• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2017 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define LOG_TAG "Memory"
18 
19 #include "Memory.h"
20 
21 #include <CpuExecutor.h>
22 #include <LegacyUtils.h>
23 #include <android-base/scopeguard.h>
24 #include <android/hardware_buffer.h>
25 #include <nnapi/IBurst.h>
26 #include <nnapi/SharedMemory.h>
27 #include <nnapi/TypeUtils.h>
28 #include <nnapi/Types.h>
29 
30 #include <algorithm>
31 #include <memory>
32 #include <set>
33 #include <tuple>
34 #include <utility>
35 #include <vector>
36 
37 #include "CompilationBuilder.h"
38 #include "Manager.h"
39 #include "TypeManager.h"
40 
41 namespace android {
42 namespace nn {
43 namespace {
44 
45 // The validator for a client-managed single-dimensional memory pool with a known size.
46 // The memory may be used for request inputs, request outputs, or model constants.
47 class SizedMemoryValidator : public MemoryValidatorBase {
48    public:
SizedMemoryValidator(uint32_t size)49     explicit SizedMemoryValidator(uint32_t size) : kSize(size) {}
50 
validate(const CompilationBuilder *,IOType,uint32_t,const ANeuralNetworksOperandType *,uint32_t offset,uint32_t length) const51     bool validate(const CompilationBuilder*, IOType, uint32_t, const ANeuralNetworksOperandType*,
52                   uint32_t offset, uint32_t length) const override {
53         NN_RET_CHECK(offset + length <= kSize) << "request size larger than the memory size.";
54         NN_RET_CHECK(offset != 0 || length != 0) << "memory size cannot be implied.";
55         return true;
56     }
57 
getMetadata() const58     Metadata getMetadata() const override { return {.logicalSize = kSize}; }
updateMetadata(const Metadata & metadata)59     bool updateMetadata(const Metadata& metadata) override {
60         return metadata.logicalSize == 0 || metadata.logicalSize == kSize;
61     }
62 
63    private:
64     const uint32_t kSize;
65 };
66 
67 // The validator for an AHardwareBuffer with Non-BLOB format.
68 // We require the memory only used for request inputs or request outputs,
69 // with both offset and length set to zero.
70 class AHardwareBufferNonBlobValidator : public MemoryValidatorBase {
71    public:
72     AHardwareBufferNonBlobValidator() = default;
73 
validate(const CompilationBuilder * compilation,IOType,uint32_t,const ANeuralNetworksOperandType *,uint32_t offset,uint32_t length) const74     bool validate(const CompilationBuilder* compilation, IOType, uint32_t,
75                   const ANeuralNetworksOperandType*, uint32_t offset,
76                   uint32_t length) const override {
77         NN_RET_CHECK(compilation != nullptr)
78                 << "cannot use Non-BLOB AHardwareBuffer as model constant";
79         NN_RET_CHECK(offset == 0 && length == 0)
80                 << "non-zero offset (" << offset << ") and/or length (" << length
81                 << ") for Non-BLOB format AHardwareBuffer.";
82         return true;
83     }
84 
getMetadata() const85     Metadata getMetadata() const override { return {}; }
updateMetadata(const Metadata &)86     bool updateMetadata(const Metadata&) override { return true; }
87 };
88 
89 // The validator for a memory created from ANNMemory_createFromDesc.
90 // We require the memory only used as one of the pre-specified roles,
91 // with both offset and length set to zero.
