• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 
2 /*
3  * Author : Stephen Smalley, <sds@tycho.nsa.gov>
4  */
5 /*
6  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
7  *
8  *	Support for enhanced MLS infrastructure.
9  *
10  * Updated: Frank Mayer <mayerf@tresys.com>
11  *          and Karl MacMillan <kmacmillan@tresys.com>
12  *
13  * 	Added conditional policy language extensions
14  *
15  * Updated: Red Hat, Inc.  James Morris <jmorris@redhat.com>
16  *
17  *      Fine-grained netlink support
18  *      IPv6 support
19  *      Code cleanup
20  *
21  * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
22  * Copyright (C) 2003 - 2004 Tresys Technology, LLC
23  * Copyright (C) 2003 - 2004 Red Hat, Inc.
24  * Copyright (C) 2017 Mellanox Technologies Inc.
25  *
26  *  This library is free software; you can redistribute it and/or
27  *  modify it under the terms of the GNU Lesser General Public
28  *  License as published by the Free Software Foundation; either
29  *  version 2.1 of the License, or (at your option) any later version.
30  *
31  *  This library is distributed in the hope that it will be useful,
32  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
33  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
34  *  Lesser General Public License for more details.
35  *
36  *  You should have received a copy of the GNU Lesser General Public
37  *  License along with this library; if not, write to the Free Software
38  *  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
39  */
40 
41 /* FLASK */
42 
43 /*
44  * Implementation of the security services.
45  */
46 
47 /* Initial sizes malloc'd for sepol_compute_av_reason_buffer() support */
48 #define REASON_BUF_SIZE 2048
49 #define EXPR_BUF_SIZE 1024
50 #define STACK_LEN 32
51 
52 #include <stdlib.h>
53 #include <sys/types.h>
54 #include <sys/socket.h>
55 #include <netinet/in.h>
56 #include <arpa/inet.h>
57 
58 #include <sepol/policydb/policydb.h>
59 #include <sepol/policydb/sidtab.h>
60 #include <sepol/policydb/services.h>
61 #include <sepol/policydb/conditional.h>
62 #include <sepol/policydb/flask.h>
63 #include <sepol/policydb/util.h>
64 
65 #include "debug.h"
66 #include "private.h"
67 #include "context.h"
68 #include "av_permissions.h"
69 #include "dso.h"
70 #include "mls.h"
71 
72 #define BUG() do { ERR(NULL, "Badness at %s:%d", __FILE__, __LINE__); } while (0)
73 #define BUG_ON(x) do { if (x) ERR(NULL, "Badness at %s:%d", __FILE__, __LINE__); } while (0)
74 
75 static int selinux_enforcing = 1;
76 
77 static sidtab_t mysidtab, *sidtab = &mysidtab;
78 static policydb_t mypolicydb, *policydb = &mypolicydb;
79 
80 /* Used by sepol_compute_av_reason_buffer() to keep track of entries */
81 static int reason_buf_used;
82 static int reason_buf_len;
83 
84 /* Stack services for RPN to infix conversion. */
85 static char **stack;
86 static int stack_len;
87 static int next_stack_entry;
88 
push(char * expr_ptr)89 static void push(char *expr_ptr)
90 {
91 	if (next_stack_entry >= stack_len) {
92 		char **new_stack = stack;
93 		int new_stack_len;
94 
95 		if (stack_len == 0)
96 			new_stack_len = STACK_LEN;
97 		else
98 			new_stack_len = stack_len * 2;
99 
100 		new_stack = realloc(stack, new_stack_len * sizeof(*stack));
101 		if (!new_stack) {
102 			ERR(NULL, "unable to allocate stack space");
103 			return;
104 		}
105 		stack_len = new_stack_len;
106 		stack = new_stack;
107 	}
108 	stack[next_stack_entry] = expr_ptr;
109 	next_stack_entry++;
110 }
111 
pop(void)112 static char *pop(void)
113 {
114 	next_stack_entry--;
115 	if (next_stack_entry < 0) {
116 		next_stack_entry = 0;
117 		ERR(NULL, "pop called with no stack entries");
118 		return NULL;
119 	}
120 	return stack[next_stack_entry];
121 }
122 /* End Stack services */
123 
sepol_set_sidtab(sidtab_t * s)124 int hidden sepol_set_sidtab(sidtab_t * s)
125 {
126 	sidtab = s;
127 	return 0;
128 }
129 
sepol_set_policydb(policydb_t * p)130 int hidden sepol_set_policydb(policydb_t * p)
131 {
132 	policydb = p;
133 	return 0;
134 }
135 
sepol_set_policydb_from_file(FILE * fp)136 int sepol_set_policydb_from_file(FILE * fp)
137 {
138 	struct policy_file pf;
139 
140 	policy_file_init(&pf);
141 	pf.fp = fp;
142 	pf.type = PF_USE_STDIO;
143 	if (mypolicydb.policy_type)
144 		policydb_destroy(&mypolicydb);
145 	if (policydb_init(&mypolicydb)) {
146 		ERR(NULL, "Out of memory!");
147 		return -1;
148 	}
149 	if (policydb_read(&mypolicydb, &pf, 0)) {
150 		policydb_destroy(&mypolicydb);
151 		ERR(NULL, "can't read binary policy: %s", strerror(errno));
152 		return -1;
153 	}
154 	policydb = &mypolicydb;
155 	return sepol_sidtab_init(sidtab);
156 }
157 
158 /*
159  * The largest sequence number that has been used when
160  * providing an access decision to the access vector cache.
161  * The sequence number only changes when a policy change
162  * occurs.
163  */
164 static uint32_t latest_granting = 0;
165 
166 /*
167  * cat_expr_buf adds a string to an expression buffer and handles
168  * realloc's if buffer is too small. The array of expression text
169  * buffer pointers and its counter are globally defined here as
170  * constraint_expr_eval_reason() sets them up and cat_expr_buf
171  * updates the e_buf pointer.
172  */
173 static int expr_counter;
174 static char **expr_list;
175 static int expr_buf_used;
176 static int expr_buf_len;
177 
cat_expr_buf(char * e_buf,const char * string)178 static void cat_expr_buf(char *e_buf, const char *string)
179 {
180 	int len, new_buf_len;
181 	char *p, *new_buf = e_buf;
182 
183 	while (1) {
184 		p = e_buf + expr_buf_used;
185 		len = snprintf(p, expr_buf_len - expr_buf_used, "%s", string);
186 		if (len < 0 || len >= expr_buf_len - expr_buf_used) {
187 			new_buf_len = expr_buf_len + EXPR_BUF_SIZE;
188 			new_buf = realloc(e_buf, new_buf_len);
189 			if (!new_buf) {
190 				ERR(NULL, "failed to realloc expr buffer");
191 				return;
192 			}
193 			/* Update new ptr in expr list and locally + new len */
194 			expr_list[expr_counter] = new_buf;
195 			e_buf = new_buf;
196 			expr_buf_len = new_buf_len;
197 		} else {
198 			expr_buf_used += len;
199 			return;
200 		}
201 	}
202 }
203 
204 /*
205  * If the POLICY_KERN version is >= POLICYDB_VERSION_CONSTRAINT_NAMES,
206  * then for 'types' only, read the types_names->types list as it will
207  * contain a list of types and attributes that were defined in the
208  * policy source.
209  * For user and role plus types (for policy vers <
210  * POLICYDB_VERSION_CONSTRAINT_NAMES) just read the e->names list.
211  */
get_name_list(constraint_expr_t * e,int type,const char * src,const char * op,int failed)212 static void get_name_list(constraint_expr_t *e, int type,
213 							const char *src, const char *op, int failed)
214 {
215 	ebitmap_t *types;
216 	int rc = 0;
217 	unsigned int i;
218 	char tmp_buf[128];
219 	int counter = 0;
220 
221 	if (policydb->policy_type == POLICY_KERN &&
222 			policydb->policyvers >= POLICYDB_VERSION_CONSTRAINT_NAMES &&
223 			type == CEXPR_TYPE)
224 		types = &e->type_names->types;
225 	else
226 		types = &e->names;
227 
228 	/* Find out how many entries */
229 	for (i = ebitmap_startbit(types); i < ebitmap_length(types); i++) {
230 		rc = ebitmap_get_bit(types, i);
231 		if (rc == 0)
232 			continue;
233 		else
234 			counter++;
235 	}
236 	snprintf(tmp_buf, sizeof(tmp_buf), "(%s%s", src, op);
237 	cat_expr_buf(expr_list[expr_counter], tmp_buf);
238 
239 	if (counter == 0)
240 		cat_expr_buf(expr_list[expr_counter], "<empty_set> ");
241 	if (counter > 1)
242 		cat_expr_buf(expr_list[expr_counter], " {");
243 	if (counter >= 1) {
244 		for (i = ebitmap_startbit(types); i < ebitmap_length(types); i++) {
245 			rc = ebitmap_get_bit(types, i);
246 			if (rc == 0)
247 				continue;
248 
249 			/* Collect entries */
250 			switch (type) {
251 			case CEXPR_USER:
252 				snprintf(tmp_buf, sizeof(tmp_buf), " %s",
253 							policydb->p_user_val_to_name[i]);
254 				break;
255 			case CEXPR_ROLE:
256 				snprintf(tmp_buf, sizeof(tmp_buf), " %s",
257 							policydb->p_role_val_to_name[i]);
258 				break;
259 			case CEXPR_TYPE:
260 				snprintf(tmp_buf, sizeof(tmp_buf), " %s",
261 							policydb->p_type_val_to_name[i]);
262 				break;
263 			}
264 			cat_expr_buf(expr_list[expr_counter], tmp_buf);
265 		}
266 	}
267 	if (counter > 1)
268 		cat_expr_buf(expr_list[expr_counter], " }");
269 	if (failed)
270 		cat_expr_buf(expr_list[expr_counter], " -Fail-) ");
271 	else
272 		cat_expr_buf(expr_list[expr_counter], ") ");
273 
274 	return;
275 }
276 
msgcat(const char * src,const char * tgt,const char * op,int failed)277 static void msgcat(const char *src, const char *tgt, const char *op, int failed)
278 {
279 	char tmp_buf[128];
280 	if (failed)
281 		snprintf(tmp_buf, sizeof(tmp_buf), "(%s %s %s -Fail-) ",
282 				src, op, tgt);
283 	else
284 		snprintf(tmp_buf, sizeof(tmp_buf), "(%s %s %s) ",
285 				src, op, tgt);
286 	cat_expr_buf(expr_list[expr_counter], tmp_buf);
287 }
288 
289 /* Returns a buffer with class, statement type and permissions */
get_class_info(sepol_security_class_t tclass,constraint_node_t * constraint,context_struct_t * xcontext)290 static char *get_class_info(sepol_security_class_t tclass,
291 							constraint_node_t *constraint,
292 							context_struct_t *xcontext)
293 {
294 	constraint_expr_t *e;
295 	int mls, state_num;
296 
297 	/* Find if MLS statement or not */
298 	mls = 0;
299 	for (e = constraint->expr; e; e = e->next) {
300 		if (e->attr >= CEXPR_L1L2) {
301 			mls = 1;
302 			break;
303 		}
304 	}
305 
306 	/* Determine statement type */
307 	const char *statements[] = {
308 		"constrain ",			/* 0 */
309 		"mlsconstrain ",		/* 1 */
310 		"validatetrans ",		/* 2 */
311 		"mlsvalidatetrans ",	/* 3 */
312 		0 };
313 
314 	if (xcontext == NULL)
315 		state_num = mls + 0;
316 	else
317 		state_num = mls + 2;
318 
319 	int class_buf_len = 0;
320 	int new_class_buf_len;
321 	int len, buf_used;
322 	char *class_buf = NULL, *p;
323 	char *new_class_buf = NULL;
324 
325 	while (1) {
326 		new_class_buf_len = class_buf_len + EXPR_BUF_SIZE;
327 		new_class_buf = realloc(class_buf, new_class_buf_len);
328 			if (!new_class_buf)
329 				return NULL;
330 		class_buf_len = new_class_buf_len;
331 		class_buf = new_class_buf;
332 		buf_used = 0;
333 		p = class_buf;
334 
335 		/* Add statement type */
336 		len = snprintf(p, class_buf_len - buf_used, "%s", statements[state_num]);
337 		if (len < 0 || len >= class_buf_len - buf_used)
338 			continue;
339 
340 		/* Add class entry */
341 		p += len;
342 		buf_used += len;
343 		len = snprintf(p, class_buf_len - buf_used, "%s ",
344 				policydb->p_class_val_to_name[tclass - 1]);
345 		if (len < 0 || len >= class_buf_len - buf_used)
346 			continue;
347 
348 		/* Add permission entries (validatetrans does not have perms) */
349 		p += len;
350 		buf_used += len;
351 		if (state_num < 2) {
352 			len = snprintf(p, class_buf_len - buf_used, "{%s } (",
353 			sepol_av_to_string(policydb, tclass,
354 				constraint->permissions));
355 		} else {
356 			len = snprintf(p, class_buf_len - buf_used, "(");
357 		}
358 		if (len < 0 || len >= class_buf_len - buf_used)
359 			continue;
360 		break;
361 	}
362 	return class_buf;
363 }
364 
365 /*
366  * Modified version of constraint_expr_eval that will process each
367  * constraint as before but adds the information to text buffers that
368  * will hold various components. The expression will be in RPN format,
369  * therefore there is a stack based RPN to infix converter to produce
370  * the final readable constraint.
