     return (Rt == Rn) ? 3 : 2;
3518   }
3519 
3520   case ARM::STRD: {
3521     Register Rm = MI.getOperand(3).getReg();
3522     if (Rm)
3523       return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
3524                                                                           : 3;
3525     return 2;
3526   }
3527 
3528   case ARM::LDRD_POST:
3529   case ARM::t2LDRD_POST:
3530     return 3;
3531 
3532   case ARM::STRD_POST:
3533   case ARM::t2STRD_POST:
3534     return 4;
3535 
3536   case ARM::LDRD_PRE: {
3537     Register Rt = MI.getOperand(0).getReg();
3538     Register Rn = MI.getOperand(3).getReg();
3539     Register Rm = MI.getOperand(4).getReg();
3540     if (Rm)
3541       return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
3542                                                                           : 4;
3543     return (Rt == Rn) ? 4 : 3;
3544   }
3545 
3546   case ARM::t2LDRD_PRE: {
3547     Register Rt = MI.getOperand(0).getReg();
3548     Register Rn = MI.getOperand(3).getReg();
3549     return (Rt == Rn) ? 4 : 3;
3550   }
3551 
3552   case ARM::STRD_PRE: {
3553     Register Rm = MI.getOperand(4).getReg();
3554     if (Rm)
3555       return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
3556                                                                           : 4;
3557     return 3;
3558   }
3559 
3560   case ARM::t2STRD_PRE:
3561     return 3;
3562 
3563   case ARM::t2LDR_POST:
3564   case ARM::t2LDRB_POST:
3565   case ARM::t2LDRB_PRE:
3566   case ARM::t2LDRSBi12:
3567   case ARM::t2LDRSBi8:
3568   case ARM::t2LDRSBpci:
3569   case ARM::t2LDRSBs:
3570   case ARM::t2LDRH_POST:
3571   case ARM::t2LDRH_PRE:
3572   case ARM::t2LDRSBT:
3573   case ARM::t2LDRSB_POST:
3574   case ARM::t2LDRSB_PRE:
3575   case ARM::t2LDRSH_POST:
3576   case ARM::t2LDRSH_PRE:
3577   case ARM::t2LDRSHi12:
3578   case ARM::t2LDRSHi8:
3579   case ARM::t2LDRSHpci:
3580   case ARM::t2LDRSHs:
3581     return 2;
3582 
3583   case ARM::t2LDRDi8: {
3584     Register Rt = MI.getOperand(0).getReg();
3585     Register Rn = MI.getOperand(2).getReg();
3586     return (Rt == Rn) ? 3 : 2;
3587   }
3588 
3589   case ARM::t2STRB_POST:
3590   case ARM::t2STRB_PRE:
3591   case ARM::t2STRBs:
3592   case ARM::t2STRDi8:
3593   case ARM::t2STRH_POST:
3594   case ARM::t2STRH_PRE:
3595   case ARM::t2STRHs:
3596   case ARM::t2STR_POST:
3597   case ARM::t2STR_PRE:
3598   case ARM::t2STRs:
3599     return 2;
3600   }
3601 }
3602 
3603 // Return the number of 32-bit words loaded by LDM or stored by STM. If this
3604 // can't be easily determined return 0 (missing MachineMemOperand).
3605 //
3606 // FIXME: The current MachineInstr design does not support relying on machine
3607 // mem operands to determine the width of a memory access. Instead, we expect
3608 // the target to provide this information based on the instruction opcode and
3609 // operands. However, using MachineMemOperand is the best solution now for
3610 // two reasons:
3611 //
3612 // 1) getNumMicroOps tries to infer LDM memory width from the total number of MI
3613 // operands. This is much more dangerous than using the MachineMemOperand
3614 // sizes because CodeGen passes can insert/remove optional machine operands. In
3615 // fact, it's totally incorrect for preRA passes and appears to be wrong for
3616 // postRA passes as well.
3617 //
3618 // 2) getNumLDMAddresses is only used by the scheduling machine model and any
3619 // machine model that calls this should handle the unknown (zero size) case.
3620 //
3621 // Long term, we should require a target hook that verifies MachineMemOperand
3622 // sizes during MC lowering. That target hook should be local to MC lowering
3623 // because we can't ensure that it is aware of other MI forms. Doing this will
3624 // ensure that MachineMemOperands are correctly propagated through all passes.
getNumLDMAddresses(const MachineInstr & MI) const3625 unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr &MI) const {
3626   unsigned Size = 0;
3627   for (MachineInstr::mmo_iterator I = MI.memoperands_begin(),
3628                                   E = MI.memoperands_end();
3629        I != E; ++I) {
3630     Size += (*I)->getSize();
3631   }
3632   // FIXME: The scheduler currently can't handle values larger than 16. But
3633   // the values can actually go up to 32 for floating-point load/store
3634   // multiple (VLDMIA etc.). Also, the way this code is reasoning about memory
3635   // operations isn't right; we could end up with "extra" memory operands for
3636   // various reasons, like tail merge merging two memory operations.
3637   return std::min(Size / 4, 16U);
3638 }
3639 
getNumMicroOpsSingleIssuePlusExtras(unsigned Opc,unsigned NumRegs)3640 static unsigned getNumMicroOpsSingleIssuePlusExtras(unsigned Opc,
3641                                                     unsigned NumRegs) {
3642   unsigned UOps = 1 + NumRegs; // 1 for address computation.
3643   switch (Opc) {
3644   default:
3645     break;
3646   case ARM::VLDMDIA_UPD:
3647   case ARM::VLDMDDB_UPD:
3648   case ARM::VLDMSIA_UPD:
3649   case ARM::VLDMSDB_UPD:
3650   case ARM::VSTMDIA_UPD:
3651   case ARM::VSTMDDB_UPD:
3652   case ARM::VSTMSIA_UPD:
3653   case ARM::VSTMSDB_UPD:
3654   case ARM::LDMIA_UPD:
3655   case ARM::LDMDA_UPD:
3656   case ARM::LDMDB_UPD:
3657   case ARM::LDMIB_UPD:
3658   case ARM::STMIA_UPD:
3659   case ARM::STMDA_UPD:
3660   case ARM::STMDB_UPD:
3661   case ARM::STMIB_UPD:
3662   case ARM::tLDMIA_UPD:
3663   case ARM::tSTMIA_UPD:
3664   case ARM::t2LDMIA_UPD:
3665   case ARM::t2LDMDB_UPD:
3666   case ARM::t2STMIA_UPD:
3667   case ARM::t2STMDB_UPD:
3668     ++UOps; // One for base register writeback.
3669     break;
3670   case ARM::LDMIA_RET:
3671   case ARM::tPOP_RET:
3672   case ARM::t2LDMIA_RET:
3673     UOps += 2; // One for base reg wb, one for write to pc.
3674     break;
3675   }
3676   return UOps;
3677 }
3678 
getNumMicroOps(const InstrItineraryData * ItinData,const MachineInstr & MI) const3679 unsigned ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
3680                                           const MachineInstr &MI) const {
3681   if (!ItinData || ItinData->isEmpty())
3682     return 1;
3683 
3684   const MCInstrDesc &Desc = MI.getDesc();
3685   unsigned Class = Desc.getSchedClass();
3686   int ItinUOps = ItinData->getNumMicroOps(Class);
3687   if (ItinUOps >= 0) {
3688     if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore()))
3689       return getNumMicroOpsSwiftLdSt(ItinData, MI);
3690 
3691     return ItinUOps;
3692   }
3693 
3694   unsigned Opc = MI.getOpcode();
3695   switch (Opc) {
3696   default:
3697     llvm_unreachable("Unexpected multi-uops instruction!");
3698   case ARM::VLDMQIA:
3699   case ARM::VSTMQIA:
3700     return 2;
3701 
3702   // The number of uOps for load / store multiple are determined by the number
3703   // registers.
3704   //
3705   // On Cortex-A8, each pair of register loads / stores can be scheduled on the
3706   // same cycle. The scheduling for the first load / store must be done
3707   // separately by assuming the address is not 64-bit aligned.
3708   //
3709   // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
3710   // is not 64-bit aligned, then AGU would take an extra cycle.  For VFP / NEON
3711   // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1.
3712   case ARM::VLDMDIA:
3713   case ARM::VLDMDIA_UPD:
3714   case ARM::VLDMDDB_UPD:
3715   case ARM::VLDMSIA:
3716   case ARM::VLDMSIA_UPD:
3717   case ARM::VLDMSDB_UPD:
3718   case ARM::VSTMDIA:
3719   case ARM::VSTMDIA_UPD:
3720   case ARM::VSTMDDB_UPD:
3721   case ARM::VSTMSIA:
3722   case ARM::VSTMSIA_UPD:
3723   case ARM::VSTMSDB_UPD: {
3724     unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands();
3725     return (NumRegs / 2) + (NumRegs % 2) + 1;
3726   }
3727 
3728   case ARM::LDMIA_RET:
3729   case ARM::LDMIA:
3730   case ARM::LDMDA:
3731   case ARM::LDMDB:
3732   case ARM::LDMIB:
3733   case ARM::LDMIA_UPD:
3734   case ARM::LDMDA_UPD:
3735   case ARM::LDMDB_UPD:
3736   case ARM::LDMIB_UPD:
3737   case ARM::STMIA:
3738   case ARM::STMDA:
3739   case ARM::STMDB:
3740   case ARM::STMIB:
3741   case ARM::STMIA_UPD:
3742   case ARM::STMDA_UPD:
3743   case ARM::STMDB_UPD:
3744   case ARM::STMIB_UPD:
3745   case ARM::tLDMIA:
3746   case ARM::tLDMIA_UPD:
3747   case ARM::tSTMIA_UPD:
3748   case ARM::tPOP_RET:
3749   case ARM::tPOP:
3750   case ARM::tPUSH:
3751   case ARM::t2LDMIA_RET:
3752   case ARM::t2LDMIA:
3753   case ARM::t2LDMDB:
3754   case ARM::t2LDMIA_UPD:
3755   case ARM::t2LDMDB_UPD:
3756   case ARM::t2STMIA:
3757   case ARM::t2STMDB:
3758   case ARM::t2STMIA_UPD:
3759   case ARM::t2STMDB_UPD: {
3760     unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands() + 1;
3761     switch (Subtarget.getLdStMultipleTiming()) {
3762     case ARMSubtarget::SingleIssuePlusExtras:
3763       return getNumMicroOpsSingleIssuePlusExtras(Opc, NumRegs);
3764     case ARMSubtarget::SingleIssue:
3765       // Assume the worst.
3766       return NumRegs;
3767     case ARMSubtarget::DoubleIssue: {
3768       if (NumRegs < 4)
3769         return 2;
3770       // 4 registers would be issued: 2, 2.
3771       // 5 registers would be issued: 2, 2, 1.
3772       unsigned UOps = (NumRegs / 2);
3773       if (NumRegs % 2)
3774         ++UOps;
3775       return UOps;
3776     }
3777     case ARMSubtarget::DoubleIssueCheckUnalignedAccess: {
3778       unsigned UOps = (NumRegs / 2);
3779       // If there are odd number of registers or if it's not 64-bit aligned,
3780       // then it takes an extra AGU (Address Generation Unit) cycle.
3781       if ((NumRegs % 2) || !MI.hasOneMemOperand() ||
3782           (*MI.memoperands_begin())->getAlign() < Align(8))
3783         ++UOps;
3784       return UOps;
3785       }
3786     }
3787   }
3788   }
3789   llvm_unreachable("Didn't find the number of microops");
3790 }
3791 
3792 int
getVLDMDefCycle(const InstrItineraryData * ItinData,const MCInstrDesc & DefMCID,unsigned DefClass,unsigned DefIdx,unsigned DefAlign) const3793 ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData,
3794                                   const MCInstrDesc &DefMCID,
3795                                   unsigned DefClass,
3796                                   unsigned DefIdx, unsigned DefAlign) const {
3797   int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3798   if (RegNo <= 0)
3799     // Def is the address writeback.
3800     return ItinData->getOperandCycle(DefClass, DefIdx);
3801 
3802   int DefCycle;
3803   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3804     // (regno / 2) + (regno % 2) + 1
3805     DefCycle = RegNo / 2 + 1;
3806     if (RegNo % 2)
3807       ++DefCycle;
3808   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3809     DefCycle = RegNo;
3810     bool isSLoad = false;
3811 
3812     switch (DefMCID.getOpcode()) {
3813     default: break;
3814     case ARM::VLDMSIA:
3815     case ARM::VLDMSIA_UPD:
3816     case ARM::VLDMSDB_UPD:
3817       isSLoad = true;
3818       break;
3819     }
3820 
3821     // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3822     // then it takes an extra cycle.
3823     if ((isSLoad && (RegNo % 2)) || DefAlign < 8)
3824       ++DefCycle;
3825   } else {
3826     // Assume the worst.
3827     DefCycle = RegNo + 2;
3828   }
3829 
3830   return DefCycle;
3831 }
3832 
3833 int
getLDMDefCycle(const InstrItineraryData * ItinData,const MCInstrDesc & DefMCID,unsigned DefClass,unsigned DefIdx,unsigned DefAlign) const3834 ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData,
3835                                  const MCInstrDesc &DefMCID,
3836                                  unsigned DefClass,
3837                                  unsigned DefIdx, unsigned DefAlign) const {
3838   int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3839   if (RegNo <= 0)
3840     // Def is the address writeback.
3841     return ItinData->getOperandCycle(DefClass, DefIdx);
3842 
3843   int DefCycle;
3844   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3845     // 4 registers would be issued: 1, 2, 1.
3846     // 5 registers would be issued: 1, 2, 2.
3847     DefCycle = RegNo / 2;
3848     if (DefCycle < 1)
3849       DefCycle = 1;
3850     // Result latency is issue cycle + 2: E2.
3851     DefCycle += 2;
3852   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3853     DefCycle = (RegNo / 2);
3854     // If there are odd number of registers or if it's not 64-bit aligned,
3855     // then it takes an extra AGU (Address Generation Unit) cycle.
3856     if ((RegNo % 2) || DefAlign < 8)
3857       ++DefCycle;
3858     // Result latency is AGU cycles + 2.
3859     DefCycle += 2;
3860   } else {
3861     // Assume the worst.
3862     DefCycle = RegNo + 2;
3863   }
3864 
3865   return DefCycle;
3866 }
3867 
3868 int
getVSTMUseCycle(const InstrItineraryData * ItinData,const MCInstrDesc & UseMCID,unsigned UseClass,unsigned UseIdx,unsigned UseAlign) const3869 ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData,
3870                                   const MCInstrDesc &UseMCID,
3871                                   unsigned UseClass,
3872                                   unsigned UseIdx, unsigned UseAlign) const {
3873   int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3874   if (RegNo <= 0)
3875     return ItinData->getOperandCycle(UseClass, UseIdx);
3876 
3877   int UseCycle;
3878   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3879     // (regno / 2) + (regno % 2) + 1
3880     UseCycle = RegNo / 2 + 1;
3881     if (RegNo % 2)
3882       ++UseCycle;
3883   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3884     UseCycle = RegNo;
3885     bool isSStore = false;
3886 
3887     switch (UseMCID.getOpcode()) {
3888     default: break;
3889     case ARM::VSTMSIA:
3890     case ARM::VSTMSIA_UPD:
3891     case ARM::VSTMSDB_UPD:
3892       isSStore = true;
3893       break;
3894     }
3895 
3896     // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3897     // then it takes an extra cycle.
3898     if ((isSStore && (RegNo % 2)) || UseAlign < 8)
3899       ++UseCycle;
3900   } else {
3901     // Assume the worst.