92 class DeviceMemoryValidator : public MemoryValidatorBase {
93    public:
DeviceMemoryValidator(std::set<CompilationRole> roles,Operand operand,std::vector<uint32_t> dimensions)94     DeviceMemoryValidator(std::set<CompilationRole> roles, Operand operand,
95                           std::vector<uint32_t> dimensions)
96         : kCompilationRoles(std::move(roles)),
97           kOperand(std::move(operand)),
98           kInitialDimensions(std::move(dimensions)),
99           mUpdatedDimensions(kInitialDimensions) {}
100 
validate(const CompilationBuilder * compilation,IOType ioType,uint32_t index,const ANeuralNetworksOperandType * type,uint32_t offset,uint32_t length) const101     bool validate(const CompilationBuilder* compilation, IOType ioType, uint32_t index,
102                   const ANeuralNetworksOperandType* type, uint32_t offset,
103                   uint32_t length) const override {
104         NN_RET_CHECK(kCompilationRoles.count({compilation, ioType, index}) > 0)
105                 << "invalid compilation role.";
106         NN_RET_CHECK(offset == 0 && length == 0)
107                 << "non-zero offset and/or length for driver-allocated memory.";
108         if (type) {
109             const bool isTensor = TypeManager::get()->isTensorType(kOperand.type);
110             NN_RET_CHECK(isTensor || type->dimensionCount == 0)
111                     << "invalid dimensions for scalar memory.";
112             std::vector<uint32_t> dimensions(type->dimensions,
113                                              type->dimensions + type->dimensionCount);
114             // We only check against kInitialDimensions here.
115             // For input memories, mUpdatedDimensions will be checked in validateInputDimensions
116             // at the beginning of a computation.
117             const auto combined = combineDimensions(dimensions, kInitialDimensions);
118             NN_RET_CHECK(combined.has_value())
119                     << "incompatible dimensions between request and memory. (request: "
120                     << toString(dimensions) << ", memory: " << toString(kInitialDimensions) << ")";
121         }
122         return true;
123     }
124 
validateInputDimensions(const std::vector<uint32_t> & dimensions) const125     bool validateInputDimensions(const std::vector<uint32_t>& dimensions) const override {
126         NN_RET_CHECK(mInitialized) << "using an uninitialized memory as input";
127         NN_RET_CHECK(dimensions == mUpdatedDimensions)
128                 << "incompatible input dimensions between request and memory. (request: "
129                 << toString(dimensions) << ", memory: " << toString(mUpdatedDimensions) << ")";
130         return true;
131     }
132 
getMetadata() const133     Metadata getMetadata() const override {
134         return {.logicalSize = TypeManager::get()->getSizeOfData(kOperand.type, mUpdatedDimensions),
135                 .dimensions = mUpdatedDimensions,
136                 .operand = kOperand};
137     }
138 
updateMetadata(const Metadata & metadata)139     bool updateMetadata(const Metadata& metadata) override {
140         NN_RET_CHECK(!metadata.operand.has_value() ||
141                      (metadata.operand->type == kOperand.type &&
142                       metadata.operand->scale == kOperand.scale &&
143                       metadata.operand->zeroPoint == kOperand.zeroPoint &&
144                       metadata.operand->extraParams == kOperand.extraParams));
145 
146         NN_RET_CHECK(metadata.dimensions.empty() ||
147                      TypeManager::get()->isTensorType(kOperand.type));
148         auto combined = combineDimensions(metadata.dimensions, kInitialDimensions);
149         NN_RET_CHECK(combined.has_value());
150         NN_RET_CHECK(metadata.logicalSize == 0 ||
151                      metadata.logicalSize ==
152                              TypeManager::get()->getSizeOfData(kOperand.type, combined.value()));
153         mUpdatedDimensions = std::move(combined.value());
154         return true;
155     }
156 
createdWithUnknownShape() const157     bool createdWithUnknownShape() const override {
158         return TypeManager::get()->getSizeOfData(kOperand.type, kInitialDimensions) == 0;
159     }
160 
setInitialized(bool initialized)161     void setInitialized(bool initialized) override { mInitialized = initialized; }
isInitialized() const162     bool isInitialized() const override { return mInitialized; }
163 
164    private:
165     const std::set<CompilationRole> kCompilationRoles;
166 
167     // Keep track of the data type, scale, zero point, and extra parameters of the target operand.
168     // Other fields will be ignored, including dimensions, lifetime, location, etc.
169     const Operand kOperand;
170 
171     // The dimensions of the memory when the memory object is created.
172     // May have unknown dimensions or rank.
173     const std::vector<uint32_t> kInitialDimensions;
174 
175     // The updated dimensions after a successful execution or memory copying.
