1 /*
2 * Copyright (c) 2017-2019, ARM Limited and Contributors. All rights reserved.
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7 #include <assert.h>
8 #include <string.h>
9
10 #include <arch_helpers.h>
11 #include <bl31/ehf.h>
12 #include <bl31/interrupt_mgmt.h>
13 #include <common/bl_common.h>
14 #include <common/debug.h>
15 #include <common/runtime_svc.h>
16 #include <lib/cassert.h>
17 #include <services/sdei.h>
18
19 #include "sdei_private.h"
20
21 /* x0-x17 GPREGS context */
22 #define SDEI_SAVED_GPREGS 18U
23
24 /* Maximum preemption nesting levels: Critical priority and Normal priority */
25 #define MAX_EVENT_NESTING 2U
26
27 /* Per-CPU SDEI state access macro */
28 #define sdei_get_this_pe_state() (&cpu_state[plat_my_core_pos()])
29
30 /* Structure to store information about an outstanding dispatch */
31 typedef struct sdei_dispatch_context {
32 sdei_ev_map_t *map;
33 uint64_t x[SDEI_SAVED_GPREGS];
34 jmp_buf *dispatch_jmp;
35
36 /* Exception state registers */
37 uint64_t elr_el3;
38 uint64_t spsr_el3;
39
40 #if DYNAMIC_WORKAROUND_CVE_2018_3639
41 /* CVE-2018-3639 mitigation state */
42 uint64_t disable_cve_2018_3639;
43 #endif
44 } sdei_dispatch_context_t;
45
46 /* Per-CPU SDEI state data */
47 typedef struct sdei_cpu_state {
48 sdei_dispatch_context_t dispatch_stack[MAX_EVENT_NESTING];
49 unsigned short stack_top; /* Empty ascending */
50 bool pe_masked;
51 bool pending_enables;
52 } sdei_cpu_state_t;
53
54 /* SDEI states for all cores in the system */
55 static sdei_cpu_state_t cpu_state[PLATFORM_CORE_COUNT];
56
sdei_pe_mask(void)57 int64_t sdei_pe_mask(void)
58 {
59 int64_t ret = 0;
60 sdei_cpu_state_t *state = sdei_get_this_pe_state();
61
62 /*
63 * Return value indicates whether this call had any effect in the mask
64 * status of this PE.
65 */
66 if (!state->pe_masked) {
67 state->pe_masked = true;
68 ret = 1;
69 }
70
71 return ret;
72 }
73
sdei_pe_unmask(void)74 void sdei_pe_unmask(void)
75 {
76 unsigned int i;
77 sdei_ev_map_t *map;
78 sdei_entry_t *se;
79 sdei_cpu_state_t *state = sdei_get_this_pe_state();
80 uint64_t my_mpidr = read_mpidr_el1() & MPIDR_AFFINITY_MASK;
81
82 /*
83 * If there are pending enables, iterate through the private mappings
84 * and enable those bound maps that are in enabled state. Also, iterate
85 * through shared mappings and enable interrupts of events that are
86 * targeted to this PE.
87 */
88 if (state->pending_enables) {
89 for_each_private_map(i, map) {
90 se = get_event_entry(map);
91 if (is_map_bound(map) && GET_EV_STATE(se, ENABLED))
92 plat_ic_enable_interrupt(map->intr);
93 }
94
95 for_each_shared_map(i, map) {
96 se = get_event_entry(map);
97
98 sdei_map_lock(map);
99 if (is_map_bound(map) && GET_EV_STATE(se, ENABLED) &&
100 (se->reg_flags == SDEI_REGF_RM_PE) &&
101 (se->affinity == my_mpidr)) {
102 plat_ic_enable_interrupt(map->intr);
103 }
104 sdei_map_unlock(map);
105 }
106 }
107
108 state->pending_enables = false;
109 state->pe_masked = false;
110 }
111
112 /* Push a dispatch context to the dispatch stack */
push_dispatch(void)113 static sdei_dispatch_context_t *push_dispatch(void)
114 {
115 sdei_cpu_state_t *state = sdei_get_this_pe_state();
116 sdei_dispatch_context_t *disp_ctx;
117
118 /* Cannot have more than max events */
119 assert(state->stack_top < MAX_EVENT_NESTING);
120
121 disp_ctx = &state->dispatch_stack[state->stack_top];
122 state->stack_top++;
123
124 return disp_ctx;
125 }
126