3902     UseCycle = RegNo + 2;
3903   }
3904 
3905   return UseCycle;
3906 }
3907 
3908 int
getSTMUseCycle(const InstrItineraryData * ItinData,const MCInstrDesc & UseMCID,unsigned UseClass,unsigned UseIdx,unsigned UseAlign) const3909 ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData,
3910                                  const MCInstrDesc &UseMCID,
3911                                  unsigned UseClass,
3912                                  unsigned UseIdx, unsigned UseAlign) const {
3913   int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3914   if (RegNo <= 0)
3915     return ItinData->getOperandCycle(UseClass, UseIdx);
3916 
3917   int UseCycle;
3918   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3919     UseCycle = RegNo / 2;
3920     if (UseCycle < 2)
3921       UseCycle = 2;
3922     // Read in E3.
3923     UseCycle += 2;
3924   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3925     UseCycle = (RegNo / 2);
3926     // If there are odd number of registers or if it's not 64-bit aligned,
3927     // then it takes an extra AGU (Address Generation Unit) cycle.
3928     if ((RegNo % 2) || UseAlign < 8)
3929       ++UseCycle;
3930   } else {
3931     // Assume the worst.
3932     UseCycle = 1;
3933   }
3934   return UseCycle;
3935 }
3936 
3937 int
getOperandLatency(const InstrItineraryData * ItinData,const MCInstrDesc & DefMCID,unsigned DefIdx,unsigned DefAlign,const MCInstrDesc & UseMCID,unsigned UseIdx,unsigned UseAlign) const3938 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
3939                                     const MCInstrDesc &DefMCID,
3940                                     unsigned DefIdx, unsigned DefAlign,
3941                                     const MCInstrDesc &UseMCID,
3942                                     unsigned UseIdx, unsigned UseAlign) const {
3943   unsigned DefClass = DefMCID.getSchedClass();
3944   unsigned UseClass = UseMCID.getSchedClass();
3945 
3946   if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands())
3947     return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
3948 
3949   // This may be a def / use of a variable_ops instruction, the operand
3950   // latency might be determinable dynamically. Let the target try to
3951   // figure it out.
3952   int DefCycle = -1;
3953   bool LdmBypass = false;
3954   switch (DefMCID.getOpcode()) {
3955   default:
3956     DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
3957     break;
3958 
3959   case ARM::VLDMDIA:
3960   case ARM::VLDMDIA_UPD:
3961   case ARM::VLDMDDB_UPD:
3962   case ARM::VLDMSIA:
3963   case ARM::VLDMSIA_UPD:
3964   case ARM::VLDMSDB_UPD:
3965     DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
3966     break;
3967 
3968   case ARM::LDMIA_RET:
3969   case ARM::LDMIA:
3970   case ARM::LDMDA:
3971   case ARM::LDMDB:
3972   case ARM::LDMIB:
3973   case ARM::LDMIA_UPD:
3974   case ARM::LDMDA_UPD:
3975   case ARM::LDMDB_UPD:
3976   case ARM::LDMIB_UPD:
3977   case ARM::tLDMIA:
3978   case ARM::tLDMIA_UPD:
3979   case ARM::tPUSH:
3980   case ARM::t2LDMIA_RET:
3981   case ARM::t2LDMIA:
3982   case ARM::t2LDMDB:
3983   case ARM::t2LDMIA_UPD:
3984   case ARM::t2LDMDB_UPD:
3985     LdmBypass = true;
3986     DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
3987     break;
3988   }
3989 
3990   if (DefCycle == -1)
3991     // We can't seem to determine the result latency of the def, assume it's 2.
3992     DefCycle = 2;
3993 
3994   int UseCycle = -1;
3995   switch (UseMCID.getOpcode()) {
3996   default:
3997     UseCycle = ItinData->getOperandCycle(UseClass, UseIdx);
3998     break;
3999 
4000   case ARM::VSTMDIA:
4001   case ARM::VSTMDIA_UPD:
4002   case ARM::VSTMDDB_UPD:
4003   case ARM::VSTMSIA:
4004   case ARM::VSTMSIA_UPD:
4005   case ARM::VSTMSDB_UPD:
4006     UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
4007     break;
4008 
4009   case ARM::STMIA:
4010   case ARM::STMDA:
4011   case ARM::STMDB:
4012   case ARM::STMIB:
4013   case ARM::STMIA_UPD:
4014   case ARM::STMDA_UPD:
4015   case ARM::STMDB_UPD:
4016   case ARM::STMIB_UPD:
4017   case ARM::tSTMIA_UPD:
4018   case ARM::tPOP_RET:
4019   case ARM::tPOP:
4020   case ARM::t2STMIA:
4021   case ARM::t2STMDB:
4022   case ARM::t2STMIA_UPD:
4023   case ARM::t2STMDB_UPD:
4024     UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
4025     break;
4026   }
4027 
4028   if (UseCycle == -1)
4029     // Assume it's read in the first stage.
4030     UseCycle = 1;
4031 
4032   UseCycle = DefCycle - UseCycle + 1;
4033   if (UseCycle > 0) {
4034     if (LdmBypass) {
4035       // It's a variable_ops instruction so we can't use DefIdx here. Just use
4036       // first def operand.
4037       if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1,
4038                                           UseClass, UseIdx))
4039         --UseCycle;
4040     } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx,
4041                                                UseClass, UseIdx)) {
4042       --UseCycle;
4043     }
4044   }
4045 
4046   return UseCycle;
4047 }
4048 
getBundledDefMI(const TargetRegisterInfo * TRI,const MachineInstr * MI,unsigned Reg,unsigned & DefIdx,unsigned & Dist)4049 static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI,
4050                                            const MachineInstr *MI, unsigned Reg,
4051                                            unsigned &DefIdx, unsigned &Dist) {
4052   Dist = 0;
4053 
4054   MachineBasicBlock::const_iterator I = MI; ++I;
4055   MachineBasicBlock::const_instr_iterator II = std::prev(I.getInstrIterator());
4056   assert(II->isInsideBundle() && "Empty bundle?");
4057 
4058   int Idx = -1;
4059   while (II->isInsideBundle()) {
4060     Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI);
4061     if (Idx != -1)
4062       break;
4063     --II;
4064     ++Dist;
4065   }
4066 
4067   assert(Idx != -1 && "Cannot find bundled definition!");
4068   DefIdx = Idx;
4069   return &*II;
4070 }
4071 
getBundledUseMI(const TargetRegisterInfo * TRI,const MachineInstr & MI,unsigned Reg,unsigned & UseIdx,unsigned & Dist)4072 static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI,
4073                                            const MachineInstr &MI, unsigned Reg,
4074                                            unsigned &UseIdx, unsigned &Dist) {
4075   Dist = 0;
4076 
4077   MachineBasicBlock::const_instr_iterator II = ++MI.getIterator();
4078   assert(II->isInsideBundle() && "Empty bundle?");
4079   MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
4080 
4081   // FIXME: This doesn't properly handle multiple uses.
4082   int Idx = -1;
4083   while (II != E && II->isInsideBundle()) {
4084     Idx = II->findRegisterUseOperandIdx(Reg, false, TRI);
4085     if (Idx != -1)
4086       break;
4087     if (II->getOpcode() != ARM::t2IT)
4088       ++Dist;
4089     ++II;
4090   }
4091 
4092   if (Idx == -1) {
4093     Dist = 0;
4094     return nullptr;
4095   }
4096 
4097   UseIdx = Idx;
4098   return &*II;
4099 }
4100 
4101 /// Return the number of cycles to add to (or subtract from) the static
4102 /// itinerary based on the def opcode and alignment. The caller will ensure that
4103 /// adjusted latency is at least one cycle.
adjustDefLatency(const ARMSubtarget & Subtarget,const MachineInstr & DefMI,const MCInstrDesc & DefMCID,unsigned DefAlign)4104 static int adjustDefLatency(const ARMSubtarget &Subtarget,
4105                             const MachineInstr &DefMI,
4106                             const MCInstrDesc &DefMCID, unsigned DefAlign) {
4107   int Adjust = 0;
4108   if (Subtarget.isCortexA8() || Subtarget.isLikeA9() || Subtarget.isCortexA7()) {
4109     // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
4110     // variants are one cycle cheaper.
4111     switch (DefMCID.getOpcode()) {
4112     default: break;
4113     case ARM::LDRrs:
4114     case ARM::LDRBrs: {
4115       unsigned ShOpVal = DefMI.getOperand(3).getImm();
4116       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4117       if (ShImm == 0 ||
4118           (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4119         --Adjust;
4120       break;
4121     }
4122     case ARM::t2LDRs:
4123     case ARM::t2LDRBs:
4124     case ARM::t2LDRHs:
4125     case ARM::t2LDRSHs: {
4126       // Thumb2 mode: lsl only.
4127       unsigned ShAmt = DefMI.getOperand(3).getImm();
4128       if (ShAmt == 0 || ShAmt == 2)
4129         --Adjust;
4130       break;
4131     }
4132     }
4133   } else if (Subtarget.isSwift()) {
4134     // FIXME: Properly handle all of the latency adjustments for address
4135     // writeback.
4136     switch (DefMCID.getOpcode()) {
4137     default: break;
4138     case ARM::LDRrs:
4139     case ARM::LDRBrs: {
4140       unsigned ShOpVal = DefMI.getOperand(3).getImm();
4141       bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
4142       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4143       if (!isSub &&
4144           (ShImm == 0 ||
4145            ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
4146             ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
4147         Adjust -= 2;
4148       else if (!isSub &&
4149                ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
4150         --Adjust;
4151       break;
4152     }
4153     case ARM::t2LDRs:
4154     case ARM::t2LDRBs:
4155     case ARM::t2LDRHs:
4156     case ARM::t2LDRSHs: {
4157       // Thumb2 mode: lsl only.
4158       unsigned ShAmt = DefMI.getOperand(3).getImm();
4159       if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3)
4160         Adjust -= 2;
4161       break;
4162     }
4163     }
4164   }
4165 
4166   if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) {
4167     switch (DefMCID.getOpcode()) {
4168     default: break;
4169     case ARM::VLD1q8:
4170     case ARM::VLD1q16:
4171     case ARM::VLD1q32:
4172     case ARM::VLD1q64:
4173     case ARM::VLD1q8wb_fixed:
4174     case ARM::VLD1q16wb_fixed:
4175     case ARM::VLD1q32wb_fixed:
4176     case ARM::VLD1q64wb_fixed:
4177     case ARM::VLD1q8wb_register:
4178     case ARM::VLD1q16wb_register:
4179     case ARM::VLD1q32wb_register:
4180     case ARM::VLD1q64wb_register:
4181     case ARM::VLD2d8:
4182     case ARM::VLD2d16:
4183     case ARM::VLD2d32:
4184     case ARM::VLD2q8:
4185     case ARM::VLD2q16:
4186     case ARM::VLD2q32:
4187     case ARM::VLD2d8wb_fixed:
4188     case ARM::VLD2d16wb_fixed:
4189     case ARM::VLD2d32wb_fixed:
4190     case ARM::VLD2q8wb_fixed:
4191     case ARM::VLD2q16wb_fixed:
4192     case ARM::VLD2q32wb_fixed:
4193     case ARM::VLD2d8wb_register:
4194     case ARM::VLD2d16wb_register:
4195     case ARM::VLD2d32wb_register:
4196     case ARM::VLD2q8wb_register:
4197     case ARM::VLD2q16wb_register:
4198     case ARM::VLD2q32wb_register:
4199     case ARM::VLD3d8:
4200     case ARM::VLD3d16:
4201     case ARM::VLD3d32:
4202     case ARM::VLD1d64T:
4203     case ARM::VLD3d8_UPD:
4204     case ARM::VLD3d16_UPD:
4205     case ARM::VLD3d32_UPD:
4206     case ARM::VLD1d64Twb_fixed:
4207     case ARM::VLD1d64Twb_register:
4208     case ARM::VLD3q8_UPD:
4209     case ARM::VLD3q16_UPD:
4210     case ARM::VLD3q32_UPD:
4211     case ARM::VLD4d8:
4212     case ARM::VLD4d16:
4213     case ARM::VLD4d32:
4214     case ARM::VLD1d64Q:
4215     case ARM::VLD4d8_UPD:
4216     case ARM::VLD4d16_UPD:
4217     case ARM::VLD4d32_UPD:
4218     case ARM::VLD1d64Qwb_fixed:
4219     case ARM::VLD1d64Qwb_register:
4220     case ARM::VLD4q8_UPD:
4221     case ARM::VLD4q16_UPD:
4222     case ARM::VLD4q32_UPD:
4223     case ARM::VLD1DUPq8:
4224     case ARM::VLD1DUPq16:
4225     case ARM::VLD1DUPq32:
4226     case ARM::VLD1DUPq8wb_fixed:
4227     case ARM::VLD1DUPq16wb_fixed:
4228     case ARM::VLD1DUPq32wb_fixed:
4229     case ARM::VLD1DUPq8wb_register:
4230     case ARM::VLD1DUPq16wb_register:
4231     case ARM::VLD1DUPq32wb_register:
4232     case ARM::VLD2DUPd8:
4233     case ARM::VLD2DUPd16:
4234     case ARM::VLD2DUPd32:
4235     case ARM::VLD2DUPd8wb_fixed:
4236     case ARM::VLD2DUPd16wb_fixed:
4237     case ARM::VLD2DUPd32wb_fixed:
4238     case ARM::VLD2DUPd8wb_register:
4239     case ARM::VLD2DUPd16wb_register:
4240     case ARM::VLD2DUPd32wb_register:
4241     case ARM::VLD4DUPd8:
4242     case ARM::VLD4DUPd16:
4243     case ARM::VLD4DUPd32:
4244     case ARM::VLD4DUPd8_UPD:
4245     case ARM::VLD4DUPd16_UPD:
4246     case ARM::VLD4DUPd32_UPD:
4247     case ARM::VLD1LNd8:
4248     case ARM::VLD1LNd16:
4249     case ARM::VLD1LNd32:
4250     case ARM::VLD1LNd8_UPD:
4251     case ARM::VLD1LNd16_UPD:
4252     case ARM::VLD1LNd32_UPD:
4253     case ARM::VLD2LNd8:
4254     case ARM::VLD2LNd16:
4255     case ARM::VLD2LNd32:
4256     case ARM::VLD2LNq16:
4257     case ARM::VLD2LNq32:
4258     case ARM::VLD2LNd8_UPD:
4259     case ARM::VLD2LNd16_UPD:
4260     case ARM::VLD2LNd32_UPD:
4261     case ARM::VLD2LNq16_UPD:
4262     case ARM::VLD2LNq32_UPD:
4263     case ARM::VLD4LNd8:
4264     case ARM::VLD4LNd16:
4265     case ARM::VLD4LNd32:
4266     case ARM::VLD4LNq16:
4267     case ARM::VLD4LNq32:
4268     case ARM::VLD4LNd8_UPD:
4269     case ARM::VLD4LNd16_UPD:
4270     case ARM::VLD4LNd32_UPD:
4271     case ARM::VLD4LNq16_UPD:
4272     case ARM::VLD4LNq32_UPD:
4273       // If the address is not 64-bit aligned, the latencies of these
4274       // instructions increases by one.
4275       ++Adjust;
4276       break;
4277     }
4278   }
4279   return Adjust;
4280 }
4281 
getOperandLatency(const InstrItineraryData * ItinData,const MachineInstr & DefMI,unsigned DefIdx,const MachineInstr & UseMI,unsigned UseIdx) const4282 int ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
4283                                         const MachineInstr &DefMI,
4284                                         unsigned DefIdx,
4285                                         const MachineInstr &UseMI,
4286                                         unsigned UseIdx) const {
4287   // No operand latency. The caller may fall back to getInstrLatency.