176     std::vector<uint32_t> mUpdatedDimensions;
177 
178     bool mInitialized = false;
179 };
180 
181 }  // namespace
182 
RuntimeMemory(SharedMemory memory)183 RuntimeMemory::RuntimeMemory(SharedMemory memory) : kMemory(std::move(memory)) {
184     CHECK(kMemory != nullptr);
185     mValidator = std::make_unique<SizedMemoryValidator>(nn::getSize(kMemory));
186 }
187 
RuntimeMemory(SharedMemory memory,std::unique_ptr<MemoryValidatorBase> validator)188 RuntimeMemory::RuntimeMemory(SharedMemory memory, std::unique_ptr<MemoryValidatorBase> validator)
189     : kMemory(std::move(memory)), mValidator(std::move(validator)) {
190     CHECK(kMemory != nullptr);
191 }
192 
RuntimeMemory(SharedBuffer buffer)193 RuntimeMemory::RuntimeMemory(SharedBuffer buffer) : kBuffer(std::move(buffer)) {}
194 
getMemoryPool() const195 Request::MemoryPool RuntimeMemory::getMemoryPool() const {
196     if (kBuffer != nullptr) {
197         return kBuffer->getToken();
198     }
199     return kMemory;
200 }
201 
getRunTimePoolInfo() const202 std::optional<RunTimePoolInfo> RuntimeMemory::getRunTimePoolInfo() const {
203     std::lock_guard<std::mutex> guard(mMutex);
204     if (!mHasCachedRunTimePoolInfo) {
205         mCachedRunTimePoolInfo = RunTimePoolInfo::createFromMemory(kMemory);
206         mHasCachedRunTimePoolInfo = true;
207     }
208     return mCachedRunTimePoolInfo;
209 }
210 
hold(const IBurst::OptionalCacheHold & cacheHold) const211 void RuntimeMemory::hold(const IBurst::OptionalCacheHold& cacheHold) const {
212     if (cacheHold != nullptr) {
213         std::lock_guard<std::mutex> guard(mMutex);
214         mHold.insert(cacheHold);
215     }
216 }
217 
copyHidlMemories(const std::optional<RunTimePoolInfo> & src,const std::optional<RunTimePoolInfo> & dst)218 static int copyHidlMemories(const std::optional<RunTimePoolInfo>& src,
219                             const std::optional<RunTimePoolInfo>& dst) {
220     if (!src.has_value() || !dst.has_value()) {
221         LOG(ERROR) << "ANeuralNetworksMemory_copy -- unable to map memory";
222         return ANEURALNETWORKS_UNMAPPABLE;
223     }
224     if (src->getSize() != dst->getSize()) {
225         LOG(ERROR) << "ANeuralNetworksMemory_copy -- incompatible memory size";
226         return ANEURALNETWORKS_BAD_DATA;
227     }
228     CHECK(src->getBuffer() != nullptr);
229     CHECK(dst->getBuffer() != nullptr);
230     std::copy(src->getBuffer(), src->getBuffer() + src->getSize(), dst->getBuffer());
231     dst->flush();
232     return ANEURALNETWORKS_NO_ERROR;
233 }
234 
copyIBufferToMemory(const SharedBuffer & src,const SharedMemory & dst)235 int copyIBufferToMemory(const SharedBuffer& src, const SharedMemory& dst) {
236     const auto ret = src->copyTo(dst);
237     if (!ret.has_value()) {
238         LOG(ERROR) << "ANeuralNetworksMemory_copy failure: " << ret.error().message;
239         return convertErrorStatusToResultCode(ret.error().code);
240     }
241     return ANEURALNETWORKS_NO_ERROR;
242 }
243 
copyMemoryToIBuffer(const SharedMemory & src,const SharedBuffer & dst,const std::vector<uint32_t> & dimensions)244 int copyMemoryToIBuffer(const SharedMemory& src, const SharedBuffer& dst,
245                         const std::vector<uint32_t>& dimensions) {
246     const auto ret = dst->copyFrom(src, dimensions);
247     if (!ret.has_value()) {
248         LOG(ERROR) << "ANeuralNetworksMemory_copy failure: " << ret.error().message;
249         return convertErrorStatusToResultCode(ret.error().code);
250     }
251     return ANEURALNETWORKS_NO_ERROR;
252 }
253 
copyIBuffers(const SharedBuffer & src,const SharedBuffer & dst,const MemoryValidatorBase::Metadata & srcMetadata)254 static int copyIBuffers(const SharedBuffer& src, const SharedBuffer& dst,