371  *
372  * Return the boolean value of a constraint expression
373  * when it is applied to the specified source and target
374  * security contexts.
375  *
376  * xcontext is a special beast...  It is used by the validatetrans rules
377  * only.  For these rules, scontext is the context before the transition,
378  * tcontext is the context after the transition, and xcontext is the
379  * context of the process performing the transition.  All other callers
380  * of constraint_expr_eval_reason should pass in NULL for xcontext.
381  *
382  * This function will also build a buffer as the constraint is processed
383  * for analysis. If this option is not required, then:
384  *      'tclass' should be '0' and r_buf MUST be NULL.
385  */
constraint_expr_eval_reason(context_struct_t * scontext,context_struct_t * tcontext,context_struct_t * xcontext,sepol_security_class_t tclass,constraint_node_t * constraint,char ** r_buf,unsigned int flags)386 static int constraint_expr_eval_reason(context_struct_t *scontext,
387 				context_struct_t *tcontext,
388 				context_struct_t *xcontext,
389 				sepol_security_class_t tclass,
390 				constraint_node_t *constraint,
391 				char **r_buf,
392 				unsigned int flags)
393 {
394 	uint32_t val1, val2;
395 	context_struct_t *c;
396 	role_datum_t *r1, *r2;
397 	mls_level_t *l1, *l2;
398 	constraint_expr_t *e;
399 	int s[CEXPR_MAXDEPTH];
400 	int sp = -1;
401 	char tmp_buf[128];
402 
403 /*
404  * Define the s_t_x_num values that make up r1, t2 etc. in text strings
405  * Set 1 = source, 2 = target, 3 = xcontext for validatetrans
406  */
407 #define SOURCE  1
408 #define TARGET  2
409 #define XTARGET 3
410 
411 	int s_t_x_num = SOURCE;
412 
413 	/* Set 0 = fail, u = CEXPR_USER, r = CEXPR_ROLE, t = CEXPR_TYPE */
414 	int u_r_t = 0;
415 
416 	char *src = NULL;
417 	char *tgt = NULL;
418 	int rc = 0, x;
419 	char *class_buf = NULL;
420 
421 	/*
422 	 * The array of expression answer buffer pointers and counter.
423 	 */
424 	char **answer_list = NULL;
425 	int answer_counter = 0;
426 
427 	class_buf = get_class_info(tclass, constraint, xcontext);
428 	if (!class_buf) {
429 		ERR(NULL, "failed to allocate class buffer");
430 		return -ENOMEM;
431 	}
432 
433 	/* Original function but with buffer support */
434 	int expr_list_len = 0;
435 	expr_counter = 0;
436 	expr_list = NULL;
437 	for (e = constraint->expr; e; e = e->next) {
438 		/* Allocate a stack to hold expression buffer entries */
439 		if (expr_counter >= expr_list_len) {
440 			char **new_expr_list = expr_list;
441 			int new_expr_list_len;
442 
443 			if (expr_list_len == 0)
444 				new_expr_list_len = STACK_LEN;
445 			else
446 				new_expr_list_len = expr_list_len * 2;
447 
448 			new_expr_list = realloc(expr_list,
449 					new_expr_list_len * sizeof(*expr_list));
450 			if (!new_expr_list) {
451 				ERR(NULL, "failed to allocate expr buffer stack");
452 				rc = -ENOMEM;
453 				goto out;
454 			}
455 			expr_list_len = new_expr_list_len;
456 			expr_list = new_expr_list;
457 		}
458 
459 		/*
460 		 * malloc a buffer to store each expression text component. If
461 		 * buffer is too small cat_expr_buf() will realloc extra space.
462 		 */
463 		expr_buf_len = EXPR_BUF_SIZE;
464 		expr_list[expr_counter] = malloc(expr_buf_len);
465 		if (!expr_list[expr_counter]) {
466 			ERR(NULL, "failed to allocate expr buffer");
467 			rc = -ENOMEM;
468 			goto out;
469 		}
470 		expr_buf_used = 0;
471 
472 		/* Now process each expression of the constraint */
473 		switch (e->expr_type) {
474 		case CEXPR_NOT:
475 			BUG_ON(sp < 0);
476 			s[sp] = !s[sp];
477 			cat_expr_buf(expr_list[expr_counter], "not");
478 			break;
479 		case CEXPR_AND:
480 			BUG_ON(sp < 1);
481 			sp--;
482 			s[sp] &= s[sp + 1];
483 			cat_expr_buf(expr_list[expr_counter], "and");
484 			break;
485 		case CEXPR_OR:
486 			BUG_ON(sp < 1);
487 			sp--;
488 			s[sp] |= s[sp + 1];
489 			cat_expr_buf(expr_list[expr_counter], "or");
490 			break;
491 		case CEXPR_ATTR:
492 			if (sp == (CEXPR_MAXDEPTH - 1))
493 				goto out;
494 
495 			switch (e->attr) {
496 			case CEXPR_USER:
497 				val1 = scontext->user;
498 				val2 = tcontext->user;
499 				free(src); src = strdup("u1");
500 				free(tgt); tgt = strdup("u2");
501 				break;
502 			case CEXPR_TYPE:
503 				val1 = scontext->type;
504 				val2 = tcontext->type;
505 				free(src); src = strdup("t1");
506 				free(tgt); tgt = strdup("t2");
507 				break;
508 			case CEXPR_ROLE:
509 				val1 = scontext->role;
510 				val2 = tcontext->role;
511 				r1 = policydb->role_val_to_struct[val1 - 1];
512 				r2 = policydb->role_val_to_struct[val2 - 1];
513 				free(src); src = strdup("r1");
514 				free(tgt); tgt = strdup("r2");
515 
516 				switch (e->op) {
517 				case CEXPR_DOM:
518 					s[++sp] = ebitmap_get_bit(&r1->dominates, val2 - 1);
519 					msgcat(src, tgt, "dom", s[sp] == 0);
520 					expr_counter++;
521 					continue;
522 				case CEXPR_DOMBY:
523 					s[++sp] = ebitmap_get_bit(&r2->dominates, val1 - 1);
524 					msgcat(src, tgt, "domby", s[sp] == 0);
525 					expr_counter++;
526 					continue;
527 				case CEXPR_INCOMP:
528 					s[++sp] = (!ebitmap_get_bit(&r1->dominates, val2 - 1)
529 						 && !ebitmap_get_bit(&r2->dominates, val1 - 1));
530 					msgcat(src, tgt, "incomp", s[sp] == 0);
531 					expr_counter++;
532 					continue;
533 				default:
534 					break;
535 				}
536 				break;
537 			case CEXPR_L1L2:
538 				l1 = &(scontext->range.level[0]);
539 				l2 = &(tcontext->range.level[0]);
540 				free(src); src = strdup("l1");
541 				free(tgt); tgt = strdup("l2");
542 				goto mls_ops;
543 			case CEXPR_L1H2:
544 				l1 = &(scontext->range.level[0]);
545 				l2 = &(tcontext->range.level[1]);
546 				free(src); src = strdup("l1");
547 				free(tgt); tgt = strdup("h2");
548 				goto mls_ops;
549 			case CEXPR_H1L2:
550 				l1 = &(scontext->range.level[1]);
551 				l2 = &(tcontext->range.level[0]);
552 				free(src); src = strdup("h1");
553 				free(tgt); tgt = strdup("l2");
554 				goto mls_ops;
555 			case CEXPR_H1H2:
556 				l1 = &(scontext->range.level[1]);
557 				l2 = &(tcontext->range.level[1]);
558 				free(src); src = strdup("h1");
559 				free(tgt); tgt = strdup("h2");
560 				goto mls_ops;
561 			case CEXPR_L1H1:
562 				l1 = &(scontext->range.level[0]);
563 				l2 = &(scontext->range.level[1]);
564 				free(src); src = strdup("l1");
565 				free(tgt); tgt = strdup("h1");
566 				goto mls_ops;
567 			case CEXPR_L2H2:
568 				l1 = &(tcontext->range.level[0]);
569 				l2 = &(tcontext->range.level[1]);
570 				free(src); src = strdup("l2");
571 				free(tgt); tgt = strdup("h2");
572 mls_ops:
573 				switch (e->op) {
574 				case CEXPR_EQ:
575 					s[++sp] = mls_level_eq(l1, l2);
576 					msgcat(src, tgt, "eq", s[sp] == 0);
577 					expr_counter++;
578 					continue;
579 				case CEXPR_NEQ:
580 					s[++sp] = !mls_level_eq(l1, l2);
581 					msgcat(src, tgt, "!=", s[sp] == 0);
582 					expr_counter++;
583 					continue;
584 				case CEXPR_DOM:
585 					s[++sp] = mls_level_dom(l1, l2);
586 					msgcat(src, tgt, "dom", s[sp] == 0);
587 					expr_counter++;
588 					continue;
589 				case CEXPR_DOMBY:
590 					s[++sp] = mls_level_dom(l2, l1);
591 					msgcat(src, tgt, "domby", s[sp] == 0);
592 					expr_counter++;
593 					continue;
594 				case CEXPR_INCOMP:
595 					s[++sp] = mls_level_incomp(l2, l1);
596 					msgcat(src, tgt, "incomp", s[sp] == 0);
597 					expr_counter++;
598 					continue;
599 				default:
600 					BUG();
601 					goto out;
602 				}
603 				break;
604 			default:
605 				BUG();
606 				goto out;
607 			}
608 
609 			switch (e->op) {
610 			case CEXPR_EQ:
611 				s[++sp] = (val1 == val2);
612 				msgcat(src, tgt, "==", s[sp] == 0);
613 				break;
614 			case CEXPR_NEQ:
615 				s[++sp] = (val1 != val2);
616 				msgcat(src, tgt, "!=", s[sp] == 0);
617 				break;
618 			default:
619 				BUG();
620 				goto out;
621 			}
622 			break;
623 		case CEXPR_NAMES:
624 			if (sp == (CEXPR_MAXDEPTH - 1))
