1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines common loop utility functions.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/Transforms/Utils/LoopUtils.h"
14 #include "llvm/ADT/DenseSet.h"
15 #include "llvm/ADT/Optional.h"
16 #include "llvm/ADT/PriorityWorklist.h"
17 #include "llvm/ADT/ScopeExit.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/BasicAliasAnalysis.h"
23 #include "llvm/Analysis/DomTreeUpdater.h"
24 #include "llvm/Analysis/GlobalsModRef.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/LoopAccessAnalysis.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/LoopPass.h"
29 #include "llvm/Analysis/MemorySSA.h"
30 #include "llvm/Analysis/MemorySSAUpdater.h"
31 #include "llvm/Analysis/MustExecute.h"
32 #include "llvm/Analysis/ScalarEvolution.h"
33 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
34 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
35 #include "llvm/Analysis/TargetTransformInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/IR/DIBuilder.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/MDBuilder.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/Operator.h"
44 #include "llvm/IR/PatternMatch.h"
45 #include "llvm/IR/ValueHandle.h"
46 #include "llvm/InitializePasses.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/KnownBits.h"
50 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
51 #include "llvm/Transforms/Utils/Local.h"
52 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
53
54 using namespace llvm;
55 using namespace llvm::PatternMatch;
56
57 static cl::opt<bool> ForceReductionIntrinsic(
58 "force-reduction-intrinsics", cl::Hidden,
59 cl::desc("Force creating reduction intrinsics for testing."),
60 cl::init(false));
61
62 #define DEBUG_TYPE "loop-utils"
63
64 static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced";
65 static const char *LLVMLoopDisableLICM = "llvm.licm.disable";
66
formDedicatedExitBlocks(Loop * L,DominatorTree * DT,LoopInfo * LI,MemorySSAUpdater * MSSAU,bool PreserveLCSSA)67 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
68 MemorySSAUpdater *MSSAU,
69 bool PreserveLCSSA) {
70 bool Changed = false;
71
72 // We re-use a vector for the in-loop predecesosrs.
73 SmallVector<BasicBlock *, 4> InLoopPredecessors;
74
75 auto RewriteExit = [&](BasicBlock *BB) {
76 assert(InLoopPredecessors.empty() &&
77 "Must start with an empty predecessors list!");
78 auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
79
80 // See if there are any non-loop predecessors of this exit block and
81 // keep track of the in-loop predecessors.
82 bool IsDedicatedExit = true;
83 for (auto *PredBB : predecessors(BB))
84 if (L->contains(PredBB)) {
85 if (isa<IndirectBrInst>(PredBB->getTerminator()))
86 // We cannot rewrite exiting edges from an indirectbr.
87 return false;
88 if (isa<CallBrInst>(PredBB->getTerminator()))
89 // We cannot rewrite exiting edges from a callbr.
90 return false;
91
92 InLoopPredecessors.push_back(PredBB);
93 } else {
94 IsDedicatedExit = false;
95 }
96
97 assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
98
99 // Nothing to do if this is already a dedicated exit.
100 if (IsDedicatedExit)
101 return false;
102
103 auto *NewExitBB = SplitBlockPredecessors(
104 BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA);
105
106 if (!NewExitBB)
107 LLVM_DEBUG(
108 dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
109 << *L << "\n");
110 else
111 LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
112 << NewExitBB->getName() << "\n");
113 return true;
114 };
115
116 // Walk the exit blocks directly rather than building up a data structure for
117 // them, but only visit each one once.
118 SmallPtrSet<BasicBlock *, 4> Visited;
119 for (auto *BB : L->blocks())
120 for (auto *SuccBB : successors(BB)) {
121 // We're looking for exit blocks so skip in-loop successors.
122 if (L->contains(SuccBB))
123 continue;
124
125 // Visit each exit block exactly once.
126 if (!Visited.insert(SuccBB).second)
127 continue;
128
129 Changed |= RewriteExit(SuccBB);
130 }
131
132 return Changed;
133 }
134
135 /// Returns the instructions that use values defined in the loop.
findDefsUsedOutsideOfLoop(Loop * L)136 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
137 SmallVector<Instruction *, 8> UsedOutside;
138
139 for (auto *Block : L->getBlocks())
140 // FIXME: I believe that this could use copy_if if the Inst reference could
141 // be adapted into a pointer.