255                         const MemoryValidatorBase::Metadata& srcMetadata) {
256     const auto [n, memoryAHWB] = MemoryRuntimeAHWB::create(srcMetadata.logicalSize);
257     NN_RETURN_IF_ERROR(n);
258     const SharedMemory& memory = memoryAHWB->getMemory();
259     if (!validate(memory).ok()) return ANEURALNETWORKS_OUT_OF_MEMORY;
260     NN_RETURN_IF_ERROR(copyIBufferToMemory(src, memory));
261     NN_RETURN_IF_ERROR(copyMemoryToIBuffer(memory, dst, srcMetadata.dimensions));
262     return ANEURALNETWORKS_NO_ERROR;
263 }
264 
copyInternal(const RuntimeMemory & src,const RuntimeMemory & dst)265 static int copyInternal(const RuntimeMemory& src, const RuntimeMemory& dst) {
266     if (&src == &dst) return ANEURALNETWORKS_NO_ERROR;
267 
268     if (!src.getValidator().isInitialized()) {
269         LOG(ERROR) << "ANeuralNetworksMemory_copy -- uninitialized source memory";
270         return ANEURALNETWORKS_BAD_DATA;
271     }
272 
273     const auto srcMetadata = src.getValidator().getMetadata();
274     if (!dst.getValidator().updateMetadata(srcMetadata)) {
275         LOG(ERROR) << "ANeuralNetworksMemory_copy -- incompatible memories";
276         return ANEURALNETWORKS_BAD_DATA;
277     }
278 
279     bool srcHasMemory = validate(src.getMemory()).ok();
280     bool dstHasMemory = validate(dst.getMemory()).ok();
281     bool srcHasIBuffer = src.getIBuffer() != nullptr;
282     bool dstHasIBuffer = dst.getIBuffer() != nullptr;
283     if (srcHasIBuffer && dstHasIBuffer) {
284         return copyIBuffers(src.getIBuffer(), dst.getIBuffer(), srcMetadata);
285     } else if (srcHasMemory && dstHasMemory) {
286         return copyHidlMemories(src.getRunTimePoolInfo(), dst.getRunTimePoolInfo());
287     } else if (srcHasMemory && dstHasIBuffer) {
288         return copyMemoryToIBuffer(src.getMemory(), dst.getIBuffer(), srcMetadata.dimensions);
289     } else if (srcHasIBuffer && dstHasMemory) {
290         return copyIBufferToMemory(src.getIBuffer(), dst.getMemory());
291     }
292     return ANEURALNETWORKS_OP_FAILED;
293 }
294 
copy(const RuntimeMemory & src,const RuntimeMemory & dst)295 int RuntimeMemory::copy(const RuntimeMemory& src, const RuntimeMemory& dst) {
296     int n = copyInternal(src, dst);
297     dst.getValidator().setInitialized(n == ANEURALNETWORKS_NO_ERROR);
298     return n;
299 }
300 
badState(const char * name) const301 bool MemoryBuilder::badState(const char* name) const {
302     if (mFinished) {
303         LOG(ERROR) << "ANeuralNetworksMemoryDesc_" << name << " can't modify after finished";
304         return true;
305     }
306     return false;
307 }
308 
addRole(const CompilationBuilder & compilation,IOType ioType,uint32_t index,float prob)309 int MemoryBuilder::addRole(const CompilationBuilder& compilation, IOType ioType, uint32_t index,
310                            float prob) {
311     const char* tag = ioType == IOType::INPUT ? "addInputRole" : "addOutputRole";
312     if (badState(tag)) {
313         return ANEURALNETWORKS_BAD_STATE;
314     }
315     if (mRoles.count({&compilation, ioType, index}) > 0) {
316         LOG(ERROR) << "ANeuralNetworksMemoryDesc_" << tag
317                    << " -- the same operand is specified twice.";
318         return ANEURALNETWORKS_BAD_DATA;
319     }
320 
321     std::vector<std::tuple<const RuntimePreparedModel*, IOType, uint32_t>> roles;
322     auto callback = [&roles](const auto* preparedModel, IOType type, uint32_t index) {
323         roles.emplace_back(preparedModel, type, index);
324     };
325     if (ioType == IOType::INPUT) {