4288   if (!ItinData || ItinData->isEmpty())
4289     return -1;
4290 
4291   const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
4292   Register Reg = DefMO.getReg();
4293 
4294   const MachineInstr *ResolvedDefMI = &DefMI;
4295   unsigned DefAdj = 0;
4296   if (DefMI.isBundle())
4297     ResolvedDefMI =
4298         getBundledDefMI(&getRegisterInfo(), &DefMI, Reg, DefIdx, DefAdj);
4299   if (ResolvedDefMI->isCopyLike() || ResolvedDefMI->isInsertSubreg() ||
4300       ResolvedDefMI->isRegSequence() || ResolvedDefMI->isImplicitDef()) {
4301     return 1;
4302   }
4303 
4304   const MachineInstr *ResolvedUseMI = &UseMI;
4305   unsigned UseAdj = 0;
4306   if (UseMI.isBundle()) {
4307     ResolvedUseMI =
4308         getBundledUseMI(&getRegisterInfo(), UseMI, Reg, UseIdx, UseAdj);
4309     if (!ResolvedUseMI)
4310       return -1;
4311   }
4312 
4313   return getOperandLatencyImpl(
4314       ItinData, *ResolvedDefMI, DefIdx, ResolvedDefMI->getDesc(), DefAdj, DefMO,
4315       Reg, *ResolvedUseMI, UseIdx, ResolvedUseMI->getDesc(), UseAdj);
4316 }
4317 
getOperandLatencyImpl(const InstrItineraryData * ItinData,const MachineInstr & DefMI,unsigned DefIdx,const MCInstrDesc & DefMCID,unsigned DefAdj,const MachineOperand & DefMO,unsigned Reg,const MachineInstr & UseMI,unsigned UseIdx,const MCInstrDesc & UseMCID,unsigned UseAdj) const4318 int ARMBaseInstrInfo::getOperandLatencyImpl(
4319     const InstrItineraryData *ItinData, const MachineInstr &DefMI,
4320     unsigned DefIdx, const MCInstrDesc &DefMCID, unsigned DefAdj,
4321     const MachineOperand &DefMO, unsigned Reg, const MachineInstr &UseMI,
4322     unsigned UseIdx, const MCInstrDesc &UseMCID, unsigned UseAdj) const {
4323   if (Reg == ARM::CPSR) {
4324     if (DefMI.getOpcode() == ARM::FMSTAT) {
4325       // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?)
4326       return Subtarget.isLikeA9() ? 1 : 20;
4327     }
4328 
4329     // CPSR set and branch can be paired in the same cycle.
4330     if (UseMI.isBranch())
4331       return 0;
4332 
4333     // Otherwise it takes the instruction latency (generally one).
4334     unsigned Latency = getInstrLatency(ItinData, DefMI);
4335 
4336     // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to
4337     // its uses. Instructions which are otherwise scheduled between them may
4338     // incur a code size penalty (not able to use the CPSR setting 16-bit
4339     // instructions).
4340     if (Latency > 0 && Subtarget.isThumb2()) {
4341       const MachineFunction *MF = DefMI.getParent()->getParent();
4342       // FIXME: Use Function::hasOptSize().
4343       if (MF->getFunction().hasFnAttribute(Attribute::OptimizeForSize))
4344         --Latency;
4345     }
4346     return Latency;
4347   }
4348 
4349   if (DefMO.isImplicit() || UseMI.getOperand(UseIdx).isImplicit())
4350     return -1;
4351 
4352   unsigned DefAlign = DefMI.hasOneMemOperand()
4353                           ? (*DefMI.memoperands_begin())->getAlign().value()
4354                           : 0;
4355   unsigned UseAlign = UseMI.hasOneMemOperand()
4356                           ? (*UseMI.memoperands_begin())->getAlign().value()
4357                           : 0;
4358 
4359   // Get the itinerary's latency if possible, and handle variable_ops.
4360   int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, UseMCID,
4361                                   UseIdx, UseAlign);
4362   // Unable to find operand latency. The caller may resort to getInstrLatency.
4363   if (Latency < 0)
4364     return Latency;
4365 
4366   // Adjust for IT block position.
4367   int Adj = DefAdj + UseAdj;
4368 
4369   // Adjust for dynamic def-side opcode variants not captured by the itinerary.
4370   Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign);
4371   if (Adj >= 0 || (int)Latency > -Adj) {
4372     return Latency + Adj;
4373   }
4374   // Return the itinerary latency, which may be zero but not less than zero.
4375   return Latency;
4376 }
4377 
4378 int
getOperandLatency(const InstrItineraryData * ItinData,SDNode * DefNode,unsigned DefIdx,SDNode * UseNode,unsigned UseIdx) const4379 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
4380                                     SDNode *DefNode, unsigned DefIdx,
4381                                     SDNode *UseNode, unsigned UseIdx) const {
4382   if (!DefNode->isMachineOpcode())
4383     return 1;
4384 
4385   const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode());
4386 
4387   if (isZeroCost(DefMCID.Opcode))
4388     return 0;
4389 
4390   if (!ItinData || ItinData->isEmpty())
4391     return DefMCID.mayLoad() ? 3 : 1;
4392 
4393   if (!UseNode->isMachineOpcode()) {
4394     int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx);
4395     int Adj = Subtarget.getPreISelOperandLatencyAdjustment();
4396     int Threshold = 1 + Adj;
4397     return Latency <= Threshold ? 1 : Latency - Adj;
4398   }
4399 
4400   const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode());
4401   auto *DefMN = cast<MachineSDNode>(DefNode);
4402   unsigned DefAlign = !DefMN->memoperands_empty()
4403                           ? (*DefMN->memoperands_begin())->getAlign().value()
4404                           : 0;
4405   auto *UseMN = cast<MachineSDNode>(UseNode);
4406   unsigned UseAlign = !UseMN->memoperands_empty()
4407                           ? (*UseMN->memoperands_begin())->getAlign().value()
4408                           : 0;
4409   int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign,
4410                                   UseMCID, UseIdx, UseAlign);
4411 
4412   if (Latency > 1 &&
4413       (Subtarget.isCortexA8() || Subtarget.isLikeA9() ||
4414        Subtarget.isCortexA7())) {
4415     // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
4416     // variants are one cycle cheaper.
4417     switch (DefMCID.getOpcode()) {
4418     default: break;
4419     case ARM::LDRrs:
4420     case ARM::LDRBrs: {
4421       unsigned ShOpVal =
4422         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
4423       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4424       if (ShImm == 0 ||
4425           (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4426         --Latency;
4427       break;
4428     }
4429     case ARM::t2LDRs:
4430     case ARM::t2LDRBs:
4431     case ARM::t2LDRHs:
4432     case ARM::t2LDRSHs: {
4433       // Thumb2 mode: lsl only.
4434       unsigned ShAmt =
4435         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
4436       if (ShAmt == 0 || ShAmt == 2)
4437         --Latency;
4438       break;
4439     }
4440     }
4441   } else if (DefIdx == 0 && Latency > 2 && Subtarget.isSwift()) {
4442     // FIXME: Properly handle all of the latency adjustments for address
4443     // writeback.
4444     switch (DefMCID.getOpcode()) {
4445     default: break;
4446     case ARM::LDRrs:
4447     case ARM::LDRBrs: {
4448       unsigned ShOpVal =
4449         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
4450       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4451       if (ShImm == 0 ||
4452           ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
4453            ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4454         Latency -= 2;
4455       else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
4456         --Latency;
4457       break;
4458     }
4459     case ARM::t2LDRs:
4460     case ARM::t2LDRBs:
4461     case ARM::t2LDRHs:
4462     case ARM::t2LDRSHs:
4463       // Thumb2 mode: lsl 0-3 only.
4464       Latency -= 2;
4465       break;
4466     }
4467   }
4468 
4469   if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment())
4470     switch (DefMCID.getOpcode()) {
4471     default: break;
4472     case ARM::VLD1q8:
4473     case ARM::VLD1q16:
4474     case ARM::VLD1q32:
4475     case ARM::VLD1q64:
4476     case ARM::VLD1q8wb_register:
4477     case ARM::VLD1q16wb_register:
4478     case ARM::VLD1q32wb_register:
4479     case ARM::VLD1q64wb_register:
4480     case ARM::VLD1q8wb_fixed:
4481     case ARM::VLD1q16wb_fixed:
4482     case ARM::VLD1q32wb_fixed:
4483     case ARM::VLD1q64wb_fixed:
4484     case ARM::VLD2d8:
4485     case ARM::VLD2d16:
4486     case ARM::VLD2d32:
4487     case ARM::VLD2q8Pseudo:
4488     case ARM::VLD2q16Pseudo:
4489     case ARM::VLD2q32Pseudo:
4490     case ARM::VLD2d8wb_fixed:
4491     case ARM::VLD2d16wb_fixed:
4492     case ARM::VLD2d32wb_fixed:
4493     case ARM::VLD2q8PseudoWB_fixed:
4494     case ARM::VLD2q16PseudoWB_fixed:
4495     case ARM::VLD2q32PseudoWB_fixed:
4496     case ARM::VLD2d8wb_register:
4497     case ARM::VLD2d16wb_register:
4498     case ARM::VLD2d32wb_register:
4499     case ARM::VLD2q8PseudoWB_register:
4500     case ARM::VLD2q16PseudoWB_register:
4501     case ARM::VLD2q32PseudoWB_register:
4502     case ARM::VLD3d8Pseudo:
4503     case ARM::VLD3d16Pseudo:
4504     case ARM::VLD3d32Pseudo:
4505     case ARM::VLD1d8TPseudo:
4506     case ARM::VLD1d16TPseudo:
4507     case ARM::VLD1d32TPseudo:
4508     case ARM::VLD1d64TPseudo:
4509     case ARM::VLD1d64TPseudoWB_fixed:
4510     case ARM::VLD1d64TPseudoWB_register:
4511     case ARM::VLD3d8Pseudo_UPD:
4512     case ARM::VLD3d16Pseudo_UPD:
4513     case ARM::VLD3d32Pseudo_UPD:
4514     case ARM::VLD3q8Pseudo_UPD:
4515     case ARM::VLD3q16Pseudo_UPD:
4516     case ARM::VLD3q32Pseudo_UPD:
4517     case ARM::VLD3q8oddPseudo:
4518     case ARM::VLD3q16oddPseudo:
4519     case ARM::VLD3q32oddPseudo:
4520     case ARM::VLD3q8oddPseudo_UPD:
4521     case ARM::VLD3q16oddPseudo_UPD:
4522     case ARM::VLD3q32oddPseudo_UPD:
4523     case ARM::VLD4d8Pseudo:
4524     case ARM::VLD4d16Pseudo:
4525     case ARM::VLD4d32Pseudo:
4526     case ARM::VLD1d8QPseudo:
4527     case ARM::VLD1d16QPseudo:
4528     case ARM::VLD1d32QPseudo:
4529     case ARM::VLD1d64QPseudo:
4530     case ARM::VLD1d64QPseudoWB_fixed:
4531     case ARM::VLD1d64QPseudoWB_register:
4532     case ARM::VLD1q8HighQPseudo:
4533     case ARM::VLD1q8LowQPseudo_UPD:
4534     case ARM::VLD1q8HighTPseudo:
4535     case ARM::VLD1q8LowTPseudo_UPD:
4536     case ARM::VLD1q16HighQPseudo:
4537     case ARM::VLD1q16LowQPseudo_UPD:
4538     case ARM::VLD1q16HighTPseudo:
4539     case ARM::VLD1q16LowTPseudo_UPD:
4540     case ARM::VLD1q32HighQPseudo:
4541     case ARM::VLD1q32LowQPseudo_UPD:
4542     case ARM::VLD1q32HighTPseudo:
4543     case ARM::VLD1q32LowTPseudo_UPD:
4544     case ARM::VLD1q64HighQPseudo:
4545     case ARM::VLD1q64LowQPseudo_UPD:
4546     case ARM::VLD1q64HighTPseudo:
4547     case ARM::VLD1q64LowTPseudo_UPD:
4548     case ARM::VLD4d8Pseudo_UPD:
4549     case ARM::VLD4d16Pseudo_UPD:
4550     case ARM::VLD4d32Pseudo_UPD:
4551     case ARM::VLD4q8Pseudo_UPD:
4552     case ARM::VLD4q16Pseudo_UPD:
4553     case ARM::VLD4q32Pseudo_UPD:
4554     case ARM::VLD4q8oddPseudo:
4555     case ARM::VLD4q16oddPseudo:
4556     case ARM::VLD4q32oddPseudo:
4557     case ARM::VLD4q8oddPseudo_UPD:
4558     case ARM::VLD4q16oddPseudo_UPD:
4559     case ARM::VLD4q32oddPseudo_UPD:
4560     case ARM::VLD1DUPq8:
4561     case ARM::VLD1DUPq16:
4562     case ARM::VLD1DUPq32:
4563     case ARM::VLD1DUPq8wb_fixed:
4564     case ARM::VLD1DUPq16wb_fixed:
4565     case ARM::VLD1DUPq32wb_fixed:
4566     case ARM::VLD1DUPq8wb_register:
4567     case ARM::VLD1DUPq16wb_register:
4568     case ARM::VLD1DUPq32wb_register:
4569     case ARM::VLD2DUPd8:
4570     case ARM::VLD2DUPd16:
4571     case ARM::VLD2DUPd32:
4572     case ARM::VLD2DUPd8wb_fixed:
4573     case ARM::VLD2DUPd16wb_fixed:
4574     case ARM::VLD2DUPd32wb_fixed:
4575     case ARM::VLD2DUPd8wb_register:
4576     case ARM::VLD2DUPd16wb_register:
4577     case ARM::VLD2DUPd32wb_register:
4578     case ARM::VLD2DUPq8EvenPseudo:
4579     case ARM::VLD2DUPq8OddPseudo:
4580     case ARM::VLD2DUPq16EvenPseudo:
4581     case ARM::VLD2DUPq16OddPseudo:
4582     case ARM::VLD2DUPq32EvenPseudo:
4583     case ARM::VLD2DUPq32OddPseudo:
4584     case ARM::VLD3DUPq8EvenPseudo:
4585     case ARM::VLD3DUPq8OddPseudo:
4586     case ARM::VLD3DUPq16EvenPseudo:
4587     case ARM::VLD3DUPq16OddPseudo:
4588     case ARM::VLD3DUPq32EvenPseudo:
4589     case ARM::VLD3DUPq32OddPseudo:
4590     case ARM::VLD4DUPd8Pseudo:
4591     case ARM::VLD4DUPd16Pseudo:
4592     case ARM::VLD4DUPd32Pseudo:
4593     case ARM::VLD4DUPd8Pseudo_UPD:
4594     case ARM::VLD4DUPd16Pseudo_UPD:
4595     case ARM::VLD4DUPd32Pseudo_UPD:
4596     case ARM::VLD4DUPq8EvenPseudo:
4597     case ARM::VLD4DUPq8OddPseudo:
4598     case ARM::VLD4DUPq16EvenPseudo:
4599     case ARM::VLD4DUPq16OddPseudo:
4600     case ARM::VLD4DUPq32EvenPseudo:
4601     case ARM::VLD4DUPq32OddPseudo:
4602     case ARM::VLD1LNq8Pseudo:
4603     case ARM::VLD1LNq16Pseudo:
4604     case ARM::VLD1LNq32Pseudo:
4605     case ARM::VLD1LNq8Pseudo_UPD:
4606     case ARM::VLD1LNq16Pseudo_UPD:
4607     case ARM::VLD1LNq32Pseudo_UPD:
4608     case ARM::VLD2LNd8Pseudo:
4609     case ARM::VLD2LNd16Pseudo:
4610     case ARM::VLD2LNd32Pseudo:
4611     case ARM::VLD2LNq16Pseudo:
4612     case ARM::VLD2LNq32Pseudo:
4613     case ARM::VLD2LNd8Pseudo_UPD:
4614     case ARM::VLD2LNd16Pseudo_UPD:
4615     case ARM::VLD2LNd32Pseudo_UPD:
4616     case ARM::VLD2LNq16Pseudo_UPD:
4617     case ARM::VLD2LNq32Pseudo_UPD:
4618     case ARM::VLD4LNd8Pseudo:
4619     case ARM::VLD4LNd16Pseudo:
4620     case ARM::VLD4LNd32Pseudo:
4621     case ARM::VLD4LNq16Pseudo:
4622     case ARM::VLD4LNq32Pseudo:
4623     case ARM::VLD4LNd8Pseudo_UPD:
4624     case ARM::VLD4LNd16Pseudo_UPD:
4625     case ARM::VLD4LNd32Pseudo_UPD:
4626     case ARM::VLD4LNq16Pseudo_UPD:
4627     case ARM::VLD4LNq32Pseudo_UPD:
4628       // If the address is not 64-bit aligned, the latencies of these
4629       // instructions increases by one.