142 for (auto &Inst : *Block) {
143 auto Users = Inst.users();
144 if (any_of(Users, [&](User *U) {
145 auto *Use = cast<Instruction>(U);
146 return !L->contains(Use->getParent());
147 }))
148 UsedOutside.push_back(&Inst);
149 }
150
151 return UsedOutside;
152 }
153
getLoopAnalysisUsage(AnalysisUsage & AU)154 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
155 // By definition, all loop passes need the LoopInfo analysis and the
156 // Dominator tree it depends on. Because they all participate in the loop
157 // pass manager, they must also preserve these.
158 AU.addRequired<DominatorTreeWrapperPass>();
159 AU.addPreserved<DominatorTreeWrapperPass>();
160 AU.addRequired<LoopInfoWrapperPass>();
161 AU.addPreserved<LoopInfoWrapperPass>();
162
163 // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
164 // here because users shouldn't directly get them from this header.
165 extern char &LoopSimplifyID;
166 extern char &LCSSAID;
167 AU.addRequiredID(LoopSimplifyID);
168 AU.addPreservedID(LoopSimplifyID);
169 AU.addRequiredID(LCSSAID);
170 AU.addPreservedID(LCSSAID);
171 // This is used in the LPPassManager to perform LCSSA verification on passes
172 // which preserve lcssa form
173 AU.addRequired<LCSSAVerificationPass>();
174 AU.addPreserved<LCSSAVerificationPass>();
175
176 // Loop passes are designed to run inside of a loop pass manager which means
177 // that any function analyses they require must be required by the first loop
178 // pass in the manager (so that it is computed before the loop pass manager
179 // runs) and preserved by all loop pasess in the manager. To make this
180 // reasonably robust, the set needed for most loop passes is maintained here.
181 // If your loop pass requires an analysis not listed here, you will need to
182 // carefully audit the loop pass manager nesting structure that results.
183 AU.addRequired<AAResultsWrapperPass>();
184 AU.addPreserved<AAResultsWrapperPass>();
185 AU.addPreserved<BasicAAWrapperPass>();
186 AU.addPreserved<GlobalsAAWrapperPass>();
187 AU.addPreserved<SCEVAAWrapperPass>();
188 AU.addRequired<ScalarEvolutionWrapperPass>();
189 AU.addPreserved<ScalarEvolutionWrapperPass>();
190 // FIXME: When all loop passes preserve MemorySSA, it can be required and
191 // preserved here instead of the individual handling in each pass.
192 }
193
194 /// Manually defined generic "LoopPass" dependency initialization. This is used
195 /// to initialize the exact set of passes from above in \c
196 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization
197 /// with:
198 ///
199 /// INITIALIZE_PASS_DEPENDENCY(LoopPass)
200 ///
201 /// As-if "LoopPass" were a pass.
initializeLoopPassPass(PassRegistry & Registry)202 void llvm::initializeLoopPassPass(PassRegistry &Registry) {
203 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
204 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
205 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
206 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
207 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
208 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
209 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
210 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
211 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
212 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
213 }
214
215 /// Create MDNode for input string.
createStringMetadata(Loop * TheLoop,StringRef Name,unsigned V)216 static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) {
217 LLVMContext &Context = TheLoop->getHeader()->getContext();
218 Metadata *MDs[] = {
219 MDString::get(Context, Name),
220 ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))};
221 return MDNode::get(Context, MDs);
222 }
223
224 /// Set input string into loop metadata by keeping other values intact.
225 /// If the string is already in loop metadata update value if it is
226 /// different.
addStringMetadataToLoop(Loop * TheLoop,const char * StringMD,unsigned V)227 void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD,
228 unsigned V) {
229 SmallVector<Metadata *, 4> MDs(1);
230 // If the loop already has metadata, retain it.
231 MDNode *LoopID = TheLoop->getLoopID();
232 if (LoopID) {
233 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
234 MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
235 // If it is of form key = value, try to parse it.
236 if (Node->getNumOperands() == 2) {
237 MDString *S = dyn_cast<MDString>(Node->getOperand(0));
238 if (S && S->getString().equals(StringMD)) {
239 ConstantInt *IntMD =
240 mdconst::extract_or_null<ConstantInt>(Node->getOperand(1));
241 if (IntMD && IntMD->getSExtValue() == V)
242 // It is already in place. Do nothing.
243 return;
244 // We need to update the value, so just skip it here and it will
245 // be added after copying other existed nodes.