326         if (compilation.forEachStepRoleOfInput(index, callback) != ANEURALNETWORKS_NO_ERROR) {
327             return ANEURALNETWORKS_BAD_DATA;
328         }
329     } else {
330         if (compilation.forEachStepRoleOfOutput(index, callback) != ANEURALNETWORKS_NO_ERROR) {
331             return ANEURALNETWORKS_BAD_DATA;
332         }
333     }
334 
335     const ModelBuilder* model = compilation.getModel();
336     CHECK(model != nullptr);
337     Operand operand;
338     if (ioType == IOType::INPUT) {
339         if (index >= model->inputCount()) {
340             LOG(ERROR) << "ANeuralNetworksMemoryDesc_addInputRole -- input index out of range.";
341             return ANEURALNETWORKS_BAD_DATA;
342         }
343         operand = model->getInputOperand(index);
344     } else {
345         if (index >= model->outputCount()) {
346             LOG(ERROR) << "ANeuralNetworksMemoryDesc_addOutputRole -- output index out of range.";
347             return ANEURALNETWORKS_BAD_DATA;
348         }
349         operand = model->getOutputOperand(index);
350     }
351     if (mOperand.has_value()) {
352         if (operand.type != mOperand->type || operand.scale != mOperand->scale ||
353             operand.zeroPoint != mOperand->zeroPoint ||
354             operand.extraParams != mOperand->extraParams) {
355             LOG(ERROR) << "ANeuralNetworksMemoryDesc_" << tag
356                        << " -- incompatible operand metadata.";
357             return ANEURALNETWORKS_BAD_DATA;
358         }
359     }
360     if (!TypeManager::get()->isTensorType(operand.type) && !mDesc.dimensions.empty()) {
361         LOG(ERROR) << "ANeuralNetworksMemoryDesc_" << tag << " -- incompatible dimensions.";
362         return ANEURALNETWORKS_BAD_DATA;
363     }
364     auto combined = combineDimensions(mDesc.dimensions, operand.dimensions);
365     if (!combined.has_value()) {
366         LOG(ERROR) << "ANeuralNetworksMemoryDesc_" << tag << " -- incompatible dimensions.";
367         return ANEURALNETWORKS_BAD_DATA;
368     }
369 
370     if (prob > 1.0f || prob <= 0.0f) {
371         LOG(ERROR) << "ANeuralNetworksMemoryDesc_" << tag << " -- invalid frequency " << prob;
372         return ANEURALNETWORKS_BAD_DATA;
373     }
374 
375     mRoles.emplace(&compilation, ioType, index);
376     for (const auto& [preparedModel, type, ind] : roles) {
377         uint32_t modelIndex = mDesc.preparedModels.add(preparedModel);
378         BufferRole role = {.modelIndex = modelIndex, .ioIndex = ind, .probability = prob};
379         if (type == IOType::INPUT) {
380             mDesc.inputRoles.push_back(role);
381         } else {
382             mDesc.outputRoles.push_back(role);
383         }
384     }
385     mOperand = std::move(operand);
386     mDesc.dimensions = std::move(combined.value());
387     return ANEURALNETWORKS_NO_ERROR;
388 }
389 
setDimensions(const std::vector<uint32_t> & dimensions)390 int MemoryBuilder::setDimensions(const std::vector<uint32_t>& dimensions) {
391     if (badState("setDimensions")) return ANEURALNETWORKS_BAD_STATE;
392     if (mOperand.has_value() && !TypeManager::get()->isTensorType(mOperand->type) &&
393         !dimensions.empty()) {
394         LOG(ERROR) << "ANeuralNetworksMemoryDesc_setDimensions -- incompatible dimensions for "
395                       "scalars.";
396         return ANEURALNETWORKS_BAD_DATA;
397     }
398     auto combined = combineDimensions(mDesc.dimensions, dimensions);
399     if (!combined.has_value()) {
400         LOG(ERROR) << "ANeuralNetworksMemoryDesc_setDimensions -- incompatible dimensions.";
401         return ANEURALNETWORKS_BAD_DATA;
402     }
403     mDesc.dimensions = std::move(combined.value());