127 /* Pop a dispatch context to the dispatch stack */
pop_dispatch(void)128 static sdei_dispatch_context_t *pop_dispatch(void)
129 {
130 sdei_cpu_state_t *state = sdei_get_this_pe_state();
131
132 if (state->stack_top == 0U)
133 return NULL;
134
135 assert(state->stack_top <= MAX_EVENT_NESTING);
136
137 state->stack_top--;
138
139 return &state->dispatch_stack[state->stack_top];
140 }
141
142 /* Retrieve the context at the top of dispatch stack */
get_outstanding_dispatch(void)143 static sdei_dispatch_context_t *get_outstanding_dispatch(void)
144 {
145 sdei_cpu_state_t *state = sdei_get_this_pe_state();
146
147 if (state->stack_top == 0U)
148 return NULL;
149
150 assert(state->stack_top <= MAX_EVENT_NESTING);
151
152 return &state->dispatch_stack[state->stack_top - 1U];
153 }
154
save_event_ctx(sdei_ev_map_t * map,void * tgt_ctx)155 static sdei_dispatch_context_t *save_event_ctx(sdei_ev_map_t *map,
156 void *tgt_ctx)
157 {
158 sdei_dispatch_context_t *disp_ctx;
159 const gp_regs_t *tgt_gpregs;
160 const el3_state_t *tgt_el3;
161
162 assert(tgt_ctx != NULL);
163 tgt_gpregs = get_gpregs_ctx(tgt_ctx);
164 tgt_el3 = get_el3state_ctx(tgt_ctx);
165
166 disp_ctx = push_dispatch();
167 assert(disp_ctx != NULL);
168 disp_ctx->map = map;
169
170 /* Save general purpose and exception registers */
171 memcpy(disp_ctx->x, tgt_gpregs, sizeof(disp_ctx->x));
172 disp_ctx->spsr_el3 = read_ctx_reg(tgt_el3, CTX_SPSR_EL3);
173 disp_ctx->elr_el3 = read_ctx_reg(tgt_el3, CTX_ELR_EL3);
174
175 return disp_ctx;
176 }
177
restore_event_ctx(const sdei_dispatch_context_t * disp_ctx,void * tgt_ctx)178 static void restore_event_ctx(const sdei_dispatch_context_t *disp_ctx, void *tgt_ctx)
179 {
180 gp_regs_t *tgt_gpregs;
181 el3_state_t *tgt_el3;
182
183 assert(tgt_ctx != NULL);
184 tgt_gpregs = get_gpregs_ctx(tgt_ctx);
185 tgt_el3 = get_el3state_ctx(tgt_ctx);
186
187 CASSERT(sizeof(disp_ctx->x) == (SDEI_SAVED_GPREGS * sizeof(uint64_t)),
188 foo);
189
190 /* Restore general purpose and exception registers */
191 memcpy(tgt_gpregs, disp_ctx->x, sizeof(disp_ctx->x));
192 write_ctx_reg(tgt_el3, CTX_SPSR_EL3, disp_ctx->spsr_el3);
193 write_ctx_reg(tgt_el3, CTX_ELR_EL3, disp_ctx->elr_el3);
194
195 #if DYNAMIC_WORKAROUND_CVE_2018_3639
196 cve_2018_3639_t *tgt_cve_2018_3639;
197 tgt_cve_2018_3639 = get_cve_2018_3639_ctx(tgt_ctx);
198
199 /* Restore CVE-2018-3639 mitigation state */
200 write_ctx_reg(tgt_cve_2018_3639, CTX_CVE_2018_3639_DISABLE,
201 disp_ctx->disable_cve_2018_3639);
202 #endif
203 }
204
save_secure_context(void)205 static void save_secure_context(void)
206 {
207 cm_el1_sysregs_context_save(SECURE);
208 }
209
210 /* Restore Secure context and arrange to resume it at the next ERET */
restore_and_resume_secure_context(void)211 static void restore_and_resume_secure_context(void)
212 {
213 cm_el1_sysregs_context_restore(SECURE);
214 cm_set_next_eret_context(SECURE);
215 }
216
217 /*
218 * Restore Non-secure context and arrange to resume it at the next ERET. Return
219 * pointer to the Non-secure context.
220 */
restore_and_resume_ns_context(void)221 static cpu_context_t *restore_and_resume_ns_context(void)
222 {
223 cpu_context_t *ns_ctx;
224
225 cm_el1_sysregs_context_restore(NON_SECURE);
226 cm_set_next_eret_context(NON_SECURE);
227
228 ns_ctx = cm_get_context(NON_SECURE);
229 assert(ns_ctx != NULL);
230
231 return ns_ctx;
232 }
233
234 /*
235 * Populate the Non-secure context so that the next ERET will dispatch to the
236 * SDEI client.