4630       ++Latency;
4631       break;
4632     }
4633 
4634   return Latency;
4635 }
4636 
getPredicationCost(const MachineInstr & MI) const4637 unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr &MI) const {
4638   if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
4639       MI.isImplicitDef())
4640     return 0;
4641 
4642   if (MI.isBundle())
4643     return 0;
4644 
4645   const MCInstrDesc &MCID = MI.getDesc();
4646 
4647   if (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) &&
4648                         !Subtarget.cheapPredicableCPSRDef())) {
4649     // When predicated, CPSR is an additional source operand for CPSR updating
4650     // instructions, this apparently increases their latencies.
4651     return 1;
4652   }
4653   return 0;
4654 }
4655 
getInstrLatency(const InstrItineraryData * ItinData,const MachineInstr & MI,unsigned * PredCost) const4656 unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
4657                                            const MachineInstr &MI,
4658                                            unsigned *PredCost) const {
4659   if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
4660       MI.isImplicitDef())
4661     return 1;
4662 
4663   // An instruction scheduler typically runs on unbundled instructions, however
4664   // other passes may query the latency of a bundled instruction.
4665   if (MI.isBundle()) {
4666     unsigned Latency = 0;
4667     MachineBasicBlock::const_instr_iterator I = MI.getIterator();
4668     MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
4669     while (++I != E && I->isInsideBundle()) {
4670       if (I->getOpcode() != ARM::t2IT)
4671         Latency += getInstrLatency(ItinData, *I, PredCost);
4672     }
4673     return Latency;
4674   }
4675 
4676   const MCInstrDesc &MCID = MI.getDesc();
4677   if (PredCost && (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) &&
4678                                      !Subtarget.cheapPredicableCPSRDef()))) {
4679     // When predicated, CPSR is an additional source operand for CPSR updating
4680     // instructions, this apparently increases their latencies.
4681     *PredCost = 1;
4682   }
4683   // Be sure to call getStageLatency for an empty itinerary in case it has a
4684   // valid MinLatency property.
4685   if (!ItinData)
4686     return MI.mayLoad() ? 3 : 1;
4687 
4688   unsigned Class = MCID.getSchedClass();
4689 
4690   // For instructions with variable uops, use uops as latency.
4691   if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0)
4692     return getNumMicroOps(ItinData, MI);
4693 
4694   // For the common case, fall back on the itinerary's latency.
4695   unsigned Latency = ItinData->getStageLatency(Class);
4696 
4697   // Adjust for dynamic def-side opcode variants not captured by the itinerary.
4698   unsigned DefAlign =
4699       MI.hasOneMemOperand() ? (*MI.memoperands_begin())->getAlign().value() : 0;
4700   int Adj = adjustDefLatency(Subtarget, MI, MCID, DefAlign);
4701   if (Adj >= 0 || (int)Latency > -Adj) {
4702     return Latency + Adj;
4703   }
4704   return Latency;
4705 }
4706 
getInstrLatency(const InstrItineraryData * ItinData,SDNode * Node) const4707 int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
4708                                       SDNode *Node) const {
4709   if (!Node->isMachineOpcode())
4710     return 1;
4711 
4712   if (!ItinData || ItinData->isEmpty())
4713     return 1;
4714 
4715   unsigned Opcode = Node->getMachineOpcode();
4716   switch (Opcode) {
4717   default:
4718     return ItinData->getStageLatency(get(Opcode).getSchedClass());
4719   case ARM::VLDMQIA:
4720   case ARM::VSTMQIA:
4721     return 2;
4722   }
4723 }
4724 
hasHighOperandLatency(const TargetSchedModel & SchedModel,const MachineRegisterInfo * MRI,const MachineInstr & DefMI,unsigned DefIdx,const MachineInstr & UseMI,unsigned UseIdx) const4725 bool ARMBaseInstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
4726                                              const MachineRegisterInfo *MRI,
4727                                              const MachineInstr &DefMI,
4728                                              unsigned DefIdx,
4729                                              const MachineInstr &UseMI,
4730                                              unsigned UseIdx) const {
4731   unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
4732   unsigned UDomain = UseMI.getDesc().TSFlags & ARMII::DomainMask;
4733   if (Subtarget.nonpipelinedVFP() &&
4734       (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP))
4735     return true;
4736 
4737   // Hoist VFP / NEON instructions with 4 or higher latency.
4738   unsigned Latency =
4739       SchedModel.computeOperandLatency(&DefMI, DefIdx, &UseMI, UseIdx);
4740   if (Latency <= 3)
4741     return false;
4742   return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON ||
4743          UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON;
4744 }
4745 
hasLowDefLatency(const TargetSchedModel & SchedModel,const MachineInstr & DefMI,unsigned DefIdx) const4746 bool ARMBaseInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
4747                                         const MachineInstr &DefMI,
4748                                         unsigned DefIdx) const {
4749   const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
4750   if (!ItinData || ItinData->isEmpty())
4751     return false;
4752 
4753   unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
4754   if (DDomain == ARMII::DomainGeneral) {
4755     unsigned DefClass = DefMI.getDesc().getSchedClass();
4756     int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
4757     return (DefCycle != -1 && DefCycle <= 2);
4758   }
4759   return false;
4760 }
4761 
verifyInstruction(const MachineInstr & MI,StringRef & ErrInfo) const4762 bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr &MI,
4763                                          StringRef &ErrInfo) const {
4764   if (convertAddSubFlagsOpcode(MI.getOpcode())) {
4765     ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG";
4766     return false;
4767   }
4768   if (MI.getOpcode() == ARM::tMOVr && !Subtarget.hasV6Ops()) {
4769     // Make sure we don't generate a lo-lo mov that isn't supported.
4770     if (!ARM::hGPRRegClass.contains(MI.getOperand(0).getReg()) &&
4771         !ARM::hGPRRegClass.contains(MI.getOperand(1).getReg())) {
4772       ErrInfo = "Non-flag-setting Thumb1 mov is v6-only";
4773       return false;
4774     }
4775   }
4776   if (MI.getOpcode() == ARM::tPUSH ||
4777       MI.getOpcode() == ARM::tPOP ||
4778       MI.getOpcode() == ARM::tPOP_RET) {
4779     for (int i = 2, e = MI.getNumOperands(); i < e; ++i) {
4780       if (MI.getOperand(i).isImplicit() ||
4781           !MI.getOperand(i).isReg())
4782         continue;
4783       Register Reg = MI.getOperand(i).getReg();
4784       if (Reg < ARM::R0 || Reg > ARM::R7) {
4785         if (!(MI.getOpcode() == ARM::tPUSH && Reg == ARM::LR) &&
4786             !(MI.getOpcode() == ARM::tPOP_RET && Reg == ARM::PC)) {
4787           ErrInfo = "Unsupported register in Thumb1 push/pop";
4788           return false;
4789         }
4790       }
4791     }
4792   }
4793   return true;
4794 }
4795 
4796 // LoadStackGuard has so far only been implemented for MachO. Different code
4797 // sequence is needed for other targets.
expandLoadStackGuardBase(MachineBasicBlock::iterator MI,unsigned LoadImmOpc,unsigned LoadOpc) const4798 void ARMBaseInstrInfo::expandLoadStackGuardBase(MachineBasicBlock::iterator MI,
4799                                                 unsigned LoadImmOpc,
4800                                                 unsigned LoadOpc) const {
4801   assert(!Subtarget.isROPI() && !Subtarget.isRWPI() &&
4802          "ROPI/RWPI not currently supported with stack guard");
4803 
4804   MachineBasicBlock &MBB = *MI->getParent();
4805   DebugLoc DL = MI->getDebugLoc();
4806   Register Reg = MI->getOperand(0).getReg();
4807   const GlobalValue *GV =
4808       cast<GlobalValue>((*MI->memoperands_begin())->getValue());
4809   MachineInstrBuilder MIB;
4810 
4811   BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg)
4812       .addGlobalAddress(GV, 0, ARMII::MO_NONLAZY);
4813 
4814   if (Subtarget.isGVIndirectSymbol(GV)) {
4815     MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
4816     MIB.addReg(Reg, RegState::Kill).addImm(0);
4817     auto Flags = MachineMemOperand::MOLoad |
4818                  MachineMemOperand::MODereferenceable |
4819                  MachineMemOperand::MOInvariant;
4820     MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
4821         MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 4, Align(4));
4822     MIB.addMemOperand(MMO).add(predOps(ARMCC::AL));
4823   }
4824 
4825   MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
4826   MIB.addReg(Reg, RegState::Kill)
4827       .addImm(0)
4828       .cloneMemRefs(*MI)
4829       .add(predOps(ARMCC::AL));
4830 }
4831 
4832 bool
isFpMLxInstruction(unsigned Opcode,unsigned & MulOpc,unsigned & AddSubOpc,bool & NegAcc,bool & HasLane) const4833 ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
4834                                      unsigned &AddSubOpc,
4835                                      bool &NegAcc, bool &HasLane) const {
4836   DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode);
4837   if (I == MLxEntryMap.end())
4838     return false;
4839 
4840   const ARM_MLxEntry &Entry = ARM_MLxTable[I->second];
4841   MulOpc = Entry.MulOpc;
4842   AddSubOpc = Entry.AddSubOpc;
4843   NegAcc = Entry.NegAcc;
4844   HasLane = Entry.HasLane;
4845   return true;
4846 }
4847 
4848 //===----------------------------------------------------------------------===//
4849 // Execution domains.
4850 //===----------------------------------------------------------------------===//
4851 //
4852 // Some instructions go down the NEON pipeline, some go down the VFP pipeline,
4853 // and some can go down both.  The vmov instructions go down the VFP pipeline,
4854 // but they can be changed to vorr equivalents that are executed by the NEON
4855 // pipeline.
4856 //
4857 // We use the following execution domain numbering:
4858 //
4859 enum ARMExeDomain {
4860   ExeGeneric = 0,
4861   ExeVFP = 1,
4862   ExeNEON = 2
4863 };
4864 
4865 //
4866 // Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h
4867 //
4868 std::pair<uint16_t, uint16_t>
getExecutionDomain(const MachineInstr & MI) const4869 ARMBaseInstrInfo::getExecutionDomain(const MachineInstr &MI) const {
4870   // If we don't have access to NEON instructions then we won't be able
4871   // to swizzle anything to the NEON domain. Check to make sure.
4872   if (Subtarget.hasNEON()) {
4873     // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON
4874     // if they are not predicated.
4875     if (MI.getOpcode() == ARM::VMOVD && !isPredicated(MI))
4876       return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
4877 
4878     // CortexA9 is particularly picky about mixing the two and wants these
4879     // converted.
4880     if (Subtarget.useNEONForFPMovs() && !isPredicated(MI) &&
4881         (MI.getOpcode() == ARM::VMOVRS || MI.getOpcode() == ARM::VMOVSR ||
4882          MI.getOpcode() == ARM::VMOVS))
4883       return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
4884   }
4885   // No other instructions can be swizzled, so just determine their domain.
4886   unsigned Domain = MI.getDesc().TSFlags & ARMII::DomainMask;
4887 
4888   if (Domain & ARMII::DomainNEON)
4889     return std::make_pair(ExeNEON, 0);
4890 
4891   // Certain instructions can go either way on Cortex-A8.
4892   // Treat them as NEON instructions.
4893   if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8())
4894     return std::make_pair(ExeNEON, 0);
4895 
4896   if (Domain & ARMII::DomainVFP)
4897     return std::make_pair(ExeVFP, 0);
4898 
4899   return std::make_pair(ExeGeneric, 0);
4900 }
4901 
getCorrespondingDRegAndLane(const TargetRegisterInfo * TRI,unsigned SReg,unsigned & Lane)4902 static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI,
4903                                             unsigned SReg, unsigned &Lane) {
4904   unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass);
4905   Lane = 0;
4906 
4907   if (DReg != ARM::NoRegister)
4908    return DReg;
4909 
4910   Lane = 1;
4911   DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass);
4912 
4913   assert(DReg && "S-register with no D super-register?");
4914   return DReg;
4915 }
4916 
4917 /// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane,
4918 /// set ImplicitSReg to a register number that must be marked as implicit-use or
4919 /// zero if no register needs to be defined as implicit-use.
4920 ///
4921 /// If the function cannot determine if an SPR should be marked implicit use or
4922 /// not, it returns false.
4923 ///
4924 /// This function handles cases where an instruction is being modified from taking
4925 /// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict
4926 /// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other
4927 /// lane of the DPR).
4928 ///
4929 /// If the other SPR is defined, an implicit-use of it should be added. Else,
4930 /// (including the case where the DPR itself is defined), it should not.
4931 ///
getImplicitSPRUseForDPRUse(const TargetRegisterInfo * TRI,MachineInstr & MI,unsigned DReg,unsigned Lane,unsigned & ImplicitSReg)4932 static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI,
4933                                        MachineInstr &MI, unsigned DReg,
4934                                        unsigned Lane, unsigned &ImplicitSReg) {
4935   // If the DPR is defined or used already, the other SPR lane will be chained
4936   // correctly, so there is nothing to be done.
4937   if (MI.definesRegister(DReg, TRI) || MI.readsRegister(DReg, TRI)) {
4938     ImplicitSReg = 0;
4939     return true;
4940   }
4941 
4942   // Otherwise we need to go searching to see if the SPR is set explicitly.
4943   ImplicitSReg = TRI->getSubReg(DReg,
4944                                 (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1);
4945   MachineBasicBlock::LivenessQueryResult LQR =
4946       MI.getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI);
4947 
4948   if (LQR == MachineBasicBlock::LQR_Live)
4949     return true;
4950   else if (LQR == MachineBasicBlock::LQR_Unknown)
4951     return false;
4952 
4953   // If the register is known not to be live, there is no need to add an
4954   // implicit-use.
4955   ImplicitSReg = 0;
4956   return true;
4957 }
4958 
setExecutionDomain(MachineInstr & MI,unsigned Domain) const4959 void ARMBaseInstrInfo::setExecutionDomain(MachineInstr &MI,
4960                                           unsigned Domain) const {
4961   unsigned DstReg, SrcReg, DReg;
4962   unsigned Lane;
4963   MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
4964   const TargetRegisterInfo *TRI = &getRegisterInfo();
4965   switch (MI.getOpcode()) {
4966   default:
4967     llvm_unreachable("cannot handle opcode!");
4968     break;
4969   case ARM::VMOVD:
4970     if (Domain != ExeNEON)
4971       break;
4972 
4973     // Zap the predicate operands.
4974     assert(!isPredicated(MI) && "Cannot predicate a VORRd");
4975 
4976     // Make sure we've got NEON instructions.