625 				goto out;
626 			s_t_x_num = SOURCE;
627 			c = scontext;
628 			if (e->attr & CEXPR_TARGET) {
629 				s_t_x_num = TARGET;
630 				c = tcontext;
631 			} else if (e->attr & CEXPR_XTARGET) {
632 				s_t_x_num = XTARGET;
633 				c = xcontext;
634 			}
635 			if (!c) {
636 				BUG();
637 				goto out;
638 			}
639 			if (e->attr & CEXPR_USER) {
640 				u_r_t = CEXPR_USER;
641 				val1 = c->user;
642 				snprintf(tmp_buf, sizeof(tmp_buf), "u%d ", s_t_x_num);
643 				free(src); src = strdup(tmp_buf);
644 			} else if (e->attr & CEXPR_ROLE) {
645 				u_r_t = CEXPR_ROLE;
646 				val1 = c->role;
647 				snprintf(tmp_buf, sizeof(tmp_buf), "r%d ", s_t_x_num);
648 				free(src); src = strdup(tmp_buf);
649 			} else if (e->attr & CEXPR_TYPE) {
650 				u_r_t = CEXPR_TYPE;
651 				val1 = c->type;
652 				snprintf(tmp_buf, sizeof(tmp_buf), "t%d ", s_t_x_num);
653 				free(src); src = strdup(tmp_buf);
654 			} else {
655 				BUG();
656 				goto out;
657 			}
658 
659 			switch (e->op) {
660 			case CEXPR_EQ:
661 				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
662 				get_name_list(e, u_r_t, src, "==", s[sp] == 0);
663 				break;
664 
665 			case CEXPR_NEQ:
666 				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
667 				get_name_list(e, u_r_t, src, "!=", s[sp] == 0);
668 				break;
669 			default:
670 				BUG();
671 				goto out;
672 			}
673 			break;
674 		default:
675 			BUG();
676 			goto out;
677 		}
678 		expr_counter++;
679 	}
680 
681 	/*
682 	 * At this point each expression of the constraint is in
683 	 * expr_list[n+1] and in RPN format. Now convert to 'infix'
684 	 */
685 
686 	/*
687 	 * Save expr count but zero expr_counter to detect if
688 	 * 'BUG(); goto out;' was called as we need to release any used
689 	 * expr_list malloc's. Normally they are released by the RPN to
690 	 * infix code.
691 	 */
692 	int expr_count = expr_counter;
693 	expr_counter = 0;
694 
695 	/*
696 	 * Generate the same number of answer buffer entries as expression
697 	 * buffers (as there will never be more).
698 	 */
699 	answer_list = malloc(expr_count * sizeof(*answer_list));
700 	if (!answer_list) {
701 		ERR(NULL, "failed to allocate answer stack");
702 		rc = -ENOMEM;
703 		goto out;
704 	}
705 
706 	/* The pop operands */
707 	char *a;
708 	char *b;
709 	int a_len, b_len;
710 
711 	/* Convert constraint from RPN to infix notation. */
712 	for (x = 0; x != expr_count; x++) {
713 		if (strncmp(expr_list[x], "and", 3) == 0 || strncmp(expr_list[x],
714 					"or", 2) == 0) {
715 			b = pop();
716 			b_len = strlen(b);
717 			a = pop();
718 			a_len = strlen(a);
719 
720 			/* get a buffer to hold the answer */
721 			answer_list[answer_counter] = malloc(a_len + b_len + 8);
722 			if (!answer_list[answer_counter]) {
723 				ERR(NULL, "failed to allocate answer buffer");
724 				rc = -ENOMEM;
725 				goto out;
726 			}
727 			memset(answer_list[answer_counter], '\0', a_len + b_len + 8);
728 
729 			sprintf(answer_list[answer_counter], "%s %s %s", a,
730 					expr_list[x], b);
731 			push(answer_list[answer_counter++]);
732 			free(a);
733 			free(b);
734 			free(expr_list[x]);
735 		} else if (strncmp(expr_list[x], "not", 3) == 0) {
736 			b = pop();
737 			b_len = strlen(b);
738 
739 			answer_list[answer_counter] = malloc(b_len + 8);
740 			if (!answer_list[answer_counter]) {
741 				ERR(NULL, "failed to allocate answer buffer");
742 				rc = -ENOMEM;
743 				goto out;
744 			}
745 			memset(answer_list[answer_counter], '\0', b_len + 8);
746 
747 			if (strncmp(b, "not", 3) == 0)
748 				sprintf(answer_list[answer_counter], "%s (%s)",
749 						expr_list[x], b);
750 			else
751 				sprintf(answer_list[answer_counter], "%s%s",
752 						expr_list[x], b);
753 			push(answer_list[answer_counter++]);
754 			free(b);
755 			free(expr_list[x]);
756 		} else {
757 			push(expr_list[x]);
758 		}
759 	}
760 	/* Get the final answer from tos and build constraint text */
761 	a = pop();
762 
763 	/* validatetrans / constraint calculation:
764 				rc = 0 is denied, rc = 1 is granted */
765 	sprintf(tmp_buf, "%s %s\n",
766 			xcontext ? "Validatetrans" : "Constraint",
767 			s[0] ? "GRANTED" : "DENIED");
768 
769 	int len, new_buf_len;
770 	char *p, **new_buf = r_buf;
771 	/*
772 	 * These contain the constraint components that are added to the
773 	 * callers reason buffer.
774 	 */
775 	const char *buffers[] = { class_buf, a, "); ", tmp_buf, 0 };
776 
777 	/*
778 	 * This will add the constraints to the callers reason buffer (who is
779 	 * responsible for freeing the memory). It will handle any realloc's
780 	 * should the buffer be too short.
781 	 * The reason_buf_used and reason_buf_len counters are defined
782 	 * globally as multiple constraints can be in the buffer.
783 	 */
784 
785 	if (r_buf && ((s[0] == 0) || ((s[0] == 1 &&
786 				(flags & SHOW_GRANTED) == SHOW_GRANTED)))) {
787 		for (x = 0; buffers[x] != NULL; x++) {
788 			while (1) {
789 				p = *r_buf + reason_buf_used;
790 				len = snprintf(p, reason_buf_len - reason_buf_used,
791 						"%s", buffers[x]);
792 				if (len < 0 || len >= reason_buf_len - reason_buf_used) {
793 					new_buf_len = reason_buf_len + REASON_BUF_SIZE;
794 					*new_buf = realloc(*r_buf, new_buf_len);
795 					if (!new_buf) {
796 						ERR(NULL, "failed to realloc reason buffer");
797 						goto out1;
798 					}
799 					**r_buf = **new_buf;
800 					reason_buf_len = new_buf_len;
801 					continue;
802 				} else {
803 					reason_buf_used += len;
804 					break;
805 				}
806 			}
807 		}
808 	}
809 
810 out1:
811 	rc = s[0];
812 	free(a);
813 
814 out:
815 	free(class_buf);
816 	free(src);
817 	free(tgt);
818 
819 	if (expr_counter) {
820 		for (x = 0; expr_list[x] != NULL; x++)
821 			free(expr_list[x]);
822 	}
823 	free(answer_list);
824 	free(expr_list);
825 	return rc;
826 }
827 
828 /* Forward declaration */
829 static int context_struct_compute_av(context_struct_t * scontext,
830 				     context_struct_t * tcontext,
831 				     sepol_security_class_t tclass,
832 				     sepol_access_vector_t requested,
833 				     struct sepol_av_decision *avd,
834 				     unsigned int *reason,
835 				     char **r_buf,
836 				     unsigned int flags);
837 
type_attribute_bounds_av(context_struct_t * scontext,context_struct_t * tcontext,sepol_security_class_t tclass,sepol_access_vector_t requested,struct sepol_av_decision * avd,unsigned int * reason)838 static void type_attribute_bounds_av(context_struct_t *scontext,
839 				     context_struct_t *tcontext,
840 				     sepol_security_class_t tclass,
841 				     sepol_access_vector_t requested,
842 				     struct sepol_av_decision *avd,
843 				     unsigned int *reason)
844 {
845 	context_struct_t lo_scontext;
846 	context_struct_t lo_tcontext, *tcontextp = tcontext;
847 	struct sepol_av_decision lo_avd;
848 	type_datum_t *source;
849 	type_datum_t *target;
850 	sepol_access_vector_t masked = 0;
851 
852 	source = policydb->type_val_to_struct[scontext->type - 1];
853 	if (!source->bounds)
854 		return;
855 
856 	target = policydb->type_val_to_struct[tcontext->type - 1];
857 
858 	memset(&lo_avd, 0, sizeof(lo_avd));
859 
860 	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
861 	lo_scontext.type = source->bounds;
862 
863 	if (target->bounds) {
864 		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
865 		lo_tcontext.type = target->bounds;
866 		tcontextp = &lo_tcontext;
867 	}
868 
869 	context_struct_compute_av(&lo_scontext,
870 				  tcontextp,
871 				  tclass,
872 				  requested,
873 				  &lo_avd,
874 				  NULL, /* reason intentionally omitted */
875 				  NULL,
876 				  0);
877 
878 	masked = ~lo_avd.allowed & avd->allowed;
879 
880 	if (!masked)
881 		return;		/* no masked permission */
882 
883 	/* mask violated permissions */
884 	avd->allowed &= ~masked;
885 
886 	*reason |= SEPOL_COMPUTEAV_BOUNDS;
887 }
888 
889 /*
890  * Compute access vectors based on a context structure pair for
891  * the permissions in a particular class.