237 */
setup_ns_dispatch(sdei_ev_map_t * map,sdei_entry_t * se,cpu_context_t * ctx,jmp_buf * dispatch_jmp)238 static void setup_ns_dispatch(sdei_ev_map_t *map, sdei_entry_t *se,
239 cpu_context_t *ctx, jmp_buf *dispatch_jmp)
240 {
241 sdei_dispatch_context_t *disp_ctx;
242
243 /* Push the event and context */
244 disp_ctx = save_event_ctx(map, ctx);
245
246 /*
247 * Setup handler arguments:
248 *
249 * - x0: Event number
250 * - x1: Handler argument supplied at the time of event registration
251 * - x2: Interrupted PC
252 * - x3: Interrupted SPSR
253 */
254 SMC_SET_GP(ctx, CTX_GPREG_X0, (uint64_t) map->ev_num);
255 SMC_SET_GP(ctx, CTX_GPREG_X1, se->arg);
256 SMC_SET_GP(ctx, CTX_GPREG_X2, disp_ctx->elr_el3);
257 SMC_SET_GP(ctx, CTX_GPREG_X3, disp_ctx->spsr_el3);
258
259 /*
260 * Prepare for ERET:
261 *
262 * - Set PC to the registered handler address
263 * - Set SPSR to jump to client EL with exceptions masked
264 */
265 cm_set_elr_spsr_el3(NON_SECURE, (uintptr_t) se->ep,
266 SPSR_64(sdei_client_el(), MODE_SP_ELX,
267 DISABLE_ALL_EXCEPTIONS));
268
269 #if DYNAMIC_WORKAROUND_CVE_2018_3639
270 cve_2018_3639_t *tgt_cve_2018_3639;
271 tgt_cve_2018_3639 = get_cve_2018_3639_ctx(ctx);
272
273 /* Save CVE-2018-3639 mitigation state */
274 disp_ctx->disable_cve_2018_3639 = read_ctx_reg(tgt_cve_2018_3639,
275 CTX_CVE_2018_3639_DISABLE);
276
277 /* Force SDEI handler to execute with mitigation enabled by default */
278 write_ctx_reg(tgt_cve_2018_3639, CTX_CVE_2018_3639_DISABLE, 0);
279 #endif
280
281 disp_ctx->dispatch_jmp = dispatch_jmp;
282 }
283
284 /* Handle a triggered SDEI interrupt while events were masked on this PE */
handle_masked_trigger(sdei_ev_map_t * map,sdei_entry_t * se,sdei_cpu_state_t * state,unsigned int intr_raw)285 static void handle_masked_trigger(sdei_ev_map_t *map, sdei_entry_t *se,
286 sdei_cpu_state_t *state, unsigned int intr_raw)
287 {
288 uint64_t my_mpidr __unused = (read_mpidr_el1() & MPIDR_AFFINITY_MASK);
289 bool disable = false;
290
291 /* Nothing to do for event 0 */
292 if (map->ev_num == SDEI_EVENT_0)
293 return;
294
295 /*
296 * For a private event, or for a shared event specifically routed to
297 * this CPU, we disable interrupt, leave the interrupt pending, and do
298 * EOI.
299 */
300 if (is_event_private(map) || (se->reg_flags == SDEI_REGF_RM_PE))
301 disable = true;
302
303 if (se->reg_flags == SDEI_REGF_RM_PE)
304 assert(se->affinity == my_mpidr);
305
306 if (disable) {
307 plat_ic_disable_interrupt(map->intr);
308 plat_ic_set_interrupt_pending(map->intr);
309 plat_ic_end_of_interrupt(intr_raw);
310 state->pending_enables = true;
311
312 return;
313 }
314
315 /*
316 * We just received a shared event with routing set to ANY PE. The
317 * interrupt can't be delegated on this PE as SDEI events are masked.
318 * However, because its routing mode is ANY, it is possible that the
319 * event can be delegated on any other PE that hasn't masked events.
320 * Therefore, we set the interrupt back pending so as to give other
321 * suitable PEs a chance of handling it.
322 */
323 assert(plat_ic_is_spi(map->intr) != 0);
324 plat_ic_set_interrupt_pending(map->intr);
325
326 /*
327 * Leaving the same interrupt pending also means that the same interrupt
328 * can target this PE again as soon as this PE leaves EL3. Whether and
329 * how often that happens depends on the implementation of GIC.