4977     assert(Subtarget.hasNEON() && "VORRd requires NEON");
4978 
4979     // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits)
4980     DstReg = MI.getOperand(0).getReg();
4981     SrcReg = MI.getOperand(1).getReg();
4982 
4983     for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
4984       MI.RemoveOperand(i - 1);
4985 
4986     // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits)
4987     MI.setDesc(get(ARM::VORRd));
4988     MIB.addReg(DstReg, RegState::Define)
4989         .addReg(SrcReg)
4990         .addReg(SrcReg)
4991         .add(predOps(ARMCC::AL));
4992     break;
4993   case ARM::VMOVRS:
4994     if (Domain != ExeNEON)
4995       break;
4996     assert(!isPredicated(MI) && "Cannot predicate a VGETLN");
4997 
4998     // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits)
4999     DstReg = MI.getOperand(0).getReg();
5000     SrcReg = MI.getOperand(1).getReg();
5001 
5002     for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5003       MI.RemoveOperand(i - 1);
5004 
5005     DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane);
5006 
5007     // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps)
5008     // Note that DSrc has been widened and the other lane may be undef, which
5009     // contaminates the entire register.
5010     MI.setDesc(get(ARM::VGETLNi32));
5011     MIB.addReg(DstReg, RegState::Define)
5012         .addReg(DReg, RegState::Undef)
5013         .addImm(Lane)
5014         .add(predOps(ARMCC::AL));
5015 
5016     // The old source should be an implicit use, otherwise we might think it
5017     // was dead before here.
5018     MIB.addReg(SrcReg, RegState::Implicit);
5019     break;
5020   case ARM::VMOVSR: {
5021     if (Domain != ExeNEON)
5022       break;
5023     assert(!isPredicated(MI) && "Cannot predicate a VSETLN");
5024 
5025     // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits)
5026     DstReg = MI.getOperand(0).getReg();
5027     SrcReg = MI.getOperand(1).getReg();
5028 
5029     DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane);
5030 
5031     unsigned ImplicitSReg;
5032     if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg))
5033       break;
5034 
5035     for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5036       MI.RemoveOperand(i - 1);
5037 
5038     // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps)
5039     // Again DDst may be undefined at the beginning of this instruction.
5040     MI.setDesc(get(ARM::VSETLNi32));
5041     MIB.addReg(DReg, RegState::Define)
5042         .addReg(DReg, getUndefRegState(!MI.readsRegister(DReg, TRI)))
5043         .addReg(SrcReg)
5044         .addImm(Lane)
5045         .add(predOps(ARMCC::AL));
5046 
5047     // The narrower destination must be marked as set to keep previous chains
5048     // in place.
5049     MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
5050     if (ImplicitSReg != 0)
5051       MIB.addReg(ImplicitSReg, RegState::Implicit);
5052     break;
5053     }
5054     case ARM::VMOVS: {
5055       if (Domain != ExeNEON)
5056         break;
5057 
5058       // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits)
5059       DstReg = MI.getOperand(0).getReg();
5060       SrcReg = MI.getOperand(1).getReg();
5061 
5062       unsigned DstLane = 0, SrcLane = 0, DDst, DSrc;
5063       DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane);
5064       DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane);
5065 
5066       unsigned ImplicitSReg;
5067       if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg))
5068         break;
5069 
5070       for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5071         MI.RemoveOperand(i - 1);
5072 
5073       if (DSrc == DDst) {
5074         // Destination can be:
5075         //     %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits)
5076         MI.setDesc(get(ARM::VDUPLN32d));
5077         MIB.addReg(DDst, RegState::Define)
5078             .addReg(DDst, getUndefRegState(!MI.readsRegister(DDst, TRI)))
5079             .addImm(SrcLane)
5080             .add(predOps(ARMCC::AL));
5081 
5082         // Neither the source or the destination are naturally represented any
5083         // more, so add them in manually.
5084         MIB.addReg(DstReg, RegState::Implicit | RegState::Define);
5085         MIB.addReg(SrcReg, RegState::Implicit);
5086         if (ImplicitSReg != 0)
5087           MIB.addReg(ImplicitSReg, RegState::Implicit);
5088         break;
5089       }
5090 
5091       // In general there's no single instruction that can perform an S <-> S
5092       // move in NEON space, but a pair of VEXT instructions *can* do the
5093       // job. It turns out that the VEXTs needed will only use DSrc once, with
5094       // the position based purely on the combination of lane-0 and lane-1
5095       // involved. For example
5096       //     vmov s0, s2 -> vext.32 d0, d0, d1, #1  vext.32 d0, d0, d0, #1
5097       //     vmov s1, s3 -> vext.32 d0, d1, d0, #1  vext.32 d0, d0, d0, #1
5098       //     vmov s0, s3 -> vext.32 d0, d0, d0, #1  vext.32 d0, d1, d0, #1
5099       //     vmov s1, s2 -> vext.32 d0, d0, d0, #1  vext.32 d0, d0, d1, #1
5100       //
5101       // Pattern of the MachineInstrs is:
5102       //     %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits)
5103       MachineInstrBuilder NewMIB;
5104       NewMIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::VEXTd32),
5105                        DDst);
5106 
5107       // On the first instruction, both DSrc and DDst may be undef if present.
5108       // Specifically when the original instruction didn't have them as an
5109       // <imp-use>.
5110       unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst;
5111       bool CurUndef = !MI.readsRegister(CurReg, TRI);
5112       NewMIB.addReg(CurReg, getUndefRegState(CurUndef));
5113 
5114       CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst;
5115       CurUndef = !MI.readsRegister(CurReg, TRI);
5116       NewMIB.addReg(CurReg, getUndefRegState(CurUndef))
5117             .addImm(1)
5118             .add(predOps(ARMCC::AL));
5119 
5120       if (SrcLane == DstLane)
5121         NewMIB.addReg(SrcReg, RegState::Implicit);
5122 
5123       MI.setDesc(get(ARM::VEXTd32));
5124       MIB.addReg(DDst, RegState::Define);
5125 
5126       // On the second instruction, DDst has definitely been defined above, so
5127       // it is not undef. DSrc, if present, can be undef as above.
5128       CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst;
5129       CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
5130       MIB.addReg(CurReg, getUndefRegState(CurUndef));
5131 
5132       CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst;
5133       CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
5134       MIB.addReg(CurReg, getUndefRegState(CurUndef))
5135          .addImm(1)
5136          .add(predOps(ARMCC::AL));
5137 
5138       if (SrcLane != DstLane)
5139         MIB.addReg(SrcReg, RegState::Implicit);
5140 
5141       // As before, the original destination is no longer represented, add it
5142       // implicitly.
5143       MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
5144       if (ImplicitSReg != 0)
5145         MIB.addReg(ImplicitSReg, RegState::Implicit);
5146       break;
5147     }
5148   }
5149 }
5150 
5151 //===----------------------------------------------------------------------===//
5152 // Partial register updates
5153 //===----------------------------------------------------------------------===//
5154 //
5155 // Swift renames NEON registers with 64-bit granularity.  That means any
5156 // instruction writing an S-reg implicitly reads the containing D-reg.  The
5157 // problem is mostly avoided by translating f32 operations to v2f32 operations
5158 // on D-registers, but f32 loads are still a problem.
5159 //
5160 // These instructions can load an f32 into a NEON register:
5161 //
5162 // VLDRS - Only writes S, partial D update.
5163 // VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops.
5164 // VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops.
5165 //
5166 // FCONSTD can be used as a dependency-breaking instruction.
getPartialRegUpdateClearance(const MachineInstr & MI,unsigned OpNum,const TargetRegisterInfo * TRI) const5167 unsigned ARMBaseInstrInfo::getPartialRegUpdateClearance(
5168     const MachineInstr &MI, unsigned OpNum,
5169     const TargetRegisterInfo *TRI) const {
5170   auto PartialUpdateClearance = Subtarget.getPartialUpdateClearance();
5171   if (!PartialUpdateClearance)
5172     return 0;
5173 
5174   assert(TRI && "Need TRI instance");
5175 
5176   const MachineOperand &MO = MI.getOperand(OpNum);
5177   if (MO.readsReg())
5178     return 0;
5179   Register Reg = MO.getReg();
5180   int UseOp = -1;
5181 
5182   switch (MI.getOpcode()) {
5183   // Normal instructions writing only an S-register.
5184   case ARM::VLDRS:
5185   case ARM::FCONSTS:
5186   case ARM::VMOVSR:
5187   case ARM::VMOVv8i8:
5188   case ARM::VMOVv4i16:
5189   case ARM::VMOVv2i32:
5190   case ARM::VMOVv2f32:
5191   case ARM::VMOVv1i64:
5192     UseOp = MI.findRegisterUseOperandIdx(Reg, false, TRI);
5193     break;
5194 
5195     // Explicitly reads the dependency.
5196   case ARM::VLD1LNd32:
5197     UseOp = 3;
5198     break;
5199   default:
5200     return 0;
5201   }
5202 
5203   // If this instruction actually reads a value from Reg, there is no unwanted
5204   // dependency.
5205   if (UseOp != -1 && MI.getOperand(UseOp).readsReg())
5206     return 0;
5207 
5208   // We must be able to clobber the whole D-reg.
5209   if (Register::isVirtualRegister(Reg)) {
5210     // Virtual register must be a def undef foo:ssub_0 operand.
5211     if (!MO.getSubReg() || MI.readsVirtualRegister(Reg))
5212       return 0;
5213   } else if (ARM::SPRRegClass.contains(Reg)) {
5214     // Physical register: MI must define the full D-reg.
5215     unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0,
5216                                              &ARM::DPRRegClass);
5217     if (!DReg || !MI.definesRegister(DReg, TRI))
5218       return 0;
5219   }
5220 
5221   // MI has an unwanted D-register dependency.
5222   // Avoid defs in the previous N instructrions.
5223   return PartialUpdateClearance;
5224 }
5225 
5226 // Break a partial register dependency after getPartialRegUpdateClearance
5227 // returned non-zero.
breakPartialRegDependency(MachineInstr & MI,unsigned OpNum,const TargetRegisterInfo * TRI) const5228 void ARMBaseInstrInfo::breakPartialRegDependency(
5229     MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
5230   assert(OpNum < MI.getDesc().getNumDefs() && "OpNum is not a def");
5231   assert(TRI && "Need TRI instance");
5232 
5233   const MachineOperand &MO = MI.getOperand(OpNum);
5234   Register Reg = MO.getReg();
5235   assert(Register::isPhysicalRegister(Reg) &&
5236          "Can't break virtual register dependencies.");
5237   unsigned DReg = Reg;
5238 
5239   // If MI defines an S-reg, find the corresponding D super-register.
5240   if (ARM::SPRRegClass.contains(Reg)) {
5241     DReg = ARM::D0 + (Reg - ARM::S0) / 2;
5242     assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken");
5243   }
5244 
5245   assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps");
5246   assert(MI.definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg");
5247 
5248   // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines
5249   // the full D-register by loading the same value to both lanes.  The
5250   // instruction is micro-coded with 2 uops, so don't do this until we can
5251   // properly schedule micro-coded instructions.  The dispatcher stalls cause
5252   // too big regressions.
5253 
5254   // Insert the dependency-breaking FCONSTD before MI.
5255   // 96 is the encoding of 0.5, but the actual value doesn't matter here.
5256   BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::FCONSTD), DReg)
5257       .addImm(96)
5258       .add(predOps(ARMCC::AL));
5259   MI.addRegisterKilled(DReg, TRI, true);
5260 }
5261 
hasNOP() const5262 bool ARMBaseInstrInfo::hasNOP() const {
5263   return Subtarget.getFeatureBits()[ARM::HasV6KOps];
5264 }
5265 
isSwiftFastImmShift(const MachineInstr * MI) const5266 bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const {
5267   if (MI->getNumOperands() < 4)
5268     return true;
5269   unsigned ShOpVal = MI->getOperand(3).getImm();
5270   unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal);
5271   // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1.
5272   if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) ||
5273       ((ShImm == 1 || ShImm == 2) &&
5274        ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl))
5275     return true;
5276 
5277   return false;
5278 }
5279 
getRegSequenceLikeInputs(const MachineInstr & MI,unsigned DefIdx,SmallVectorImpl<RegSubRegPairAndIdx> & InputRegs) const5280 bool ARMBaseInstrInfo::getRegSequenceLikeInputs(
5281     const MachineInstr &MI, unsigned DefIdx,
5282     SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
5283   assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5284   assert(MI.isRegSequenceLike() && "Invalid kind of instruction");
5285 
5286   switch (MI.getOpcode()) {
5287   case ARM::VMOVDRR:
5288     // dX = VMOVDRR rY, rZ
5289     // is the same as:
5290     // dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1
5291     // Populate the InputRegs accordingly.
5292     // rY
5293     const MachineOperand *MOReg = &MI.getOperand(1);
5294     if (!MOReg->isUndef())
5295       InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(),
5296                                               MOReg->getSubReg(), ARM::ssub_0));
5297     // rZ
5298     MOReg = &MI.getOperand(2);
5299     if (!MOReg->isUndef())
5300       InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(),
5301                                               MOReg->getSubReg(), ARM::ssub_1));
5302     return true;
5303   }
5304   llvm_unreachable("Target dependent opcode missing");
5305 }
5306 
getExtractSubregLikeInputs(const MachineInstr & MI,unsigned DefIdx,RegSubRegPairAndIdx & InputReg) const5307 bool ARMBaseInstrInfo::getExtractSubregLikeInputs(
5308     const MachineInstr &MI, unsigned DefIdx,
5309     RegSubRegPairAndIdx &InputReg) const {
5310   assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5311   assert(MI.isExtractSubregLike() && "Invalid kind of instruction");
5312 
5313   switch (MI.getOpcode()) {
5314   case ARM::VMOVRRD:
5315     // rX, rY = VMOVRRD dZ
5316     // is the same as:
5317     // rX = EXTRACT_SUBREG dZ, ssub_0
5318     // rY = EXTRACT_SUBREG dZ, ssub_1
5319     const MachineOperand &MOReg = MI.getOperand(2);
5320     if (MOReg.isUndef())
5321       return false;
5322     InputReg.Reg = MOReg.getReg();
5323     InputReg.SubReg = MOReg.getSubReg();
5324     InputReg.SubIdx = DefIdx == 0 ? ARM::ssub_0 : ARM::ssub_1;
5325     return true;
5326   }
5327   llvm_unreachable("Target dependent opcode missing");
5328 }
5329 
getInsertSubregLikeInputs(const MachineInstr & MI,unsigned DefIdx,RegSubRegPair & BaseReg,RegSubRegPairAndIdx & InsertedReg) const5330 bool ARMBaseInstrInfo::getInsertSubregLikeInputs(
5331     const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg,
5332     RegSubRegPairAndIdx &InsertedReg) const {
5333   assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5334   assert(MI.isInsertSubregLike() && "Invalid kind of instruction");
5335 
5336   switch (MI.getOpcode()) {
5337   case ARM::VSETLNi32:
5338     // dX = VSETLNi32 dY, rZ, imm
5339     const MachineOperand &MOBaseReg = MI.getOperand(1);
5340     const MachineOperand &MOInsertedReg = MI.getOperand(2);
5341     if (MOInsertedReg.isUndef())
5342       return false;
5343     const MachineOperand &MOIndex = MI.getOperand(3);
5344     BaseReg.Reg = MOBaseReg.getReg();
5345     BaseReg.SubReg = MOBaseReg.getSubReg();
5346 
5347     InsertedReg.Reg = MOInsertedReg.getReg();
5348     InsertedReg.SubReg = MOInsertedReg.getSubReg();
5349     InsertedReg.SubIdx = MOIndex.getImm() == 0 ? ARM::ssub_0 : ARM::ssub_1;
5350     return true;
5351   }
5352   llvm_unreachable("Target dependent opcode missing");
5353 }
5354 
5355 std::pair<unsigned, unsigned>
decomposeMachineOperandsTargetFlags(unsigned TF) const5356 ARMBaseInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
5357   const unsigned Mask = ARMII::MO_OPTION_MASK;
5358   return std::make_pair(TF & Mask, TF & ~Mask);
5359 }
5360 
5361 ArrayRef<std::pair<unsigned, const char *>>
getSerializableDirectMachineOperandTargetFlags() const5362 ARMBaseInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
5363   using namespace ARMII;
5364 
5365   static const std::pair<unsigned, const char *> TargetFlags[] = {
5366       {MO_LO16, "arm-lo16"}, {MO_HI16, "arm-hi16"}};
5367   return makeArrayRef(TargetFlags);
5368 }
5369 
5370 ArrayRef<std::pair<unsigned, const char *>>
getSerializableBitmaskMachineOperandTargetFlags() const5371 ARMBaseInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
5372   using namespace ARMII;
5373 
5374   static const std::pair<unsigned, const char *> TargetFlags[] = {
5375       {MO_COFFSTUB, "arm-coffstub"},
5376       {MO_GOT, "arm-got"},
5377       {MO_SBREL, "arm-sbrel"},
5378       {MO_DLLIMPORT, "arm-dllimport"},
5379       {MO_SECREL, "arm-secrel"},
5380       {MO_NONLAZY, "arm-nonlazy"}};
5381   return makeArrayRef(TargetFlags);
5382 }
5383 
isAddImmediate(const MachineInstr & MI,Register Reg) const5384 Optional<RegImmPair> ARMBaseInstrInfo::isAddImmediate(const MachineInstr &MI,
5385                                                       Register Reg) const {
5386   int Sign = 1;
5387   unsigned Opcode = MI.getOpcode();
5388   int64_t Offset = 0;
5389 
5390   // TODO: Handle cases where Reg is a super- or sub-register of the
5391   // destination register.