892  */
context_struct_compute_av(context_struct_t * scontext,context_struct_t * tcontext,sepol_security_class_t tclass,sepol_access_vector_t requested,struct sepol_av_decision * avd,unsigned int * reason,char ** r_buf,unsigned int flags)893 static int context_struct_compute_av(context_struct_t * scontext,
894 				     context_struct_t * tcontext,
895 				     sepol_security_class_t tclass,
896 				     sepol_access_vector_t requested,
897 				     struct sepol_av_decision *avd,
898 				     unsigned int *reason,
899 				     char **r_buf,
900 				     unsigned int flags)
901 {
902 	constraint_node_t *constraint;
903 	struct role_allow *ra;
904 	avtab_key_t avkey;
905 	class_datum_t *tclass_datum;
906 	avtab_ptr_t node;
907 	ebitmap_t *sattr, *tattr;
908 	ebitmap_node_t *snode, *tnode;
909 	unsigned int i, j;
910 
911 	if (!tclass || tclass > policydb->p_classes.nprim) {
912 		ERR(NULL, "unrecognized class %d", tclass);
913 		return -EINVAL;
914 	}
915 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
916 
917 	/*
918 	 * Initialize the access vectors to the default values.
919 	 */
920 	avd->allowed = 0;
921 	avd->decided = 0xffffffff;
922 	avd->auditallow = 0;
923 	avd->auditdeny = 0xffffffff;
924 	avd->seqno = latest_granting;
925 	if (reason)
926 		*reason = 0;
927 
928 	/*
929 	 * If a specific type enforcement rule was defined for
930 	 * this permission check, then use it.
931 	 */
932 	avkey.target_class = tclass;
933 	avkey.specified = AVTAB_AV;
934 	sattr = &policydb->type_attr_map[scontext->type - 1];
935 	tattr = &policydb->type_attr_map[tcontext->type - 1];
936 	ebitmap_for_each_positive_bit(sattr, snode, i) {
937 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
938 			avkey.source_type = i + 1;
939 			avkey.target_type = j + 1;
940 			for (node =
941 			     avtab_search_node(&policydb->te_avtab, &avkey);
942 			     node != NULL;
943 			     node =
944 			     avtab_search_node_next(node, avkey.specified)) {
945 				if (node->key.specified == AVTAB_ALLOWED)
946 					avd->allowed |= node->datum.data;
947 				else if (node->key.specified ==
948 					 AVTAB_AUDITALLOW)
949 					avd->auditallow |= node->datum.data;
950 				else if (node->key.specified == AVTAB_AUDITDENY)
951 					avd->auditdeny &= node->datum.data;
952 			}
953 
954 			/* Check conditional av table for additional permissions */
955 			cond_compute_av(&policydb->te_cond_avtab, &avkey, avd);
956 
957 		}
958 	}
959 
960 	if (requested & ~avd->allowed) {
961 		if (reason)
962 			*reason |= SEPOL_COMPUTEAV_TE;
963 		requested &= avd->allowed;
964 	}
965 
966 	/*
967 	 * Remove any permissions prohibited by a constraint (this includes
968 	 * the MLS policy).
969 	 */
970 	constraint = tclass_datum->constraints;
971 	while (constraint) {
972 		if ((constraint->permissions & (avd->allowed)) &&
973 		    !constraint_expr_eval_reason(scontext, tcontext, NULL,
974 					  tclass, constraint, r_buf, flags)) {
975 			avd->allowed =
976 			    (avd->allowed) & ~(constraint->permissions);
977 		}
978 		constraint = constraint->next;
979 	}
980 
981 	if (requested & ~avd->allowed) {
982 		if (reason)
983 			*reason |= SEPOL_COMPUTEAV_CONS;
984 		requested &= avd->allowed;
985 	}
986 
987 	/*
988 	 * If checking process transition permission and the
989 	 * role is changing, then check the (current_role, new_role)
990 	 * pair.
991 	 */
992 	if (tclass == SECCLASS_PROCESS &&
993 	    (avd->allowed & (PROCESS__TRANSITION | PROCESS__DYNTRANSITION)) &&
994 	    scontext->role != tcontext->role) {
995 		for (ra = policydb->role_allow; ra; ra = ra->next) {
996 			if (scontext->role == ra->role &&
997 			    tcontext->role == ra->new_role)
998 				break;
999 		}
1000 		if (!ra)
1001 			avd->allowed = (avd->allowed) & ~(PROCESS__TRANSITION |
1002 							  PROCESS__DYNTRANSITION);
1003 	}
1004 
1005 	if (requested & ~avd->allowed) {
1006 		if (reason)
1007 			*reason |= SEPOL_COMPUTEAV_RBAC;
1008 		requested &= avd->allowed;
1009 	}
1010 
1011 	type_attribute_bounds_av(scontext, tcontext, tclass, requested, avd,
1012 				 reason);
1013 	return 0;
1014 }
1015 
sepol_validate_transition(sepol_security_id_t oldsid,sepol_security_id_t newsid,sepol_security_id_t tasksid,sepol_security_class_t tclass)1016 int hidden sepol_validate_transition(sepol_security_id_t oldsid,
1017 				     sepol_security_id_t newsid,
1018 				     sepol_security_id_t tasksid,
1019 				     sepol_security_class_t tclass)
1020 {
1021 	context_struct_t *ocontext;
1022 	context_struct_t *ncontext;
1023 	context_struct_t *tcontext;
1024 	class_datum_t *tclass_datum;
1025 	constraint_node_t *constraint;
1026 
1027 	if (!tclass || tclass > policydb->p_classes.nprim) {
1028 		ERR(NULL, "unrecognized class %d", tclass);
1029 		return -EINVAL;
1030 	}
1031 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
1032 
1033 	ocontext = sepol_sidtab_search(sidtab, oldsid);
1034 	if (!ocontext) {
1035 		ERR(NULL, "unrecognized SID %d", oldsid);
1036 		return -EINVAL;
1037 	}
1038 
1039 	ncontext = sepol_sidtab_search(sidtab, newsid);
1040 	if (!ncontext) {
1041 		ERR(NULL, "unrecognized SID %d", newsid);
1042 		return -EINVAL;
1043 	}
1044 
1045 	tcontext = sepol_sidtab_search(sidtab, tasksid);
1046 	if (!tcontext) {
1047 		ERR(NULL, "unrecognized SID %d", tasksid);
1048 		return -EINVAL;
1049 	}
1050 
1051 	constraint = tclass_datum->validatetrans;
1052 	while (constraint) {
1053 		if (!constraint_expr_eval_reason(ocontext, ncontext, tcontext,
1054 					  0, constraint, NULL, 0)) {
1055 			return -EPERM;
1056 		}
1057 		constraint = constraint->next;
1058 	}
1059 
1060 	return 0;
1061 }
1062 
1063 /*
1064  * sepol_validate_transition_reason_buffer - the reason buffer is realloc'd
1065  * in the constraint_expr_eval_reason() function.
1066  */
sepol_validate_transition_reason_buffer(sepol_security_id_t oldsid,sepol_security_id_t newsid,sepol_security_id_t tasksid,sepol_security_class_t tclass,char ** reason_buf,unsigned int flags)1067 int hidden sepol_validate_transition_reason_buffer(sepol_security_id_t oldsid,
1068 				     sepol_security_id_t newsid,
1069 				     sepol_security_id_t tasksid,
1070 				     sepol_security_class_t tclass,
1071 				     char **reason_buf,
1072 				     unsigned int flags)
1073 {
1074 	context_struct_t *ocontext;
1075 	context_struct_t *ncontext;
1076 	context_struct_t *tcontext;
1077 	class_datum_t *tclass_datum;
1078 	constraint_node_t *constraint;
1079 
1080 	if (!tclass || tclass > policydb->p_classes.nprim) {
1081 		ERR(NULL, "unrecognized class %d", tclass);
1082 		return -EINVAL;
1083 	}
1084 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
1085 
1086 	ocontext = sepol_sidtab_search(sidtab, oldsid);
1087 	if (!ocontext) {
1088 		ERR(NULL, "unrecognized SID %d", oldsid);
1089 		return -EINVAL;
1090 	}
1091 
1092 	ncontext = sepol_sidtab_search(sidtab, newsid);
1093 	if (!ncontext) {
1094 		ERR(NULL, "unrecognized SID %d", newsid);
1095 		return -EINVAL;
1096 	}
1097 
1098 	tcontext = sepol_sidtab_search(sidtab, tasksid);
1099 	if (!tcontext) {
1100 		ERR(NULL, "unrecognized SID %d", tasksid);
1101 		return -EINVAL;
1102 	}
1103 
1104 	/*
1105 	 * Set the buffer to NULL as mls/validatetrans may not be processed.
1106 	 * If a buffer is required, then the routines in
1107 	 * constraint_expr_eval_reason will realloc in REASON_BUF_SIZE
1108 	 * chunks (as it gets called for each mls/validatetrans processed).
1109 	 * We just make sure these start from zero.
1110 	 */
1111 	*reason_buf = NULL;
1112 	reason_buf_used = 0;
1113 	reason_buf_len = 0;
1114 	constraint = tclass_datum->validatetrans;
1115 	while (constraint) {
1116 		if (!constraint_expr_eval_reason(ocontext, ncontext, tcontext,
1117 				tclass, constraint, reason_buf, flags)) {
1118 			return -EPERM;
1119 		}
1120 		constraint = constraint->next;
1121 	}
1122 	return 0;
1123 }
1124 
sepol_compute_av_reason(sepol_security_id_t ssid,sepol_security_id_t tsid,sepol_security_class_t tclass,sepol_access_vector_t requested,struct sepol_av_decision * avd,unsigned int * reason)1125 int hidden sepol_compute_av_reason(sepol_security_id_t ssid,
1126 				   sepol_security_id_t tsid,
1127 				   sepol_security_class_t tclass,
1128 				   sepol_access_vector_t requested,
1129 				   struct sepol_av_decision *avd,
1130 				   unsigned int *reason)
1131 {
1132 	context_struct_t *scontext = 0, *tcontext = 0;
1133 	int rc = 0;
1134 
1135 	scontext = sepol_sidtab_search(sidtab, ssid);
1136 	if (!scontext) {
1137 		ERR(NULL, "unrecognized source SID %d", ssid);
1138 		rc = -EINVAL;
1139 		goto out;
1140 	}
1141 	tcontext = sepol_sidtab_search(sidtab, tsid);
1142 	if (!tcontext) {
1143 		ERR(NULL, "unrecognized target SID %d", tsid);
1144 		rc = -EINVAL;
1145 		goto out;
1146 	}
1147 
1148 	rc = context_struct_compute_av(scontext, tcontext, tclass,
1149 					requested, avd, reason, NULL, 0);
1150       out:
1151 	return rc;
1152 }
1153 
1154 /*
1155  * sepol_compute_av_reason_buffer - the reason buffer is malloc'd to
1156  * REASON_BUF_SIZE. If the buffer size is exceeded, then it is realloc'd
1157  * in the constraint_expr_eval_reason() function.
