1 /*
2 **
3 ** Copyright 2012, The Android Open Source Project
4 **
5 ** Licensed under the Apache License, Version 2.0 (the "License");
6 ** you may not use this file except in compliance with the License.
7 ** You may obtain a copy of the License at
8 **
9 ** http://www.apache.org/licenses/LICENSE-2.0
10 **
11 ** Unless required by applicable law or agreed to in writing, software
12 ** distributed under the License is distributed on an "AS IS" BASIS,
13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 ** See the License for the specific language governing permissions and
15 ** limitations under the License.
16 */
17
18
19 #define LOG_TAG "AudioFlinger"
20 //#define LOG_NDEBUG 0
21 #define ATRACE_TAG ATRACE_TAG_AUDIO
22
23 #include "Configuration.h"
24 #include <math.h>
25 #include <fcntl.h>
26 #include <memory>
27 #include <sstream>
28 #include <string>
29 #include <linux/futex.h>
30 #include <sys/stat.h>
31 #include <sys/syscall.h>
32 #include <cutils/bitops.h>
33 #include <cutils/properties.h>
34 #include <media/AudioContainers.h>
35 #include <media/AudioDeviceTypeAddr.h>
36 #include <media/AudioParameter.h>
37 #include <media/AudioResamplerPublic.h>
38 #include <media/RecordBufferConverter.h>
39 #include <media/TypeConverter.h>
40 #include <utils/Log.h>
41 #include <utils/Trace.h>
42
43 #include <private/media/AudioTrackShared.h>
44 #include <private/android_filesystem_config.h>
45 #include <audio_utils/Balance.h>
46 #include <audio_utils/Metadata.h>
47 #include <audio_utils/channels.h>
48 #include <audio_utils/mono_blend.h>
49 #include <audio_utils/primitives.h>
50 #include <audio_utils/format.h>
51 #include <audio_utils/minifloat.h>
52 #include <audio_utils/safe_math.h>
53 #include <system/audio_effects/effect_ns.h>
54 #include <system/audio_effects/effect_aec.h>
55 #include <system/audio.h>
56
57 // NBAIO implementations
58 #include <media/nbaio/AudioStreamInSource.h>
59 #include <media/nbaio/AudioStreamOutSink.h>
60 #include <media/nbaio/MonoPipe.h>
61 #include <media/nbaio/MonoPipeReader.h>
62 #include <media/nbaio/Pipe.h>
63 #include <media/nbaio/PipeReader.h>
64 #include <media/nbaio/SourceAudioBufferProvider.h>
65 #include <mediautils/BatteryNotifier.h>
66
67 #include <audiomanager/AudioManager.h>
68 #include <powermanager/PowerManager.h>
69
70 #include <media/audiohal/EffectsFactoryHalInterface.h>
71 #include <media/audiohal/StreamHalInterface.h>
72
73 #include "AudioFlinger.h"
74 #include "FastMixer.h"
75 #include "FastCapture.h"
76 #include <mediautils/SchedulingPolicyService.h>
77 #include <mediautils/ServiceUtilities.h>
78
79 #ifdef ADD_BATTERY_DATA
80 #include <media/IMediaPlayerService.h>
81 #include <media/IMediaDeathNotifier.h>
82 #endif
83
84 #ifdef DEBUG_CPU_USAGE
85 #include <audio_utils/Statistics.h>
86 #include <cpustats/ThreadCpuUsage.h>
87 #endif
88
89 #include "AutoPark.h"
90
91 #include <pthread.h>
92 #include "TypedLogger.h"
93
94 // ----------------------------------------------------------------------------
95
96 // Note: the following macro is used for extremely verbose logging message. In
97 // order to run with ALOG_ASSERT turned on, we need to have LOG_NDEBUG set to
98 // 0; but one side effect of this is to turn all LOGV's as well. Some messages
99 // are so verbose that we want to suppress them even when we have ALOG_ASSERT
100 // turned on. Do not uncomment the #def below unless you really know what you
101 // are doing and want to see all of the extremely verbose messages.
102 //#define VERY_VERY_VERBOSE_LOGGING
103 #ifdef VERY_VERY_VERBOSE_LOGGING
104 #define ALOGVV ALOGV
105 #else
106 #define ALOGVV(a...) do { } while(0)
107 #endif
108
109 // TODO: Move these macro/inlines to a header file.
110 #define max(a, b) ((a) > (b) ? (a) : (b))
111
112 template <typename T>
min(const T & a,const T & b)113 static inline T min(const T& a, const T& b)
114 {
115 return a < b ? a : b;
116 }
117
118 namespace android {
119
120 using media::IEffectClient;
121 using content::AttributionSourceState;
122
123 // retry counts for buffer fill timeout
124 // 50 * ~20msecs = 1 second
125 static const int8_t kMaxTrackRetries = 50;
126 static const int8_t kMaxTrackStartupRetries = 50;
127
128 // allow less retry attempts on direct output thread.
129 // direct outputs can be a scarce resource in audio hardware and should
130 // be released as quickly as possible.
131 // Notes:
132 // 1) The retry duration kMaxTrackRetriesDirectMs may be increased
133 // in case the data write is bursty for the AudioTrack. The application
134 // should endeavor to write at least once every kMaxTrackRetriesDirectMs
135 // to prevent an underrun situation. If the data is bursty, then
136 // the application can also throttle the data sent to be even.
137 // 2) For compressed audio data, any data present in the AudioTrack buffer
138 // will be sent and reset the retry count. This delivers data as
139 // it arrives, with approximately kDirectMinSleepTimeUs = 10ms checking interval.
140 // 3) For linear PCM or proportional PCM, we wait one period for a period's worth
141 // of data to be available, then any remaining data is delivered.
142 // This is required to ensure the last bit of data is delivered before underrun.
143 //
144 // Sleep time per cycle is kDirectMinSleepTimeUs for compressed tracks
145 // or the size of the HAL period for proportional / linear PCM tracks.
146 static const int32_t kMaxTrackRetriesDirectMs = 200;
147
148 // don't warn about blocked writes or record buffer overflows more often than this
149 static const nsecs_t kWarningThrottleNs = seconds(5);
150
151 // RecordThread loop sleep time upon application overrun or audio HAL read error
152 static const int kRecordThreadSleepUs = 5000;
153
154 // maximum time to wait in sendConfigEvent_l() for a status to be received
155 static const nsecs_t kConfigEventTimeoutNs = seconds(2);
156
157 // minimum sleep time for the mixer thread loop when tracks are active but in underrun
158 static const uint32_t kMinThreadSleepTimeUs = 5000;
159 // maximum divider applied to the active sleep time in the mixer thread loop
160 static const uint32_t kMaxThreadSleepTimeShift = 2;
161
162 // minimum normal sink buffer size, expressed in milliseconds rather than frames
163 // FIXME This should be based on experimentally observed scheduling jitter
164 static const uint32_t kMinNormalSinkBufferSizeMs = 20;
165 // maximum normal sink buffer size
166 static const uint32_t kMaxNormalSinkBufferSizeMs = 24;
167
168 // minimum capture buffer size in milliseconds to _not_ need a fast capture thread
169 // FIXME This should be based on experimentally observed scheduling jitter
170 static const uint32_t kMinNormalCaptureBufferSizeMs = 12;
171
172 // Offloaded output thread standby delay: allows track transition without going to standby
173 static const nsecs_t kOffloadStandbyDelayNs = seconds(1);
174
175 // Direct output thread minimum sleep time in idle or active(underrun) state
176 static const nsecs_t kDirectMinSleepTimeUs = 10000;
177
178 // The universal constant for ubiquitous 20ms value. The value of 20ms seems to provide a good
179 // balance between power consumption and latency, and allows threads to be scheduled reliably
180 // by the CFS scheduler.
181 // FIXME Express other hardcoded references to 20ms with references to this constant and move
182 // it appropriately.
183 #define FMS_20 20
184
185 // Whether to use fast mixer
186 static const enum {
187 FastMixer_Never, // never initialize or use: for debugging only
188 FastMixer_Always, // always initialize and use, even if not needed: for debugging only
189 // normal mixer multiplier is 1
190 FastMixer_Static, // initialize if needed, then use all the time if initialized,
191 // multiplier is calculated based on min & max normal mixer buffer size
192 FastMixer_Dynamic, // initialize if needed, then use dynamically depending on track load,
193 // multiplier is calculated based on min & max normal mixer buffer size
194 // FIXME for FastMixer_Dynamic:
195 // Supporting this option will require fixing HALs that can't handle large writes.
196 // For example, one HAL implementation returns an error from a large write,
197 // and another HAL implementation corrupts memory, possibly in the sample rate converter.
198 // We could either fix the HAL implementations, or provide a wrapper that breaks
199 // up large writes into smaller ones, and the wrapper would need to deal with scheduler.
200 } kUseFastMixer = FastMixer_Static;
201
202 // Whether to use fast capture
203 static const enum {
204 FastCapture_Never, // never initialize or use: for debugging only
205 FastCapture_Always, // always initialize and use, even if not needed: for debugging only
206 FastCapture_Static, // initialize if needed, then use all the time if initialized
207 } kUseFastCapture = FastCapture_Static;
208
209 // Priorities for requestPriority
210 static const int kPriorityAudioApp = 2;
211 static const int kPriorityFastMixer = 3;
212 static const int kPriorityFastCapture = 3;
213
214 // IAudioFlinger::createTrack() has an in/out parameter 'pFrameCount' for the total size of the
215 // track buffer in shared memory. Zero on input means to use a default value. For fast tracks,
216 // AudioFlinger derives the default from HAL buffer size and 'fast track multiplier'.
217
218 // This is the default value, if not specified by property.
219 static const int kFastTrackMultiplier = 2;
220
221 // The minimum and maximum allowed values
222 static const int kFastTrackMultiplierMin = 1;
223 static const int kFastTrackMultiplierMax = 2;
224
225 // The actual value to use, which can be specified per-device via property af.fast_track_multiplier.
226 static int sFastTrackMultiplier = kFastTrackMultiplier;
227
228 // See Thread::readOnlyHeap().
229 // Initially this heap is used to allocate client buffers for "fast" AudioRecord.
230 // Eventually it will be the single buffer that FastCapture writes into via HAL read(),
231 // and that all "fast" AudioRecord clients read from. In either case, the size can be small.
232 static const size_t kRecordThreadReadOnlyHeapSize = 0xD000;
233
234 // ----------------------------------------------------------------------------
235
236 // TODO: move all toString helpers to audio.h
237 // under #ifdef __cplusplus #endif
patchSinksToString(const struct audio_patch * patch)238 static std::string patchSinksToString(const struct audio_patch *patch)
239 {
240 std::stringstream ss;
241 for (size_t i = 0; i < patch->num_sinks; ++i) {
242 if (i > 0) {
243 ss << "|";
244 }
245 ss << "(" << toString(patch->sinks[i].ext.device.type)
246 << ", " << patch->sinks[i].ext.device.address << ")";
247 }
248 return ss.str();
249 }
250
patchSourcesToString(const struct audio_patch * patch)251 static std::string patchSourcesToString(const struct audio_patch *patch)
252 {
253 std::stringstream ss;
254 for (size_t i = 0; i < patch->num_sources; ++i) {
255 if (i > 0) {
256 ss << "|";
257 }
258 ss << "(" << toString(patch->sources[i].ext.device.type)
259 << ", " << patch->sources[i].ext.device.address << ")";
260 }
261 return ss.str();
262 }
263
264 static pthread_once_t sFastTrackMultiplierOnce = PTHREAD_ONCE_INIT;
265
sFastTrackMultiplierInit()266 static void sFastTrackMultiplierInit()
267 {
268 char value[PROPERTY_VALUE_MAX];
269 if (property_get("af.fast_track_multiplier", value, NULL) > 0) {
270 char *endptr;
271 unsigned long ul = strtoul(value, &endptr, 0);
272 if (*endptr == '\0' && kFastTrackMultiplierMin <= ul && ul <= kFastTrackMultiplierMax) {
273 sFastTrackMultiplier = (int) ul;
274 }
275 }
276 }
277
278 // ----------------------------------------------------------------------------
279
280 #ifdef ADD_BATTERY_DATA
281 // To collect the amplifier usage
addBatteryData(uint32_t params)282 static void addBatteryData(uint32_t params) {
283 sp<IMediaPlayerService> service = IMediaDeathNotifier::getMediaPlayerService();
284 if (service == NULL) {
285 // it already logged
286 return;
287 }
288
289 service->addBatteryData(params);
290 }
291 #endif
292
293 // Track the CLOCK_BOOTTIME versus CLOCK_MONOTONIC timebase offset
294 struct {
295 // call when you acquire a partial wakelock
acquireandroid::__anon9b3e2cb30308296 void acquire(const sp<IBinder> &wakeLockToken) {
297 pthread_mutex_lock(&mLock);
298 if (wakeLockToken.get() == nullptr) {
299 adjustTimebaseOffset(&mBoottimeOffset, ExtendedTimestamp::TIMEBASE_BOOTTIME);
300 } else {
301 if (mCount == 0) {
302 adjustTimebaseOffset(&mBoottimeOffset, ExtendedTimestamp::TIMEBASE_BOOTTIME);
303 }
304 ++mCount;
305 }
306 pthread_mutex_unlock(&mLock);
307 }
308
309 // call when you release a partial wakelock.
releaseandroid::__anon9b3e2cb30308310 void release(const sp<IBinder> &wakeLockToken) {
311 if (wakeLockToken.get() == nullptr) {
312 return;
313 }
314 pthread_mutex_lock(&mLock);
315 if (--mCount < 0) {
316 ALOGE("negative wakelock count");
317 mCount = 0;
318 }
319 pthread_mutex_unlock(&mLock);
320 }
321
322 // retrieves the boottime timebase offset from monotonic.
getBoottimeOffsetandroid::__anon9b3e2cb30308323 int64_t getBoottimeOffset() {
324 pthread_mutex_lock(&mLock);
325 int64_t boottimeOffset = mBoottimeOffset;
326 pthread_mutex_unlock(&mLock);
327 return boottimeOffset;
328 }
329
330 // Adjusts the timebase offset between TIMEBASE_MONOTONIC
331 // and the selected timebase.
332 // Currently only TIMEBASE_BOOTTIME is allowed.
333 //
334 // This only needs to be called upon acquiring the first partial wakelock
335 // after all other partial wakelocks are released.
336 //
337 // We do an empirical measurement of the offset rather than parsing
338 // /proc/timer_list since the latter is not a formal kernel ABI.
adjustTimebaseOffsetandroid::__anon9b3e2cb30308339 static void adjustTimebaseOffset(int64_t *offset, ExtendedTimestamp::Timebase timebase) {
340 int clockbase;
341 switch (timebase) {
342 case ExtendedTimestamp::TIMEBASE_BOOTTIME:
343 clockbase = SYSTEM_TIME_BOOTTIME;
344 break;
345 default:
346 LOG_ALWAYS_FATAL("invalid timebase %d", timebase);
347 break;
348 }
349 // try three times to get the clock offset, choose the one
350 // with the minimum gap in measurements.
351 const int tries = 3;
352 nsecs_t bestGap, measured;
353 for (int i = 0; i < tries; ++i) {
354 const nsecs_t tmono = systemTime(SYSTEM_TIME_MONOTONIC);
355 const nsecs_t tbase = systemTime(clockbase);
356 const nsecs_t tmono2 = systemTime(SYSTEM_TIME_MONOTONIC);
357 const nsecs_t gap = tmono2 - tmono;
358 if (i == 0 || gap < bestGap) {
359 bestGap = gap;
360 measured = tbase - ((tmono + tmono2) >> 1);
361 }
362 }
363
364 // to avoid micro-adjusting, we don't change the timebase
365 // unless it is significantly different.
366 //
367 // Assumption: It probably takes more than toleranceNs to
368 // suspend and resume the device.
369 static int64_t toleranceNs = 10000; // 10 us
370 if (llabs(*offset - measured) > toleranceNs) {
371 ALOGV("Adjusting timebase offset old: %lld new: %lld",
372 (long long)*offset, (long long)measured);
373 *offset = measured;
374 }
375 }
376
377 pthread_mutex_t mLock;
378 int32_t mCount;
379 int64_t mBoottimeOffset;
380 } gBoottime = { PTHREAD_MUTEX_INITIALIZER, 0, 0 }; // static, so use POD initialization
381
382 // ----------------------------------------------------------------------------
383 // CPU Stats
384 // ----------------------------------------------------------------------------
385
386 class CpuStats {
387 public:
388 CpuStats();
389 void sample(const String8 &title);
390 #ifdef DEBUG_CPU_USAGE
391 private:
392 ThreadCpuUsage mCpuUsage; // instantaneous thread CPU usage in wall clock ns
393 audio_utils::Statistics<double> mWcStats; // statistics on thread CPU usage in wall clock ns
394
395 audio_utils::Statistics<double> mHzStats; // statistics on thread CPU usage in cycles
396
397 int mCpuNum; // thread's current CPU number
398 int mCpukHz; // frequency of thread's current CPU in kHz
399 #endif
400 };
401
CpuStats()402 CpuStats::CpuStats()
403 #ifdef DEBUG_CPU_USAGE
404 : mCpuNum(-1), mCpukHz(-1)
405 #endif
406 {
407 }
408
sample(const String8 & title __unused)409 void CpuStats::sample(const String8 &title
410 #ifndef DEBUG_CPU_USAGE
411 __unused
412 #endif
413 ) {
414 #ifdef DEBUG_CPU_USAGE
415 // get current thread's delta CPU time in wall clock ns
416 double wcNs;
417 bool valid = mCpuUsage.sampleAndEnable(wcNs);
418
419 // record sample for wall clock statistics
420 if (valid) {
421 mWcStats.add(wcNs);
422 }
423
424 // get the current CPU number
425 int cpuNum = sched_getcpu();
426
427 // get the current CPU frequency in kHz
428 int cpukHz = mCpuUsage.getCpukHz(cpuNum);
429
430 // check if either CPU number or frequency changed
431 if (cpuNum != mCpuNum || cpukHz != mCpukHz) {
432 mCpuNum = cpuNum;
433 mCpukHz = cpukHz;
434 // ignore sample for purposes of cycles
435 valid = false;
436 }
437
438 // if no change in CPU number or frequency, then record sample for cycle statistics
439 if (valid && mCpukHz > 0) {
440 const double cycles = wcNs * cpukHz * 0.000001;
441 mHzStats.add(cycles);
442 }
443
444 const unsigned n = mWcStats.getN();
445 // mCpuUsage.elapsed() is expensive, so don't call it every loop
446 if ((n & 127) == 1) {
447 const long long elapsed = mCpuUsage.elapsed();
448 if (elapsed >= DEBUG_CPU_USAGE * 1000000000LL) {
449 const double perLoop = elapsed / (double) n;
450 const double perLoop100 = perLoop * 0.01;
451 const double perLoop1k = perLoop * 0.001;
452 const double mean = mWcStats.getMean();
453 const double stddev = mWcStats.getStdDev();
454 const double minimum = mWcStats.getMin();
455 const double maximum = mWcStats.getMax();
456 const double meanCycles = mHzStats.getMean();
457 const double stddevCycles = mHzStats.getStdDev();
458 const double minCycles = mHzStats.getMin();
459 const double maxCycles = mHzStats.getMax();
460 mCpuUsage.resetElapsed();
461 mWcStats.reset();
462 mHzStats.reset();
463 ALOGD("CPU usage for %s over past %.1f secs\n"
464 " (%u mixer loops at %.1f mean ms per loop):\n"
465 " us per mix loop: mean=%.0f stddev=%.0f min=%.0f max=%.0f\n"
466 " %% of wall: mean=%.1f stddev=%.1f min=%.1f max=%.1f\n"
467 " MHz: mean=%.1f, stddev=%.1f, min=%.1f max=%.1f",
468 title.string(),
469 elapsed * .000000001, n, perLoop * .000001,
470 mean * .001,
471 stddev * .001,
472 minimum * .001,
473 maximum * .001,
474 mean / perLoop100,
475 stddev / perLoop100,
476 minimum / perLoop100,
477 maximum / perLoop100,
478 meanCycles / perLoop1k,
479 stddevCycles / perLoop1k,
480 minCycles / perLoop1k,
481 maxCycles / perLoop1k);
482
483 }
484 }
485 #endif
486 };
487
488 // ----------------------------------------------------------------------------
489 // ThreadBase
490 // ----------------------------------------------------------------------------
491
492 // static
threadTypeToString(AudioFlinger::ThreadBase::type_t type)493 const char *AudioFlinger::ThreadBase::threadTypeToString(AudioFlinger::ThreadBase::type_t type)
494 {
495 switch (type) {
496 case MIXER:
497 return "MIXER";
498 case DIRECT:
499 return "DIRECT";
500 case DUPLICATING:
501 return "DUPLICATING";
502 case RECORD:
503 return "RECORD";
504 case OFFLOAD:
505 return "OFFLOAD";
506 case MMAP_PLAYBACK:
507 return "MMAP_PLAYBACK";
508 case MMAP_CAPTURE:
509 return "MMAP_CAPTURE";
510 default:
511 return "unknown";
512 }
513 }
514
ThreadBase(const sp<AudioFlinger> & audioFlinger,audio_io_handle_t id,type_t type,bool systemReady,bool isOut)515 AudioFlinger::ThreadBase::ThreadBase(const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
516 type_t type, bool systemReady, bool isOut)
517 : Thread(false /*canCallJava*/),
518 mType(type),
519 mAudioFlinger(audioFlinger),
520 mThreadMetrics(std::string(AMEDIAMETRICS_KEY_PREFIX_AUDIO_THREAD) + std::to_string(id),
521 isOut),
522 mIsOut(isOut),
523 // mSampleRate, mFrameCount, mChannelMask, mChannelCount, mFrameSize, mFormat, mBufferSize
524 // are set by PlaybackThread::readOutputParameters_l() or
525 // RecordThread::readInputParameters_l()
526 //FIXME: mStandby should be true here. Is this some kind of hack?
527 mStandby(false),
528 mAudioSource(AUDIO_SOURCE_DEFAULT), mId(id),
529 // mName will be set by concrete (non-virtual) subclass
530 mDeathRecipient(new PMDeathRecipient(this)),
531 mSystemReady(systemReady),
532 mSignalPending(false)
533 {
534 mThreadMetrics.logConstructor(getpid(), threadTypeToString(type), id);
535 memset(&mPatch, 0, sizeof(struct audio_patch));
536 }
537
~ThreadBase()538 AudioFlinger::ThreadBase::~ThreadBase()
539 {
540 // mConfigEvents should be empty, but just in case it isn't, free the memory it owns
541 mConfigEvents.clear();
542
543 // do not lock the mutex in destructor
544 releaseWakeLock_l();
545 if (mPowerManager != 0) {
546 sp<IBinder> binder = IInterface::asBinder(mPowerManager);
547 binder->unlinkToDeath(mDeathRecipient);
548 }
549
550 sendStatistics(true /* force */);
551 }
552
readyToRun()553 status_t AudioFlinger::ThreadBase::readyToRun()
554 {
555 status_t status = initCheck();
556 if (status == NO_ERROR) {
557 ALOGI("AudioFlinger's thread %p tid=%d ready to run", this, getTid());
558 } else {
559 ALOGE("No working audio driver found.");
560 }
561 return status;
562 }
563
exit()564 void AudioFlinger::ThreadBase::exit()
565 {
566 ALOGV("ThreadBase::exit");
567 // do any cleanup required for exit to succeed
568 preExit();
569 {
570 // This lock prevents the following race in thread (uniprocessor for illustration):
571 // if (!exitPending()) {
572 // // context switch from here to exit()
573 // // exit() calls requestExit(), what exitPending() observes
574 // // exit() calls signal(), which is dropped since no waiters
575 // // context switch back from exit() to here
576 // mWaitWorkCV.wait(...);
577 // // now thread is hung
578 // }
579 AutoMutex lock(mLock);
580 requestExit();
581 mWaitWorkCV.broadcast();
582 }
583 // When Thread::requestExitAndWait is made virtual and this method is renamed to
584 // "virtual status_t requestExitAndWait()", replace by "return Thread::requestExitAndWait();"
585 requestExitAndWait();
586 }
587
setParameters(const String8 & keyValuePairs)588 status_t AudioFlinger::ThreadBase::setParameters(const String8& keyValuePairs)
589 {
590 ALOGV("ThreadBase::setParameters() %s", keyValuePairs.string());
591 Mutex::Autolock _l(mLock);
592
593 return sendSetParameterConfigEvent_l(keyValuePairs);
594 }
595
596 // sendConfigEvent_l() must be called with ThreadBase::mLock held
597 // Can temporarily release the lock if waiting for a reply from processConfigEvents_l().
sendConfigEvent_l(sp<ConfigEvent> & event)598 status_t AudioFlinger::ThreadBase::sendConfigEvent_l(sp<ConfigEvent>& event)
599 {
600 status_t status = NO_ERROR;
601
602 if (event->mRequiresSystemReady && !mSystemReady) {
603 event->mWaitStatus = false;
604 mPendingConfigEvents.add(event);
605 return status;
606 }
607 mConfigEvents.add(event);
608 ALOGV("sendConfigEvent_l() num events %zu event %d", mConfigEvents.size(), event->mType);
609 mWaitWorkCV.signal();
610 mLock.unlock();
611 {
612 Mutex::Autolock _l(event->mLock);
613 while (event->mWaitStatus) {
614 if (event->mCond.waitRelative(event->mLock, kConfigEventTimeoutNs) != NO_ERROR) {
615 event->mStatus = TIMED_OUT;
616 event->mWaitStatus = false;
617 }
618 }
619 status = event->mStatus;
620 }
621 mLock.lock();
622 return status;
623 }
624
sendIoConfigEvent(audio_io_config_event event,pid_t pid,audio_port_handle_t portId)625 void AudioFlinger::ThreadBase::sendIoConfigEvent(audio_io_config_event event, pid_t pid,
626 audio_port_handle_t portId)
627 {
628 Mutex::Autolock _l(mLock);
629 sendIoConfigEvent_l(event, pid, portId);
630 }
631
632 // sendIoConfigEvent_l() must be called with ThreadBase::mLock held
sendIoConfigEvent_l(audio_io_config_event event,pid_t pid,audio_port_handle_t portId)633 void AudioFlinger::ThreadBase::sendIoConfigEvent_l(audio_io_config_event event, pid_t pid,
634 audio_port_handle_t portId)
635 {
636 // The audio statistics history is exponentially weighted to forget events
637 // about five or more seconds in the past. In order to have
638 // crisper statistics for mediametrics, we reset the statistics on
639 // an IoConfigEvent, to reflect different properties for a new device.
640 mIoJitterMs.reset();
641 mLatencyMs.reset();
642 mProcessTimeMs.reset();
643 mTimestampVerifier.discontinuity(mTimestampVerifier.DISCONTINUITY_MODE_CONTINUOUS);
644
645 sp<ConfigEvent> configEvent = (ConfigEvent *)new IoConfigEvent(event, pid, portId);
646 sendConfigEvent_l(configEvent);
647 }
648
sendPrioConfigEvent(pid_t pid,pid_t tid,int32_t prio,bool forApp)649 void AudioFlinger::ThreadBase::sendPrioConfigEvent(pid_t pid, pid_t tid, int32_t prio, bool forApp)
650 {
651 Mutex::Autolock _l(mLock);
652 sendPrioConfigEvent_l(pid, tid, prio, forApp);
653 }
654
655 // sendPrioConfigEvent_l() must be called with ThreadBase::mLock held
sendPrioConfigEvent_l(pid_t pid,pid_t tid,int32_t prio,bool forApp)656 void AudioFlinger::ThreadBase::sendPrioConfigEvent_l(
657 pid_t pid, pid_t tid, int32_t prio, bool forApp)
658 {
659 sp<ConfigEvent> configEvent = (ConfigEvent *)new PrioConfigEvent(pid, tid, prio, forApp);
660 sendConfigEvent_l(configEvent);
661 }
662
663 // sendSetParameterConfigEvent_l() must be called with ThreadBase::mLock held
sendSetParameterConfigEvent_l(const String8 & keyValuePair)664 status_t AudioFlinger::ThreadBase::sendSetParameterConfigEvent_l(const String8& keyValuePair)
665 {
666 sp<ConfigEvent> configEvent;
667 AudioParameter param(keyValuePair);
668 int value;
669 if (param.getInt(String8(AudioParameter::keyMonoOutput), value) == NO_ERROR) {
670 setMasterMono_l(value != 0);
671 if (param.size() == 1) {
672 return NO_ERROR; // should be a solo parameter - we don't pass down
673 }
674 param.remove(String8(AudioParameter::keyMonoOutput));
675 configEvent = new SetParameterConfigEvent(param.toString());
676 } else {
677 configEvent = new SetParameterConfigEvent(keyValuePair);
678 }
679 return sendConfigEvent_l(configEvent);
680 }
681
sendCreateAudioPatchConfigEvent(const struct audio_patch * patch,audio_patch_handle_t * handle)682 status_t AudioFlinger::ThreadBase::sendCreateAudioPatchConfigEvent(
683 const struct audio_patch *patch,
684 audio_patch_handle_t *handle)
685 {
686 Mutex::Autolock _l(mLock);
687 sp<ConfigEvent> configEvent = (ConfigEvent *)new CreateAudioPatchConfigEvent(*patch, *handle);
688 status_t status = sendConfigEvent_l(configEvent);
689 if (status == NO_ERROR) {
690 CreateAudioPatchConfigEventData *data =
691 (CreateAudioPatchConfigEventData *)configEvent->mData.get();
692 *handle = data->mHandle;
693 }
694 return status;
695 }
696
sendReleaseAudioPatchConfigEvent(const audio_patch_handle_t handle)697 status_t AudioFlinger::ThreadBase::sendReleaseAudioPatchConfigEvent(
698 const audio_patch_handle_t handle)
699 {
700 Mutex::Autolock _l(mLock);
701 sp<ConfigEvent> configEvent = (ConfigEvent *)new ReleaseAudioPatchConfigEvent(handle);
702 return sendConfigEvent_l(configEvent);
703 }
704
sendUpdateOutDeviceConfigEvent(const DeviceDescriptorBaseVector & outDevices)705 status_t AudioFlinger::ThreadBase::sendUpdateOutDeviceConfigEvent(
706 const DeviceDescriptorBaseVector& outDevices)
707 {
708 if (type() != RECORD) {
709 // The update out device operation is only for record thread.
710 return INVALID_OPERATION;
711 }
712 Mutex::Autolock _l(mLock);
713 sp<ConfigEvent> configEvent = (ConfigEvent *)new UpdateOutDevicesConfigEvent(outDevices);
714 return sendConfigEvent_l(configEvent);
715 }
716
sendResizeBufferConfigEvent_l(int32_t maxSharedAudioHistoryMs)717 void AudioFlinger::ThreadBase::sendResizeBufferConfigEvent_l(int32_t maxSharedAudioHistoryMs)
718 {
719 ALOG_ASSERT(type() == RECORD, "sendResizeBufferConfigEvent_l() called on non record thread");
720 sp<ConfigEvent> configEvent =
721 (ConfigEvent *)new ResizeBufferConfigEvent(maxSharedAudioHistoryMs);
722 sendConfigEvent_l(configEvent);
723 }
724
725 // post condition: mConfigEvents.isEmpty()
processConfigEvents_l()726 void AudioFlinger::ThreadBase::processConfigEvents_l()
727 {
728 bool configChanged = false;
729
730 while (!mConfigEvents.isEmpty()) {
731 ALOGV("processConfigEvents_l() remaining events %zu", mConfigEvents.size());
732 sp<ConfigEvent> event = mConfigEvents[0];
733 mConfigEvents.removeAt(0);
734 switch (event->mType) {
735 case CFG_EVENT_PRIO: {
736 PrioConfigEventData *data = (PrioConfigEventData *)event->mData.get();
737 // FIXME Need to understand why this has to be done asynchronously
738 int err = requestPriority(data->mPid, data->mTid, data->mPrio, data->mForApp,
739 true /*asynchronous*/);
740 if (err != 0) {
741 ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
742 data->mPrio, data->mPid, data->mTid, err);
743 }
744 } break;
745 case CFG_EVENT_IO: {
746 IoConfigEventData *data = (IoConfigEventData *)event->mData.get();
747 ioConfigChanged(data->mEvent, data->mPid, data->mPortId);
748 } break;
749 case CFG_EVENT_SET_PARAMETER: {
750 SetParameterConfigEventData *data = (SetParameterConfigEventData *)event->mData.get();
751 if (checkForNewParameter_l(data->mKeyValuePairs, event->mStatus)) {
752 configChanged = true;
753 mLocalLog.log("CFG_EVENT_SET_PARAMETER: (%s) configuration changed",
754 data->mKeyValuePairs.string());
755 }
756 } break;
757 case CFG_EVENT_CREATE_AUDIO_PATCH: {
758 const DeviceTypeSet oldDevices = getDeviceTypes();
759 CreateAudioPatchConfigEventData *data =
760 (CreateAudioPatchConfigEventData *)event->mData.get();
761 event->mStatus = createAudioPatch_l(&data->mPatch, &data->mHandle);
762 const DeviceTypeSet newDevices = getDeviceTypes();
763 mLocalLog.log("CFG_EVENT_CREATE_AUDIO_PATCH: old device %s (%s) new device %s (%s)",
764 dumpDeviceTypes(oldDevices).c_str(), toString(oldDevices).c_str(),
765 dumpDeviceTypes(newDevices).c_str(), toString(newDevices).c_str());
766 } break;
767 case CFG_EVENT_RELEASE_AUDIO_PATCH: {
768 const DeviceTypeSet oldDevices = getDeviceTypes();
769 ReleaseAudioPatchConfigEventData *data =
770 (ReleaseAudioPatchConfigEventData *)event->mData.get();
771 event->mStatus = releaseAudioPatch_l(data->mHandle);
772 const DeviceTypeSet newDevices = getDeviceTypes();
773 mLocalLog.log("CFG_EVENT_RELEASE_AUDIO_PATCH: old device %s (%s) new device %s (%s)",
774 dumpDeviceTypes(oldDevices).c_str(), toString(oldDevices).c_str(),
775 dumpDeviceTypes(newDevices).c_str(), toString(newDevices).c_str());
776 } break;
777 case CFG_EVENT_UPDATE_OUT_DEVICE: {
778 UpdateOutDevicesConfigEventData *data =
779 (UpdateOutDevicesConfigEventData *)event->mData.get();
780 updateOutDevices(data->mOutDevices);
781 } break;
782 case CFG_EVENT_RESIZE_BUFFER: {
783 ResizeBufferConfigEventData *data =
784 (ResizeBufferConfigEventData *)event->mData.get();
785 resizeInputBuffer_l(data->mMaxSharedAudioHistoryMs);
786 } break;
787 default:
788 ALOG_ASSERT(false, "processConfigEvents_l() unknown event type %d", event->mType);
789 break;
790 }
791 {
792 Mutex::Autolock _l(event->mLock);
793 if (event->mWaitStatus) {
794 event->mWaitStatus = false;
795 event->mCond.signal();
796 }
797 }
798 ALOGV_IF(mConfigEvents.isEmpty(), "processConfigEvents_l() DONE thread %p", this);
799 }
800
801 if (configChanged) {
802 cacheParameters_l();
803 }
804 }
805
channelMaskToString(audio_channel_mask_t mask,bool output)806 String8 channelMaskToString(audio_channel_mask_t mask, bool output) {
807 String8 s;
808 const audio_channel_representation_t representation =
809 audio_channel_mask_get_representation(mask);
810
811 switch (representation) {
812 // Travel all single bit channel mask to convert channel mask to string.
813 case AUDIO_CHANNEL_REPRESENTATION_POSITION: {
814 if (output) {
815 if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT) s.append("front-left, ");
816 if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT) s.append("front-right, ");
817 if (mask & AUDIO_CHANNEL_OUT_FRONT_CENTER) s.append("front-center, ");
818 if (mask & AUDIO_CHANNEL_OUT_LOW_FREQUENCY) s.append("low-frequency, ");
819 if (mask & AUDIO_CHANNEL_OUT_BACK_LEFT) s.append("back-left, ");
820 if (mask & AUDIO_CHANNEL_OUT_BACK_RIGHT) s.append("back-right, ");
821 if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT_OF_CENTER) s.append("front-left-of-center, ");
822 if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT_OF_CENTER) s.append("front-right-of-center, ");
823 if (mask & AUDIO_CHANNEL_OUT_BACK_CENTER) s.append("back-center, ");
824 if (mask & AUDIO_CHANNEL_OUT_SIDE_LEFT) s.append("side-left, ");
825 if (mask & AUDIO_CHANNEL_OUT_SIDE_RIGHT) s.append("side-right, ");
826 if (mask & AUDIO_CHANNEL_OUT_TOP_CENTER) s.append("top-center ,");
827 if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_LEFT) s.append("top-front-left, ");
828 if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_CENTER) s.append("top-front-center, ");
829 if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_RIGHT) s.append("top-front-right, ");
830 if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_LEFT) s.append("top-back-left, ");
831 if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_CENTER) s.append("top-back-center, ");
832 if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_RIGHT) s.append("top-back-right, ");
833 if (mask & AUDIO_CHANNEL_OUT_TOP_SIDE_LEFT) s.append("top-side-left, ");
834 if (mask & AUDIO_CHANNEL_OUT_TOP_SIDE_RIGHT) s.append("top-side-right, ");
835 if (mask & AUDIO_CHANNEL_OUT_BOTTOM_FRONT_LEFT) s.append("bottom-front-left, ");
836 if (mask & AUDIO_CHANNEL_OUT_BOTTOM_FRONT_CENTER) s.append("bottom-front-center, ");
837 if (mask & AUDIO_CHANNEL_OUT_BOTTOM_FRONT_RIGHT) s.append("bottom-front-right, ");
838 if (mask & AUDIO_CHANNEL_OUT_LOW_FREQUENCY_2) s.append("low-frequency-2, ");
839 if (mask & AUDIO_CHANNEL_OUT_HAPTIC_B) s.append("haptic-B, ");
840 if (mask & AUDIO_CHANNEL_OUT_HAPTIC_A) s.append("haptic-A, ");
841 if (mask & ~AUDIO_CHANNEL_OUT_ALL) s.append("unknown, ");
842 } else {
843 if (mask & AUDIO_CHANNEL_IN_LEFT) s.append("left, ");
844 if (mask & AUDIO_CHANNEL_IN_RIGHT) s.append("right, ");
845 if (mask & AUDIO_CHANNEL_IN_FRONT) s.append("front, ");
846 if (mask & AUDIO_CHANNEL_IN_BACK) s.append("back, ");
847 if (mask & AUDIO_CHANNEL_IN_LEFT_PROCESSED) s.append("left-processed, ");
848 if (mask & AUDIO_CHANNEL_IN_RIGHT_PROCESSED) s.append("right-processed, ");
849 if (mask & AUDIO_CHANNEL_IN_FRONT_PROCESSED) s.append("front-processed, ");
850 if (mask & AUDIO_CHANNEL_IN_BACK_PROCESSED) s.append("back-processed, ");
851 if (mask & AUDIO_CHANNEL_IN_PRESSURE) s.append("pressure, ");
852 if (mask & AUDIO_CHANNEL_IN_X_AXIS) s.append("X, ");
853 if (mask & AUDIO_CHANNEL_IN_Y_AXIS) s.append("Y, ");
854 if (mask & AUDIO_CHANNEL_IN_Z_AXIS) s.append("Z, ");
855 if (mask & AUDIO_CHANNEL_IN_BACK_LEFT) s.append("back-left, ");
856 if (mask & AUDIO_CHANNEL_IN_BACK_RIGHT) s.append("back-right, ");
857 if (mask & AUDIO_CHANNEL_IN_CENTER) s.append("center, ");
858 if (mask & AUDIO_CHANNEL_IN_LOW_FREQUENCY) s.append("low-frequency, ");
859 if (mask & AUDIO_CHANNEL_IN_TOP_LEFT) s.append("top-left, ");
860 if (mask & AUDIO_CHANNEL_IN_TOP_RIGHT) s.append("top-right, ");
861 if (mask & AUDIO_CHANNEL_IN_VOICE_UPLINK) s.append("voice-uplink, ");
862 if (mask & AUDIO_CHANNEL_IN_VOICE_DNLINK) s.append("voice-dnlink, ");
863 if (mask & ~AUDIO_CHANNEL_IN_ALL) s.append("unknown, ");
864 }
865 const int len = s.length();
866 if (len > 2) {
867 (void) s.lockBuffer(len); // needed?
868 s.unlockBuffer(len - 2); // remove trailing ", "
869 }
870 return s;
871 }
872 case AUDIO_CHANNEL_REPRESENTATION_INDEX:
873 s.appendFormat("index mask, bits:%#x", audio_channel_mask_get_bits(mask));
874 return s;
875 default:
876 s.appendFormat("unknown mask, representation:%d bits:%#x",
877 representation, audio_channel_mask_get_bits(mask));
878 return s;
879 }
880 }
881
dump(int fd,const Vector<String16> & args)882 void AudioFlinger::ThreadBase::dump(int fd, const Vector<String16>& args)
883 {
884 dprintf(fd, "\n%s thread %p, name %s, tid %d, type %d (%s):\n", isOutput() ? "Output" : "Input",
885 this, mThreadName, getTid(), type(), threadTypeToString(type()));
886
887 bool locked = AudioFlinger::dumpTryLock(mLock);
888 if (!locked) {
889 dprintf(fd, " Thread may be deadlocked\n");
890 }
891
892 dumpBase_l(fd, args);
893 dumpInternals_l(fd, args);
894 dumpTracks_l(fd, args);
895 dumpEffectChains_l(fd, args);
896
897 if (locked) {
898 mLock.unlock();
899 }
900
901 dprintf(fd, " Local log:\n");
902 mLocalLog.dump(fd, " " /* prefix */, 40 /* lines */);
903 }
904
dumpBase_l(int fd,const Vector<String16> & args __unused)905 void AudioFlinger::ThreadBase::dumpBase_l(int fd, const Vector<String16>& args __unused)
906 {
907 dprintf(fd, " I/O handle: %d\n", mId);
908 dprintf(fd, " Standby: %s\n", mStandby ? "yes" : "no");
909 dprintf(fd, " Sample rate: %u Hz\n", mSampleRate);
910 dprintf(fd, " HAL frame count: %zu\n", mFrameCount);
911 dprintf(fd, " HAL format: 0x%x (%s)\n", mHALFormat, formatToString(mHALFormat).c_str());
912 dprintf(fd, " HAL buffer size: %zu bytes\n", mBufferSize);
913 dprintf(fd, " Channel count: %u\n", mChannelCount);
914 dprintf(fd, " Channel mask: 0x%08x (%s)\n", mChannelMask,
915 channelMaskToString(mChannelMask, mType != RECORD).string());
916 dprintf(fd, " Processing format: 0x%x (%s)\n", mFormat, formatToString(mFormat).c_str());
917 dprintf(fd, " Processing frame size: %zu bytes\n", mFrameSize);
918 dprintf(fd, " Pending config events:");
919 size_t numConfig = mConfigEvents.size();
920 if (numConfig) {
921 const size_t SIZE = 256;
922 char buffer[SIZE];
923 for (size_t i = 0; i < numConfig; i++) {
924 mConfigEvents[i]->dump(buffer, SIZE);
925 dprintf(fd, "\n %s", buffer);
926 }
927 dprintf(fd, "\n");
928 } else {
929 dprintf(fd, " none\n");
930 }
931 // Note: output device may be used by capture threads for effects such as AEC.
932 dprintf(fd, " Output devices: %s (%s)\n",
933 dumpDeviceTypes(outDeviceTypes()).c_str(), toString(outDeviceTypes()).c_str());
934 dprintf(fd, " Input device: %#x (%s)\n",
935 inDeviceType(), toString(inDeviceType()).c_str());
936 dprintf(fd, " Audio source: %d (%s)\n", mAudioSource, toString(mAudioSource).c_str());
937
938 // Dump timestamp statistics for the Thread types that support it.
939 if (mType == RECORD
940 || mType == MIXER
941 || mType == DUPLICATING
942 || mType == DIRECT
943 || mType == OFFLOAD) {
944 dprintf(fd, " Timestamp stats: %s\n", mTimestampVerifier.toString().c_str());
945 dprintf(fd, " Timestamp corrected: %s\n", isTimestampCorrectionEnabled() ? "yes" : "no");
946 }
947
948 if (mLastIoBeginNs > 0) { // MMAP may not set this
949 dprintf(fd, " Last %s occurred (msecs): %lld\n",
950 isOutput() ? "write" : "read",
951 (long long) (systemTime() - mLastIoBeginNs) / NANOS_PER_MILLISECOND);
952 }
953
954 if (mProcessTimeMs.getN() > 0) {
955 dprintf(fd, " Process time ms stats: %s\n", mProcessTimeMs.toString().c_str());
956 }
957
958 if (mIoJitterMs.getN() > 0) {
959 dprintf(fd, " Hal %s jitter ms stats: %s\n",
960 isOutput() ? "write" : "read",
961 mIoJitterMs.toString().c_str());
962 }
963
964 if (mLatencyMs.getN() > 0) {
965 dprintf(fd, " Threadloop %s latency stats: %s\n",
966 isOutput() ? "write" : "read",
967 mLatencyMs.toString().c_str());
968 }
969 }
970
dumpEffectChains_l(int fd,const Vector<String16> & args)971 void AudioFlinger::ThreadBase::dumpEffectChains_l(int fd, const Vector<String16>& args)
972 {
973 const size_t SIZE = 256;
974 char buffer[SIZE];
975
976 size_t numEffectChains = mEffectChains.size();
977 snprintf(buffer, SIZE, " %zu Effect Chains\n", numEffectChains);
978 write(fd, buffer, strlen(buffer));
979
980 for (size_t i = 0; i < numEffectChains; ++i) {
981 sp<EffectChain> chain = mEffectChains[i];
982 if (chain != 0) {
983 chain->dump(fd, args);
984 }
985 }
986 }
987
acquireWakeLock()988 void AudioFlinger::ThreadBase::acquireWakeLock()
989 {
990 Mutex::Autolock _l(mLock);
991 acquireWakeLock_l();
992 }
993
getWakeLockTag()994 String16 AudioFlinger::ThreadBase::getWakeLockTag()
995 {
996 switch (mType) {
997 case MIXER:
998 return String16("AudioMix");
999 case DIRECT:
1000 return String16("AudioDirectOut");
1001 case DUPLICATING:
1002 return String16("AudioDup");
1003 case RECORD:
1004 return String16("AudioIn");
1005 case OFFLOAD:
1006 return String16("AudioOffload");
1007 case MMAP_PLAYBACK:
1008 return String16("MmapPlayback");
1009 case MMAP_CAPTURE:
1010 return String16("MmapCapture");
1011 default:
1012 ALOG_ASSERT(false);
1013 return String16("AudioUnknown");
1014 }
1015 }
1016
acquireWakeLock_l()1017 void AudioFlinger::ThreadBase::acquireWakeLock_l()
1018 {
1019 getPowerManager_l();
1020 if (mPowerManager != 0) {
1021 sp<IBinder> binder = new BBinder();
1022 // Uses AID_AUDIOSERVER for wakelock. updateWakeLockUids_l() updates with client uids.
1023 binder::Status status = mPowerManager->acquireWakeLockAsync(binder,
1024 POWERMANAGER_PARTIAL_WAKE_LOCK,
1025 getWakeLockTag(),
1026 String16("audioserver"),
1027 {} /* workSource */,
1028 {} /* historyTag */);
1029 if (status.isOk()) {
1030 mWakeLockToken = binder;
1031 }
1032 ALOGV("acquireWakeLock_l() %s status %d", mThreadName, status.exceptionCode());
1033 }
1034
1035 gBoottime.acquire(mWakeLockToken);
1036 mTimestamp.mTimebaseOffset[ExtendedTimestamp::TIMEBASE_BOOTTIME] =
1037 gBoottime.getBoottimeOffset();
1038 }
1039
releaseWakeLock()1040 void AudioFlinger::ThreadBase::releaseWakeLock()
1041 {
1042 Mutex::Autolock _l(mLock);
1043 releaseWakeLock_l();
1044 }
1045
releaseWakeLock_l()1046 void AudioFlinger::ThreadBase::releaseWakeLock_l()
1047 {
1048 gBoottime.release(mWakeLockToken);
1049 if (mWakeLockToken != 0) {
1050 ALOGV("releaseWakeLock_l() %s", mThreadName);
1051 if (mPowerManager != 0) {
1052 mPowerManager->releaseWakeLockAsync(mWakeLockToken, 0);
1053 }
1054 mWakeLockToken.clear();
1055 }
1056 }
1057
getPowerManager_l()1058 void AudioFlinger::ThreadBase::getPowerManager_l() {
1059 if (mSystemReady && mPowerManager == 0) {
1060 // use checkService() to avoid blocking if power service is not up yet
1061 sp<IBinder> binder =
1062 defaultServiceManager()->checkService(String16("power"));
1063 if (binder == 0) {
1064 ALOGW("Thread %s cannot connect to the power manager service", mThreadName);
1065 } else {
1066 mPowerManager = interface_cast<os::IPowerManager>(binder);
1067 binder->linkToDeath(mDeathRecipient);
1068 }
1069 }
1070 }
1071
updateWakeLockUids_l(const SortedVector<uid_t> & uids)1072 void AudioFlinger::ThreadBase::updateWakeLockUids_l(const SortedVector<uid_t> &uids) {
1073 getPowerManager_l();
1074
1075 #if !LOG_NDEBUG
1076 std::stringstream s;
1077 for (uid_t uid : uids) {
1078 s << uid << " ";
1079 }
1080 ALOGD("updateWakeLockUids_l %s uids:%s", mThreadName, s.str().c_str());
1081 #endif
1082
1083 if (mWakeLockToken == NULL) { // token may be NULL if AudioFlinger::systemReady() not called.
1084 if (mSystemReady) {
1085 ALOGE("no wake lock to update, but system ready!");
1086 } else {
1087 ALOGW("no wake lock to update, system not ready yet");
1088 }
1089 return;
1090 }
1091 if (mPowerManager != 0) {
1092 std::vector<int> uidsAsInt(uids.begin(), uids.end()); // powermanager expects uids as ints
1093 binder::Status status = mPowerManager->updateWakeLockUidsAsync(
1094 mWakeLockToken, uidsAsInt);
1095 ALOGV("updateWakeLockUids_l() %s status %d", mThreadName, status.exceptionCode());
1096 }
1097 }
1098
clearPowerManager()1099 void AudioFlinger::ThreadBase::clearPowerManager()
1100 {
1101 Mutex::Autolock _l(mLock);
1102 releaseWakeLock_l();
1103 mPowerManager.clear();
1104 }
1105
updateOutDevices(const DeviceDescriptorBaseVector & outDevices __unused)1106 void AudioFlinger::ThreadBase::updateOutDevices(
1107 const DeviceDescriptorBaseVector& outDevices __unused)
1108 {
1109 ALOGE("%s should only be called in RecordThread", __func__);
1110 }
1111
resizeInputBuffer_l(int32_t maxSharedAudioHistoryMs __unused)1112 void AudioFlinger::ThreadBase::resizeInputBuffer_l(int32_t maxSharedAudioHistoryMs __unused)
1113 {
1114 ALOGE("%s should only be called in RecordThread", __func__);
1115 }
1116
binderDied(const wp<IBinder> & who __unused)1117 void AudioFlinger::ThreadBase::PMDeathRecipient::binderDied(const wp<IBinder>& who __unused)
1118 {
1119 sp<ThreadBase> thread = mThread.promote();
1120 if (thread != 0) {
1121 thread->clearPowerManager();
1122 }
1123 ALOGW("power manager service died !!!");
1124 }
1125
setEffectSuspended_l(const effect_uuid_t * type,bool suspend,audio_session_t sessionId)1126 void AudioFlinger::ThreadBase::setEffectSuspended_l(
1127 const effect_uuid_t *type, bool suspend, audio_session_t sessionId)
1128 {
1129 sp<EffectChain> chain = getEffectChain_l(sessionId);
1130 if (chain != 0) {
1131 if (type != NULL) {
1132 chain->setEffectSuspended_l(type, suspend);
1133 } else {
1134 chain->setEffectSuspendedAll_l(suspend);
1135 }
1136 }
1137
1138 updateSuspendedSessions_l(type, suspend, sessionId);
1139 }
1140
checkSuspendOnAddEffectChain_l(const sp<EffectChain> & chain)1141 void AudioFlinger::ThreadBase::checkSuspendOnAddEffectChain_l(const sp<EffectChain>& chain)
1142 {
1143 ssize_t index = mSuspendedSessions.indexOfKey(chain->sessionId());
1144 if (index < 0) {
1145 return;
1146 }
1147
1148 const KeyedVector <int, sp<SuspendedSessionDesc> >& sessionEffects =
1149 mSuspendedSessions.valueAt(index);
1150
1151 for (size_t i = 0; i < sessionEffects.size(); i++) {
1152 const sp<SuspendedSessionDesc>& desc = sessionEffects.valueAt(i);
1153 for (int j = 0; j < desc->mRefCount; j++) {
1154 if (sessionEffects.keyAt(i) == EffectChain::kKeyForSuspendAll) {
1155 chain->setEffectSuspendedAll_l(true);
1156 } else {
1157 ALOGV("checkSuspendOnAddEffectChain_l() suspending effects %08x",
1158 desc->mType.timeLow);
1159 chain->setEffectSuspended_l(&desc->mType, true);
1160 }
1161 }
1162 }
1163 }
1164
updateSuspendedSessions_l(const effect_uuid_t * type,bool suspend,audio_session_t sessionId)1165 void AudioFlinger::ThreadBase::updateSuspendedSessions_l(const effect_uuid_t *type,
1166 bool suspend,
1167 audio_session_t sessionId)
1168 {
1169 ssize_t index = mSuspendedSessions.indexOfKey(sessionId);
1170
1171 KeyedVector <int, sp<SuspendedSessionDesc> > sessionEffects;
1172
1173 if (suspend) {
1174 if (index >= 0) {
1175 sessionEffects = mSuspendedSessions.valueAt(index);
1176 } else {
1177 mSuspendedSessions.add(sessionId, sessionEffects);
1178 }
1179 } else {
1180 if (index < 0) {
1181 return;
1182 }
1183 sessionEffects = mSuspendedSessions.valueAt(index);
1184 }
1185
1186
1187 int key = EffectChain::kKeyForSuspendAll;
1188 if (type != NULL) {
1189 key = type->timeLow;
1190 }
1191 index = sessionEffects.indexOfKey(key);
1192
1193 sp<SuspendedSessionDesc> desc;
1194 if (suspend) {
1195 if (index >= 0) {
1196 desc = sessionEffects.valueAt(index);
1197 } else {
1198 desc = new SuspendedSessionDesc();
1199 if (type != NULL) {
1200 desc->mType = *type;
1201 }
1202 sessionEffects.add(key, desc);
1203 ALOGV("updateSuspendedSessions_l() suspend adding effect %08x", key);
1204 }
1205 desc->mRefCount++;
1206 } else {
1207 if (index < 0) {
1208 return;
1209 }
1210 desc = sessionEffects.valueAt(index);
1211 if (--desc->mRefCount == 0) {
1212 ALOGV("updateSuspendedSessions_l() restore removing effect %08x", key);
1213 sessionEffects.removeItemsAt(index);
1214 if (sessionEffects.isEmpty()) {
1215 ALOGV("updateSuspendedSessions_l() restore removing session %d",
1216 sessionId);
1217 mSuspendedSessions.removeItem(sessionId);
1218 }
1219 }
1220 }
1221 if (!sessionEffects.isEmpty()) {
1222 mSuspendedSessions.replaceValueFor(sessionId, sessionEffects);
1223 }
1224 }
1225
checkSuspendOnEffectEnabled(bool enabled,audio_session_t sessionId,bool threadLocked)1226 void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled(bool enabled,
1227 audio_session_t sessionId,
1228 bool threadLocked) {
1229 if (!threadLocked) {
1230 mLock.lock();
1231 }
1232
1233 if (mType != RECORD) {
1234 // suspend all effects in AUDIO_SESSION_OUTPUT_MIX when enabling any effect on
1235 // another session. This gives the priority to well behaved effect control panels
1236 // and applications not using global effects.