330 *
331 * We therefore call a platform handler to resolve this situation.
332 */
333 plat_sdei_handle_masked_trigger(my_mpidr, map->intr);
334
335 /* This PE is masked. We EOI the interrupt, as it can't be delegated */
336 plat_ic_end_of_interrupt(intr_raw);
337 }
338
339 /* SDEI main interrupt handler */
sdei_intr_handler(uint32_t intr_raw,uint32_t flags,void * handle,void * cookie)340 int sdei_intr_handler(uint32_t intr_raw, uint32_t flags, void *handle,
341 void *cookie)
342 {
343 sdei_entry_t *se;
344 cpu_context_t *ctx;
345 sdei_ev_map_t *map;
346 const sdei_dispatch_context_t *disp_ctx;
347 unsigned int sec_state;
348 sdei_cpu_state_t *state;
349 uint32_t intr;
350 jmp_buf dispatch_jmp;
351 const uint64_t mpidr = read_mpidr_el1();
352
353 /*
354 * To handle an event, the following conditions must be true:
355 *
356 * 1. Event must be signalled
357 * 2. Event must be enabled
358 * 3. This PE must be a target PE for the event
359 * 4. PE must be unmasked for SDEI
360 * 5. If this is a normal event, no event must be running
361 * 6. If this is a critical event, no critical event must be running
362 *
363 * (1) and (2) are true when this function is running
364 * (3) is enforced in GIC by selecting the appropriate routing option
365 * (4) is satisfied by client calling PE_UNMASK
366 * (5) and (6) is enforced using interrupt priority, the RPR, in GIC:
367 * - Normal SDEI events belong to Normal SDE priority class
368 * - Critical SDEI events belong to Critical CSDE priority class
369 *
370 * The interrupt has already been acknowledged, and therefore is active,
371 * so no other PE can handle this event while we are at it.
372 *
373 * Find if this is an SDEI interrupt. There must be an event mapped to
374 * this interrupt
375 */
376 intr = plat_ic_get_interrupt_id(intr_raw);
377 map = find_event_map_by_intr(intr, (plat_ic_is_spi(intr) != 0));
378 if (map == NULL) {
379 ERROR("No SDEI map for interrupt %u\n", intr);
380 panic();
381 }
382
383 /*
384 * Received interrupt number must either correspond to event 0, or must
385 * be bound interrupt.
386 */
387 assert((map->ev_num == SDEI_EVENT_0) || is_map_bound(map));
388
389 se = get_event_entry(map);
390 state = sdei_get_this_pe_state();
391
392 if (state->pe_masked) {
393 /*
394 * Interrupts received while this PE was masked can't be
395 * dispatched.
396 */
397 SDEI_LOG("interrupt %u on %llx while PE masked\n", map->intr,
398 mpidr);
399 if (is_event_shared(map))
400 sdei_map_lock(map);
401
402 handle_masked_trigger(map, se, state, intr_raw);
403
404 if (is_event_shared(map))
405 sdei_map_unlock(map);
406
407 return 0;
408 }
409
410 /* Insert load barrier for signalled SDEI event */
411 if (map->ev_num == SDEI_EVENT_0)
412 dmbld();
413
414 if (is_event_shared(map))
415 sdei_map_lock(map);
416
417 /* Assert shared event routed to this PE had been configured so */
418 if (is_event_shared(map) && (se->reg_flags == SDEI_REGF_RM_PE)) {
419 assert(se->affinity == (mpidr & MPIDR_AFFINITY_MASK));
420 }
421
422 if (!can_sdei_state_trans(se, DO_DISPATCH)) {
423 SDEI_LOG("SDEI event 0x%x can't be dispatched; state=0x%x\n",
424 map->ev_num, se->state);
425
426 /*
427 * If the event is registered, leave the interrupt pending so
428 * that it's delivered when the event is enabled.
429 */
430 if (GET_EV_STATE(se, REGISTERED))
431 plat_ic_set_interrupt_pending(map->intr);
432
433 /*
434 * The interrupt was disabled or unregistered after the handler
435 * started to execute, which means now the interrupt is already
436 * disabled and we just need to EOI the interrupt.
437 */
438 plat_ic_end_of_interrupt(intr_raw);
439
440 if (is_event_shared(map))
441 sdei_map_unlock(map);
442
443 return 0;
444 }
445
446 disp_ctx = get_outstanding_dispatch();
447 if (is_event_critical(map)) {
448 /*
449 * If this event is Critical, and if there's an outstanding
450 * dispatch, assert the latter is a Normal dispatch. Critical
451 * events can preempt an outstanding Normal event dispatch.