246 continue;
247 }
248 }
249 MDs.push_back(Node);
250 }
251 }
252 // Add new metadata.
253 MDs.push_back(createStringMetadata(TheLoop, StringMD, V));
254 // Replace current metadata node with new one.
255 LLVMContext &Context = TheLoop->getHeader()->getContext();
256 MDNode *NewLoopID = MDNode::get(Context, MDs);
257 // Set operand 0 to refer to the loop id itself.
258 NewLoopID->replaceOperandWith(0, NewLoopID);
259 TheLoop->setLoopID(NewLoopID);
260 }
261
262 /// Find string metadata for loop
263 ///
264 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
265 /// operand or null otherwise. If the string metadata is not found return
266 /// Optional's not-a-value.
findStringMetadataForLoop(const Loop * TheLoop,StringRef Name)267 Optional<const MDOperand *> llvm::findStringMetadataForLoop(const Loop *TheLoop,
268 StringRef Name) {
269 MDNode *MD = findOptionMDForLoop(TheLoop, Name);
270 if (!MD)
271 return None;
272 switch (MD->getNumOperands()) {
273 case 1:
274 return nullptr;
275 case 2:
276 return &MD->getOperand(1);
277 default:
278 llvm_unreachable("loop metadata has 0 or 1 operand");
279 }
280 }
281
getOptionalBoolLoopAttribute(const Loop * TheLoop,StringRef Name)282 static Optional<bool> getOptionalBoolLoopAttribute(const Loop *TheLoop,
283 StringRef Name) {
284 MDNode *MD = findOptionMDForLoop(TheLoop, Name);
285 if (!MD)
286 return None;
287 switch (MD->getNumOperands()) {
288 case 1:
289 // When the value is absent it is interpreted as 'attribute set'.
290 return true;
291 case 2:
292 if (ConstantInt *IntMD =
293 mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get()))
294 return IntMD->getZExtValue();
295 return true;
296 }
297 llvm_unreachable("unexpected number of options");
298 }
299
getBooleanLoopAttribute(const Loop * TheLoop,StringRef Name)300 bool llvm::getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) {
301 return getOptionalBoolLoopAttribute(TheLoop, Name).getValueOr(false);
302 }
303
304 Optional<ElementCount>
getOptionalElementCountLoopAttribute(Loop * TheLoop)305 llvm::getOptionalElementCountLoopAttribute(Loop *TheLoop) {
306 Optional<int> Width =
307 getOptionalIntLoopAttribute(TheLoop, "llvm.loop.vectorize.width");
308
309 if (Width.hasValue()) {
310 Optional<int> IsScalable = getOptionalIntLoopAttribute(
311 TheLoop, "llvm.loop.vectorize.scalable.enable");
312 return ElementCount::get(*Width,
313 IsScalable.hasValue() ? *IsScalable : false);
314 }
315
316 return None;
317 }
318
getOptionalIntLoopAttribute(Loop * TheLoop,StringRef Name)319 llvm::Optional<int> llvm::getOptionalIntLoopAttribute(Loop *TheLoop,
320 StringRef Name) {
321 const MDOperand *AttrMD =
322 findStringMetadataForLoop(TheLoop, Name).getValueOr(nullptr);
323 if (!AttrMD)
324 return None;
325
326 ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get());
327 if (!IntMD)
328 return None;
329
330 return IntMD->getSExtValue();
331 }
332
makeFollowupLoopID(MDNode * OrigLoopID,ArrayRef<StringRef> FollowupOptions,const char * InheritOptionsExceptPrefix,bool AlwaysNew)333 Optional<MDNode *> llvm::makeFollowupLoopID(
334 MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions,
335 const char *InheritOptionsExceptPrefix, bool AlwaysNew) {
336 if (!OrigLoopID) {
337 if (AlwaysNew)
338 return nullptr;
339 return None;
340 }
341
342 assert(OrigLoopID->getOperand(0) == OrigLoopID);
343
344 bool InheritAllAttrs = !InheritOptionsExceptPrefix;
345 bool InheritSomeAttrs =
346 InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0';
347 SmallVector<Metadata *, 8> MDs;
348 MDs.push_back(nullptr);
349
350 bool Changed = false;
351 if (InheritAllAttrs || InheritSomeAttrs) {
352 for (const MDOperand &Existing : drop_begin(OrigLoopID->operands(), 1)) {
353 MDNode *Op = cast<MDNode>(Existing.get());
354
355 auto InheritThisAttribute = [InheritSomeAttrs,
356 InheritOptionsExceptPrefix](MDNode *Op) {
357 if (!InheritSomeAttrs)
358 return false;
359
360 // Skip malformatted attribute metadata nodes.