1237 // Enabling post processing in AUDIO_SESSION_OUTPUT_STAGE session does not affect
1238 // global effects
1239 if (!audio_is_global_session(sessionId)) {
1240 setEffectSuspended_l(NULL, enabled, AUDIO_SESSION_OUTPUT_MIX);
1241 }
1242 }
1243
1244 if (!threadLocked) {
1245 mLock.unlock();
1246 }
1247 }
1248
1249 // checkEffectCompatibility_l() must be called with ThreadBase::mLock held
checkEffectCompatibility_l(const effect_descriptor_t * desc,audio_session_t sessionId)1250 status_t AudioFlinger::RecordThread::checkEffectCompatibility_l(
1251 const effect_descriptor_t *desc, audio_session_t sessionId)
1252 {
1253 // No global output effect sessions on record threads
1254 if (sessionId == AUDIO_SESSION_OUTPUT_MIX
1255 || sessionId == AUDIO_SESSION_OUTPUT_STAGE) {
1256 ALOGW("checkEffectCompatibility_l(): global effect %s on record thread %s",
1257 desc->name, mThreadName);
1258 return BAD_VALUE;
1259 }
1260 // only pre processing effects on record thread
1261 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_PRE_PROC) {
1262 ALOGW("checkEffectCompatibility_l(): non pre processing effect %s on record thread %s",
1263 desc->name, mThreadName);
1264 return BAD_VALUE;
1265 }
1266
1267 // always allow effects without processing load or latency
1268 if ((desc->flags & EFFECT_FLAG_NO_PROCESS_MASK) == EFFECT_FLAG_NO_PROCESS) {
1269 return NO_ERROR;
1270 }
1271
1272 audio_input_flags_t flags = mInput->flags;
1273 if (hasFastCapture() || (flags & AUDIO_INPUT_FLAG_FAST)) {
1274 if (flags & AUDIO_INPUT_FLAG_RAW) {
1275 ALOGW("checkEffectCompatibility_l(): effect %s on record thread %s in raw mode",
1276 desc->name, mThreadName);
1277 return BAD_VALUE;
1278 }
1279 if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) == 0) {
1280 ALOGW("checkEffectCompatibility_l(): non HW effect %s on record thread %s in fast mode",
1281 desc->name, mThreadName);
1282 return BAD_VALUE;
1283 }
1284 }
1285
1286 if (EffectModule::isHapticGenerator(&desc->type)) {
1287 ALOGE("%s(): HapticGenerator is not supported in RecordThread", __func__);
1288 return BAD_VALUE;
1289 }
1290 return NO_ERROR;
1291 }
1292
1293 // checkEffectCompatibility_l() must be called with ThreadBase::mLock held
checkEffectCompatibility_l(const effect_descriptor_t * desc,audio_session_t sessionId)1294 status_t AudioFlinger::PlaybackThread::checkEffectCompatibility_l(
1295 const effect_descriptor_t *desc, audio_session_t sessionId)
1296 {
1297 // no preprocessing on playback threads
1298 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC) {
1299 ALOGW("checkEffectCompatibility_l(): pre processing effect %s created on playback"
1300 " thread %s", desc->name, mThreadName);
1301 return BAD_VALUE;
1302 }
1303
1304 // always allow effects without processing load or latency
1305 if ((desc->flags & EFFECT_FLAG_NO_PROCESS_MASK) == EFFECT_FLAG_NO_PROCESS) {
1306 return NO_ERROR;
1307 }
1308
1309 if (EffectModule::isHapticGenerator(&desc->type) && mHapticChannelCount == 0) {
1310 ALOGW("%s: thread doesn't support haptic playback while the effect is HapticGenerator",
1311 __func__);
1312 return BAD_VALUE;
1313 }
1314
1315 switch (mType) {
1316 case MIXER: {
1317 #ifndef MULTICHANNEL_EFFECT_CHAIN
1318 // Reject any effect on mixer multichannel sinks.
1319 // TODO: fix both format and multichannel issues with effects.
1320 if (mChannelCount != FCC_2) {
1321 ALOGW("checkEffectCompatibility_l(): effect %s for multichannel(%d) on MIXER"
1322 " thread %s", desc->name, mChannelCount, mThreadName);
1323 return BAD_VALUE;
1324 }
1325 #endif
1326 audio_output_flags_t flags = mOutput->flags;
1327 if (hasFastMixer() || (flags & AUDIO_OUTPUT_FLAG_FAST)) {
1328 if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
1329 // global effects are applied only to non fast tracks if they are SW
1330 if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) == 0) {
1331 break;
1332 }
1333 } else if (sessionId == AUDIO_SESSION_OUTPUT_STAGE) {
1334 // only post processing on output stage session
1335 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_POST_PROC) {
1336 ALOGW("checkEffectCompatibility_l(): non post processing effect %s not allowed"
1337 " on output stage session", desc->name);
1338 return BAD_VALUE;
1339 }
1340 } else if (sessionId == AUDIO_SESSION_DEVICE) {
1341 // only post processing on output stage session
1342 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_POST_PROC) {
1343 ALOGW("checkEffectCompatibility_l(): non post processing effect %s not allowed"
1344 " on device session", desc->name);
1345 return BAD_VALUE;
1346 }
1347 } else {
1348 // no restriction on effects applied on non fast tracks
1349 if ((hasAudioSession_l(sessionId) & ThreadBase::FAST_SESSION) == 0) {
1350 break;
1351 }
1352 }
1353
1354 if (flags & AUDIO_OUTPUT_FLAG_RAW) {
1355 ALOGW("checkEffectCompatibility_l(): effect %s on playback thread in raw mode",
1356 desc->name);
1357 return BAD_VALUE;
1358 }
1359 if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) == 0) {
1360 ALOGW("checkEffectCompatibility_l(): non HW effect %s on playback thread"
1361 " in fast mode", desc->name);
1362 return BAD_VALUE;
1363 }
1364 }
1365 } break;
1366 case OFFLOAD:
1367 // nothing actionable on offload threads, if the effect:
1368 // - is offloadable: the effect can be created
1369 // - is NOT offloadable: the effect should still be created, but EffectHandle::enable()
1370 // will take care of invalidating the tracks of the thread
1371 break;
1372 case DIRECT:
1373 // Reject any effect on Direct output threads for now, since the format of
1374 // mSinkBuffer is not guaranteed to be compatible with effect processing (PCM 16 stereo).
1375 ALOGW("checkEffectCompatibility_l(): effect %s on DIRECT output thread %s",
1376 desc->name, mThreadName);
1377 return BAD_VALUE;
1378 case DUPLICATING:
1379 #ifndef MULTICHANNEL_EFFECT_CHAIN
1380 // Reject any effect on mixer multichannel sinks.
1381 // TODO: fix both format and multichannel issues with effects.
1382 if (mChannelCount != FCC_2) {
1383 ALOGW("checkEffectCompatibility_l(): effect %s for multichannel(%d)"
1384 " on DUPLICATING thread %s", desc->name, mChannelCount, mThreadName);
1385 return BAD_VALUE;
1386 }
1387 #endif
1388 if (audio_is_global_session(sessionId)) {
1389 ALOGW("checkEffectCompatibility_l(): global effect %s on DUPLICATING"
1390 " thread %s", desc->name, mThreadName);
1391 return BAD_VALUE;
1392 }
1393 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_POST_PROC) {
1394 ALOGW("checkEffectCompatibility_l(): post processing effect %s on"
1395 " DUPLICATING thread %s", desc->name, mThreadName);
1396 return BAD_VALUE;
1397 }
1398 if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) != 0) {
1399 ALOGW("checkEffectCompatibility_l(): HW tunneled effect %s on"
1400 " DUPLICATING thread %s", desc->name, mThreadName);
1401 return BAD_VALUE;
1402 }
1403 break;
1404 default:
1405 LOG_ALWAYS_FATAL("checkEffectCompatibility_l(): wrong thread type %d", mType);
1406 }
1407
1408 return NO_ERROR;
1409 }
1410
1411 // ThreadBase::createEffect_l() must be called with AudioFlinger::mLock held
createEffect_l(const sp<AudioFlinger::Client> & client,const sp<IEffectClient> & effectClient,int32_t priority,audio_session_t sessionId,effect_descriptor_t * desc,int * enabled,status_t * status,bool pinned,bool probe)1412 sp<AudioFlinger::EffectHandle> AudioFlinger::ThreadBase::createEffect_l(
1413 const sp<AudioFlinger::Client>& client,
1414 const sp<IEffectClient>& effectClient,
1415 int32_t priority,
1416 audio_session_t sessionId,
1417 effect_descriptor_t *desc,
1418 int *enabled,
1419 status_t *status,
1420 bool pinned,
1421 bool probe)
1422 {
1423 sp<EffectModule> effect;
1424 sp<EffectHandle> handle;
1425 status_t lStatus;
1426 sp<EffectChain> chain;
1427 bool chainCreated = false;
1428 bool effectCreated = false;
1429 audio_unique_id_t effectId = AUDIO_UNIQUE_ID_USE_UNSPECIFIED;
1430
1431 lStatus = initCheck();
1432 if (lStatus != NO_ERROR) {
1433 ALOGW("createEffect_l() Audio driver not initialized.");
1434 goto Exit;
1435 }
1436
1437 ALOGV("createEffect_l() thread %p effect %s on session %d", this, desc->name, sessionId);
1438
1439 { // scope for mLock
1440 Mutex::Autolock _l(mLock);
1441
1442 lStatus = checkEffectCompatibility_l(desc, sessionId);
1443 if (probe || lStatus != NO_ERROR) {
1444 goto Exit;
1445 }
1446
1447 // check for existing effect chain with the requested audio session
1448 chain = getEffectChain_l(sessionId);
1449 if (chain == 0) {
1450 // create a new chain for this session
1451 ALOGV("createEffect_l() new effect chain for session %d", sessionId);
1452 chain = new EffectChain(this, sessionId);
1453 addEffectChain_l(chain);
1454 chain->setStrategy(getStrategyForSession_l(sessionId));
1455 chainCreated = true;
1456 } else {
1457 effect = chain->getEffectFromDesc_l(desc);
1458 }
1459
1460 ALOGV("createEffect_l() got effect %p on chain %p", effect.get(), chain.get());
1461
1462 if (effect == 0) {
1463 effectId = mAudioFlinger->nextUniqueId(AUDIO_UNIQUE_ID_USE_EFFECT);
1464 // create a new effect module if none present in the chain
1465 lStatus = chain->createEffect_l(effect, desc, effectId, sessionId, pinned);
1466 if (lStatus != NO_ERROR) {
1467 goto Exit;
1468 }
1469 effectCreated = true;
1470
1471 // FIXME: use vector of device and address when effect interface is ready.
1472 effect->setDevices(outDeviceTypeAddrs());
1473 effect->setInputDevice(inDeviceTypeAddr());
1474 effect->setMode(mAudioFlinger->getMode());
1475 effect->setAudioSource(mAudioSource);
1476 }
1477 if (effect->isHapticGenerator()) {
1478 // TODO(b/184194057): Use the vibrator information from the vibrator that will be used
1479 // for the HapticGenerator.
1480 const media::AudioVibratorInfo* defaultVibratorInfo =
1481 mAudioFlinger->getDefaultVibratorInfo_l();
1482 if (defaultVibratorInfo != nullptr) {
1483 // Only set the vibrator info when it is a valid one.
1484 effect->setVibratorInfo(defaultVibratorInfo);
1485 }
1486 }
1487 // create effect handle and connect it to effect module
1488 handle = new EffectHandle(effect, client, effectClient, priority);
1489 lStatus = handle->initCheck();
1490 if (lStatus == OK) {
1491 lStatus = effect->addHandle(handle.get());
1492 }
1493 if (enabled != NULL) {
1494 *enabled = (int)effect->isEnabled();
1495 }
1496 }
1497
1498 Exit:
1499 if (!probe && lStatus != NO_ERROR && lStatus != ALREADY_EXISTS) {
1500 Mutex::Autolock _l(mLock);
1501 if (effectCreated) {
1502 chain->removeEffect_l(effect);
1503 }
1504 if (chainCreated) {
1505 removeEffectChain_l(chain);
1506 }
1507 // handle must be cleared by caller to avoid deadlock.
1508 }
1509
1510 *status = lStatus;
1511 return handle;
1512 }
1513
disconnectEffectHandle(EffectHandle * handle,bool unpinIfLast)1514 void AudioFlinger::ThreadBase::disconnectEffectHandle(EffectHandle *handle,
1515 bool unpinIfLast)
1516 {
1517 bool remove = false;
1518 sp<EffectModule> effect;
1519 {
1520 Mutex::Autolock _l(mLock);
1521 sp<EffectBase> effectBase = handle->effect().promote();
1522 if (effectBase == nullptr) {
1523 return;
1524 }
1525 effect = effectBase->asEffectModule();
1526 if (effect == nullptr) {
1527 return;
1528 }
1529 // restore suspended effects if the disconnected handle was enabled and the last one.
1530 remove = (effect->removeHandle(handle) == 0) && (!effect->isPinned() || unpinIfLast);
1531 if (remove) {
1532 removeEffect_l(effect, true);
1533 }
1534 }
1535 if (remove) {
1536 mAudioFlinger->updateOrphanEffectChains(effect);
1537 if (handle->enabled()) {
1538 effect->checkSuspendOnEffectEnabled(false, false /*threadLocked*/);
1539 }
1540 }
1541 }
1542
onEffectEnable(const sp<EffectModule> & effect)1543 void AudioFlinger::ThreadBase::onEffectEnable(const sp<EffectModule>& effect) {
1544 if (isOffloadOrMmap()) {
1545 Mutex::Autolock _l(mLock);
1546 broadcast_l();
1547 }
1548 if (!effect->isOffloadable()) {
1549 if (mType == ThreadBase::OFFLOAD) {
1550 PlaybackThread *t = (PlaybackThread *)this;
1551 t->invalidateTracks(AUDIO_STREAM_MUSIC);
1552 }
1553 if (effect->sessionId() == AUDIO_SESSION_OUTPUT_MIX) {
1554 mAudioFlinger->onNonOffloadableGlobalEffectEnable();
1555 }
1556 }
1557 }
1558
onEffectDisable()1559 void AudioFlinger::ThreadBase::onEffectDisable() {
1560 if (isOffloadOrMmap()) {
1561 Mutex::Autolock _l(mLock);
1562 broadcast_l();
1563 }
1564 }
1565
getEffect(audio_session_t sessionId,int effectId)1566 sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect(audio_session_t sessionId,
1567 int effectId)
1568 {
1569 Mutex::Autolock _l(mLock);
1570 return getEffect_l(sessionId, effectId);
1571 }
1572
getEffect_l(audio_session_t sessionId,int effectId)1573 sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect_l(audio_session_t sessionId,
1574 int effectId)
1575 {
1576 sp<EffectChain> chain = getEffectChain_l(sessionId);
1577 return chain != 0 ? chain->getEffectFromId_l(effectId) : 0;
1578 }
1579
getEffectIds_l(audio_session_t sessionId)1580 std::vector<int> AudioFlinger::ThreadBase::getEffectIds_l(audio_session_t sessionId)
1581 {
1582 sp<EffectChain> chain = getEffectChain_l(sessionId);
1583 return chain != nullptr ? chain->getEffectIds() : std::vector<int>{};
1584 }
1585
1586 // PlaybackThread::addEffect_l() must be called with AudioFlinger::mLock and
1587 // PlaybackThread::mLock held
addEffect_l(const sp<EffectModule> & effect)1588 status_t AudioFlinger::ThreadBase::addEffect_l(const sp<EffectModule>& effect)
1589 {
1590 // check for existing effect chain with the requested audio session
1591 audio_session_t sessionId = effect->sessionId();
1592 sp<EffectChain> chain = getEffectChain_l(sessionId);
1593 bool chainCreated = false;
1594
1595 ALOGD_IF((mType == OFFLOAD) && !effect->isOffloadable(),
1596 "addEffect_l() on offloaded thread %p: effect %s does not support offload flags %#x",
1597 this, effect->desc().name, effect->desc().flags);
1598
1599 if (chain == 0) {
1600 // create a new chain for this session
1601 ALOGV("addEffect_l() new effect chain for session %d", sessionId);
1602 chain = new EffectChain(this, sessionId);
1603 addEffectChain_l(chain);
1604 chain->setStrategy(getStrategyForSession_l(sessionId));
1605 chainCreated = true;
1606 }
1607 ALOGV("addEffect_l() %p chain %p effect %p", this, chain.get(), effect.get());
1608
1609 if (chain->getEffectFromId_l(effect->id()) != 0) {
1610 ALOGW("addEffect_l() %p effect %s already present in chain %p",
1611 this, effect->desc().name, chain.get());
1612 return BAD_VALUE;
1613 }
1614
1615 effect->setOffloaded(mType == OFFLOAD, mId);
1616
1617 status_t status = chain->addEffect_l(effect);
1618 if (status != NO_ERROR) {
1619 if (chainCreated) {
1620 removeEffectChain_l(chain);
1621 }
1622 return status;
1623 }
1624
1625 effect->setDevices(outDeviceTypeAddrs());
1626 effect->setInputDevice(inDeviceTypeAddr());
1627 effect->setMode(mAudioFlinger->getMode());
1628 effect->setAudioSource(mAudioSource);
1629
1630 return NO_ERROR;
1631 }
1632
removeEffect_l(const sp<EffectModule> & effect,bool release)1633 void AudioFlinger::ThreadBase::removeEffect_l(const sp<EffectModule>& effect, bool release) {
1634
1635 ALOGV("%s %p effect %p", __FUNCTION__, this, effect.get());
1636 effect_descriptor_t desc = effect->desc();
1637 if ((desc.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
1638 detachAuxEffect_l(effect->id());
1639 }
1640
1641 sp<EffectChain> chain = effect->getCallback()->chain().promote();
1642 if (chain != 0) {
1643 // remove effect chain if removing last effect
1644 if (chain->removeEffect_l(effect, release) == 0) {
1645 removeEffectChain_l(chain);
1646 }
1647 } else {
1648 ALOGW("removeEffect_l() %p cannot promote chain for effect %p", this, effect.get());
1649 }
1650 }
1651
lockEffectChains_l(Vector<sp<AudioFlinger::EffectChain>> & effectChains)1652 void AudioFlinger::ThreadBase::lockEffectChains_l(
1653 Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1654 {
1655 effectChains = mEffectChains;
1656 for (size_t i = 0; i < mEffectChains.size(); i++) {
1657 mEffectChains[i]->lock();
1658 }
1659 }
1660
unlockEffectChains(const Vector<sp<AudioFlinger::EffectChain>> & effectChains)1661 void AudioFlinger::ThreadBase::unlockEffectChains(
1662 const Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1663 {
1664 for (size_t i = 0; i < effectChains.size(); i++) {
1665 effectChains[i]->unlock();
1666 }
1667 }
1668
getEffectChain(audio_session_t sessionId)1669 sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain(audio_session_t sessionId)
1670 {
1671 Mutex::Autolock _l(mLock);
1672 return getEffectChain_l(sessionId);
1673 }
1674
getEffectChain_l(audio_session_t sessionId) const1675 sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain_l(audio_session_t sessionId)
1676 const
1677 {
1678 size_t size = mEffectChains.size();
1679 for (size_t i = 0; i < size; i++) {
1680 if (mEffectChains[i]->sessionId() == sessionId) {
1681 return mEffectChains[i];
1682 }
1683 }
1684 return 0;
1685 }
1686
setMode(audio_mode_t mode)1687 void AudioFlinger::ThreadBase::setMode(audio_mode_t mode)
1688 {
1689 Mutex::Autolock _l(mLock);
1690 size_t size = mEffectChains.size();
1691 for (size_t i = 0; i < size; i++) {
1692 mEffectChains[i]->setMode_l(mode);
1693 }
1694 }
1695
toAudioPortConfig(struct audio_port_config * config)1696 void AudioFlinger::ThreadBase::toAudioPortConfig(struct audio_port_config *config)
1697 {
1698 config->type = AUDIO_PORT_TYPE_MIX;
1699 config->ext.mix.handle = mId;
1700 config->sample_rate = mSampleRate;
1701 config->format = mFormat;
1702 config->channel_mask = mChannelMask;
1703 config->config_mask = AUDIO_PORT_CONFIG_SAMPLE_RATE|AUDIO_PORT_CONFIG_CHANNEL_MASK|
1704 AUDIO_PORT_CONFIG_FORMAT;
1705 }
1706
systemReady()1707 void AudioFlinger::ThreadBase::systemReady()
1708 {
1709 Mutex::Autolock _l(mLock);
1710 if (mSystemReady) {
1711 return;
1712 }
1713 mSystemReady = true;
1714
1715 for (size_t i = 0; i < mPendingConfigEvents.size(); i++) {
1716 sendConfigEvent_l(mPendingConfigEvents.editItemAt(i));
1717 }
1718 mPendingConfigEvents.clear();
1719 }
1720
1721 template <typename T>
add(const sp<T> & track)1722 ssize_t AudioFlinger::ThreadBase::ActiveTracks<T>::add(const sp<T> &track) {
1723 ssize_t index = mActiveTracks.indexOf(track);
1724 if (index >= 0) {
1725 ALOGW("ActiveTracks<T>::add track %p already there", track.get());
1726 return index;
1727 }
1728 logTrack("add", track);
1729 mActiveTracksGeneration++;
1730 mLatestActiveTrack = track;
1731 ++mBatteryCounter[track->uid()].second;
1732 mHasChanged = true;
1733 return mActiveTracks.add(track);
1734 }
1735
1736 template <typename T>
remove(const sp<T> & track)1737 ssize_t AudioFlinger::ThreadBase::ActiveTracks<T>::remove(const sp<T> &track) {
1738 ssize_t index = mActiveTracks.remove(track);
1739 if (index < 0) {
1740 ALOGW("ActiveTracks<T>::remove nonexistent track %p", track.get());
1741 return index;
1742 }
1743 logTrack("remove", track);
1744 mActiveTracksGeneration++;
1745 --mBatteryCounter[track->uid()].second;
1746 // mLatestActiveTrack is not cleared even if is the same as track.
1747 mHasChanged = true;
1748 #ifdef TEE_SINK
1749 track->dumpTee(-1 /* fd */, "_REMOVE");
1750 #endif
1751 track->logEndInterval(); // log to MediaMetrics
1752 return index;
1753 }
1754
1755 template <typename T>
clear()1756 void AudioFlinger::ThreadBase::ActiveTracks<T>::clear() {
1757 for (const sp<T> &track : mActiveTracks) {
1758 BatteryNotifier::getInstance().noteStopAudio(track->uid());
1759 logTrack("clear", track);
1760 }
1761 mLastActiveTracksGeneration = mActiveTracksGeneration;
1762 if (!mActiveTracks.empty()) { mHasChanged = true; }
1763 mActiveTracks.clear();
1764 mLatestActiveTrack.clear();
1765 mBatteryCounter.clear();
1766 }
1767
1768 template <typename T>
updatePowerState(sp<ThreadBase> thread,bool force)1769 void AudioFlinger::ThreadBase::ActiveTracks<T>::updatePowerState(
1770 sp<ThreadBase> thread, bool force) {
1771 // Updates ActiveTracks client uids to the thread wakelock.
1772 if (mActiveTracksGeneration != mLastActiveTracksGeneration || force) {
1773 thread->updateWakeLockUids_l(getWakeLockUids());
1774 mLastActiveTracksGeneration = mActiveTracksGeneration;
1775 }
1776
1777 // Updates BatteryNotifier uids
1778 for (auto it = mBatteryCounter.begin(); it != mBatteryCounter.end();) {
1779 const uid_t uid = it->first;
1780 ssize_t &previous = it->second.first;
1781 ssize_t ¤t = it->second.second;
1782 if (current > 0) {
1783 if (previous == 0) {
1784 BatteryNotifier::getInstance().noteStartAudio(uid);
1785 }
1786 previous = current;
1787 ++it;
1788 } else if (current == 0) {
1789 if (previous > 0) {
1790 BatteryNotifier::getInstance().noteStopAudio(uid);
1791 }
1792 it = mBatteryCounter.erase(it); // std::map<> is stable on iterator erase.
1793 } else /* (current < 0) */ {
1794 LOG_ALWAYS_FATAL("negative battery count %zd", current);
1795 }
1796 }
1797 }
1798
1799 template <typename T>
readAndClearHasChanged()1800 bool AudioFlinger::ThreadBase::ActiveTracks<T>::readAndClearHasChanged() {
1801 bool hasChanged = mHasChanged;
1802 mHasChanged = false;
1803
1804 for (const sp<T> &track : mActiveTracks) {
1805 // Do not short-circuit as all hasChanged states must be reset
1806 // as all the metadata are going to be sent
1807 hasChanged |= track->readAndClearHasChanged();
1808 }
1809 return hasChanged;
1810 }
1811
1812 template <typename T>
logTrack(const char * funcName,const sp<T> & track) const1813 void AudioFlinger::ThreadBase::ActiveTracks<T>::logTrack(
1814 const char *funcName, const sp<T> &track) const {
1815 if (mLocalLog != nullptr) {
1816 String8 result;
1817 track->appendDump(result, false /* active */);
1818 mLocalLog->log("AT::%-10s(%p) %s", funcName, track.get(), result.string());
1819 }
1820 }
1821
broadcast_l()1822 void AudioFlinger::ThreadBase::broadcast_l()
1823 {
1824 // Thread could be blocked waiting for async
1825 // so signal it to handle state changes immediately
1826 // If threadLoop is currently unlocked a signal of mWaitWorkCV will
1827 // be lost so we also flag to prevent it blocking on mWaitWorkCV
1828 mSignalPending = true;
1829 mWaitWorkCV.broadcast();
1830 }
1831
1832 // Call only from threadLoop() or when it is idle.
1833 // Do not call from high performance code as this may do binder rpc to the MediaMetrics service.
sendStatistics(bool force)1834 void AudioFlinger::ThreadBase::sendStatistics(bool force)
1835 {
1836 // Do not log if we have no stats.
1837 // We choose the timestamp verifier because it is the most likely item to be present.
1838 const int64_t nstats = mTimestampVerifier.getN() - mLastRecordedTimestampVerifierN;
1839 if (nstats == 0) {
1840 return;
1841 }
1842
1843 // Don't log more frequently than once per 12 hours.
1844 // We use BOOTTIME to include suspend time.
1845 const int64_t timeNs = systemTime(SYSTEM_TIME_BOOTTIME);
1846 const int64_t sinceNs = timeNs - mLastRecordedTimeNs; // ok if mLastRecordedTimeNs = 0
1847 if (!force && sinceNs <= 12 * NANOS_PER_HOUR) {
1848 return;
1849 }
1850
1851 mLastRecordedTimestampVerifierN = mTimestampVerifier.getN();
1852 mLastRecordedTimeNs = timeNs;
1853
1854 std::unique_ptr<mediametrics::Item> item(mediametrics::Item::create("audiothread"));
1855
1856 #define MM_PREFIX "android.media.audiothread." // avoid cut-n-paste errors.
1857
1858 // thread configuration
1859 item->setInt32(MM_PREFIX "id", (int32_t)mId); // IO handle
1860 // item->setInt32(MM_PREFIX "portId", (int32_t)mPortId);
1861 item->setCString(MM_PREFIX "type", threadTypeToString(mType));
1862 item->setInt32(MM_PREFIX "sampleRate", (int32_t)mSampleRate);
1863 item->setInt64(MM_PREFIX "channelMask", (int64_t)mChannelMask);
1864 item->setCString(MM_PREFIX "encoding", toString(mFormat).c_str());
1865 item->setInt32(MM_PREFIX "frameCount", (int32_t)mFrameCount);
1866 item->setCString(MM_PREFIX "outDevice", toString(outDeviceTypes()).c_str());
1867 item->setCString(MM_PREFIX "inDevice", toString(inDeviceType()).c_str());
1868
1869 // thread statistics
1870 if (mIoJitterMs.getN() > 0) {
1871 item->setDouble(MM_PREFIX "ioJitterMs.mean", mIoJitterMs.getMean());
1872 item->setDouble(MM_PREFIX "ioJitterMs.std", mIoJitterMs.getStdDev());
1873 }
1874 if (mProcessTimeMs.getN() > 0) {
1875 item->setDouble(MM_PREFIX "processTimeMs.mean", mProcessTimeMs.getMean());
1876 item->setDouble(MM_PREFIX "processTimeMs.std", mProcessTimeMs.getStdDev());
1877 }
1878 const auto tsjitter = mTimestampVerifier.getJitterMs();
1879 if (tsjitter.getN() > 0) {
1880 item->setDouble(MM_PREFIX "timestampJitterMs.mean", tsjitter.getMean());
1881 item->setDouble(MM_PREFIX "timestampJitterMs.std", tsjitter.getStdDev());
1882 }
1883 if (mLatencyMs.getN() > 0) {
1884 item->setDouble(MM_PREFIX "latencyMs.mean", mLatencyMs.getMean());
1885 item->setDouble(MM_PREFIX "latencyMs.std", mLatencyMs.getStdDev());
1886 }
1887
1888 item->selfrecord();
1889 }
1890
1891 // ----------------------------------------------------------------------------
1892 // Playback
1893 // ----------------------------------------------------------------------------
1894
PlaybackThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,type_t type,bool systemReady)1895 AudioFlinger::PlaybackThread::PlaybackThread(const sp<AudioFlinger>& audioFlinger,
1896 AudioStreamOut* output,
1897 audio_io_handle_t id,
1898 type_t type,
1899 bool systemReady)
1900 : ThreadBase(audioFlinger, id, type, systemReady, true /* isOut */),
1901 mNormalFrameCount(0), mSinkBuffer(NULL),
1902 mMixerBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1903 mMixerBuffer(NULL),
1904 mMixerBufferSize(0),
1905 mMixerBufferFormat(AUDIO_FORMAT_INVALID),
1906 mMixerBufferValid(false),
1907 mEffectBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1908 mEffectBuffer(NULL),
1909 mEffectBufferSize(0),
1910 mEffectBufferFormat(AUDIO_FORMAT_INVALID),
1911 mEffectBufferValid(false),
1912 mSuspended(0), mBytesWritten(0),
1913 mFramesWritten(0),
1914 mSuspendedFrames(0),
1915 mActiveTracks(&this->mLocalLog),
1916 // mStreamTypes[] initialized in constructor body
1917 mTracks(type == MIXER),
1918 mOutput(output),
1919 mNumWrites(0), mNumDelayedWrites(0), mInWrite(false),
1920 mMixerStatus(MIXER_IDLE),
1921 mMixerStatusIgnoringFastTracks(MIXER_IDLE),
1922 mStandbyDelayNs(AudioFlinger::mStandbyTimeInNsecs),
1923 mBytesRemaining(0),
1924 mCurrentWriteLength(0),
1925 mUseAsyncWrite(false),
1926 mWriteAckSequence(0),
1927 mDrainSequence(0),
1928 mScreenState(AudioFlinger::mScreenState),
1929 // index 0 is reserved for normal mixer's submix
1930 mFastTrackAvailMask(((1 << FastMixerState::sMaxFastTracks) - 1) & ~1),
1931 mHwSupportsPause(false), mHwPaused(false), mFlushPending(false),
1932 mLeftVolFloat(-1.0), mRightVolFloat(-1.0),
1933 mDownStreamPatch{}
1934 {
1935 snprintf(mThreadName, kThreadNameLength, "AudioOut_%X", id);
1936 mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
1937
1938 // Assumes constructor is called by AudioFlinger with it's mLock held, but
1939 // it would be safer to explicitly pass initial masterVolume/masterMute as
1940 // parameter.
1941 //
1942 // If the HAL we are using has support for master volume or master mute,
1943 // then do not attenuate or mute during mixing (just leave the volume at 1.0
1944 // and the mute set to false).
1945 mMasterVolume = audioFlinger->masterVolume_l();
1946 mMasterMute = audioFlinger->masterMute_l();
1947 if (mOutput->audioHwDev) {
1948 if (mOutput->audioHwDev->canSetMasterVolume()) {
1949 mMasterVolume = 1.0;
1950 }
1951
1952 if (mOutput->audioHwDev->canSetMasterMute()) {
1953 mMasterMute = false;
1954 }
1955 mIsMsdDevice = strcmp(
1956 mOutput->audioHwDev->moduleName(), AUDIO_HARDWARE_MODULE_ID_MSD) == 0;
1957 }
1958
1959 readOutputParameters_l();
1960
1961 // TODO: We may also match on address as well as device type for
1962 // AUDIO_DEVICE_OUT_BUS, AUDIO_DEVICE_OUT_ALL_A2DP, AUDIO_DEVICE_OUT_REMOTE_SUBMIX
1963 if (type == MIXER || type == DIRECT || type == OFFLOAD) {
1964 // TODO: This property should be ensure that only contains one single device type.
1965 mTimestampCorrectedDevice = (audio_devices_t)property_get_int64(
1966 "audio.timestamp.corrected_output_device",
1967 (int64_t)(mIsMsdDevice ? AUDIO_DEVICE_OUT_BUS // turn on by default for MSD
1968 : AUDIO_DEVICE_NONE));
1969 }
1970
1971 for (int i = AUDIO_STREAM_MIN; i < AUDIO_STREAM_FOR_POLICY_CNT; ++i) {
1972 const audio_stream_type_t stream{static_cast<audio_stream_type_t>(i)};
1973 mStreamTypes[stream].volume = 0.0f;
1974 mStreamTypes[stream].mute = mAudioFlinger->streamMute_l(stream);
1975 }
1976 // Audio patch and call assistant volume are always max
1977 mStreamTypes[AUDIO_STREAM_PATCH].volume = 1.0f;
1978 mStreamTypes[AUDIO_STREAM_PATCH].mute = false;
1979 mStreamTypes[AUDIO_STREAM_CALL_ASSISTANT].volume = 1.0f;
1980 mStreamTypes[AUDIO_STREAM_CALL_ASSISTANT].mute = false;
1981 }
1982
~PlaybackThread()1983 AudioFlinger::PlaybackThread::~PlaybackThread()
1984 {
1985 mAudioFlinger->unregisterWriter(mNBLogWriter);
1986 free(mSinkBuffer);
1987 free(mMixerBuffer);
1988 free(mEffectBuffer);
1989 }
1990
1991 // Thread virtuals
1992
onFirstRef()1993 void AudioFlinger::PlaybackThread::onFirstRef()
1994 {
1995 if (!isStreamInitialized()) {
1996 ALOGE("The stream is not open yet"); // This should not happen.
1997 } else {
1998 // setEventCallback will need a strong pointer as a parameter. Calling it
1999 // here instead of constructor of PlaybackThread so that the onFirstRef
2000 // callback would not be made on an incompletely constructed object.
2001 if (mOutput->stream->setEventCallback(this) != OK) {
2002 ALOGD("Failed to add event callback");
2003 }
2004 }
2005 run(mThreadName, ANDROID_PRIORITY_URGENT_AUDIO);
2006 }
2007
2008 // ThreadBase virtuals
preExit()2009 void AudioFlinger::PlaybackThread::preExit()
2010 {
2011 ALOGV(" preExit()");
2012 // FIXME this is using hard-coded strings but in the future, this functionality will be
2013 // converted to use audio HAL extensions required to support tunneling
2014 status_t result = mOutput->stream->setParameters(String8("exiting=1"));
2015 ALOGE_IF(result != OK, "Error when setting parameters on exit: %d", result);
2016 }
2017
dumpTracks_l(int fd,const Vector<String16> & args __unused)2018 void AudioFlinger::PlaybackThread::dumpTracks_l(int fd, const Vector<String16>& args __unused)
2019 {
2020 String8 result;
2021
2022 result.appendFormat(" Stream volumes in dB: ");
2023 for (int i = 0; i < AUDIO_STREAM_CNT; ++i) {
2024 const stream_type_t *st = &mStreamTypes[i];
2025 if (i > 0) {
2026 result.appendFormat(", ");
2027 }
2028 result.appendFormat("%d:%.2g", i, 20.0 * log10(st->volume));
2029 if (st->mute) {
2030 result.append("M");
2031 }
2032 }
2033 result.append("\n");
2034 write(fd, result.string(), result.length());
2035 result.clear();
2036
2037 // These values are "raw"; they will wrap around. See prepareTracks_l() for a better way.
2038 FastTrackUnderruns underruns = getFastTrackUnderruns(0);
2039 dprintf(fd, " Normal mixer raw underrun counters: partial=%u empty=%u\n",
2040 underruns.mBitFields.mPartial, underruns.mBitFields.mEmpty);
2041
2042 size_t numtracks = mTracks.size();
2043 size_t numactive = mActiveTracks.size();
2044 dprintf(fd, " %zu Tracks", numtracks);
2045 size_t numactiveseen = 0;
2046 const char *prefix = " ";
2047 if (numtracks) {
2048 dprintf(fd, " of which %zu are active\n", numactive);
2049 result.append(prefix);
2050 mTracks[0]->appendDumpHeader(result);
2051 for (size_t i = 0; i < numtracks; ++i) {
2052 sp<Track> track = mTracks[i];
2053 if (track != 0) {
2054 bool active = mActiveTracks.indexOf(track) >= 0;
2055 if (active) {
2056 numactiveseen++;
2057 }
2058 result.append(prefix);
2059 track->appendDump(result, active);
2060 }
2061 }
2062 } else {
2063 result.append("\n");
2064 }
2065 if (numactiveseen != numactive) {
2066 // some tracks in the active list were not in the tracks list
2067 result.append(" The following tracks are in the active list but"
2068 " not in the track list\n");
2069 result.append(prefix);
2070 mActiveTracks[0]->appendDumpHeader(result);
2071 for (size_t i = 0; i < numactive; ++i) {
2072 sp<Track> track = mActiveTracks[i];
2073 if (mTracks.indexOf(track) < 0) {
2074 result.append(prefix);
2075 track->appendDump(result, true /* active */);
2076 }
2077 }
2078 }
2079
2080 write(fd, result.string(), result.size());
2081 }
2082
dumpInternals_l(int fd,const Vector<String16> & args __unused)2083 void AudioFlinger::PlaybackThread::dumpInternals_l(int fd, const Vector<String16>& args __unused)
2084 {
2085 dprintf(fd, " Master volume: %f\n", mMasterVolume);
2086 dprintf(fd, " Master mute: %s\n", mMasterMute ? "on" : "off");
2087 if (mHapticChannelMask != AUDIO_CHANNEL_NONE) {
2088 dprintf(fd, " Haptic channel mask: %#x (%s)\n", mHapticChannelMask,
2089 channelMaskToString(mHapticChannelMask, true /* output */).c_str());
2090 }
2091 dprintf(fd, " Normal frame count: %zu\n", mNormalFrameCount);
2092 dprintf(fd, " Total writes: %d\n", mNumWrites);
2093 dprintf(fd, " Delayed writes: %d\n", mNumDelayedWrites);
2094 dprintf(fd, " Blocked in write: %s\n", mInWrite ? "yes" : "no");
2095 dprintf(fd, " Suspend count: %d\n", mSuspended);
2096 dprintf(fd, " Sink buffer : %p\n", mSinkBuffer);
2097 dprintf(fd, " Mixer buffer: %p\n", mMixerBuffer);
2098 dprintf(fd, " Effect buffer: %p\n", mEffectBuffer);
2099 dprintf(fd, " Fast track availMask=%#x\n", mFastTrackAvailMask);
2100 dprintf(fd, " Standby delay ns=%lld\n", (long long)mStandbyDelayNs);
2101 AudioStreamOut *output = mOutput;
2102 audio_output_flags_t flags = output != NULL ? output->flags : AUDIO_OUTPUT_FLAG_NONE;
2103 dprintf(fd, " AudioStreamOut: %p flags %#x (%s)\n",
2104 output, flags, toString(flags).c_str());
2105 dprintf(fd, " Frames written: %lld\n", (long long)mFramesWritten);
2106 dprintf(fd, " Suspended frames: %lld\n", (long long)mSuspendedFrames);
2107 if (mPipeSink.get() != nullptr) {
2108 dprintf(fd, " PipeSink frames written: %lld\n", (long long)mPipeSink->framesWritten());
2109 }
2110 if (output != nullptr) {
2111 dprintf(fd, " Hal stream dump:\n");
2112 (void)output->stream->dump(fd);
2113 }
2114 }
2115
2116 // PlaybackThread::createTrack_l() must be called with AudioFlinger::mLock held
createTrack_l(const sp<AudioFlinger::Client> & client,audio_stream_type_t streamType,const audio_attributes_t & attr,uint32_t * pSampleRate,audio_format_t format,audio_channel_mask_t channelMask,size_t * pFrameCount,size_t * pNotificationFrameCount,uint32_t notificationsPerBuffer,float speed,const sp<IMemory> & sharedBuffer,audio_session_t sessionId,audio_output_flags_t * flags,pid_t creatorPid,const AttributionSourceState & attributionSource,pid_t tid,status_t * status,audio_port_handle_t portId,const sp<media::IAudioTrackCallback> & callback)2117 sp<AudioFlinger::PlaybackThread::Track> AudioFlinger::PlaybackThread::createTrack_l(
2118 const sp<AudioFlinger::Client>& client,
2119 audio_stream_type_t streamType,
2120 const audio_attributes_t& attr,
2121 uint32_t *pSampleRate,
2122 audio_format_t format,
2123 audio_channel_mask_t channelMask,
2124 size_t *pFrameCount,
2125 size_t *pNotificationFrameCount,
2126 uint32_t notificationsPerBuffer,
2127 float speed,
2128 const sp<IMemory>& sharedBuffer,
2129 audio_session_t sessionId,
2130 audio_output_flags_t *flags,
2131 pid_t creatorPid,
2132 const AttributionSourceState& attributionSource,
2133 pid_t tid,
2134 status_t *status,
2135 audio_port_handle_t portId,
2136 const sp<media::IAudioTrackCallback>& callback)
2137 {
2138 size_t frameCount = *pFrameCount;
2139 size_t notificationFrameCount = *pNotificationFrameCount;
2140 sp<Track> track;
2141 status_t lStatus;
2142 audio_output_flags_t outputFlags = mOutput->flags;
2143 audio_output_flags_t requestedFlags = *flags;
2144 uint32_t sampleRate;
2145
2146 if (sharedBuffer != 0 && checkIMemory(sharedBuffer) != NO_ERROR) {
2147 lStatus = BAD_VALUE;
2148 goto Exit;
2149 }
2150
2151 if (*pSampleRate == 0) {
2152 *pSampleRate = mSampleRate;
2153 }
2154 sampleRate = *pSampleRate;
2155
2156 // special case for FAST flag considered OK if fast mixer is present
2157 if (hasFastMixer()) {
2158 outputFlags = (audio_output_flags_t)(outputFlags | AUDIO_OUTPUT_FLAG_FAST);
2159 }
2160
2161 // Check if requested flags are compatible with output stream flags
2162 if ((*flags & outputFlags) != *flags) {
2163 ALOGW("createTrack_l(): mismatch between requested flags (%08x) and output flags (%08x)",
2164 *flags, outputFlags);
2165 *flags = (audio_output_flags_t)(*flags & outputFlags);
2166 }
2167
2168 // client expresses a preference for FAST, but we get the final say
2169 if (*flags & AUDIO_OUTPUT_FLAG_FAST) {
2170 if (
2171 // PCM data
2172 audio_is_linear_pcm(format) &&
2173 // TODO: extract as a data library function that checks that a computationally
2174 // expensive downmixer is not required: isFastOutputChannelConversion()
2175 (channelMask == (mChannelMask | mHapticChannelMask) ||
2176 mChannelMask != AUDIO_CHANNEL_OUT_STEREO ||
2177 (channelMask == AUDIO_CHANNEL_OUT_MONO
2178 /* && mChannelMask == AUDIO_CHANNEL_OUT_STEREO */)) &&
2179 // hardware sample rate
2180 (sampleRate == mSampleRate) &&
2181 // normal mixer has an associated fast mixer
2182 hasFastMixer() &&
2183 // there are sufficient fast track slots available
2184 (mFastTrackAvailMask != 0)
2185 // FIXME test that MixerThread for this fast track has a capable output HAL
2186 // FIXME add a permission test also?
2187 ) {
2188 // static tracks can have any nonzero framecount, streaming tracks check against minimum.
2189 if (sharedBuffer == 0) {
2190 // read the fast track multiplier property the first time it is needed
2191 int ok = pthread_once(&sFastTrackMultiplierOnce, sFastTrackMultiplierInit);
2192 if (ok != 0) {
2193 ALOGE("%s pthread_once failed: %d", __func__, ok);
2194 }
2195 frameCount = max(frameCount, mFrameCount * sFastTrackMultiplier); // incl framecount 0
2196 }
2197
2198 // check compatibility with audio effects.
2199 { // scope for mLock
2200 Mutex::Autolock _l(mLock);
2201 for (audio_session_t session : {
2202 AUDIO_SESSION_DEVICE,
2203 AUDIO_SESSION_OUTPUT_STAGE,
2204 AUDIO_SESSION_OUTPUT_MIX,
2205 sessionId,
2206 }) {
2207 sp<EffectChain> chain = getEffectChain_l(session);
2208 if (chain.get() != nullptr) {
2209 audio_output_flags_t old = *flags;
2210 chain->checkOutputFlagCompatibility(flags);
2211 if (old != *flags) {
2212 ALOGV("AUDIO_OUTPUT_FLAGS denied by effect, session=%d old=%#x new=%#x",
2213 (int)session, (int)old, (int)*flags);
2214 }
2215 }
2216 }
2217 }
2218 ALOGV_IF((*flags & AUDIO_OUTPUT_FLAG_FAST) != 0,
2219 "AUDIO_OUTPUT_FLAG_FAST accepted: frameCount=%zu mFrameCount=%zu",
2220 frameCount, mFrameCount);
2221 } else {
2222 ALOGV("AUDIO_OUTPUT_FLAG_FAST denied: sharedBuffer=%p frameCount=%zu "
2223 "mFrameCount=%zu format=%#x mFormat=%#x isLinear=%d channelMask=%#x "
2224 "sampleRate=%u mSampleRate=%u "
2225 "hasFastMixer=%d tid=%d fastTrackAvailMask=%#x",
2226 sharedBuffer.get(), frameCount, mFrameCount, format, mFormat,
2227 audio_is_linear_pcm(format), channelMask, sampleRate,
2228 mSampleRate, hasFastMixer(), tid, mFastTrackAvailMask);
2229 *flags = (audio_output_flags_t)(*flags & ~AUDIO_OUTPUT_FLAG_FAST);
2230 }
2231 }
2232
2233 if (!audio_has_proportional_frames(format)) {
2234 if (sharedBuffer != 0) {
2235 // Same comment as below about ignoring frameCount parameter for set()
2236 frameCount = sharedBuffer->size();
2237 } else if (frameCount == 0) {
2238 frameCount = mNormalFrameCount;
2239 }
2240 if (notificationFrameCount != frameCount) {
2241 notificationFrameCount = frameCount;
2242 }
2243 } else if (sharedBuffer != 0) {
2244 // FIXME: Ensure client side memory buffers need
2245 // not have additional alignment beyond sample
2246 // (e.g. 16 bit stereo accessed as 32 bit frame).
2247 size_t alignment = audio_bytes_per_sample(format);
2248 if (alignment & 1) {
2249 // for AUDIO_FORMAT_PCM_24_BIT_PACKED (not exposed through Java).
2250 alignment = 1;
2251 }
2252 uint32_t channelCount = audio_channel_count_from_out_mask(channelMask);
2253 size_t frameSize = channelCount * audio_bytes_per_sample(format);
2254 if (channelCount > 1) {
2255 // More than 2 channels does not require stronger alignment than stereo
2256 alignment <<= 1;
2257 }
2258 if (((uintptr_t)sharedBuffer->unsecurePointer() & (alignment - 1)) != 0) {
2259 ALOGE("Invalid buffer alignment: address %p, channel count %u",
2260 sharedBuffer->unsecurePointer(), channelCount);
2261 lStatus = BAD_VALUE;
2262 goto Exit;
2263 }
2264
2265 // When initializing a shared buffer AudioTrack via constructors,
2266 // there's no frameCount parameter.
2267 // But when initializing a shared buffer AudioTrack via set(),
2268 // there _is_ a frameCount parameter. We silently ignore it.
2269 frameCount = sharedBuffer->size() / frameSize;
2270 } else {
2271 size_t minFrameCount = 0;
2272 // For fast tracks we try to respect the application's request for notifications per buffer.
2273 if (*flags & AUDIO_OUTPUT_FLAG_FAST) {
2274 if (notificationsPerBuffer > 0) {
2275 // Avoid possible arithmetic overflow during multiplication.
2276 if (notificationsPerBuffer > SIZE_MAX / mFrameCount) {
2277 ALOGE("Requested notificationPerBuffer=%u ignored for HAL frameCount=%zu",
2278 notificationsPerBuffer, mFrameCount);
2279 } else {
2280 minFrameCount = mFrameCount * notificationsPerBuffer;
2281 }
2282 }
2283 } else {
2284 // For normal PCM streaming tracks, update minimum frame count.
2285 // Buffer depth is forced to be at least 2 x the normal mixer frame count and
2286 // cover audio hardware latency.
2287 // This is probably too conservative, but legacy application code may depend on it.
2288 // If you change this calculation, also review the start threshold which is related.
2289 uint32_t latencyMs = latency_l();
2290 if (latencyMs == 0) {
2291 ALOGE("Error when retrieving output stream latency");
2292 lStatus = UNKNOWN_ERROR;
2293 goto Exit;
2294 }
2295
2296 minFrameCount = AudioSystem::calculateMinFrameCount(latencyMs, mNormalFrameCount,
2297 mSampleRate, sampleRate, speed /*, 0 mNotificationsPerBufferReq*/);
2298
2299 }
2300 if (frameCount < minFrameCount) {
2301 frameCount = minFrameCount;
2302 }
2303 }
2304
2305 // Make sure that application is notified with sufficient margin before underrun.
2306 // The client can divide the AudioTrack buffer into sub-buffers,
2307 // and expresses its desire to server as the notification frame count.
2308 if (sharedBuffer == 0 && audio_is_linear_pcm(format)) {
2309 size_t maxNotificationFrames;
2310 if (*flags & AUDIO_OUTPUT_FLAG_FAST) {
2311 // notify every HAL buffer, regardless of the size of the track buffer
2312 maxNotificationFrames = mFrameCount;
2313 } else {
2314 // Triple buffer the notification period for a triple buffered mixer period;
2315 // otherwise, double buffering for the notification period is fine.
2316 //
2317 // TODO: This should be moved to AudioTrack to modify the notification period
2318 // on AudioTrack::setBufferSizeInFrames() changes.
2319 const int nBuffering =
2320 (uint64_t{frameCount} * mSampleRate)
2321 / (uint64_t{mNormalFrameCount} * sampleRate) == 3 ? 3 : 2;
2322
2323 maxNotificationFrames = frameCount / nBuffering;
2324 // If client requested a fast track but this was denied, then use the smaller maximum.
2325 if (requestedFlags & AUDIO_OUTPUT_FLAG_FAST) {
2326 size_t maxNotificationFramesFastDenied = FMS_20 * sampleRate / 1000;
2327 if (maxNotificationFrames > maxNotificationFramesFastDenied) {
2328 maxNotificationFrames = maxNotificationFramesFastDenied;
2329 }
2330 }
2331 }
2332 if (notificationFrameCount == 0 || notificationFrameCount > maxNotificationFrames) {
2333 if (notificationFrameCount == 0) {
2334 ALOGD("Client defaulted notificationFrames to %zu for frameCount %zu",
2335 maxNotificationFrames, frameCount);
2336 } else {
2337 ALOGW("Client adjusted notificationFrames from %zu to %zu for frameCount %zu",
2338 notificationFrameCount, maxNotificationFrames, frameCount);
2339 }
2340 notificationFrameCount = maxNotificationFrames;
2341 }
2342 }
2343
2344 *pFrameCount = frameCount;
2345 *pNotificationFrameCount = notificationFrameCount;
2346
2347 switch (mType) {
2348
2349 case DIRECT:
2350 if (audio_is_linear_pcm(format)) { // TODO maybe use audio_has_proportional_frames()?
2351 if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
2352 ALOGE("createTrack_l() Bad parameter: sampleRate %u format %#x, channelMask 0x%08x "
2353 "for output %p with format %#x",
2354 sampleRate, format, channelMask, mOutput, mFormat);
2355 lStatus = BAD_VALUE;
2356 goto Exit;
2357 }
2358 }
2359 break;
2360
2361 case OFFLOAD:
2362 if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
2363 ALOGE("createTrack_l() Bad parameter: sampleRate %d format %#x, channelMask 0x%08x \""
2364 "for output %p with format %#x",
2365 sampleRate, format, channelMask, mOutput, mFormat);
2366 lStatus = BAD_VALUE;
2367 goto Exit;
2368 }
2369 break;
2370
2371 default:
2372 if (!audio_is_linear_pcm(format)) {
2373 ALOGE("createTrack_l() Bad parameter: format %#x \""
2374 "for output %p with format %#x",
2375 format, mOutput, mFormat);
2376 lStatus = BAD_VALUE;
2377 goto Exit;
2378 }
2379 if (sampleRate > mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX) {
2380 ALOGE("Sample rate out of range: %u mSampleRate %u", sampleRate, mSampleRate);
2381 lStatus = BAD_VALUE;
2382 goto Exit;
2383 }
2384 break;
2385
2386 }
2387
2388 lStatus = initCheck();
2389 if (lStatus != NO_ERROR) {
2390 ALOGE("createTrack_l() audio driver not initialized");
2391 goto Exit;
2392 }
2393
2394 { // scope for mLock
2395 Mutex::Autolock _l(mLock);
2396
2397 // all tracks in same audio session must share the same routing strategy otherwise
2398 // conflicts will happen when tracks are moved from one output to another by audio policy
2399 // manager
2400 product_strategy_t strategy = AudioSystem::getStrategyForStream(streamType);
2401 for (size_t i = 0; i < mTracks.size(); ++i) {
2402 sp<Track> t = mTracks[i];
2403 if (t != 0 && t->isExternalTrack()) {
2404 product_strategy_t actual = AudioSystem::getStrategyForStream(t->streamType());
2405 if (sessionId == t->sessionId() && strategy != actual) {
2406 ALOGE("createTrack_l() mismatched strategy; expected %u but found %u",
2407 strategy, actual);
2408 lStatus = BAD_VALUE;
2409 goto Exit;
2410 }
2411 }
2412 }
2413
2414 // Set DIRECT flag if current thread is DirectOutputThread. This can
2415 // happen when the playback is rerouted to direct output thread by
2416 // dynamic audio policy.
2417 // Do NOT report the flag changes back to client, since the client
2418 // doesn't explicitly request a direct flag.
2419 audio_output_flags_t trackFlags = *flags;
2420 if (mType == DIRECT) {
2421 trackFlags = static_cast<audio_output_flags_t>(trackFlags | AUDIO_OUTPUT_FLAG_DIRECT);
2422 }
2423
2424 track = new Track(this, client, streamType, attr, sampleRate, format,
2425 channelMask, frameCount,
2426 nullptr /* buffer */, (size_t)0 /* bufferSize */, sharedBuffer,
2427 sessionId, creatorPid, attributionSource, trackFlags,
2428 TrackBase::TYPE_DEFAULT, portId, SIZE_MAX /*frameCountToBeReady*/, speed);
2429
2430 lStatus = track != 0 ? track->initCheck() : (status_t) NO_MEMORY;
2431 if (lStatus != NO_ERROR) {
2432 ALOGE("createTrack_l() initCheck failed %d; no control block?", lStatus);
2433 // track must be cleared from the caller as the caller has the AF lock
2434 goto Exit;
2435 }
2436 mTracks.add(track);
2437 {
2438 Mutex::Autolock _atCbL(mAudioTrackCbLock);
2439 if (callback.get() != nullptr) {
2440 mAudioTrackCallbacks.emplace(track, callback);
2441 }
2442 }
2443
2444 sp<EffectChain> chain = getEffectChain_l(sessionId);
2445 if (chain != 0) {
2446 ALOGV("createTrack_l() setting main buffer %p", chain->inBuffer());
2447 track->setMainBuffer(chain->inBuffer());
2448 chain->setStrategy(AudioSystem::getStrategyForStream(track->streamType()));
2449 chain->incTrackCnt();
2450 }
2451
2452 if ((*flags & AUDIO_OUTPUT_FLAG_FAST) && (tid != -1)) {
2453 pid_t callingPid = IPCThreadState::self()->getCallingPid();
2454 // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
2455 // so ask activity manager to do this on our behalf
2456 sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp, true /*forApp*/);
2457 }
2458 }
2459
2460 lStatus = NO_ERROR;
2461
2462 Exit:
2463 *status = lStatus;
2464 return track;
2465 }
2466
2467 template<typename T>
remove(const sp<T> & track)2468 ssize_t AudioFlinger::PlaybackThread::Tracks<T>::remove(const sp<T> &track)
2469 {
2470 const int trackId = track->id();
2471 const ssize_t index = mTracks.remove(track);
2472 if (index >= 0) {
2473 if (mSaveDeletedTrackIds) {
2474 // We can't directly access mAudioMixer since the caller may be outside of threadLoop.