452 */
453 if (disp_ctx != NULL)
454 assert(is_event_normal(disp_ctx->map));
455 } else {
456 /*
457 * If this event is Normal, assert that there are no outstanding
458 * dispatches. Normal events can't preempt any outstanding event
459 * dispatches.
460 */
461 assert(disp_ctx == NULL);
462 }
463
464 sec_state = get_interrupt_src_ss(flags);
465
466 if (is_event_shared(map))
467 sdei_map_unlock(map);
468
469 SDEI_LOG("ACK %llx, ev:%d ss:%d spsr:%lx ELR:%lx\n", mpidr, map->ev_num,
470 sec_state, read_spsr_el3(), read_elr_el3());
471
472 ctx = handle;
473
474 /*
475 * Check if we interrupted secure state. Perform a context switch so
476 * that we can delegate to NS.
477 */
478 if (sec_state == SECURE) {
479 save_secure_context();
480 ctx = restore_and_resume_ns_context();
481 }
482
483 /* Synchronously dispatch event */
484 setup_ns_dispatch(map, se, ctx, &dispatch_jmp);
485 begin_sdei_synchronous_dispatch(&dispatch_jmp);
486
487 /*
488 * We reach here when client completes the event.
489 *
490 * If the cause of dispatch originally interrupted the Secure world,
491 * resume Secure.
492 *
493 * No need to save the Non-secure context ahead of a world switch: the
494 * Non-secure context was fully saved before dispatch, and has been
495 * returned to its pre-dispatch state.
496 */
497 if (sec_state == SECURE)
498 restore_and_resume_secure_context();
499
500 /*
501 * The event was dispatched after receiving SDEI interrupt. With
502 * the event handling completed, EOI the corresponding
503 * interrupt.
504 */
505 if ((map->ev_num != SDEI_EVENT_0) && !is_map_bound(map)) {
506 ERROR("Invalid SDEI mapping: ev=%u\n", map->ev_num);
507 panic();
508 }
509 plat_ic_end_of_interrupt(intr_raw);
510
511 return 0;
512 }
513
514 /*
515 * Explicitly dispatch the given SDEI event.
516 *
517 * When calling this API, the caller must be prepared for the SDEI dispatcher to
518 * restore and make Non-secure context as active. This call returns only after
519 * the client has completed the dispatch. Then, the Non-secure context will be
520 * active, and the following ERET will return to Non-secure.
521 *
522 * Should the caller require re-entry to Secure, it must restore the Secure
523 * context and program registers for ERET.
524 */
sdei_dispatch_event(int ev_num)525 int sdei_dispatch_event(int ev_num)
526 {
527 sdei_entry_t *se;
528 sdei_ev_map_t *map;
529 cpu_context_t *ns_ctx;
530 sdei_dispatch_context_t *disp_ctx;
531 sdei_cpu_state_t *state;
532 jmp_buf dispatch_jmp;
533
534 /* Can't dispatch if events are masked on this PE */
535 state = sdei_get_this_pe_state();
536 if (state->pe_masked)
537 return -1;
538
539 /* Event 0 can't be dispatched */
540 if (ev_num == SDEI_EVENT_0)
541 return -1;
542
543 /* Locate mapping corresponding to this event */
544 map = find_event_map(ev_num);
545 if (map == NULL)
546 return -1;
547
548 /* Only explicit events can be dispatched */
549 if (!is_map_explicit(map))
550 return -1;
551
552 /* Examine state of dispatch stack */
553 disp_ctx = get_outstanding_dispatch();
554 if (disp_ctx != NULL) {
555 /*
556 * There's an outstanding dispatch. If the outstanding dispatch
557 * is critical, no more dispatches are possible.
558 */
559 if (is_event_critical(disp_ctx->map))
560 return -1;
561
562 /*
563 * If the outstanding dispatch is Normal, only critical events
564 * can be dispatched.
565 */
566 if (is_event_normal(map))
567 return -1;
568 }
569
570 se = get_event_entry(map);
571 if (!can_sdei_state_trans(se, DO_DISPATCH))
572 return -1;
573
574 /* Activate the priority corresponding to the event being dispatched */
575 ehf_activate_priority(sdei_event_priority(map));
576
577 /*
578 * Prepare for NS dispatch by restoring the Non-secure context and
579 * marking that as active.