5392   const MachineOperand &Op0 = MI.getOperand(0);
5393   if (!Op0.isReg() || Reg != Op0.getReg())
5394     return None;
5395 
5396   // We describe SUBri or ADDri instructions.
5397   if (Opcode == ARM::SUBri)
5398     Sign = -1;
5399   else if (Opcode != ARM::ADDri)
5400     return None;
5401 
5402   // TODO: Third operand can be global address (usually some string). Since
5403   //       strings can be relocated we cannot calculate their offsets for
5404   //       now.
5405   if (!MI.getOperand(1).isReg() || !MI.getOperand(2).isImm())
5406     return None;
5407 
5408   Offset = MI.getOperand(2).getImm() * Sign;
5409   return RegImmPair{MI.getOperand(1).getReg(), Offset};
5410 }
5411 
registerDefinedBetween(unsigned Reg,MachineBasicBlock::iterator From,MachineBasicBlock::iterator To,const TargetRegisterInfo * TRI)5412 bool llvm::registerDefinedBetween(unsigned Reg,
5413                                   MachineBasicBlock::iterator From,
5414                                   MachineBasicBlock::iterator To,
5415                                   const TargetRegisterInfo *TRI) {
5416   for (auto I = From; I != To; ++I)
5417     if (I->modifiesRegister(Reg, TRI))
5418       return true;
5419   return false;
5420 }
5421 
findCMPToFoldIntoCBZ(MachineInstr * Br,const TargetRegisterInfo * TRI)5422 MachineInstr *llvm::findCMPToFoldIntoCBZ(MachineInstr *Br,
5423                                          const TargetRegisterInfo *TRI) {
5424   // Search backwards to the instruction that defines CSPR. This may or not
5425   // be a CMP, we check that after this loop. If we find another instruction
5426   // that reads cpsr, we return nullptr.
5427   MachineBasicBlock::iterator CmpMI = Br;
5428   while (CmpMI != Br->getParent()->begin()) {
5429     --CmpMI;
5430     if (CmpMI->modifiesRegister(ARM::CPSR, TRI))
5431       break;
5432     if (CmpMI->readsRegister(ARM::CPSR, TRI))
5433       break;
5434   }
5435 
5436   // Check that this inst is a CMP r[0-7], #0 and that the register
5437   // is not redefined between the cmp and the br.
5438   if (CmpMI->getOpcode() != ARM::tCMPi8 && CmpMI->getOpcode() != ARM::t2CMPri)
5439     return nullptr;
5440   Register Reg = CmpMI->getOperand(0).getReg();
5441   Register PredReg;
5442   ARMCC::CondCodes Pred = getInstrPredicate(*CmpMI, PredReg);
5443   if (Pred != ARMCC::AL || CmpMI->getOperand(1).getImm() != 0)
5444     return nullptr;
5445   if (!isARMLowRegister(Reg))
5446     return nullptr;
5447   if (registerDefinedBetween(Reg, CmpMI->getNextNode(), Br, TRI))
5448     return nullptr;
5449 
5450   return &*CmpMI;
5451 }
5452 
ConstantMaterializationCost(unsigned Val,const ARMSubtarget * Subtarget,bool ForCodesize)5453 unsigned llvm::ConstantMaterializationCost(unsigned Val,
5454                                            const ARMSubtarget *Subtarget,
5455                                            bool ForCodesize) {
5456   if (Subtarget->isThumb()) {
5457     if (Val <= 255) // MOV
5458       return ForCodesize ? 2 : 1;
5459     if (Subtarget->hasV6T2Ops() && (Val <= 0xffff ||                    // MOV
5460                                     ARM_AM::getT2SOImmVal(Val) != -1 || // MOVW
5461                                     ARM_AM::getT2SOImmVal(~Val) != -1)) // MVN
5462       return ForCodesize ? 4 : 1;
5463     if (Val <= 510) // MOV + ADDi8
5464       return ForCodesize ? 4 : 2;
5465     if (~Val <= 255) // MOV + MVN
5466       return ForCodesize ? 4 : 2;
5467     if (ARM_AM::isThumbImmShiftedVal(Val)) // MOV + LSL
5468       return ForCodesize ? 4 : 2;
5469   } else {
5470     if (ARM_AM::getSOImmVal(Val) != -1) // MOV
5471       return ForCodesize ? 4 : 1;
5472     if (ARM_AM::getSOImmVal(~Val) != -1) // MVN
5473       return ForCodesize ? 4 : 1;
5474     if (Subtarget->hasV6T2Ops() && Val <= 0xffff) // MOVW
5475       return ForCodesize ? 4 : 1;
5476     if (ARM_AM::isSOImmTwoPartVal(Val)) // two instrs
5477       return ForCodesize ? 8 : 2;
5478     if (ARM_AM::isSOImmTwoPartValNeg(Val)) // two instrs
5479       return ForCodesize ? 8 : 2;
5480   }
5481   if (Subtarget->useMovt()) // MOVW + MOVT
5482     return ForCodesize ? 8 : 2;
5483   return ForCodesize ? 8 : 3; // Literal pool load
5484 }
5485 
HasLowerConstantMaterializationCost(unsigned Val1,unsigned Val2,const ARMSubtarget * Subtarget,bool ForCodesize)5486 bool llvm::HasLowerConstantMaterializationCost(unsigned Val1, unsigned Val2,
5487                                                const ARMSubtarget *Subtarget,
5488                                                bool ForCodesize) {
5489   // Check with ForCodesize
5490   unsigned Cost1 = ConstantMaterializationCost(Val1, Subtarget, ForCodesize);
5491   unsigned Cost2 = ConstantMaterializationCost(Val2, Subtarget, ForCodesize);
5492   if (Cost1 < Cost2)
5493     return true;
5494   if (Cost1 > Cost2)
5495     return false;
5496 
5497   // If they are equal, try with !ForCodesize
5498   return ConstantMaterializationCost(Val1, Subtarget, !ForCodesize) <
5499          ConstantMaterializationCost(Val2, Subtarget, !ForCodesize);
5500 }
5501 
5502 /// Constants defining how certain sequences should be outlined.
5503 /// This encompasses how an outlined function should be called, and what kind of
5504 /// frame should be emitted for that outlined function.
5505 ///
5506 /// \p MachineOutlinerTailCall implies that the function is being created from
5507 /// a sequence of instructions ending in a return.
5508 ///
5509 /// That is,
5510 ///
5511 /// I1                                OUTLINED_FUNCTION:
5512 /// I2    --> B OUTLINED_FUNCTION     I1
5513 /// BX LR                             I2
5514 ///                                   BX LR
5515 ///
5516 /// +-------------------------+--------+-----+
5517 /// |                         | Thumb2 | ARM |
5518 /// +-------------------------+--------+-----+
5519 /// | Call overhead in Bytes  |      4 |   4 |
5520 /// | Frame overhead in Bytes |      0 |   0 |
5521 /// | Stack fixup required    |     No |  No |
5522 /// +-------------------------+--------+-----+
5523 ///
5524 /// \p MachineOutlinerThunk implies that the function is being created from
5525 /// a sequence of instructions ending in a call. The outlined function is
5526 /// called with a BL instruction, and the outlined function tail-calls the
5527 /// original call destination.
5528 ///
5529 /// That is,
5530 ///
5531 /// I1                                OUTLINED_FUNCTION:
5532 /// I2   --> BL OUTLINED_FUNCTION     I1
5533 /// BL f                              I2
5534 ///                                   B f
5535 ///
5536 /// +-------------------------+--------+-----+
5537 /// |                         | Thumb2 | ARM |
5538 /// +-------------------------+--------+-----+
5539 /// | Call overhead in Bytes  |      4 |   4 |
5540 /// | Frame overhead in Bytes |      0 |   0 |
5541 /// | Stack fixup required    |     No |  No |
5542 /// +-------------------------+--------+-----+
5543 ///
5544 /// \p MachineOutlinerNoLRSave implies that the function should be called using
5545 /// a BL instruction, but doesn't require LR to be saved and restored. This
5546 /// happens when LR is known to be dead.
5547 ///
5548 /// That is,
5549 ///
5550 /// I1                                OUTLINED_FUNCTION:
5551 /// I2 --> BL OUTLINED_FUNCTION       I1
5552 /// I3                                I2
5553 ///                                   I3
5554 ///                                   BX LR
5555 ///
5556 /// +-------------------------+--------+-----+
5557 /// |                         | Thumb2 | ARM |
5558 /// +-------------------------+--------+-----+
5559 /// | Call overhead in Bytes  |      4 |   4 |
5560 /// | Frame overhead in Bytes |      4 |   4 |
5561 /// | Stack fixup required    |     No |  No |
5562 /// +-------------------------+--------+-----+
5563 ///
5564 /// \p MachineOutlinerRegSave implies that the function should be called with a
5565 /// save and restore of LR to an available register. This allows us to avoid
5566 /// stack fixups. Note that this outlining variant is compatible with the
5567 /// NoLRSave case.
5568 ///
5569 /// That is,
5570 ///
5571 /// I1     Save LR                    OUTLINED_FUNCTION:
5572 /// I2 --> BL OUTLINED_FUNCTION       I1
5573 /// I3     Restore LR                 I2
5574 ///                                   I3
5575 ///                                   BX LR
5576 ///
5577 /// +-------------------------+--------+-----+
5578 /// |                         | Thumb2 | ARM |
5579 /// +-------------------------+--------+-----+
5580 /// | Call overhead in Bytes  |      8 |  12 |
5581 /// | Frame overhead in Bytes |      2 |   4 |
5582 /// | Stack fixup required    |     No |  No |
5583 /// +-------------------------+--------+-----+
5584 ///
5585 /// \p MachineOutlinerDefault implies that the function should be called with
5586 /// a save and restore of LR to the stack.
5587 ///
5588 /// That is,
5589 ///
5590 /// I1     Save LR                    OUTLINED_FUNCTION:
5591 /// I2 --> BL OUTLINED_FUNCTION       I1
5592 /// I3     Restore LR                 I2
5593 ///                                   I3
5594 ///                                   BX LR
5595 ///
5596 /// +-------------------------+--------+-----+
5597 /// |                         | Thumb2 | ARM |
5598 /// +-------------------------+--------+-----+
5599 /// | Call overhead in Bytes  |      8 |  12 |
5600 /// | Frame overhead in Bytes |      2 |   4 |
5601 /// | Stack fixup required    |    Yes | Yes |
5602 /// +-------------------------+--------+-----+
5603 
5604 enum MachineOutlinerClass {
5605   MachineOutlinerTailCall,
5606   MachineOutlinerThunk,
5607   MachineOutlinerNoLRSave,
5608   MachineOutlinerRegSave,
5609   MachineOutlinerDefault
5610 };
5611 
5612 enum MachineOutlinerMBBFlags {
5613   LRUnavailableSomewhere = 0x2,
5614   HasCalls = 0x4,
5615   UnsafeRegsDead = 0x8
5616 };
5617 
5618 struct OutlinerCosts {
5619   const int CallTailCall;
5620   const int FrameTailCall;
5621   const int CallThunk;
5622   const int FrameThunk;
5623   const int CallNoLRSave;
5624   const int FrameNoLRSave;
5625   const int CallRegSave;
5626   const int FrameRegSave;
5627   const int CallDefault;
5628   const int FrameDefault;
5629   const int SaveRestoreLROnStack;
5630 
OutlinerCostsOutlinerCosts5631   OutlinerCosts(const ARMSubtarget &target)
5632       : CallTailCall(target.isThumb() ? 4 : 4),
5633         FrameTailCall(target.isThumb() ? 0 : 0),
5634         CallThunk(target.isThumb() ? 4 : 4),
5635         FrameThunk(target.isThumb() ? 0 : 0),
5636         CallNoLRSave(target.isThumb() ? 4 : 4),
5637         FrameNoLRSave(target.isThumb() ? 4 : 4),
5638         CallRegSave(target.isThumb() ? 8 : 12),
5639         FrameRegSave(target.isThumb() ? 2 : 4),
5640         CallDefault(target.isThumb() ? 8 : 12),
5641         FrameDefault(target.isThumb() ? 2 : 4),
5642         SaveRestoreLROnStack(target.isThumb() ? 8 : 8) {}
5643 };
5644 
5645 unsigned
findRegisterToSaveLRTo(const outliner::Candidate & C) const5646 ARMBaseInstrInfo::findRegisterToSaveLRTo(const outliner::Candidate &C) const {
5647   assert(C.LRUWasSet && "LRU wasn't set?");
5648   MachineFunction *MF = C.getMF();
5649   const ARMBaseRegisterInfo *ARI = static_cast<const ARMBaseRegisterInfo *>(
5650       MF->getSubtarget().getRegisterInfo());
5651 
5652   BitVector regsReserved = ARI->getReservedRegs(*MF);
5653   // Check if there is an available register across the sequence that we can
5654   // use.
5655   for (unsigned Reg : ARM::rGPRRegClass) {
5656     if (!(Reg < regsReserved.size() && regsReserved.test(Reg)) &&
5657         Reg != ARM::LR &&  // LR is not reserved, but don't use it.
5658         Reg != ARM::R12 && // R12 is not guaranteed to be preserved.
5659         C.LRU.available(Reg) && C.UsedInSequence.available(Reg))
5660       return Reg;
5661   }
5662 
5663   // No suitable register. Return 0.
5664   return 0u;
5665 }
5666 
5667 // Compute liveness of LR at the point after the interval [I, E), which
5668 // denotes a *backward* iteration through instructions. Used only for return
5669 // basic blocks, which do not end with a tail call.
isLRAvailable(const TargetRegisterInfo & TRI,MachineBasicBlock::reverse_iterator I,MachineBasicBlock::reverse_iterator E)5670 static bool isLRAvailable(const TargetRegisterInfo &TRI,
5671                           MachineBasicBlock::reverse_iterator I,
5672                           MachineBasicBlock::reverse_iterator E) {
5673   // At the end of the function LR dead.
5674   bool Live = false;
5675   for (; I != E; ++I) {
5676     const MachineInstr &MI = *I;
5677 
5678     // Check defs of LR.