404     return ANEURALNETWORKS_NO_ERROR;
405 }
406 
logMemoryDescriptorToInfo(const MemoryDescriptor & desc,const Operand & operand)407 static void logMemoryDescriptorToInfo(const MemoryDescriptor& desc, const Operand& operand) {
408     LOG(INFO) << "MemoryDescriptor start";
409     LOG(INFO) << "    Data type: " << operand.type;
410     LOG(INFO) << "    Scale: " << operand.scale;
411     LOG(INFO) << "    Zero point: " << operand.zeroPoint;
412     LOG(INFO) << "    Extra params: " << operand.extraParams;
413     LOG(INFO) << "    Dimensions: " << toString(desc.dimensions);
414     LOG(INFO) << "    Prepared models [" << desc.preparedModels.size() << "]:";
415     for (const auto* preparedModel : desc.preparedModels) {
416         LOG(INFO) << "        service = " << preparedModel->getDevice()->getName();
417     }
418     LOG(INFO) << "    Input roles [" << desc.inputRoles.size() << "]:";
419     for (const auto& usage : desc.inputRoles) {
420         LOG(INFO) << "        " << usage;
421     }
422     LOG(INFO) << "    Output roles [" << desc.outputRoles.size() << "]:";
423     for (const auto& usage : desc.outputRoles) {
424         LOG(INFO) << "        " << usage;
425     }
426     LOG(INFO) << "MemoryDescriptor end";
427 }
428 
getDevices(const MemoryDescriptor & desc)429 static std::set<const Device*> getDevices(const MemoryDescriptor& desc) {
430     std::set<const Device*> devices;
431     for (const auto* preparedModel : desc.preparedModels) {
432         const auto* device = preparedModel->getDevice();
433         devices.insert(device);
434     }
435     return devices;
436 }
437 
finish()438 int MemoryBuilder::finish() {
439     if (badState("finish")) return ANEURALNETWORKS_BAD_STATE;
440     if (mRoles.empty()) {
441         LOG(ERROR) << "ANeuralNetworksMemoryDesc_finish -- no role has been specified.";
442         return ANEURALNETWORKS_BAD_DATA;
443     }
444     CHECK(mOperand.has_value());
445     if (VLOG_IS_ON(MEMORY)) {
446         logMemoryDescriptorToInfo(mDesc, mOperand.value());
447     }
448     std::set<const Device*> devices = getDevices(mDesc);
449     if (devices.empty()) {
450         // This can happen with interpreted control flow.
451         mAllocator = nullptr;
452     } else if (devices.size() == 1) {
453         mAllocator = *devices.begin();
454         VLOG(MEMORY) << "Using " << mAllocator->getName() << " as allocator.";
455     } else {
456         LOG(INFO) << "MemoryBuilder::finish -- cannot handle multiple devices.";
457         mAllocator = nullptr;
458     }
459     mSupportsAhwb = std::all_of(devices.begin(), devices.end(), [](const auto* device) {
460         return device->getFeatureLevel() >= kHalVersionV1_3ToApi.featureLevel;
461     });
462     mShouldFallback = std::none_of(mRoles.begin(), mRoles.end(), [](const auto& role) {
463         const auto* cb = std::get<const CompilationBuilder*>(role);
464         return cb->createdWithExplicitDeviceList();
465     });
466     const uint32_t size = TypeManager::get()->getSizeOfData(mOperand->type, mDesc.dimensions);
467     mShouldFallback &= (size != 0);
468     mFinished = true;
469     return ANEURALNETWORKS_NO_ERROR;
470 }
471 
allocate() const472 std::pair<int, std::unique_ptr<RuntimeMemory>> MemoryBuilder::allocate() const {
473     if (!mFinished) {
474         LOG(ERROR) << "ANeuralNetworksMemory_createFromDesc -- passed an unfinished descriptor";
475         return {ANEURALNETWORKS_BAD_STATE, nullptr};
476     }
477 
478     int n = ANEURALNETWORKS_OP_FAILED;
479     std::unique_ptr<RuntimeMemory> memory;
480     CHECK(mOperand.has_value());
481 
482     // Try allocate the memory on device.