361 if (Op->getNumOperands() == 0)
362 return true;
363 Metadata *NameMD = Op->getOperand(0).get();
364 if (!isa<MDString>(NameMD))
365 return true;
366 StringRef AttrName = cast<MDString>(NameMD)->getString();
367
368 // Do not inherit excluded attributes.
369 return !AttrName.startswith(InheritOptionsExceptPrefix);
370 };
371
372 if (InheritThisAttribute(Op))
373 MDs.push_back(Op);
374 else
375 Changed = true;
376 }
377 } else {
378 // Modified if we dropped at least one attribute.
379 Changed = OrigLoopID->getNumOperands() > 1;
380 }
381
382 bool HasAnyFollowup = false;
383 for (StringRef OptionName : FollowupOptions) {
384 MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName);
385 if (!FollowupNode)
386 continue;
387
388 HasAnyFollowup = true;
389 for (const MDOperand &Option : drop_begin(FollowupNode->operands(), 1)) {
390 MDs.push_back(Option.get());
391 Changed = true;
392 }
393 }
394
395 // Attributes of the followup loop not specified explicity, so signal to the
396 // transformation pass to add suitable attributes.
397 if (!AlwaysNew && !HasAnyFollowup)
398 return None;
399
400 // If no attributes were added or remove, the previous loop Id can be reused.
401 if (!AlwaysNew && !Changed)
402 return OrigLoopID;
403
404 // No attributes is equivalent to having no !llvm.loop metadata at all.
405 if (MDs.size() == 1)
406 return nullptr;
407
408 // Build the new loop ID.
409 MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs);
410 FollowupLoopID->replaceOperandWith(0, FollowupLoopID);
411 return FollowupLoopID;
412 }
413
hasDisableAllTransformsHint(const Loop * L)414 bool llvm::hasDisableAllTransformsHint(const Loop *L) {
415 return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced);
416 }
417
hasDisableLICMTransformsHint(const Loop * L)418 bool llvm::hasDisableLICMTransformsHint(const Loop *L) {
419 return getBooleanLoopAttribute(L, LLVMLoopDisableLICM);
420 }
421
hasUnrollTransformation(Loop * L)422 TransformationMode llvm::hasUnrollTransformation(Loop *L) {
423 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable"))
424 return TM_SuppressedByUser;
425
426 Optional<int> Count =
427 getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count");
428 if (Count.hasValue())
429 return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
430
431 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable"))
432 return TM_ForcedByUser;
433
434 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full"))
435 return TM_ForcedByUser;
436
437 if (hasDisableAllTransformsHint(L))
438 return TM_Disable;
439
440 return TM_Unspecified;
441 }
442
hasUnrollAndJamTransformation(Loop * L)443 TransformationMode llvm::hasUnrollAndJamTransformation(Loop *L) {
444 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable"))
445 return TM_SuppressedByUser;
446
447 Optional<int> Count =
448 getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count");
449 if (Count.hasValue())
450 return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
451
452 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable"))
453 return TM_ForcedByUser;
454
455 if (hasDisableAllTransformsHint(L))
456 return TM_Disable;
457
458 return TM_Unspecified;
459 }
460
hasVectorizeTransformation(Loop * L)461 TransformationMode llvm::hasVectorizeTransformation(Loop *L) {
462 Optional<bool> Enable =
463 getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable");
464
465 if (Enable == false)
466 return TM_SuppressedByUser;
467
468 Optional<ElementCount> VectorizeWidth =
469 getOptionalElementCountLoopAttribute(L);
470 Optional<int> InterleaveCount =
471 getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count");
472
473 // 'Forcing' vector width and interleave count to one effectively disables
474 // this tranformation.