2475 // Instead, we add to mDeletedTrackIds which is solely used for mAudioMixer update,
2476 // to be handled when MixerThread::prepareTracks_l() next changes mAudioMixer.
2477 mDeletedTrackIds.emplace(trackId);
2478 }
2479 }
2480 return index;
2481 }
2482
correctLatency_l(uint32_t latency) const2483 uint32_t AudioFlinger::PlaybackThread::correctLatency_l(uint32_t latency) const
2484 {
2485 return latency;
2486 }
2487
latency() const2488 uint32_t AudioFlinger::PlaybackThread::latency() const
2489 {
2490 Mutex::Autolock _l(mLock);
2491 return latency_l();
2492 }
latency_l() const2493 uint32_t AudioFlinger::PlaybackThread::latency_l() const
2494 {
2495 uint32_t latency;
2496 if (initCheck() == NO_ERROR && mOutput->stream->getLatency(&latency) == OK) {
2497 return correctLatency_l(latency);
2498 }
2499 return 0;
2500 }
2501
setMasterVolume(float value)2502 void AudioFlinger::PlaybackThread::setMasterVolume(float value)
2503 {
2504 Mutex::Autolock _l(mLock);
2505 // Don't apply master volume in SW if our HAL can do it for us.
2506 if (mOutput && mOutput->audioHwDev &&
2507 mOutput->audioHwDev->canSetMasterVolume()) {
2508 mMasterVolume = 1.0;
2509 } else {
2510 mMasterVolume = value;
2511 }
2512 }
2513
setMasterBalance(float balance)2514 void AudioFlinger::PlaybackThread::setMasterBalance(float balance)
2515 {
2516 mMasterBalance.store(balance);
2517 }
2518
setMasterMute(bool muted)2519 void AudioFlinger::PlaybackThread::setMasterMute(bool muted)
2520 {
2521 if (isDuplicating()) {
2522 return;
2523 }
2524 Mutex::Autolock _l(mLock);
2525 // Don't apply master mute in SW if our HAL can do it for us.
2526 if (mOutput && mOutput->audioHwDev &&
2527 mOutput->audioHwDev->canSetMasterMute()) {
2528 mMasterMute = false;
2529 } else {
2530 mMasterMute = muted;
2531 }
2532 }
2533
setStreamVolume(audio_stream_type_t stream,float value)2534 void AudioFlinger::PlaybackThread::setStreamVolume(audio_stream_type_t stream, float value)
2535 {
2536 Mutex::Autolock _l(mLock);
2537 mStreamTypes[stream].volume = value;
2538 broadcast_l();
2539 }
2540
setStreamMute(audio_stream_type_t stream,bool muted)2541 void AudioFlinger::PlaybackThread::setStreamMute(audio_stream_type_t stream, bool muted)
2542 {
2543 Mutex::Autolock _l(mLock);
2544 mStreamTypes[stream].mute = muted;
2545 broadcast_l();
2546 }
2547
streamVolume(audio_stream_type_t stream) const2548 float AudioFlinger::PlaybackThread::streamVolume(audio_stream_type_t stream) const
2549 {
2550 Mutex::Autolock _l(mLock);
2551 return mStreamTypes[stream].volume;
2552 }
2553
setVolumeForOutput_l(float left,float right) const2554 void AudioFlinger::PlaybackThread::setVolumeForOutput_l(float left, float right) const
2555 {
2556 mOutput->stream->setVolume(left, right);
2557 }
2558
2559 // addTrack_l() must be called with ThreadBase::mLock held
addTrack_l(const sp<Track> & track)2560 status_t AudioFlinger::PlaybackThread::addTrack_l(const sp<Track>& track)
2561 {
2562 status_t status = ALREADY_EXISTS;
2563
2564 if (mActiveTracks.indexOf(track) < 0) {
2565 // the track is newly added, make sure it fills up all its
2566 // buffers before playing. This is to ensure the client will
2567 // effectively get the latency it requested.
2568 if (track->isExternalTrack()) {
2569 TrackBase::track_state state = track->mState;
2570 mLock.unlock();
2571 status = AudioSystem::startOutput(track->portId());
2572 mLock.lock();
2573 // abort track was stopped/paused while we released the lock
2574 if (state != track->mState) {
2575 if (status == NO_ERROR) {
2576 mLock.unlock();
2577 AudioSystem::stopOutput(track->portId());
2578 mLock.lock();
2579 }
2580 return INVALID_OPERATION;
2581 }
2582 // abort if start is rejected by audio policy manager
2583 if (status != NO_ERROR) {
2584 return PERMISSION_DENIED;
2585 }
2586 #ifdef ADD_BATTERY_DATA
2587 // to track the speaker usage
2588 addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStart);
2589 #endif
2590 sendIoConfigEvent_l(AUDIO_CLIENT_STARTED, track->creatorPid(), track->portId());
2591 }
2592
2593 // set retry count for buffer fill
2594 if (track->isOffloaded()) {
2595 if (track->isStopping_1()) {
2596 track->mRetryCount = kMaxTrackStopRetriesOffload;
2597 } else {
2598 track->mRetryCount = kMaxTrackStartupRetriesOffload;
2599 }
2600 track->mFillingUpStatus = mStandby ? Track::FS_FILLING : Track::FS_FILLED;
2601 } else {
2602 track->mRetryCount = kMaxTrackStartupRetries;
2603 track->mFillingUpStatus =
2604 track->sharedBuffer() != 0 ? Track::FS_FILLED : Track::FS_FILLING;
2605 }
2606
2607 sp<EffectChain> chain = getEffectChain_l(track->sessionId());
2608 if (mHapticChannelMask != AUDIO_CHANNEL_NONE
2609 && ((track->channelMask() & AUDIO_CHANNEL_HAPTIC_ALL) != AUDIO_CHANNEL_NONE
2610 || (chain != nullptr && chain->containsHapticGeneratingEffect_l()))) {
2611 // Unlock due to VibratorService will lock for this call and will
2612 // call Tracks.mute/unmute which also require thread's lock.
2613 mLock.unlock();
2614 const int intensity = AudioFlinger::onExternalVibrationStart(
2615 track->getExternalVibration());
2616 mLock.lock();
2617 track->setHapticIntensity(static_cast<os::HapticScale>(intensity));
2618 // Haptic playback should be enabled by vibrator service.
2619 if (track->getHapticPlaybackEnabled()) {
2620 // Disable haptic playback of all active track to ensure only
2621 // one track playing haptic if current track should play haptic.
2622 for (const auto &t : mActiveTracks) {
2623 t->setHapticPlaybackEnabled(false);
2624 }
2625 }
2626
2627 // Set haptic intensity for effect
2628 if (chain != nullptr) {
2629 chain->setHapticIntensity_l(track->id(), intensity);
2630 }
2631 }
2632
2633 track->mResetDone = false;
2634 track->resetPresentationComplete();
2635 mActiveTracks.add(track);
2636 if (chain != 0) {
2637 ALOGV("addTrack_l() starting track on chain %p for session %d", chain.get(),
2638 track->sessionId());
2639 chain->incActiveTrackCnt();
2640 }
2641
2642 track->logBeginInterval(patchSinksToString(&mPatch)); // log to MediaMetrics
2643 status = NO_ERROR;
2644 }
2645
2646 onAddNewTrack_l();
2647 return status;
2648 }
2649
destroyTrack_l(const sp<Track> & track)2650 bool AudioFlinger::PlaybackThread::destroyTrack_l(const sp<Track>& track)
2651 {
2652 track->terminate();
2653 // active tracks are removed by threadLoop()
2654 bool trackActive = (mActiveTracks.indexOf(track) >= 0);
2655 track->mState = TrackBase::STOPPED;
2656 if (!trackActive) {
2657 removeTrack_l(track);
2658 } else if (track->isFastTrack() || track->isOffloaded() || track->isDirect()) {
2659 track->mState = TrackBase::STOPPING_1;
2660 }
2661
2662 return trackActive;
2663 }
2664
removeTrack_l(const sp<Track> & track)2665 void AudioFlinger::PlaybackThread::removeTrack_l(const sp<Track>& track)
2666 {
2667 track->triggerEvents(AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE);
2668
2669 String8 result;
2670 track->appendDump(result, false /* active */);
2671 mLocalLog.log("removeTrack_l (%p) %s", track.get(), result.string());
2672
2673 mTracks.remove(track);
2674 {
2675 Mutex::Autolock _atCbL(mAudioTrackCbLock);
2676 mAudioTrackCallbacks.erase(track);
2677 }
2678 if (track->isFastTrack()) {
2679 int index = track->mFastIndex;
2680 ALOG_ASSERT(0 < index && index < (int)FastMixerState::sMaxFastTracks);
2681 ALOG_ASSERT(!(mFastTrackAvailMask & (1 << index)));
2682 mFastTrackAvailMask |= 1 << index;
2683 // redundant as track is about to be destroyed, for dumpsys only
2684 track->mFastIndex = -1;
2685 }
2686 sp<EffectChain> chain = getEffectChain_l(track->sessionId());
2687 if (chain != 0) {
2688 chain->decTrackCnt();
2689 }
2690 }
2691
getParameters(const String8 & keys)2692 String8 AudioFlinger::PlaybackThread::getParameters(const String8& keys)
2693 {
2694 Mutex::Autolock _l(mLock);
2695 String8 out_s8;
2696 if (initCheck() == NO_ERROR && mOutput->stream->getParameters(keys, &out_s8) == OK) {
2697 return out_s8;
2698 }
2699 return String8();
2700 }
2701
selectPresentation(int presentationId,int programId)2702 status_t AudioFlinger::DirectOutputThread::selectPresentation(int presentationId, int programId) {
2703 Mutex::Autolock _l(mLock);
2704 if (!isStreamInitialized()) {
2705 return NO_INIT;
2706 }
2707 return mOutput->stream->selectPresentation(presentationId, programId);
2708 }
2709
ioConfigChanged(audio_io_config_event event,pid_t pid,audio_port_handle_t portId)2710 void AudioFlinger::PlaybackThread::ioConfigChanged(audio_io_config_event event, pid_t pid,
2711 audio_port_handle_t portId) {
2712 sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
2713 ALOGV("PlaybackThread::ioConfigChanged, thread %p, event %d", this, event);
2714
2715 desc->mIoHandle = mId;
2716 struct audio_patch patch = mPatch;
2717 if (isMsdDevice()) {
2718 patch = mDownStreamPatch;
2719 }
2720
2721 switch (event) {
2722 case AUDIO_OUTPUT_OPENED:
2723 case AUDIO_OUTPUT_REGISTERED:
2724 case AUDIO_OUTPUT_CONFIG_CHANGED:
2725 desc->mPatch = patch;
2726 desc->mChannelMask = mChannelMask;
2727 desc->mSamplingRate = mSampleRate;
2728 desc->mFormat = mFormat;
2729 desc->mFrameCount = mNormalFrameCount; // FIXME see
2730 // AudioFlinger::frameCount(audio_io_handle_t)
2731 desc->mFrameCountHAL = mFrameCount;
2732 desc->mLatency = latency_l();
2733 break;
2734 case AUDIO_CLIENT_STARTED:
2735 desc->mPatch = patch;
2736 desc->mPortId = portId;
2737 break;
2738 case AUDIO_OUTPUT_CLOSED:
2739 default:
2740 break;
2741 }
2742 mAudioFlinger->ioConfigChanged(event, desc, pid);
2743 }
2744
onWriteReady()2745 void AudioFlinger::PlaybackThread::onWriteReady()
2746 {
2747 mCallbackThread->resetWriteBlocked();
2748 }
2749
onDrainReady()2750 void AudioFlinger::PlaybackThread::onDrainReady()
2751 {
2752 mCallbackThread->resetDraining();
2753 }
2754
onError()2755 void AudioFlinger::PlaybackThread::onError()
2756 {
2757 mCallbackThread->setAsyncError();
2758 }
2759
onCodecFormatChanged(const std::basic_string<uint8_t> & metadataBs)2760 void AudioFlinger::PlaybackThread::onCodecFormatChanged(
2761 const std::basic_string<uint8_t>& metadataBs)
2762 {
2763 std::thread([this, metadataBs]() {
2764 audio_utils::metadata::Data metadata =
2765 audio_utils::metadata::dataFromByteString(metadataBs);
2766 if (metadata.empty()) {
2767 ALOGW("Can not transform the buffer to audio metadata, %s, %d",
2768 reinterpret_cast<char*>(const_cast<uint8_t*>(metadataBs.data())),
2769 (int)metadataBs.size());
2770 return;
2771 }
2772
2773 audio_utils::metadata::ByteString metaDataStr =
2774 audio_utils::metadata::byteStringFromData(metadata);
2775 std::vector metadataVec(metaDataStr.begin(), metaDataStr.end());
2776 Mutex::Autolock _l(mAudioTrackCbLock);
2777 for (const auto& callbackPair : mAudioTrackCallbacks) {
2778 callbackPair.second->onCodecFormatChanged(metadataVec);
2779 }
2780 }).detach();
2781 }
2782
resetWriteBlocked(uint32_t sequence)2783 void AudioFlinger::PlaybackThread::resetWriteBlocked(uint32_t sequence)
2784 {
2785 Mutex::Autolock _l(mLock);
2786 // reject out of sequence requests
2787 if ((mWriteAckSequence & 1) && (sequence == mWriteAckSequence)) {
2788 mWriteAckSequence &= ~1;
2789 mWaitWorkCV.signal();
2790 }
2791 }
2792
resetDraining(uint32_t sequence)2793 void AudioFlinger::PlaybackThread::resetDraining(uint32_t sequence)
2794 {
2795 Mutex::Autolock _l(mLock);
2796 // reject out of sequence requests
2797 if ((mDrainSequence & 1) && (sequence == mDrainSequence)) {
2798 // Register discontinuity when HW drain is completed because that can cause
2799 // the timestamp frame position to reset to 0 for direct and offload threads.
2800 // (Out of sequence requests are ignored, since the discontinuity would be handled
2801 // elsewhere, e.g. in flush).
2802 mTimestampVerifier.discontinuity(mTimestampVerifier.DISCONTINUITY_MODE_ZERO);
2803 mDrainSequence &= ~1;
2804 mWaitWorkCV.signal();
2805 }
2806 }
2807
readOutputParameters_l()2808 void AudioFlinger::PlaybackThread::readOutputParameters_l()
2809 {
2810 // unfortunately we have no way of recovering from errors here, hence the LOG_ALWAYS_FATAL
2811 const audio_config_base_t audioConfig = mOutput->getAudioProperties();
2812 mSampleRate = audioConfig.sample_rate;
2813 mChannelMask = audioConfig.channel_mask;
2814 if (!audio_is_output_channel(mChannelMask)) {
2815 LOG_ALWAYS_FATAL("HAL channel mask %#x not valid for output", mChannelMask);
2816 }
2817 if ((mType == MIXER || mType == DUPLICATING)
2818 && !isValidPcmSinkChannelMask(mChannelMask)) {
2819 LOG_ALWAYS_FATAL("HAL channel mask %#x not supported for mixed output",
2820 mChannelMask);
2821 }
2822 mChannelCount = audio_channel_count_from_out_mask(mChannelMask);
2823 mBalance.setChannelMask(mChannelMask);
2824
2825 // Get actual HAL format.
2826 status_t result = mOutput->stream->getAudioProperties(nullptr, nullptr, &mHALFormat);
2827 LOG_ALWAYS_FATAL_IF(result != OK, "Error when retrieving output stream format: %d", result);
2828 // Get format from the shim, which will be different than the HAL format
2829 // if playing compressed audio over HDMI passthrough.
2830 mFormat = audioConfig.format;
2831 if (!audio_is_valid_format(mFormat)) {
2832 LOG_ALWAYS_FATAL("HAL format %#x not valid for output", mFormat);
2833 }
2834 if ((mType == MIXER || mType == DUPLICATING)
2835 && !isValidPcmSinkFormat(mFormat)) {
2836 LOG_FATAL("HAL format %#x not supported for mixed output",
2837 mFormat);
2838 }
2839 mFrameSize = mOutput->getFrameSize();
2840 result = mOutput->stream->getBufferSize(&mBufferSize);
2841 LOG_ALWAYS_FATAL_IF(result != OK,
2842 "Error when retrieving output stream buffer size: %d", result);
2843 mFrameCount = mBufferSize / mFrameSize;
2844 if ((mType == MIXER || mType == DUPLICATING) && (mFrameCount & 15)) {
2845 ALOGW("HAL output buffer size is %zu frames but AudioMixer requires multiples of 16 frames",
2846 mFrameCount);
2847 }
2848
2849 if (mOutput->flags & AUDIO_OUTPUT_FLAG_NON_BLOCKING) {
2850 if (mOutput->stream->setCallback(this) == OK) {
2851 mUseAsyncWrite = true;
2852 mCallbackThread = new AudioFlinger::AsyncCallbackThread(this);
2853 }
2854 }
2855
2856 mHwSupportsPause = false;
2857 if (mOutput->flags & AUDIO_OUTPUT_FLAG_DIRECT) {
2858 bool supportsPause = false, supportsResume = false;
2859 if (mOutput->stream->supportsPauseAndResume(&supportsPause, &supportsResume) == OK) {
2860 if (supportsPause && supportsResume) {
2861 mHwSupportsPause = true;
2862 } else if (supportsPause) {
2863 ALOGW("direct output implements pause but not resume");
2864 } else if (supportsResume) {
2865 ALOGW("direct output implements resume but not pause");
2866 }
2867 }
2868 }
2869 if (!mHwSupportsPause && mOutput->flags & AUDIO_OUTPUT_FLAG_HW_AV_SYNC) {
2870 LOG_ALWAYS_FATAL("HW_AV_SYNC requested but HAL does not implement pause and resume");
2871 }
2872
2873 if (mType == DUPLICATING && mMixerBufferEnabled && mEffectBufferEnabled) {
2874 // For best precision, we use float instead of the associated output
2875 // device format (typically PCM 16 bit).
2876
2877 mFormat = AUDIO_FORMAT_PCM_FLOAT;
2878 mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
2879 mBufferSize = mFrameSize * mFrameCount;
2880
2881 // TODO: We currently use the associated output device channel mask and sample rate.
2882 // (1) Perhaps use the ORed channel mask of all downstream MixerThreads
2883 // (if a valid mask) to avoid premature downmix.
2884 // (2) Perhaps use the maximum sample rate of all downstream MixerThreads
2885 // instead of the output device sample rate to avoid loss of high frequency information.
2886 // This may need to be updated as MixerThread/OutputTracks are added and not here.
2887 }
2888
2889 // Calculate size of normal sink buffer relative to the HAL output buffer size
2890 double multiplier = 1.0;
2891 if (mType == MIXER && (kUseFastMixer == FastMixer_Static ||
2892 kUseFastMixer == FastMixer_Dynamic)) {
2893 size_t minNormalFrameCount = (kMinNormalSinkBufferSizeMs * mSampleRate) / 1000;
2894 size_t maxNormalFrameCount = (kMaxNormalSinkBufferSizeMs * mSampleRate) / 1000;
2895
2896 // round up minimum and round down maximum to nearest 16 frames to satisfy AudioMixer
2897 minNormalFrameCount = (minNormalFrameCount + 15) & ~15;
2898 maxNormalFrameCount = maxNormalFrameCount & ~15;
2899 if (maxNormalFrameCount < minNormalFrameCount) {
2900 maxNormalFrameCount = minNormalFrameCount;
2901 }
2902 multiplier = (double) minNormalFrameCount / (double) mFrameCount;
2903 if (multiplier <= 1.0) {
2904 multiplier = 1.0;
2905 } else if (multiplier <= 2.0) {
2906 if (2 * mFrameCount <= maxNormalFrameCount) {
2907 multiplier = 2.0;
2908 } else {
2909 multiplier = (double) maxNormalFrameCount / (double) mFrameCount;
2910 }
2911 } else {
2912 multiplier = floor(multiplier);
2913 }
2914 }
2915 mNormalFrameCount = multiplier * mFrameCount;
2916 // round up to nearest 16 frames to satisfy AudioMixer
2917 if (mType == MIXER || mType == DUPLICATING) {
2918 mNormalFrameCount = (mNormalFrameCount + 15) & ~15;
2919 }
2920 ALOGI("HAL output buffer size %zu frames, normal sink buffer size %zu frames", mFrameCount,
2921 mNormalFrameCount);
2922
2923 // Check if we want to throttle the processing to no more than 2x normal rate
2924 mThreadThrottle = property_get_bool("af.thread.throttle", true /* default_value */);
2925 mThreadThrottleTimeMs = 0;
2926 mThreadThrottleEndMs = 0;
2927 mHalfBufferMs = mNormalFrameCount * 1000 / (2 * mSampleRate);
2928
2929 // mSinkBuffer is the sink buffer. Size is always multiple-of-16 frames.
2930 // Originally this was int16_t[] array, need to remove legacy implications.
2931 free(mSinkBuffer);
2932 mSinkBuffer = NULL;
2933 // For sink buffer size, we use the frame size from the downstream sink to avoid problems
2934 // with non PCM formats for compressed music, e.g. AAC, and Offload threads.
2935 const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
2936 (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
2937
2938 // We resize the mMixerBuffer according to the requirements of the sink buffer which
2939 // drives the output.
2940 free(mMixerBuffer);
2941 mMixerBuffer = NULL;
2942 if (mMixerBufferEnabled) {
2943 mMixerBufferFormat = AUDIO_FORMAT_PCM_FLOAT; // no longer valid: AUDIO_FORMAT_PCM_16_BIT.
2944 mMixerBufferSize = mNormalFrameCount * mChannelCount
2945 * audio_bytes_per_sample(mMixerBufferFormat);
2946 (void)posix_memalign(&mMixerBuffer, 32, mMixerBufferSize);
2947 }
2948 free(mEffectBuffer);
2949 mEffectBuffer = NULL;
2950 if (mEffectBufferEnabled) {
2951 mEffectBufferFormat = EFFECT_BUFFER_FORMAT;
2952 mEffectBufferSize = mNormalFrameCount * mChannelCount
2953 * audio_bytes_per_sample(mEffectBufferFormat);
2954 (void)posix_memalign(&mEffectBuffer, 32, mEffectBufferSize);
2955 }
2956
2957 mHapticChannelMask = static_cast<audio_channel_mask_t>(mChannelMask & AUDIO_CHANNEL_HAPTIC_ALL);
2958 mChannelMask = static_cast<audio_channel_mask_t>(mChannelMask & ~mHapticChannelMask);
2959 mHapticChannelCount = audio_channel_count_from_out_mask(mHapticChannelMask);
2960 mChannelCount -= mHapticChannelCount;
2961
2962 // force reconfiguration of effect chains and engines to take new buffer size and audio
2963 // parameters into account
2964 // Note that mLock is not held when readOutputParameters_l() is called from the constructor
2965 // but in this case nothing is done below as no audio sessions have effect yet so it doesn't
2966 // matter.
2967 // create a copy of mEffectChains as calling moveEffectChain_l() can reorder some effect chains
2968 Vector< sp<EffectChain> > effectChains = mEffectChains;
2969 for (size_t i = 0; i < effectChains.size(); i ++) {
2970 mAudioFlinger->moveEffectChain_l(effectChains[i]->sessionId(),
2971 this/* srcThread */, this/* dstThread */);
2972 }
2973
2974 audio_output_flags_t flags = mOutput->flags;
2975 mediametrics::LogItem item(mThreadMetrics.getMetricsId()); // TODO: method in ThreadMetrics?
2976 item.set(AMEDIAMETRICS_PROP_EVENT, AMEDIAMETRICS_PROP_EVENT_VALUE_READPARAMETERS)
2977 .set(AMEDIAMETRICS_PROP_ENCODING, formatToString(mFormat).c_str())
2978 .set(AMEDIAMETRICS_PROP_SAMPLERATE, (int32_t)mSampleRate)
2979 .set(AMEDIAMETRICS_PROP_CHANNELMASK, (int32_t)mChannelMask)
2980 .set(AMEDIAMETRICS_PROP_CHANNELCOUNT, (int32_t)mChannelCount)
2981 .set(AMEDIAMETRICS_PROP_FRAMECOUNT, (int32_t)mNormalFrameCount)
2982 .set(AMEDIAMETRICS_PROP_FLAGS, toString(flags).c_str())
2983 .set(AMEDIAMETRICS_PROP_PREFIX_HAPTIC AMEDIAMETRICS_PROP_CHANNELMASK,
2984 (int32_t)mHapticChannelMask)
2985 .set(AMEDIAMETRICS_PROP_PREFIX_HAPTIC AMEDIAMETRICS_PROP_CHANNELCOUNT,
2986 (int32_t)mHapticChannelCount)
2987 .set(AMEDIAMETRICS_PROP_PREFIX_HAL AMEDIAMETRICS_PROP_ENCODING,
2988 formatToString(mHALFormat).c_str())
2989 .set(AMEDIAMETRICS_PROP_PREFIX_HAL AMEDIAMETRICS_PROP_FRAMECOUNT,
2990 (int32_t)mFrameCount) // sic - added HAL
2991 ;
2992 uint32_t latencyMs;
2993 if (mOutput->stream->getLatency(&latencyMs) == NO_ERROR) {
2994 item.set(AMEDIAMETRICS_PROP_PREFIX_HAL AMEDIAMETRICS_PROP_LATENCYMS, (double)latencyMs);
2995 }
2996 item.record();
2997 }
2998
updateMetadata_l()2999 void AudioFlinger::PlaybackThread::updateMetadata_l()
3000 {
3001 if (!isStreamInitialized() || !mActiveTracks.readAndClearHasChanged()) {
3002 return; // nothing to do
3003 }
3004 StreamOutHalInterface::SourceMetadata metadata;
3005 auto backInserter = std::back_inserter(metadata.tracks);
3006 for (const sp<Track> &track : mActiveTracks) {
3007 // No track is invalid as this is called after prepareTrack_l in the same critical section
3008 // Do not forward metadata for PatchTrack with unspecified stream type
3009 if (track->streamType() != AUDIO_STREAM_PATCH) {
3010 track->copyMetadataTo(backInserter);
3011 }
3012 }
3013 sendMetadataToBackend_l(metadata);
3014 }
3015
sendMetadataToBackend_l(const StreamOutHalInterface::SourceMetadata & metadata)3016 void AudioFlinger::PlaybackThread::sendMetadataToBackend_l(
3017 const StreamOutHalInterface::SourceMetadata& metadata)
3018 {
3019 mOutput->stream->updateSourceMetadata(metadata);
3020 };
3021
getRenderPosition(uint32_t * halFrames,uint32_t * dspFrames)3022 status_t AudioFlinger::PlaybackThread::getRenderPosition(uint32_t *halFrames, uint32_t *dspFrames)
3023 {
3024 if (halFrames == NULL || dspFrames == NULL) {
3025 return BAD_VALUE;
3026 }
3027 Mutex::Autolock _l(mLock);
3028 if (initCheck() != NO_ERROR) {
3029 return INVALID_OPERATION;
3030 }
3031 int64_t framesWritten = mBytesWritten / mFrameSize;
3032 *halFrames = framesWritten;
3033
3034 if (isSuspended()) {
3035 // return an estimation of rendered frames when the output is suspended
3036 size_t latencyFrames = (latency_l() * mSampleRate) / 1000;
3037 *dspFrames = (uint32_t)
3038 (framesWritten >= (int64_t)latencyFrames ? framesWritten - latencyFrames : 0);
3039 return NO_ERROR;
3040 } else {
3041 status_t status;
3042 uint32_t frames;
3043 status = mOutput->getRenderPosition(&frames);
3044 *dspFrames = (size_t)frames;
3045 return status;
3046 }
3047 }
3048
getStrategyForSession_l(audio_session_t sessionId)3049 product_strategy_t AudioFlinger::PlaybackThread::getStrategyForSession_l(audio_session_t sessionId)
3050 {
3051 // session AUDIO_SESSION_OUTPUT_MIX is placed in same strategy as MUSIC stream so that
3052 // it is moved to correct output by audio policy manager when A2DP is connected or disconnected
3053 if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
3054 return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
3055 }
3056 for (size_t i = 0; i < mTracks.size(); i++) {
3057 sp<Track> track = mTracks[i];
3058 if (sessionId == track->sessionId() && !track->isInvalid()) {
3059 return AudioSystem::getStrategyForStream(track->streamType());
3060 }
3061 }
3062 return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
3063 }
3064
3065
getOutput() const3066 AudioStreamOut* AudioFlinger::PlaybackThread::getOutput() const
3067 {
3068 Mutex::Autolock _l(mLock);
3069 return mOutput;
3070 }
3071
clearOutput()3072 AudioStreamOut* AudioFlinger::PlaybackThread::clearOutput()
3073 {
3074 Mutex::Autolock _l(mLock);
3075 AudioStreamOut *output = mOutput;
3076 mOutput = NULL;
3077 // FIXME FastMixer might also have a raw ptr to mOutputSink;
3078 // must push a NULL and wait for ack
3079 mOutputSink.clear();
3080 mPipeSink.clear();
3081 mNormalSink.clear();
3082 return output;
3083 }
3084
3085 // this method must always be called either with ThreadBase mLock held or inside the thread loop
stream() const3086 sp<StreamHalInterface> AudioFlinger::PlaybackThread::stream() const
3087 {
3088 if (mOutput == NULL) {
3089 return NULL;
3090 }
3091 return mOutput->stream;
3092 }
3093
activeSleepTimeUs() const3094 uint32_t AudioFlinger::PlaybackThread::activeSleepTimeUs() const
3095 {
3096 return (uint32_t)((uint32_t)((mNormalFrameCount * 1000) / mSampleRate) * 1000);
3097 }
3098
setSyncEvent(const sp<SyncEvent> & event)3099 status_t AudioFlinger::PlaybackThread::setSyncEvent(const sp<SyncEvent>& event)
3100 {
3101 if (!isValidSyncEvent(event)) {
3102 return BAD_VALUE;
3103 }
3104
3105 Mutex::Autolock _l(mLock);
3106
3107 for (size_t i = 0; i < mTracks.size(); ++i) {
3108 sp<Track> track = mTracks[i];
3109 if (event->triggerSession() == track->sessionId()) {
3110 (void) track->setSyncEvent(event);
3111 return NO_ERROR;
3112 }
3113 }
3114
3115 return NAME_NOT_FOUND;
3116 }
3117
isValidSyncEvent(const sp<SyncEvent> & event) const3118 bool AudioFlinger::PlaybackThread::isValidSyncEvent(const sp<SyncEvent>& event) const
3119 {
3120 return event->type() == AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE;
3121 }
3122
threadLoop_removeTracks(const Vector<sp<Track>> & tracksToRemove)3123 void AudioFlinger::PlaybackThread::threadLoop_removeTracks(
3124 const Vector< sp<Track> >& tracksToRemove)
3125 {
3126 // Miscellaneous track cleanup when removed from the active list,
3127 // called without Thread lock but synchronized with threadLoop processing.
3128 #ifdef ADD_BATTERY_DATA
3129 for (const auto& track : tracksToRemove) {
3130 if (track->isExternalTrack()) {
3131 // to track the speaker usage
3132 addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStop);
3133 }
3134 }
3135 #else
3136 (void)tracksToRemove; // suppress unused warning
3137 #endif
3138 }
3139
checkSilentMode_l()3140 void AudioFlinger::PlaybackThread::checkSilentMode_l()
3141 {
3142 if (!mMasterMute) {
3143 char value[PROPERTY_VALUE_MAX];
3144 if (mOutDeviceTypeAddrs.empty()) {
3145 ALOGD("ro.audio.silent is ignored since no output device is set");
3146 return;
3147 }
3148 if (isSingleDeviceType(outDeviceTypes(), AUDIO_DEVICE_OUT_REMOTE_SUBMIX)) {
3149 ALOGD("ro.audio.silent will be ignored for threads on AUDIO_DEVICE_OUT_REMOTE_SUBMIX");
3150 return;
3151 }
3152 if (property_get("ro.audio.silent", value, "0") > 0) {
3153 char *endptr;
3154 unsigned long ul = strtoul(value, &endptr, 0);
3155 if (*endptr == '\0' && ul != 0) {
3156 ALOGD("Silence is golden");
3157 // The setprop command will not allow a property to be changed after
3158 // the first time it is set, so we don't have to worry about un-muting.
3159 setMasterMute_l(true);
3160 }
3161 }
3162 }
3163 }
3164
3165 // shared by MIXER and DIRECT, overridden by DUPLICATING
threadLoop_write()3166 ssize_t AudioFlinger::PlaybackThread::threadLoop_write()
3167 {
3168 LOG_HIST_TS();
3169 mInWrite = true;
3170 ssize_t bytesWritten;
3171 const size_t offset = mCurrentWriteLength - mBytesRemaining;
3172
3173 // If an NBAIO sink is present, use it to write the normal mixer's submix
3174 if (mNormalSink != 0) {
3175
3176 const size_t count = mBytesRemaining / mFrameSize;
3177
3178 ATRACE_BEGIN("write");
3179 // update the setpoint when AudioFlinger::mScreenState changes
3180 uint32_t screenState = AudioFlinger::mScreenState;
3181 if (screenState != mScreenState) {
3182 mScreenState = screenState;
3183 MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
3184 if (pipe != NULL) {
3185 pipe->setAvgFrames((mScreenState & 1) ?
3186 (pipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
3187 }
3188 }
3189 ssize_t framesWritten = mNormalSink->write((char *)mSinkBuffer + offset, count);
3190 ATRACE_END();
3191 if (framesWritten > 0) {
3192 bytesWritten = framesWritten * mFrameSize;
3193 #ifdef TEE_SINK
3194 mTee.write((char *)mSinkBuffer + offset, framesWritten);
3195 #endif
3196 } else {
3197 bytesWritten = framesWritten;
3198 }
3199 // otherwise use the HAL / AudioStreamOut directly
3200 } else {
3201 // Direct output and offload threads
3202
3203 if (mUseAsyncWrite) {
3204 ALOGW_IF(mWriteAckSequence & 1, "threadLoop_write(): out of sequence write request");
3205 mWriteAckSequence += 2;
3206 mWriteAckSequence |= 1;
3207 ALOG_ASSERT(mCallbackThread != 0);
3208 mCallbackThread->setWriteBlocked(mWriteAckSequence);
3209 }
3210 ATRACE_BEGIN("write");
3211 // FIXME We should have an implementation of timestamps for direct output threads.
3212 // They are used e.g for multichannel PCM playback over HDMI.
3213 bytesWritten = mOutput->write((char *)mSinkBuffer + offset, mBytesRemaining);
3214 ATRACE_END();
3215
3216 if (mUseAsyncWrite &&
3217 ((bytesWritten < 0) || (bytesWritten == (ssize_t)mBytesRemaining))) {
3218 // do not wait for async callback in case of error of full write
3219 mWriteAckSequence &= ~1;
3220 ALOG_ASSERT(mCallbackThread != 0);
3221 mCallbackThread->setWriteBlocked(mWriteAckSequence);
3222 }
3223 }
3224
3225 mNumWrites++;
3226 mInWrite = false;
3227 if (mStandby) {
3228 mThreadMetrics.logBeginInterval();
3229 mStandby = false;
3230 }
3231 return bytesWritten;
3232 }
3233
threadLoop_drain()3234 void AudioFlinger::PlaybackThread::threadLoop_drain()
3235 {
3236 bool supportsDrain = false;
3237 if (mOutput->stream->supportsDrain(&supportsDrain) == OK && supportsDrain) {
3238 ALOGV("draining %s", (mMixerStatus == MIXER_DRAIN_TRACK) ? "early" : "full");
3239 if (mUseAsyncWrite) {
3240 ALOGW_IF(mDrainSequence & 1, "threadLoop_drain(): out of sequence drain request");
3241 mDrainSequence |= 1;
3242 ALOG_ASSERT(mCallbackThread != 0);
3243 mCallbackThread->setDraining(mDrainSequence);
3244 }
3245 status_t result = mOutput->stream->drain(mMixerStatus == MIXER_DRAIN_TRACK);
3246 ALOGE_IF(result != OK, "Error when draining stream: %d", result);
3247 }
3248 }
3249
threadLoop_exit()3250 void AudioFlinger::PlaybackThread::threadLoop_exit()
3251 {
3252 {
3253 Mutex::Autolock _l(mLock);
3254 for (size_t i = 0; i < mTracks.size(); i++) {
3255 sp<Track> track = mTracks[i];
3256 track->invalidate();
3257 }
3258 // Clear ActiveTracks to update BatteryNotifier in case active tracks remain.
3259 // After we exit there are no more track changes sent to BatteryNotifier
3260 // because that requires an active threadLoop.
3261 // TODO: should we decActiveTrackCnt() of the cleared track effect chain?
3262 mActiveTracks.clear();
3263 }
3264 }
3265
3266 /*
3267 The derived values that are cached:
3268 - mSinkBufferSize from frame count * frame size
3269 - mActiveSleepTimeUs from activeSleepTimeUs()
3270 - mIdleSleepTimeUs from idleSleepTimeUs()
3271 - mStandbyDelayNs from mActiveSleepTimeUs (DIRECT only) or forced to at least
3272 kDefaultStandbyTimeInNsecs when connected to an A2DP device.
3273 - maxPeriod from frame count and sample rate (MIXER only)
3274
3275 The parameters that affect these derived values are:
3276 - frame count
3277 - frame size
3278 - sample rate
3279 - device type: A2DP or not
3280 - device latency
3281 - format: PCM or not
3282 - active sleep time
3283 - idle sleep time
3284 */
3285
cacheParameters_l()3286 void AudioFlinger::PlaybackThread::cacheParameters_l()
3287 {
3288 mSinkBufferSize = mNormalFrameCount * mFrameSize;
3289 mActiveSleepTimeUs = activeSleepTimeUs();
3290 mIdleSleepTimeUs = idleSleepTimeUs();
3291
3292 // make sure standby delay is not too short when connected to an A2DP sink to avoid
3293 // truncating audio when going to standby.
3294 mStandbyDelayNs = AudioFlinger::mStandbyTimeInNsecs;
3295 if (!Intersection(outDeviceTypes(), getAudioDeviceOutAllA2dpSet()).empty()) {
3296 if (mStandbyDelayNs < kDefaultStandbyTimeInNsecs) {
3297 mStandbyDelayNs = kDefaultStandbyTimeInNsecs;
3298 }
3299 }
3300 }
3301
invalidateTracks_l(audio_stream_type_t streamType)3302 bool AudioFlinger::PlaybackThread::invalidateTracks_l(audio_stream_type_t streamType)
3303 {
3304 ALOGV("MixerThread::invalidateTracks() mixer %p, streamType %d, mTracks.size %zu",
3305 this, streamType, mTracks.size());
3306 bool trackMatch = false;
3307 size_t size = mTracks.size();
3308 for (size_t i = 0; i < size; i++) {
3309 sp<Track> t = mTracks[i];
3310 if (t->streamType() == streamType && t->isExternalTrack()) {
3311 t->invalidate();
3312 trackMatch = true;
3313 }
3314 }
3315 return trackMatch;
3316 }
3317
invalidateTracks(audio_stream_type_t streamType)3318 void AudioFlinger::PlaybackThread::invalidateTracks(audio_stream_type_t streamType)
3319 {
3320 Mutex::Autolock _l(mLock);
3321 invalidateTracks_l(streamType);
3322 }
3323
3324 // getTrackById_l must be called with holding thread lock
getTrackById_l(audio_port_handle_t trackPortId)3325 AudioFlinger::PlaybackThread::Track* AudioFlinger::PlaybackThread::getTrackById_l(
3326 audio_port_handle_t trackPortId) {
3327 for (size_t i = 0; i < mTracks.size(); i++) {
3328 if (mTracks[i]->portId() == trackPortId) {
3329 return mTracks[i].get();
3330 }
3331 }
3332 return nullptr;
3333 }
3334
addEffectChain_l(const sp<EffectChain> & chain)3335 status_t AudioFlinger::PlaybackThread::addEffectChain_l(const sp<EffectChain>& chain)
3336 {
3337 audio_session_t session = chain->sessionId();
3338 sp<EffectBufferHalInterface> halInBuffer, halOutBuffer;
3339 status_t result = mAudioFlinger->mEffectsFactoryHal->mirrorBuffer(
3340 mEffectBufferEnabled ? mEffectBuffer : mSinkBuffer,
3341 mEffectBufferEnabled ? mEffectBufferSize : mSinkBufferSize,
3342 &halInBuffer);
3343 if (result != OK) return result;
3344 halOutBuffer = halInBuffer;
3345 effect_buffer_t *buffer = reinterpret_cast<effect_buffer_t*>(halInBuffer->externalData());
3346 ALOGV("addEffectChain_l() %p on thread %p for session %d", chain.get(), this, session);
3347 if (!audio_is_global_session(session)) {
3348 // Only one effect chain can be present in direct output thread and it uses
3349 // the sink buffer as input
3350 if (mType != DIRECT) {
3351 size_t numSamples = mNormalFrameCount * (mChannelCount + mHapticChannelCount);
3352 status_t result = mAudioFlinger->mEffectsFactoryHal->allocateBuffer(
3353 numSamples * sizeof(effect_buffer_t),
3354 &halInBuffer);
3355 if (result != OK) return result;
3356 #ifdef FLOAT_EFFECT_CHAIN
3357 buffer = halInBuffer->audioBuffer()->f32;
3358 #else
3359 buffer = halInBuffer->audioBuffer()->s16;
3360 #endif
3361 ALOGV("addEffectChain_l() creating new input buffer %p session %d",
3362 buffer, session);
3363 }
3364
3365 // Attach all tracks with same session ID to this chain.
3366 for (size_t i = 0; i < mTracks.size(); ++i) {
3367 sp<Track> track = mTracks[i];
3368 if (session == track->sessionId()) {
3369 ALOGV("addEffectChain_l() track->setMainBuffer track %p buffer %p", track.get(),
3370 buffer);
3371 track->setMainBuffer(buffer);
3372 chain->incTrackCnt();
3373 }
3374 }
3375
3376 // indicate all active tracks in the chain
3377 for (const sp<Track> &track : mActiveTracks) {
3378 if (session == track->sessionId()) {
3379 ALOGV("addEffectChain_l() activating track %p on session %d", track.get(), session);
3380 chain->incActiveTrackCnt();
3381 }
3382 }
3383 }
3384 chain->setThread(this);
3385 chain->setInBuffer(halInBuffer);
3386 chain->setOutBuffer(halOutBuffer);
3387 // Effect chain for session AUDIO_SESSION_DEVICE is inserted at end of effect
3388 // chains list in order to be processed last as it contains output device effects.
3389 // Effect chain for session AUDIO_SESSION_OUTPUT_STAGE is inserted just before to apply post
3390 // processing effects specific to an output stream before effects applied to all streams
3391 // routed to a given device.
3392 // Effect chain for session AUDIO_SESSION_OUTPUT_MIX is inserted before
3393 // session AUDIO_SESSION_OUTPUT_STAGE to be processed
3394 // after track specific effects and before output stage.
3395 // It is therefore mandatory that AUDIO_SESSION_OUTPUT_MIX == 0 and
3396 // that AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX.
3397 // Effect chain for other sessions are inserted at beginning of effect
3398 // chains list to be processed before output mix effects. Relative order between other
3399 // sessions is not important.
3400 static_assert(AUDIO_SESSION_OUTPUT_MIX == 0 &&
3401 AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX &&
3402 AUDIO_SESSION_DEVICE < AUDIO_SESSION_OUTPUT_STAGE,
3403 "audio_session_t constants misdefined");
3404 size_t size = mEffectChains.size();
3405 size_t i = 0;
3406 for (i = 0; i < size; i++) {
3407 if (mEffectChains[i]->sessionId() < session) {
3408 break;
3409 }
3410 }
3411 mEffectChains.insertAt(chain, i);
3412 checkSuspendOnAddEffectChain_l(chain);
3413
3414 return NO_ERROR;
3415 }
3416
removeEffectChain_l(const sp<EffectChain> & chain)3417 size_t AudioFlinger::PlaybackThread::removeEffectChain_l(const sp<EffectChain>& chain)
3418 {
3419 audio_session_t session = chain->sessionId();
3420
3421 ALOGV("removeEffectChain_l() %p from thread %p for session %d", chain.get(), this, session);
3422
3423 for (size_t i = 0; i < mEffectChains.size(); i++) {
3424 if (chain == mEffectChains[i]) {
3425 mEffectChains.removeAt(i);
3426 // detach all active tracks from the chain
3427 for (const sp<Track> &track : mActiveTracks) {
3428 if (session == track->sessionId()) {
3429 ALOGV("removeEffectChain_l(): stopping track on chain %p for session Id: %d",
3430 chain.get(), session);
3431 chain->decActiveTrackCnt();
3432 }
3433 }
3434
3435 // detach all tracks with same session ID from this chain
3436 for (size_t i = 0; i < mTracks.size(); ++i) {
3437 sp<Track> track = mTracks[i];
3438 if (session == track->sessionId()) {
3439 track->setMainBuffer(reinterpret_cast<effect_buffer_t*>(mSinkBuffer));
3440 chain->decTrackCnt();
3441 }
3442 }
3443 break;
3444 }
3445 }
3446 return mEffectChains.size();
3447 }
3448
attachAuxEffect(const sp<AudioFlinger::PlaybackThread::Track> & track,int EffectId)3449 status_t AudioFlinger::PlaybackThread::attachAuxEffect(
3450 const sp<AudioFlinger::PlaybackThread::Track>& track, int EffectId)
3451 {
3452 Mutex::Autolock _l(mLock);
3453 return attachAuxEffect_l(track, EffectId);
3454 }
3455
attachAuxEffect_l(const sp<AudioFlinger::PlaybackThread::Track> & track,int EffectId)3456 status_t AudioFlinger::PlaybackThread::attachAuxEffect_l(
3457 const sp<AudioFlinger::PlaybackThread::Track>& track, int EffectId)
3458 {
3459 status_t status = NO_ERROR;
3460
3461 if (EffectId == 0) {
3462 track->setAuxBuffer(0, NULL);
3463 } else {
3464 // Auxiliary effects are always in audio session AUDIO_SESSION_OUTPUT_MIX
3465 sp<EffectModule> effect = getEffect_l(AUDIO_SESSION_OUTPUT_MIX, EffectId);
3466 if (effect != 0) {
3467 if ((effect->desc().flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
3468 track->setAuxBuffer(EffectId, (int32_t *)effect->inBuffer());
3469 } else {
3470 status = INVALID_OPERATION;
3471 }
3472 } else {
3473 status = BAD_VALUE;
3474 }
3475 }
3476 return status;
3477 }
3478
detachAuxEffect_l(int effectId)3479 void AudioFlinger::PlaybackThread::detachAuxEffect_l(int effectId)
3480 {
3481 for (size_t i = 0; i < mTracks.size(); ++i) {
3482 sp<Track> track = mTracks[i];
3483 if (track->auxEffectId() == effectId) {
3484 attachAuxEffect_l(track, 0);
3485 }
3486 }
3487 }
3488
threadLoop()3489 bool AudioFlinger::PlaybackThread::threadLoop()
3490 {
3491 tlNBLogWriter = mNBLogWriter.get();
3492
3493 Vector< sp<Track> > tracksToRemove;
3494
3495 mStandbyTimeNs = systemTime();
3496 int64_t lastLoopCountWritten = -2; // never matches "previous" loop, when loopCount = 0.
3497
3498 // MIXER
3499 nsecs_t lastWarning = 0;
3500
3501 // DUPLICATING
3502 // FIXME could this be made local to while loop?
3503 writeFrames = 0;
3504
3505 cacheParameters_l();
3506 mSleepTimeUs = mIdleSleepTimeUs;
3507
3508 if (mType == MIXER) {
3509 sleepTimeShift = 0;
3510 }
3511
3512 CpuStats cpuStats;
3513 const String8 myName(String8::format("thread %p type %d TID %d", this, mType, gettid()));
3514
3515 acquireWakeLock();
3516
3517 // mNBLogWriter logging APIs can only be called by a single thread, typically the
3518 // thread associated with this PlaybackThread.
3519 // If you want to share the mNBLogWriter with other threads (for example, binder threads)
3520 // then all such threads must agree to hold a common mutex before logging.
3521 // So if you need to log when mutex is unlocked, set logString to a non-NULL string,
3522 // and then that string will be logged at the next convenient opportunity.
3523 // See reference to logString below.
3524 const char *logString = NULL;
3525
3526 // Estimated time for next buffer to be written to hal. This is used only on
3527 // suspended mode (for now) to help schedule the wait time until next iteration.
3528 nsecs_t timeLoopNextNs = 0;
3529
3530 checkSilentMode_l();
3531
3532 audio_patch_handle_t lastDownstreamPatchHandle = AUDIO_PATCH_HANDLE_NONE;
3533
3534 // loopCount is used for statistics and diagnostics.
3535 for (int64_t loopCount = 0; !exitPending(); ++loopCount)
3536 {
3537 // Log merge requests are performed during AudioFlinger binder transactions, but
3538 // that does not cover audio playback. It's requested here for that reason.
3539 mAudioFlinger->requestLogMerge();
3540
3541 cpuStats.sample(myName);
3542
3543 Vector< sp<EffectChain> > effectChains;
3544 audio_session_t activeHapticSessionId = AUDIO_SESSION_NONE;
3545 std::vector<sp<Track>> activeTracks;
3546
3547 // If the device is AUDIO_DEVICE_OUT_BUS, check for downstream latency.
3548 //
3549 // Note: we access outDeviceTypes() outside of mLock.
3550 if (isMsdDevice() && outDeviceTypes().count(AUDIO_DEVICE_OUT_BUS) != 0) {
3551 // Here, we try for the AF lock, but do not block on it as the latency
3552 // is more informational.
3553 if (mAudioFlinger->mLock.tryLock() == NO_ERROR) {
3554 std::vector<PatchPanel::SoftwarePatch> swPatches;
3555 double latencyMs;
3556 status_t status = INVALID_OPERATION;
3557 audio_patch_handle_t downstreamPatchHandle = AUDIO_PATCH_HANDLE_NONE;
3558 if (mAudioFlinger->mPatchPanel.getDownstreamSoftwarePatches(id(), &swPatches) == OK
3559 && swPatches.size() > 0) {
3560 status = swPatches[0].getLatencyMs_l(&latencyMs);
3561 downstreamPatchHandle = swPatches[0].getPatchHandle();
3562 }
3563 if (downstreamPatchHandle != lastDownstreamPatchHandle) {
3564 mDownstreamLatencyStatMs.reset();
3565 lastDownstreamPatchHandle = downstreamPatchHandle;
3566 }
3567 if (status == OK) {
3568 // verify downstream latency (we assume a max reasonable
3569 // latency of 5 seconds).
3570 const double minLatency = 0., maxLatency = 5000.;
3571 if (latencyMs >= minLatency && latencyMs <= maxLatency) {
3572 ALOGVV("new downstream latency %lf ms", latencyMs);
3573 } else {
3574 ALOGD("out of range downstream latency %lf ms", latencyMs);
3575 if (latencyMs < minLatency) latencyMs = minLatency;
3576 else if (latencyMs > maxLatency) latencyMs = maxLatency;
3577 }
3578 mDownstreamLatencyStatMs.add(latencyMs);
3579 }
3580 mAudioFlinger->mLock.unlock();
3581 }
3582 } else {
3583 if (lastDownstreamPatchHandle != AUDIO_PATCH_HANDLE_NONE) {
3584 // our device is no longer AUDIO_DEVICE_OUT_BUS, reset patch handle and stats.
3585 mDownstreamLatencyStatMs.reset();
3586 lastDownstreamPatchHandle = AUDIO_PATCH_HANDLE_NONE;
3587 }
3588 }
3589
3590 { // scope for mLock
3591
3592 Mutex::Autolock _l(mLock);
3593
3594 processConfigEvents_l();
3595
3596 // See comment at declaration of logString for why this is done under mLock
3597 if (logString != NULL) {
3598 mNBLogWriter->logTimestamp();
3599 mNBLogWriter->log(logString);
3600 logString = NULL;
3601 }
3602
3603 collectTimestamps_l();
3604
3605 saveOutputTracks();
3606 if (mSignalPending) {
3607 // A signal was raised while we were unlocked
3608 mSignalPending = false;
3609 } else if (waitingAsyncCallback_l()) {
3610 if (exitPending()) {
3611 break;
3612 }
3613 bool released = false;
3614 if (!keepWakeLock()) {
3615 releaseWakeLock_l();
3616 released = true;
3617 }
3618
3619 const int64_t waitNs = computeWaitTimeNs_l();
3620 ALOGV("wait async completion (wait time: %lld)", (long long)waitNs);
3621 status_t status = mWaitWorkCV.waitRelative(mLock, waitNs);
3622 if (status == TIMED_OUT) {
3623 mSignalPending = true; // if timeout recheck everything
3624 }
3625 ALOGV("async completion/wake");
3626 if (released) {
3627 acquireWakeLock_l();
3628 }
3629 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
3630 mSleepTimeUs = 0;
3631
3632 continue;
3633 }
3634 if ((mActiveTracks.isEmpty() && systemTime() > mStandbyTimeNs) ||
3635 isSuspended()) {
3636 // put audio hardware into standby after short delay
3637 if (shouldStandby_l()) {
3638
3639 threadLoop_standby();
3640
3641 // This is where we go into standby
3642 if (!mStandby) {
3643 LOG_AUDIO_STATE();
3644 mThreadMetrics.logEndInterval();
3645 mStandby = true;
3646 }
3647 sendStatistics(false /* force */);
3648 }
3649
3650 if (mActiveTracks.isEmpty() && mConfigEvents.isEmpty()) {
3651 // we're about to wait, flush the binder command buffer
3652 IPCThreadState::self()->flushCommands();
3653
3654 clearOutputTracks();
3655
3656 if (exitPending()) {
3657 break;
3658 }
3659
3660 releaseWakeLock_l();
3661 // wait until we have something to do...
3662 ALOGV("%s going to sleep", myName.string());
3663 mWaitWorkCV.wait(mLock);
3664 ALOGV("%s waking up", myName.string());
3665 acquireWakeLock_l();
3666
3667 mMixerStatus = MIXER_IDLE;
3668 mMixerStatusIgnoringFastTracks = MIXER_IDLE;
3669 mBytesWritten = 0;
3670 mBytesRemaining = 0;
3671 checkSilentMode_l();
3672
3673 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
3674 mSleepTimeUs = mIdleSleepTimeUs;
3675 if (mType == MIXER) {
3676 sleepTimeShift = 0;
3677 }
3678
3679 continue;
3680 }
3681 }
3682 // mMixerStatusIgnoringFastTracks is also updated internally
3683 mMixerStatus = prepareTracks_l(&tracksToRemove);
3684
3685 mActiveTracks.updatePowerState(this);
3686
3687 updateMetadata_l();
3688
3689 // prevent any changes in effect chain list and in each effect chain
3690 // during mixing and effect process as the audio buffers could be deleted
3691 // or modified if an effect is created or deleted
3692 lockEffectChains_l(effectChains);
3693
3694 // Determine which session to pick up haptic data.
3695 // This must be done under the same lock as prepareTracks_l().
3696 // The haptic data from the effect is at a higher priority than the one from track.
3697 // TODO: Write haptic data directly to sink buffer when mixing.
3698 if (mHapticChannelCount > 0 && effectChains.size() > 0) {
3699 for (const auto& track : mActiveTracks) {
3700 sp<EffectChain> effectChain = getEffectChain_l(track->sessionId());
3701 if (effectChain != nullptr && effectChain->containsHapticGeneratingEffect_l()) {
3702 activeHapticSessionId = track->sessionId();
3703 break;
3704 }
3705 if (track->getHapticPlaybackEnabled()) {
3706 activeHapticSessionId = track->sessionId();
3707 break;
3708 }
3709 }
3710 }
3711
3712 // Acquire a local copy of active tracks with lock (release w/o lock).