1158  */
sepol_compute_av_reason_buffer(sepol_security_id_t ssid,sepol_security_id_t tsid,sepol_security_class_t tclass,sepol_access_vector_t requested,struct sepol_av_decision * avd,unsigned int * reason,char ** reason_buf,unsigned int flags)1159 int hidden sepol_compute_av_reason_buffer(sepol_security_id_t ssid,
1160 				   sepol_security_id_t tsid,
1161 				   sepol_security_class_t tclass,
1162 				   sepol_access_vector_t requested,
1163 				   struct sepol_av_decision *avd,
1164 				   unsigned int *reason,
1165 				   char **reason_buf,
1166 				   unsigned int flags)
1167 {
1168 	context_struct_t *scontext = 0, *tcontext = 0;
1169 	int rc = 0;
1170 
1171 	scontext = sepol_sidtab_search(sidtab, ssid);
1172 	if (!scontext) {
1173 		ERR(NULL, "unrecognized source SID %d", ssid);
1174 		rc = -EINVAL;
1175 		goto out;
1176 	}
1177 	tcontext = sepol_sidtab_search(sidtab, tsid);
1178 	if (!tcontext) {
1179 		ERR(NULL, "unrecognized target SID %d", tsid);
1180 		rc = -EINVAL;
1181 		goto out;
1182 	}
1183 
1184 	/*
1185 	 * Set the buffer to NULL as constraints may not be processed.
1186 	 * If a buffer is required, then the routines in
1187 	 * constraint_expr_eval_reason will realloc in REASON_BUF_SIZE
1188 	 * chunks (as it gets called for each constraint processed).
1189 	 * We just make sure these start from zero.
1190 	 */
1191 	*reason_buf = NULL;
1192 	reason_buf_used = 0;
1193 	reason_buf_len = 0;
1194 
1195 	rc = context_struct_compute_av(scontext, tcontext, tclass,
1196 					   requested, avd, reason, reason_buf, flags);
1197 out:
1198 	return rc;
1199 }
1200 
sepol_compute_av(sepol_security_id_t ssid,sepol_security_id_t tsid,sepol_security_class_t tclass,sepol_access_vector_t requested,struct sepol_av_decision * avd)1201 int hidden sepol_compute_av(sepol_security_id_t ssid,
1202 			    sepol_security_id_t tsid,
1203 			    sepol_security_class_t tclass,
1204 			    sepol_access_vector_t requested,
1205 			    struct sepol_av_decision *avd)
1206 {
1207 	unsigned int reason = 0;
1208 	return sepol_compute_av_reason(ssid, tsid, tclass, requested, avd,
1209 				       &reason);
1210 }
1211 
1212 /*
1213  * Return a class ID associated with the class string specified by
1214  * class_name.
1215  */
sepol_string_to_security_class(const char * class_name,sepol_security_class_t * tclass)1216 int hidden sepol_string_to_security_class(const char *class_name,
1217 			sepol_security_class_t *tclass)
1218 {
1219 	class_datum_t *tclass_datum;
1220 
1221 	tclass_datum = hashtab_search(policydb->p_classes.table,
1222 				      (hashtab_key_t) class_name);
1223 	if (!tclass_datum) {
1224 		ERR(NULL, "unrecognized class %s", class_name);
1225 		return STATUS_ERR;
1226 	}
1227 	*tclass = tclass_datum->s.value;
1228 	return STATUS_SUCCESS;
1229 }
1230 
1231 /*
1232  * Return access vector bit associated with the class ID and permission
1233  * string.
1234  */
sepol_string_to_av_perm(sepol_security_class_t tclass,const char * perm_name,sepol_access_vector_t * av)1235 int hidden sepol_string_to_av_perm(sepol_security_class_t tclass,
1236 					const char *perm_name,
1237 					sepol_access_vector_t *av)
1238 {
1239 	class_datum_t *tclass_datum;
1240 	perm_datum_t *perm_datum;
1241 
1242 	if (!tclass || tclass > policydb->p_classes.nprim) {
1243 		ERR(NULL, "unrecognized class %d", tclass);
1244 		return -EINVAL;
1245 	}
1246 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
1247 
1248 	/* Check for unique perms then the common ones (if any) */
1249 	perm_datum = (perm_datum_t *)
1250 			hashtab_search(tclass_datum->permissions.table,
1251 			(hashtab_key_t)perm_name);
1252 	if (perm_datum != NULL) {
1253 		*av = 0x1 << (perm_datum->s.value - 1);
1254 		return STATUS_SUCCESS;
1255 	}
1256 
1257 	if (tclass_datum->comdatum == NULL)
1258 		goto out;
1259 
1260 	perm_datum = (perm_datum_t *)
1261 			hashtab_search(tclass_datum->comdatum->permissions.table,
1262 			(hashtab_key_t)perm_name);
1263 
1264 	if (perm_datum != NULL) {
1265 		*av = 0x1 << (perm_datum->s.value - 1);
1266 		return STATUS_SUCCESS;
1267 	}
1268 out:
1269 	ERR(NULL, "could not convert %s to av bit", perm_name);
1270 	return STATUS_ERR;
1271 }
1272 
1273 /*
1274  * Write the security context string representation of
1275  * the context associated with `sid' into a dynamically
1276  * allocated string of the correct size.  Set `*scontext'
1277  * to point to this string and set `*scontext_len' to
1278  * the length of the string.
1279  */
sepol_sid_to_context(sepol_security_id_t sid,sepol_security_context_t * scontext,size_t * scontext_len)1280 int hidden sepol_sid_to_context(sepol_security_id_t sid,
1281 				sepol_security_context_t * scontext,
1282 				size_t * scontext_len)
1283 {
1284 	context_struct_t *context;
1285 	int rc = 0;
1286 
1287 	context = sepol_sidtab_search(sidtab, sid);
1288 	if (!context) {
1289 		ERR(NULL, "unrecognized SID %d", sid);
1290 		rc = -EINVAL;
1291 		goto out;
1292 	}
1293 	rc = context_to_string(NULL, policydb, context, scontext, scontext_len);
1294       out:
1295 	return rc;
1296 
1297 }
1298 
1299 /*
1300  * Return a SID associated with the security context that
1301  * has the string representation specified by `scontext'.
1302  */
sepol_context_to_sid(const sepol_security_context_t scontext,size_t scontext_len,sepol_security_id_t * sid)1303 int hidden sepol_context_to_sid(const sepol_security_context_t scontext,
1304 				size_t scontext_len, sepol_security_id_t * sid)
1305 {
1306 
1307 	context_struct_t *context = NULL;
1308 
1309 	/* First, create the context */
1310 	if (context_from_string(NULL, policydb, &context,
1311 				scontext, scontext_len) < 0)
1312 		goto err;
1313 
1314 	/* Obtain the new sid */
1315 	if (sid && (sepol_sidtab_context_to_sid(sidtab, context, sid) < 0))
1316 		goto err;
1317 
1318 	context_destroy(context);
1319 	free(context);
1320 	return STATUS_SUCCESS;
1321 
1322       err:
1323 	if (context) {
1324 		context_destroy(context);
1325 		free(context);
1326 	}
1327 	ERR(NULL, "could not convert %s to sid", scontext);
1328 	return STATUS_ERR;
1329 }
1330 
compute_sid_handle_invalid_context(context_struct_t * scontext,context_struct_t * tcontext,sepol_security_class_t tclass,context_struct_t * newcontext)1331 static inline int compute_sid_handle_invalid_context(context_struct_t *
1332 						     scontext,
1333 						     context_struct_t *
1334 						     tcontext,
1335 						     sepol_security_class_t
1336 						     tclass,
1337 						     context_struct_t *
1338 						     newcontext)
1339 {
1340 	if (selinux_enforcing) {
1341 		return -EACCES;
1342 	} else {
1343 		sepol_security_context_t s, t, n;
1344 		size_t slen, tlen, nlen;
1345 
1346 		context_to_string(NULL, policydb, scontext, &s, &slen);
1347 		context_to_string(NULL, policydb, tcontext, &t, &tlen);
1348 		context_to_string(NULL, policydb, newcontext, &n, &nlen);
1349 		ERR(NULL, "invalid context %s for "
1350 		    "scontext=%s tcontext=%s tclass=%s",
1351 		    n, s, t, policydb->p_class_val_to_name[tclass - 1]);
1352 		free(s);
1353 		free(t);
1354 		free(n);
1355 		return 0;
1356 	}
1357 }
1358 
sepol_compute_sid(sepol_security_id_t ssid,sepol_security_id_t tsid,sepol_security_class_t tclass,uint32_t specified,sepol_security_id_t * out_sid)1359 static int sepol_compute_sid(sepol_security_id_t ssid,
1360 			     sepol_security_id_t tsid,
1361 			     sepol_security_class_t tclass,
1362 			     uint32_t specified, sepol_security_id_t * out_sid)
1363 {
1364 	context_struct_t *scontext = 0, *tcontext = 0, newcontext;
1365 	struct role_trans *roletr = 0;
1366 	avtab_key_t avkey;
1367 	avtab_datum_t *avdatum;
1368 	avtab_ptr_t node;
1369 	int rc = 0;
1370 
1371 	scontext = sepol_sidtab_search(sidtab, ssid);
1372 	if (!scontext) {
1373 		ERR(NULL, "unrecognized SID %d", ssid);
1374 		rc = -EINVAL;
1375 		goto out;
1376 	}
1377 	tcontext = sepol_sidtab_search(sidtab, tsid);
1378 	if (!tcontext) {
1379 		ERR(NULL, "unrecognized SID %d", tsid);
1380 		rc = -EINVAL;
1381 		goto out;
1382 	}
1383 
1384 	context_init(&newcontext);
1385 
1386 	/* Set the user identity. */
1387 	switch (specified) {
1388 	case AVTAB_TRANSITION:
1389 	case AVTAB_CHANGE:
1390 		/* Use the process user identity. */
1391 		newcontext.user = scontext->user;
1392 		break;
1393 	case AVTAB_MEMBER:
1394 		/* Use the related object owner. */
1395 		newcontext.user = tcontext->user;
1396 		break;
1397 	}
1398 
1399 	/* Set the role and type to default values. */
1400 	switch (tclass) {
1401 	case SECCLASS_PROCESS:
1402 		/* Use the current role and type of process. */
1403 		newcontext.role = scontext->role;
1404 		newcontext.type = scontext->type;
1405 		break;
1406 	default:
1407 		/* Use the well-defined object role. */
1408 		newcontext.role = OBJECT_R_VAL;
1409 		/* Use the type of the related object. */
1410 		newcontext.type = tcontext->type;
1411 	}
1412 
1413 	/* Look for a type transition/member/change rule. */
1414 	avkey.source_type = scontext->type;
1415 	avkey.target_type = tcontext->type;
1416 	avkey.target_class = tclass;
1417 	avkey.specified = specified;
1418 	avdatum = avtab_search(&policydb->te_avtab, &avkey);
1419 
1420 	/* If no permanent rule, also check for enabled conditional rules */
1421 	if (!avdatum) {
1422 		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1423 		for (; node != NULL;
1424 		     node = avtab_search_node_next(node, specified)) {
1425 			if (node->key.specified & AVTAB_ENABLED) {
1426 				avdatum = &node->datum;
1427 				break;
1428 			}
1429 		}
1430 	}
1431 
1432 	if (avdatum) {
1433 		/* Use the type from the type transition/member/change rule. */
1434 		newcontext.type = avdatum->data;
1435 	}
1436 
1437 	/* Check for class-specific changes. */
1438 	switch (tclass) {
1439 	case SECCLASS_PROCESS:
1440 		if (specified & AVTAB_TRANSITION) {
1441 			/* Look for a role transition rule. */
1442 			for (roletr = policydb->role_tr; roletr;
1443 			     roletr = roletr->next) {
1444 				if (roletr->role == scontext->role &&
1445 				    roletr->type == tcontext->type) {
1446 					/* Use the role transition rule. */
1447 					newcontext.role = roletr->new_role;
1448 					break;
1449 				}
1450 			}
1451 		}
1452 		break;
1453 	default:
1454 		break;
1455 	}
1456 
1457 	/* Set the MLS attributes.