475 if (Enable == true && VectorizeWidth && VectorizeWidth->isScalar() &&
476 InterleaveCount == 1)
477 return TM_SuppressedByUser;
478
479 if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
480 return TM_Disable;
481
482 if (Enable == true)
483 return TM_ForcedByUser;
484
485 if ((VectorizeWidth && VectorizeWidth->isScalar()) && InterleaveCount == 1)
486 return TM_Disable;
487
488 if ((VectorizeWidth && VectorizeWidth->isVector()) || InterleaveCount > 1)
489 return TM_Enable;
490
491 if (hasDisableAllTransformsHint(L))
492 return TM_Disable;
493
494 return TM_Unspecified;
495 }
496
hasDistributeTransformation(Loop * L)497 TransformationMode llvm::hasDistributeTransformation(Loop *L) {
498 if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable"))
499 return TM_ForcedByUser;
500
501 if (hasDisableAllTransformsHint(L))
502 return TM_Disable;
503
504 return TM_Unspecified;
505 }
506
hasLICMVersioningTransformation(Loop * L)507 TransformationMode llvm::hasLICMVersioningTransformation(Loop *L) {
508 if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable"))
509 return TM_SuppressedByUser;
510
511 if (hasDisableAllTransformsHint(L))
512 return TM_Disable;
513
514 return TM_Unspecified;
515 }
516
517 /// Does a BFS from a given node to all of its children inside a given loop.
518 /// The returned vector of nodes includes the starting point.
519 SmallVector<DomTreeNode *, 16>
collectChildrenInLoop(DomTreeNode * N,const Loop * CurLoop)520 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) {
521 SmallVector<DomTreeNode *, 16> Worklist;
522 auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
523 // Only include subregions in the top level loop.
524 BasicBlock *BB = DTN->getBlock();
525 if (CurLoop->contains(BB))
526 Worklist.push_back(DTN);
527 };
528
529 AddRegionToWorklist(N);
530
531 for (size_t I = 0; I < Worklist.size(); I++) {
532 for (DomTreeNode *Child : Worklist[I]->children())
533 AddRegionToWorklist(Child);
534 }
535
536 return Worklist;
537 }
538
deleteDeadLoop(Loop * L,DominatorTree * DT,ScalarEvolution * SE,LoopInfo * LI,MemorySSA * MSSA)539 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE,
540 LoopInfo *LI, MemorySSA *MSSA) {
541 assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
542 auto *Preheader = L->getLoopPreheader();
543 assert(Preheader && "Preheader should exist!");
544
545 std::unique_ptr<MemorySSAUpdater> MSSAU;
546 if (MSSA)
547 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
548
549 // Now that we know the removal is safe, remove the loop by changing the
550 // branch from the preheader to go to the single exit block.
551 //
552 // Because we're deleting a large chunk of code at once, the sequence in which
553 // we remove things is very important to avoid invalidation issues.
554
555 // Tell ScalarEvolution that the loop is deleted. Do this before
556 // deleting the loop so that ScalarEvolution can look at the loop
557 // to determine what it needs to clean up.
558 if (SE)
559 SE->forgetLoop(L);
560
561 auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator());
562 assert(OldBr && "Preheader must end with a branch");
563 assert(OldBr->isUnconditional() && "Preheader must have a single successor");
564 // Connect the preheader to the exit block. Keep the old edge to the header
565 // around to perform the dominator tree update in two separate steps
566 // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
567 // preheader -> header.
568 //
569 //
570 // 0. Preheader 1. Preheader 2. Preheader
571 // | | | |
572 // V | V |
573 // Header <--\ | Header <--\ | Header <--\
574 // | | | | | | | | | | |
575 // | V | | | V | | | V |
576 // | Body --/ | | Body --/ | | Body --/
577 // V V V V V
578 // Exit Exit Exit
579 //
580 // By doing this is two separate steps we can perform the dominator tree
581 // update without using the batch update API.
582 //
583 // Even when the loop is never executed, we cannot remove the edge from the
584 // source block to the exit block. Consider the case where the unexecuted loop
585 // branches back to an outer loop. If we deleted the loop and removed the edge
586 // coming to this inner loop, this will break the outer loop structure (by
587 // deleting the backedge of the outer loop). If the outer loop is indeed a
588 // non-loop, it will be deleted in a future iteration of loop deletion pass.
589 IRBuilder<> Builder(OldBr);
590
591 auto *ExitBlock = L->getUniqueExitBlock();
592 if (ExitBlock) {
593 assert(ExitBlock && "Should have a unique exit block!");
594 assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");
595
596 Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
597 // Remove the old branch. The conditional branch becomes a new terminator.
598 OldBr->eraseFromParent();
599
600 // Rewrite phis in the exit block to get their inputs from the Preheader
601 // instead of the exiting block.