3713 //
3714 // Control methods on the track acquire the ThreadBase lock (e.g. start()
3715 // stop(), pause(), etc.), but the threadLoop is entitled to call audio
3716 // data / buffer methods on tracks from activeTracks without the ThreadBase lock.
3717 activeTracks.insert(activeTracks.end(), mActiveTracks.begin(), mActiveTracks.end());
3718 } // mLock scope ends
3719
3720 if (mBytesRemaining == 0) {
3721 mCurrentWriteLength = 0;
3722 if (mMixerStatus == MIXER_TRACKS_READY) {
3723 // threadLoop_mix() sets mCurrentWriteLength
3724 threadLoop_mix();
3725 } else if ((mMixerStatus != MIXER_DRAIN_TRACK)
3726 && (mMixerStatus != MIXER_DRAIN_ALL)) {
3727 // threadLoop_sleepTime sets mSleepTimeUs to 0 if data
3728 // must be written to HAL
3729 threadLoop_sleepTime();
3730 if (mSleepTimeUs == 0) {
3731 mCurrentWriteLength = mSinkBufferSize;
3732
3733 // Tally underrun frames as we are inserting 0s here.
3734 for (const auto& track : activeTracks) {
3735 if (track->mFillingUpStatus == Track::FS_ACTIVE
3736 && !track->isStopped()
3737 && !track->isPaused()
3738 && !track->isTerminated()) {
3739 ALOGV("%s: track(%d) %s underrun due to thread sleep of %zu frames",
3740 __func__, track->id(), track->getTrackStateAsString(),
3741 mNormalFrameCount);
3742 track->mAudioTrackServerProxy->tallyUnderrunFrames(mNormalFrameCount);
3743 }
3744 }
3745 }
3746 }
3747 // Either threadLoop_mix() or threadLoop_sleepTime() should have set
3748 // mMixerBuffer with data if mMixerBufferValid is true and mSleepTimeUs == 0.
3749 // Merge mMixerBuffer data into mEffectBuffer (if any effects are valid)
3750 // or mSinkBuffer (if there are no effects).
3751 //
3752 // This is done pre-effects computation; if effects change to
3753 // support higher precision, this needs to move.
3754 //
3755 // mMixerBufferValid is only set true by MixerThread::prepareTracks_l().
3756 // TODO use mSleepTimeUs == 0 as an additional condition.
3757 if (mMixerBufferValid) {
3758 void *buffer = mEffectBufferValid ? mEffectBuffer : mSinkBuffer;
3759 audio_format_t format = mEffectBufferValid ? mEffectBufferFormat : mFormat;
3760
3761 // mono blend occurs for mixer threads only (not direct or offloaded)
3762 // and is handled here if we're going directly to the sink.
3763 if (requireMonoBlend() && !mEffectBufferValid) {
3764 mono_blend(mMixerBuffer, mMixerBufferFormat, mChannelCount, mNormalFrameCount,
3765 true /*limit*/);
3766 }
3767
3768 if (!hasFastMixer()) {
3769 // Balance must take effect after mono conversion.
3770 // We do it here if there is no FastMixer.
3771 // mBalance detects zero balance within the class for speed (not needed here).
3772 mBalance.setBalance(mMasterBalance.load());
3773 mBalance.process((float *)mMixerBuffer, mNormalFrameCount);
3774 }
3775
3776 memcpy_by_audio_format(buffer, format, mMixerBuffer, mMixerBufferFormat,
3777 mNormalFrameCount * (mChannelCount + mHapticChannelCount));
3778
3779 // If we're going directly to the sink and there are haptic channels,
3780 // we should adjust channels as the sample data is partially interleaved
3781 // in this case.
3782 if (!mEffectBufferValid && mHapticChannelCount > 0) {
3783 adjust_channels_non_destructive(buffer, mChannelCount, buffer,
3784 mChannelCount + mHapticChannelCount,
3785 audio_bytes_per_sample(format),
3786 audio_bytes_per_frame(mChannelCount, format) * mNormalFrameCount);
3787 }
3788 }
3789
3790 mBytesRemaining = mCurrentWriteLength;
3791 if (isSuspended()) {
3792 // Simulate write to HAL when suspended (e.g. BT SCO phone call).
3793 mSleepTimeUs = suspendSleepTimeUs(); // assumes full buffer.
3794 const size_t framesRemaining = mBytesRemaining / mFrameSize;
3795 mBytesWritten += mBytesRemaining;
3796 mFramesWritten += framesRemaining;
3797 mSuspendedFrames += framesRemaining; // to adjust kernel HAL position
3798 mBytesRemaining = 0;
3799 }
3800
3801 // only process effects if we're going to write
3802 if (mSleepTimeUs == 0 && mType != OFFLOAD) {
3803 for (size_t i = 0; i < effectChains.size(); i ++) {
3804 effectChains[i]->process_l();
3805 // TODO: Write haptic data directly to sink buffer when mixing.
3806 if (activeHapticSessionId != AUDIO_SESSION_NONE
3807 && activeHapticSessionId == effectChains[i]->sessionId()) {
3808 // Haptic data is active in this case, copy it directly from
3809 // in buffer to out buffer.
3810 const size_t audioBufferSize = mNormalFrameCount
3811 * audio_bytes_per_frame(mChannelCount, EFFECT_BUFFER_FORMAT);
3812 memcpy_by_audio_format(
3813 (uint8_t*)effectChains[i]->outBuffer() + audioBufferSize,
3814 EFFECT_BUFFER_FORMAT,
3815 (const uint8_t*)effectChains[i]->inBuffer() + audioBufferSize,
3816 EFFECT_BUFFER_FORMAT, mNormalFrameCount * mHapticChannelCount);
3817 }
3818 }
3819 }
3820 }
3821 // Process effect chains for offloaded thread even if no audio
3822 // was read from audio track: process only updates effect state
3823 // and thus does have to be synchronized with audio writes but may have
3824 // to be called while waiting for async write callback
3825 if (mType == OFFLOAD) {
3826 for (size_t i = 0; i < effectChains.size(); i ++) {
3827 effectChains[i]->process_l();
3828 }
3829 }
3830
3831 // Only if the Effects buffer is enabled and there is data in the
3832 // Effects buffer (buffer valid), we need to
3833 // copy into the sink buffer.
3834 // TODO use mSleepTimeUs == 0 as an additional condition.
3835 if (mEffectBufferValid) {
3836 //ALOGV("writing effect buffer to sink buffer format %#x", mFormat);
3837
3838 if (requireMonoBlend()) {
3839 mono_blend(mEffectBuffer, mEffectBufferFormat, mChannelCount, mNormalFrameCount,
3840 true /*limit*/);
3841 }
3842
3843 if (!hasFastMixer()) {
3844 // Balance must take effect after mono conversion.
3845 // We do it here if there is no FastMixer.
3846 // mBalance detects zero balance within the class for speed (not needed here).
3847 mBalance.setBalance(mMasterBalance.load());
3848 mBalance.process((float *)mEffectBuffer, mNormalFrameCount);
3849 }
3850
3851 memcpy_by_audio_format(mSinkBuffer, mFormat, mEffectBuffer, mEffectBufferFormat,
3852 mNormalFrameCount * (mChannelCount + mHapticChannelCount));
3853 // The sample data is partially interleaved when haptic channels exist,
3854 // we need to adjust channels here.
3855 if (mHapticChannelCount > 0) {
3856 adjust_channels_non_destructive(mSinkBuffer, mChannelCount, mSinkBuffer,
3857 mChannelCount + mHapticChannelCount,
3858 audio_bytes_per_sample(mFormat),
3859 audio_bytes_per_frame(mChannelCount, mFormat) * mNormalFrameCount);
3860 }
3861 }
3862
3863 // enable changes in effect chain
3864 unlockEffectChains(effectChains);
3865
3866 if (!waitingAsyncCallback()) {
3867 // mSleepTimeUs == 0 means we must write to audio hardware
3868 if (mSleepTimeUs == 0) {
3869 ssize_t ret = 0;
3870 // writePeriodNs is updated >= 0 when ret > 0.
3871 int64_t writePeriodNs = -1;
3872 if (mBytesRemaining) {
3873 // FIXME rewrite to reduce number of system calls
3874 const int64_t lastIoBeginNs = systemTime();
3875 ret = threadLoop_write();
3876 const int64_t lastIoEndNs = systemTime();
3877 if (ret < 0) {
3878 mBytesRemaining = 0;
3879 } else if (ret > 0) {
3880 mBytesWritten += ret;
3881 mBytesRemaining -= ret;
3882 const int64_t frames = ret / mFrameSize;
3883 mFramesWritten += frames;
3884
3885 writePeriodNs = lastIoEndNs - mLastIoEndNs;
3886 // process information relating to write time.
3887 if (audio_has_proportional_frames(mFormat)) {
3888 // we are in a continuous mixing cycle
3889 if (mMixerStatus == MIXER_TRACKS_READY &&
3890 loopCount == lastLoopCountWritten + 1) {
3891
3892 const double jitterMs =
3893 TimestampVerifier<int64_t, int64_t>::computeJitterMs(
3894 {frames, writePeriodNs},
3895 {0, 0} /* lastTimestamp */, mSampleRate);
3896 const double processMs =
3897 (lastIoBeginNs - mLastIoEndNs) * 1e-6;
3898
3899 Mutex::Autolock _l(mLock);
3900 mIoJitterMs.add(jitterMs);
3901 mProcessTimeMs.add(processMs);
3902 }
3903
3904 // write blocked detection
3905 const int64_t deltaWriteNs = lastIoEndNs - lastIoBeginNs;
3906 if (mType == MIXER && deltaWriteNs > maxPeriod) {
3907 mNumDelayedWrites++;
3908 if ((lastIoEndNs - lastWarning) > kWarningThrottleNs) {
3909 ATRACE_NAME("underrun");
3910 ALOGW("write blocked for %lld msecs, "
3911 "%d delayed writes, thread %d",
3912 (long long)deltaWriteNs / NANOS_PER_MILLISECOND,
3913 mNumDelayedWrites, mId);
3914 lastWarning = lastIoEndNs;
3915 }
3916 }
3917 }
3918 // update timing info.
3919 mLastIoBeginNs = lastIoBeginNs;
3920 mLastIoEndNs = lastIoEndNs;
3921 lastLoopCountWritten = loopCount;
3922 }
3923 } else if ((mMixerStatus == MIXER_DRAIN_TRACK) ||
3924 (mMixerStatus == MIXER_DRAIN_ALL)) {
3925 threadLoop_drain();
3926 }
3927 if (mType == MIXER && !mStandby) {
3928
3929 if (mThreadThrottle
3930 && mMixerStatus == MIXER_TRACKS_READY // we are mixing (active tracks)
3931 && writePeriodNs > 0) { // we have write period info
3932 // Limit MixerThread data processing to no more than twice the
3933 // expected processing rate.
3934 //
3935 // This helps prevent underruns with NuPlayer and other applications
3936 // which may set up buffers that are close to the minimum size, or use
3937 // deep buffers, and rely on a double-buffering sleep strategy to fill.
3938 //
3939 // The throttle smooths out sudden large data drains from the device,
3940 // e.g. when it comes out of standby, which often causes problems with
3941 // (1) mixer threads without a fast mixer (which has its own warm-up)
3942 // (2) minimum buffer sized tracks (even if the track is full,
3943 // the app won't fill fast enough to handle the sudden draw).
3944 //
3945 // Total time spent in last processing cycle equals time spent in
3946 // 1. threadLoop_write, as well as time spent in
3947 // 2. threadLoop_mix (significant for heavy mixing, especially
3948 // on low tier processors)
3949
3950 // it's OK if deltaMs is an overestimate.
3951
3952 const int32_t deltaMs = writePeriodNs / NANOS_PER_MILLISECOND;
3953
3954 const int32_t throttleMs = (int32_t)mHalfBufferMs - deltaMs;
3955 if ((signed)mHalfBufferMs >= throttleMs && throttleMs > 0) {
3956 mThreadMetrics.logThrottleMs((double)throttleMs);
3957
3958 usleep(throttleMs * 1000);
3959 // notify of throttle start on verbose log
3960 ALOGV_IF(mThreadThrottleEndMs == mThreadThrottleTimeMs,
3961 "mixer(%p) throttle begin:"
3962 " ret(%zd) deltaMs(%d) requires sleep %d ms",
3963 this, ret, deltaMs, throttleMs);
3964 mThreadThrottleTimeMs += throttleMs;
3965 // Throttle must be attributed to the previous mixer loop's write time
3966 // to allow back-to-back throttling.
3967 // This also ensures proper timing statistics.
3968 mLastIoEndNs = systemTime(); // we fetch the write end time again.
3969 } else {
3970 uint32_t diff = mThreadThrottleTimeMs - mThreadThrottleEndMs;
3971 if (diff > 0) {
3972 // notify of throttle end on debug log
3973 // but prevent spamming for bluetooth
3974 ALOGD_IF(!isSingleDeviceType(
3975 outDeviceTypes(), audio_is_a2dp_out_device) &&
3976 !isSingleDeviceType(
3977 outDeviceTypes(), audio_is_hearing_aid_out_device),
3978 "mixer(%p) throttle end: throttle time(%u)", this, diff);
3979 mThreadThrottleEndMs = mThreadThrottleTimeMs;
3980 }
3981 }
3982 }
3983 }
3984
3985 } else {
3986 ATRACE_BEGIN("sleep");
3987 Mutex::Autolock _l(mLock);
3988 // suspended requires accurate metering of sleep time.
3989 if (isSuspended()) {
3990 // advance by expected sleepTime
3991 timeLoopNextNs += microseconds((nsecs_t)mSleepTimeUs);
3992 const nsecs_t nowNs = systemTime();
3993
3994 // compute expected next time vs current time.
3995 // (negative deltas are treated as delays).
3996 nsecs_t deltaNs = timeLoopNextNs - nowNs;
3997 if (deltaNs < -kMaxNextBufferDelayNs) {
3998 // Delays longer than the max allowed trigger a reset.
3999 ALOGV("DelayNs: %lld, resetting timeLoopNextNs", (long long) deltaNs);
4000 deltaNs = microseconds((nsecs_t)mSleepTimeUs);
4001 timeLoopNextNs = nowNs + deltaNs;
4002 } else if (deltaNs < 0) {
4003 // Delays within the max delay allowed: zero the delta/sleepTime
4004 // to help the system catch up in the next iteration(s)
4005 ALOGV("DelayNs: %lld, catching-up", (long long) deltaNs);
4006 deltaNs = 0;
4007 }
4008 // update sleep time (which is >= 0)
4009 mSleepTimeUs = deltaNs / 1000;
4010 }
4011 if (!mSignalPending && mConfigEvents.isEmpty() && !exitPending()) {
4012 mWaitWorkCV.waitRelative(mLock, microseconds((nsecs_t)mSleepTimeUs));
4013 }
4014 ATRACE_END();
4015 }
4016 }
4017
4018 // Finally let go of removed track(s), without the lock held
4019 // since we can't guarantee the destructors won't acquire that
4020 // same lock. This will also mutate and push a new fast mixer state.
4021 threadLoop_removeTracks(tracksToRemove);
4022 tracksToRemove.clear();
4023
4024 // FIXME I don't understand the need for this here;
4025 // it was in the original code but maybe the
4026 // assignment in saveOutputTracks() makes this unnecessary?
4027 clearOutputTracks();
4028
4029 // Effect chains will be actually deleted here if they were removed from
4030 // mEffectChains list during mixing or effects processing
4031 effectChains.clear();
4032
4033 // FIXME Note that the above .clear() is no longer necessary since effectChains
4034 // is now local to this block, but will keep it for now (at least until merge done).
4035 }
4036
4037 threadLoop_exit();
4038
4039 if (!mStandby) {
4040 threadLoop_standby();
4041 mStandby = true;
4042 }
4043
4044 releaseWakeLock();
4045
4046 ALOGV("Thread %p type %d exiting", this, mType);
4047 return false;
4048 }
4049
collectTimestamps_l()4050 void AudioFlinger::PlaybackThread::collectTimestamps_l()
4051 {
4052 // Collect timestamp statistics for the Playback Thread types that support it.
4053 if (mType != MIXER
4054 && mType != DUPLICATING
4055 && mType != DIRECT
4056 && mType != OFFLOAD) {
4057 return;
4058 }
4059 if (mStandby) {
4060 mTimestampVerifier.discontinuity(discontinuityForStandbyOrFlush());
4061 return;
4062 } else if (mHwPaused) {
4063 mTimestampVerifier.discontinuity(mTimestampVerifier.DISCONTINUITY_MODE_CONTINUOUS);
4064 return;
4065 }
4066
4067 // Gather the framesReleased counters for all active tracks,
4068 // and associate with the sink frames written out. We need
4069 // this to convert the sink timestamp to the track timestamp.
4070 bool kernelLocationUpdate = false;
4071 ExtendedTimestamp timestamp; // use private copy to fetch
4072
4073 // Always query HAL timestamp and update timestamp verifier. In standby or pause,
4074 // HAL may be draining some small duration buffered data for fade out.
4075 if (threadloop_getHalTimestamp_l(×tamp) == OK) {
4076 mTimestampVerifier.add(timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL],
4077 timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL],
4078 mSampleRate);
4079
4080 if (isTimestampCorrectionEnabled()) {
4081 ALOGVV("TS_BEFORE: %d %lld %lld", id(),
4082 (long long)timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL],
4083 (long long)timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]);
4084 auto correctedTimestamp = mTimestampVerifier.getLastCorrectedTimestamp();
4085 timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]
4086 = correctedTimestamp.mFrames;
4087 timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL]
4088 = correctedTimestamp.mTimeNs;
4089 ALOGVV("TS_AFTER: %d %lld %lld", id(),
4090 (long long)timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL],
4091 (long long)timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]);
4092
4093 // Note: Downstream latency only added if timestamp correction enabled.
4094 if (mDownstreamLatencyStatMs.getN() > 0) { // we have latency info.
4095 const int64_t newPosition =
4096 timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]
4097 - int64_t(mDownstreamLatencyStatMs.getMean() * mSampleRate * 1e-3);
4098 // prevent retrograde
4099 timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] = max(
4100 newPosition,
4101 (mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]
4102 - mSuspendedFrames));
4103 }
4104 }
4105
4106 // We always fetch the timestamp here because often the downstream
4107 // sink will block while writing.
4108
4109 // We keep track of the last valid kernel position in case we are in underrun
4110 // and the normal mixer period is the same as the fast mixer period, or there
4111 // is some error from the HAL.
4112 if (mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] >= 0) {
4113 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] =
4114 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL];
4115 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] =
4116 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL];
4117
4118 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] =
4119 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER];
4120 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] =
4121 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER];
4122 }
4123
4124 if (timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] >= 0) {
4125 kernelLocationUpdate = true;
4126 } else {
4127 ALOGVV("getTimestamp error - no valid kernel position");
4128 }
4129
4130 // copy over kernel info
4131 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] =
4132 timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]
4133 + mSuspendedFrames; // add frames discarded when suspended
4134 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] =
4135 timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL];
4136 } else {
4137 mTimestampVerifier.error();
4138 }
4139
4140 // mFramesWritten for non-offloaded tracks are contiguous
4141 // even after standby() is called. This is useful for the track frame
4142 // to sink frame mapping.
4143 bool serverLocationUpdate = false;
4144 if (mFramesWritten != mLastFramesWritten) {
4145 serverLocationUpdate = true;
4146 mLastFramesWritten = mFramesWritten;
4147 }
4148 // Only update timestamps if there is a meaningful change.
4149 // Either the kernel timestamp must be valid or we have written something.
4150 if (kernelLocationUpdate || serverLocationUpdate) {
4151 if (serverLocationUpdate) {
4152 // use the time before we called the HAL write - it is a bit more accurate
4153 // to when the server last read data than the current time here.
4154 //
4155 // If we haven't written anything, mLastIoBeginNs will be -1
4156 // and we use systemTime().
4157 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] = mFramesWritten;
4158 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = mLastIoBeginNs == -1
4159 ? systemTime() : mLastIoBeginNs;
4160 }
4161
4162 for (const sp<Track> &t : mActiveTracks) {
4163 if (!t->isFastTrack()) {
4164 t->updateTrackFrameInfo(
4165 t->mAudioTrackServerProxy->framesReleased(),
4166 mFramesWritten,
4167 mSampleRate,
4168 mTimestamp);
4169 }
4170 }
4171 }
4172
4173 if (audio_has_proportional_frames(mFormat)) {
4174 const double latencyMs = mTimestamp.getOutputServerLatencyMs(mSampleRate);
4175 if (latencyMs != 0.) { // note 0. means timestamp is empty.
4176 mLatencyMs.add(latencyMs);
4177 }
4178 }
4179 #if 0
4180 // logFormat example
4181 if (z % 100 == 0) {
4182 timespec ts;
4183 clock_gettime(CLOCK_MONOTONIC, &ts);
4184 LOGT("This is an integer %d, this is a float %f, this is my "
4185 "pid %p %% %s %t", 42, 3.14, "and this is a timestamp", ts);
4186 LOGT("A deceptive null-terminated string %\0");
4187 }
4188 ++z;
4189 #endif
4190 }
4191
4192 // removeTracks_l() must be called with ThreadBase::mLock held
removeTracks_l(const Vector<sp<Track>> & tracksToRemove)4193 void AudioFlinger::PlaybackThread::removeTracks_l(const Vector< sp<Track> >& tracksToRemove)
4194 {
4195 for (const auto& track : tracksToRemove) {
4196 mActiveTracks.remove(track);
4197 ALOGV("%s(%d): removing track on session %d", __func__, track->id(), track->sessionId());
4198 sp<EffectChain> chain = getEffectChain_l(track->sessionId());
4199 if (chain != 0) {
4200 ALOGV("%s(%d): stopping track on chain %p for session Id: %d",
4201 __func__, track->id(), chain.get(), track->sessionId());
4202 chain->decActiveTrackCnt();
4203 }
4204 // If an external client track, inform APM we're no longer active, and remove if needed.
4205 // We do this under lock so that the state is consistent if the Track is destroyed.
4206 if (track->isExternalTrack()) {
4207 AudioSystem::stopOutput(track->portId());
4208 if (track->isTerminated()) {
4209 AudioSystem::releaseOutput(track->portId());
4210 }
4211 }
4212 if (track->isTerminated()) {
4213 // remove from our tracks vector
4214 removeTrack_l(track);
4215 }
4216 if (mHapticChannelCount > 0 &&
4217 ((track->channelMask() & AUDIO_CHANNEL_HAPTIC_ALL) != AUDIO_CHANNEL_NONE
4218 || (chain != nullptr && chain->containsHapticGeneratingEffect_l()))) {
4219 mLock.unlock();
4220 // Unlock due to VibratorService will lock for this call and will
4221 // call Tracks.mute/unmute which also require thread's lock.
4222 AudioFlinger::onExternalVibrationStop(track->getExternalVibration());
4223 mLock.lock();
4224
4225 // When the track is stop, set the haptic intensity as MUTE
4226 // for the HapticGenerator effect.
4227 if (chain != nullptr) {
4228 chain->setHapticIntensity_l(track->id(), static_cast<int>(os::HapticScale::MUTE));
4229 }
4230 }
4231 }
4232 }
4233
getTimestamp_l(AudioTimestamp & timestamp)4234 status_t AudioFlinger::PlaybackThread::getTimestamp_l(AudioTimestamp& timestamp)
4235 {
4236 if (mNormalSink != 0) {
4237 ExtendedTimestamp ets;
4238 status_t status = mNormalSink->getTimestamp(ets);
4239 if (status == NO_ERROR) {
4240 status = ets.getBestTimestamp(×tamp);
4241 }
4242 return status;
4243 }
4244 if ((mType == OFFLOAD || mType == DIRECT) && mOutput != NULL) {
4245 collectTimestamps_l();
4246 if (mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] <= 0) {
4247 return INVALID_OPERATION;
4248 }
4249 timestamp.mPosition = mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL];
4250 const int64_t timeNs = mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL];
4251 timestamp.mTime.tv_sec = timeNs / NANOS_PER_SECOND;
4252 timestamp.mTime.tv_nsec = timeNs - (timestamp.mTime.tv_sec * NANOS_PER_SECOND);
4253 return NO_ERROR;
4254 }
4255 return INVALID_OPERATION;
4256 }
4257
4258 // For dedicated VoIP outputs, let the HAL apply the stream volume. Track volume is
4259 // still applied by the mixer.
4260 // All tracks attached to a mixer with flag VOIP_RX are tied to the same
4261 // stream type STREAM_VOICE_CALL so this will only change the HAL volume once even
4262 // if more than one track are active
handleVoipVolume_l(float * volume)4263 status_t AudioFlinger::PlaybackThread::handleVoipVolume_l(float *volume)
4264 {
4265 status_t result = NO_ERROR;
4266 if ((mOutput->flags & AUDIO_OUTPUT_FLAG_VOIP_RX) != 0) {
4267 if (*volume != mLeftVolFloat) {
4268 result = mOutput->stream->setVolume(*volume, *volume);
4269 ALOGE_IF(result != OK,
4270 "Error when setting output stream volume: %d", result);
4271 if (result == NO_ERROR) {
4272 mLeftVolFloat = *volume;
4273 }
4274 }
4275 // if stream volume was successfully sent to the HAL, mLeftVolFloat == v here and we
4276 // remove stream volume contribution from software volume.
4277 if (mLeftVolFloat == *volume) {
4278 *volume = 1.0f;
4279 }
4280 }
4281 return result;
4282 }
4283
createAudioPatch_l(const struct audio_patch * patch,audio_patch_handle_t * handle)4284 status_t AudioFlinger::MixerThread::createAudioPatch_l(const struct audio_patch *patch,
4285 audio_patch_handle_t *handle)
4286 {
4287 status_t status;
4288 if (property_get_bool("af.patch_park", false /* default_value */)) {
4289 // Park FastMixer to avoid potential DOS issues with writing to the HAL
4290 // or if HAL does not properly lock against access.
4291 AutoPark<FastMixer> park(mFastMixer);
4292 status = PlaybackThread::createAudioPatch_l(patch, handle);
4293 } else {
4294 status = PlaybackThread::createAudioPatch_l(patch, handle);
4295 }
4296 return status;
4297 }
4298
createAudioPatch_l(const struct audio_patch * patch,audio_patch_handle_t * handle)4299 status_t AudioFlinger::PlaybackThread::createAudioPatch_l(const struct audio_patch *patch,
4300 audio_patch_handle_t *handle)
4301 {
4302 status_t status = NO_ERROR;
4303
4304 // store new device and send to effects
4305 audio_devices_t type = AUDIO_DEVICE_NONE;
4306 AudioDeviceTypeAddrVector deviceTypeAddrs;
4307 for (unsigned int i = 0; i < patch->num_sinks; i++) {
4308 LOG_ALWAYS_FATAL_IF(popcount(patch->sinks[i].ext.device.type) > 1
4309 && !mOutput->audioHwDev->supportsAudioPatches(),
4310 "Enumerated device type(%#x) must not be used "
4311 "as it does not support audio patches",
4312 patch->sinks[i].ext.device.type);
4313 type = static_cast<audio_devices_t>(type | patch->sinks[i].ext.device.type);
4314 deviceTypeAddrs.push_back(AudioDeviceTypeAddr(patch->sinks[i].ext.device.type,
4315 patch->sinks[i].ext.device.address));
4316 }
4317
4318 audio_port_handle_t sinkPortId = patch->sinks[0].id;
4319 #ifdef ADD_BATTERY_DATA
4320 // when changing the audio output device, call addBatteryData to notify
4321 // the change
4322 if (outDeviceTypes() != deviceTypes) {
4323 uint32_t params = 0;
4324 // check whether speaker is on
4325 if (deviceTypes.count(AUDIO_DEVICE_OUT_SPEAKER) > 0) {
4326 params |= IMediaPlayerService::kBatteryDataSpeakerOn;
4327 }
4328
4329 // check if any other device (except speaker) is on
4330 if (!isSingleDeviceType(deviceTypes, AUDIO_DEVICE_OUT_SPEAKER)) {
4331 params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
4332 }
4333
4334 if (params != 0) {
4335 addBatteryData(params);
4336 }
4337 }
4338 #endif
4339
4340 for (size_t i = 0; i < mEffectChains.size(); i++) {
4341 mEffectChains[i]->setDevices_l(deviceTypeAddrs);
4342 }
4343
4344 // mPatch.num_sinks is not set when the thread is created so that
4345 // the first patch creation triggers an ioConfigChanged callback
4346 bool configChanged = (mPatch.num_sinks == 0) ||
4347 (mPatch.sinks[0].id != sinkPortId);
4348 mPatch = *patch;
4349 mOutDeviceTypeAddrs = deviceTypeAddrs;
4350 checkSilentMode_l();
4351
4352 if (mOutput->audioHwDev->supportsAudioPatches()) {
4353 sp<DeviceHalInterface> hwDevice = mOutput->audioHwDev->hwDevice();
4354 status = hwDevice->createAudioPatch(patch->num_sources,
4355 patch->sources,
4356 patch->num_sinks,
4357 patch->sinks,
4358 handle);
4359 } else {
4360 char *address;
4361 if (strcmp(patch->sinks[0].ext.device.address, "") != 0) {
4362 //FIXME: we only support address on first sink with HAL version < 3.0
4363 address = audio_device_address_to_parameter(
4364 patch->sinks[0].ext.device.type,
4365 patch->sinks[0].ext.device.address);
4366 } else {
4367 address = (char *)calloc(1, 1);
4368 }
4369 AudioParameter param = AudioParameter(String8(address));
4370 free(address);
4371 param.addInt(String8(AudioParameter::keyRouting), (int)type);
4372 status = mOutput->stream->setParameters(param.toString());
4373 *handle = AUDIO_PATCH_HANDLE_NONE;
4374 }
4375 const std::string patchSinksAsString = patchSinksToString(patch);
4376
4377 mThreadMetrics.logEndInterval();
4378 mThreadMetrics.logCreatePatch(/* inDevices */ {}, patchSinksAsString);
4379 mThreadMetrics.logBeginInterval();
4380 // also dispatch to active AudioTracks for MediaMetrics
4381 for (const auto &track : mActiveTracks) {
4382 track->logEndInterval();
4383 track->logBeginInterval(patchSinksAsString);
4384 }
4385
4386 if (configChanged) {
4387 sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
4388 }
4389 return status;
4390 }
4391
releaseAudioPatch_l(const audio_patch_handle_t handle)4392 status_t AudioFlinger::MixerThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
4393 {
4394 status_t status;
4395 if (property_get_bool("af.patch_park", false /* default_value */)) {
4396 // Park FastMixer to avoid potential DOS issues with writing to the HAL
4397 // or if HAL does not properly lock against access.
4398 AutoPark<FastMixer> park(mFastMixer);
4399 status = PlaybackThread::releaseAudioPatch_l(handle);
4400 } else {
4401 status = PlaybackThread::releaseAudioPatch_l(handle);
4402 }
4403 return status;
4404 }
4405
releaseAudioPatch_l(const audio_patch_handle_t handle)4406 status_t AudioFlinger::PlaybackThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
4407 {
4408 status_t status = NO_ERROR;
4409
4410 mPatch = audio_patch{};
4411 mOutDeviceTypeAddrs.clear();
4412
4413 if (mOutput->audioHwDev->supportsAudioPatches()) {
4414 sp<DeviceHalInterface> hwDevice = mOutput->audioHwDev->hwDevice();
4415 status = hwDevice->releaseAudioPatch(handle);
4416 } else {
4417 AudioParameter param;
4418 param.addInt(String8(AudioParameter::keyRouting), 0);
4419 status = mOutput->stream->setParameters(param.toString());
4420 }
4421 return status;
4422 }
4423
addPatchTrack(const sp<PatchTrack> & track)4424 void AudioFlinger::PlaybackThread::addPatchTrack(const sp<PatchTrack>& track)
4425 {
4426 Mutex::Autolock _l(mLock);
4427 mTracks.add(track);
4428 }
4429
deletePatchTrack(const sp<PatchTrack> & track)4430 void AudioFlinger::PlaybackThread::deletePatchTrack(const sp<PatchTrack>& track)
4431 {
4432 Mutex::Autolock _l(mLock);
4433 destroyTrack_l(track);
4434 }
4435
toAudioPortConfig(struct audio_port_config * config)4436 void AudioFlinger::PlaybackThread::toAudioPortConfig(struct audio_port_config *config)
4437 {
4438 ThreadBase::toAudioPortConfig(config);
4439 config->role = AUDIO_PORT_ROLE_SOURCE;
4440 config->ext.mix.hw_module = mOutput->audioHwDev->handle();
4441 config->ext.mix.usecase.stream = AUDIO_STREAM_DEFAULT;
4442 if (mOutput && mOutput->flags != AUDIO_OUTPUT_FLAG_NONE) {
4443 config->config_mask |= AUDIO_PORT_CONFIG_FLAGS;
4444 config->flags.output = mOutput->flags;
4445 }
4446 }
4447
4448 // ----------------------------------------------------------------------------
4449
MixerThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,bool systemReady,type_t type)4450 AudioFlinger::MixerThread::MixerThread(const sp<AudioFlinger>& audioFlinger, AudioStreamOut* output,
4451 audio_io_handle_t id, bool systemReady, type_t type)
4452 : PlaybackThread(audioFlinger, output, id, type, systemReady),
4453 // mAudioMixer below
4454 // mFastMixer below
4455 mFastMixerFutex(0),
4456 mMasterMono(false)
4457 // mOutputSink below
4458 // mPipeSink below
4459 // mNormalSink below
4460 {
4461 setMasterBalance(audioFlinger->getMasterBalance_l());
4462 ALOGV("MixerThread() id=%d type=%d", id, type);
4463 ALOGV("mSampleRate=%u, mChannelMask=%#x, mChannelCount=%u, mFormat=%#x, mFrameSize=%zu, "
4464 "mFrameCount=%zu, mNormalFrameCount=%zu",
4465 mSampleRate, mChannelMask, mChannelCount, mFormat, mFrameSize, mFrameCount,
4466 mNormalFrameCount);
4467 mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
4468
4469 if (type == DUPLICATING) {
4470 // The Duplicating thread uses the AudioMixer and delivers data to OutputTracks
4471 // (downstream MixerThreads) in DuplicatingThread::threadLoop_write().
4472 // Do not create or use mFastMixer, mOutputSink, mPipeSink, or mNormalSink.
4473 return;
4474 }
4475 // create an NBAIO sink for the HAL output stream, and negotiate
4476 mOutputSink = new AudioStreamOutSink(output->stream);
4477 size_t numCounterOffers = 0;
4478 const NBAIO_Format offers[1] = {Format_from_SR_C(
4479 mSampleRate, mChannelCount + mHapticChannelCount, mFormat)};
4480 #if !LOG_NDEBUG
4481 ssize_t index =
4482 #else
4483 (void)
4484 #endif
4485 mOutputSink->negotiate(offers, 1, NULL, numCounterOffers);
4486 ALOG_ASSERT(index == 0);
4487
4488 // initialize fast mixer depending on configuration
4489 bool initFastMixer;
4490 switch (kUseFastMixer) {
4491 case FastMixer_Never:
4492 initFastMixer = false;
4493 break;
4494 case FastMixer_Always:
4495 initFastMixer = true;
4496 break;
4497 case FastMixer_Static:
4498 case FastMixer_Dynamic:
4499 // FastMixer was designed to operate with a HAL that pulls at a regular rate,
4500 // where the period is less than an experimentally determined threshold that can be
4501 // scheduled reliably with CFS. However, the BT A2DP HAL is
4502 // bursty (does not pull at a regular rate) and so cannot operate with FastMixer.
4503 initFastMixer = mFrameCount < mNormalFrameCount
4504 && Intersection(outDeviceTypes(), getAudioDeviceOutAllA2dpSet()).empty();
4505 break;
4506 }
4507 ALOGW_IF(initFastMixer == false && mFrameCount < mNormalFrameCount,
4508 "FastMixer is preferred for this sink as frameCount %zu is less than threshold %zu",
4509 mFrameCount, mNormalFrameCount);
4510 if (initFastMixer) {
4511 audio_format_t fastMixerFormat;
4512 if (mMixerBufferEnabled && mEffectBufferEnabled) {
4513 fastMixerFormat = AUDIO_FORMAT_PCM_FLOAT;
4514 } else {
4515 fastMixerFormat = AUDIO_FORMAT_PCM_16_BIT;
4516 }
4517 if (mFormat != fastMixerFormat) {
4518 // change our Sink format to accept our intermediate precision
4519 mFormat = fastMixerFormat;
4520 free(mSinkBuffer);
4521 mFrameSize = audio_bytes_per_frame(mChannelCount + mHapticChannelCount, mFormat);
4522 const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
4523 (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
4524 }
4525
4526 // create a MonoPipe to connect our submix to FastMixer
4527 NBAIO_Format format = mOutputSink->format();
4528
4529 // adjust format to match that of the Fast Mixer
4530 ALOGV("format changed from %#x to %#x", format.mFormat, fastMixerFormat);
4531 format.mFormat = fastMixerFormat;
4532 format.mFrameSize = audio_bytes_per_sample(format.mFormat) * format.mChannelCount;
4533
4534 // This pipe depth compensates for scheduling latency of the normal mixer thread.
4535 // When it wakes up after a maximum latency, it runs a few cycles quickly before
4536 // finally blocking. Note the pipe implementation rounds up the request to a power of 2.
4537 MonoPipe *monoPipe = new MonoPipe(mNormalFrameCount * 4, format, true /*writeCanBlock*/);
4538 const NBAIO_Format offers[1] = {format};
4539 size_t numCounterOffers = 0;
4540 #if !LOG_NDEBUG
4541 ssize_t index =
4542 #else
4543 (void)
4544 #endif
4545 monoPipe->negotiate(offers, 1, NULL, numCounterOffers);
4546 ALOG_ASSERT(index == 0);
4547 monoPipe->setAvgFrames((mScreenState & 1) ?
4548 (monoPipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
4549 mPipeSink = monoPipe;
4550
4551 // create fast mixer and configure it initially with just one fast track for our submix
4552 mFastMixer = new FastMixer(mId);
4553 FastMixerStateQueue *sq = mFastMixer->sq();
4554 #ifdef STATE_QUEUE_DUMP
4555 sq->setObserverDump(&mStateQueueObserverDump);
4556 sq->setMutatorDump(&mStateQueueMutatorDump);
4557 #endif
4558 FastMixerState *state = sq->begin();
4559 FastTrack *fastTrack = &state->mFastTracks[0];
4560 // wrap the source side of the MonoPipe to make it an AudioBufferProvider
4561 fastTrack->mBufferProvider = new SourceAudioBufferProvider(new MonoPipeReader(monoPipe));
4562 fastTrack->mVolumeProvider = NULL;
4563 fastTrack->mChannelMask = static_cast<audio_channel_mask_t>(
4564 mChannelMask | mHapticChannelMask); // mPipeSink channel mask for
4565 // audio to FastMixer
4566 fastTrack->mFormat = mFormat; // mPipeSink format for audio to FastMixer
4567 fastTrack->mHapticPlaybackEnabled = mHapticChannelMask != AUDIO_CHANNEL_NONE;
4568 fastTrack->mHapticIntensity = os::HapticScale::NONE;
4569 fastTrack->mGeneration++;
4570 state->mFastTracksGen++;
4571 state->mTrackMask = 1;
4572 // fast mixer will use the HAL output sink
4573 state->mOutputSink = mOutputSink.get();
4574 state->mOutputSinkGen++;
4575 state->mFrameCount = mFrameCount;
4576 // specify sink channel mask when haptic channel mask present as it can not
4577 // be calculated directly from channel count
4578 state->mSinkChannelMask = mHapticChannelMask == AUDIO_CHANNEL_NONE
4579 ? AUDIO_CHANNEL_NONE
4580 : static_cast<audio_channel_mask_t>(mChannelMask | mHapticChannelMask);
4581 state->mCommand = FastMixerState::COLD_IDLE;
4582 // already done in constructor initialization list
4583 //mFastMixerFutex = 0;
4584 state->mColdFutexAddr = &mFastMixerFutex;
4585 state->mColdGen++;
4586 state->mDumpState = &mFastMixerDumpState;
4587 mFastMixerNBLogWriter = audioFlinger->newWriter_l(kFastMixerLogSize, "FastMixer");
4588 state->mNBLogWriter = mFastMixerNBLogWriter.get();
4589 sq->end();
4590 sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
4591
4592 NBLog::thread_info_t info;
4593 info.id = mId;
4594 info.type = NBLog::FASTMIXER;
4595 mFastMixerNBLogWriter->log<NBLog::EVENT_THREAD_INFO>(info);
4596
4597 // start the fast mixer
4598 mFastMixer->run("FastMixer", PRIORITY_URGENT_AUDIO);
4599 pid_t tid = mFastMixer->getTid();
4600 sendPrioConfigEvent(getpid(), tid, kPriorityFastMixer, false /*forApp*/);
4601 stream()->setHalThreadPriority(kPriorityFastMixer);
4602
4603 #ifdef AUDIO_WATCHDOG
4604 // create and start the watchdog
4605 mAudioWatchdog = new AudioWatchdog();
4606 mAudioWatchdog->setDump(&mAudioWatchdogDump);
4607 mAudioWatchdog->run("AudioWatchdog", PRIORITY_URGENT_AUDIO);
4608 tid = mAudioWatchdog->getTid();
4609 sendPrioConfigEvent(getpid(), tid, kPriorityFastMixer, false /*forApp*/);
4610 #endif
4611 } else {
4612 #ifdef TEE_SINK
4613 // Only use the MixerThread tee if there is no FastMixer.
4614 mTee.set(mOutputSink->format(), NBAIO_Tee::TEE_FLAG_OUTPUT_THREAD);
4615 mTee.setId(std::string("_") + std::to_string(mId) + "_M");
4616 #endif
4617 }
4618
4619 switch (kUseFastMixer) {
4620 case FastMixer_Never:
4621 case FastMixer_Dynamic:
4622 mNormalSink = mOutputSink;
4623 break;
4624 case FastMixer_Always:
4625 mNormalSink = mPipeSink;
4626 break;
4627 case FastMixer_Static:
4628 mNormalSink = initFastMixer ? mPipeSink : mOutputSink;
4629 break;
4630 }
4631 }
4632
~MixerThread()4633 AudioFlinger::MixerThread::~MixerThread()
4634 {
4635 if (mFastMixer != 0) {
4636 FastMixerStateQueue *sq = mFastMixer->sq();
4637 FastMixerState *state = sq->begin();
4638 if (state->mCommand == FastMixerState::COLD_IDLE) {
4639 int32_t old = android_atomic_inc(&mFastMixerFutex);
4640 if (old == -1) {
4641 (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
4642 }
4643 }
4644 state->mCommand = FastMixerState::EXIT;
4645 sq->end();
4646 sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
4647 mFastMixer->join();
4648 // Though the fast mixer thread has exited, it's state queue is still valid.
4649 // We'll use that extract the final state which contains one remaining fast track
4650 // corresponding to our sub-mix.
4651 state = sq->begin();
4652 ALOG_ASSERT(state->mTrackMask == 1);
4653 FastTrack *fastTrack = &state->mFastTracks[0];
4654 ALOG_ASSERT(fastTrack->mBufferProvider != NULL);
4655 delete fastTrack->mBufferProvider;
4656 sq->end(false /*didModify*/);
4657 mFastMixer.clear();
4658 #ifdef AUDIO_WATCHDOG
4659 if (mAudioWatchdog != 0) {
4660 mAudioWatchdog->requestExit();
4661 mAudioWatchdog->requestExitAndWait();
4662 mAudioWatchdog.clear();
4663 }
4664 #endif
4665 }
4666 mAudioFlinger->unregisterWriter(mFastMixerNBLogWriter);
4667 delete mAudioMixer;
4668 }
4669
4670
correctLatency_l(uint32_t latency) const4671 uint32_t AudioFlinger::MixerThread::correctLatency_l(uint32_t latency) const
4672 {
4673 if (mFastMixer != 0) {
4674 MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
4675 latency += (pipe->getAvgFrames() * 1000) / mSampleRate;
4676 }
4677 return latency;
4678 }
4679
threadLoop_write()4680 ssize_t AudioFlinger::MixerThread::threadLoop_write()
4681 {
4682 // FIXME we should only do one push per cycle; confirm this is true
4683 // Start the fast mixer if it's not already running
4684 if (mFastMixer != 0) {
4685 FastMixerStateQueue *sq = mFastMixer->sq();
4686 FastMixerState *state = sq->begin();
4687 if (state->mCommand != FastMixerState::MIX_WRITE &&
4688 (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)) {
4689 if (state->mCommand == FastMixerState::COLD_IDLE) {
4690
4691 // FIXME workaround for first HAL write being CPU bound on some devices
4692 ATRACE_BEGIN("write");
4693 mOutput->write((char *)mSinkBuffer, 0);
4694 ATRACE_END();
4695
4696 int32_t old = android_atomic_inc(&mFastMixerFutex);
4697 if (old == -1) {
4698 (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
4699 }
4700 #ifdef AUDIO_WATCHDOG
4701 if (mAudioWatchdog != 0) {
4702 mAudioWatchdog->resume();
4703 }
4704 #endif
4705 }
4706 state->mCommand = FastMixerState::MIX_WRITE;
4707 #ifdef FAST_THREAD_STATISTICS
4708 mFastMixerDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
4709 FastThreadDumpState::kSamplingNforLowRamDevice : FastThreadDumpState::kSamplingN);
4710 #endif
4711 sq->end();
4712 sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
4713 if (kUseFastMixer == FastMixer_Dynamic) {
4714 mNormalSink = mPipeSink;
4715 }
4716 } else {
4717 sq->end(false /*didModify*/);
4718 }
4719 }
4720 return PlaybackThread::threadLoop_write();
4721 }
4722
threadLoop_standby()4723 void AudioFlinger::MixerThread::threadLoop_standby()
4724 {
4725 // Idle the fast mixer if it's currently running
4726 if (mFastMixer != 0) {
4727 FastMixerStateQueue *sq = mFastMixer->sq();
4728 FastMixerState *state = sq->begin();
4729 if (!(state->mCommand & FastMixerState::IDLE)) {
4730 // Report any frames trapped in the Monopipe
4731 MonoPipe *monoPipe = (MonoPipe *)mPipeSink.get();
4732 const long long pipeFrames = monoPipe->maxFrames() - monoPipe->availableToWrite();
4733 mLocalLog.log("threadLoop_standby: framesWritten:%lld suspendedFrames:%lld "
4734 "monoPipeWritten:%lld monoPipeLeft:%lld",
4735 (long long)mFramesWritten, (long long)mSuspendedFrames,
4736 (long long)mPipeSink->framesWritten(), pipeFrames);
4737 mLocalLog.log("threadLoop_standby: %s", mTimestamp.toString().c_str());
4738
4739 state->mCommand = FastMixerState::COLD_IDLE;
4740 state->mColdFutexAddr = &mFastMixerFutex;
4741 state->mColdGen++;
4742 mFastMixerFutex = 0;
4743 sq->end();
4744 // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
4745 sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
4746 if (kUseFastMixer == FastMixer_Dynamic) {
4747 mNormalSink = mOutputSink;
4748 }
4749 #ifdef AUDIO_WATCHDOG
4750 if (mAudioWatchdog != 0) {
4751 mAudioWatchdog->pause();
4752 }
4753 #endif
4754 } else {
4755 sq->end(false /*didModify*/);
4756 }
4757 }
4758 PlaybackThread::threadLoop_standby();
4759 }
4760
waitingAsyncCallback_l()4761 bool AudioFlinger::PlaybackThread::waitingAsyncCallback_l()
4762 {
4763 return false;
4764 }
4765
shouldStandby_l()4766 bool AudioFlinger::PlaybackThread::shouldStandby_l()
4767 {
4768 return !mStandby;
4769 }
4770
waitingAsyncCallback()4771 bool AudioFlinger::PlaybackThread::waitingAsyncCallback()
4772 {
4773 Mutex::Autolock _l(mLock);
4774 return waitingAsyncCallback_l();
4775 }
4776
4777 // shared by MIXER and DIRECT, overridden by DUPLICATING
threadLoop_standby()4778 void AudioFlinger::PlaybackThread::threadLoop_standby()
4779 {
4780 ALOGV("Audio hardware entering standby, mixer %p, suspend count %d", this, mSuspended);
4781 mOutput->standby();
4782 if (mUseAsyncWrite != 0) {
4783 // discard any pending drain or write ack by incrementing sequence
4784 mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
4785 mDrainSequence = (mDrainSequence + 2) & ~1;
4786 ALOG_ASSERT(mCallbackThread != 0);
4787 mCallbackThread->setWriteBlocked(mWriteAckSequence);
4788 mCallbackThread->setDraining(mDrainSequence);
4789 }
4790 mHwPaused = false;
4791 }
4792
onAddNewTrack_l()4793 void AudioFlinger::PlaybackThread::onAddNewTrack_l()
4794 {
4795 ALOGV("signal playback thread");
4796 broadcast_l();
4797 }
4798
onAsyncError()4799 void AudioFlinger::PlaybackThread::onAsyncError()
4800 {
4801 for (int i = AUDIO_STREAM_SYSTEM; i < (int)AUDIO_STREAM_CNT; i++) {
4802 invalidateTracks((audio_stream_type_t)i);
4803 }
4804 }
4805
threadLoop_mix()4806 void AudioFlinger::MixerThread::threadLoop_mix()
4807 {
4808 // mix buffers...
4809 mAudioMixer->process();
4810 mCurrentWriteLength = mSinkBufferSize;
4811 // increase sleep time progressively when application underrun condition clears.
4812 // Only increase sleep time if the mixer is ready for two consecutive times to avoid
4813 // that a steady state of alternating ready/not ready conditions keeps the sleep time
4814 // such that we would underrun the audio HAL.
4815 if ((mSleepTimeUs == 0) && (sleepTimeShift > 0)) {
4816 sleepTimeShift--;
4817 }
4818 mSleepTimeUs = 0;
4819 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
4820 //TODO: delay standby when effects have a tail
4821
4822 }
4823
threadLoop_sleepTime()4824 void AudioFlinger::MixerThread::threadLoop_sleepTime()
4825 {
4826 // If no tracks are ready, sleep once for the duration of an output
4827 // buffer size, then write 0s to the output
4828 if (mSleepTimeUs == 0) {
4829 if (mMixerStatus == MIXER_TRACKS_ENABLED) {
4830 if (mPipeSink.get() != nullptr && mPipeSink == mNormalSink) {
4831 // Using the Monopipe availableToWrite, we estimate the
4832 // sleep time to retry for more data (before we underrun).
4833 MonoPipe *monoPipe = static_cast<MonoPipe *>(mPipeSink.get());
4834 const ssize_t availableToWrite = mPipeSink->availableToWrite();
4835 const size_t pipeFrames = monoPipe->maxFrames();
4836 const size_t framesLeft = pipeFrames - max(availableToWrite, 0);
4837 // HAL_framecount <= framesDelay ~ framesLeft / 2 <= Normal_Mixer_framecount
4838 const size_t framesDelay = std::min(
4839 mNormalFrameCount, max(framesLeft / 2, mFrameCount));
4840 ALOGV("pipeFrames:%zu framesLeft:%zu framesDelay:%zu",
4841 pipeFrames, framesLeft, framesDelay);
4842 mSleepTimeUs = framesDelay * MICROS_PER_SECOND / mSampleRate;
4843 } else {
4844 mSleepTimeUs = mActiveSleepTimeUs >> sleepTimeShift;
4845 if (mSleepTimeUs < kMinThreadSleepTimeUs) {
4846 mSleepTimeUs = kMinThreadSleepTimeUs;
4847 }
4848 // reduce sleep time in case of consecutive application underruns to avoid
4849 // starving the audio HAL. As activeSleepTimeUs() is larger than a buffer
4850 // duration we would end up writing less data than needed by the audio HAL if
4851 // the condition persists.
4852 if (sleepTimeShift < kMaxThreadSleepTimeShift) {
4853 sleepTimeShift++;
4854 }
4855 }
4856 } else {
4857 mSleepTimeUs = mIdleSleepTimeUs;
4858 }
4859 } else if (mBytesWritten != 0 || (mMixerStatus == MIXER_TRACKS_ENABLED)) {
4860 // clear out mMixerBuffer or mSinkBuffer, to ensure buffers are cleared
4861 // before effects processing or output.
4862 if (mMixerBufferValid) {
4863 memset(mMixerBuffer, 0, mMixerBufferSize);
4864 } else {
4865 memset(mSinkBuffer, 0, mSinkBufferSize);
4866 }
4867 mSleepTimeUs = 0;
4868 ALOGV_IF(mBytesWritten == 0 && (mMixerStatus == MIXER_TRACKS_ENABLED),
4869 "anticipated start");
4870 }
4871 // TODO add standby time extension fct of effect tail
4872 }
4873
4874 // prepareTracks_l() must be called with ThreadBase::mLock held
prepareTracks_l(Vector<sp<Track>> * tracksToRemove)4875 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::MixerThread::prepareTracks_l(
4876 Vector< sp<Track> > *tracksToRemove)
4877 {
4878 // clean up deleted track ids in AudioMixer before allocating new tracks
4879 (void)mTracks.processDeletedTrackIds([this](int trackId) {
4880 // for each trackId, destroy it in the AudioMixer
4881 if (mAudioMixer->exists(trackId)) {
4882 mAudioMixer->destroy(trackId);
4883 }
4884 });
4885 mTracks.clearDeletedTrackIds();
4886
4887 mixer_state mixerStatus = MIXER_IDLE;
4888 // find out which tracks need to be processed
4889 size_t count = mActiveTracks.size();
4890 size_t mixedTracks = 0;
4891 size_t tracksWithEffect = 0;
4892 // counts only _active_ fast tracks
4893 size_t fastTracks = 0;
4894 uint32_t resetMask = 0; // bit mask of fast tracks that need to be reset
4895
4896 float masterVolume = mMasterVolume;
4897 bool masterMute = mMasterMute;
4898
4899 if (masterMute) {
4900 masterVolume = 0;
4901 }
4902 // Delegate master volume control to effect in output mix effect chain if needed
4903 sp<EffectChain> chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX);
4904 if (chain != 0) {
4905 uint32_t v = (uint32_t)(masterVolume * (1 << 24));
4906 chain->setVolume_l(&v, &v);
4907 masterVolume = (float)((v + (1 << 23)) >> 24);
4908 chain.clear();
4909 }
4910
4911 // prepare a new state to push
4912 FastMixerStateQueue *sq = NULL;
4913 FastMixerState *state = NULL;
4914 bool didModify = false;
4915 FastMixerStateQueue::block_t block = FastMixerStateQueue::BLOCK_UNTIL_PUSHED;
4916 bool coldIdle = false;
4917 if (mFastMixer != 0) {
4918 sq = mFastMixer->sq();
4919 state = sq->begin();
4920 coldIdle = state->mCommand == FastMixerState::COLD_IDLE;
4921 }
4922
4923 mMixerBufferValid = false; // mMixerBuffer has no valid data until appropriate tracks found.
4924 mEffectBufferValid = false; // mEffectBuffer has no valid data until tracks found.
4925
4926 // DeferredOperations handles statistics after setting mixerStatus.
4927 class DeferredOperations {
4928 public:
4929 DeferredOperations(mixer_state *mixerStatus, ThreadMetrics *threadMetrics)
4930 : mMixerStatus(mixerStatus)
4931 , mThreadMetrics(threadMetrics) {}
4932
4933 // when leaving scope, tally frames properly.
4934 ~DeferredOperations() {
4935 // Tally underrun frames only if we are actually mixing (MIXER_TRACKS_READY)
4936 // because that is when the underrun occurs.
4937 // We do not distinguish between FastTracks and NormalTracks here.
4938 size_t maxUnderrunFrames = 0;
4939 if (*mMixerStatus == MIXER_TRACKS_READY && mUnderrunFrames.size() > 0) {
4940 for (const auto &underrun : mUnderrunFrames) {
4941 underrun.first->tallyUnderrunFrames(underrun.second);
4942 maxUnderrunFrames = max(underrun.second, maxUnderrunFrames);
4943 }
4944 }
4945 // send the max underrun frames for this mixer period
4946 mThreadMetrics->logUnderrunFrames(maxUnderrunFrames);
4947 }
4948
4949 // tallyUnderrunFrames() is called to update the track counters
4950 // with the number of underrun frames for a particular mixer period.
4951 // We defer tallying until we know the final mixer status.