1458 	   This is done last because it may allocate memory. */
1459 	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1460 			     &newcontext);
1461 	if (rc)
1462 		goto out;
1463 
1464 	/* Check the validity of the context. */
1465 	if (!policydb_context_isvalid(policydb, &newcontext)) {
1466 		rc = compute_sid_handle_invalid_context(scontext,
1467 							tcontext,
1468 							tclass, &newcontext);
1469 		if (rc)
1470 			goto out;
1471 	}
1472 	/* Obtain the sid for the context. */
1473 	rc = sepol_sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1474       out:
1475 	context_destroy(&newcontext);
1476 	return rc;
1477 }
1478 
1479 /*
1480  * Compute a SID to use for labeling a new object in the
1481  * class `tclass' based on a SID pair.
1482  */
sepol_transition_sid(sepol_security_id_t ssid,sepol_security_id_t tsid,sepol_security_class_t tclass,sepol_security_id_t * out_sid)1483 int hidden sepol_transition_sid(sepol_security_id_t ssid,
1484 				sepol_security_id_t tsid,
1485 				sepol_security_class_t tclass,
1486 				sepol_security_id_t * out_sid)
1487 {
1488 	return sepol_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION, out_sid);
1489 }
1490 
1491 /*
1492  * Compute a SID to use when selecting a member of a
1493  * polyinstantiated object of class `tclass' based on
1494  * a SID pair.
1495  */
sepol_member_sid(sepol_security_id_t ssid,sepol_security_id_t tsid,sepol_security_class_t tclass,sepol_security_id_t * out_sid)1496 int hidden sepol_member_sid(sepol_security_id_t ssid,
1497 			    sepol_security_id_t tsid,
1498 			    sepol_security_class_t tclass,
1499 			    sepol_security_id_t * out_sid)
1500 {
1501 	return sepol_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, out_sid);
1502 }
1503 
1504 /*
1505  * Compute a SID to use for relabeling an object in the
1506  * class `tclass' based on a SID pair.
1507  */
sepol_change_sid(sepol_security_id_t ssid,sepol_security_id_t tsid,sepol_security_class_t tclass,sepol_security_id_t * out_sid)1508 int hidden sepol_change_sid(sepol_security_id_t ssid,
1509 			    sepol_security_id_t tsid,
1510 			    sepol_security_class_t tclass,
1511 			    sepol_security_id_t * out_sid)
1512 {
1513 	return sepol_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, out_sid);
1514 }
1515 
1516 /*
1517  * Verify that each permission that is defined under the
1518  * existing policy is still defined with the same value
1519  * in the new policy.
1520  */
validate_perm(hashtab_key_t key,hashtab_datum_t datum,void * p)1521 static int validate_perm(hashtab_key_t key, hashtab_datum_t datum, void *p)
1522 {
1523 	hashtab_t h;
1524 	perm_datum_t *perdatum, *perdatum2;
1525 
1526 	h = (hashtab_t) p;
1527 	perdatum = (perm_datum_t *) datum;
1528 
1529 	perdatum2 = (perm_datum_t *) hashtab_search(h, key);
1530 	if (!perdatum2) {
1531 		ERR(NULL, "permission %s disappeared", key);
1532 		return -1;
1533 	}
1534 	if (perdatum->s.value != perdatum2->s.value) {
1535 		ERR(NULL, "the value of permissions %s changed", key);
1536 		return -1;
1537 	}
1538 	return 0;
1539 }
1540 
1541 /*
1542  * Verify that each class that is defined under the
1543  * existing policy is still defined with the same
1544  * attributes in the new policy.
1545  */
validate_class(hashtab_key_t key,hashtab_datum_t datum,void * p)1546 static int validate_class(hashtab_key_t key, hashtab_datum_t datum, void *p)
1547 {
1548 	policydb_t *newp;
1549 	class_datum_t *cladatum, *cladatum2;
1550 
1551 	newp = (policydb_t *) p;
1552 	cladatum = (class_datum_t *) datum;
1553 
1554 	cladatum2 =
1555 	    (class_datum_t *) hashtab_search(newp->p_classes.table, key);
1556 	if (!cladatum2) {
1557 		ERR(NULL, "class %s disappeared", key);
1558 		return -1;
1559 	}
1560 	if (cladatum->s.value != cladatum2->s.value) {
1561 		ERR(NULL, "the value of class %s changed", key);
1562 		return -1;
1563 	}
1564 	if ((cladatum->comdatum && !cladatum2->comdatum) ||
1565 	    (!cladatum->comdatum && cladatum2->comdatum)) {
1566 		ERR(NULL, "the inherits clause for the access "
1567 		    "vector definition for class %s changed", key);
1568 		return -1;
1569 	}
1570 	if (cladatum->comdatum) {
1571 		if (hashtab_map
1572 		    (cladatum->comdatum->permissions.table, validate_perm,
1573 		     cladatum2->comdatum->permissions.table)) {
1574 			ERR(NULL,
1575 			    " in the access vector definition "
1576 			    "for class %s\n", key);
1577 			return -1;
1578 		}
1579 	}
1580 	if (hashtab_map(cladatum->permissions.table, validate_perm,
1581 			cladatum2->permissions.table)) {
1582 		ERR(NULL, " in access vector definition for class %s", key);
1583 		return -1;
1584 	}
1585 	return 0;
1586 }
1587 
1588 /* Clone the SID into the new SID table. */
clone_sid(sepol_security_id_t sid,context_struct_t * context,void * arg)1589 static int clone_sid(sepol_security_id_t sid,
1590 		     context_struct_t * context, void *arg)
1591 {
1592 	sidtab_t *s = arg;
1593 
1594 	return sepol_sidtab_insert(s, sid, context);
1595 }
1596 
convert_context_handle_invalid_context(context_struct_t * context)1597 static inline int convert_context_handle_invalid_context(context_struct_t *
1598 							 context)
1599 {
1600 	if (selinux_enforcing) {
1601 		return -EINVAL;
1602 	} else {
1603 		sepol_security_context_t s;
1604 		size_t len;
1605 
1606 		context_to_string(NULL, policydb, context, &s, &len);
1607 		ERR(NULL, "context %s is invalid", s);
1608 		free(s);
1609 		return 0;
1610 	}
1611 }
1612 
1613 typedef struct {
1614 	policydb_t *oldp;
1615 	policydb_t *newp;
1616 } convert_context_args_t;
1617 
1618 /*
1619  * Convert the values in the security context
1620  * structure `c' from the values specified
1621  * in the policy `p->oldp' to the values specified
1622  * in the policy `p->newp'.  Verify that the
1623  * context is valid under the new policy.
1624  */
convert_context(sepol_security_id_t key,context_struct_t * c,void * p)1625 static int convert_context(sepol_security_id_t key __attribute__ ((unused)),
1626 			   context_struct_t * c, void *p)
1627 {
1628 	convert_context_args_t *args;
1629 	context_struct_t oldc;
1630 	role_datum_t *role;
1631 	type_datum_t *typdatum;
1632 	user_datum_t *usrdatum;
1633 	sepol_security_context_t s;
1634 	size_t len;
1635 	int rc = -EINVAL;
1636 
1637 	args = (convert_context_args_t *) p;
1638 
1639 	if (context_cpy(&oldc, c))
1640 		return -ENOMEM;
1641 
1642 	/* Convert the user. */
1643 	usrdatum = (user_datum_t *) hashtab_search(args->newp->p_users.table,
1644 						   args->oldp->
1645 						   p_user_val_to_name[c->user -
1646 								      1]);
1647 
1648 	if (!usrdatum) {
1649 		goto bad;
1650 	}
1651 	c->user = usrdatum->s.value;
1652 
1653 	/* Convert the role. */
1654 	role = (role_datum_t *) hashtab_search(args->newp->p_roles.table,
1655 					       args->oldp->
1656 					       p_role_val_to_name[c->role - 1]);
1657 	if (!role) {
1658 		goto bad;
1659 	}
1660 	c->role = role->s.value;
1661 
1662 	/* Convert the type. */
1663 	typdatum = (type_datum_t *)
1664 	    hashtab_search(args->newp->p_types.table,
1665 			   args->oldp->p_type_val_to_name[c->type - 1]);
1666 	if (!typdatum) {
1667 		goto bad;
1668 	}
1669 	c->type = typdatum->s.value;
1670 
1671 	rc = mls_convert_context(args->oldp, args->newp, c);
1672 	if (rc)
1673 		goto bad;
1674 
1675 	/* Check the validity of the new context. */
1676 	if (!policydb_context_isvalid(args->newp, c)) {
1677 		rc = convert_context_handle_invalid_context(&oldc);
1678 		if (rc)
1679 			goto bad;
1680 	}
1681 
1682 	context_destroy(&oldc);
1683 	return 0;
1684 
1685       bad:
1686 	context_to_string(NULL, policydb, &oldc, &s, &len);
1687 	context_destroy(&oldc);
1688 	ERR(NULL, "invalidating context %s", s);
1689 	free(s);
1690 	return rc;
1691 }
1692 
1693 /* Reading from a policy "file". */
next_entry(void * buf,struct policy_file * fp,size_t bytes)1694 int hidden next_entry(void *buf, struct policy_file *fp, size_t bytes)
1695 {
1696 	size_t nread;
1697 
1698 	switch (fp->type) {
1699 	case PF_USE_STDIO:
1700 		nread = fread(buf, bytes, 1, fp->fp);
1701 
1702 		if (nread != 1)
1703 			return -1;
1704 		break;
1705 	case PF_USE_MEMORY:
1706 		if (bytes > fp->len) {
1707 			errno = EOVERFLOW;
1708 			return -1;
1709 		}
1710 		memcpy(buf, fp->data, bytes);
1711 		fp->data += bytes;
1712 		fp->len -= bytes;
1713 		break;
1714 	default:
1715 		errno = EINVAL;
1716 		return -1;
1717 	}
1718 	return 0;
1719 }
1720 
put_entry(const void * ptr,size_t size,size_t n,struct policy_file * fp)1721 size_t hidden put_entry(const void *ptr, size_t size, size_t n,
1722 			struct policy_file *fp)
1723 {
1724 	size_t bytes = size * n;
1725 
1726 	switch (fp->type) {
1727 	case PF_USE_STDIO:
1728 		return fwrite(ptr, size, n, fp->fp);
1729 	case PF_USE_MEMORY:
1730 		if (bytes > fp->len) {
1731 			errno = ENOSPC;
1732 			return 0;
1733 		}
1734 
1735 		memcpy(fp->data, ptr, bytes);
1736 		fp->data += bytes;
1737 		fp->len -= bytes;
1738 		return n;
1739 	case PF_LEN:
1740 		fp->len += bytes;
1741 		return n;
1742 	default:
1743 		return 0;
1744 	}
1745 	return 0;
1746 }
1747 
1748 /*
1749  * Reads a string and null terminates it from the policy file.