483     if (mAllocator != nullptr) {
484         std::tie(n, memory) = mAllocator->allocate(mDesc, mOperand->type);
485     }
486 
487     // If failed, fallback to ashmem or BLOB mode AHWB.
488     if (n != ANEURALNETWORKS_NO_ERROR && mShouldFallback) {
489         const uint32_t size = TypeManager::get()->getSizeOfData(mOperand->type, mDesc.dimensions);
490         if (mSupportsAhwb) {
491             VLOG(MEMORY) << "MemoryBuilder::allocate -- fallback to BLOB mode AHWB.";
492             std::tie(n, memory) = MemoryRuntimeAHWB::create(size);
493         } else {
494             VLOG(MEMORY) << "MemoryBuilder::allocate -- fallback to ashmem.";
495             std::tie(n, memory) = MemoryAshmem::create(size);
496         }
497     }
498 
499     if (n == ANEURALNETWORKS_NO_ERROR) {
500         CHECK(memory != nullptr);
501         auto validator =
502                 std::make_unique<DeviceMemoryValidator>(mRoles, mOperand.value(), mDesc.dimensions);
503         memory->setValidator(std::move(validator));
504     }
505     return {n, std::move(memory)};
506 }
507 
create(uint32_t size)508 std::pair<int, std::unique_ptr<MemoryAshmem>> MemoryAshmem::create(uint32_t size) {
509     auto memory = createSharedMemory(size);
510     if (!memory.has_value()) {
511         LOG(ERROR) << "RuntimeMemory::create() failed: " << memory.error().message;
512         return {convertErrorStatusToResultCode(memory.error().code), nullptr};
513     }
514     auto mapping = map(memory.value());
515     if (!mapping.has_value()) {
516         LOG(ERROR) << "RuntimeMemory::create() map failed: " << mapping.error().message;
517         return {convertErrorStatusToResultCode(mapping.error().code), nullptr};
518     }
519     return {ANEURALNETWORKS_NO_ERROR,
520             std::make_unique<MemoryAshmem>(std::move(memory).value(), std::move(mapping).value())};
521 }
522 
getPointer() const523 uint8_t* MemoryAshmem::getPointer() const {
524     return static_cast<uint8_t*>(std::get<void*>(kMapping.pointer));
525 }
526 
MemoryAshmem(SharedMemory memory,Mapping mapping)527 MemoryAshmem::MemoryAshmem(SharedMemory memory, Mapping mapping)
528     : RuntimeMemory(std::move(memory)), kMapping(std::move(mapping)) {}
529 
create(size_t size,int prot,int fd,size_t offset)530 std::pair<int, std::unique_ptr<MemoryFd>> MemoryFd::create(size_t size, int prot, int fd,
531                                                            size_t offset) {
532     auto memory = createSharedMemoryFromFd(size, prot, fd, offset);
533     if (!memory.has_value()) {
534         LOG(ERROR) << "Failed to create memory from fd: " << memory.error().message;
535         return {convertErrorStatusToResultCode(memory.error().code), nullptr};
536     }
537     return {ANEURALNETWORKS_NO_ERROR, std::make_unique<MemoryFd>(std::move(memory).value())};
538 }
539 
MemoryFd(SharedMemory memory)540 MemoryFd::MemoryFd(SharedMemory memory) : RuntimeMemory(std::move(memory)) {}
541 
create(const AHardwareBuffer & ahwb)542 std::pair<int, std::unique_ptr<MemoryAHWB>> MemoryAHWB::create(const AHardwareBuffer& ahwb) {
543     auto memory = createSharedMemoryFromAHWB(const_cast<AHardwareBuffer*>(&ahwb),
544                                              /*takeOwnership=*/false);