4952 void tallyUnderrunFrames(sp<Track> track, size_t underrunFrames) {
4953 mUnderrunFrames.emplace_back(track, underrunFrames);
4954 }
4955
4956 private:
4957 const mixer_state * const mMixerStatus;
4958 ThreadMetrics * const mThreadMetrics;
4959 std::vector<std::pair<sp<Track>, size_t>> mUnderrunFrames;
4960 } deferredOperations(&mixerStatus, &mThreadMetrics);
4961 // implicit nested scope for variable capture
4962
4963 bool noFastHapticTrack = true;
4964 for (size_t i=0 ; i<count ; i++) {
4965 const sp<Track> t = mActiveTracks[i];
4966
4967 // this const just means the local variable doesn't change
4968 Track* const track = t.get();
4969
4970 // process fast tracks
4971 if (track->isFastTrack()) {
4972 LOG_ALWAYS_FATAL_IF(mFastMixer.get() == nullptr,
4973 "%s(%d): FastTrack(%d) present without FastMixer",
4974 __func__, id(), track->id());
4975
4976 if (track->getHapticPlaybackEnabled()) {
4977 noFastHapticTrack = false;
4978 }
4979
4980 // It's theoretically possible (though unlikely) for a fast track to be created
4981 // and then removed within the same normal mix cycle. This is not a problem, as
4982 // the track never becomes active so it's fast mixer slot is never touched.
4983 // The converse, of removing an (active) track and then creating a new track
4984 // at the identical fast mixer slot within the same normal mix cycle,
4985 // is impossible because the slot isn't marked available until the end of each cycle.
4986 int j = track->mFastIndex;
4987 ALOG_ASSERT(0 < j && j < (int)FastMixerState::sMaxFastTracks);
4988 ALOG_ASSERT(!(mFastTrackAvailMask & (1 << j)));
4989 FastTrack *fastTrack = &state->mFastTracks[j];
4990
4991 // Determine whether the track is currently in underrun condition,
4992 // and whether it had a recent underrun.
4993 FastTrackDump *ftDump = &mFastMixerDumpState.mTracks[j];
4994 FastTrackUnderruns underruns = ftDump->mUnderruns;
4995 uint32_t recentFull = (underruns.mBitFields.mFull -
4996 track->mObservedUnderruns.mBitFields.mFull) & UNDERRUN_MASK;
4997 uint32_t recentPartial = (underruns.mBitFields.mPartial -
4998 track->mObservedUnderruns.mBitFields.mPartial) & UNDERRUN_MASK;
4999 uint32_t recentEmpty = (underruns.mBitFields.mEmpty -
5000 track->mObservedUnderruns.mBitFields.mEmpty) & UNDERRUN_MASK;
5001 uint32_t recentUnderruns = recentPartial + recentEmpty;
5002 track->mObservedUnderruns = underruns;
5003 // don't count underruns that occur while stopping or pausing
5004 // or stopped which can occur when flush() is called while active
5005 size_t underrunFrames = 0;
5006 if (!(track->isStopping() || track->isPausing() || track->isStopped()) &&
5007 recentUnderruns > 0) {
5008 // FIXME fast mixer will pull & mix partial buffers, but we count as a full underrun
5009 underrunFrames = recentUnderruns * mFrameCount;
5010 }
5011 // Immediately account for FastTrack underruns.
5012 track->mAudioTrackServerProxy->tallyUnderrunFrames(underrunFrames);
5013
5014 // This is similar to the state machine for normal tracks,
5015 // with a few modifications for fast tracks.
5016 bool isActive = true;
5017 switch (track->mState) {
5018 case TrackBase::STOPPING_1:
5019 // track stays active in STOPPING_1 state until first underrun
5020 if (recentUnderruns > 0 || track->isTerminated()) {
5021 track->mState = TrackBase::STOPPING_2;
5022 }
5023 break;
5024 case TrackBase::PAUSING:
5025 // ramp down is not yet implemented
5026 track->setPaused();
5027 break;
5028 case TrackBase::RESUMING:
5029 // ramp up is not yet implemented
5030 track->mState = TrackBase::ACTIVE;
5031 break;
5032 case TrackBase::ACTIVE:
5033 if (recentFull > 0 || recentPartial > 0) {
5034 // track has provided at least some frames recently: reset retry count
5035 track->mRetryCount = kMaxTrackRetries;
5036 }
5037 if (recentUnderruns == 0) {
5038 // no recent underruns: stay active
5039 break;
5040 }
5041 // there has recently been an underrun of some kind
5042 if (track->sharedBuffer() == 0) {
5043 // were any of the recent underruns "empty" (no frames available)?
5044 if (recentEmpty == 0) {
5045 // no, then ignore the partial underruns as they are allowed indefinitely
5046 break;
5047 }
5048 // there has recently been an "empty" underrun: decrement the retry counter
5049 if (--(track->mRetryCount) > 0) {
5050 break;
5051 }
5052 // indicate to client process that the track was disabled because of underrun;
5053 // it will then automatically call start() when data is available
5054 track->disable();
5055 // remove from active list, but state remains ACTIVE [confusing but true]
5056 isActive = false;
5057 break;
5058 }
5059 FALLTHROUGH_INTENDED;
5060 case TrackBase::STOPPING_2:
5061 case TrackBase::PAUSED:
5062 case TrackBase::STOPPED:
5063 case TrackBase::FLUSHED: // flush() while active
5064 // Check for presentation complete if track is inactive
5065 // We have consumed all the buffers of this track.
5066 // This would be incomplete if we auto-paused on underrun
5067 {
5068 uint32_t latency = 0;
5069 status_t result = mOutput->stream->getLatency(&latency);
5070 ALOGE_IF(result != OK,
5071 "Error when retrieving output stream latency: %d", result);
5072 size_t audioHALFrames = (latency * mSampleRate) / 1000;
5073 int64_t framesWritten = mBytesWritten / mFrameSize;
5074 if (!(mStandby || track->presentationComplete(framesWritten, audioHALFrames))) {
5075 // track stays in active list until presentation is complete
5076 break;
5077 }
5078 }
5079 if (track->isStopping_2()) {
5080 track->mState = TrackBase::STOPPED;
5081 }
5082 if (track->isStopped()) {
5083 // Can't reset directly, as fast mixer is still polling this track
5084 // track->reset();
5085 // So instead mark this track as needing to be reset after push with ack
5086 resetMask |= 1 << i;
5087 }
5088 isActive = false;
5089 break;
5090 case TrackBase::IDLE:
5091 default:
5092 LOG_ALWAYS_FATAL("unexpected track state %d", track->mState);
5093 }
5094
5095 if (isActive) {
5096 // was it previously inactive?
5097 if (!(state->mTrackMask & (1 << j))) {
5098 ExtendedAudioBufferProvider *eabp = track;
5099 VolumeProvider *vp = track;
5100 fastTrack->mBufferProvider = eabp;
5101 fastTrack->mVolumeProvider = vp;
5102 fastTrack->mChannelMask = track->mChannelMask;
5103 fastTrack->mFormat = track->mFormat;
5104 fastTrack->mHapticPlaybackEnabled = track->getHapticPlaybackEnabled();
5105 fastTrack->mHapticIntensity = track->getHapticIntensity();
5106 fastTrack->mGeneration++;
5107 state->mTrackMask |= 1 << j;
5108 didModify = true;
5109 // no acknowledgement required for newly active tracks
5110 }
5111 sp<AudioTrackServerProxy> proxy = track->mAudioTrackServerProxy;
5112 float volume;
5113 if (track->isPlaybackRestricted() || mStreamTypes[track->streamType()].mute) {
5114 volume = 0.f;
5115 } else {
5116 volume = masterVolume * mStreamTypes[track->streamType()].volume;
5117 }
5118
5119 handleVoipVolume_l(&volume);
5120
5121 // cache the combined master volume and stream type volume for fast mixer; this
5122 // lacks any synchronization or barrier so VolumeProvider may read a stale value
5123 const float vh = track->getVolumeHandler()->getVolume(
5124 proxy->framesReleased()).first;
5125 volume *= vh;
5126 track->mCachedVolume = volume;
5127 gain_minifloat_packed_t vlr = proxy->getVolumeLR();
5128 float vlf = volume * float_from_gain(gain_minifloat_unpack_left(vlr));
5129 float vrf = volume * float_from_gain(gain_minifloat_unpack_right(vlr));
5130
5131 track->setFinalVolume((vlf + vrf) / 2.f);
5132 ++fastTracks;
5133 } else {
5134 // was it previously active?
5135 if (state->mTrackMask & (1 << j)) {
5136 fastTrack->mBufferProvider = NULL;
5137 fastTrack->mGeneration++;
5138 state->mTrackMask &= ~(1 << j);
5139 didModify = true;
5140 // If any fast tracks were removed, we must wait for acknowledgement
5141 // because we're about to decrement the last sp<> on those tracks.
5142 block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
5143 } else {
5144 // ALOGW rather than LOG_ALWAYS_FATAL because it seems there are cases where an
5145 // AudioTrack may start (which may not be with a start() but with a write()
5146 // after underrun) and immediately paused or released. In that case the
5147 // FastTrack state hasn't had time to update.
5148 // TODO Remove the ALOGW when this theory is confirmed.
5149 ALOGW("fast track %d should have been active; "
5150 "mState=%d, mTrackMask=%#x, recentUnderruns=%u, isShared=%d",
5151 j, track->mState, state->mTrackMask, recentUnderruns,
5152 track->sharedBuffer() != 0);
5153 // Since the FastMixer state already has the track inactive, do nothing here.
5154 }
5155 tracksToRemove->add(track);
5156 // Avoids a misleading display in dumpsys
5157 track->mObservedUnderruns.mBitFields.mMostRecent = UNDERRUN_FULL;
5158 }
5159 if (fastTrack->mHapticPlaybackEnabled != track->getHapticPlaybackEnabled()) {
5160 fastTrack->mHapticPlaybackEnabled = track->getHapticPlaybackEnabled();
5161 didModify = true;
5162 }
5163 continue;
5164 }
5165
5166 { // local variable scope to avoid goto warning
5167
5168 audio_track_cblk_t* cblk = track->cblk();
5169
5170 // The first time a track is added we wait
5171 // for all its buffers to be filled before processing it
5172 const int trackId = track->id();
5173
5174 // if an active track doesn't exist in the AudioMixer, create it.
5175 // use the trackId as the AudioMixer name.
5176 if (!mAudioMixer->exists(trackId)) {
5177 status_t status = mAudioMixer->create(
5178 trackId,
5179 track->mChannelMask,
5180 track->mFormat,
5181 track->mSessionId);
5182 if (status != OK) {
5183 ALOGW("%s(): AudioMixer cannot create track(%d)"
5184 " mask %#x, format %#x, sessionId %d",
5185 __func__, trackId,
5186 track->mChannelMask, track->mFormat, track->mSessionId);
5187 tracksToRemove->add(track);
5188 track->invalidate(); // consider it dead.
5189 continue;
5190 }
5191 }
5192
5193 // make sure that we have enough frames to mix one full buffer.
5194 // enforce this condition only once to enable draining the buffer in case the client
5195 // app does not call stop() and relies on underrun to stop:
5196 // hence the test on (mMixerStatus == MIXER_TRACKS_READY) meaning the track was mixed
5197 // during last round
5198 size_t desiredFrames;
5199 const uint32_t sampleRate = track->mAudioTrackServerProxy->getSampleRate();
5200 AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
5201
5202 desiredFrames = sourceFramesNeededWithTimestretch(
5203 sampleRate, mNormalFrameCount, mSampleRate, playbackRate.mSpeed);
5204 // TODO: ONLY USED FOR LEGACY RESAMPLERS, remove when they are removed.
5205 // add frames already consumed but not yet released by the resampler
5206 // because mAudioTrackServerProxy->framesReady() will include these frames
5207 desiredFrames += mAudioMixer->getUnreleasedFrames(trackId);
5208
5209 uint32_t minFrames = 1;
5210 if ((track->sharedBuffer() == 0) && !track->isStopped() && !track->isPausing() &&
5211 (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY)) {
5212 minFrames = desiredFrames;
5213 }
5214
5215 size_t framesReady = track->framesReady();
5216 if (ATRACE_ENABLED()) {
5217 // I wish we had formatted trace names
5218 std::string traceName("nRdy");
5219 traceName += std::to_string(trackId);
5220 ATRACE_INT(traceName.c_str(), framesReady);
5221 }
5222 if ((framesReady >= minFrames) && track->isReady() &&
5223 !track->isPaused() && !track->isTerminated())
5224 {
5225 ALOGVV("track(%d) s=%08x [OK] on thread %p", trackId, cblk->mServer, this);
5226
5227 mixedTracks++;
5228
5229 // track->mainBuffer() != mSinkBuffer or mMixerBuffer means
5230 // there is an effect chain connected to the track
5231 chain.clear();
5232 if (track->mainBuffer() != mSinkBuffer &&
5233 track->mainBuffer() != mMixerBuffer) {
5234 if (mEffectBufferEnabled) {
5235 mEffectBufferValid = true; // Later can set directly.
5236 }
5237 chain = getEffectChain_l(track->sessionId());
5238 // Delegate volume control to effect in track effect chain if needed
5239 if (chain != 0) {
5240 tracksWithEffect++;
5241 } else {
5242 ALOGW("prepareTracks_l(): track(%d) attached to effect but no chain found on "
5243 "session %d",
5244 trackId, track->sessionId());
5245 }
5246 }
5247
5248
5249 int param = AudioMixer::VOLUME;
5250 if (track->mFillingUpStatus == Track::FS_FILLED) {
5251 // no ramp for the first volume setting
5252 track->mFillingUpStatus = Track::FS_ACTIVE;
5253 if (track->mState == TrackBase::RESUMING) {
5254 track->mState = TrackBase::ACTIVE;
5255 // If a new track is paused immediately after start, do not ramp on resume.
5256 if (cblk->mServer != 0) {
5257 param = AudioMixer::RAMP_VOLUME;
5258 }
5259 }
5260 mAudioMixer->setParameter(trackId, AudioMixer::RESAMPLE, AudioMixer::RESET, NULL);
5261 mLeftVolFloat = -1.0;
5262 // FIXME should not make a decision based on mServer
5263 } else if (cblk->mServer != 0) {
5264 // If the track is stopped before the first frame was mixed,
5265 // do not apply ramp
5266 param = AudioMixer::RAMP_VOLUME;
5267 }
5268
5269 // compute volume for this track
5270 uint32_t vl, vr; // in U8.24 integer format
5271 float vlf, vrf, vaf; // in [0.0, 1.0] float format
5272 // read original volumes with volume control
5273 float v = masterVolume * mStreamTypes[track->streamType()].volume;
5274 // Always fetch volumeshaper volume to ensure state is updated.
5275 const sp<AudioTrackServerProxy> proxy = track->mAudioTrackServerProxy;
5276 const float vh = track->getVolumeHandler()->getVolume(
5277 track->mAudioTrackServerProxy->framesReleased()).first;
5278
5279 if (mStreamTypes[track->streamType()].mute || track->isPlaybackRestricted()) {
5280 v = 0;
5281 }
5282
5283 handleVoipVolume_l(&v);
5284
5285 if (track->isPausing()) {
5286 vl = vr = 0;
5287 vlf = vrf = vaf = 0.;
5288 track->setPaused();
5289 } else {
5290 gain_minifloat_packed_t vlr = proxy->getVolumeLR();
5291 vlf = float_from_gain(gain_minifloat_unpack_left(vlr));
5292 vrf = float_from_gain(gain_minifloat_unpack_right(vlr));
5293 // track volumes come from shared memory, so can't be trusted and must be clamped
5294 if (vlf > GAIN_FLOAT_UNITY) {
5295 ALOGV("Track left volume out of range: %.3g", vlf);
5296 vlf = GAIN_FLOAT_UNITY;
5297 }
5298 if (vrf > GAIN_FLOAT_UNITY) {
5299 ALOGV("Track right volume out of range: %.3g", vrf);
5300 vrf = GAIN_FLOAT_UNITY;
5301 }
5302 // now apply the master volume and stream type volume and shaper volume
5303 vlf *= v * vh;
5304 vrf *= v * vh;
5305 // assuming master volume and stream type volume each go up to 1.0,
5306 // then derive vl and vr as U8.24 versions for the effect chain
5307 const float scaleto8_24 = MAX_GAIN_INT * MAX_GAIN_INT;
5308 vl = (uint32_t) (scaleto8_24 * vlf);
5309 vr = (uint32_t) (scaleto8_24 * vrf);
5310 // vl and vr are now in U8.24 format
5311 uint16_t sendLevel = proxy->getSendLevel_U4_12();
5312 // send level comes from shared memory and so may be corrupt
5313 if (sendLevel > MAX_GAIN_INT) {
5314 ALOGV("Track send level out of range: %04X", sendLevel);
5315 sendLevel = MAX_GAIN_INT;
5316 }
5317 // vaf is represented as [0.0, 1.0] float by rescaling sendLevel
5318 vaf = v * sendLevel * (1. / MAX_GAIN_INT);
5319 }
5320
5321 track->setFinalVolume((vrf + vlf) / 2.f);
5322
5323 // Delegate volume control to effect in track effect chain if needed
5324 if (chain != 0 && chain->setVolume_l(&vl, &vr)) {
5325 // Do not ramp volume if volume is controlled by effect
5326 param = AudioMixer::VOLUME;
5327 // Update remaining floating point volume levels
5328 vlf = (float)vl / (1 << 24);
5329 vrf = (float)vr / (1 << 24);
5330 track->mHasVolumeController = true;
5331 } else {
5332 // force no volume ramp when volume controller was just disabled or removed
5333 // from effect chain to avoid volume spike
5334 if (track->mHasVolumeController) {
5335 param = AudioMixer::VOLUME;
5336 }
5337 track->mHasVolumeController = false;
5338 }
5339
5340 // XXX: these things DON'T need to be done each time
5341 mAudioMixer->setBufferProvider(trackId, track);
5342 mAudioMixer->enable(trackId);
5343
5344 mAudioMixer->setParameter(trackId, param, AudioMixer::VOLUME0, &vlf);
5345 mAudioMixer->setParameter(trackId, param, AudioMixer::VOLUME1, &vrf);
5346 mAudioMixer->setParameter(trackId, param, AudioMixer::AUXLEVEL, &vaf);
5347 mAudioMixer->setParameter(
5348 trackId,
5349 AudioMixer::TRACK,
5350 AudioMixer::FORMAT, (void *)track->format());
5351 mAudioMixer->setParameter(
5352 trackId,
5353 AudioMixer::TRACK,
5354 AudioMixer::CHANNEL_MASK, (void *)(uintptr_t)track->channelMask());
5355 mAudioMixer->setParameter(
5356 trackId,
5357 AudioMixer::TRACK,
5358 AudioMixer::MIXER_CHANNEL_MASK,
5359 (void *)(uintptr_t)(mChannelMask | mHapticChannelMask));
5360 // limit track sample rate to 2 x output sample rate, which changes at re-configuration
5361 uint32_t maxSampleRate = mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX;
5362 uint32_t reqSampleRate = proxy->getSampleRate();
5363 if (reqSampleRate == 0) {
5364 reqSampleRate = mSampleRate;
5365 } else if (reqSampleRate > maxSampleRate) {
5366 reqSampleRate = maxSampleRate;
5367 }
5368 mAudioMixer->setParameter(
5369 trackId,
5370 AudioMixer::RESAMPLE,
5371 AudioMixer::SAMPLE_RATE,
5372 (void *)(uintptr_t)reqSampleRate);
5373
5374 AudioPlaybackRate playbackRate = proxy->getPlaybackRate();
5375 mAudioMixer->setParameter(
5376 trackId,
5377 AudioMixer::TIMESTRETCH,
5378 AudioMixer::PLAYBACK_RATE,
5379 &playbackRate);
5380
5381 /*
5382 * Select the appropriate output buffer for the track.
5383 *
5384 * Tracks with effects go into their own effects chain buffer
5385 * and from there into either mEffectBuffer or mSinkBuffer.
5386 *
5387 * Other tracks can use mMixerBuffer for higher precision
5388 * channel accumulation. If this buffer is enabled
5389 * (mMixerBufferEnabled true), then selected tracks will accumulate
5390 * into it.
5391 *
5392 */
5393 if (mMixerBufferEnabled
5394 && (track->mainBuffer() == mSinkBuffer
5395 || track->mainBuffer() == mMixerBuffer)) {
5396 mAudioMixer->setParameter(
5397 trackId,
5398 AudioMixer::TRACK,
5399 AudioMixer::MIXER_FORMAT, (void *)mMixerBufferFormat);
5400 mAudioMixer->setParameter(
5401 trackId,
5402 AudioMixer::TRACK,
5403 AudioMixer::MAIN_BUFFER, (void *)mMixerBuffer);
5404 // TODO: override track->mainBuffer()?
5405 mMixerBufferValid = true;
5406 } else {
5407 mAudioMixer->setParameter(
5408 trackId,
5409 AudioMixer::TRACK,
5410 AudioMixer::MIXER_FORMAT, (void *)EFFECT_BUFFER_FORMAT);
5411 mAudioMixer->setParameter(
5412 trackId,
5413 AudioMixer::TRACK,
5414 AudioMixer::MAIN_BUFFER, (void *)track->mainBuffer());
5415 }
5416 mAudioMixer->setParameter(
5417 trackId,
5418 AudioMixer::TRACK,
5419 AudioMixer::AUX_BUFFER, (void *)track->auxBuffer());
5420 mAudioMixer->setParameter(
5421 trackId,
5422 AudioMixer::TRACK,
5423 AudioMixer::HAPTIC_ENABLED, (void *)(uintptr_t)track->getHapticPlaybackEnabled());
5424 mAudioMixer->setParameter(
5425 trackId,
5426 AudioMixer::TRACK,
5427 AudioMixer::HAPTIC_INTENSITY, (void *)(uintptr_t)track->getHapticIntensity());
5428
5429 // reset retry count
5430 track->mRetryCount = kMaxTrackRetries;
5431
5432 // If one track is ready, set the mixer ready if:
5433 // - the mixer was not ready during previous round OR
5434 // - no other track is not ready
5435 if (mMixerStatusIgnoringFastTracks != MIXER_TRACKS_READY ||
5436 mixerStatus != MIXER_TRACKS_ENABLED) {
5437 mixerStatus = MIXER_TRACKS_READY;
5438 }
5439
5440 // Enable the next few lines to instrument a test for underrun log handling.
5441 // TODO: Remove when we have a better way of testing the underrun log.
5442 #if 0
5443 static int i;
5444 if ((++i & 0xf) == 0) {
5445 deferredOperations.tallyUnderrunFrames(track, 10 /* underrunFrames */);
5446 }
5447 #endif
5448 } else {
5449 size_t underrunFrames = 0;
5450 if (framesReady < desiredFrames && !track->isStopped() && !track->isPaused()) {
5451 ALOGV("track(%d) underrun, track state %s framesReady(%zu) < framesDesired(%zd)",
5452 trackId, track->getTrackStateAsString(), framesReady, desiredFrames);
5453 underrunFrames = desiredFrames;
5454 }
5455 deferredOperations.tallyUnderrunFrames(track, underrunFrames);
5456
5457 // clear effect chain input buffer if an active track underruns to avoid sending
5458 // previous audio buffer again to effects
5459 chain = getEffectChain_l(track->sessionId());
5460 if (chain != 0) {
5461 chain->clearInputBuffer();
5462 }
5463
5464 ALOGVV("track(%d) s=%08x [NOT READY] on thread %p", trackId, cblk->mServer, this);
5465 if ((track->sharedBuffer() != 0) || track->isTerminated() ||
5466 track->isStopped() || track->isPaused()) {
5467 // We have consumed all the buffers of this track.
5468 // Remove it from the list of active tracks.
5469 // TODO: use actual buffer filling status instead of latency when available from
5470 // audio HAL
5471 size_t audioHALFrames = (latency_l() * mSampleRate) / 1000;
5472 int64_t framesWritten = mBytesWritten / mFrameSize;
5473 if (mStandby || track->presentationComplete(framesWritten, audioHALFrames)) {
5474 if (track->isStopped()) {
5475 track->reset();
5476 }
5477 tracksToRemove->add(track);
5478 }
5479 } else {
5480 // No buffers for this track. Give it a few chances to
5481 // fill a buffer, then remove it from active list.
5482 if (--(track->mRetryCount) <= 0) {
5483 ALOGI("BUFFER TIMEOUT: remove(%d) from active list on thread %p",
5484 trackId, this);
5485 tracksToRemove->add(track);
5486 // indicate to client process that the track was disabled because of underrun;
5487 // it will then automatically call start() when data is available
5488 track->disable();
5489 // If one track is not ready, mark the mixer also not ready if:
5490 // - the mixer was ready during previous round OR
5491 // - no other track is ready
5492 } else if (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY ||
5493 mixerStatus != MIXER_TRACKS_READY) {
5494 mixerStatus = MIXER_TRACKS_ENABLED;
5495 }
5496 }
5497 mAudioMixer->disable(trackId);
5498 }
5499
5500 } // local variable scope to avoid goto warning
5501
5502 }
5503
5504 if (mHapticChannelMask != AUDIO_CHANNEL_NONE && sq != NULL) {
5505 // When there is no fast track playing haptic and FastMixer exists,
5506 // enabling the first FastTrack, which provides mixed data from normal
5507 // tracks, to play haptic data.
5508 FastTrack *fastTrack = &state->mFastTracks[0];
5509 if (fastTrack->mHapticPlaybackEnabled != noFastHapticTrack) {
5510 fastTrack->mHapticPlaybackEnabled = noFastHapticTrack;
5511 didModify = true;
5512 }
5513 }
5514
5515 // Push the new FastMixer state if necessary
5516 bool pauseAudioWatchdog = false;
5517 if (didModify) {
5518 state->mFastTracksGen++;
5519 // if the fast mixer was active, but now there are no fast tracks, then put it in cold idle
5520 if (kUseFastMixer == FastMixer_Dynamic &&
5521 state->mCommand == FastMixerState::MIX_WRITE && state->mTrackMask <= 1) {
5522 state->mCommand = FastMixerState::COLD_IDLE;
5523 state->mColdFutexAddr = &mFastMixerFutex;
5524 state->mColdGen++;
5525 mFastMixerFutex = 0;
5526 if (kUseFastMixer == FastMixer_Dynamic) {
5527 mNormalSink = mOutputSink;
5528 }
5529 // If we go into cold idle, need to wait for acknowledgement
5530 // so that fast mixer stops doing I/O.
5531 block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
5532 pauseAudioWatchdog = true;
5533 }
5534 }
5535 if (sq != NULL) {
5536 sq->end(didModify);
5537 // No need to block if the FastMixer is in COLD_IDLE as the FastThread
5538 // is not active. (We BLOCK_UNTIL_ACKED when entering COLD_IDLE
5539 // when bringing the output sink into standby.)
5540 //
5541 // We will get the latest FastMixer state when we come out of COLD_IDLE.
5542 //
5543 // This occurs with BT suspend when we idle the FastMixer with
5544 // active tracks, which may be added or removed.
5545 sq->push(coldIdle ? FastMixerStateQueue::BLOCK_NEVER : block);
5546 }
5547 #ifdef AUDIO_WATCHDOG
5548 if (pauseAudioWatchdog && mAudioWatchdog != 0) {
5549 mAudioWatchdog->pause();
5550 }
5551 #endif
5552
5553 // Now perform the deferred reset on fast tracks that have stopped
5554 while (resetMask != 0) {
5555 size_t i = __builtin_ctz(resetMask);
5556 ALOG_ASSERT(i < count);
5557 resetMask &= ~(1 << i);
5558 sp<Track> track = mActiveTracks[i];
5559 ALOG_ASSERT(track->isFastTrack() && track->isStopped());
5560 track->reset();
5561 }
5562
5563 // Track destruction may occur outside of threadLoop once it is removed from active tracks.
5564 // Ensure the AudioMixer doesn't have a raw "buffer provider" pointer to the track if
5565 // it ceases to be active, to allow safe removal from the AudioMixer at the start
5566 // of prepareTracks_l(); this releases any outstanding buffer back to the track.
5567 // See also the implementation of destroyTrack_l().
5568 for (const auto &track : *tracksToRemove) {
5569 const int trackId = track->id();
5570 if (mAudioMixer->exists(trackId)) { // Normal tracks here, fast tracks in FastMixer.
5571 mAudioMixer->setBufferProvider(trackId, nullptr /* bufferProvider */);
5572 }
5573 }
5574
5575 // remove all the tracks that need to be...
5576 removeTracks_l(*tracksToRemove);
5577
5578 if (getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX) != 0) {
5579 mEffectBufferValid = true;
5580 }
5581
5582 if (mEffectBufferValid) {
5583 // as long as there are effects we should clear the effects buffer, to avoid
5584 // passing a non-clean buffer to the effect chain
5585 memset(mEffectBuffer, 0, mEffectBufferSize);
5586 }
5587 // sink or mix buffer must be cleared if all tracks are connected to an
5588 // effect chain as in this case the mixer will not write to the sink or mix buffer
5589 // and track effects will accumulate into it
5590 if ((mBytesRemaining == 0) && ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
5591 (mixedTracks == 0 && fastTracks > 0))) {
5592 // FIXME as a performance optimization, should remember previous zero status
5593 if (mMixerBufferValid) {
5594 memset(mMixerBuffer, 0, mMixerBufferSize);
5595 // TODO: In testing, mSinkBuffer below need not be cleared because
5596 // the PlaybackThread::threadLoop() copies mMixerBuffer into mSinkBuffer
5597 // after mixing.
5598 //
5599 // To enforce this guarantee:
5600 // ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
5601 // (mixedTracks == 0 && fastTracks > 0))
5602 // must imply MIXER_TRACKS_READY.
5603 // Later, we may clear buffers regardless, and skip much of this logic.
5604 }
5605 // FIXME as a performance optimization, should remember previous zero status
5606 memset(mSinkBuffer, 0, mNormalFrameCount * mFrameSize);
5607 }
5608
5609 // if any fast tracks, then status is ready
5610 mMixerStatusIgnoringFastTracks = mixerStatus;
5611 if (fastTracks > 0) {
5612 mixerStatus = MIXER_TRACKS_READY;
5613 }
5614 return mixerStatus;
5615 }
5616
5617 // trackCountForUid_l() must be called with ThreadBase::mLock held
trackCountForUid_l(uid_t uid) const5618 uint32_t AudioFlinger::PlaybackThread::trackCountForUid_l(uid_t uid) const
5619 {
5620 uint32_t trackCount = 0;
5621 for (size_t i = 0; i < mTracks.size() ; i++) {
5622 if (mTracks[i]->uid() == uid) {
5623 trackCount++;
5624 }
5625 }
5626 return trackCount;
5627 }
5628
5629 // isTrackAllowed_l() must be called with ThreadBase::mLock held
isTrackAllowed_l(audio_channel_mask_t channelMask,audio_format_t format,audio_session_t sessionId,uid_t uid) const5630 bool AudioFlinger::MixerThread::isTrackAllowed_l(
5631 audio_channel_mask_t channelMask, audio_format_t format,
5632 audio_session_t sessionId, uid_t uid) const
5633 {
5634 if (!PlaybackThread::isTrackAllowed_l(channelMask, format, sessionId, uid)) {
5635 return false;
5636 }
5637 // Check validity as we don't call AudioMixer::create() here.
5638 if (!mAudioMixer->isValidFormat(format)) {
5639 ALOGW("%s: invalid format: %#x", __func__, format);
5640 return false;
5641 }
5642 if (!mAudioMixer->isValidChannelMask(channelMask)) {
5643 ALOGW("%s: invalid channelMask: %#x", __func__, channelMask);
5644 return false;
5645 }
5646 return true;
5647 }
5648
5649 // checkForNewParameter_l() must be called with ThreadBase::mLock held
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)5650 bool AudioFlinger::MixerThread::checkForNewParameter_l(const String8& keyValuePair,
5651 status_t& status)
5652 {
5653 bool reconfig = false;
5654 status = NO_ERROR;
5655
5656 AutoPark<FastMixer> park(mFastMixer);
5657
5658 AudioParameter param = AudioParameter(keyValuePair);
5659 int value;
5660 if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
5661 reconfig = true;
5662 }
5663 if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
5664 if (!isValidPcmSinkFormat((audio_format_t) value)) {
5665 status = BAD_VALUE;
5666 } else {
5667 // no need to save value, since it's constant
5668 reconfig = true;
5669 }
5670 }
5671 if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
5672 if (!isValidPcmSinkChannelMask((audio_channel_mask_t) value)) {
5673 status = BAD_VALUE;
5674 } else {
5675 // no need to save value, since it's constant
5676 reconfig = true;
5677 }
5678 }
5679 if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
5680 // do not accept frame count changes if tracks are open as the track buffer
5681 // size depends on frame count and correct behavior would not be guaranteed
5682 // if frame count is changed after track creation
5683 if (!mTracks.isEmpty()) {
5684 status = INVALID_OPERATION;
5685 } else {
5686 reconfig = true;
5687 }
5688 }
5689 if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
5690 LOG_FATAL("Should not set routing device in MixerThread");
5691 }
5692
5693 if (status == NO_ERROR) {
5694 status = mOutput->stream->setParameters(keyValuePair);
5695 if (!mStandby && status == INVALID_OPERATION) {
5696 mOutput->standby();
5697 if (!mStandby) {
5698 mThreadMetrics.logEndInterval();
5699 mStandby = true;
5700 }
5701 mBytesWritten = 0;
5702 status = mOutput->stream->setParameters(keyValuePair);
5703 }
5704 if (status == NO_ERROR && reconfig) {
5705 readOutputParameters_l();
5706 delete mAudioMixer;
5707 mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
5708 for (const auto &track : mTracks) {
5709 const int trackId = track->id();
5710 status_t status = mAudioMixer->create(
5711 trackId,
5712 track->mChannelMask,
5713 track->mFormat,
5714 track->mSessionId);
5715 ALOGW_IF(status != NO_ERROR,
5716 "%s(): AudioMixer cannot create track(%d)"
5717 " mask %#x, format %#x, sessionId %d",
5718 __func__,
5719 trackId, track->mChannelMask, track->mFormat, track->mSessionId);
5720 }
5721 sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
5722 }
5723 }
5724
5725 return reconfig;
5726 }
5727
5728
dumpInternals_l(int fd,const Vector<String16> & args)5729 void AudioFlinger::MixerThread::dumpInternals_l(int fd, const Vector<String16>& args)
5730 {
5731 PlaybackThread::dumpInternals_l(fd, args);
5732 dprintf(fd, " Thread throttle time (msecs): %u\n", mThreadThrottleTimeMs);
5733 dprintf(fd, " AudioMixer tracks: %s\n", mAudioMixer->trackNames().c_str());
5734 dprintf(fd, " Master mono: %s\n", mMasterMono ? "on" : "off");
5735 dprintf(fd, " Master balance: %f (%s)\n", mMasterBalance.load(),
5736 (hasFastMixer() ? std::to_string(mFastMixer->getMasterBalance())
5737 : mBalance.toString()).c_str());
5738 if (hasFastMixer()) {
5739 dprintf(fd, " FastMixer thread %p tid=%d", mFastMixer.get(), mFastMixer->getTid());
5740
5741 // Make a non-atomic copy of fast mixer dump state so it won't change underneath us
5742 // while we are dumping it. It may be inconsistent, but it won't mutate!
5743 // This is a large object so we place it on the heap.
5744 // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages.
5745 const std::unique_ptr<FastMixerDumpState> copy =
5746 std::make_unique<FastMixerDumpState>(mFastMixerDumpState);
5747 copy->dump(fd);
5748
5749 #ifdef STATE_QUEUE_DUMP
5750 // Similar for state queue
5751 StateQueueObserverDump observerCopy = mStateQueueObserverDump;
5752 observerCopy.dump(fd);
5753 StateQueueMutatorDump mutatorCopy = mStateQueueMutatorDump;
5754 mutatorCopy.dump(fd);
5755 #endif
5756
5757 #ifdef AUDIO_WATCHDOG
5758 if (mAudioWatchdog != 0) {
5759 // Make a non-atomic copy of audio watchdog dump so it won't change underneath us
5760 AudioWatchdogDump wdCopy = mAudioWatchdogDump;
5761 wdCopy.dump(fd);
5762 }
5763 #endif
5764
5765 } else {
5766 dprintf(fd, " No FastMixer\n");
5767 }
5768 }
5769
idleSleepTimeUs() const5770 uint32_t AudioFlinger::MixerThread::idleSleepTimeUs() const
5771 {
5772 return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000) / 2;
5773 }
5774
suspendSleepTimeUs() const5775 uint32_t AudioFlinger::MixerThread::suspendSleepTimeUs() const
5776 {
5777 return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000);
5778 }
5779
cacheParameters_l()5780 void AudioFlinger::MixerThread::cacheParameters_l()
5781 {
5782 PlaybackThread::cacheParameters_l();
5783
5784 // FIXME: Relaxed timing because of a certain device that can't meet latency
5785 // Should be reduced to 2x after the vendor fixes the driver issue
5786 // increase threshold again due to low power audio mode. The way this warning
5787 // threshold is calculated and its usefulness should be reconsidered anyway.
5788 maxPeriod = seconds(mNormalFrameCount) / mSampleRate * 15;
5789 }
5790
5791 // ----------------------------------------------------------------------------
5792
DirectOutputThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,ThreadBase::type_t type,bool systemReady)5793 AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
5794 AudioStreamOut* output, audio_io_handle_t id, ThreadBase::type_t type, bool systemReady)
5795 : PlaybackThread(audioFlinger, output, id, type, systemReady)
5796 {
5797 setMasterBalance(audioFlinger->getMasterBalance_l());
5798 }
5799
~DirectOutputThread()5800 AudioFlinger::DirectOutputThread::~DirectOutputThread()
5801 {
5802 }
5803
dumpInternals_l(int fd,const Vector<String16> & args)5804 void AudioFlinger::DirectOutputThread::dumpInternals_l(int fd, const Vector<String16>& args)
5805 {
5806 PlaybackThread::dumpInternals_l(fd, args);
5807 dprintf(fd, " Master balance: %f Left: %f Right: %f\n",
5808 mMasterBalance.load(), mMasterBalanceLeft, mMasterBalanceRight);
5809 }
5810
setMasterBalance(float balance)5811 void AudioFlinger::DirectOutputThread::setMasterBalance(float balance)
5812 {
5813 Mutex::Autolock _l(mLock);
5814 if (mMasterBalance != balance) {
5815 mMasterBalance.store(balance);
5816 mBalance.computeStereoBalance(balance, &mMasterBalanceLeft, &mMasterBalanceRight);
5817 broadcast_l();
5818 }
5819 }
5820
processVolume_l(Track * track,bool lastTrack)5821 void AudioFlinger::DirectOutputThread::processVolume_l(Track *track, bool lastTrack)
5822 {
5823 float left, right;
5824
5825 // Ensure volumeshaper state always advances even when muted.
5826 const sp<AudioTrackServerProxy> proxy = track->mAudioTrackServerProxy;
5827 const auto [shaperVolume, shaperActive] = track->getVolumeHandler()->getVolume(
5828 proxy->framesReleased());
5829 mVolumeShaperActive = shaperActive;
5830
5831 if (mMasterMute || mStreamTypes[track->streamType()].mute || track->isPlaybackRestricted()) {
5832 left = right = 0;
5833 } else {
5834 float typeVolume = mStreamTypes[track->streamType()].volume;
5835 const float v = mMasterVolume * typeVolume * shaperVolume;
5836
5837 gain_minifloat_packed_t vlr = proxy->getVolumeLR();
5838 left = float_from_gain(gain_minifloat_unpack_left(vlr));
5839 if (left > GAIN_FLOAT_UNITY) {
5840 left = GAIN_FLOAT_UNITY;
5841 }
5842 left *= v * mMasterBalanceLeft; // DirectOutputThread balance applied as track volume
5843 right = float_from_gain(gain_minifloat_unpack_right(vlr));
5844 if (right > GAIN_FLOAT_UNITY) {
5845 right = GAIN_FLOAT_UNITY;
5846 }
5847 right *= v * mMasterBalanceRight;
5848 }
5849
5850 if (lastTrack) {
5851 track->setFinalVolume((left + right) / 2.f);
5852 if (left != mLeftVolFloat || right != mRightVolFloat) {
5853 mLeftVolFloat = left;
5854 mRightVolFloat = right;
5855
5856 // Delegate volume control to effect in track effect chain if needed
5857 // only one effect chain can be present on DirectOutputThread, so if
5858 // there is one, the track is connected to it
5859 if (!mEffectChains.isEmpty()) {
5860 // if effect chain exists, volume is handled by it.
5861 // Convert volumes from float to 8.24
5862 uint32_t vl = (uint32_t)(left * (1 << 24));
5863 uint32_t vr = (uint32_t)(right * (1 << 24));
5864 // Direct/Offload effect chains set output volume in setVolume_l().
5865 (void)mEffectChains[0]->setVolume_l(&vl, &vr);
5866 } else {
5867 // otherwise we directly set the volume.
5868 setVolumeForOutput_l(left, right);
5869 }
5870 }
5871 }
5872 }
5873
onAddNewTrack_l()5874 void AudioFlinger::DirectOutputThread::onAddNewTrack_l()
5875 {
5876 sp<Track> previousTrack = mPreviousTrack.promote();
5877 sp<Track> latestTrack = mActiveTracks.getLatest();
5878
5879 if (previousTrack != 0 && latestTrack != 0) {
5880 if (mType == DIRECT) {
5881 if (previousTrack.get() != latestTrack.get()) {
5882 mFlushPending = true;
5883 }
5884 } else /* mType == OFFLOAD */ {
5885 if (previousTrack->sessionId() != latestTrack->sessionId()) {
5886 mFlushPending = true;
5887 }
5888 }
5889 } else if (previousTrack == 0) {
5890 // there could be an old track added back during track transition for direct
5891 // output, so always issues flush to flush data of the previous track if it
5892 // was already destroyed with HAL paused, then flush can resume the playback
5893 mFlushPending = true;
5894 }
5895 PlaybackThread::onAddNewTrack_l();
5896 }
5897
prepareTracks_l(Vector<sp<Track>> * tracksToRemove)5898 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::DirectOutputThread::prepareTracks_l(
5899 Vector< sp<Track> > *tracksToRemove
5900 )
5901 {
5902 size_t count = mActiveTracks.size();
5903 mixer_state mixerStatus = MIXER_IDLE;
5904 bool doHwPause = false;
5905 bool doHwResume = false;
5906
5907 // find out which tracks need to be processed
5908 for (const sp<Track> &t : mActiveTracks) {
5909 if (t->isInvalid()) {
5910 ALOGW("An invalidated track shouldn't be in active list");
5911 tracksToRemove->add(t);
5912 continue;
5913 }
5914
5915 Track* const track = t.get();
5916 #ifdef VERY_VERY_VERBOSE_LOGGING
5917 audio_track_cblk_t* cblk = track->cblk();
5918 #endif
5919 // Only consider last track started for volume and mixer state control.
5920 // In theory an older track could underrun and restart after the new one starts
5921 // but as we only care about the transition phase between two tracks on a
5922 // direct output, it is not a problem to ignore the underrun case.
5923 sp<Track> l = mActiveTracks.getLatest();
5924 bool last = l.get() == track;
5925
5926 if (track->isPausePending()) {
5927 track->pauseAck();
5928 // It is possible a track might have been flushed or stopped.
5929 // Other operations such as flush pending might occur on the next prepare.
5930 if (track->isPausing()) {
5931 track->setPaused();
5932 }
5933 // Always perform pause, as an immediate flush will change
5934 // the pause state to be no longer isPausing().
5935 if (mHwSupportsPause && last && !mHwPaused) {
5936 doHwPause = true;
5937 mHwPaused = true;
5938 }
5939 } else if (track->isFlushPending()) {
5940 track->flushAck();
5941 if (last) {
5942 mFlushPending = true;
5943 }
5944 } else if (track->isResumePending()) {
5945 track->resumeAck();
5946 if (last) {
5947 mLeftVolFloat = mRightVolFloat = -1.0;
5948 if (mHwPaused) {
5949 doHwResume = true;
5950 mHwPaused = false;
5951 }
5952 }
5953 }
5954
5955 // The first time a track is added we wait
5956 // for all its buffers to be filled before processing it.
5957 // Allow draining the buffer in case the client
5958 // app does not call stop() and relies on underrun to stop:
5959 // hence the test on (track->mRetryCount > 1).
5960 // If track->mRetryCount <= 1 then track is about to be disabled, paused, removed,
5961 // so we accept any nonzero amount of data delivered by the AudioTrack (which will
5962 // reset the retry counter).
5963 // Do not use a high threshold for compressed audio.
5964
5965 // target retry count that we will use is based on the time we wait for retries.
5966 const int32_t targetRetryCount = kMaxTrackRetriesDirectMs * 1000 / mActiveSleepTimeUs;
5967 // the retry threshold is when we accept any size for PCM data. This is slightly
5968 // smaller than the retry count so we can push small bits of data without a glitch.
5969 const int32_t retryThreshold = targetRetryCount > 2 ? targetRetryCount - 1 : 1;
5970 uint32_t minFrames;
5971 if ((track->sharedBuffer() == 0) && !track->isStopping_1() && !track->isPausing()
5972 && (track->mRetryCount > retryThreshold) && audio_has_proportional_frames(mFormat)) {
5973 minFrames = mNormalFrameCount;
5974 } else {
5975 minFrames = 1;
5976 }
5977
5978 const size_t framesReady = track->framesReady();
5979 const int trackId = track->id();
5980 if (ATRACE_ENABLED()) {
5981 std::string traceName("nRdy");
5982 traceName += std::to_string(trackId);
5983 ATRACE_INT(traceName.c_str(), framesReady);
5984 }
5985 if ((framesReady >= minFrames) && track->isReady() && !track->isPaused() &&
5986 !track->isStopping_2() && !track->isStopped())
5987 {
5988 ALOGVV("track(%d) s=%08x [OK]", trackId, cblk->mServer);
5989
5990 if (track->mFillingUpStatus == Track::FS_FILLED) {
5991 track->mFillingUpStatus = Track::FS_ACTIVE;
5992 if (last) {
5993 // make sure processVolume_l() will apply new volume even if 0
5994 mLeftVolFloat = mRightVolFloat = -1.0;
5995 }
5996 if (!mHwSupportsPause) {
5997 track->resumeAck();
5998 }
5999 }
6000
6001 // compute volume for this track
6002 processVolume_l(track, last);
6003 if (last) {
6004 sp<Track> previousTrack = mPreviousTrack.promote();
6005 if (previousTrack != 0) {
6006 if (track != previousTrack.get()) {
6007 // Flush any data still being written from last track
6008 mBytesRemaining = 0;
6009 // Invalidate previous track to force a seek when resuming.
6010 previousTrack->invalidate();
6011 }
6012 }
6013 mPreviousTrack = track;
6014
6015 // reset retry count
6016 track->mRetryCount = targetRetryCount;
6017 mActiveTrack = t;
6018 mixerStatus = MIXER_TRACKS_READY;
6019 if (mHwPaused) {
6020 doHwResume = true;
6021 mHwPaused = false;
6022 }
6023 }
6024 } else {
6025 // clear effect chain input buffer if the last active track started underruns
6026 // to avoid sending previous audio buffer again to effects
6027 if (!mEffectChains.isEmpty() && last) {
6028 mEffectChains[0]->clearInputBuffer();
6029 }
6030 if (track->isStopping_1()) {
6031 track->mState = TrackBase::STOPPING_2;
6032 if (last && mHwPaused) {
6033 doHwResume = true;
6034 mHwPaused = false;
6035 }
6036 }
6037 if ((track->sharedBuffer() != 0) || track->isStopped() ||
6038 track->isStopping_2() || track->isPaused()) {
6039 // We have consumed all the buffers of this track.
6040 // Remove it from the list of active tracks.
6041 if (mStandby || !last ||
6042 track->presentationComplete(latency_l()) ||
6043 track->isPaused() || mHwPaused) {
6044 if (track->isStopping_2()) {
6045 track->mState = TrackBase::STOPPED;
6046 }
6047 if (track->isStopped()) {
6048 track->reset();
6049 }
6050 tracksToRemove->add(track);
6051 }
6052 } else {
6053 // No buffers for this track. Give it a few chances to
6054 // fill a buffer, then remove it from active list.
6055 // Only consider last track started for mixer state control
6056 if (--(track->mRetryCount) <= 0) {
6057 ALOGV("BUFFER TIMEOUT: remove track(%d) from active list", trackId);
6058 tracksToRemove->add(track);
6059 // indicate to client process that the track was disabled because of underrun;
6060 // it will then automatically call start() when data is available
6061 track->disable();
6062 // only do hw pause when track is going to be removed due to BUFFER TIMEOUT.
6063 // unlike mixerthread, HAL can be paused for direct output
6064 ALOGW("pause because of UNDERRUN, framesReady = %zu,"
6065 "minFrames = %u, mFormat = %#x",
6066 framesReady, minFrames, mFormat);
6067 if (last && mHwSupportsPause && !mHwPaused && !mStandby) {
6068 doHwPause = true;
6069 mHwPaused = true;
6070 }
6071 } else if (last) {
6072 mixerStatus = MIXER_TRACKS_ENABLED;
6073 }
6074 }
6075 }
6076 }
6077
6078 // if an active track did not command a flush, check for pending flush on stopped tracks
6079 if (!mFlushPending) {
6080 for (size_t i = 0; i < mTracks.size(); i++) {
6081 if (mTracks[i]->isFlushPending()) {
6082 mTracks[i]->flushAck();
6083 mFlushPending = true;
6084 }
6085 }
6086 }
6087
6088 // make sure the pause/flush/resume sequence is executed in the right order.
6089 // If a flush is pending and a track is active but the HW is not paused, force a HW pause
6090 // before flush and then resume HW. This can happen in case of pause/flush/resume
6091 // if resume is received before pause is executed.
6092 if (mHwSupportsPause && !mStandby &&
6093 (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
6094 status_t result = mOutput->stream->pause();
6095 ALOGE_IF(result != OK, "Error when pausing output stream: %d", result);
6096 }
6097 if (mFlushPending) {
6098 flushHw_l();
6099 }
6100 if (mHwSupportsPause && !mStandby && doHwResume) {
6101 status_t result = mOutput->stream->resume();
6102 ALOGE_IF(result != OK, "Error when resuming output stream: %d", result);
6103 }
6104 // remove all the tracks that need to be...
6105 removeTracks_l(*tracksToRemove);
6106
6107 return mixerStatus;
6108 }
6109
threadLoop_mix()6110 void AudioFlinger::DirectOutputThread::threadLoop_mix()
6111 {
6112 size_t frameCount = mFrameCount;
6113 int8_t *curBuf = (int8_t *)mSinkBuffer;
6114 // output audio to hardware
6115 while (frameCount) {
6116 AudioBufferProvider::Buffer buffer;
6117 buffer.frameCount = frameCount;
6118 status_t status = mActiveTrack->getNextBuffer(&buffer);
6119 if (status != NO_ERROR || buffer.raw == NULL) {
6120 // no need to pad with 0 for compressed audio
6121 if (audio_has_proportional_frames(mFormat)) {
6122 memset(curBuf, 0, frameCount * mFrameSize);
6123 }
6124 break;
6125 }
6126 memcpy(curBuf, buffer.raw, buffer.frameCount * mFrameSize);
6127 frameCount -= buffer.frameCount;
6128 curBuf += buffer.frameCount * mFrameSize;
6129 mActiveTrack->releaseBuffer(&buffer);
6130 }
6131 mCurrentWriteLength = curBuf - (int8_t *)mSinkBuffer;
6132 mSleepTimeUs = 0;
6133 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
6134 mActiveTrack.clear();
6135 }
6136
threadLoop_sleepTime()6137 void AudioFlinger::DirectOutputThread::threadLoop_sleepTime()
6138 {
6139 // do not write to HAL when paused
6140 if (mHwPaused || (usesHwAvSync() && mStandby)) {
6141 mSleepTimeUs = mIdleSleepTimeUs;
6142 return;
6143 }
6144 if (mMixerStatus == MIXER_TRACKS_ENABLED) {
6145 mSleepTimeUs = mActiveSleepTimeUs;
6146 } else {
6147 mSleepTimeUs = mIdleSleepTimeUs;
6148 }
6149 // Note: In S or later, we do not write zeroes for
6150 // linear or proportional PCM direct tracks in underrun.
6151 }
6152
threadLoop_exit()6153 void AudioFlinger::DirectOutputThread::threadLoop_exit()
6154 {
6155 {
6156 Mutex::Autolock _l(mLock);
6157 for (size_t i = 0; i < mTracks.size(); i++) {
6158 if (mTracks[i]->isFlushPending()) {
6159 mTracks[i]->flushAck();
6160 mFlushPending = true;
6161 }
6162 }
6163 if (mFlushPending) {
6164 flushHw_l();
6165 }
6166 }
6167 PlaybackThread::threadLoop_exit();
6168 }
6169
6170 // must be called with thread mutex locked
shouldStandby_l()6171 bool AudioFlinger::DirectOutputThread::shouldStandby_l()
6172 {
6173 bool trackPaused = false;
6174 bool trackStopped = false;
6175
6176 // do not put the HAL in standby when paused. AwesomePlayer clear the offloaded AudioTrack
6177 // after a timeout and we will enter standby then.
6178 if (mTracks.size() > 0) {
6179 trackPaused = mTracks[mTracks.size() - 1]->isPaused();
6180 trackStopped = mTracks[mTracks.size() - 1]->isStopped() ||
6181 mTracks[mTracks.size() - 1]->mState == TrackBase::IDLE;
6182 }
6183
6184 return !mStandby && !(trackPaused || (mHwPaused && !trackStopped));
6185 }
6186
6187 // checkForNewParameter_l() must be called with ThreadBase::mLock held
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)6188 bool AudioFlinger::DirectOutputThread::checkForNewParameter_l(const String8& keyValuePair,
6189 status_t& status)
6190 {
6191 bool reconfig = false;
6192 status = NO_ERROR;
6193
6194 AudioParameter param = AudioParameter(keyValuePair);
6195 int value;
6196 if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
6197 LOG_FATAL("Should not set routing device in DirectOutputThread");
6198 }
6199 if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
6200 // do not accept frame count changes if tracks are open as the track buffer
6201 // size depends on frame count and correct behavior would not be garantied
6202 // if frame count is changed after track creation
6203 if (!mTracks.isEmpty()) {
6204 status = INVALID_OPERATION;
6205 } else {
6206 reconfig = true;
6207 }
6208 }
6209 if (status == NO_ERROR) {
6210 status = mOutput->stream->setParameters(keyValuePair);
6211 if (!mStandby && status == INVALID_OPERATION) {
6212 mOutput->standby();
6213 if (!mStandby) {
6214 mThreadMetrics.logEndInterval();
6215 mStandby = true;
6216 }
6217 mBytesWritten = 0;
6218 status = mOutput->stream->setParameters(keyValuePair);
6219 }
6220 if (status == NO_ERROR && reconfig) {
6221 readOutputParameters_l();
6222 sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
6223 }
6224 }
6225
6226 return reconfig;
6227 }
6228
activeSleepTimeUs() const6229 uint32_t AudioFlinger::DirectOutputThread::activeSleepTimeUs() const
6230 {
6231 uint32_t time;
6232 if (audio_has_proportional_frames(mFormat)) {
6233 time = PlaybackThread::activeSleepTimeUs();
6234 } else {
6235 time = kDirectMinSleepTimeUs;
6236 }
6237 return time;
6238 }
6239
idleSleepTimeUs() const6240 uint32_t AudioFlinger::DirectOutputThread::idleSleepTimeUs() const
6241 {
6242 uint32_t time;
6243 if (audio_has_proportional_frames(mFormat)) {
6244 time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000) / 2;
6245 } else {
6246 time = kDirectMinSleepTimeUs;
6247 }
6248 return time;
6249 }
6250
suspendSleepTimeUs() const6251 uint32_t AudioFlinger::DirectOutputThread::suspendSleepTimeUs() const
6252 {
6253 uint32_t time;
6254 if (audio_has_proportional_frames(mFormat)) {
6255 time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000);
6256 } else {
6257 time = kDirectMinSleepTimeUs;
6258 }
6259 return time;
6260 }
6261
cacheParameters_l()6262 void AudioFlinger::DirectOutputThread::cacheParameters_l()
6263 {
6264 PlaybackThread::cacheParameters_l();
6265
6266 // use shorter standby delay as on normal output to release
6267 // hardware resources as soon as possible
6268 // no delay on outputs with HW A/V sync
6269 if (usesHwAvSync()) {
6270 mStandbyDelayNs = 0;
6271 } else if ((mType == OFFLOAD) && !audio_has_proportional_frames(mFormat)) {
6272 mStandbyDelayNs = kOffloadStandbyDelayNs;
6273 } else {
6274 mStandbyDelayNs = microseconds(mActiveSleepTimeUs*2);
6275 }
6276 }
6277
flushHw_l()6278 void AudioFlinger::DirectOutputThread::flushHw_l()
6279 {
6280 mOutput->flush();
6281 mHwPaused = false;
6282 mFlushPending = false;
6283 mTimestampVerifier.discontinuity(discontinuityForStandbyOrFlush());
6284 mTimestamp.clear();
6285 }
6286
computeWaitTimeNs_l() const6287 int64_t AudioFlinger::DirectOutputThread::computeWaitTimeNs_l() const {
6288 // If a VolumeShaper is active, we must wake up periodically to update volume.