5679     if (MI.modifiesRegister(ARM::LR, &TRI))
5680       Live = false;
5681 
5682     // Check uses of LR.
5683     unsigned Opcode = MI.getOpcode();
5684     if (Opcode == ARM::BX_RET || Opcode == ARM::MOVPCLR ||
5685         Opcode == ARM::SUBS_PC_LR || Opcode == ARM::tBX_RET ||
5686         Opcode == ARM::tBXNS_RET) {
5687       // These instructions use LR, but it's not an (explicit or implicit)
5688       // operand.
5689       Live = true;
5690       continue;
5691     }
5692     if (MI.readsRegister(ARM::LR, &TRI))
5693       Live = true;
5694   }
5695   return !Live;
5696 }
5697 
getOutliningCandidateInfo(std::vector<outliner::Candidate> & RepeatedSequenceLocs) const5698 outliner::OutlinedFunction ARMBaseInstrInfo::getOutliningCandidateInfo(
5699     std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
5700   outliner::Candidate &FirstCand = RepeatedSequenceLocs[0];
5701   unsigned SequenceSize =
5702       std::accumulate(FirstCand.front(), std::next(FirstCand.back()), 0,
5703                       [this](unsigned Sum, const MachineInstr &MI) {
5704                         return Sum + getInstSizeInBytes(MI);
5705                       });
5706 
5707   // Properties about candidate MBBs that hold for all of them.
5708   unsigned FlagsSetInAll = 0xF;
5709 
5710   // Compute liveness information for each candidate, and set FlagsSetInAll.
5711   const TargetRegisterInfo &TRI = getRegisterInfo();
5712   std::for_each(
5713       RepeatedSequenceLocs.begin(), RepeatedSequenceLocs.end(),
5714       [&FlagsSetInAll](outliner::Candidate &C) { FlagsSetInAll &= C.Flags; });
5715 
5716   // According to the ARM Procedure Call Standard, the following are
5717   // undefined on entry/exit from a function call:
5718   //
5719   // * Register R12(IP),
5720   // * Condition codes (and thus the CPSR register)
5721   //
5722   // Since we control the instructions which are part of the outlined regions
5723   // we don't need to be fully compliant with the AAPCS, but we have to
5724   // guarantee that if a veneer is inserted at link time the code is still
5725   // correct.  Because of this, we can't outline any sequence of instructions
5726   // where one of these registers is live into/across it. Thus, we need to
5727   // delete those candidates.
5728   auto CantGuaranteeValueAcrossCall = [&TRI](outliner::Candidate &C) {
5729     // If the unsafe registers in this block are all dead, then we don't need
5730     // to compute liveness here.
5731     if (C.Flags & UnsafeRegsDead)
5732       return false;
5733     C.initLRU(TRI);
5734     LiveRegUnits LRU = C.LRU;
5735     return (!LRU.available(ARM::R12) || !LRU.available(ARM::CPSR));
5736   };
5737 
5738   // Are there any candidates where those registers are live?
5739   if (!(FlagsSetInAll & UnsafeRegsDead)) {
5740     // Erase every candidate that violates the restrictions above. (It could be
5741     // true that we have viable candidates, so it's not worth bailing out in
5742     // the case that, say, 1 out of 20 candidates violate the restructions.)
5743     RepeatedSequenceLocs.erase(std::remove_if(RepeatedSequenceLocs.begin(),
5744                                               RepeatedSequenceLocs.end(),
5745                                               CantGuaranteeValueAcrossCall),
5746                                RepeatedSequenceLocs.end());
5747 
5748     // If the sequence doesn't have enough candidates left, then we're done.
5749     if (RepeatedSequenceLocs.size() < 2)
5750       return outliner::OutlinedFunction();
5751   }
5752 
5753   // At this point, we have only "safe" candidates to outline. Figure out
5754   // frame + call instruction information.
5755 
5756   unsigned LastInstrOpcode = RepeatedSequenceLocs[0].back()->getOpcode();
5757 
5758   // Helper lambda which sets call information for every candidate.
5759   auto SetCandidateCallInfo =
5760       [&RepeatedSequenceLocs](unsigned CallID, unsigned NumBytesForCall) {
5761         for (outliner::Candidate &C : RepeatedSequenceLocs)
5762           C.setCallInfo(CallID, NumBytesForCall);
5763       };
5764 
5765   OutlinerCosts Costs(Subtarget);
5766   unsigned FrameID = MachineOutlinerDefault;
5767   unsigned NumBytesToCreateFrame = Costs.FrameDefault;
5768 
5769   // If the last instruction in any candidate is a terminator, then we should
5770   // tail call all of the candidates.
5771   if (RepeatedSequenceLocs[0].back()->isTerminator()) {
5772     FrameID = MachineOutlinerTailCall;
5773     NumBytesToCreateFrame = Costs.FrameTailCall;
5774     SetCandidateCallInfo(MachineOutlinerTailCall, Costs.CallTailCall);
5775   } else if (LastInstrOpcode == ARM::BL || LastInstrOpcode == ARM::BLX ||
5776              LastInstrOpcode == ARM::tBL || LastInstrOpcode == ARM::tBLXr ||
5777              LastInstrOpcode == ARM::tBLXi) {
5778     FrameID = MachineOutlinerThunk;
5779     NumBytesToCreateFrame = Costs.FrameThunk;
5780     SetCandidateCallInfo(MachineOutlinerThunk, Costs.CallThunk);
5781   } else {
5782     // We need to decide how to emit calls + frames. We can always emit the same
5783     // frame if we don't need to save to the stack. If we have to save to the
5784     // stack, then we need a different frame.
5785     unsigned NumBytesNoStackCalls = 0;
5786     std::vector<outliner::Candidate> CandidatesWithoutStackFixups;
5787 
5788     for (outliner::Candidate &C : RepeatedSequenceLocs) {
5789       C.initLRU(TRI);
5790       // LR liveness is overestimated in return blocks, unless they end with a
5791       // tail call.
5792       const auto Last = C.getMBB()->rbegin();
5793       const bool LRIsAvailable =
5794           C.getMBB()->isReturnBlock() && !Last->isCall()
5795               ? isLRAvailable(TRI, Last,
5796                               (MachineBasicBlock::reverse_iterator)C.front())
5797               : C.LRU.available(ARM::LR);
5798       if (LRIsAvailable) {
5799         FrameID = MachineOutlinerNoLRSave;
5800         NumBytesNoStackCalls += Costs.CallNoLRSave;
5801         C.setCallInfo(MachineOutlinerNoLRSave, Costs.CallNoLRSave);
5802         CandidatesWithoutStackFixups.push_back(C);
5803       }
5804 
5805       // Is an unused register available? If so, we won't modify the stack, so
5806       // we can outline with the same frame type as those that don't save LR.
5807       else if (findRegisterToSaveLRTo(C)) {
5808         FrameID = MachineOutlinerRegSave;
5809         NumBytesNoStackCalls += Costs.CallRegSave;
5810         C.setCallInfo(MachineOutlinerRegSave, Costs.CallRegSave);
5811         CandidatesWithoutStackFixups.push_back(C);
5812       }
5813 
5814       // Is SP used in the sequence at all? If not, we don't have to modify
5815       // the stack, so we are guaranteed to get the same frame.
5816       else if (C.UsedInSequence.available(ARM::SP)) {
5817         NumBytesNoStackCalls += Costs.CallDefault;
5818         C.setCallInfo(MachineOutlinerDefault, Costs.CallDefault);
5819         SetCandidateCallInfo(MachineOutlinerDefault, Costs.CallDefault);
5820         CandidatesWithoutStackFixups.push_back(C);
5821       } else
5822         return outliner::OutlinedFunction();
5823     }
5824 
5825     // Does every candidate's MBB contain a call?  If so, then we might have a
5826     // call in the range.
5827     if (FlagsSetInAll & MachineOutlinerMBBFlags::HasCalls) {
5828       // check if the range contains a call.  These require a save + restore of
5829       // the link register.
5830       if (std::any_of(FirstCand.front(), FirstCand.back(),
5831                       [](const MachineInstr &MI) { return MI.isCall(); }))
5832         NumBytesToCreateFrame += Costs.SaveRestoreLROnStack;
5833 
5834       // Handle the last instruction separately.  If it is tail call, then the
5835       // last instruction is a call, we don't want to save + restore in this
5836       // case.  However, it could be possible that the last instruction is a
5837       // call without it being valid to tail call this sequence.  We should
5838       // consider this as well.
5839       else if (FrameID != MachineOutlinerThunk &&
5840                FrameID != MachineOutlinerTailCall && FirstCand.back()->isCall())
5841         NumBytesToCreateFrame += Costs.SaveRestoreLROnStack;
5842     }
5843     RepeatedSequenceLocs = CandidatesWithoutStackFixups;
5844   }
5845 
5846   return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize,
5847                                     NumBytesToCreateFrame, FrameID);
5848 }
5849 
isFunctionSafeToOutlineFrom(MachineFunction & MF,bool OutlineFromLinkOnceODRs) const5850 bool ARMBaseInstrInfo::isFunctionSafeToOutlineFrom(
5851     MachineFunction &MF, bool OutlineFromLinkOnceODRs) const {
5852   const Function &F = MF.getFunction();
5853 
5854   // Can F be deduplicated by the linker? If it can, don't outline from it.
5855   if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
5856     return false;
5857 
5858   // Don't outline from functions with section markings; the program could
5859   // expect that all the code is in the named section.
5860   // FIXME: Allow outlining from multiple functions with the same section
5861   // marking.
5862   if (F.hasSection())
5863     return false;
5864 
5865   // FIXME: Thumb1 outlining is not handled
5866   if (MF.getInfo<ARMFunctionInfo>()->isThumb1OnlyFunction())
5867     return false;
5868 
5869   // It's safe to outline from MF.
5870   return true;
5871 }
5872 
isMBBSafeToOutlineFrom(MachineBasicBlock & MBB,unsigned & Flags) const5873 bool ARMBaseInstrInfo::isMBBSafeToOutlineFrom(MachineBasicBlock &MBB,
5874                                               unsigned &Flags) const {
5875   // Check if LR is available through all of the MBB. If it's not, then set
5876   // a flag.
5877   assert(MBB.getParent()->getRegInfo().tracksLiveness() &&
5878          "Suitable Machine Function for outlining must track liveness");
5879 
5880   LiveRegUnits LRU(getRegisterInfo());
5881 
5882   std::for_each(MBB.rbegin(), MBB.rend(),
5883                 [&LRU](MachineInstr &MI) { LRU.accumulate(MI); });
5884 
5885   // Check if each of the unsafe registers are available...
5886   bool R12AvailableInBlock = LRU.available(ARM::R12);
5887   bool CPSRAvailableInBlock = LRU.available(ARM::CPSR);
5888 
5889   // If all of these are dead (and not live out), we know we don't have to check
5890   // them later.
5891   if (R12AvailableInBlock && CPSRAvailableInBlock)
5892     Flags |= MachineOutlinerMBBFlags::UnsafeRegsDead;
5893 
5894   // Now, add the live outs to the set.
5895   LRU.addLiveOuts(MBB);
5896 
5897   // If any of these registers is available in the MBB, but also a live out of
5898   // the block, then we know outlining is unsafe.
5899   if (R12AvailableInBlock && !LRU.available(ARM::R12))
5900     return false;
5901   if (CPSRAvailableInBlock && !LRU.available(ARM::CPSR))
5902     return false;
5903 
5904   // Check if there's a call inside this MachineBasicBlock.  If there is, then
5905   // set a flag.
5906   if (any_of(MBB, [](MachineInstr &MI) { return MI.isCall(); }))
5907     Flags |= MachineOutlinerMBBFlags::HasCalls;
5908 
5909   // LR liveness is overestimated in return blocks.
5910 
5911   bool LRIsAvailable =
5912       MBB.isReturnBlock() && !MBB.back().isCall()
5913           ? isLRAvailable(getRegisterInfo(), MBB.rbegin(), MBB.rend())
5914           : LRU.available(ARM::LR);
5915   if (!LRIsAvailable)
5916     Flags |= MachineOutlinerMBBFlags::LRUnavailableSomewhere;
5917 
5918   return true;
5919 }
5920 
5921 outliner::InstrType
getOutliningType(MachineBasicBlock::iterator & MIT,unsigned Flags) const5922 ARMBaseInstrInfo::getOutliningType(MachineBasicBlock::iterator &MIT,
5923                                    unsigned Flags) const {
5924   MachineInstr &MI = *MIT;
5925   const TargetRegisterInfo *TRI = &getRegisterInfo();
5926 
5927   // Be conservative with inline ASM
5928   if (MI.isInlineAsm())
5929     return outliner::InstrType::Illegal;
5930 
5931   // Don't allow debug values to impact outlining type.
5932   if (MI.isDebugInstr() || MI.isIndirectDebugValue())
5933     return outliner::InstrType::Invisible;
5934 
5935   // At this point, KILL or IMPLICIT_DEF instructions don't really tell us much
5936   // so we can go ahead and skip over them.
5937   if (MI.isKill() || MI.isImplicitDef())
5938     return outliner::InstrType::Invisible;
5939 
5940   // PIC instructions contain labels, outlining them would break offset
5941   // computing.  unsigned Opc = MI.getOpcode();
5942   unsigned Opc = MI.getOpcode();
5943   if (Opc == ARM::tPICADD || Opc == ARM::PICADD || Opc == ARM::PICSTR ||
5944       Opc == ARM::PICSTRB || Opc == ARM::PICSTRH || Opc == ARM::PICLDR ||
5945       Opc == ARM::PICLDRB || Opc == ARM::PICLDRH || Opc == ARM::PICLDRSB ||
5946       Opc == ARM::PICLDRSH || Opc == ARM::t2LDRpci_pic ||
5947       Opc == ARM::t2MOVi16_ga_pcrel || Opc == ARM::t2MOVTi16_ga_pcrel ||
5948       Opc == ARM::t2MOV_ga_pcrel)
5949     return outliner::InstrType::Illegal;
5950 
5951   // Be conservative with ARMv8.1 MVE instructions.
5952   if (Opc == ARM::t2BF_LabelPseudo || Opc == ARM::t2DoLoopStart ||
5953       Opc == ARM::t2DoLoopStartTP || Opc == ARM::t2WhileLoopStart ||
5954       Opc == ARM::t2LoopDec || Opc == ARM::t2LoopEnd)
5955     return outliner::InstrType::Illegal;
5956 
5957   const MCInstrDesc &MCID = MI.getDesc();
5958   uint64_t MIFlags = MCID.TSFlags;
5959   if ((MIFlags & ARMII::DomainMask) == ARMII::DomainMVE)
5960     return outliner::InstrType::Illegal;
5961 
5962   // Is this a terminator for a basic block?
5963   if (MI.isTerminator()) {
5964     // Don't outline if the branch is not unconditional.
5965     if (isPredicated(MI))
5966       return outliner::InstrType::Illegal;
5967 
5968     // Is this the end of a function?
5969     if (MI.getParent()->succ_empty())
5970       return outliner::InstrType::Legal;
5971 
5972     // It's not, so don't outline it.
5973     return outliner::InstrType::Illegal;
5974   }
5975 
5976   // Make sure none of the operands are un-outlinable.
5977   for (const MachineOperand &MOP : MI.operands()) {
5978     if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() ||
5979         MOP.isTargetIndex())
5980       return outliner::InstrType::Illegal;
5981   }
5982 
5983   // Don't outline if link register or program counter value are used.
5984   if (MI.readsRegister(ARM::LR, TRI) || MI.readsRegister(ARM::PC, TRI))
5985     return outliner::InstrType::Illegal;
5986 
5987   if (MI.isCall()) {
5988     // Get the function associated with the call.  Look at each operand and find
5989     // the one that represents the calle and get its name.