545     if (!memory.has_value()) {
546         LOG(ERROR) << "Failed to create memory from AHWB: " << memory.error().message;
547         return {convertErrorStatusToResultCode(memory.error().code), nullptr};
548     }
549 
550     std::unique_ptr<MemoryValidatorBase> validator;
551     if (isAhwbBlob(memory.value())) {
552         validator = std::make_unique<SizedMemoryValidator>(nn::getSize(memory.value()));
553     } else {
554         validator = std::make_unique<AHardwareBufferNonBlobValidator>();
555     }
556 
557     auto memoryAHWB = std::make_unique<MemoryAHWB>(std::move(memory).value(), std::move(validator));
558     return {ANEURALNETWORKS_NO_ERROR, std::move(memoryAHWB)};
559 }
560 
create(uint32_t size)561 std::pair<int, std::unique_ptr<MemoryRuntimeAHWB>> MemoryRuntimeAHWB::create(uint32_t size) {
562     AHardwareBuffer* ahwb = nullptr;
563     const auto usage = AHARDWAREBUFFER_USAGE_CPU_READ_OFTEN | AHARDWAREBUFFER_USAGE_CPU_WRITE_OFTEN;
564     const AHardwareBuffer_Desc desc = {
565             .width = size,
566             .height = 1,
567             .layers = 1,
568             .format = AHARDWAREBUFFER_FORMAT_BLOB,
569             .usage = usage,
570             .stride = size,
571     };
572     int err = AHardwareBuffer_allocate(&desc, &ahwb);
573     if (err != 0 || ahwb == nullptr) {
574         LOG(ERROR) << "Failed to allocate BLOB mode AHWB.";
575         return {ANEURALNETWORKS_OP_FAILED, nullptr};
576     }
577 
578     auto memory = createSharedMemoryFromAHWB(ahwb, /*takeOWnership=*/true);
579     if (!memory.has_value()) {
580         LOG(ERROR) << "Failed to allocate BLOB mode AHWB: " << memory.error().message;
581         return {convertErrorStatusToResultCode(memory.error().code), nullptr};
582     }
583     auto mapping = map(memory.value());
584     if (!mapping.has_value()) {
585         LOG(ERROR) << "Failed to map BLOB mode AHWB: " << mapping.error().message;
586         return {convertErrorStatusToResultCode(mapping.error().code), nullptr};
587     }
588     auto memoryAHWB = std::make_unique<MemoryRuntimeAHWB>(std::move(memory).value(),
589                                                           std::move(mapping).value());
590     return {ANEURALNETWORKS_NO_ERROR, std::move(memoryAHWB)};
591 }
592 
getPointer() const593 uint8_t* MemoryRuntimeAHWB::getPointer() const {
594     return static_cast<uint8_t*>(std::get<void*>(kMapping.pointer));
595 }
596 
MemoryRuntimeAHWB(SharedMemory memory,Mapping mapping)597 MemoryRuntimeAHWB::MemoryRuntimeAHWB(SharedMemory memory, Mapping mapping)
598     : RuntimeMemory(std::move(memory)), kMapping(std::move(mapping)) {}
599 
create(SharedBuffer buffer)600 std::pair<int, std::unique_ptr<MemoryFromDevice>> MemoryFromDevice::create(SharedBuffer buffer) {
601     if (buffer == nullptr) {
602         LOG(ERROR) << "nullptr IBuffer for device memory.";
603         return {ANEURALNETWORKS_OP_FAILED, nullptr};
604     }
605     return {ANEURALNETWORKS_NO_ERROR, std::make_unique<MemoryFromDevice>(std::move(buffer))};
606 }
607 
MemoryFromDevice(SharedBuffer buffer)608 MemoryFromDevice::MemoryFromDevice(SharedBuffer buffer) : RuntimeMemory(std::move(buffer)) {}
609 
610 }  // namespace nn
611 }  // namespace android
612