1750  * This is a port of str_read from the SE Linux kernel code.
1751  *
1752  * It returns:
1753  *   0 - Success
1754  *  -1 - Failure with errno set
1755  */
str_read(char ** strp,struct policy_file * fp,size_t len)1756 int hidden str_read(char **strp, struct policy_file *fp, size_t len)
1757 {
1758 	int rc;
1759 	char *str;
1760 
1761 	if (zero_or_saturated(len)) {
1762 		errno = EINVAL;
1763 		return -1;
1764 	}
1765 
1766 	str = malloc(len + 1);
1767 	if (!str)
1768 		return -1;
1769 
1770 	/* it's expected the caller should free the str */
1771 	*strp = str;
1772 
1773 	/* next_entry sets errno */
1774 	rc = next_entry(str, fp, len);
1775 	if (rc)
1776 		return rc;
1777 
1778 	str[len] = '\0';
1779 	return 0;
1780 }
1781 
1782 /*
1783  * Read a new set of configuration data from
1784  * a policy database binary representation file.
1785  *
1786  * Verify that each class that is defined under the
1787  * existing policy is still defined with the same
1788  * attributes in the new policy.
1789  *
1790  * Convert the context structures in the SID table to the
1791  * new representation and verify that all entries
1792  * in the SID table are valid under the new policy.
1793  *
1794  * Change the active policy database to use the new
1795  * configuration data.
1796  *
1797  * Reset the access vector cache.
1798  */
sepol_load_policy(void * data,size_t len)1799 int hidden sepol_load_policy(void *data, size_t len)
1800 {
1801 	policydb_t oldpolicydb, newpolicydb;
1802 	sidtab_t oldsidtab, newsidtab;
1803 	convert_context_args_t args;
1804 	int rc = 0;
1805 	struct policy_file file, *fp;
1806 
1807 	policy_file_init(&file);
1808 	file.type = PF_USE_MEMORY;
1809 	file.data = data;
1810 	file.len = len;
1811 	fp = &file;
1812 
1813 	if (policydb_init(&newpolicydb))
1814 		return -ENOMEM;
1815 
1816 	if (policydb_read(&newpolicydb, fp, 1)) {
1817 		policydb_destroy(&mypolicydb);
1818 		return -EINVAL;
1819 	}
1820 
1821 	sepol_sidtab_init(&newsidtab);
1822 
1823 	/* Verify that the existing classes did not change. */
1824 	if (hashtab_map
1825 	    (policydb->p_classes.table, validate_class, &newpolicydb)) {
1826 		ERR(NULL, "the definition of an existing class changed");
1827 		rc = -EINVAL;
1828 		goto err;
1829 	}
1830 
1831 	/* Clone the SID table. */
1832 	sepol_sidtab_shutdown(sidtab);
1833 	if (sepol_sidtab_map(sidtab, clone_sid, &newsidtab)) {
1834 		rc = -ENOMEM;
1835 		goto err;
1836 	}
1837 
1838 	/* Convert the internal representations of contexts
1839 	   in the new SID table and remove invalid SIDs. */
1840 	args.oldp = policydb;
1841 	args.newp = &newpolicydb;
1842 	sepol_sidtab_map_remove_on_error(&newsidtab, convert_context, &args);
1843 
1844 	/* Save the old policydb and SID table to free later. */
1845 	memcpy(&oldpolicydb, policydb, sizeof *policydb);
1846 	sepol_sidtab_set(&oldsidtab, sidtab);
1847 
1848 	/* Install the new policydb and SID table. */
1849 	memcpy(policydb, &newpolicydb, sizeof *policydb);
1850 	sepol_sidtab_set(sidtab, &newsidtab);
1851 
1852 	/* Free the old policydb and SID table. */
1853 	policydb_destroy(&oldpolicydb);
1854 	sepol_sidtab_destroy(&oldsidtab);
1855 
1856 	return 0;
1857 
1858       err:
1859 	sepol_sidtab_destroy(&newsidtab);
1860 	policydb_destroy(&newpolicydb);
1861 	return rc;
1862 
1863 }
1864 
1865 /*
1866  * Return the SIDs to use for an unlabeled file system
1867  * that is being mounted from the device with the
1868  * the kdevname `name'.  The `fs_sid' SID is returned for
1869  * the file system and the `file_sid' SID is returned
1870  * for all files within that file system.
1871  */
sepol_fs_sid(char * name,sepol_security_id_t * fs_sid,sepol_security_id_t * file_sid)1872 int hidden sepol_fs_sid(char *name,
1873 			sepol_security_id_t * fs_sid,
1874 			sepol_security_id_t * file_sid)
1875 {
1876 	int rc = 0;
1877 	ocontext_t *c;
1878 
1879 	c = policydb->ocontexts[OCON_FS];
1880 	while (c) {
1881 		if (strcmp(c->u.name, name) == 0)
1882 			break;
1883 		c = c->next;
1884 	}
1885 
1886 	if (c) {
1887 		if (!c->sid[0] || !c->sid[1]) {
1888 			rc = sepol_sidtab_context_to_sid(sidtab,
1889 							 &c->context[0],
1890 							 &c->sid[0]);
1891 			if (rc)
1892 				goto out;
1893 			rc = sepol_sidtab_context_to_sid(sidtab,
1894 							 &c->context[1],
1895 							 &c->sid[1]);
1896 			if (rc)
1897 				goto out;
1898 		}
1899 		*fs_sid = c->sid[0];
1900 		*file_sid = c->sid[1];
1901 	} else {
1902 		*fs_sid = SECINITSID_FS;
1903 		*file_sid = SECINITSID_FILE;
1904 	}
1905 
1906       out:
1907 	return rc;
1908 }
1909 
1910 /*
1911  * Return the SID of the ibpkey specified by
1912  * `subnet prefix', and `pkey number'.
1913  */
sepol_ibpkey_sid(uint64_t subnet_prefix,uint16_t pkey,sepol_security_id_t * out_sid)1914 int hidden sepol_ibpkey_sid(uint64_t subnet_prefix,
1915 			    uint16_t pkey, sepol_security_id_t *out_sid)
1916 {
1917 	ocontext_t *c;
1918 	int rc = 0;
1919 
1920 	c = policydb->ocontexts[OCON_IBPKEY];
1921 	while (c) {
1922 		if (c->u.ibpkey.low_pkey <= pkey &&
1923 		    c->u.ibpkey.high_pkey >= pkey &&
1924 		    subnet_prefix == c->u.ibpkey.subnet_prefix)
1925 			break;
1926 		c = c->next;
1927 	}
1928 
1929 	if (c) {
1930 		if (!c->sid[0]) {
1931 			rc = sepol_sidtab_context_to_sid(sidtab,
1932 							 &c->context[0],
1933 							 &c->sid[0]);
1934 			if (rc)
1935 				goto out;
1936 		}
1937 		*out_sid = c->sid[0];
1938 	} else {
1939 		*out_sid = SECINITSID_UNLABELED;
1940 	}
1941 
1942 out:
1943 	return rc;
1944 }
1945 
1946 /*
1947  * Return the SID of the subnet management interface specified by
1948  * `device name', and `port'.
1949  */
sepol_ibendport_sid(char * dev_name,uint8_t port,sepol_security_id_t * out_sid)1950 int hidden sepol_ibendport_sid(char *dev_name,
1951 			       uint8_t port,
1952 			       sepol_security_id_t *out_sid)
1953 {
1954 	ocontext_t *c;
1955 	int rc = 0;
1956 
1957 	c = policydb->ocontexts[OCON_IBENDPORT];
1958 	while (c) {
1959 		if (c->u.ibendport.port == port &&
1960 		    !strcmp(dev_name, c->u.ibendport.dev_name))
1961 			break;
1962 		c = c->next;
1963 	}
1964 
1965 	if (c) {
1966 		if (!c->sid[0]) {
1967 			rc = sepol_sidtab_context_to_sid(sidtab,
1968 							 &c->context[0],
1969 							 &c->sid[0]);
1970 			if (rc)
1971 				goto out;
1972 		}
1973 		*out_sid = c->sid[0];
1974 	} else {
1975 		*out_sid = SECINITSID_UNLABELED;
1976 	}
1977 
1978 out:
1979 	return rc;
1980 }
1981 
1982 
1983 /*
1984  * Return the SID of the port specified by
1985  * `domain', `type', `protocol', and `port'.
1986  */
sepol_port_sid(uint16_t domain,uint16_t type,uint8_t protocol,uint16_t port,sepol_security_id_t * out_sid)1987 int hidden sepol_port_sid(uint16_t domain __attribute__ ((unused)),
1988 			  uint16_t type __attribute__ ((unused)),
1989 			  uint8_t protocol,
1990 			  uint16_t port, sepol_security_id_t * out_sid)
1991 {
1992 	ocontext_t *c;
1993 	int rc = 0;
1994 
1995 	c = policydb->ocontexts[OCON_PORT];
1996 	while (c) {
1997 		if (c->u.port.protocol == protocol &&
1998 		    c->u.port.low_port <= port && c->u.port.high_port >= port)
1999 			break;
2000 		c = c->next;
2001 	}
2002 
2003 	if (c) {
2004 		if (!c->sid[0]) {
2005 			rc = sepol_sidtab_context_to_sid(sidtab,
2006 							 &c->context[0],
2007 							 &c->sid[0]);
2008 			if (rc)
2009 				goto out;
2010 		}
2011 		*out_sid = c->sid[0];
2012 	} else {
2013 		*out_sid = SECINITSID_PORT;
2014 	}
2015 
2016       out:
2017 	return rc;
2018 }
2019 
2020 /*
2021  * Return the SIDs to use for a network interface
2022  * with the name `name'.  The `if_sid' SID is returned for
2023  * the interface and the `msg_sid' SID is returned as
2024  * the default SID for messages received on the
2025  * interface.