5990     const Function *Callee = nullptr;
5991     for (const MachineOperand &MOP : MI.operands()) {
5992       if (MOP.isGlobal()) {
5993         Callee = dyn_cast<Function>(MOP.getGlobal());
5994         break;
5995       }
5996     }
5997 
5998     // Dont't outline calls to "mcount" like functions, in particular Linux
5999     // kernel function tracing relies on it.
6000     if (Callee &&
6001         (Callee->getName() == "\01__gnu_mcount_nc" ||
6002          Callee->getName() == "\01mcount" || Callee->getName() == "__mcount"))
6003       return outliner::InstrType::Illegal;
6004 
6005     // If we don't know anything about the callee, assume it depends on the
6006     // stack layout of the caller. In that case, it's only legal to outline
6007     // as a tail-call. Explicitly list the call instructions we know about so
6008     // we don't get unexpected results with call pseudo-instructions.
6009     auto UnknownCallOutlineType = outliner::InstrType::Illegal;
6010     if (Opc == ARM::BL || Opc == ARM::tBL || Opc == ARM::BLX ||
6011         Opc == ARM::tBLXr || Opc == ARM::tBLXi)
6012       UnknownCallOutlineType = outliner::InstrType::LegalTerminator;
6013 
6014     if (!Callee)
6015       return UnknownCallOutlineType;
6016 
6017     // We have a function we have information about.  Check if it's something we
6018     // can safely outline.
6019     MachineFunction *MF = MI.getParent()->getParent();
6020     MachineFunction *CalleeMF = MF->getMMI().getMachineFunction(*Callee);
6021 
6022     // We don't know what's going on with the callee at all.  Don't touch it.
6023     if (!CalleeMF)
6024       return UnknownCallOutlineType;
6025 
6026     // Check if we know anything about the callee saves on the function. If we
6027     // don't, then don't touch it, since that implies that we haven't computed
6028     // anything about its stack frame yet.
6029     MachineFrameInfo &MFI = CalleeMF->getFrameInfo();
6030     if (!MFI.isCalleeSavedInfoValid() || MFI.getStackSize() > 0 ||
6031         MFI.getNumObjects() > 0)
6032       return UnknownCallOutlineType;
6033 
6034     // At this point, we can say that CalleeMF ought to not pass anything on the
6035     // stack. Therefore, we can outline it.
6036     return outliner::InstrType::Legal;
6037   }
6038 
6039   // Since calls are handled, don't touch LR or PC
6040   if (MI.modifiesRegister(ARM::LR, TRI) || MI.modifiesRegister(ARM::PC, TRI))
6041     return outliner::InstrType::Illegal;
6042 
6043   // Does this use the stack?
6044   if (MI.modifiesRegister(ARM::SP, TRI) || MI.readsRegister(ARM::SP, TRI)) {
6045     // True if there is no chance that any outlined candidate from this range
6046     // could require stack fixups. That is, both
6047     // * LR is available in the range (No save/restore around call)
6048     // * The range doesn't include calls (No save/restore in outlined frame)
6049     // are true.
6050     // FIXME: This is very restrictive; the flags check the whole block,
6051     // not just the bit we will try to outline.
6052     bool MightNeedStackFixUp =
6053         (Flags & (MachineOutlinerMBBFlags::LRUnavailableSomewhere |
6054                   MachineOutlinerMBBFlags::HasCalls));
6055 
6056     if (!MightNeedStackFixUp)
6057       return outliner::InstrType::Legal;
6058 
6059     return outliner::InstrType::Illegal;
6060   }
6061 
6062   // Be conservative with IT blocks.
6063   if (MI.readsRegister(ARM::ITSTATE, TRI) ||
6064       MI.modifiesRegister(ARM::ITSTATE, TRI))
6065     return outliner::InstrType::Illegal;
6066 
6067   // Don't outline positions.
6068   if (MI.isPosition())
6069     return outliner::InstrType::Illegal;
6070 
6071   return outliner::InstrType::Legal;
6072 }
6073 
saveLROnStack(MachineBasicBlock & MBB,MachineBasicBlock::iterator It) const6074 void ARMBaseInstrInfo::saveLROnStack(MachineBasicBlock &MBB,
6075                                      MachineBasicBlock::iterator It) const {
6076   unsigned Opc = Subtarget.isThumb() ? ARM::t2STR_PRE : ARM::STR_PRE_IMM;
6077   int Align = -Subtarget.getStackAlignment().value();
6078   BuildMI(MBB, It, DebugLoc(), get(Opc), ARM::SP)
6079     .addReg(ARM::LR, RegState::Kill)
6080     .addReg(ARM::SP)
6081     .addImm(Align)
6082     .add(predOps(ARMCC::AL));
6083 }
6084 
emitCFIForLRSaveOnStack(MachineBasicBlock & MBB,MachineBasicBlock::iterator It) const6085 void ARMBaseInstrInfo::emitCFIForLRSaveOnStack(
6086     MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const {
6087   MachineFunction &MF = *MBB.getParent();
6088   const MCRegisterInfo *MRI = Subtarget.getRegisterInfo();
6089   unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true);
6090   int Align = Subtarget.getStackAlignment().value();
6091   // Add a CFI saying the stack was moved down.
6092   int64_t StackPosEntry =
6093       MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, Align));
6094   BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6095       .addCFIIndex(StackPosEntry)
6096       .setMIFlags(MachineInstr::FrameSetup);
6097 
6098   // Add a CFI saying that the LR that we want to find is now higher than
6099   // before.
6100   int64_t LRPosEntry =
6101       MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, DwarfLR, -Align));
6102   BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6103       .addCFIIndex(LRPosEntry)
6104       .setMIFlags(MachineInstr::FrameSetup);
6105 }
6106 
emitCFIForLRSaveToReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator It,Register Reg) const6107 void ARMBaseInstrInfo::emitCFIForLRSaveToReg(MachineBasicBlock &MBB,
6108                                              MachineBasicBlock::iterator It,
6109                                              Register Reg) const {
6110   MachineFunction &MF = *MBB.getParent();
6111   const MCRegisterInfo *MRI = Subtarget.getRegisterInfo();
6112   unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true);
6113   unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
6114 
6115   int64_t LRPosEntry = MF.addFrameInst(
6116       MCCFIInstruction::createRegister(nullptr, DwarfLR, DwarfReg));
6117   BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6118       .addCFIIndex(LRPosEntry)
6119       .setMIFlags(MachineInstr::FrameSetup);
6120 }
6121 
restoreLRFromStack(MachineBasicBlock & MBB,MachineBasicBlock::iterator It) const6122 void ARMBaseInstrInfo::restoreLRFromStack(
6123     MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const {
6124   unsigned Opc = Subtarget.isThumb() ? ARM::t2LDR_POST : ARM::LDR_POST_IMM;
6125   MachineInstrBuilder MIB = BuildMI(MBB, It, DebugLoc(), get(Opc), ARM::LR)
6126     .addReg(ARM::SP, RegState::Define)
6127     .addReg(ARM::SP);
6128   if (!Subtarget.isThumb())
6129     MIB.addReg(0);
6130   MIB.addImm(Subtarget.getStackAlignment().value()).add(predOps(ARMCC::AL));
6131 }
6132 
emitCFIForLRRestoreFromStack(MachineBasicBlock & MBB,MachineBasicBlock::iterator It) const6133 void ARMBaseInstrInfo::emitCFIForLRRestoreFromStack(
6134     MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const {
6135   // Now stack has moved back up...
6136   MachineFunction &MF = *MBB.getParent();
6137   const MCRegisterInfo *MRI = Subtarget.getRegisterInfo();
6138   unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true);
6139   int64_t StackPosEntry =
6140       MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0));
6141   BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6142       .addCFIIndex(StackPosEntry)
6143       .setMIFlags(MachineInstr::FrameDestroy);
6144 
6145   // ... and we have restored LR.
6146   int64_t LRPosEntry =
6147       MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, DwarfLR));
6148   BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6149       .addCFIIndex(LRPosEntry)
6150       .setMIFlags(MachineInstr::FrameDestroy);
6151 }
6152 
emitCFIForLRRestoreFromReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator It) const6153 void ARMBaseInstrInfo::emitCFIForLRRestoreFromReg(
6154     MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const {
6155   MachineFunction &MF = *MBB.getParent();
6156   const MCRegisterInfo *MRI = Subtarget.getRegisterInfo();
6157   unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true);
6158 
6159   int64_t LRPosEntry =
6160       MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, DwarfLR));
6161   BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6162       .addCFIIndex(LRPosEntry)
6163       .setMIFlags(MachineInstr::FrameDestroy);
6164 }
6165 
buildOutlinedFrame(MachineBasicBlock & MBB,MachineFunction & MF,const outliner::OutlinedFunction & OF) const6166 void ARMBaseInstrInfo::buildOutlinedFrame(
6167     MachineBasicBlock &MBB, MachineFunction &MF,
6168     const outliner::OutlinedFunction &OF) const {
6169   // For thunk outlining, rewrite the last instruction from a call to a
6170   // tail-call.
6171   if (OF.FrameConstructionID == MachineOutlinerThunk) {
6172     MachineInstr *Call = &*--MBB.instr_end();
6173     bool isThumb = Subtarget.isThumb();
6174     unsigned FuncOp = isThumb ? 2 : 0;
6175     unsigned Opc = Call->getOperand(FuncOp).isReg()
6176                        ? isThumb ? ARM::tTAILJMPr : ARM::TAILJMPr
6177                        : isThumb ? Subtarget.isTargetMachO() ? ARM::tTAILJMPd
6178                                                              : ARM::tTAILJMPdND
6179                                  : ARM::TAILJMPd;
6180     MachineInstrBuilder MIB = BuildMI(MBB, MBB.end(), DebugLoc(), get(Opc))
6181                                   .add(Call->getOperand(FuncOp));
6182     if (isThumb && !Call->getOperand(FuncOp).isReg())
6183       MIB.add(predOps(ARMCC::AL));
6184     Call->eraseFromParent();
6185   }
6186 
6187   // Is there a call in the outlined range?
6188   auto IsNonTailCall = [](MachineInstr &MI) {
6189     return MI.isCall() && !MI.isReturn();
6190   };
6191   if (std::any_of(MBB.instr_begin(), MBB.instr_end(), IsNonTailCall)) {
6192     MachineBasicBlock::iterator It = MBB.begin();
6193     MachineBasicBlock::iterator Et = MBB.end();
6194 
6195     if (OF.FrameConstructionID == MachineOutlinerTailCall ||
6196         OF.FrameConstructionID == MachineOutlinerThunk)
6197       Et = std::prev(MBB.end());
6198 
6199     // We have to save and restore LR, we need to add it to the liveins if it
6200     // is not already part of the set.  This is suffient since outlined
6201     // functions only have one block.
6202     if (!MBB.isLiveIn(ARM::LR))
6203       MBB.addLiveIn(ARM::LR);
6204 
6205     // Insert a save before the outlined region
6206     saveLROnStack(MBB, It);
6207     emitCFIForLRSaveOnStack(MBB, It);
6208 
6209     // Insert a restore before the terminator for the function.  Restore LR.
6210     restoreLRFromStack(MBB, Et);
6211     emitCFIForLRRestoreFromStack(MBB, Et);
6212   }
6213 
6214   // If this is a tail call outlined function, then there's already a return.
6215   if (OF.FrameConstructionID == MachineOutlinerTailCall ||
6216       OF.FrameConstructionID == MachineOutlinerThunk)
6217     return;
6218 
6219   // Here we have to insert the return ourselves.  Get the correct opcode from
6220   // current feature set.
6221   BuildMI(MBB, MBB.end(), DebugLoc(), get(Subtarget.getReturnOpcode()))
6222       .add(predOps(ARMCC::AL));
6223 }
6224 
insertOutlinedCall(Module & M,MachineBasicBlock & MBB,MachineBasicBlock::iterator & It,MachineFunction & MF,const outliner::Candidate & C) const6225 MachineBasicBlock::iterator ARMBaseInstrInfo::insertOutlinedCall(
6226     Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It,
6227     MachineFunction &MF, const outliner::Candidate &C) const {
6228   MachineInstrBuilder MIB;
6229   MachineBasicBlock::iterator CallPt;
6230   unsigned Opc;
6231   bool isThumb = Subtarget.isThumb();
6232 
6233   // Are we tail calling?
6234   if (C.CallConstructionID == MachineOutlinerTailCall) {
6235     // If yes, then we can just branch to the label.
6236     Opc = isThumb
6237               ? Subtarget.isTargetMachO() ? ARM::tTAILJMPd : ARM::tTAILJMPdND
6238               : ARM::TAILJMPd;
6239     MIB = BuildMI(MF, DebugLoc(), get(Opc))
6240               .addGlobalAddress(M.getNamedValue(MF.getName()));
6241     if (isThumb)
6242       MIB.add(predOps(ARMCC::AL));
6243     It = MBB.insert(It, MIB);
6244     return It;
6245   }
6246 
6247   // Create the call instruction.
6248   Opc = isThumb ? ARM::tBL : ARM::BL;
6249   MachineInstrBuilder CallMIB = BuildMI(MF, DebugLoc(), get(Opc));
6250   if (isThumb)
6251     CallMIB.add(predOps(ARMCC::AL));
6252   CallMIB.addGlobalAddress(M.getNamedValue(MF.getName()));
6253 
6254   if (C.CallConstructionID == MachineOutlinerNoLRSave ||
6255       C.CallConstructionID == MachineOutlinerThunk) {
6256     // No, so just insert the call.
6257     It = MBB.insert(It, CallMIB);
6258     return It;
6259   }
6260 
6261   const ARMFunctionInfo &AFI = *C.getMF()->getInfo<ARMFunctionInfo>();
6262   // Can we save to a register?
6263   if (C.CallConstructionID == MachineOutlinerRegSave) {
6264     unsigned Reg = findRegisterToSaveLRTo(C);
6265     assert(Reg != 0 && "No callee-saved register available?");
6266 
6267     // Save and restore LR from that register.
6268     copyPhysReg(MBB, It, DebugLoc(), Reg, ARM::LR, true);
6269     if (!AFI.isLRSpilled())
6270       emitCFIForLRSaveToReg(MBB, It, Reg);
6271     CallPt = MBB.insert(It, CallMIB);
6272     copyPhysReg(MBB, It, DebugLoc(), ARM::LR, Reg, true);
6273     if (!AFI.isLRSpilled())
6274       emitCFIForLRRestoreFromReg(MBB, It);
6275     It--;
6276     return CallPt;
6277   }
6278   // We have the default case. Save and restore from SP.
6279   saveLROnStack(MBB, It);
6280   if (!AFI.isLRSpilled())
6281     emitCFIForLRSaveOnStack(MBB, It);
6282   CallPt = MBB.insert(It, CallMIB);
6283   restoreLRFromStack(MBB, It);
6284   if (!AFI.isLRSpilled())
6285     emitCFIForLRRestoreFromStack(MBB, It);
6286   It--;
6287   return CallPt;
6288 }
6289 
shouldOutlineFromFunctionByDefault(MachineFunction & MF) const6290 bool ARMBaseInstrInfo::shouldOutlineFromFunctionByDefault(
6291     MachineFunction &MF) const {
6292   return Subtarget.isMClass() && MF.getFunction().hasMinSize();
6293 }
6294 
isReallyTriviallyReMaterializable(const MachineInstr & MI,AAResults * AA) const6295 bool ARMBaseInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
6296                                                          AAResults *AA) const {
6297   // Try hard to rematerialize any VCTPs because if we spill P0, it will block
6298   // the tail predication conversion. This means that the element count
6299   // register has to be live for longer, but that has to be better than
6300   // spill/restore and VPT predication.
6301   return isVCTP(&MI) && !isPredicated(MI);
6302 }
6303