6289 const int64_t NS_PER_MS = 1000000;
6290 return mVolumeShaperActive ?
6291 kMinNormalSinkBufferSizeMs * NS_PER_MS : PlaybackThread::computeWaitTimeNs_l();
6292 }
6293
6294 // ----------------------------------------------------------------------------
6295
AsyncCallbackThread(const wp<AudioFlinger::PlaybackThread> & playbackThread)6296 AudioFlinger::AsyncCallbackThread::AsyncCallbackThread(
6297 const wp<AudioFlinger::PlaybackThread>& playbackThread)
6298 : Thread(false /*canCallJava*/),
6299 mPlaybackThread(playbackThread),
6300 mWriteAckSequence(0),
6301 mDrainSequence(0),
6302 mAsyncError(false)
6303 {
6304 }
6305
~AsyncCallbackThread()6306 AudioFlinger::AsyncCallbackThread::~AsyncCallbackThread()
6307 {
6308 }
6309
onFirstRef()6310 void AudioFlinger::AsyncCallbackThread::onFirstRef()
6311 {
6312 run("Offload Cbk", ANDROID_PRIORITY_URGENT_AUDIO);
6313 }
6314
threadLoop()6315 bool AudioFlinger::AsyncCallbackThread::threadLoop()
6316 {
6317 while (!exitPending()) {
6318 uint32_t writeAckSequence;
6319 uint32_t drainSequence;
6320 bool asyncError;
6321
6322 {
6323 Mutex::Autolock _l(mLock);
6324 while (!((mWriteAckSequence & 1) ||
6325 (mDrainSequence & 1) ||
6326 mAsyncError ||
6327 exitPending())) {
6328 mWaitWorkCV.wait(mLock);
6329 }
6330
6331 if (exitPending()) {
6332 break;
6333 }
6334 ALOGV("AsyncCallbackThread mWriteAckSequence %d mDrainSequence %d",
6335 mWriteAckSequence, mDrainSequence);
6336 writeAckSequence = mWriteAckSequence;
6337 mWriteAckSequence &= ~1;
6338 drainSequence = mDrainSequence;
6339 mDrainSequence &= ~1;
6340 asyncError = mAsyncError;
6341 mAsyncError = false;
6342 }
6343 {
6344 sp<AudioFlinger::PlaybackThread> playbackThread = mPlaybackThread.promote();
6345 if (playbackThread != 0) {
6346 if (writeAckSequence & 1) {
6347 playbackThread->resetWriteBlocked(writeAckSequence >> 1);
6348 }
6349 if (drainSequence & 1) {
6350 playbackThread->resetDraining(drainSequence >> 1);
6351 }
6352 if (asyncError) {
6353 playbackThread->onAsyncError();
6354 }
6355 }
6356 }
6357 }
6358 return false;
6359 }
6360
exit()6361 void AudioFlinger::AsyncCallbackThread::exit()
6362 {
6363 ALOGV("AsyncCallbackThread::exit");
6364 Mutex::Autolock _l(mLock);
6365 requestExit();
6366 mWaitWorkCV.broadcast();
6367 }
6368
setWriteBlocked(uint32_t sequence)6369 void AudioFlinger::AsyncCallbackThread::setWriteBlocked(uint32_t sequence)
6370 {
6371 Mutex::Autolock _l(mLock);
6372 // bit 0 is cleared
6373 mWriteAckSequence = sequence << 1;
6374 }
6375
resetWriteBlocked()6376 void AudioFlinger::AsyncCallbackThread::resetWriteBlocked()
6377 {
6378 Mutex::Autolock _l(mLock);
6379 // ignore unexpected callbacks
6380 if (mWriteAckSequence & 2) {
6381 mWriteAckSequence |= 1;
6382 mWaitWorkCV.signal();
6383 }
6384 }
6385
setDraining(uint32_t sequence)6386 void AudioFlinger::AsyncCallbackThread::setDraining(uint32_t sequence)
6387 {
6388 Mutex::Autolock _l(mLock);
6389 // bit 0 is cleared
6390 mDrainSequence = sequence << 1;
6391 }
6392
resetDraining()6393 void AudioFlinger::AsyncCallbackThread::resetDraining()
6394 {
6395 Mutex::Autolock _l(mLock);
6396 // ignore unexpected callbacks
6397 if (mDrainSequence & 2) {
6398 mDrainSequence |= 1;
6399 mWaitWorkCV.signal();
6400 }
6401 }
6402
setAsyncError()6403 void AudioFlinger::AsyncCallbackThread::setAsyncError()
6404 {
6405 Mutex::Autolock _l(mLock);
6406 mAsyncError = true;
6407 mWaitWorkCV.signal();
6408 }
6409
6410
6411 // ----------------------------------------------------------------------------
OffloadThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,bool systemReady)6412 AudioFlinger::OffloadThread::OffloadThread(const sp<AudioFlinger>& audioFlinger,
6413 AudioStreamOut* output, audio_io_handle_t id, bool systemReady)
6414 : DirectOutputThread(audioFlinger, output, id, OFFLOAD, systemReady),
6415 mPausedWriteLength(0), mPausedBytesRemaining(0), mKeepWakeLock(true),
6416 mOffloadUnderrunPosition(~0LL)
6417 {
6418 //FIXME: mStandby should be set to true by ThreadBase constructo
6419 mStandby = true;
6420 mKeepWakeLock = property_get_bool("ro.audio.offload_wakelock", true /* default_value */);
6421 }
6422
threadLoop_exit()6423 void AudioFlinger::OffloadThread::threadLoop_exit()
6424 {
6425 if (mFlushPending || mHwPaused) {
6426 // If a flush is pending or track was paused, just discard buffered data
6427 flushHw_l();
6428 } else {
6429 mMixerStatus = MIXER_DRAIN_ALL;
6430 threadLoop_drain();
6431 }
6432 if (mUseAsyncWrite) {
6433 ALOG_ASSERT(mCallbackThread != 0);
6434 mCallbackThread->exit();
6435 }
6436 PlaybackThread::threadLoop_exit();
6437 }
6438
prepareTracks_l(Vector<sp<Track>> * tracksToRemove)6439 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::OffloadThread::prepareTracks_l(
6440 Vector< sp<Track> > *tracksToRemove
6441 )
6442 {
6443 size_t count = mActiveTracks.size();
6444
6445 mixer_state mixerStatus = MIXER_IDLE;
6446 bool doHwPause = false;
6447 bool doHwResume = false;
6448
6449 ALOGV("OffloadThread::prepareTracks_l active tracks %zu", count);
6450
6451 // find out which tracks need to be processed
6452 for (const sp<Track> &t : mActiveTracks) {
6453 Track* const track = t.get();
6454 #ifdef VERY_VERY_VERBOSE_LOGGING
6455 audio_track_cblk_t* cblk = track->cblk();
6456 #endif
6457 // Only consider last track started for volume and mixer state control.
6458 // In theory an older track could underrun and restart after the new one starts
6459 // but as we only care about the transition phase between two tracks on a
6460 // direct output, it is not a problem to ignore the underrun case.
6461 sp<Track> l = mActiveTracks.getLatest();
6462 bool last = l.get() == track;
6463
6464 if (track->isInvalid()) {
6465 ALOGW("An invalidated track shouldn't be in active list");
6466 tracksToRemove->add(track);
6467 continue;
6468 }
6469
6470 if (track->mState == TrackBase::IDLE) {
6471 ALOGW("An idle track shouldn't be in active list");
6472 continue;
6473 }
6474
6475 if (track->isPausePending()) {
6476 track->pauseAck();
6477 // It is possible a track might have been flushed or stopped.
6478 // Other operations such as flush pending might occur on the next prepare.
6479 if (track->isPausing()) {
6480 track->setPaused();
6481 }
6482 // Always perform pause if last, as an immediate flush will change
6483 // the pause state to be no longer isPausing().
6484 if (last) {
6485 if (mHwSupportsPause && !mHwPaused) {
6486 doHwPause = true;
6487 mHwPaused = true;
6488 }
6489 // If we were part way through writing the mixbuffer to
6490 // the HAL we must save this until we resume
6491 // BUG - this will be wrong if a different track is made active,
6492 // in that case we want to discard the pending data in the
6493 // mixbuffer and tell the client to present it again when the
6494 // track is resumed
6495 mPausedWriteLength = mCurrentWriteLength;
6496 mPausedBytesRemaining = mBytesRemaining;
6497 mBytesRemaining = 0; // stop writing
6498 }
6499 tracksToRemove->add(track);
6500 } else if (track->isFlushPending()) {
6501 if (track->isStopping_1()) {
6502 track->mRetryCount = kMaxTrackStopRetriesOffload;
6503 } else {
6504 track->mRetryCount = kMaxTrackRetriesOffload;
6505 }
6506 track->flushAck();
6507 if (last) {
6508 mFlushPending = true;
6509 }
6510 } else if (track->isResumePending()){
6511 track->resumeAck();
6512 if (last) {
6513 if (mPausedBytesRemaining) {
6514 // Need to continue write that was interrupted
6515 mCurrentWriteLength = mPausedWriteLength;
6516 mBytesRemaining = mPausedBytesRemaining;
6517 mPausedBytesRemaining = 0;
6518 }
6519 if (mHwPaused) {
6520 doHwResume = true;
6521 mHwPaused = false;
6522 // threadLoop_mix() will handle the case that we need to
6523 // resume an interrupted write
6524 }
6525 // enable write to audio HAL
6526 mSleepTimeUs = 0;
6527
6528 mLeftVolFloat = mRightVolFloat = -1.0;
6529
6530 // Do not handle new data in this iteration even if track->framesReady()
6531 mixerStatus = MIXER_TRACKS_ENABLED;
6532 }
6533 } else if (track->framesReady() && track->isReady() &&
6534 !track->isPaused() && !track->isTerminated() && !track->isStopping_2()) {
6535 ALOGVV("OffloadThread: track(%d) s=%08x [OK]", track->id(), cblk->mServer);
6536 if (track->mFillingUpStatus == Track::FS_FILLED) {
6537 track->mFillingUpStatus = Track::FS_ACTIVE;
6538 if (last) {
6539 // make sure processVolume_l() will apply new volume even if 0
6540 mLeftVolFloat = mRightVolFloat = -1.0;
6541 }
6542 }
6543
6544 if (last) {
6545 sp<Track> previousTrack = mPreviousTrack.promote();
6546 if (previousTrack != 0) {
6547 if (track != previousTrack.get()) {
6548 // Flush any data still being written from last track
6549 mBytesRemaining = 0;
6550 if (mPausedBytesRemaining) {
6551 // Last track was paused so we also need to flush saved
6552 // mixbuffer state and invalidate track so that it will
6553 // re-submit that unwritten data when it is next resumed
6554 mPausedBytesRemaining = 0;
6555 // Invalidate is a bit drastic - would be more efficient
6556 // to have a flag to tell client that some of the
6557 // previously written data was lost
6558 previousTrack->invalidate();
6559 }
6560 // flush data already sent to the DSP if changing audio session as audio
6561 // comes from a different source. Also invalidate previous track to force a
6562 // seek when resuming.
6563 if (previousTrack->sessionId() != track->sessionId()) {
6564 previousTrack->invalidate();
6565 }
6566 }
6567 }
6568 mPreviousTrack = track;
6569 // reset retry count
6570 if (track->isStopping_1()) {
6571 track->mRetryCount = kMaxTrackStopRetriesOffload;
6572 } else {
6573 track->mRetryCount = kMaxTrackRetriesOffload;
6574 }
6575 mActiveTrack = t;
6576 mixerStatus = MIXER_TRACKS_READY;
6577 }
6578 } else {
6579 ALOGVV("OffloadThread: track(%d) s=%08x [NOT READY]", track->id(), cblk->mServer);
6580 if (track->isStopping_1()) {
6581 if (--(track->mRetryCount) <= 0) {
6582 // Hardware buffer can hold a large amount of audio so we must
6583 // wait for all current track's data to drain before we say
6584 // that the track is stopped.
6585 if (mBytesRemaining == 0) {
6586 // Only start draining when all data in mixbuffer
6587 // has been written
6588 ALOGV("OffloadThread: underrun and STOPPING_1 -> draining, STOPPING_2");
6589 track->mState = TrackBase::STOPPING_2; // so presentation completes after
6590 // drain do not drain if no data was ever sent to HAL (mStandby == true)
6591 if (last && !mStandby) {
6592 // do not modify drain sequence if we are already draining. This happens
6593 // when resuming from pause after drain.
6594 if ((mDrainSequence & 1) == 0) {
6595 mSleepTimeUs = 0;
6596 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
6597 mixerStatus = MIXER_DRAIN_TRACK;
6598 mDrainSequence += 2;
6599 }
6600 if (mHwPaused) {
6601 // It is possible to move from PAUSED to STOPPING_1 without
6602 // a resume so we must ensure hardware is running
6603 doHwResume = true;
6604 mHwPaused = false;
6605 }
6606 }
6607 }
6608 } else if (last) {
6609 ALOGV("stopping1 underrun retries left %d", track->mRetryCount);
6610 mixerStatus = MIXER_TRACKS_ENABLED;
6611 }
6612 } else if (track->isStopping_2()) {
6613 // Drain has completed or we are in standby, signal presentation complete
6614 if (!(mDrainSequence & 1) || !last || mStandby) {
6615 track->mState = TrackBase::STOPPED;
6616 track->presentationComplete(latency_l());
6617 track->reset();
6618 tracksToRemove->add(track);
6619 // OFFLOADED stop resets frame counts.
6620 if (!mUseAsyncWrite) {
6621 // If we don't get explicit drain notification we must
6622 // register discontinuity regardless of whether this is
6623 // the previous (!last) or the upcoming (last) track
6624 // to avoid skipping the discontinuity.
6625 mTimestampVerifier.discontinuity(
6626 mTimestampVerifier.DISCONTINUITY_MODE_ZERO);
6627 }
6628 }
6629 } else {
6630 // No buffers for this track. Give it a few chances to
6631 // fill a buffer, then remove it from active list.
6632 if (--(track->mRetryCount) <= 0) {
6633 bool running = false;
6634 uint64_t position = 0;
6635 struct timespec unused;
6636 // The running check restarts the retry counter at least once.
6637 status_t ret = mOutput->stream->getPresentationPosition(&position, &unused);
6638 if (ret == NO_ERROR && position != mOffloadUnderrunPosition) {
6639 running = true;
6640 mOffloadUnderrunPosition = position;
6641 }
6642 if (ret == NO_ERROR) {
6643 ALOGVV("underrun counter, running(%d): %lld vs %lld", running,
6644 (long long)position, (long long)mOffloadUnderrunPosition);
6645 }
6646 if (running) { // still running, give us more time.
6647 track->mRetryCount = kMaxTrackRetriesOffload;
6648 } else {
6649 ALOGV("OffloadThread: BUFFER TIMEOUT: remove track(%d) from active list",
6650 track->id());
6651 tracksToRemove->add(track);
6652 // tell client process that the track was disabled because of underrun;
6653 // it will then automatically call start() when data is available
6654 track->disable();
6655 }
6656 } else if (last){
6657 mixerStatus = MIXER_TRACKS_ENABLED;
6658 }
6659 }
6660 }
6661 // compute volume for this track
6662 if (track->isReady()) { // check ready to prevent premature start.
6663 processVolume_l(track, last);
6664 }
6665 }
6666
6667 // make sure the pause/flush/resume sequence is executed in the right order.
6668 // If a flush is pending and a track is active but the HW is not paused, force a HW pause
6669 // before flush and then resume HW. This can happen in case of pause/flush/resume
6670 // if resume is received before pause is executed.
6671 if (!mStandby && (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
6672 status_t result = mOutput->stream->pause();
6673 ALOGE_IF(result != OK, "Error when pausing output stream: %d", result);
6674 }
6675 if (mFlushPending) {
6676 flushHw_l();
6677 }
6678 if (!mStandby && doHwResume) {
6679 status_t result = mOutput->stream->resume();
6680 ALOGE_IF(result != OK, "Error when resuming output stream: %d", result);
6681 }
6682
6683 // remove all the tracks that need to be...
6684 removeTracks_l(*tracksToRemove);
6685
6686 return mixerStatus;
6687 }
6688
6689 // must be called with thread mutex locked
waitingAsyncCallback_l()6690 bool AudioFlinger::OffloadThread::waitingAsyncCallback_l()
6691 {
6692 ALOGVV("waitingAsyncCallback_l mWriteAckSequence %d mDrainSequence %d",
6693 mWriteAckSequence, mDrainSequence);
6694 if (mUseAsyncWrite && ((mWriteAckSequence & 1) || (mDrainSequence & 1))) {
6695 return true;
6696 }
6697 return false;
6698 }
6699
waitingAsyncCallback()6700 bool AudioFlinger::OffloadThread::waitingAsyncCallback()
6701 {
6702 Mutex::Autolock _l(mLock);
6703 return waitingAsyncCallback_l();
6704 }
6705
flushHw_l()6706 void AudioFlinger::OffloadThread::flushHw_l()
6707 {
6708 DirectOutputThread::flushHw_l();
6709 // Flush anything still waiting in the mixbuffer
6710 mCurrentWriteLength = 0;
6711 mBytesRemaining = 0;
6712 mPausedWriteLength = 0;
6713 mPausedBytesRemaining = 0;
6714 // reset bytes written count to reflect that DSP buffers are empty after flush.
6715 mBytesWritten = 0;
6716 mOffloadUnderrunPosition = ~0LL;
6717
6718 if (mUseAsyncWrite) {
6719 // discard any pending drain or write ack by incrementing sequence
6720 mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
6721 mDrainSequence = (mDrainSequence + 2) & ~1;
6722 ALOG_ASSERT(mCallbackThread != 0);
6723 mCallbackThread->setWriteBlocked(mWriteAckSequence);
6724 mCallbackThread->setDraining(mDrainSequence);
6725 }
6726 }
6727
invalidateTracks(audio_stream_type_t streamType)6728 void AudioFlinger::OffloadThread::invalidateTracks(audio_stream_type_t streamType)
6729 {
6730 Mutex::Autolock _l(mLock);
6731 if (PlaybackThread::invalidateTracks_l(streamType)) {
6732 mFlushPending = true;
6733 }
6734 }
6735
6736 // ----------------------------------------------------------------------------
6737
DuplicatingThread(const sp<AudioFlinger> & audioFlinger,AudioFlinger::MixerThread * mainThread,audio_io_handle_t id,bool systemReady)6738 AudioFlinger::DuplicatingThread::DuplicatingThread(const sp<AudioFlinger>& audioFlinger,
6739 AudioFlinger::MixerThread* mainThread, audio_io_handle_t id, bool systemReady)
6740 : MixerThread(audioFlinger, mainThread->getOutput(), id,
6741 systemReady, DUPLICATING),
6742 mWaitTimeMs(UINT_MAX)
6743 {
6744 addOutputTrack(mainThread);
6745 }
6746
~DuplicatingThread()6747 AudioFlinger::DuplicatingThread::~DuplicatingThread()
6748 {
6749 for (size_t i = 0; i < mOutputTracks.size(); i++) {
6750 mOutputTracks[i]->destroy();
6751 }
6752 }
6753
threadLoop_mix()6754 void AudioFlinger::DuplicatingThread::threadLoop_mix()
6755 {
6756 // mix buffers...
6757 if (outputsReady(outputTracks)) {
6758 mAudioMixer->process();
6759 } else {
6760 if (mMixerBufferValid) {
6761 memset(mMixerBuffer, 0, mMixerBufferSize);
6762 } else {
6763 memset(mSinkBuffer, 0, mSinkBufferSize);
6764 }
6765 }
6766 mSleepTimeUs = 0;
6767 writeFrames = mNormalFrameCount;
6768 mCurrentWriteLength = mSinkBufferSize;
6769 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
6770 }
6771
threadLoop_sleepTime()6772 void AudioFlinger::DuplicatingThread::threadLoop_sleepTime()
6773 {
6774 if (mSleepTimeUs == 0) {
6775 if (mMixerStatus == MIXER_TRACKS_ENABLED) {
6776 mSleepTimeUs = mActiveSleepTimeUs;
6777 } else {
6778 mSleepTimeUs = mIdleSleepTimeUs;
6779 }
6780 } else if (mBytesWritten != 0) {
6781 if (mMixerStatus == MIXER_TRACKS_ENABLED) {
6782 writeFrames = mNormalFrameCount;
6783 memset(mSinkBuffer, 0, mSinkBufferSize);
6784 } else {
6785 // flush remaining overflow buffers in output tracks
6786 writeFrames = 0;
6787 }
6788 mSleepTimeUs = 0;
6789 }
6790 }
6791
threadLoop_write()6792 ssize_t AudioFlinger::DuplicatingThread::threadLoop_write()
6793 {
6794 for (size_t i = 0; i < outputTracks.size(); i++) {
6795 const ssize_t actualWritten = outputTracks[i]->write(mSinkBuffer, writeFrames);
6796
6797 // Consider the first OutputTrack for timestamp and frame counting.
6798
6799 // The threadLoop() generally assumes writing a full sink buffer size at a time.
6800 // Here, we correct for writeFrames of 0 (a stop) or underruns because
6801 // we always claim success.
6802 if (i == 0) {
6803 const ssize_t correction = mSinkBufferSize / mFrameSize - actualWritten;
6804 ALOGD_IF(correction != 0 && writeFrames != 0,
6805 "%s: writeFrames:%u actualWritten:%zd correction:%zd mFramesWritten:%lld",
6806 __func__, writeFrames, actualWritten, correction, (long long)mFramesWritten);
6807 mFramesWritten -= correction;
6808 }
6809
6810 // TODO: Report correction for the other output tracks and show in the dump.
6811 }
6812 if (mStandby) {
6813 mThreadMetrics.logBeginInterval();
6814 mStandby = false;
6815 }
6816 return (ssize_t)mSinkBufferSize;
6817 }
6818
threadLoop_standby()6819 void AudioFlinger::DuplicatingThread::threadLoop_standby()
6820 {
6821 // DuplicatingThread implements standby by stopping all tracks
6822 for (size_t i = 0; i < outputTracks.size(); i++) {
6823 outputTracks[i]->stop();
6824 }
6825 }
6826
dumpInternals_l(int fd,const Vector<String16> & args __unused)6827 void AudioFlinger::DuplicatingThread::dumpInternals_l(int fd, const Vector<String16>& args __unused)
6828 {
6829 MixerThread::dumpInternals_l(fd, args);
6830
6831 std::stringstream ss;
6832 const size_t numTracks = mOutputTracks.size();
6833 ss << " " << numTracks << " OutputTracks";
6834 if (numTracks > 0) {
6835 ss << ":";
6836 for (const auto &track : mOutputTracks) {
6837 const sp<ThreadBase> thread = track->thread().promote();
6838 ss << " (" << track->id() << " : ";
6839 if (thread.get() != nullptr) {
6840 ss << thread.get() << ", " << thread->id();
6841 } else {
6842 ss << "null";
6843 }
6844 ss << ")";
6845 }
6846 }
6847 ss << "\n";
6848 std::string result = ss.str();
6849 write(fd, result.c_str(), result.size());
6850 }
6851
saveOutputTracks()6852 void AudioFlinger::DuplicatingThread::saveOutputTracks()
6853 {
6854 outputTracks = mOutputTracks;
6855 }
6856
clearOutputTracks()6857 void AudioFlinger::DuplicatingThread::clearOutputTracks()
6858 {
6859 outputTracks.clear();
6860 }
6861
addOutputTrack(MixerThread * thread)6862 void AudioFlinger::DuplicatingThread::addOutputTrack(MixerThread *thread)
6863 {
6864 Mutex::Autolock _l(mLock);
6865 // The downstream MixerThread consumes thread->frameCount() amount of frames per mix pass.
6866 // Adjust for thread->sampleRate() to determine minimum buffer frame count.
6867 // Then triple buffer because Threads do not run synchronously and may not be clock locked.
6868 const size_t frameCount =
6869 3 * sourceFramesNeeded(mSampleRate, thread->frameCount(), thread->sampleRate());
6870 // TODO: Consider asynchronous sample rate conversion to handle clock disparity
6871 // from different OutputTracks and their associated MixerThreads (e.g. one may
6872 // nearly empty and the other may be dropping data).
6873
6874 // TODO b/182392769: use attribution source util, move to server edge
6875 AttributionSourceState attributionSource = AttributionSourceState();
6876 attributionSource.uid = VALUE_OR_FATAL(legacy2aidl_uid_t_int32_t(
6877 IPCThreadState::self()->getCallingUid()));
6878 attributionSource.pid = VALUE_OR_FATAL(legacy2aidl_pid_t_int32_t(
6879 IPCThreadState::self()->getCallingPid()));
6880 attributionSource.token = sp<BBinder>::make();
6881 sp<OutputTrack> outputTrack = new OutputTrack(thread,
6882 this,
6883 mSampleRate,
6884 mFormat,
6885 mChannelMask,
6886 frameCount,
6887 attributionSource);
6888 status_t status = outputTrack != 0 ? outputTrack->initCheck() : (status_t) NO_MEMORY;
6889 if (status != NO_ERROR) {
6890 ALOGE("addOutputTrack() initCheck failed %d", status);
6891 return;
6892 }
6893 thread->setStreamVolume(AUDIO_STREAM_PATCH, 1.0f);
6894 mOutputTracks.add(outputTrack);
6895 ALOGV("addOutputTrack() track %p, on thread %p", outputTrack.get(), thread);
6896 updateWaitTime_l();
6897 }
6898
removeOutputTrack(MixerThread * thread)6899 void AudioFlinger::DuplicatingThread::removeOutputTrack(MixerThread *thread)
6900 {
6901 Mutex::Autolock _l(mLock);
6902 for (size_t i = 0; i < mOutputTracks.size(); i++) {
6903 if (mOutputTracks[i]->thread() == thread) {
6904 mOutputTracks[i]->destroy();
6905 mOutputTracks.removeAt(i);
6906 updateWaitTime_l();
6907 if (thread->getOutput() == mOutput) {
6908 mOutput = NULL;
6909 }
6910 return;
6911 }
6912 }
6913 ALOGV("removeOutputTrack(): unknown thread: %p", thread);
6914 }
6915
6916 // caller must hold mLock
updateWaitTime_l()6917 void AudioFlinger::DuplicatingThread::updateWaitTime_l()
6918 {
6919 mWaitTimeMs = UINT_MAX;
6920 for (size_t i = 0; i < mOutputTracks.size(); i++) {
6921 sp<ThreadBase> strong = mOutputTracks[i]->thread().promote();
6922 if (strong != 0) {
6923 uint32_t waitTimeMs = (strong->frameCount() * 2 * 1000) / strong->sampleRate();
6924 if (waitTimeMs < mWaitTimeMs) {
6925 mWaitTimeMs = waitTimeMs;
6926 }
6927 }
6928 }
6929 }
6930
6931
outputsReady(const SortedVector<sp<OutputTrack>> & outputTracks)6932 bool AudioFlinger::DuplicatingThread::outputsReady(
6933 const SortedVector< sp<OutputTrack> > &outputTracks)
6934 {
6935 for (size_t i = 0; i < outputTracks.size(); i++) {
6936 sp<ThreadBase> thread = outputTracks[i]->thread().promote();
6937 if (thread == 0) {
6938 ALOGW("DuplicatingThread::outputsReady() could not promote thread on output track %p",
6939 outputTracks[i].get());
6940 return false;
6941 }
6942 PlaybackThread *playbackThread = (PlaybackThread *)thread.get();
6943 // see note at standby() declaration
6944 if (playbackThread->standby() && !playbackThread->isSuspended()) {
6945 ALOGV("DuplicatingThread output track %p on thread %p Not Ready", outputTracks[i].get(),
6946 thread.get());
6947 return false;
6948 }
6949 }
6950 return true;
6951 }
6952
sendMetadataToBackend_l(const StreamOutHalInterface::SourceMetadata & metadata)6953 void AudioFlinger::DuplicatingThread::sendMetadataToBackend_l(
6954 const StreamOutHalInterface::SourceMetadata& metadata)
6955 {
6956 for (auto& outputTrack : outputTracks) { // not mOutputTracks
6957 outputTrack->setMetadatas(metadata.tracks);
6958 }
6959 }
6960
activeSleepTimeUs() const6961 uint32_t AudioFlinger::DuplicatingThread::activeSleepTimeUs() const
6962 {
6963 return (mWaitTimeMs * 1000) / 2;
6964 }
6965
cacheParameters_l()6966 void AudioFlinger::DuplicatingThread::cacheParameters_l()
6967 {
6968 // updateWaitTime_l() sets mWaitTimeMs, which affects activeSleepTimeUs(), so call it first
6969 updateWaitTime_l();
6970
6971 MixerThread::cacheParameters_l();
6972 }
6973
6974
6975 // ----------------------------------------------------------------------------
6976 // Record
6977 // ----------------------------------------------------------------------------
6978
RecordThread(const sp<AudioFlinger> & audioFlinger,AudioStreamIn * input,audio_io_handle_t id,bool systemReady)6979 AudioFlinger::RecordThread::RecordThread(const sp<AudioFlinger>& audioFlinger,
6980 AudioStreamIn *input,
6981 audio_io_handle_t id,
6982 bool systemReady
6983 ) :
6984 ThreadBase(audioFlinger, id, RECORD, systemReady, false /* isOut */),
6985 mInput(input),
6986 mSource(mInput),
6987 mActiveTracks(&this->mLocalLog),
6988 mRsmpInBuffer(NULL),
6989 // mRsmpInFrames, mRsmpInFramesP2, and mRsmpInFramesOA are set by readInputParameters_l()
6990 mRsmpInRear(0)
6991 , mReadOnlyHeap(new MemoryDealer(kRecordThreadReadOnlyHeapSize,
6992 "RecordThreadRO", MemoryHeapBase::READ_ONLY))
6993 // mFastCapture below
6994 , mFastCaptureFutex(0)
6995 // mInputSource
6996 // mPipeSink
6997 // mPipeSource
6998 , mPipeFramesP2(0)
6999 // mPipeMemory
7000 // mFastCaptureNBLogWriter
7001 , mFastTrackAvail(false)
7002 , mBtNrecSuspended(false)
7003 {
7004 snprintf(mThreadName, kThreadNameLength, "AudioIn_%X", id);
7005 mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
7006
7007 if (mInput->audioHwDev != nullptr) {
7008 mIsMsdDevice = strcmp(
7009 mInput->audioHwDev->moduleName(), AUDIO_HARDWARE_MODULE_ID_MSD) == 0;
7010 }
7011
7012 readInputParameters_l();
7013
7014 // TODO: We may also match on address as well as device type for
7015 // AUDIO_DEVICE_IN_BUS, AUDIO_DEVICE_IN_BLUETOOTH_A2DP, AUDIO_DEVICE_IN_REMOTE_SUBMIX
7016 // TODO: This property should be ensure that only contains one single device type.
7017 mTimestampCorrectedDevice = (audio_devices_t)property_get_int64(
7018 "audio.timestamp.corrected_input_device",
7019 (int64_t)(mIsMsdDevice ? AUDIO_DEVICE_IN_BUS // turn on by default for MSD
7020 : AUDIO_DEVICE_NONE));
7021
7022 // create an NBAIO source for the HAL input stream, and negotiate
7023 mInputSource = new AudioStreamInSource(input->stream);
7024 size_t numCounterOffers = 0;
7025 const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
7026 #if !LOG_NDEBUG
7027 ssize_t index =
7028 #else
7029 (void)
7030 #endif
7031 mInputSource->negotiate(offers, 1, NULL, numCounterOffers);
7032 ALOG_ASSERT(index == 0);
7033
7034 // initialize fast capture depending on configuration
7035 bool initFastCapture;
7036 switch (kUseFastCapture) {
7037 case FastCapture_Never:
7038 initFastCapture = false;
7039 ALOGV("%p kUseFastCapture = Never, initFastCapture = false", this);
7040 break;
7041 case FastCapture_Always:
7042 initFastCapture = true;
7043 ALOGV("%p kUseFastCapture = Always, initFastCapture = true", this);
7044 break;
7045 case FastCapture_Static:
7046 initFastCapture = (mFrameCount * 1000) / mSampleRate < kMinNormalCaptureBufferSizeMs;
7047 ALOGV("%p kUseFastCapture = Static, (%lld * 1000) / %u vs %u, initFastCapture = %d",
7048 this, (long long)mFrameCount, mSampleRate, kMinNormalCaptureBufferSizeMs,
7049 initFastCapture);
7050 break;
7051 // case FastCapture_Dynamic:
7052 }
7053
7054 if (initFastCapture) {
7055 // create a Pipe for FastCapture to write to, and for us and fast tracks to read from
7056 NBAIO_Format format = mInputSource->format();
7057 // quadruple-buffering of 20 ms each; this ensures we can sleep for 20ms in RecordThread
7058 size_t pipeFramesP2 = roundup(4 * FMS_20 * mSampleRate / 1000);
7059 size_t pipeSize = pipeFramesP2 * Format_frameSize(format);
7060 void *pipeBuffer = nullptr;
7061 const sp<MemoryDealer> roHeap(readOnlyHeap());
7062 sp<IMemory> pipeMemory;
7063 if ((roHeap == 0) ||
7064 (pipeMemory = roHeap->allocate(pipeSize)) == 0 ||
7065 (pipeBuffer = pipeMemory->unsecurePointer()) == nullptr) {
7066 ALOGE("not enough memory for pipe buffer size=%zu; "
7067 "roHeap=%p, pipeMemory=%p, pipeBuffer=%p; roHeapSize: %lld",
7068 pipeSize, roHeap.get(), pipeMemory.get(), pipeBuffer,
7069 (long long)kRecordThreadReadOnlyHeapSize);
7070 goto failed;
7071 }
7072 // pipe will be shared directly with fast clients, so clear to avoid leaking old information
7073 memset(pipeBuffer, 0, pipeSize);
7074 Pipe *pipe = new Pipe(pipeFramesP2, format, pipeBuffer);
7075 const NBAIO_Format offers[1] = {format};
7076 size_t numCounterOffers = 0;
7077 ssize_t index = pipe->negotiate(offers, 1, NULL, numCounterOffers);
7078 ALOG_ASSERT(index == 0);
7079 mPipeSink = pipe;
7080 PipeReader *pipeReader = new PipeReader(*pipe);
7081 numCounterOffers = 0;
7082 index = pipeReader->negotiate(offers, 1, NULL, numCounterOffers);
7083 ALOG_ASSERT(index == 0);
7084 mPipeSource = pipeReader;
7085 mPipeFramesP2 = pipeFramesP2;
7086 mPipeMemory = pipeMemory;
7087
7088 // create fast capture
7089 mFastCapture = new FastCapture();
7090 FastCaptureStateQueue *sq = mFastCapture->sq();
7091 #ifdef STATE_QUEUE_DUMP
7092 // FIXME
7093 #endif
7094 FastCaptureState *state = sq->begin();
7095 state->mCblk = NULL;
7096 state->mInputSource = mInputSource.get();
7097 state->mInputSourceGen++;
7098 state->mPipeSink = pipe;
7099 state->mPipeSinkGen++;
7100 state->mFrameCount = mFrameCount;
7101 state->mCommand = FastCaptureState::COLD_IDLE;
7102 // already done in constructor initialization list
7103 //mFastCaptureFutex = 0;
7104 state->mColdFutexAddr = &mFastCaptureFutex;
7105 state->mColdGen++;
7106 state->mDumpState = &mFastCaptureDumpState;
7107 #ifdef TEE_SINK
7108 // FIXME
7109 #endif
7110 mFastCaptureNBLogWriter = audioFlinger->newWriter_l(kFastCaptureLogSize, "FastCapture");
7111 state->mNBLogWriter = mFastCaptureNBLogWriter.get();
7112 sq->end();
7113 sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
7114
7115 // start the fast capture
7116 mFastCapture->run("FastCapture", ANDROID_PRIORITY_URGENT_AUDIO);
7117 pid_t tid = mFastCapture->getTid();
7118 sendPrioConfigEvent(getpid(), tid, kPriorityFastCapture, false /*forApp*/);
7119 stream()->setHalThreadPriority(kPriorityFastCapture);
7120 #ifdef AUDIO_WATCHDOG
7121 // FIXME
7122 #endif
7123
7124 mFastTrackAvail = true;
7125 }
7126 #ifdef TEE_SINK
7127 mTee.set(mInputSource->format(), NBAIO_Tee::TEE_FLAG_INPUT_THREAD);
7128 mTee.setId(std::string("_") + std::to_string(mId) + "_C");
7129 #endif
7130 failed: ;
7131
7132 // FIXME mNormalSource
7133 }
7134
~RecordThread()7135 AudioFlinger::RecordThread::~RecordThread()
7136 {
7137 if (mFastCapture != 0) {
7138 FastCaptureStateQueue *sq = mFastCapture->sq();
7139 FastCaptureState *state = sq->begin();
7140 if (state->mCommand == FastCaptureState::COLD_IDLE) {
7141 int32_t old = android_atomic_inc(&mFastCaptureFutex);
7142 if (old == -1) {
7143 (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
7144 }
7145 }
7146 state->mCommand = FastCaptureState::EXIT;
7147 sq->end();
7148 sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
7149 mFastCapture->join();
7150 mFastCapture.clear();
7151 }
7152 mAudioFlinger->unregisterWriter(mFastCaptureNBLogWriter);
7153 mAudioFlinger->unregisterWriter(mNBLogWriter);
7154 free(mRsmpInBuffer);
7155 }
7156
onFirstRef()7157 void AudioFlinger::RecordThread::onFirstRef()
7158 {
7159 run(mThreadName, PRIORITY_URGENT_AUDIO);
7160 }
7161
preExit()7162 void AudioFlinger::RecordThread::preExit()
7163 {
7164 ALOGV(" preExit()");
7165 Mutex::Autolock _l(mLock);
7166 for (size_t i = 0; i < mTracks.size(); i++) {
7167 sp<RecordTrack> track = mTracks[i];
7168 track->invalidate();
7169 }
7170 mActiveTracks.clear();
7171 mStartStopCond.broadcast();
7172 }
7173
threadLoop()7174 bool AudioFlinger::RecordThread::threadLoop()
7175 {
7176 nsecs_t lastWarning = 0;
7177
7178 inputStandBy();
7179
7180 reacquire_wakelock:
7181 sp<RecordTrack> activeTrack;
7182 {
7183 Mutex::Autolock _l(mLock);
7184 acquireWakeLock_l();
7185 }
7186
7187 // used to request a deferred sleep, to be executed later while mutex is unlocked
7188 uint32_t sleepUs = 0;
7189
7190 int64_t lastLoopCountRead = -2; // never matches "previous" loop, when loopCount = 0.
7191
7192 // loop while there is work to do
7193 for (int64_t loopCount = 0;; ++loopCount) { // loopCount used for statistics tracking
7194 Vector< sp<EffectChain> > effectChains;
7195
7196 // activeTracks accumulates a copy of a subset of mActiveTracks
7197 Vector< sp<RecordTrack> > activeTracks;
7198
7199 // reference to the (first and only) active fast track
7200 sp<RecordTrack> fastTrack;
7201
7202 // reference to a fast track which is about to be removed
7203 sp<RecordTrack> fastTrackToRemove;
7204
7205 bool silenceFastCapture = false;
7206
7207 { // scope for mLock
7208 Mutex::Autolock _l(mLock);
7209
7210 processConfigEvents_l();
7211
7212 // check exitPending here because checkForNewParameters_l() and
7213 // checkForNewParameters_l() can temporarily release mLock
7214 if (exitPending()) {
7215 break;
7216 }
7217
7218 // sleep with mutex unlocked
7219 if (sleepUs > 0) {
7220 ATRACE_BEGIN("sleepC");
7221 mWaitWorkCV.waitRelative(mLock, microseconds((nsecs_t)sleepUs));
7222 ATRACE_END();
7223 sleepUs = 0;
7224 continue;
7225 }
7226
7227 // if no active track(s), then standby and release wakelock
7228 size_t size = mActiveTracks.size();
7229 if (size == 0) {
7230 standbyIfNotAlreadyInStandby();
7231 // exitPending() can't become true here
7232 releaseWakeLock_l();
7233 ALOGV("RecordThread: loop stopping");
7234 // go to sleep
7235 mWaitWorkCV.wait(mLock);
7236 ALOGV("RecordThread: loop starting");
7237 goto reacquire_wakelock;
7238 }
7239
7240 bool doBroadcast = false;
7241 bool allStopped = true;
7242 for (size_t i = 0; i < size; ) {
7243
7244 activeTrack = mActiveTracks[i];
7245 if (activeTrack->isTerminated()) {
7246 if (activeTrack->isFastTrack()) {
7247 ALOG_ASSERT(fastTrackToRemove == 0);
7248 fastTrackToRemove = activeTrack;
7249 }
7250 removeTrack_l(activeTrack);
7251 mActiveTracks.remove(activeTrack);
7252 size--;
7253 continue;
7254 }
7255
7256 TrackBase::track_state activeTrackState = activeTrack->mState;
7257 switch (activeTrackState) {
7258
7259 case TrackBase::PAUSING:
7260 mActiveTracks.remove(activeTrack);
7261 activeTrack->mState = TrackBase::PAUSED;
7262 doBroadcast = true;
7263 size--;
7264 continue;
7265
7266 case TrackBase::STARTING_1:
7267 sleepUs = 10000;
7268 i++;
7269 allStopped = false;
7270 continue;
7271
7272 case TrackBase::STARTING_2:
7273 doBroadcast = true;
7274 if (mStandby) {
7275 mThreadMetrics.logBeginInterval();
7276 mStandby = false;
7277 }
7278 activeTrack->mState = TrackBase::ACTIVE;
7279 allStopped = false;
7280 break;
7281
7282 case TrackBase::ACTIVE:
7283 allStopped = false;
7284 break;
7285
7286 case TrackBase::IDLE: // cannot be on ActiveTracks if idle
7287 case TrackBase::PAUSED: // cannot be on ActiveTracks if paused
7288 case TrackBase::STOPPED: // cannot be on ActiveTracks if destroyed/terminated
7289 default:
7290 LOG_ALWAYS_FATAL("%s: Unexpected active track state:%d, id:%d, tracks:%zu",
7291 __func__, activeTrackState, activeTrack->id(), size);
7292 }
7293
7294 if (activeTrack->isFastTrack()) {
7295 ALOG_ASSERT(!mFastTrackAvail);
7296 ALOG_ASSERT(fastTrack == 0);
7297 // if the active fast track is silenced either:
7298 // 1) silence the whole capture from fast capture buffer if this is
7299 // the only active track
7300 // 2) invalidate this track: this will cause the client to reconnect and possibly
7301 // be invalidated again until unsilenced
7302 bool invalidate = false;
7303 if (activeTrack->isSilenced()) {
7304 if (size > 1) {
7305 invalidate = true;
7306 } else {
7307 silenceFastCapture = true;
7308 }
7309 }
7310 // Invalidate fast tracks if access to audio history is required as this is not
7311 // possible with fast tracks. Once the fast track has been invalidated, no new
7312 // fast track will be created until mMaxSharedAudioHistoryMs is cleared.
7313 if (mMaxSharedAudioHistoryMs != 0) {
7314 invalidate = true;
7315 }
7316 if (invalidate) {
7317 activeTrack->invalidate();
7318 ALOG_ASSERT(fastTrackToRemove == 0);
7319 fastTrackToRemove = activeTrack;
7320 removeTrack_l(activeTrack);
7321 mActiveTracks.remove(activeTrack);
7322 size--;
7323 continue;
7324 }
7325 fastTrack = activeTrack;
7326 }
7327
7328 activeTracks.add(activeTrack);
7329 i++;
7330
7331 }
7332
7333 mActiveTracks.updatePowerState(this);
7334
7335 updateMetadata_l();
7336
7337 if (allStopped) {
7338 standbyIfNotAlreadyInStandby();
7339 }
7340 if (doBroadcast) {
7341 mStartStopCond.broadcast();
7342 }
7343
7344 // sleep if there are no active tracks to process
7345 if (activeTracks.isEmpty()) {
7346 if (sleepUs == 0) {
7347 sleepUs = kRecordThreadSleepUs;
7348 }
7349 continue;
7350 }
7351 sleepUs = 0;
7352
7353 lockEffectChains_l(effectChains);
7354 }
7355
7356 // thread mutex is now unlocked, mActiveTracks unknown, activeTracks.size() > 0
7357
7358 size_t size = effectChains.size();
7359 for (size_t i = 0; i < size; i++) {
7360 // thread mutex is not locked, but effect chain is locked
7361 effectChains[i]->process_l();
7362 }
7363
7364 // Push a new fast capture state if fast capture is not already running, or cblk change
7365 if (mFastCapture != 0) {
7366 FastCaptureStateQueue *sq = mFastCapture->sq();
7367 FastCaptureState *state = sq->begin();
7368 bool didModify = false;
7369 FastCaptureStateQueue::block_t block = FastCaptureStateQueue::BLOCK_UNTIL_PUSHED;
7370 if (state->mCommand != FastCaptureState::READ_WRITE /* FIXME &&
7371 (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)*/) {
7372 if (state->mCommand == FastCaptureState::COLD_IDLE) {
7373 int32_t old = android_atomic_inc(&mFastCaptureFutex);
7374 if (old == -1) {
7375 (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
7376 }
7377 }
7378 state->mCommand = FastCaptureState::READ_WRITE;
7379 #if 0 // FIXME
7380 mFastCaptureDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
7381 FastThreadDumpState::kSamplingNforLowRamDevice :
7382 FastThreadDumpState::kSamplingN);
7383 #endif
7384 didModify = true;
7385 }
7386 audio_track_cblk_t *cblkOld = state->mCblk;
7387 audio_track_cblk_t *cblkNew = fastTrack != 0 ? fastTrack->cblk() : NULL;
7388 if (cblkNew != cblkOld) {
7389 state->mCblk = cblkNew;
7390 // block until acked if removing a fast track
7391 if (cblkOld != NULL) {
7392 block = FastCaptureStateQueue::BLOCK_UNTIL_ACKED;
7393 }
7394 didModify = true;
7395 }
7396 AudioBufferProvider* abp = (fastTrack != 0 && fastTrack->isPatchTrack()) ?
7397 reinterpret_cast<AudioBufferProvider*>(fastTrack.get()) : nullptr;
7398 if (state->mFastPatchRecordBufferProvider != abp) {
7399 state->mFastPatchRecordBufferProvider = abp;
7400 state->mFastPatchRecordFormat = fastTrack == 0 ?
7401 AUDIO_FORMAT_INVALID : fastTrack->format();
7402 didModify = true;
7403 }
7404 if (state->mSilenceCapture != silenceFastCapture) {
7405 state->mSilenceCapture = silenceFastCapture;
7406 didModify = true;
7407 }
7408 sq->end(didModify);
7409 if (didModify) {
7410 sq->push(block);
7411 #if 0
7412 if (kUseFastCapture == FastCapture_Dynamic) {
7413 mNormalSource = mPipeSource;
7414 }
7415 #endif
7416 }
7417 }
7418
7419 // now run the fast track destructor with thread mutex unlocked
7420 fastTrackToRemove.clear();
7421
7422 // Read from HAL to keep up with fastest client if multiple active tracks, not slowest one.
7423 // Only the client(s) that are too slow will overrun. But if even the fastest client is too
7424 // slow, then this RecordThread will overrun by not calling HAL read often enough.
7425 // If destination is non-contiguous, first read past the nominal end of buffer, then
7426 // copy to the right place. Permitted because mRsmpInBuffer was over-allocated.
7427
7428 int32_t rear = mRsmpInRear & (mRsmpInFramesP2 - 1);
7429 ssize_t framesRead;
7430 const int64_t lastIoBeginNs = systemTime(); // start IO timing
7431
7432 // If an NBAIO source is present, use it to read the normal capture's data
7433 if (mPipeSource != 0) {
7434 size_t framesToRead = min(mRsmpInFramesOA - rear, mRsmpInFramesP2 / 2);
7435
7436 // The audio fifo read() returns OVERRUN on overflow, and advances the read pointer
7437 // to the full buffer point (clearing the overflow condition). Upon OVERRUN error,
7438 // we immediately retry the read() to get data and prevent another overflow.
7439 for (int retries = 0; retries <= 2; ++retries) {
7440 ALOGW_IF(retries > 0, "overrun on read from pipe, retry #%d", retries);
7441 framesRead = mPipeSource->read((uint8_t*)mRsmpInBuffer + rear * mFrameSize,
7442 framesToRead);
7443 if (framesRead != OVERRUN) break;
7444 }
7445
7446 const ssize_t availableToRead = mPipeSource->availableToRead();
7447 if (availableToRead >= 0) {
7448 // PipeSource is the primary clock. It is up to the AudioRecord client to keep up.
7449 LOG_ALWAYS_FATAL_IF((size_t)availableToRead > mPipeFramesP2,
7450 "more frames to read than fifo size, %zd > %zu",
7451 availableToRead, mPipeFramesP2);
7452 const size_t pipeFramesFree = mPipeFramesP2 - availableToRead;
7453 const size_t sleepFrames = min(pipeFramesFree, mRsmpInFramesP2) / 2;
7454 ALOGVV("mPipeFramesP2:%zu mRsmpInFramesP2:%zu sleepFrames:%zu availableToRead:%zd",
7455 mPipeFramesP2, mRsmpInFramesP2, sleepFrames, availableToRead);
7456 sleepUs = (sleepFrames * 1000000LL) / mSampleRate;
7457 }
7458 if (framesRead < 0) {
7459 status_t status = (status_t) framesRead;
7460 switch (status) {
7461 case OVERRUN:
7462 ALOGW("overrun on read from pipe");
7463 framesRead = 0;
7464 break;
7465 case NEGOTIATE:
7466 ALOGE("re-negotiation is needed");
7467 framesRead = -1; // Will cause an attempt to recover.
7468 break;
7469 default:
7470 ALOGE("unknown error %d on read from pipe", status);
7471 break;
7472 }
7473 }
7474 // otherwise use the HAL / AudioStreamIn directly
7475 } else {
7476 ATRACE_BEGIN("read");
7477 size_t bytesRead;
7478 status_t result = mSource->read(
7479 (uint8_t*)mRsmpInBuffer + rear * mFrameSize, mBufferSize, &bytesRead);
7480 ATRACE_END();
7481 if (result < 0) {
7482 framesRead = result;
7483 } else {
7484 framesRead = bytesRead / mFrameSize;
7485 }
7486 }
7487
7488 const int64_t lastIoEndNs = systemTime(); // end IO timing
7489
7490 // Update server timestamp with server stats
7491 // systemTime() is optional if the hardware supports timestamps.
7492 if (framesRead >= 0) {
7493 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] += framesRead;
7494 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = lastIoEndNs;
7495 }
7496
7497 // Update server timestamp with kernel stats
7498 if (mPipeSource.get() == nullptr /* don't obtain for FastCapture, could block */) {
7499 int64_t position, time;
7500 if (mStandby) {
7501 mTimestampVerifier.discontinuity(audio_is_linear_pcm(mFormat) ?
7502 mTimestampVerifier.DISCONTINUITY_MODE_CONTINUOUS :
7503 mTimestampVerifier.DISCONTINUITY_MODE_ZERO);
7504 } else if (mSource->getCapturePosition(&position, &time) == NO_ERROR
7505 && time > mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL]) {
7506
7507 mTimestampVerifier.add(position, time, mSampleRate);
7508
7509 // Correct timestamps
7510 if (isTimestampCorrectionEnabled()) {
7511 ALOGVV("TS_BEFORE: %d %lld %lld",
7512 id(), (long long)time, (long long)position);
7513 auto correctedTimestamp = mTimestampVerifier.getLastCorrectedTimestamp();
7514 position = correctedTimestamp.mFrames;
7515 time = correctedTimestamp.mTimeNs;
7516 ALOGVV("TS_AFTER: %d %lld %lld",
7517 id(), (long long)time, (long long)position);
7518 }
7519
7520 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] = position;
7521 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] = time;
7522 // Note: In general record buffers should tend to be empty in
7523 // a properly running pipeline.
7524 //
7525 // Also, it is not advantageous to call get_presentation_position during the read
7526 // as the read obtains a lock, preventing the timestamp call from executing.
7527 } else {
7528 mTimestampVerifier.error();
7529 }
7530 }
7531
7532 // From the timestamp, input read latency is negative output write latency.
7533 const audio_input_flags_t flags = mInput != NULL ? mInput->flags : AUDIO_INPUT_FLAG_NONE;
7534 const double latencyMs = RecordTrack::checkServerLatencySupported(mFormat, flags)
7535 ? - mTimestamp.getOutputServerLatencyMs(mSampleRate) : 0.;
7536 if (latencyMs != 0.) { // note 0. means timestamp is empty.
7537 mLatencyMs.add(latencyMs);
7538 }
7539
7540 // Use this to track timestamp information
7541 // ALOGD("%s", mTimestamp.toString().c_str());
7542
7543 if (framesRead < 0 || (framesRead == 0 && mPipeSource == 0)) {
7544 ALOGE("read failed: framesRead=%zd", framesRead);
7545 // Force input into standby so that it tries to recover at next read attempt
7546 inputStandBy();
7547 sleepUs = kRecordThreadSleepUs;
7548 }
7549 if (framesRead <= 0) {
7550 goto unlock;
7551 }
7552 ALOG_ASSERT(framesRead > 0);
7553 mFramesRead += framesRead;
7554
7555 #ifdef TEE_SINK
7556 (void)mTee.write((uint8_t*)mRsmpInBuffer + rear * mFrameSize, framesRead);
7557 #endif
7558 // If destination is non-contiguous, we now correct for reading past end of buffer.
7559 {
7560 size_t part1 = mRsmpInFramesP2 - rear;
7561 if ((size_t) framesRead > part1) {
7562 memcpy(mRsmpInBuffer, (uint8_t*)mRsmpInBuffer + mRsmpInFramesP2 * mFrameSize,
7563 (framesRead - part1) * mFrameSize);
7564 }
7565 }
7566 mRsmpInRear = audio_utils::safe_add_overflow(mRsmpInRear, (int32_t)framesRead);
7567
7568 size = activeTracks.size();
7569
7570 // loop over each active track
7571 for (size_t i = 0; i < size; i++) {
7572 activeTrack = activeTracks[i];
7573
7574 // skip fast tracks, as those are handled directly by FastCapture
7575 if (activeTrack->isFastTrack()) {
7576 continue;
7577 }
7578
7579 // TODO: This code probably should be moved to RecordTrack.
7580 // TODO: Update the activeTrack buffer converter in case of reconfigure.
7581
7582 enum {
7583 OVERRUN_UNKNOWN,
7584 OVERRUN_TRUE,
7585 OVERRUN_FALSE
7586 } overrun = OVERRUN_UNKNOWN;
7587
7588 // loop over getNextBuffer to handle circular sink
7589 for (;;) {
7590
7591 activeTrack->mSink.frameCount = ~0;
7592 status_t status = activeTrack->getNextBuffer(&activeTrack->mSink);
7593 size_t framesOut = activeTrack->mSink.frameCount;
7594 LOG_ALWAYS_FATAL_IF((status == OK) != (framesOut > 0));
7595
7596 // check available frames and handle overrun conditions
7597 // if the record track isn't draining fast enough.
7598 bool hasOverrun;
7599 size_t framesIn;
7600 activeTrack->mResamplerBufferProvider->sync(&framesIn, &hasOverrun);
7601 if (hasOverrun) {
7602 overrun = OVERRUN_TRUE;
7603 }
7604 if (framesOut == 0 || framesIn == 0) {
7605 break;
7606 }
7607
7608 // Don't allow framesOut to be larger than what is possible with resampling
7609 // from framesIn.