2026  */
sepol_netif_sid(char * name,sepol_security_id_t * if_sid,sepol_security_id_t * msg_sid)2027 int hidden sepol_netif_sid(char *name,
2028 			   sepol_security_id_t * if_sid,
2029 			   sepol_security_id_t * msg_sid)
2030 {
2031 	int rc = 0;
2032 	ocontext_t *c;
2033 
2034 	c = policydb->ocontexts[OCON_NETIF];
2035 	while (c) {
2036 		if (strcmp(name, c->u.name) == 0)
2037 			break;
2038 		c = c->next;
2039 	}
2040 
2041 	if (c) {
2042 		if (!c->sid[0] || !c->sid[1]) {
2043 			rc = sepol_sidtab_context_to_sid(sidtab,
2044 							 &c->context[0],
2045 							 &c->sid[0]);
2046 			if (rc)
2047 				goto out;
2048 			rc = sepol_sidtab_context_to_sid(sidtab,
2049 							 &c->context[1],
2050 							 &c->sid[1]);
2051 			if (rc)
2052 				goto out;
2053 		}
2054 		*if_sid = c->sid[0];
2055 		*msg_sid = c->sid[1];
2056 	} else {
2057 		*if_sid = SECINITSID_NETIF;
2058 		*msg_sid = SECINITSID_NETMSG;
2059 	}
2060 
2061       out:
2062 	return rc;
2063 }
2064 
match_ipv6_addrmask(uint32_t * input,uint32_t * addr,uint32_t * mask)2065 static int match_ipv6_addrmask(uint32_t * input, uint32_t * addr,
2066 			       uint32_t * mask)
2067 {
2068 	int i, fail = 0;
2069 
2070 	for (i = 0; i < 4; i++)
2071 		if (addr[i] != (input[i] & mask[i])) {
2072 			fail = 1;
2073 			break;
2074 		}
2075 
2076 	return !fail;
2077 }
2078 
2079 /*
2080  * Return the SID of the node specified by the address
2081  * `addrp' where `addrlen' is the length of the address
2082  * in bytes and `domain' is the communications domain or
2083  * address family in which the address should be interpreted.
2084  */
sepol_node_sid(uint16_t domain,void * addrp,size_t addrlen,sepol_security_id_t * out_sid)2085 int hidden sepol_node_sid(uint16_t domain,
2086 			  void *addrp,
2087 			  size_t addrlen, sepol_security_id_t * out_sid)
2088 {
2089 	int rc = 0;
2090 	ocontext_t *c;
2091 
2092 	switch (domain) {
2093 	case AF_INET:{
2094 			uint32_t addr;
2095 
2096 			if (addrlen != sizeof(uint32_t)) {
2097 				rc = -EINVAL;
2098 				goto out;
2099 			}
2100 
2101 			addr = *((uint32_t *) addrp);
2102 
2103 			c = policydb->ocontexts[OCON_NODE];
2104 			while (c) {
2105 				if (c->u.node.addr == (addr & c->u.node.mask))
2106 					break;
2107 				c = c->next;
2108 			}
2109 			break;
2110 		}
2111 
2112 	case AF_INET6:
2113 		if (addrlen != sizeof(uint64_t) * 2) {
2114 			rc = -EINVAL;
2115 			goto out;
2116 		}
2117 
2118 		c = policydb->ocontexts[OCON_NODE6];
2119 		while (c) {
2120 			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2121 						c->u.node6.mask))
2122 				break;
2123 			c = c->next;
2124 		}
2125 		break;
2126 
2127 	default:
2128 		*out_sid = SECINITSID_NODE;
2129 		goto out;
2130 	}
2131 
2132 	if (c) {
2133 		if (!c->sid[0]) {
2134 			rc = sepol_sidtab_context_to_sid(sidtab,
2135 							 &c->context[0],
2136 							 &c->sid[0]);
2137 			if (rc)
2138 				goto out;
2139 		}
2140 		*out_sid = c->sid[0];
2141 	} else {
2142 		*out_sid = SECINITSID_NODE;
2143 	}
2144 
2145       out:
2146 	return rc;
2147 }
2148 
2149 /*
2150  * Generate the set of SIDs for legal security contexts
2151  * for a given user that can be reached by `fromsid'.
2152  * Set `*sids' to point to a dynamically allocated
2153  * array containing the set of SIDs.  Set `*nel' to the
2154  * number of elements in the array.
2155  */
2156 #define SIDS_NEL 25
2157 
sepol_get_user_sids(sepol_security_id_t fromsid,char * username,sepol_security_id_t ** sids,uint32_t * nel)2158 int hidden sepol_get_user_sids(sepol_security_id_t fromsid,
2159 			       char *username,
2160 			       sepol_security_id_t ** sids, uint32_t * nel)
2161 {
2162 	context_struct_t *fromcon, usercon;
2163 	sepol_security_id_t *mysids, *mysids2, sid;
2164 	uint32_t mynel = 0, maxnel = SIDS_NEL;
2165 	user_datum_t *user;
2166 	role_datum_t *role;
2167 	struct sepol_av_decision avd;
2168 	int rc = 0;
2169 	unsigned int i, j, reason;
2170 	ebitmap_node_t *rnode, *tnode;
2171 
2172 	fromcon = sepol_sidtab_search(sidtab, fromsid);
2173 	if (!fromcon) {
2174 		rc = -EINVAL;
2175 		goto out;
2176 	}
2177 
2178 	user = (user_datum_t *) hashtab_search(policydb->p_users.table,
2179 					       username);
2180 	if (!user) {
2181 		rc = -EINVAL;
2182 		goto out;
2183 	}
2184 	usercon.user = user->s.value;
2185 
2186 	mysids = malloc(maxnel * sizeof(sepol_security_id_t));
2187 	if (!mysids) {
2188 		rc = -ENOMEM;
2189 		goto out;
2190 	}
2191 	memset(mysids, 0, maxnel * sizeof(sepol_security_id_t));
2192 
2193 	ebitmap_for_each_positive_bit(&user->roles.roles, rnode, i) {
2194 		role = policydb->role_val_to_struct[i];
2195 		usercon.role = i + 1;
2196 		ebitmap_for_each_positive_bit(&role->types.types, tnode, j) {
2197 			usercon.type = j + 1;
2198 			if (usercon.type == fromcon->type)
2199 				continue;
2200 
2201 			if (mls_setup_user_range
2202 			    (fromcon, user, &usercon, policydb->mls))
2203 				continue;
2204 
2205 			rc = context_struct_compute_av(fromcon, &usercon,
2206 						       SECCLASS_PROCESS,
2207 						       PROCESS__TRANSITION,
2208 						       &avd, &reason, NULL, 0);
2209 			if (rc || !(avd.allowed & PROCESS__TRANSITION))
2210 				continue;
2211 			rc = sepol_sidtab_context_to_sid(sidtab, &usercon,
2212 							 &sid);
2213 			if (rc) {
2214 				free(mysids);
2215 				goto out;
2216 			}
2217 			if (mynel < maxnel) {
2218 				mysids[mynel++] = sid;
2219 			} else {
2220 				maxnel += SIDS_NEL;
2221 				mysids2 =
2222 				    malloc(maxnel *
2223 					   sizeof(sepol_security_id_t));
2224 
2225 				if (!mysids2) {
2226 					rc = -ENOMEM;
2227 					free(mysids);
2228 					goto out;
2229 				}
2230 				memset(mysids2, 0,
2231 				       maxnel * sizeof(sepol_security_id_t));
2232 				memcpy(mysids2, mysids,
2233 				       mynel * sizeof(sepol_security_id_t));
2234 				free(mysids);
2235 				mysids = mysids2;
2236 				mysids[mynel++] = sid;
2237 			}
2238 		}
2239 	}
2240 
2241 	*sids = mysids;
2242 	*nel = mynel;
2243 
2244       out:
2245 	return rc;
2246 }
2247 
2248 /*
2249  * Return the SID to use for a file in a filesystem
2250  * that cannot support a persistent label mapping or use another
2251  * fixed labeling behavior like transition SIDs or task SIDs.
2252  */
sepol_genfs_sid(const char * fstype,const char * path,sepol_security_class_t sclass,sepol_security_id_t * sid)2253 int hidden sepol_genfs_sid(const char *fstype,
2254 			   const char *path,
2255 			   sepol_security_class_t sclass,
2256 			   sepol_security_id_t * sid)
2257 {
2258 	size_t len;
2259 	genfs_t *genfs;
2260 	ocontext_t *c;
2261 	int rc = 0, cmp = 0;
2262 
2263 	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2264 		cmp = strcmp(fstype, genfs->fstype);
2265 		if (cmp <= 0)
2266 			break;
2267 	}
2268 
2269 	if (!genfs || cmp) {
2270 		*sid = SECINITSID_UNLABELED;
2271 		rc = -ENOENT;
2272 		goto out;
2273 	}
2274 
2275 	for (c = genfs->head; c; c = c->next) {
2276 		len = strlen(c->u.name);
2277 		if ((!c->v.sclass || sclass == c->v.sclass) &&
2278 		    (strncmp(c->u.name, path, len) == 0))
2279 			break;
2280 	}
2281 
2282 	if (!c) {
2283 		*sid = SECINITSID_UNLABELED;
2284 		rc = -ENOENT;
2285 		goto out;
2286 	}
2287 
2288 	if (!c->sid[0]) {
2289 		rc = sepol_sidtab_context_to_sid(sidtab,
2290 						 &c->context[0], &c->sid[0]);
2291 		if (rc)
2292 			goto out;
2293 	}
2294 
2295 	*sid = c->sid[0];
2296       out:
2297 	return rc;
2298 }
2299 
sepol_fs_use(const char * fstype,unsigned int * behavior,sepol_security_id_t * sid)2300 int hidden sepol_fs_use(const char *fstype,
2301 			unsigned int *behavior, sepol_security_id_t * sid)
2302 {
2303 	int rc = 0;
2304 	ocontext_t *c;
2305 
2306 	c = policydb->ocontexts[OCON_FSUSE];
2307 	while (c) {
2308 		if (strcmp(fstype, c->u.name) == 0)
2309 			break;
2310 		c = c->next;
2311 	}
2312 
2313 	if (c) {
2314 		*behavior = c->v.behavior;
2315 		if (!c->sid[0]) {
2316 			rc = sepol_sidtab_context_to_sid(sidtab,
2317 							 &c->context[0],
2318 							 &c->sid[0]);
2319 			if (rc)
2320 				goto out;
2321 		}
2322 		*sid = c->sid[0];
2323 	} else {
2324 		rc = sepol_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
2325 		if (rc) {
2326 			*behavior = SECURITY_FS_USE_NONE;
2327 			rc = 0;
2328 		} else {
2329 			*behavior = SECURITY_FS_USE_GENFS;
2330 		}
2331 	}
2332 
2333       out:
2334 	return rc;
2335 }
2336 
2337 /* FLASK */
2338