580 */
581 ns_ctx = restore_and_resume_ns_context();
582
583 /* Dispatch event synchronously */
584 setup_ns_dispatch(map, se, ns_ctx, &dispatch_jmp);
585 begin_sdei_synchronous_dispatch(&dispatch_jmp);
586
587 /*
588 * We reach here when client completes the event.
589 *
590 * Deactivate the priority level that was activated at the time of
591 * explicit dispatch.
592 */
593 ehf_deactivate_priority(sdei_event_priority(map));
594
595 return 0;
596 }
597
end_sdei_synchronous_dispatch(jmp_buf * buffer)598 static void end_sdei_synchronous_dispatch(jmp_buf *buffer)
599 {
600 longjmp(*buffer, 1);
601 }
602
sdei_event_complete(bool resume,uint64_t pc)603 int sdei_event_complete(bool resume, uint64_t pc)
604 {
605 sdei_dispatch_context_t *disp_ctx;
606 sdei_entry_t *se;
607 sdei_ev_map_t *map;
608 cpu_context_t *ctx;
609 sdei_action_t act;
610 unsigned int client_el = sdei_client_el();
611
612 /* Return error if called without an active event */
613 disp_ctx = get_outstanding_dispatch();
614 if (disp_ctx == NULL)
615 return SDEI_EDENY;
616
617 /* Validate resumption point */
618 if (resume && (plat_sdei_validate_entry_point(pc, client_el) != 0))
619 return SDEI_EDENY;
620
621 map = disp_ctx->map;
622 assert(map != NULL);
623 se = get_event_entry(map);
624
625 if (is_event_shared(map))
626 sdei_map_lock(map);
627
628 act = resume ? DO_COMPLETE_RESUME : DO_COMPLETE;
629 if (!can_sdei_state_trans(se, act)) {
630 if (is_event_shared(map))
631 sdei_map_unlock(map);
632 return SDEI_EDENY;
633 }
634
635 if (is_event_shared(map))
636 sdei_map_unlock(map);
637
638 /* Having done sanity checks, pop dispatch */
639 (void) pop_dispatch();
640
641 SDEI_LOG("EOI:%lx, %d spsr:%lx elr:%lx\n", read_mpidr_el1(),
642 map->ev_num, read_spsr_el3(), read_elr_el3());
643
644 /*
645 * Restore Non-secure to how it was originally interrupted. Once done,
646 * it's up-to-date with the saved copy.
647 */
648 ctx = cm_get_context(NON_SECURE);
649 restore_event_ctx(disp_ctx, ctx);
650
651 if (resume) {
652 /*
653 * Complete-and-resume call. Prepare the Non-secure context
654 * (currently active) for complete and resume.
655 */
656 cm_set_elr_spsr_el3(NON_SECURE, pc, SPSR_64(client_el,
657 MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS));
658
659 /*
660 * Make it look as if a synchronous exception were taken at the
661 * supplied Non-secure resumption point. Populate SPSR and
662 * ELR_ELx so that an ERET from there works as expected.
663 *
664 * The assumption is that the client, if necessary, would have
665 * saved any live content in these registers before making this
666 * call.
667 */
668 if (client_el == MODE_EL2) {
669 write_elr_el2(disp_ctx->elr_el3);
670 write_spsr_el2(disp_ctx->spsr_el3);
671 } else {
672 /* EL1 */
673 write_elr_el1(disp_ctx->elr_el3);
674 write_spsr_el1(disp_ctx->spsr_el3);
675 }
676 }
677
678 /* End the outstanding dispatch */
679 end_sdei_synchronous_dispatch(disp_ctx->dispatch_jmp);
680
681 return 0;
682 }
683
sdei_event_context(void * handle,unsigned int param)684 int64_t sdei_event_context(void *handle, unsigned int param)
685 {
686 sdei_dispatch_context_t *disp_ctx;
687
688 if (param >= SDEI_SAVED_GPREGS)
689 return SDEI_EINVAL;
690
691 /* Get outstanding dispatch on this CPU */
692 disp_ctx = get_outstanding_dispatch();
693 if (disp_ctx == NULL)
694 return SDEI_EDENY;
695
696 assert(disp_ctx->map != NULL);
697
698 if (!can_sdei_state_trans(get_event_entry(disp_ctx->map), DO_CONTEXT))
699 return SDEI_EDENY;
700
701 /*
702 * No locking is required for the Running status as this is the only CPU
703 * which can complete the event
704 */
705
706 return (int64_t) disp_ctx->x[param];
707 }
708