7610 // This isn't strictly necessary but helps limit buffer resizing in
7611 // RecordBufferConverter. TODO: remove when no longer needed.
7612 framesOut = min(framesOut,
7613 destinationFramesPossible(
7614 framesIn, mSampleRate, activeTrack->mSampleRate));
7615
7616 if (activeTrack->isDirect()) {
7617 // No RecordBufferConverter used for direct streams. Pass
7618 // straight from RecordThread buffer to RecordTrack buffer.
7619 AudioBufferProvider::Buffer buffer;
7620 buffer.frameCount = framesOut;
7621 status_t status = activeTrack->mResamplerBufferProvider->getNextBuffer(&buffer);
7622 if (status == OK && buffer.frameCount != 0) {
7623 ALOGV_IF(buffer.frameCount != framesOut,
7624 "%s() read less than expected (%zu vs %zu)",
7625 __func__, buffer.frameCount, framesOut);
7626 framesOut = buffer.frameCount;
7627 memcpy(activeTrack->mSink.raw, buffer.raw, buffer.frameCount * mFrameSize);
7628 activeTrack->mResamplerBufferProvider->releaseBuffer(&buffer);
7629 } else {
7630 framesOut = 0;
7631 ALOGE("%s() cannot fill request, status: %d, frameCount: %zu",
7632 __func__, status, buffer.frameCount);
7633 }
7634 } else {
7635 // process frames from the RecordThread buffer provider to the RecordTrack
7636 // buffer
7637 framesOut = activeTrack->mRecordBufferConverter->convert(
7638 activeTrack->mSink.raw,
7639 activeTrack->mResamplerBufferProvider,
7640 framesOut);
7641 }
7642
7643 if (framesOut > 0 && (overrun == OVERRUN_UNKNOWN)) {
7644 overrun = OVERRUN_FALSE;
7645 }
7646
7647 if (activeTrack->mFramesToDrop == 0) {
7648 if (framesOut > 0) {
7649 activeTrack->mSink.frameCount = framesOut;
7650 // Sanitize before releasing if the track has no access to the source data
7651 // An idle UID receives silence from non virtual devices until active
7652 if (activeTrack->isSilenced()) {
7653 memset(activeTrack->mSink.raw, 0, framesOut * activeTrack->frameSize());
7654 }
7655 activeTrack->releaseBuffer(&activeTrack->mSink);
7656 }
7657 } else {
7658 // FIXME could do a partial drop of framesOut
7659 if (activeTrack->mFramesToDrop > 0) {
7660 activeTrack->mFramesToDrop -= (ssize_t)framesOut;
7661 if (activeTrack->mFramesToDrop <= 0) {
7662 activeTrack->clearSyncStartEvent();
7663 }
7664 } else {
7665 activeTrack->mFramesToDrop += framesOut;
7666 if (activeTrack->mFramesToDrop >= 0 || activeTrack->mSyncStartEvent == 0 ||
7667 activeTrack->mSyncStartEvent->isCancelled()) {
7668 ALOGW("Synced record %s, session %d, trigger session %d",
7669 (activeTrack->mFramesToDrop >= 0) ? "timed out" : "cancelled",
7670 activeTrack->sessionId(),
7671 (activeTrack->mSyncStartEvent != 0) ?
7672 activeTrack->mSyncStartEvent->triggerSession() :
7673 AUDIO_SESSION_NONE);
7674 activeTrack->clearSyncStartEvent();
7675 }
7676 }
7677 }
7678
7679 if (framesOut == 0) {
7680 break;
7681 }
7682 }
7683
7684 switch (overrun) {
7685 case OVERRUN_TRUE:
7686 // client isn't retrieving buffers fast enough
7687 if (!activeTrack->setOverflow()) {
7688 nsecs_t now = systemTime();
7689 // FIXME should lastWarning per track?
7690 if ((now - lastWarning) > kWarningThrottleNs) {
7691 ALOGW("RecordThread: buffer overflow");
7692 lastWarning = now;
7693 }
7694 }
7695 break;
7696 case OVERRUN_FALSE:
7697 activeTrack->clearOverflow();
7698 break;
7699 case OVERRUN_UNKNOWN:
7700 break;
7701 }
7702
7703 // update frame information and push timestamp out
7704 activeTrack->updateTrackFrameInfo(
7705 activeTrack->mServerProxy->framesReleased(),
7706 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER],
7707 mSampleRate, mTimestamp);
7708 }
7709
7710 unlock:
7711 // enable changes in effect chain
7712 unlockEffectChains(effectChains);
7713 // effectChains doesn't need to be cleared, since it is cleared by destructor at scope end
7714 if (audio_has_proportional_frames(mFormat)
7715 && loopCount == lastLoopCountRead + 1) {
7716 const int64_t readPeriodNs = lastIoEndNs - mLastIoEndNs;
7717 const double jitterMs =
7718 TimestampVerifier<int64_t, int64_t>::computeJitterMs(
7719 {framesRead, readPeriodNs},
7720 {0, 0} /* lastTimestamp */, mSampleRate);
7721 const double processMs = (lastIoBeginNs - mLastIoEndNs) * 1e-6;
7722
7723 Mutex::Autolock _l(mLock);
7724 mIoJitterMs.add(jitterMs);
7725 mProcessTimeMs.add(processMs);
7726 }
7727 // update timing info.
7728 mLastIoBeginNs = lastIoBeginNs;
7729 mLastIoEndNs = lastIoEndNs;
7730 lastLoopCountRead = loopCount;
7731 }
7732
7733 standbyIfNotAlreadyInStandby();
7734
7735 {
7736 Mutex::Autolock _l(mLock);
7737 for (size_t i = 0; i < mTracks.size(); i++) {
7738 sp<RecordTrack> track = mTracks[i];
7739 track->invalidate();
7740 }
7741 mActiveTracks.clear();
7742 mStartStopCond.broadcast();
7743 }
7744
7745 releaseWakeLock();
7746
7747 ALOGV("RecordThread %p exiting", this);
7748 return false;
7749 }
7750
standbyIfNotAlreadyInStandby()7751 void AudioFlinger::RecordThread::standbyIfNotAlreadyInStandby()
7752 {
7753 if (!mStandby) {
7754 inputStandBy();
7755 mThreadMetrics.logEndInterval();
7756 mStandby = true;
7757 }
7758 }
7759
inputStandBy()7760 void AudioFlinger::RecordThread::inputStandBy()
7761 {
7762 // Idle the fast capture if it's currently running
7763 if (mFastCapture != 0) {
7764 FastCaptureStateQueue *sq = mFastCapture->sq();
7765 FastCaptureState *state = sq->begin();
7766 if (!(state->mCommand & FastCaptureState::IDLE)) {
7767 state->mCommand = FastCaptureState::COLD_IDLE;
7768 state->mColdFutexAddr = &mFastCaptureFutex;
7769 state->mColdGen++;
7770 mFastCaptureFutex = 0;
7771 sq->end();
7772 // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
7773 sq->push(FastCaptureStateQueue::BLOCK_UNTIL_ACKED);
7774 #if 0
7775 if (kUseFastCapture == FastCapture_Dynamic) {
7776 // FIXME
7777 }
7778 #endif
7779 #ifdef AUDIO_WATCHDOG
7780 // FIXME
7781 #endif
7782 } else {
7783 sq->end(false /*didModify*/);
7784 }
7785 }
7786 status_t result = mSource->standby();
7787 ALOGE_IF(result != OK, "Error when putting input stream into standby: %d", result);
7788
7789 // If going into standby, flush the pipe source.
7790 if (mPipeSource.get() != nullptr) {
7791 const ssize_t flushed = mPipeSource->flush();
7792 if (flushed > 0) {
7793 ALOGV("Input standby flushed PipeSource %zd frames", flushed);
7794 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] += flushed;
7795 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = systemTime();
7796 }
7797 }
7798 }
7799
7800 // RecordThread::createRecordTrack_l() must be called with AudioFlinger::mLock held
createRecordTrack_l(const sp<AudioFlinger::Client> & client,const audio_attributes_t & attr,uint32_t * pSampleRate,audio_format_t format,audio_channel_mask_t channelMask,size_t * pFrameCount,audio_session_t sessionId,size_t * pNotificationFrameCount,pid_t creatorPid,const AttributionSourceState & attributionSource,audio_input_flags_t * flags,pid_t tid,status_t * status,audio_port_handle_t portId,int32_t maxSharedAudioHistoryMs)7801 sp<AudioFlinger::RecordThread::RecordTrack> AudioFlinger::RecordThread::createRecordTrack_l(
7802 const sp<AudioFlinger::Client>& client,
7803 const audio_attributes_t& attr,
7804 uint32_t *pSampleRate,
7805 audio_format_t format,
7806 audio_channel_mask_t channelMask,
7807 size_t *pFrameCount,
7808 audio_session_t sessionId,
7809 size_t *pNotificationFrameCount,
7810 pid_t creatorPid,
7811 const AttributionSourceState& attributionSource,
7812 audio_input_flags_t *flags,
7813 pid_t tid,
7814 status_t *status,
7815 audio_port_handle_t portId,
7816 int32_t maxSharedAudioHistoryMs)
7817 {
7818 size_t frameCount = *pFrameCount;
7819 size_t notificationFrameCount = *pNotificationFrameCount;
7820 sp<RecordTrack> track;
7821 status_t lStatus;
7822 audio_input_flags_t inputFlags = mInput->flags;
7823 audio_input_flags_t requestedFlags = *flags;
7824 uint32_t sampleRate;
7825 AttributionSourceState checkedAttributionSource = AudioFlinger::checkAttributionSourcePackage(
7826 attributionSource);
7827
7828 lStatus = initCheck();
7829 if (lStatus != NO_ERROR) {
7830 ALOGE("createRecordTrack_l() audio driver not initialized");
7831 goto Exit;
7832 }
7833
7834 if (!audio_is_linear_pcm(mFormat) && (*flags & AUDIO_INPUT_FLAG_DIRECT) == 0) {
7835 ALOGE("createRecordTrack_l() on an encoded stream requires AUDIO_INPUT_FLAG_DIRECT");
7836 lStatus = BAD_VALUE;
7837 goto Exit;
7838 }
7839
7840 if (maxSharedAudioHistoryMs != 0) {
7841 if (!captureHotwordAllowed(checkedAttributionSource)) {
7842 lStatus = PERMISSION_DENIED;
7843 goto Exit;
7844 }
7845 if (maxSharedAudioHistoryMs < 0
7846 || maxSharedAudioHistoryMs > AudioFlinger::kMaxSharedAudioHistoryMs) {
7847 lStatus = BAD_VALUE;
7848 goto Exit;
7849 }
7850 }
7851 if (*pSampleRate == 0) {
7852 *pSampleRate = mSampleRate;
7853 }
7854 sampleRate = *pSampleRate;
7855
7856 // special case for FAST flag considered OK if fast capture is present and access to
7857 // audio history is not required
7858 if (hasFastCapture() && mMaxSharedAudioHistoryMs == 0) {
7859 inputFlags = (audio_input_flags_t)(inputFlags | AUDIO_INPUT_FLAG_FAST);
7860 }
7861
7862 // Check if requested flags are compatible with input stream flags
7863 if ((*flags & inputFlags) != *flags) {
7864 ALOGW("createRecordTrack_l(): mismatch between requested flags (%08x) and"
7865 " input flags (%08x)",
7866 *flags, inputFlags);
7867 *flags = (audio_input_flags_t)(*flags & inputFlags);
7868 }
7869
7870 // client expresses a preference for FAST and no access to audio history,
7871 // but we get the final say
7872 if (*flags & AUDIO_INPUT_FLAG_FAST && maxSharedAudioHistoryMs == 0) {
7873 if (
7874 // we formerly checked for a callback handler (non-0 tid),
7875 // but that is no longer required for TRANSFER_OBTAIN mode
7876 //
7877 // Frame count is not specified (0), or is less than or equal the pipe depth.
7878 // It is OK to provide a higher capacity than requested.
7879 // We will force it to mPipeFramesP2 below.
7880 (frameCount <= mPipeFramesP2) &&
7881 // PCM data
7882 audio_is_linear_pcm(format) &&
7883 // hardware format
7884 (format == mFormat) &&
7885 // hardware channel mask
7886 (channelMask == mChannelMask) &&
7887 // hardware sample rate
7888 (sampleRate == mSampleRate) &&
7889 // record thread has an associated fast capture
7890 hasFastCapture() &&
7891 // there are sufficient fast track slots available
7892 mFastTrackAvail
7893 ) {
7894 // check compatibility with audio effects.
7895 Mutex::Autolock _l(mLock);
7896 // Do not accept FAST flag if the session has software effects
7897 sp<EffectChain> chain = getEffectChain_l(sessionId);
7898 if (chain != 0) {
7899 audio_input_flags_t old = *flags;
7900 chain->checkInputFlagCompatibility(flags);
7901 if (old != *flags) {
7902 ALOGV("%p AUDIO_INPUT_FLAGS denied by effect old=%#x new=%#x",
7903 this, (int)old, (int)*flags);
7904 }
7905 }
7906 ALOGV_IF((*flags & AUDIO_INPUT_FLAG_FAST) != 0,
7907 "%p AUDIO_INPUT_FLAG_FAST accepted: frameCount=%zu mFrameCount=%zu",
7908 this, frameCount, mFrameCount);
7909 } else {
7910 ALOGV("%p AUDIO_INPUT_FLAG_FAST denied: frameCount=%zu mFrameCount=%zu mPipeFramesP2=%zu "
7911 "format=%#x isLinear=%d mFormat=%#x channelMask=%#x sampleRate=%u mSampleRate=%u "
7912 "hasFastCapture=%d tid=%d mFastTrackAvail=%d",
7913 this, frameCount, mFrameCount, mPipeFramesP2,
7914 format, audio_is_linear_pcm(format), mFormat, channelMask, sampleRate, mSampleRate,
7915 hasFastCapture(), tid, mFastTrackAvail);
7916 *flags = (audio_input_flags_t)(*flags & ~AUDIO_INPUT_FLAG_FAST);
7917 }
7918 }
7919
7920 // If FAST or RAW flags were corrected, ask caller to request new input from audio policy
7921 if ((*flags & AUDIO_INPUT_FLAG_FAST) !=
7922 (requestedFlags & AUDIO_INPUT_FLAG_FAST)) {
7923 *flags = (audio_input_flags_t) (*flags & ~(AUDIO_INPUT_FLAG_FAST | AUDIO_INPUT_FLAG_RAW));
7924 lStatus = BAD_TYPE;
7925 goto Exit;
7926 }
7927
7928 // compute track buffer size in frames, and suggest the notification frame count
7929 if (*flags & AUDIO_INPUT_FLAG_FAST) {
7930 // fast track: frame count is exactly the pipe depth
7931 frameCount = mPipeFramesP2;
7932 // ignore requested notificationFrames, and always notify exactly once every HAL buffer
7933 notificationFrameCount = mFrameCount;
7934 } else {
7935 // not fast track: max notification period is resampled equivalent of one HAL buffer time
7936 // or 20 ms if there is a fast capture
7937 // TODO This could be a roundupRatio inline, and const
7938 size_t maxNotificationFrames = ((int64_t) (hasFastCapture() ? mSampleRate/50 : mFrameCount)
7939 * sampleRate + mSampleRate - 1) / mSampleRate;
7940 // minimum number of notification periods is at least kMinNotifications,
7941 // and at least kMinMs rounded up to a whole notification period (minNotificationsByMs)
7942 static const size_t kMinNotifications = 3;
7943 static const uint32_t kMinMs = 30;
7944 // TODO This could be a roundupRatio inline
7945 const size_t minFramesByMs = (sampleRate * kMinMs + 1000 - 1) / 1000;
7946 // TODO This could be a roundupRatio inline
7947 const size_t minNotificationsByMs = (minFramesByMs + maxNotificationFrames - 1) /
7948 maxNotificationFrames;
7949 const size_t minFrameCount = maxNotificationFrames *
7950 max(kMinNotifications, minNotificationsByMs);
7951 frameCount = max(frameCount, minFrameCount);
7952 if (notificationFrameCount == 0 || notificationFrameCount > maxNotificationFrames) {
7953 notificationFrameCount = maxNotificationFrames;
7954 }
7955 }
7956 *pFrameCount = frameCount;
7957 *pNotificationFrameCount = notificationFrameCount;
7958
7959 { // scope for mLock
7960 Mutex::Autolock _l(mLock);
7961 int32_t startFrames = -1;
7962 if (!mSharedAudioPackageName.empty()
7963 && mSharedAudioPackageName == checkedAttributionSource.packageName
7964 && mSharedAudioSessionId == sessionId
7965 && captureHotwordAllowed(checkedAttributionSource)) {
7966 startFrames = mSharedAudioStartFrames;
7967 }
7968
7969 track = new RecordTrack(this, client, attr, sampleRate,
7970 format, channelMask, frameCount,
7971 nullptr /* buffer */, (size_t)0 /* bufferSize */, sessionId, creatorPid,
7972 checkedAttributionSource, *flags, TrackBase::TYPE_DEFAULT, portId,
7973 startFrames);
7974
7975 lStatus = track->initCheck();
7976 if (lStatus != NO_ERROR) {
7977 ALOGE("createRecordTrack_l() initCheck failed %d; no control block?", lStatus);
7978 // track must be cleared from the caller as the caller has the AF lock
7979 goto Exit;
7980 }
7981 mTracks.add(track);
7982
7983 if ((*flags & AUDIO_INPUT_FLAG_FAST) && (tid != -1)) {
7984 pid_t callingPid = IPCThreadState::self()->getCallingPid();
7985 // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
7986 // so ask activity manager to do this on our behalf
7987 sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp, true /*forApp*/);
7988 }
7989
7990 if (maxSharedAudioHistoryMs != 0) {
7991 sendResizeBufferConfigEvent_l(maxSharedAudioHistoryMs);
7992 }
7993 }
7994
7995 lStatus = NO_ERROR;
7996
7997 Exit:
7998 *status = lStatus;
7999 return track;
8000 }
8001
start(RecordThread::RecordTrack * recordTrack,AudioSystem::sync_event_t event,audio_session_t triggerSession)8002 status_t AudioFlinger::RecordThread::start(RecordThread::RecordTrack* recordTrack,
8003 AudioSystem::sync_event_t event,
8004 audio_session_t triggerSession)
8005 {
8006 ALOGV("RecordThread::start event %d, triggerSession %d", event, triggerSession);
8007 sp<ThreadBase> strongMe = this;
8008 status_t status = NO_ERROR;
8009
8010 if (event == AudioSystem::SYNC_EVENT_NONE) {
8011 recordTrack->clearSyncStartEvent();
8012 } else if (event != AudioSystem::SYNC_EVENT_SAME) {
8013 recordTrack->mSyncStartEvent = mAudioFlinger->createSyncEvent(event,
8014 triggerSession,
8015 recordTrack->sessionId(),
8016 syncStartEventCallback,
8017 recordTrack);
8018 // Sync event can be cancelled by the trigger session if the track is not in a
8019 // compatible state in which case we start record immediately
8020 if (recordTrack->mSyncStartEvent->isCancelled()) {
8021 recordTrack->clearSyncStartEvent();
8022 } else {
8023 // do not wait for the event for more than AudioSystem::kSyncRecordStartTimeOutMs
8024 recordTrack->mFramesToDrop = -(ssize_t)
8025 ((AudioSystem::kSyncRecordStartTimeOutMs * recordTrack->mSampleRate) / 1000);
8026 }
8027 }
8028
8029 {
8030 // This section is a rendezvous between binder thread executing start() and RecordThread
8031 AutoMutex lock(mLock);
8032 if (recordTrack->isInvalid()) {
8033 recordTrack->clearSyncStartEvent();
8034 ALOGW("%s track %d: invalidated before startInput", __func__, recordTrack->portId());
8035 return DEAD_OBJECT;
8036 }
8037 if (mActiveTracks.indexOf(recordTrack) >= 0) {
8038 if (recordTrack->mState == TrackBase::PAUSING) {
8039 // We haven't stopped yet (moved to PAUSED and not in mActiveTracks)
8040 // so no need to startInput().
8041 ALOGV("active record track PAUSING -> ACTIVE");
8042 recordTrack->mState = TrackBase::ACTIVE;
8043 } else {
8044 ALOGV("active record track state %d", recordTrack->mState);
8045 }
8046 return status;
8047 }
8048
8049 // TODO consider other ways of handling this, such as changing the state to :STARTING and
8050 // adding the track to mActiveTracks after returning from AudioSystem::startInput(),
8051 // or using a separate command thread
8052 recordTrack->mState = TrackBase::STARTING_1;
8053 mActiveTracks.add(recordTrack);
8054 status_t status = NO_ERROR;
8055 if (recordTrack->isExternalTrack()) {
8056 mLock.unlock();
8057 status = AudioSystem::startInput(recordTrack->portId());
8058 mLock.lock();
8059 if (recordTrack->isInvalid()) {
8060 recordTrack->clearSyncStartEvent();
8061 if (status == NO_ERROR && recordTrack->mState == TrackBase::STARTING_1) {
8062 recordTrack->mState = TrackBase::STARTING_2;
8063 // STARTING_2 forces destroy to call stopInput.
8064 }
8065 ALOGW("%s track %d: invalidated after startInput", __func__, recordTrack->portId());
8066 return DEAD_OBJECT;
8067 }
8068 if (recordTrack->mState != TrackBase::STARTING_1) {
8069 ALOGW("%s(%d): unsynchronized mState:%d change",
8070 __func__, recordTrack->id(), recordTrack->mState);
8071 // Someone else has changed state, let them take over,
8072 // leave mState in the new state.
8073 recordTrack->clearSyncStartEvent();
8074 return INVALID_OPERATION;
8075 }
8076 // we're ok, but perhaps startInput has failed
8077 if (status != NO_ERROR) {
8078 ALOGW("%s(%d): startInput failed, status %d",
8079 __func__, recordTrack->id(), status);
8080 // We are in ActiveTracks if STARTING_1 and valid, so remove from ActiveTracks,
8081 // leave in STARTING_1, so destroy() will not call stopInput.
8082 mActiveTracks.remove(recordTrack);
8083 recordTrack->clearSyncStartEvent();
8084 return status;
8085 }
8086 sendIoConfigEvent_l(
8087 AUDIO_CLIENT_STARTED, recordTrack->creatorPid(), recordTrack->portId());
8088 }
8089
8090 recordTrack->logBeginInterval(patchSourcesToString(&mPatch)); // log to MediaMetrics
8091
8092 // Catch up with current buffer indices if thread is already running.
8093 // This is what makes a new client discard all buffered data. If the track's mRsmpInFront
8094 // was initialized to some value closer to the thread's mRsmpInFront, then the track could
8095 // see previously buffered data before it called start(), but with greater risk of overrun.
8096
8097 recordTrack->mResamplerBufferProvider->reset();
8098 if (!recordTrack->isDirect()) {
8099 // clear any converter state as new data will be discontinuous
8100 recordTrack->mRecordBufferConverter->reset();
8101 }
8102 recordTrack->mState = TrackBase::STARTING_2;
8103 // signal thread to start
8104 mWaitWorkCV.broadcast();
8105 return status;
8106 }
8107 }
8108
syncStartEventCallback(const wp<SyncEvent> & event)8109 void AudioFlinger::RecordThread::syncStartEventCallback(const wp<SyncEvent>& event)
8110 {
8111 sp<SyncEvent> strongEvent = event.promote();
8112
8113 if (strongEvent != 0) {
8114 sp<RefBase> ptr = strongEvent->cookie().promote();
8115 if (ptr != 0) {
8116 RecordTrack *recordTrack = (RecordTrack *)ptr.get();
8117 recordTrack->handleSyncStartEvent(strongEvent);
8118 }
8119 }
8120 }
8121
stop(RecordThread::RecordTrack * recordTrack)8122 bool AudioFlinger::RecordThread::stop(RecordThread::RecordTrack* recordTrack) {
8123 ALOGV("RecordThread::stop");
8124 AutoMutex _l(mLock);
8125 // if we're invalid, we can't be on the ActiveTracks.
8126 if (mActiveTracks.indexOf(recordTrack) < 0 || recordTrack->mState == TrackBase::PAUSING) {
8127 return false;
8128 }
8129 // note that threadLoop may still be processing the track at this point [without lock]
8130 recordTrack->mState = TrackBase::PAUSING;
8131
8132 // NOTE: Waiting here is important to keep stop synchronous.
8133 // This is needed for proper patchRecord peer release.
8134 while (recordTrack->mState == TrackBase::PAUSING && !recordTrack->isInvalid()) {
8135 mWaitWorkCV.broadcast(); // signal thread to stop
8136 mStartStopCond.wait(mLock);
8137 }
8138
8139 if (recordTrack->mState == TrackBase::PAUSED) { // successful stop
8140 ALOGV("Record stopped OK");
8141 return true;
8142 }
8143
8144 // don't handle anything - we've been invalidated or restarted and in a different state
8145 ALOGW_IF("%s(%d): unsynchronized stop, state: %d",
8146 __func__, recordTrack->id(), recordTrack->mState);
8147 return false;
8148 }
8149
isValidSyncEvent(const sp<SyncEvent> & event __unused) const8150 bool AudioFlinger::RecordThread::isValidSyncEvent(const sp<SyncEvent>& event __unused) const
8151 {
8152 return false;
8153 }
8154
setSyncEvent(const sp<SyncEvent> & event __unused)8155 status_t AudioFlinger::RecordThread::setSyncEvent(const sp<SyncEvent>& event __unused)
8156 {
8157 #if 0 // This branch is currently dead code, but is preserved in case it will be needed in future
8158 if (!isValidSyncEvent(event)) {
8159 return BAD_VALUE;
8160 }
8161
8162 audio_session_t eventSession = event->triggerSession();
8163 status_t ret = NAME_NOT_FOUND;
8164
8165 Mutex::Autolock _l(mLock);
8166
8167 for (size_t i = 0; i < mTracks.size(); i++) {
8168 sp<RecordTrack> track = mTracks[i];
8169 if (eventSession == track->sessionId()) {
8170 (void) track->setSyncEvent(event);
8171 ret = NO_ERROR;
8172 }
8173 }
8174 return ret;
8175 #else
8176 return BAD_VALUE;
8177 #endif
8178 }
8179
getActiveMicrophones(std::vector<media::MicrophoneInfo> * activeMicrophones)8180 status_t AudioFlinger::RecordThread::getActiveMicrophones(
8181 std::vector<media::MicrophoneInfo>* activeMicrophones)
8182 {
8183 ALOGV("RecordThread::getActiveMicrophones");
8184 AutoMutex _l(mLock);
8185 if (!isStreamInitialized()) {
8186 return NO_INIT;
8187 }
8188 status_t status = mInput->stream->getActiveMicrophones(activeMicrophones);
8189 return status;
8190 }
8191
setPreferredMicrophoneDirection(audio_microphone_direction_t direction)8192 status_t AudioFlinger::RecordThread::setPreferredMicrophoneDirection(
8193 audio_microphone_direction_t direction)
8194 {
8195 ALOGV("setPreferredMicrophoneDirection(%d)", direction);
8196 AutoMutex _l(mLock);
8197 if (!isStreamInitialized()) {
8198 return NO_INIT;
8199 }
8200 return mInput->stream->setPreferredMicrophoneDirection(direction);
8201 }
8202
setPreferredMicrophoneFieldDimension(float zoom)8203 status_t AudioFlinger::RecordThread::setPreferredMicrophoneFieldDimension(float zoom)
8204 {
8205 ALOGV("setPreferredMicrophoneFieldDimension(%f)", zoom);
8206 AutoMutex _l(mLock);
8207 if (!isStreamInitialized()) {
8208 return NO_INIT;
8209 }
8210 return mInput->stream->setPreferredMicrophoneFieldDimension(zoom);
8211 }
8212
shareAudioHistory(const std::string & sharedAudioPackageName,audio_session_t sharedSessionId,int64_t sharedAudioStartMs)8213 status_t AudioFlinger::RecordThread::shareAudioHistory(
8214 const std::string& sharedAudioPackageName, audio_session_t sharedSessionId,
8215 int64_t sharedAudioStartMs) {
8216 AutoMutex _l(mLock);
8217 return shareAudioHistory_l(sharedAudioPackageName, sharedSessionId, sharedAudioStartMs);
8218 }
8219
shareAudioHistory_l(const std::string & sharedAudioPackageName,audio_session_t sharedSessionId,int64_t sharedAudioStartMs)8220 status_t AudioFlinger::RecordThread::shareAudioHistory_l(
8221 const std::string& sharedAudioPackageName, audio_session_t sharedSessionId,
8222 int64_t sharedAudioStartMs) {
8223
8224 if ((hasAudioSession_l(sharedSessionId) & ThreadBase::TRACK_SESSION) == 0) {
8225 return BAD_VALUE;
8226 }
8227
8228 if (sharedAudioStartMs < 0
8229 || sharedAudioStartMs > INT64_MAX / mSampleRate) {
8230 return BAD_VALUE;
8231 }
8232
8233 // Current implementation of the input resampling buffer wraps around indexes at 32 bit.
8234 // As we cannot detect more than one wraparound, only accept values up current write position
8235 // after one wraparound
8236 // We assume recent wraparounds on mRsmpInRear only given it is unlikely that the requesting
8237 // app waits several hours after the start time was computed.
8238 int64_t sharedAudioStartFrames = sharedAudioStartMs * mSampleRate / 1000;
8239 const int32_t sharedOffset = audio_utils::safe_sub_overflow(mRsmpInRear,
8240 (int32_t)sharedAudioStartFrames);
8241 // Bring the start frame position within the input buffer to match the documented
8242 // "best effort" behavior of the API.
8243 if (sharedOffset < 0) {
8244 sharedAudioStartFrames = mRsmpInRear;
8245 } else if (sharedOffset > mRsmpInFrames) {
8246 sharedAudioStartFrames =
8247 audio_utils::safe_sub_overflow(mRsmpInRear, (int32_t)mRsmpInFrames);
8248 }
8249
8250 mSharedAudioPackageName = sharedAudioPackageName;
8251 if (mSharedAudioPackageName.empty()) {
8252 resetAudioHistory_l();
8253 } else {
8254 mSharedAudioSessionId = sharedSessionId;
8255 mSharedAudioStartFrames = (int32_t)sharedAudioStartFrames;
8256 }
8257 return NO_ERROR;
8258 }
8259
resetAudioHistory_l()8260 void AudioFlinger::RecordThread::resetAudioHistory_l() {
8261 mSharedAudioSessionId = AUDIO_SESSION_NONE;
8262 mSharedAudioStartFrames = -1;
8263 mSharedAudioPackageName = "";
8264 }
8265
updateMetadata_l()8266 void AudioFlinger::RecordThread::updateMetadata_l()
8267 {
8268 if (!isStreamInitialized() || !mActiveTracks.readAndClearHasChanged()) {
8269 return; // nothing to do
8270 }
8271 StreamInHalInterface::SinkMetadata metadata;
8272 for (const sp<RecordTrack> &track : mActiveTracks) {
8273 // Do not forward PatchRecord metadata to audio HAL
8274 if (track->isPatchTrack()) {
8275 continue;
8276 }
8277 // No track is invalid as this is called after prepareTrack_l in the same critical section
8278 record_track_metadata_v7_t trackMetadata;
8279 trackMetadata.base = {
8280 .source = track->attributes().source,
8281 .gain = 1, // capture tracks do not have volumes
8282 };
8283 trackMetadata.channel_mask = track->channelMask(),
8284 strncpy(trackMetadata.tags, track->attributes().tags, AUDIO_ATTRIBUTES_TAGS_MAX_SIZE);
8285
8286 metadata.tracks.push_back(trackMetadata);
8287 }
8288 mInput->stream->updateSinkMetadata(metadata);
8289 }
8290
8291 // destroyTrack_l() must be called with ThreadBase::mLock held
destroyTrack_l(const sp<RecordTrack> & track)8292 void AudioFlinger::RecordThread::destroyTrack_l(const sp<RecordTrack>& track)
8293 {
8294 track->terminate();
8295 track->mState = TrackBase::STOPPED;
8296
8297 // active tracks are removed by threadLoop()
8298 if (mActiveTracks.indexOf(track) < 0) {
8299 removeTrack_l(track);
8300 }
8301 }
8302
removeTrack_l(const sp<RecordTrack> & track)8303 void AudioFlinger::RecordThread::removeTrack_l(const sp<RecordTrack>& track)
8304 {
8305 String8 result;
8306 track->appendDump(result, false /* active */);
8307 mLocalLog.log("removeTrack_l (%p) %s", track.get(), result.string());
8308
8309 mTracks.remove(track);
8310 // need anything related to effects here?
8311 if (track->isFastTrack()) {
8312 ALOG_ASSERT(!mFastTrackAvail);
8313 mFastTrackAvail = true;
8314 }
8315 }
8316
dumpInternals_l(int fd,const Vector<String16> & args __unused)8317 void AudioFlinger::RecordThread::dumpInternals_l(int fd, const Vector<String16>& args __unused)
8318 {
8319 AudioStreamIn *input = mInput;
8320 audio_input_flags_t flags = input != NULL ? input->flags : AUDIO_INPUT_FLAG_NONE;
8321 dprintf(fd, " AudioStreamIn: %p flags %#x (%s)\n",
8322 input, flags, toString(flags).c_str());
8323 dprintf(fd, " Frames read: %lld\n", (long long)mFramesRead);
8324 if (mActiveTracks.isEmpty()) {
8325 dprintf(fd, " No active record clients\n");
8326 }
8327
8328 if (input != nullptr) {
8329 dprintf(fd, " Hal stream dump:\n");
8330 (void)input->stream->dump(fd);
8331 }
8332
8333 dprintf(fd, " Fast capture thread: %s\n", hasFastCapture() ? "yes" : "no");
8334 dprintf(fd, " Fast track available: %s\n", mFastTrackAvail ? "yes" : "no");
8335
8336 // Make a non-atomic copy of fast capture dump state so it won't change underneath us
8337 // while we are dumping it. It may be inconsistent, but it won't mutate!
8338 // This is a large object so we place it on the heap.
8339 // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages.
8340 const std::unique_ptr<FastCaptureDumpState> copy =
8341 std::make_unique<FastCaptureDumpState>(mFastCaptureDumpState);
8342 copy->dump(fd);
8343 }
8344
dumpTracks_l(int fd,const Vector<String16> & args __unused)8345 void AudioFlinger::RecordThread::dumpTracks_l(int fd, const Vector<String16>& args __unused)
8346 {
8347 String8 result;
8348 size_t numtracks = mTracks.size();
8349 size_t numactive = mActiveTracks.size();
8350 size_t numactiveseen = 0;
8351 dprintf(fd, " %zu Tracks", numtracks);
8352 const char *prefix = " ";
8353 if (numtracks) {
8354 dprintf(fd, " of which %zu are active\n", numactive);
8355 result.append(prefix);
8356 mTracks[0]->appendDumpHeader(result);
8357 for (size_t i = 0; i < numtracks ; ++i) {
8358 sp<RecordTrack> track = mTracks[i];
8359 if (track != 0) {
8360 bool active = mActiveTracks.indexOf(track) >= 0;
8361 if (active) {
8362 numactiveseen++;
8363 }
8364 result.append(prefix);
8365 track->appendDump(result, active);
8366 }
8367 }
8368 } else {
8369 dprintf(fd, "\n");
8370 }
8371
8372 if (numactiveseen != numactive) {
8373 result.append(" The following tracks are in the active list but"
8374 " not in the track list\n");
8375 result.append(prefix);
8376 mActiveTracks[0]->appendDumpHeader(result);
8377 for (size_t i = 0; i < numactive; ++i) {
8378 sp<RecordTrack> track = mActiveTracks[i];
8379 if (mTracks.indexOf(track) < 0) {
8380 result.append(prefix);
8381 track->appendDump(result, true /* active */);
8382 }
8383 }
8384
8385 }
8386 write(fd, result.string(), result.size());
8387 }
8388
setRecordSilenced(audio_port_handle_t portId,bool silenced)8389 void AudioFlinger::RecordThread::setRecordSilenced(audio_port_handle_t portId, bool silenced)
8390 {
8391 Mutex::Autolock _l(mLock);
8392 for (size_t i = 0; i < mTracks.size() ; i++) {
8393 sp<RecordTrack> track = mTracks[i];
8394 if (track != 0 && track->portId() == portId) {
8395 track->setSilenced(silenced);
8396 }
8397 }
8398 }
8399
reset()8400 void AudioFlinger::RecordThread::ResamplerBufferProvider::reset()
8401 {
8402 sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
8403 RecordThread *recordThread = (RecordThread *) threadBase.get();
8404 mRsmpInUnrel = 0;
8405 const int32_t rear = recordThread->mRsmpInRear;
8406 ssize_t deltaFrames = 0;
8407 if (mRecordTrack->startFrames() >= 0) {
8408 int32_t startFrames = mRecordTrack->startFrames();
8409 // Accept a recent wraparound of mRsmpInRear
8410 if (startFrames <= rear) {
8411 deltaFrames = rear - startFrames;
8412 } else {
8413 deltaFrames = (int32_t)((int64_t)rear + UINT32_MAX + 1 - startFrames);
8414 }
8415 // start frame cannot be further in the past than start of resampling buffer
8416 if ((size_t) deltaFrames > recordThread->mRsmpInFrames) {
8417 deltaFrames = recordThread->mRsmpInFrames;
8418 }
8419 }
8420 mRsmpInFront = audio_utils::safe_sub_overflow(rear, static_cast<int32_t>(deltaFrames));
8421 }
8422
sync(size_t * framesAvailable,bool * hasOverrun)8423 void AudioFlinger::RecordThread::ResamplerBufferProvider::sync(
8424 size_t *framesAvailable, bool *hasOverrun)
8425 {
8426 sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
8427 RecordThread *recordThread = (RecordThread *) threadBase.get();
8428 const int32_t rear = recordThread->mRsmpInRear;
8429 const int32_t front = mRsmpInFront;
8430 const ssize_t filled = audio_utils::safe_sub_overflow(rear, front);
8431
8432 size_t framesIn;
8433 bool overrun = false;
8434 if (filled < 0) {
8435 // should not happen, but treat like a massive overrun and re-sync
8436 framesIn = 0;
8437 mRsmpInFront = rear;
8438 overrun = true;
8439 } else if ((size_t) filled <= recordThread->mRsmpInFrames) {
8440 framesIn = (size_t) filled;
8441 } else {
8442 // client is not keeping up with server, but give it latest data
8443 framesIn = recordThread->mRsmpInFrames;
8444 mRsmpInFront = /* front = */ audio_utils::safe_sub_overflow(
8445 rear, static_cast<int32_t>(framesIn));
8446 overrun = true;
8447 }
8448 if (framesAvailable != NULL) {
8449 *framesAvailable = framesIn;
8450 }
8451 if (hasOverrun != NULL) {
8452 *hasOverrun = overrun;
8453 }
8454 }
8455
8456 // AudioBufferProvider interface
getNextBuffer(AudioBufferProvider::Buffer * buffer)8457 status_t AudioFlinger::RecordThread::ResamplerBufferProvider::getNextBuffer(
8458 AudioBufferProvider::Buffer* buffer)
8459 {
8460 sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
8461 if (threadBase == 0) {
8462 buffer->frameCount = 0;
8463 buffer->raw = NULL;
8464 return NOT_ENOUGH_DATA;
8465 }
8466 RecordThread *recordThread = (RecordThread *) threadBase.get();
8467 int32_t rear = recordThread->mRsmpInRear;
8468 int32_t front = mRsmpInFront;
8469 ssize_t filled = audio_utils::safe_sub_overflow(rear, front);
8470 // FIXME should not be P2 (don't want to increase latency)
8471 // FIXME if client not keeping up, discard
8472 LOG_ALWAYS_FATAL_IF(!(0 <= filled && (size_t) filled <= recordThread->mRsmpInFrames));
8473 // 'filled' may be non-contiguous, so return only the first contiguous chunk
8474
8475 front &= recordThread->mRsmpInFramesP2 - 1;
8476 size_t part1 = recordThread->mRsmpInFramesP2 - front;
8477 if (part1 > (size_t) filled) {
8478 part1 = filled;
8479 }
8480 size_t ask = buffer->frameCount;
8481 ALOG_ASSERT(ask > 0);
8482 if (part1 > ask) {
8483 part1 = ask;
8484 }
8485 if (part1 == 0) {
8486 // out of data is fine since the resampler will return a short-count.
8487 buffer->raw = NULL;
8488 buffer->frameCount = 0;
8489 mRsmpInUnrel = 0;
8490 return NOT_ENOUGH_DATA;
8491 }
8492
8493 buffer->raw = (uint8_t*)recordThread->mRsmpInBuffer + front * recordThread->mFrameSize;
8494 buffer->frameCount = part1;
8495 mRsmpInUnrel = part1;
8496 return NO_ERROR;
8497 }
8498
8499 // AudioBufferProvider interface
releaseBuffer(AudioBufferProvider::Buffer * buffer)8500 void AudioFlinger::RecordThread::ResamplerBufferProvider::releaseBuffer(
8501 AudioBufferProvider::Buffer* buffer)
8502 {
8503 int32_t stepCount = static_cast<int32_t>(buffer->frameCount);
8504 if (stepCount == 0) {
8505 return;
8506 }
8507 ALOG_ASSERT(stepCount <= mRsmpInUnrel);
8508 mRsmpInUnrel -= stepCount;
8509 mRsmpInFront = audio_utils::safe_add_overflow(mRsmpInFront, stepCount);
8510 buffer->raw = NULL;
8511 buffer->frameCount = 0;
8512 }
8513
checkBtNrec()8514 void AudioFlinger::RecordThread::checkBtNrec()
8515 {
8516 Mutex::Autolock _l(mLock);
8517 checkBtNrec_l();
8518 }
8519
checkBtNrec_l()8520 void AudioFlinger::RecordThread::checkBtNrec_l()
8521 {
8522 // disable AEC and NS if the device is a BT SCO headset supporting those
8523 // pre processings
8524 bool suspend = audio_is_bluetooth_sco_device(inDeviceType()) &&
8525 mAudioFlinger->btNrecIsOff();
8526 if (mBtNrecSuspended.exchange(suspend) != suspend) {
8527 for (size_t i = 0; i < mEffectChains.size(); i++) {
8528 setEffectSuspended_l(FX_IID_AEC, suspend, mEffectChains[i]->sessionId());
8529 setEffectSuspended_l(FX_IID_NS, suspend, mEffectChains[i]->sessionId());
8530 }
8531 }
8532 }
8533
8534
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)8535 bool AudioFlinger::RecordThread::checkForNewParameter_l(const String8& keyValuePair,
8536 status_t& status)
8537 {
8538 bool reconfig = false;
8539
8540 status = NO_ERROR;
8541
8542 audio_format_t reqFormat = mFormat;
8543 uint32_t samplingRate = mSampleRate;
8544 // TODO this may change if we want to support capture from HDMI PCM multi channel (e.g on TVs).
8545 audio_channel_mask_t channelMask = audio_channel_in_mask_from_count(mChannelCount);
8546
8547 AudioParameter param = AudioParameter(keyValuePair);
8548 int value;
8549
8550 // scope for AutoPark extends to end of method
8551 AutoPark<FastCapture> park(mFastCapture);
8552
8553 // TODO Investigate when this code runs. Check with audio policy when a sample rate and
8554 // channel count change can be requested. Do we mandate the first client defines the
8555 // HAL sampling rate and channel count or do we allow changes on the fly?
8556 if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
8557 samplingRate = value;
8558 reconfig = true;
8559 }
8560 if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
8561 if (!audio_is_linear_pcm((audio_format_t) value)) {
8562 status = BAD_VALUE;
8563 } else {
8564 reqFormat = (audio_format_t) value;
8565 reconfig = true;
8566 }
8567 }
8568 if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
8569 audio_channel_mask_t mask = (audio_channel_mask_t) value;
8570 if (!audio_is_input_channel(mask) ||
8571 audio_channel_count_from_in_mask(mask) > FCC_LIMIT) {
8572 status = BAD_VALUE;
8573 } else {
8574 channelMask = mask;
8575 reconfig = true;
8576 }
8577 }
8578 if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
8579 // do not accept frame count changes if tracks are open as the track buffer
8580 // size depends on frame count and correct behavior would not be guaranteed
8581 // if frame count is changed after track creation
8582 if (mActiveTracks.size() > 0) {
8583 status = INVALID_OPERATION;
8584 } else {
8585 reconfig = true;
8586 }
8587 }
8588 if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
8589 LOG_FATAL("Should not set routing device in RecordThread");
8590 }
8591 if (param.getInt(String8(AudioParameter::keyInputSource), value) == NO_ERROR &&
8592 mAudioSource != (audio_source_t)value) {
8593 LOG_FATAL("Should not set audio source in RecordThread");
8594 }
8595
8596 if (status == NO_ERROR) {
8597 status = mInput->stream->setParameters(keyValuePair);
8598 if (status == INVALID_OPERATION) {
8599 inputStandBy();
8600 status = mInput->stream->setParameters(keyValuePair);
8601 }
8602 if (reconfig) {
8603 if (status == BAD_VALUE) {
8604 audio_config_base_t config = AUDIO_CONFIG_BASE_INITIALIZER;
8605 if (mInput->stream->getAudioProperties(&config) == OK &&
8606 audio_is_linear_pcm(config.format) && audio_is_linear_pcm(reqFormat) &&
8607 config.sample_rate <= (AUDIO_RESAMPLER_DOWN_RATIO_MAX * samplingRate) &&
8608 audio_channel_count_from_in_mask(config.channel_mask) <= FCC_LIMIT) {
8609 status = NO_ERROR;
8610 }
8611 }
8612 if (status == NO_ERROR) {
8613 readInputParameters_l();
8614 sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
8615 }
8616 }
8617 }
8618
8619 return reconfig;
8620 }
8621
getParameters(const String8 & keys)8622 String8 AudioFlinger::RecordThread::getParameters(const String8& keys)
8623 {
8624 Mutex::Autolock _l(mLock);
8625 if (initCheck() == NO_ERROR) {
8626 String8 out_s8;
8627 if (mInput->stream->getParameters(keys, &out_s8) == OK) {
8628 return out_s8;
8629 }
8630 }
8631 return String8();
8632 }
8633
ioConfigChanged(audio_io_config_event event,pid_t pid,audio_port_handle_t portId)8634 void AudioFlinger::RecordThread::ioConfigChanged(audio_io_config_event event, pid_t pid,
8635 audio_port_handle_t portId) {
8636 sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
8637
8638 desc->mIoHandle = mId;
8639
8640 switch (event) {
8641 case AUDIO_INPUT_OPENED:
8642 case AUDIO_INPUT_REGISTERED:
8643 case AUDIO_INPUT_CONFIG_CHANGED:
8644 desc->mPatch = mPatch;
8645 desc->mChannelMask = mChannelMask;
8646 desc->mSamplingRate = mSampleRate;
8647 desc->mFormat = mFormat;
8648 desc->mFrameCount = mFrameCount;
8649 desc->mFrameCountHAL = mFrameCount;
8650 desc->mLatency = 0;
8651 break;
8652 case AUDIO_CLIENT_STARTED:
8653 desc->mPatch = mPatch;
8654 desc->mPortId = portId;
8655 break;
8656 case AUDIO_INPUT_CLOSED:
8657 default:
8658 break;
8659 }
8660 mAudioFlinger->ioConfigChanged(event, desc, pid);
8661 }
8662
readInputParameters_l()8663 void AudioFlinger::RecordThread::readInputParameters_l()
8664 {
8665 status_t result = mInput->stream->getAudioProperties(&mSampleRate, &mChannelMask, &mHALFormat);
8666 LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving audio properties from HAL: %d", result);
8667 mFormat = mHALFormat;
8668 mChannelCount = audio_channel_count_from_in_mask(mChannelMask);
8669 if (audio_is_linear_pcm(mFormat)) {
8670 LOG_ALWAYS_FATAL_IF(mChannelCount > FCC_LIMIT, "HAL channel count %d > %d",
8671 mChannelCount, FCC_LIMIT);
8672 } else {
8673 // Can have more that FCC_LIMIT channels in encoded streams.
8674 ALOGI("HAL format %#x is not linear pcm", mFormat);
8675 }
8676 result = mInput->stream->getFrameSize(&mFrameSize);
8677 LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving frame size from HAL: %d", result);
8678 LOG_ALWAYS_FATAL_IF(mFrameSize <= 0, "Error frame size was %zu but must be greater than zero",
8679 mFrameSize);
8680 result = mInput->stream->getBufferSize(&mBufferSize);
8681 LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving buffer size from HAL: %d", result);
8682 mFrameCount = mBufferSize / mFrameSize;
8683 ALOGV("%p RecordThread params: mChannelCount=%u, mFormat=%#x, mFrameSize=%zu, "
8684 "mBufferSize=%zu, mFrameCount=%zu",
8685 this, mChannelCount, mFormat, mFrameSize, mBufferSize, mFrameCount);
8686
8687 // mRsmpInFrames must be 0 before calling resizeInputBuffer_l for the first time
8688 mRsmpInFrames = 0;
8689 resizeInputBuffer_l(0 /*maxSharedAudioHistoryMs*/);
8690
8691 // AudioRecord mSampleRate and mChannelCount are constant due to AudioRecord API constraints.
8692 // But if thread's mSampleRate or mChannelCount changes, how will that affect active tracks?
8693
8694 audio_input_flags_t flags = mInput->flags;
8695 mediametrics::LogItem item(mThreadMetrics.getMetricsId());
8696 item.set(AMEDIAMETRICS_PROP_EVENT, AMEDIAMETRICS_PROP_EVENT_VALUE_READPARAMETERS)
8697 .set(AMEDIAMETRICS_PROP_ENCODING, formatToString(mFormat).c_str())
8698 .set(AMEDIAMETRICS_PROP_FLAGS, toString(flags).c_str())
8699 .set(AMEDIAMETRICS_PROP_SAMPLERATE, (int32_t)mSampleRate)
8700 .set(AMEDIAMETRICS_PROP_CHANNELMASK, (int32_t)mChannelMask)
8701 .set(AMEDIAMETRICS_PROP_CHANNELCOUNT, (int32_t)mChannelCount)
8702 .set(AMEDIAMETRICS_PROP_FRAMECOUNT, (int32_t)mFrameCount)
8703 .record();
8704 }
8705
getInputFramesLost()8706 uint32_t AudioFlinger::RecordThread::getInputFramesLost()
8707 {
8708 Mutex::Autolock _l(mLock);
8709 uint32_t result;
8710 if (initCheck() == NO_ERROR && mInput->stream->getInputFramesLost(&result) == OK) {
8711 return result;
8712 }
8713 return 0;
8714 }
8715
sessionIds() const8716 KeyedVector<audio_session_t, bool> AudioFlinger::RecordThread::sessionIds() const
8717 {
8718 KeyedVector<audio_session_t, bool> ids;
8719 Mutex::Autolock _l(mLock);
8720 for (size_t j = 0; j < mTracks.size(); ++j) {
8721 sp<RecordThread::RecordTrack> track = mTracks[j];
8722 audio_session_t sessionId = track->sessionId();
8723 if (ids.indexOfKey(sessionId) < 0) {
8724 ids.add(sessionId, true);
8725 }
8726 }
8727 return ids;
8728 }
8729
clearInput()8730 AudioFlinger::AudioStreamIn* AudioFlinger::RecordThread::clearInput()
8731 {
8732 Mutex::Autolock _l(mLock);
8733 AudioStreamIn *input = mInput;
8734 mInput = NULL;
8735 return input;
8736 }
8737
8738 // this method must always be called either with ThreadBase mLock held or inside the thread loop
stream() const8739 sp<StreamHalInterface> AudioFlinger::RecordThread::stream() const
8740 {
8741 if (mInput == NULL) {
8742 return NULL;
8743 }
8744 return mInput->stream;
8745 }
8746
addEffectChain_l(const sp<EffectChain> & chain)8747 status_t AudioFlinger::RecordThread::addEffectChain_l(const sp<EffectChain>& chain)
8748 {
8749 ALOGV("addEffectChain_l() %p on thread %p", chain.get(), this);
8750 chain->setThread(this);
8751 chain->setInBuffer(NULL);
8752 chain->setOutBuffer(NULL);
8753
8754 checkSuspendOnAddEffectChain_l(chain);
8755
8756 // make sure enabled pre processing effects state is communicated to the HAL as we
8757 // just moved them to a new input stream.
8758 chain->syncHalEffectsState();
8759
8760 mEffectChains.add(chain);
8761
8762 return NO_ERROR;
8763 }
8764
removeEffectChain_l(const sp<EffectChain> & chain)8765 size_t AudioFlinger::RecordThread::removeEffectChain_l(const sp<EffectChain>& chain)
8766 {
8767 ALOGV("removeEffectChain_l() %p from thread %p", chain.get(), this);
8768
8769 for (size_t i = 0; i < mEffectChains.size(); i++) {
8770 if (chain == mEffectChains[i]) {
8771 mEffectChains.removeAt(i);
8772 break;
8773 }
8774 }
8775 return mEffectChains.size();
8776 }
8777
createAudioPatch_l(const struct audio_patch * patch,audio_patch_handle_t * handle)8778 status_t AudioFlinger::RecordThread::createAudioPatch_l(const struct audio_patch *patch,
8779 audio_patch_handle_t *handle)
8780 {
8781 status_t status = NO_ERROR;
8782
8783 // store new device and send to effects
8784 mInDeviceTypeAddr.mType = patch->sources[0].ext.device.type;
8785 mInDeviceTypeAddr.setAddress(patch->sources[0].ext.device.address);
8786 audio_port_handle_t deviceId = patch->sources[0].id;
8787 for (size_t i = 0; i < mEffectChains.size(); i++) {
8788 mEffectChains[i]->setInputDevice_l(inDeviceTypeAddr());
8789 }
8790
8791 checkBtNrec_l();
8792
8793 // store new source and send to effects
8794 if (mAudioSource != patch->sinks[0].ext.mix.usecase.source) {
8795 mAudioSource = patch->sinks[0].ext.mix.usecase.source;
8796 for (size_t i = 0; i < mEffectChains.size(); i++) {
8797 mEffectChains[i]->setAudioSource_l(mAudioSource);
8798 }
8799 }
8800
8801 if (mInput->audioHwDev->supportsAudioPatches()) {
8802 sp<DeviceHalInterface> hwDevice = mInput->audioHwDev->hwDevice();
8803 status = hwDevice->createAudioPatch(patch->num_sources,
8804 patch->sources,
8805 patch->num_sinks,
8806 patch->sinks,
8807 handle);
8808 } else {
8809 char *address;
8810 if (strcmp(patch->sources[0].ext.device.address, "") != 0) {
8811 address = audio_device_address_to_parameter(
8812 patch->sources[0].ext.device.type,
8813 patch->sources[0].ext.device.address);
8814 } else {
8815 address = (char *)calloc(1, 1);
8816 }
8817 AudioParameter param = AudioParameter(String8(address));
8818 free(address);
8819 param.addInt(String8(AudioParameter::keyRouting),
8820 (int)patch->sources[0].ext.device.type);
8821 param.addInt(String8(AudioParameter::keyInputSource),
8822 (int)patch->sinks[0].ext.mix.usecase.source);
8823 status = mInput->stream->setParameters(param.toString());
8824 *handle = AUDIO_PATCH_HANDLE_NONE;
8825 }
8826
8827 if ((mPatch.num_sources == 0) || (mPatch.sources[0].id != deviceId)) {
8828 sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
8829 mPatch = *patch;
8830 }
8831
8832 const std::string pathSourcesAsString = patchSourcesToString(patch);
8833 mThreadMetrics.logEndInterval();
8834 mThreadMetrics.logCreatePatch(pathSourcesAsString, /* outDevices */ {});
8835 mThreadMetrics.logBeginInterval();
8836 // also dispatch to active AudioRecords
8837 for (const auto &track : mActiveTracks) {
8838 track->logEndInterval();
8839 track->logBeginInterval(pathSourcesAsString);
8840 }
8841 return status;
8842 }
8843
releaseAudioPatch_l(const audio_patch_handle_t handle)8844 status_t AudioFlinger::RecordThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
8845 {
8846 status_t status = NO_ERROR;
8847
8848 mPatch = audio_patch{};
8849 mInDeviceTypeAddr.reset();
8850
8851 if (mInput->audioHwDev->supportsAudioPatches()) {
8852 sp<DeviceHalInterface> hwDevice = mInput->audioHwDev->hwDevice();
8853 status = hwDevice->releaseAudioPatch(handle);
8854 } else {
8855 AudioParameter param;
8856 param.addInt(String8(AudioParameter::keyRouting), 0);
8857 status = mInput->stream->setParameters(param.toString());
8858 }
8859 return status;
8860 }
8861
updateOutDevices(const DeviceDescriptorBaseVector & outDevices)8862 void AudioFlinger::RecordThread::updateOutDevices(const DeviceDescriptorBaseVector& outDevices)
8863 {
8864 Mutex::Autolock _l(mLock);
8865 mOutDevices = outDevices;
8866 mOutDeviceTypeAddrs = deviceTypeAddrsFromDescriptors(mOutDevices);
8867 for (size_t i = 0; i < mEffectChains.size(); i++) {
8868 mEffectChains[i]->setDevices_l(outDeviceTypeAddrs());
8869 }
8870 }
8871
getOldestFront_l()8872 int32_t AudioFlinger::RecordThread::getOldestFront_l()
8873 {
8874 if (mTracks.size() == 0) {
8875 return mRsmpInRear;
8876 }
8877 int32_t oldestFront = mRsmpInRear;
8878 int32_t maxFilled = 0;
8879 for (size_t i = 0; i < mTracks.size(); i++) {
8880 int32_t front = mTracks[i]->mResamplerBufferProvider->getFront();
8881 int32_t filled;
8882 (void)__builtin_sub_overflow(mRsmpInRear, front, &filled);
8883 if (filled > maxFilled) {
8884 oldestFront = front;
8885 maxFilled = filled;
8886 }
8887 }
8888 if (maxFilled > mRsmpInFrames) {
8889 (void)__builtin_sub_overflow(mRsmpInRear, mRsmpInFrames, &oldestFront);
8890 }
8891 return oldestFront;
8892 }
8893
updateFronts_l(int32_t offset)8894 void AudioFlinger::RecordThread::updateFronts_l(int32_t offset)
8895 {
8896 if (offset == 0) {
8897 return;
8898 }
8899 for (size_t i = 0; i < mTracks.size(); i++) {
8900 int32_t front = mTracks[i]->mResamplerBufferProvider->getFront();
8901 front = audio_utils::safe_sub_overflow(front, offset);
8902 mTracks[i]->mResamplerBufferProvider->setFront(front);
8903 }
8904 }
8905
resizeInputBuffer_l(int32_t maxSharedAudioHistoryMs)8906 void AudioFlinger::RecordThread::resizeInputBuffer_l(int32_t maxSharedAudioHistoryMs)
8907 {
8908 // This is the formula for calculating the temporary buffer size.
8909 // With 7 HAL buffers, we can guarantee ability to down-sample the input by ratio of 6:1 to
8910 // 1 full output buffer, regardless of the alignment of the available input.
8911 // The value is somewhat arbitrary, and could probably be even larger.
8912 // A larger value should allow more old data to be read after a track calls start(),
8913 // without increasing latency.
8914 //
8915 // Note this is independent of the maximum downsampling ratio permitted for capture.
8916 size_t minRsmpInFrames = mFrameCount * 7;
8917
8918 // maxSharedAudioHistoryMs != 0 indicates a request to possibly make some part of the audio
8919 // capture history available to another client using the same session ID:
8920 // dimension the resampler input buffer accordingly.
8921
8922 // Get oldest client read position: getOldestFront_l() must be called before altering
8923 // mRsmpInRear, or mRsmpInFrames
8924 int32_t previousFront = getOldestFront_l();
8925 size_t previousRsmpInFramesP2 = mRsmpInFramesP2;
8926 int32_t previousRear = mRsmpInRear;
8927 mRsmpInRear = 0;
8928
8929 ALOG_ASSERT(maxSharedAudioHistoryMs >= 0
8930 && maxSharedAudioHistoryMs <= AudioFlinger::kMaxSharedAudioHistoryMs,
8931 "resizeInputBuffer_l() called with invalid max shared history %d",
8932 maxSharedAudioHistoryMs);
8933 if (maxSharedAudioHistoryMs != 0) {
8934 // resizeInputBuffer_l should never be called with a non zero shared history if the
8935 // buffer was not already allocated
8936 ALOG_ASSERT(mRsmpInBuffer != nullptr && mRsmpInFrames != 0,
8937 "resizeInputBuffer_l() called with shared history and unallocated buffer");
8938 size_t rsmpInFrames = (size_t)maxSharedAudioHistoryMs * mSampleRate / 1000;
8939 // never reduce resampler input buffer size
8940 if (rsmpInFrames <= mRsmpInFrames) {
8941 return;
8942 }
8943 mRsmpInFrames = rsmpInFrames;
8944 }
8945 mMaxSharedAudioHistoryMs = maxSharedAudioHistoryMs;
8946 // Note: mRsmpInFrames is 0 when called with maxSharedAudioHistoryMs equals to 0 so it is always
8947 // initialized
8948 if (mRsmpInFrames < minRsmpInFrames) {
8949 mRsmpInFrames = minRsmpInFrames;
8950 }
8951 mRsmpInFramesP2 = roundup(mRsmpInFrames);
8952
8953 // TODO optimize audio capture buffer sizes ...
8954 // Here we calculate the size of the sliding buffer used as a source
8955 // for resampling. mRsmpInFramesP2 is currently roundup(mFrameCount * 7).
8956 // For current HAL frame counts, this is usually 2048 = 40 ms. It would
8957 // be better to have it derived from the pipe depth in the long term.
8958 // The current value is higher than necessary. However it should not add to latency.
8959
8960 // Over-allocate beyond mRsmpInFramesP2 to permit a HAL read past end of buffer
8961 mRsmpInFramesOA = mRsmpInFramesP2 + mFrameCount - 1;
8962
8963 void *rsmpInBuffer;
8964 (void)posix_memalign(&rsmpInBuffer, 32, mRsmpInFramesOA * mFrameSize);
8965 // if posix_memalign fails, will segv here.
8966 memset(rsmpInBuffer, 0, mRsmpInFramesOA * mFrameSize);
8967
8968 // Copy audio history if any from old buffer before freeing it
8969 if (previousRear != 0) {
8970 ALOG_ASSERT(mRsmpInBuffer != nullptr,
8971 "resizeInputBuffer_l() called with null buffer but frames already read from HAL");
8972
8973 ssize_t unread = audio_utils::safe_sub_overflow(previousRear, previousFront);
8974 previousFront &= previousRsmpInFramesP2 - 1;
8975 size_t part1 = previousRsmpInFramesP2 - previousFront;
8976 if (part1 > (size_t) unread) {
8977 part1 = unread;
8978 }
8979 if (part1 != 0) {
8980 memcpy(rsmpInBuffer, (const uint8_t*)mRsmpInBuffer + previousFront * mFrameSize,
8981 part1 * mFrameSize);
8982 mRsmpInRear = part1;
8983 part1 = unread - part1;
8984 if (part1 != 0) {
8985 memcpy((uint8_t*)rsmpInBuffer + mRsmpInRear * mFrameSize,
8986 (const uint8_t*)mRsmpInBuffer, part1 * mFrameSize);
8987 mRsmpInRear += part1;
8988 }
8989 }
8990 // Update front for all clients according to new rear
8991 updateFronts_l(audio_utils::safe_sub_overflow(previousRear, mRsmpInRear));
8992 } else {
8993 mRsmpInRear = 0;
8994 }
8995 free(mRsmpInBuffer);
8996 mRsmpInBuffer = rsmpInBuffer;
8997 }
8998
addPatchTrack(const sp<PatchRecord> & record)8999 void AudioFlinger::RecordThread::addPatchTrack(const sp<PatchRecord>& record)
9000 {
9001 Mutex::Autolock _l(mLock);
9002 mTracks.add(record);
9003 if (record->getSource()) {
9004 mSource = record->getSource();
9005 }
9006 }
9007
deletePatchTrack(const sp<PatchRecord> & record)9008 void AudioFlinger::RecordThread::deletePatchTrack(const sp<PatchRecord>& record)
9009 {
9010 Mutex::Autolock _l(mLock);
9011 if (mSource == record->getSource()) {
9012 mSource = mInput;
9013 }
9014 destroyTrack_l(record);
9015 }
9016
toAudioPortConfig(struct audio_port_config * config)9017 void AudioFlinger::RecordThread::toAudioPortConfig(struct audio_port_config *config)
9018 {
9019 ThreadBase::toAudioPortConfig(config);
9020 config->role = AUDIO_PORT_ROLE_SINK;
9021 config->ext.mix.hw_module = mInput->audioHwDev->handle();
9022 config->ext.mix.usecase.source = mAudioSource;
9023 if (mInput && mInput->flags != AUDIO_INPUT_FLAG_NONE) {
9024 config->config_mask |= AUDIO_PORT_CONFIG_FLAGS;
9025 config->flags.input = mInput->flags;
9026 }
9027 }
9028
9029 // ----------------------------------------------------------------------------
9030 // Mmap
9031 // ----------------------------------------------------------------------------
9032
MmapThreadHandle(const sp<MmapThread> & thread)9033 AudioFlinger::MmapThreadHandle::MmapThreadHandle(const sp<MmapThread>& thread)
9034 : mThread(thread)
9035 {
9036 assert(thread != 0); // thread must start non-null and stay non-null
9037 }
9038
~MmapThreadHandle()9039 AudioFlinger::MmapThreadHandle::~MmapThreadHandle()
9040 {
9041 mThread->disconnect();
9042 }
9043
createMmapBuffer(int32_t minSizeFrames,struct audio_mmap_buffer_info * info)9044 status_t AudioFlinger::MmapThreadHandle::createMmapBuffer(int32_t minSizeFrames,
9045 struct audio_mmap_buffer_info *info)
9046 {
9047 return mThread->createMmapBuffer(minSizeFrames, info);
9048 }
9049
getMmapPosition(struct audio_mmap_position * position)9050 status_t AudioFlinger::MmapThreadHandle::getMmapPosition(struct audio_mmap_position *position)
9051 {
9052 return mThread->getMmapPosition(position);
9053 }
9054
getExternalPosition(uint64_t * position,int64_t * timeNanos)9055 status_t AudioFlinger::MmapThreadHandle::getExternalPosition(uint64_t *position,
9056 int64_t *timeNanos) {
9057 return mThread->getExternalPosition(position, timeNanos);
9058 }
9059
start(const AudioClient & client,const audio_attributes_t * attr,audio_port_handle_t * handle)9060 status_t AudioFlinger::MmapThreadHandle::start(const AudioClient& client,
9061 const audio_attributes_t *attr, audio_port_handle_t *handle)
9062
9063 {
9064 return mThread->start(client, attr, handle);
9065 }
9066
stop(audio_port_handle_t handle)9067 status_t AudioFlinger::MmapThreadHandle::stop(audio_port_handle_t handle)
9068 {
9069 return mThread->stop(handle);
9070 }
9071
standby()9072 status_t AudioFlinger::MmapThreadHandle::standby()
9073 {
9074 return mThread->standby();
9075 }
9076
9077
MmapThread(const sp<AudioFlinger> & audioFlinger,audio_io_handle_t id,AudioHwDevice * hwDev,sp<StreamHalInterface> stream,bool systemReady,bool isOut)9078 AudioFlinger::MmapThread::MmapThread(
9079 const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
9080 AudioHwDevice *hwDev, sp<StreamHalInterface> stream, bool systemReady, bool isOut)
9081 : ThreadBase(audioFlinger, id, (isOut ? MMAP_PLAYBACK : MMAP_CAPTURE), systemReady, isOut),
9082 mSessionId(AUDIO_SESSION_NONE),
9083 mPortId(AUDIO_PORT_HANDLE_NONE),
9084 mHalStream(stream), mHalDevice(hwDev->hwDevice()), mAudioHwDev(hwDev),
9085 mActiveTracks(&this->mLocalLog),
9086 mHalVolFloat(-1.0f), // Initialize to illegal value so it always gets set properly later.
9087 mNoCallbackWarningCount(0)
9088 {
9089 mStandby = true;
9090 readHalParameters_l();
9091 }
9092
~MmapThread()9093 AudioFlinger::MmapThread::~MmapThread()
9094 {
9095 }
9096
onFirstRef()9097 void AudioFlinger::MmapThread::onFirstRef()
9098 {
9099 run(mThreadName, ANDROID_PRIORITY_URGENT_AUDIO);
9100 }
9101
disconnect()9102 void AudioFlinger::MmapThread::disconnect()
9103 {
9104 ActiveTracks<MmapTrack> activeTracks;
9105 {
9106 Mutex::Autolock _l(mLock);
9107 for (const sp<MmapTrack> &t : mActiveTracks) {
9108 activeTracks.add(t);
9109 }
9110 }
9111 for (const sp<MmapTrack> &t : activeTracks) {
9112 stop(t->portId());
9113 }
9114 // This will decrement references and may cause the destruction of this thread.
9115 if (isOutput()) {
9116 AudioSystem::releaseOutput(mPortId);
9117 } else {
9118 AudioSystem::releaseInput(mPortId);
9119 }
9120 }
9121
9122
configure(const audio_attributes_t * attr,audio_stream_type_t streamType __unused,audio_session_t sessionId,const sp<MmapStreamCallback> & callback,audio_port_handle_t deviceId,audio_port_handle_t portId)9123 void AudioFlinger::MmapThread::configure(const audio_attributes_t *attr,
9124 audio_stream_type_t streamType __unused,
9125 audio_session_t sessionId,
9126 const sp<MmapStreamCallback>& callback,
9127 audio_port_handle_t deviceId,
9128 audio_port_handle_t portId)
9129 {
9130 mAttr = *attr;
9131 mSessionId = sessionId;
9132 mCallback = callback;
9133 mDeviceId = deviceId;
9134 mPortId = portId;
9135 }
9136
createMmapBuffer(int32_t minSizeFrames,struct audio_mmap_buffer_info * info)9137 status_t AudioFlinger::MmapThread::createMmapBuffer(int32_t minSizeFrames,
9138 struct audio_mmap_buffer_info *info)
9139 {
9140 if (mHalStream == 0) {
9141 return NO_INIT;
9142 }
9143 mStandby = true;
9144 return mHalStream->createMmapBuffer(minSizeFrames, info);
9145 }
9146
getMmapPosition(struct audio_mmap_position * position)9147 status_t AudioFlinger::MmapThread::getMmapPosition(struct audio_mmap_position *position)
9148 {
9149 if (mHalStream == 0) {
9150 return NO_INIT;
9151 }
9152 return mHalStream->getMmapPosition(position);
9153 }
9154
exitStandby()9155 status_t AudioFlinger::MmapThread::exitStandby()
9156 {
9157 status_t ret = mHalStream->start();
9158 if (ret != NO_ERROR) {
9159 ALOGE("%s: error mHalStream->start() = %d for first track", __FUNCTION__, ret);
9160 return ret;
9161 }
9162 if (mStandby) {
9163 mThreadMetrics.logBeginInterval();
9164 mStandby = false;
9165 }
9166 return NO_ERROR;
9167 }
9168
start(const AudioClient & client,const audio_attributes_t * attr,audio_port_handle_t * handle)9169 status_t AudioFlinger::MmapThread::start(const AudioClient& client,
9170 const audio_attributes_t *attr,
9171 audio_port_handle_t *handle)
9172 {
9173 ALOGV("%s clientUid %d mStandby %d mPortId %d *handle %d", __FUNCTION__,
9174 client.attributionSource.uid, mStandby, mPortId, *handle);
9175 if (mHalStream == 0) {
9176 return NO_INIT;
9177 }
9178
9179 status_t ret;
9180
9181 if (*handle == mPortId) {
9182 // For the first track, reuse portId and session allocated when the stream was opened.
9183 ret = exitStandby();
9184 if (ret == NO_ERROR) {
9185 acquireWakeLock();
9186 }
9187 return ret;
9188 }
9189
9190 audio_port_handle_t portId = AUDIO_PORT_HANDLE_NONE;
9191
9192 audio_io_handle_t io = mId;
9193 if (isOutput()) {
9194 audio_config_t config = AUDIO_CONFIG_INITIALIZER;
9195 config.sample_rate = mSampleRate;
9196 config.channel_mask = mChannelMask;
9197 config.format = mFormat;
9198 audio_stream_type_t stream = streamType();
9199 audio_output_flags_t flags =
9200 (audio_output_flags_t)(AUDIO_OUTPUT_FLAG_MMAP_NOIRQ | AUDIO_OUTPUT_FLAG_DIRECT);
9201 audio_port_handle_t deviceId = mDeviceId;
9202 std::vector<audio_io_handle_t> secondaryOutputs;
9203 ret = AudioSystem::getOutputForAttr(&mAttr, &io,
9204 mSessionId,
9205 &stream,
9206 client.attributionSource,
9207 &config,
9208 flags,
9209 &deviceId,
9210 &portId,
9211 &secondaryOutputs);
9212 ALOGD_IF(!secondaryOutputs.empty(),
9213 "MmapThread::start does not support secondary outputs, ignoring them");
9214 } else {
9215 audio_config_base_t config;
9216 config.sample_rate = mSampleRate;
9217 config.channel_mask = mChannelMask;
9218 config.format = mFormat;
9219 audio_port_handle_t deviceId = mDeviceId;
9220 ret = AudioSystem::getInputForAttr(&mAttr, &io,
9221 RECORD_RIID_INVALID,
9222 mSessionId,
9223 client.attributionSource,
9224 &config,
9225 AUDIO_INPUT_FLAG_MMAP_NOIRQ,
9226 &deviceId,
9227 &portId);
9228 }
9229 // APM should not chose a different input or output stream for the same set of attributes
9230 // and audo configuration
9231 if (ret != NO_ERROR || io != mId) {
9232 ALOGE("%s: error getting output or input from APM (error %d, io %d expected io %d)",
9233 __FUNCTION__, ret, io, mId);
9234 return BAD_VALUE;
9235 }
9236
9237 if (isOutput()) {
9238 ret = AudioSystem::startOutput(portId);
9239 } else {
9240 ret = AudioSystem::startInput(portId);
9241 }
9242
9243 Mutex::Autolock _l(mLock);
9244 // abort if start is rejected by audio policy manager
9245 if (ret != NO_ERROR) {
9246 ALOGE("%s: error start rejected by AudioPolicyManager = %d", __FUNCTION__, ret);
9247 if (!mActiveTracks.isEmpty()) {
9248 mLock.unlock();
9249 if (isOutput()) {
9250 AudioSystem::releaseOutput(portId);
9251 } else {
9252 AudioSystem::releaseInput(portId);
9253 }
9254 mLock.lock();
9255 } else {
9256 mHalStream->stop();
9257 }
9258 return PERMISSION_DENIED;
9259 }
9260
9261 // Given that MmapThread::mAttr is mutable, should a MmapTrack have attributes ?
9262 sp<MmapTrack> track = new MmapTrack(this, attr == nullptr ? mAttr : *attr, mSampleRate, mFormat,
9263 mChannelMask, mSessionId, isOutput(),
9264 client.attributionSource,
9265 IPCThreadState::self()->getCallingPid(), portId);
9266
9267 if (isOutput()) {
9268 // force volume update when a new track is added
9269 mHalVolFloat = -1.0f;
9270 } else if (!track->isSilenced_l()) {
9271 for (const sp<MmapTrack> &t : mActiveTracks) {
9272 if (t->isSilenced_l() && t->uid() != client.attributionSource.uid)
9273 t->invalidate();
9274 }
9275 }
9276
9277
9278 mActiveTracks.add(track);
9279 sp<EffectChain> chain = getEffectChain_l(mSessionId);
9280 if (chain != 0) {
9281 chain->setStrategy(AudioSystem::getStrategyForStream(streamType()));
9282 chain->incTrackCnt();
9283 chain->incActiveTrackCnt();
9284 }
9285
9286 track->logBeginInterval(patchSinksToString(&mPatch)); // log to MediaMetrics
9287 *handle = portId;
9288 broadcast_l();
9289
9290 ALOGV("%s DONE handle %d stream %p", __FUNCTION__, *handle, mHalStream.get());
9291
9292 return NO_ERROR;
9293 }
9294
stop(audio_port_handle_t handle)9295 status_t AudioFlinger::MmapThread::stop(audio_port_handle_t handle)
9296 {
9297 ALOGV("%s handle %d", __FUNCTION__, handle);
9298
9299 if (mHalStream == 0) {
9300 return NO_INIT;
9301 }
9302
9303 if (handle == mPortId) {
9304 mHalStream->stop();
9305 releaseWakeLock();
9306 return NO_ERROR;
9307 }
9308
9309 Mutex::Autolock _l(mLock);
9310
9311 sp<MmapTrack> track;
9312 for (const sp<MmapTrack> &t : mActiveTracks) {
9313 if (handle == t->portId()) {
9314 track = t;
9315 break;
9316 }
9317 }
9318 if (track == 0) {
9319 return BAD_VALUE;
9320 }
9321
9322 mActiveTracks.remove(track);
9323
9324 mLock.unlock();
9325 if (isOutput()) {
9326 AudioSystem::stopOutput(track->portId());
9327 AudioSystem::releaseOutput(track->portId());
9328 } else {
9329 AudioSystem::stopInput(track->portId());
9330 AudioSystem::releaseInput(track->portId());
9331 }
9332 mLock.lock();
9333
9334 sp<EffectChain> chain = getEffectChain_l(track->sessionId());
9335 if (chain != 0) {
9336 chain->decActiveTrackCnt();
9337 chain->decTrackCnt();
9338 }
9339
9340 broadcast_l();
9341
9342 return NO_ERROR;
9343 }
9344
standby()9345 status_t AudioFlinger::MmapThread::standby()
9346 {
9347 ALOGV("%s", __FUNCTION__);
9348
9349 if (mHalStream == 0) {
9350 return NO_INIT;
9351 }
9352 if (!mActiveTracks.isEmpty()) {
9353 return INVALID_OPERATION;
9354 }
9355 mHalStream->standby();
9356 if (!mStandby) {
9357 mThreadMetrics.logEndInterval();
9358 mStandby = true;
9359 }
9360 releaseWakeLock();
9361 return NO_ERROR;
9362 }
9363
9364
readHalParameters_l()9365 void AudioFlinger::MmapThread::readHalParameters_l()
9366 {
9367 status_t result = mHalStream->getAudioProperties(&mSampleRate, &mChannelMask, &mHALFormat);
9368 LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving audio properties from HAL: %d", result);
9369 mFormat = mHALFormat;
9370 LOG_ALWAYS_FATAL_IF(!audio_is_linear_pcm(mFormat), "HAL format %#x is not linear pcm", mFormat);
9371 result = mHalStream->getFrameSize(&mFrameSize);
9372 LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving frame size from HAL: %d", result);
9373 LOG_ALWAYS_FATAL_IF(mFrameSize <= 0, "Error frame size was %zu but must be greater than zero",
9374 mFrameSize);
9375 result = mHalStream->getBufferSize(&mBufferSize);
9376 LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving buffer size from HAL: %d", result);
9377 mFrameCount = mBufferSize / mFrameSize;
9378
9379 // TODO: make a readHalParameters call?
9380 mediametrics::LogItem item(mThreadMetrics.getMetricsId());
9381 item.set(AMEDIAMETRICS_PROP_EVENT, AMEDIAMETRICS_PROP_EVENT_VALUE_READPARAMETERS)
9382 .set(AMEDIAMETRICS_PROP_ENCODING, formatToString(mFormat).c_str())
9383 .set(AMEDIAMETRICS_PROP_SAMPLERATE, (int32_t)mSampleRate)
9384 .set(AMEDIAMETRICS_PROP_CHANNELMASK, (int32_t)mChannelMask)
9385 .set(AMEDIAMETRICS_PROP_CHANNELCOUNT, (int32_t)mChannelCount)
9386 .set(AMEDIAMETRICS_PROP_FRAMECOUNT, (int32_t)mFrameCount)
9387 /*
9388 .set(AMEDIAMETRICS_PROP_FLAGS, toString(flags).c_str())
9389 .set(AMEDIAMETRICS_PROP_PREFIX_HAPTIC AMEDIAMETRICS_PROP_CHANNELMASK,
9390 (int32_t)mHapticChannelMask)
9391 .set(AMEDIAMETRICS_PROP_PREFIX_HAPTIC AMEDIAMETRICS_PROP_CHANNELCOUNT,
9392 (int32_t)mHapticChannelCount)
9393 */
9394 .set(AMEDIAMETRICS_PROP_PREFIX_HAL AMEDIAMETRICS_PROP_ENCODING,
9395 formatToString(mHALFormat).c_str())
9396 .set(AMEDIAMETRICS_PROP_PREFIX_HAL AMEDIAMETRICS_PROP_FRAMECOUNT,
9397 (int32_t)mFrameCount) // sic - added HAL
9398 .record();
9399 }
9400
threadLoop()9401 bool AudioFlinger::MmapThread::threadLoop()
9402 {
9403 checkSilentMode_l();
9404
9405 const String8 myName(String8::format("thread %p type %d TID %d", this, mType, gettid()));
9406
9407 while (!exitPending())
9408 {
9409 Vector< sp<EffectChain> > effectChains;
9410
9411 { // under Thread lock
9412 Mutex::Autolock _l(mLock);
9413
9414 if (mSignalPending) {
9415 // A signal was raised while we were unlocked
9416 mSignalPending = false;
9417 } else {
9418 if (mConfigEvents.isEmpty()) {
9419 // we're about to wait, flush the binder command buffer
9420 IPCThreadState::self()->flushCommands();
9421
9422 if (exitPending()) {
9423 break;
9424 }
9425
9426 // wait until we have something to do...
9427 ALOGV("%s going to sleep", myName.string());
9428 mWaitWorkCV.wait(mLock);
9429 ALOGV("%s waking up", myName.string());
9430
9431 checkSilentMode_l();
9432
9433 continue;
9434 }
9435 }
9436
9437 processConfigEvents_l();
9438
9439 processVolume_l();
9440
9441 checkInvalidTracks_l();
9442
9443 mActiveTracks.updatePowerState(this);
9444
9445 updateMetadata_l();
9446
9447 lockEffectChains_l(effectChains);
9448 } // release Thread lock
9449
9450 for (size_t i = 0; i < effectChains.size(); i ++) {
9451 effectChains[i]->process_l(); // Thread is not locked, but effect chain is locked
9452 }
9453
9454 // enable changes in effect chain, including moving to another thread.
9455 unlockEffectChains(effectChains);
9456 // Effect chains will be actually deleted here if they were removed from
9457 // mEffectChains list during mixing or effects processing
9458 }
9459
9460 threadLoop_exit();
9461
9462 if (!mStandby) {
9463 threadLoop_standby();
9464 mStandby = true;
9465 }
9466
9467 ALOGV("Thread %p type %d exiting", this, mType);
9468 return false;
9469 }
9470
9471 // checkForNewParameter_l() must be called with ThreadBase::mLock held
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)9472 bool AudioFlinger::MmapThread::checkForNewParameter_l(const String8& keyValuePair,
9473 status_t& status)
9474 {
9475 AudioParameter param = AudioParameter(keyValuePair);
9476 int value;
9477 bool sendToHal = true;
9478 if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
9479 LOG_FATAL("Should not happen set routing device in MmapThread");
9480 }
9481 if (sendToHal) {
9482 status = mHalStream->setParameters(keyValuePair);
9483 } else {
9484 status = NO_ERROR;
9485 }
9486
9487 return false;
9488 }
9489
getParameters(const String8 & keys)9490 String8 AudioFlinger::MmapThread::getParameters(const String8& keys)
9491 {
9492 Mutex::Autolock _l(mLock);
9493 String8 out_s8;
9494 if (initCheck() == NO_ERROR && mHalStream->getParameters(keys, &out_s8) == OK) {
9495 return out_s8;
9496 }
9497 return String8();
9498 }
9499
ioConfigChanged(audio_io_config_event event,pid_t pid,audio_port_handle_t portId __unused)9500 void AudioFlinger::MmapThread::ioConfigChanged(audio_io_config_event event, pid_t pid,
9501 audio_port_handle_t portId __unused) {
9502 sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
9503
9504 desc->mIoHandle = mId;
9505
9506 switch (event) {
9507 case AUDIO_INPUT_OPENED:
9508 case AUDIO_INPUT_REGISTERED:
9509 case AUDIO_INPUT_CONFIG_CHANGED:
9510 case AUDIO_OUTPUT_OPENED:
9511 case AUDIO_OUTPUT_REGISTERED:
9512 case AUDIO_OUTPUT_CONFIG_CHANGED:
9513 desc->mPatch = mPatch;
9514 desc->mChannelMask = mChannelMask;
9515 desc->mSamplingRate = mSampleRate;
9516 desc->mFormat = mFormat;
9517 desc->mFrameCount = mFrameCount;
9518 desc->mFrameCountHAL = mFrameCount;
9519 desc->mLatency = 0;
9520 break;
9521
9522 case AUDIO_INPUT_CLOSED:
9523 case AUDIO_OUTPUT_CLOSED:
9524 default:
9525 break;
9526 }
9527 mAudioFlinger->ioConfigChanged(event, desc, pid);
9528 }
9529
createAudioPatch_l(const struct audio_patch * patch,audio_patch_handle_t * handle)9530 status_t AudioFlinger::MmapThread::createAudioPatch_l(const struct audio_patch *patch,
9531 audio_patch_handle_t *handle)
9532 {
9533 status_t status = NO_ERROR;
9534
9535 // store new device and send to effects
9536 audio_devices_t type = AUDIO_DEVICE_NONE;
9537 audio_port_handle_t deviceId;
9538 AudioDeviceTypeAddrVector sinkDeviceTypeAddrs;
9539 AudioDeviceTypeAddr sourceDeviceTypeAddr;
9540 uint32_t numDevices = 0;
9541 if (isOutput()) {
9542 for (unsigned int i = 0; i < patch->num_sinks; i++) {
9543 LOG_ALWAYS_FATAL_IF(popcount(patch->sinks[i].ext.device.type) > 1
9544 && !mAudioHwDev->supportsAudioPatches(),
9545 "Enumerated device type(%#x) must not be used "
9546 "as it does not support audio patches",
9547 patch->sinks[i].ext.device.type);
9548 type = static_cast<audio_devices_t>(type | patch->sinks[i].ext.device.type);
9549 sinkDeviceTypeAddrs.push_back(AudioDeviceTypeAddr(patch->sinks[i].ext.device.type,
9550 patch->sinks[i].ext.device.address));
9551 }
9552 deviceId = patch->sinks[0].id;
9553 numDevices = mPatch.num_sinks;
9554 } else {
9555 type = patch->sources[0].ext.device.type;
9556 deviceId = patch->sources[0].id;
9557 numDevices = mPatch.num_sources;
9558 sourceDeviceTypeAddr.mType = patch->sources[0].ext.device.type;
9559 sourceDeviceTypeAddr.setAddress(patch->sources[0].ext.device.address);
9560 }
9561
9562 for (size_t i = 0; i < mEffectChains.size(); i++) {
9563 if (isOutput()) {
9564 mEffectChains[i]->setDevices_l(sinkDeviceTypeAddrs);
9565 } else {
9566 mEffectChains[i]->setInputDevice_l(sourceDeviceTypeAddr);
9567 }
9568 }
9569
9570 if (!isOutput()) {
9571 // store new source and send to effects
9572 if (mAudioSource != patch->sinks[0].ext.mix.usecase.source) {
9573 mAudioSource = patch->sinks[0].ext.mix.usecase.source;
9574 for (size_t i = 0; i < mEffectChains.size(); i++) {
9575 mEffectChains[i]->setAudioSource_l(mAudioSource);
9576 }
9577 }
9578 }
9579
9580 if (mAudioHwDev->supportsAudioPatches()) {
9581 status = mHalDevice->createAudioPatch(patch->num_sources,
9582 patch->sources,
9583 patch->num_sinks,
9584 patch->sinks,
9585 handle);
9586 } else {
9587 char *address;
9588 if (strcmp(patch->sinks[0].ext.device.address, "") != 0) {
9589 //FIXME: we only support address on first sink with HAL version < 3.0
9590 address = audio_device_address_to_parameter(
9591 patch->sinks[0].ext.device.type,
9592 patch->sinks[0].ext.device.address);
9593 } else {
9594 address = (char *)calloc(1, 1);
9595 }
9596 AudioParameter param = AudioParameter(String8(address));
9597 free(address);
9598 param.addInt(String8(AudioParameter::keyRouting), (int)type);
9599 if (!isOutput()) {
9600 param.addInt(String8(AudioParameter::keyInputSource),
9601 (int)patch->sinks[0].ext.mix.usecase.source);
9602 }
9603 status = mHalStream->setParameters(param.toString());
9604 *handle = AUDIO_PATCH_HANDLE_NONE;
9605 }
9606
9607 if (numDevices == 0 || mDeviceId != deviceId) {
9608 if (isOutput()) {
9609 sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
9610 mOutDeviceTypeAddrs = sinkDeviceTypeAddrs;
9611 checkSilentMode_l();
9612 } else {
9613 sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
9614 mInDeviceTypeAddr = sourceDeviceTypeAddr;
9615 }
9616 sp<MmapStreamCallback> callback = mCallback.promote();
9617 if (mDeviceId != deviceId && callback != 0) {
9618 mLock.unlock();
9619 callback->onRoutingChanged(deviceId);
9620 mLock.lock();
9621 }
9622 mPatch = *patch;
9623 mDeviceId = deviceId;
9624 }
9625 return status;
9626 }
9627
releaseAudioPatch_l(const audio_patch_handle_t handle)9628 status_t AudioFlinger::MmapThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
9629 {
9630 status_t status = NO_ERROR;
9631
9632 mPatch = audio_patch{};
9633 mOutDeviceTypeAddrs.clear();
9634 mInDeviceTypeAddr.reset();
9635
9636 bool supportsAudioPatches = mHalDevice->supportsAudioPatches(&supportsAudioPatches) == OK ?
9637 supportsAudioPatches : false;
9638
9639 if (supportsAudioPatches) {
9640 status = mHalDevice->releaseAudioPatch(handle);
9641 } else {
9642 AudioParameter param;
9643 param.addInt(String8(AudioParameter::keyRouting), 0);
9644 status = mHalStream->setParameters(param.toString());
9645 }
9646 return status;
9647 }
9648
toAudioPortConfig(struct audio_port_config * config)9649 void AudioFlinger::MmapThread::toAudioPortConfig(struct audio_port_config *config)
9650 {
9651 ThreadBase::toAudioPortConfig(config);
9652 if (isOutput()) {
9653 config->role = AUDIO_PORT_ROLE_SOURCE;
9654 config->ext.mix.hw_module = mAudioHwDev->handle();
9655 config->ext.mix.usecase.stream = AUDIO_STREAM_DEFAULT;
9656 } else {
9657 config->role = AUDIO_PORT_ROLE_SINK;
9658 config->ext.mix.hw_module = mAudioHwDev->handle();
9659 config->ext.mix.usecase.source = mAudioSource;
9660 }
9661 }
9662
addEffectChain_l(const sp<EffectChain> & chain)9663 status_t AudioFlinger::MmapThread::addEffectChain_l(const sp<EffectChain>& chain)
9664 {
9665 audio_session_t session = chain->sessionId();
9666
9667 ALOGV("addEffectChain_l() %p on thread %p for session %d", chain.get(), this, session);
9668 // Attach all tracks with same session ID to this chain.
9669 // indicate all active tracks in the chain
9670 for (const sp<MmapTrack> &track : mActiveTracks) {
9671 if (session == track->sessionId()) {
9672 chain->incTrackCnt();
9673 chain->incActiveTrackCnt();
9674 }
9675 }
9676
9677 chain->setThread(this);
9678 chain->setInBuffer(nullptr);
9679 chain->setOutBuffer(nullptr);
9680 chain->syncHalEffectsState();
9681
9682 mEffectChains.add(chain);
9683 checkSuspendOnAddEffectChain_l(chain);
9684 return NO_ERROR;
9685 }
9686
removeEffectChain_l(const sp<EffectChain> & chain)9687 size_t AudioFlinger::MmapThread::removeEffectChain_l(const sp<EffectChain>& chain)
9688 {
9689 audio_session_t session = chain->sessionId();
9690
9691 ALOGV("removeEffectChain_l() %p from thread %p for session %d", chain.get(), this, session);
9692
9693 for (size_t i = 0; i < mEffectChains.size(); i++) {
9694 if (chain == mEffectChains[i]) {
9695 mEffectChains.removeAt(i);
9696 // detach all active tracks from the chain
9697 // detach all tracks with same session ID from this chain
9698 for (const sp<MmapTrack> &track : mActiveTracks) {
9699 if (session == track->sessionId()) {
9700 chain->decActiveTrackCnt();
9701 chain->decTrackCnt();
9702 }
9703 }
9704 break;
9705 }
9706 }
9707 return mEffectChains.size();
9708 }
9709
threadLoop_standby()9710 void AudioFlinger::MmapThread::threadLoop_standby()
9711 {
9712 mHalStream->standby();
9713 }
9714
threadLoop_exit()9715 void AudioFlinger::MmapThread::threadLoop_exit()
9716 {
9717 // Do not call callback->onTearDown() because it is redundant for thread exit
9718 // and because it can cause a recursive mutex lock on stop().
9719 }
9720
setSyncEvent(const sp<SyncEvent> & event __unused)9721 status_t AudioFlinger::MmapThread::setSyncEvent(const sp<SyncEvent>& event __unused)
9722 {
9723 return BAD_VALUE;
9724 }
9725
isValidSyncEvent(const sp<SyncEvent> & event __unused) const9726 bool AudioFlinger::MmapThread::isValidSyncEvent(const sp<SyncEvent>& event __unused) const
9727 {
9728 return false;
9729 }
9730
checkEffectCompatibility_l(const effect_descriptor_t * desc,audio_session_t sessionId)9731 status_t AudioFlinger::MmapThread::checkEffectCompatibility_l(
9732 const effect_descriptor_t *desc, audio_session_t sessionId)
9733 {
9734 // No global effect sessions on mmap threads
9735 if (audio_is_global_session(sessionId)) {
9736 ALOGW("checkEffectCompatibility_l(): global effect %s on MMAP thread %s",
9737 desc->name, mThreadName);
9738 return BAD_VALUE;
9739 }
9740
9741 if (!isOutput() && ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_PRE_PROC)) {
9742 ALOGW("checkEffectCompatibility_l(): non pre processing effect %s on capture mmap thread",
9743 desc->name);
9744 return BAD_VALUE;
9745 }
9746 if (isOutput() && ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC)) {
9747 ALOGW("checkEffectCompatibility_l(): pre processing effect %s created on playback mmap "
9748 "thread", desc->name);
9749 return BAD_VALUE;
9750 }
9751
9752 // Only allow effects without processing load or latency
9753 if ((desc->flags & EFFECT_FLAG_NO_PROCESS_MASK) != EFFECT_FLAG_NO_PROCESS) {
9754 return BAD_VALUE;
9755 }
9756
9757 if (EffectModule::isHapticGenerator(&desc->type)) {
9758 ALOGE("%s(): HapticGenerator is not supported for MmapThread", __func__);
9759 return BAD_VALUE;
9760 }
9761
9762 return NO_ERROR;
9763 }
9764
checkInvalidTracks_l()9765 void AudioFlinger::MmapThread::checkInvalidTracks_l()
9766 {
9767 for (const sp<MmapTrack> &track : mActiveTracks) {
9768 if (track->isInvalid()) {
9769 sp<MmapStreamCallback> callback = mCallback.promote();
9770 if (callback != 0) {
9771 mLock.unlock();
9772 callback->onTearDown(track->portId());
9773 mLock.lock();
9774 } else if (mNoCallbackWarningCount < kMaxNoCallbackWarnings) {
9775 ALOGW("Could not notify MMAP stream tear down: no onTearDown callback!");
9776 mNoCallbackWarningCount++;
9777 }
9778 }
9779 }
9780 }
9781
dumpInternals_l(int fd,const Vector<String16> & args __unused)9782 void AudioFlinger::MmapThread::dumpInternals_l(int fd, const Vector<String16>& args __unused)
9783 {
9784 dprintf(fd, " Attributes: content type %d usage %d source %d\n",
9785 mAttr.content_type, mAttr.usage, mAttr.source);
9786 dprintf(fd, " Session: %d port Id: %d\n", mSessionId, mPortId);
9787 if (mActiveTracks.isEmpty()) {
9788 dprintf(fd, " No active clients\n");
9789 }
9790 }
9791
dumpTracks_l(int fd,const Vector<String16> & args __unused)9792 void AudioFlinger::MmapThread::dumpTracks_l(int fd, const Vector<String16>& args __unused)
9793 {
9794 String8 result;
9795 size_t numtracks = mActiveTracks.size();
9796 dprintf(fd, " %zu Tracks\n", numtracks);
9797 const char *prefix = " ";
9798 if (numtracks) {
9799 result.append(prefix);
9800 mActiveTracks[0]->appendDumpHeader(result);
9801 for (size_t i = 0; i < numtracks ; ++i) {
9802 sp<MmapTrack> track = mActiveTracks[i];
9803 result.append(prefix);
9804 track->appendDump(result, true /* active */);
9805 }
9806 } else {
9807 dprintf(fd, "\n");
9808 }
9809 write(fd, result.string(), result.size());
9810 }
9811
MmapPlaybackThread(const sp<AudioFlinger> & audioFlinger,audio_io_handle_t id,AudioHwDevice * hwDev,AudioStreamOut * output,bool systemReady)9812 AudioFlinger::MmapPlaybackThread::MmapPlaybackThread(
9813 const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
9814 AudioHwDevice *hwDev, AudioStreamOut *output, bool systemReady)
9815 : MmapThread(audioFlinger, id, hwDev, output->stream, systemReady, true /* isOut */),
9816 mStreamType(AUDIO_STREAM_MUSIC),
9817 mStreamVolume(1.0),
9818 mStreamMute(false),
9819 mOutput(output)
9820 {
9821 snprintf(mThreadName, kThreadNameLength, "AudioMmapOut_%X", id);
9822 mChannelCount = audio_channel_count_from_out_mask(mChannelMask);
9823 mMasterVolume = audioFlinger->masterVolume_l();
9824 mMasterMute = audioFlinger->masterMute_l();
9825 if (mAudioHwDev) {
9826 if (mAudioHwDev->canSetMasterVolume()) {
9827 mMasterVolume = 1.0;
9828 }
9829
9830 if (mAudioHwDev->canSetMasterMute()) {
9831 mMasterMute = false;
9832 }
9833 }
9834 }
9835
configure(const audio_attributes_t * attr,audio_stream_type_t streamType,audio_session_t sessionId,const sp<MmapStreamCallback> & callback,audio_port_handle_t deviceId,audio_port_handle_t portId)9836 void AudioFlinger::MmapPlaybackThread::configure(const audio_attributes_t *attr,
9837 audio_stream_type_t streamType,
9838 audio_session_t sessionId,
9839 const sp<MmapStreamCallback>& callback,
9840 audio_port_handle_t deviceId,
9841 audio_port_handle_t portId)
9842 {
9843 MmapThread::configure(attr, streamType, sessionId, callback, deviceId, portId);
9844 mStreamType = streamType;
9845 }
9846
clearOutput()9847 AudioStreamOut* AudioFlinger::MmapPlaybackThread::clearOutput()
9848 {
9849 Mutex::Autolock _l(mLock);
9850 AudioStreamOut *output = mOutput;
9851 mOutput = NULL;
9852 return output;
9853 }
9854
setMasterVolume(float value)9855 void AudioFlinger::MmapPlaybackThread::setMasterVolume(float value)
9856 {
9857 Mutex::Autolock _l(mLock);
9858 // Don't apply master volume in SW if our HAL can do it for us.
9859 if (mAudioHwDev &&
9860 mAudioHwDev->canSetMasterVolume()) {
9861 mMasterVolume = 1.0;
9862 } else {
9863 mMasterVolume = value;
9864 }
9865 }
9866
setMasterMute(bool muted)9867 void AudioFlinger::MmapPlaybackThread::setMasterMute(bool muted)
9868 {
9869 Mutex::Autolock _l(mLock);
9870 // Don't apply master mute in SW if our HAL can do it for us.
9871 if (mAudioHwDev && mAudioHwDev->canSetMasterMute()) {
9872 mMasterMute = false;
9873 } else {
9874 mMasterMute = muted;
9875 }
9876 }
9877
setStreamVolume(audio_stream_type_t stream,float value)9878 void AudioFlinger::MmapPlaybackThread::setStreamVolume(audio_stream_type_t stream, float value)
9879 {
9880 Mutex::Autolock _l(mLock);
9881 if (stream == mStreamType) {
9882 mStreamVolume = value;
9883 broadcast_l();
9884 }
9885 }
9886
streamVolume(audio_stream_type_t stream) const9887 float AudioFlinger::MmapPlaybackThread::streamVolume(audio_stream_type_t stream) const
9888 {
9889 Mutex::Autolock _l(mLock);
9890 if (stream == mStreamType) {
9891 return mStreamVolume;
9892 }
9893 return 0.0f;
9894 }
9895
setStreamMute(audio_stream_type_t stream,bool muted)9896 void AudioFlinger::MmapPlaybackThread::setStreamMute(audio_stream_type_t stream, bool muted)
9897 {
9898 Mutex::Autolock _l(mLock);
9899 if (stream == mStreamType) {
9900 mStreamMute= muted;
9901 broadcast_l();
9902 }
9903 }
9904
invalidateTracks(audio_stream_type_t streamType)9905 void AudioFlinger::MmapPlaybackThread::invalidateTracks(audio_stream_type_t streamType)
9906 {
9907 Mutex::Autolock _l(mLock);
9908 if (streamType == mStreamType) {
9909 for (const sp<MmapTrack> &track : mActiveTracks) {
9910 track->invalidate();
9911 }
9912 broadcast_l();
9913 }
9914 }
9915
processVolume_l()9916 void AudioFlinger::MmapPlaybackThread::processVolume_l()
9917 {
9918 float volume;
9919
9920 if (mMasterMute || mStreamMute) {
9921 volume = 0;
9922 } else {
9923 volume = mMasterVolume * mStreamVolume;
9924 }
9925
9926 if (volume != mHalVolFloat) {
9927
9928 // Convert volumes from float to 8.24
9929 uint32_t vol = (uint32_t)(volume * (1 << 24));
9930
9931 // Delegate volume control to effect in track effect chain if needed
9932 // only one effect chain can be present on DirectOutputThread, so if
9933 // there is one, the track is connected to it
9934 if (!mEffectChains.isEmpty()) {
9935 mEffectChains[0]->setVolume_l(&vol, &vol);
9936 volume = (float)vol / (1 << 24);
9937 }
9938 // Try to use HW volume control and fall back to SW control if not implemented
9939 if (mOutput->stream->setVolume(volume, volume) == NO_ERROR) {
9940 mHalVolFloat = volume; // HW volume control worked, so update value.
9941 mNoCallbackWarningCount = 0;
9942 } else {
9943 sp<MmapStreamCallback> callback = mCallback.promote();
9944 if (callback != 0) {
9945 int channelCount;
9946 if (isOutput()) {
9947 channelCount = audio_channel_count_from_out_mask(mChannelMask);
9948 } else {
9949 channelCount = audio_channel_count_from_in_mask(mChannelMask);
9950 }
9951 Vector<float> values;
9952 for (int i = 0; i < channelCount; i++) {
9953 values.add(volume);
9954 }
9955 mHalVolFloat = volume; // SW volume control worked, so update value.
9956 mNoCallbackWarningCount = 0;
9957 mLock.unlock();
9958 callback->onVolumeChanged(mChannelMask, values);
9959 mLock.lock();
9960 } else {
9961 if (mNoCallbackWarningCount < kMaxNoCallbackWarnings) {
9962 ALOGW("Could not set MMAP stream volume: no volume callback!");
9963 mNoCallbackWarningCount++;
9964 }
9965 }
9966 }
9967 for (const sp<MmapTrack> &track : mActiveTracks) {
9968 track->setMetadataHasChanged();
9969 }
9970 }
9971 }
9972
updateMetadata_l()9973 void AudioFlinger::MmapPlaybackThread::updateMetadata_l()
9974 {
9975 if (!isStreamInitialized() || !mActiveTracks.readAndClearHasChanged()) {
9976 return; // nothing to do
9977 }
9978 StreamOutHalInterface::SourceMetadata metadata;
9979 for (const sp<MmapTrack> &track : mActiveTracks) {
9980 // No track is invalid as this is called after prepareTrack_l in the same critical section
9981 playback_track_metadata_v7_t trackMetadata;
9982 trackMetadata.base = {
9983 .usage = track->attributes().usage,
9984 .content_type = track->attributes().content_type,
9985 .gain = mHalVolFloat, // TODO: propagate from aaudio pre-mix volume
9986 };
9987 trackMetadata.channel_mask = track->channelMask(),
9988 strncpy(trackMetadata.tags, track->attributes().tags, AUDIO_ATTRIBUTES_TAGS_MAX_SIZE);
9989 metadata.tracks.push_back(trackMetadata);
9990 }
9991 mOutput->stream->updateSourceMetadata(metadata);
9992 }
9993
checkSilentMode_l()9994 void AudioFlinger::MmapPlaybackThread::checkSilentMode_l()
9995 {
9996 if (!mMasterMute) {
9997 char value[PROPERTY_VALUE_MAX];
9998 if (property_get("ro.audio.silent", value, "0") > 0) {
9999 char *endptr;
10000 unsigned long ul = strtoul(value, &endptr, 0);
10001 if (*endptr == '\0' && ul != 0) {
10002 ALOGD("Silence is golden");
10003 // The setprop command will not allow a property to be changed after
10004 // the first time it is set, so we don't have to worry about un-muting.
10005 setMasterMute_l(true);
10006 }
10007 }
10008 }
10009 }
10010
toAudioPortConfig(struct audio_port_config * config)10011 void AudioFlinger::MmapPlaybackThread::toAudioPortConfig(struct audio_port_config *config)
10012 {
10013 MmapThread::toAudioPortConfig(config);
10014 if (mOutput && mOutput->flags != AUDIO_OUTPUT_FLAG_NONE) {
10015 config->config_mask |= AUDIO_PORT_CONFIG_FLAGS;
10016 config->flags.output = mOutput->flags;
10017 }
10018 }
10019
getExternalPosition(uint64_t * position,int64_t * timeNanos)10020 status_t AudioFlinger::MmapPlaybackThread::getExternalPosition(uint64_t *position,
10021 int64_t *timeNanos)
10022 {
10023 if (mOutput == nullptr) {
10024 return NO_INIT;
10025 }
10026 struct timespec timestamp;
10027 status_t status = mOutput->getPresentationPosition(position, ×tamp);
10028 if (status == NO_ERROR) {
10029 *timeNanos = timestamp.tv_sec * NANOS_PER_SECOND + timestamp.tv_nsec;
10030 }
10031 return status;
10032 }
10033
dumpInternals_l(int fd,const Vector<String16> & args)10034 void AudioFlinger::MmapPlaybackThread::dumpInternals_l(int fd, const Vector<String16>& args)
10035 {
10036 MmapThread::dumpInternals_l(fd, args);
10037
10038 dprintf(fd, " Stream type: %d Stream volume: %f HAL volume: %f Stream mute %d\n",
10039 mStreamType, mStreamVolume, mHalVolFloat, mStreamMute);
10040 dprintf(fd, " Master volume: %f Master mute %d\n", mMasterVolume, mMasterMute);
10041 }
10042
MmapCaptureThread(const sp<AudioFlinger> & audioFlinger,audio_io_handle_t id,AudioHwDevice * hwDev,AudioStreamIn * input,bool systemReady)10043 AudioFlinger::MmapCaptureThread::MmapCaptureThread(
10044 const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
10045 AudioHwDevice *hwDev, AudioStreamIn *input, bool systemReady)
10046 : MmapThread(audioFlinger, id, hwDev, input->stream, systemReady, false /* isOut */),
10047 mInput(input)
10048 {
10049 snprintf(mThreadName, kThreadNameLength, "AudioMmapIn_%X", id);
10050 mChannelCount = audio_channel_count_from_in_mask(mChannelMask);
10051 }
10052
exitStandby()10053 status_t AudioFlinger::MmapCaptureThread::exitStandby()
10054 {
10055 {
10056 // mInput might have been cleared by clearInput()
10057 Mutex::Autolock _l(mLock);
10058 if (mInput != nullptr && mInput->stream != nullptr) {
10059 mInput->stream->setGain(1.0f);
10060 }
10061 }
10062 return MmapThread::exitStandby();
10063 }
10064
clearInput()10065 AudioFlinger::AudioStreamIn* AudioFlinger::MmapCaptureThread::clearInput()
10066 {
10067 Mutex::Autolock _l(mLock);
10068 AudioStreamIn *input = mInput;
10069 mInput = NULL;
10070 return input;
10071 }
10072
10073
processVolume_l()10074 void AudioFlinger::MmapCaptureThread::processVolume_l()
10075 {
10076 bool changed = false;
10077 bool silenced = false;
10078
10079 sp<MmapStreamCallback> callback = mCallback.promote();
10080 if (callback == 0) {
10081 if (mNoCallbackWarningCount < kMaxNoCallbackWarnings) {
10082 ALOGW("Could not set MMAP stream silenced: no onStreamSilenced callback!");
10083 mNoCallbackWarningCount++;
10084 }
10085 }
10086
10087 // After a change occurred in track silenced state, mute capture in audio DSP if at least one
10088 // track is silenced and unmute otherwise
10089 for (size_t i = 0; i < mActiveTracks.size() && !silenced; i++) {
10090 if (!mActiveTracks[i]->getAndSetSilencedNotified_l()) {
10091 changed = true;
10092 silenced = mActiveTracks[i]->isSilenced_l();
10093 }
10094 }
10095
10096 if (changed) {
10097 mInput->stream->setGain(silenced ? 0.0f: 1.0f);
10098 }
10099 }
10100
updateMetadata_l()10101 void AudioFlinger::MmapCaptureThread::updateMetadata_l()
10102 {
10103 if (!isStreamInitialized() || !mActiveTracks.readAndClearHasChanged()) {
10104 return; // nothing to do
10105 }
10106 StreamInHalInterface::SinkMetadata metadata;
10107 for (const sp<MmapTrack> &track : mActiveTracks) {
10108 // No track is invalid as this is called after prepareTrack_l in the same critical section
10109 record_track_metadata_v7_t trackMetadata;
10110 trackMetadata.base = {
10111 .source = track->attributes().source,
10112 .gain = 1, // capture tracks do not have volumes
10113 };
10114 trackMetadata.channel_mask = track->channelMask(),
10115 strncpy(trackMetadata.tags, track->attributes().tags, AUDIO_ATTRIBUTES_TAGS_MAX_SIZE);
10116 metadata.tracks.push_back(trackMetadata);
10117 }
10118 mInput->stream->updateSinkMetadata(metadata);
10119 }
10120
setRecordSilenced(audio_port_handle_t portId,bool silenced)10121 void AudioFlinger::MmapCaptureThread::setRecordSilenced(audio_port_handle_t portId, bool silenced)
10122 {
10123 Mutex::Autolock _l(mLock);
10124 for (size_t i = 0; i < mActiveTracks.size() ; i++) {
10125 if (mActiveTracks[i]->portId() == portId) {
10126 mActiveTracks[i]->setSilenced_l(silenced);
10127 broadcast_l();
10128 }
10129 }
10130 }
10131
toAudioPortConfig(struct audio_port_config * config)10132 void AudioFlinger::MmapCaptureThread::toAudioPortConfig(struct audio_port_config *config)
10133 {
10134 MmapThread::toAudioPortConfig(config);
10135 if (mInput && mInput->flags != AUDIO_INPUT_FLAG_NONE) {
10136 config->config_mask |= AUDIO_PORT_CONFIG_FLAGS;
10137 config->flags.input = mInput->flags;
10138 }
10139 }
10140
getExternalPosition(uint64_t * position,int64_t * timeNanos)10141 status_t AudioFlinger::MmapCaptureThread::getExternalPosition(
10142 uint64_t *position, int64_t *timeNanos)
10143 {
10144 if (mInput == nullptr) {
10145 return NO_INIT;
10146 }
10147 return mInput->getCapturePosition((int64_t*)position, timeNanos);
10148 }
10149
10150 } // namespace android
10151