602 for (PHINode &P : ExitBlock->phis()) {
603 // Set the zero'th element of Phi to be from the preheader and remove all
604 // other incoming values. Given the loop has dedicated exits, all other
605 // incoming values must be from the exiting blocks.
606 int PredIndex = 0;
607 P.setIncomingBlock(PredIndex, Preheader);
608 // Removes all incoming values from all other exiting blocks (including
609 // duplicate values from an exiting block).
610 // Nuke all entries except the zero'th entry which is the preheader entry.
611 // NOTE! We need to remove Incoming Values in the reverse order as done
612 // below, to keep the indices valid for deletion (removeIncomingValues
613 // updates getNumIncomingValues and shifts all values down into the
614 // operand being deleted).
615 for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i)
616 P.removeIncomingValue(e - i, false);
617
618 assert((P.getNumIncomingValues() == 1 &&
619 P.getIncomingBlock(PredIndex) == Preheader) &&
620 "Should have exactly one value and that's from the preheader!");
621 }
622
623 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
624 if (DT) {
625 DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}});
626 if (MSSA) {
627 MSSAU->applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}},
628 *DT);
629 if (VerifyMemorySSA)
630 MSSA->verifyMemorySSA();
631 }
632 }
633
634 // Disconnect the loop body by branching directly to its exit.
635 Builder.SetInsertPoint(Preheader->getTerminator());
636 Builder.CreateBr(ExitBlock);
637 // Remove the old branch.
638 Preheader->getTerminator()->eraseFromParent();
639
640 if (DT) {
641 DTU.applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}});
642 if (MSSA) {
643 MSSAU->applyUpdates(
644 {{DominatorTree::Delete, Preheader, L->getHeader()}}, *DT);
645 SmallSetVector<BasicBlock *, 8> DeadBlockSet(L->block_begin(),
646 L->block_end());
647 MSSAU->removeBlocks(DeadBlockSet);
648 if (VerifyMemorySSA)
649 MSSA->verifyMemorySSA();
650 }
651 }
652 } else {
653 assert(L->hasNoExitBlocks() &&
654 "Loop should have either zero or one exit blocks.");
655 Builder.SetInsertPoint(OldBr);
656 Builder.CreateUnreachable();
657 Preheader->getTerminator()->eraseFromParent();
658 }
659
660 // Use a map to unique and a vector to guarantee deterministic ordering.
661 llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet;
662 llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst;
663
664 if (ExitBlock) {
665 // Given LCSSA form is satisfied, we should not have users of instructions
666 // within the dead loop outside of the loop. However, LCSSA doesn't take
667 // unreachable uses into account. We handle them here.
668 // We could do it after drop all references (in this case all users in the
669 // loop will be already eliminated and we have less work to do but according
670 // to API doc of User::dropAllReferences only valid operation after dropping
671 // references, is deletion. So let's substitute all usages of
672 // instruction from the loop with undef value of corresponding type first.
673 for (auto *Block : L->blocks())
674 for (Instruction &I : *Block) {
675 auto *Undef = UndefValue::get(I.getType());
676 for (Value::use_iterator UI = I.use_begin(), E = I.use_end();
677 UI != E;) {
678 Use &U = *UI;
679 ++UI;
680 if (auto *Usr = dyn_cast<Instruction>(U.getUser()))
681 if (L->contains(Usr->getParent()))
682 continue;
683 // If we have a DT then we can check that uses outside a loop only in
684 // unreachable block.
685 if (DT)
686 assert(!DT->isReachableFromEntry(U) &&
687 "Unexpected user in reachable block");
688 U.set(Undef);
689 }
690 auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I);
691 if (!DVI)
692 continue;
693 auto Key =
694 DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()});
695 if (Key != DeadDebugSet.end())
696 continue;
697 DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()});
698 DeadDebugInst.push_back(DVI);
699 }
700
701 // After the loop has been deleted all the values defined and modified
702 // inside the loop are going to be unavailable.
703 // Since debug values in the loop have been deleted, inserting an undef
704 // dbg.value truncates the range of any dbg.value before the loop where the
705 // loop used to be. This is particularly important for constant values.
706 DIBuilder DIB(*ExitBlock->getModule());
707 Instruction *InsertDbgValueBefore = ExitBlock->getFirstNonPHI();
708 assert(InsertDbgValueBefore &&
709 "There should be a non-PHI instruction in exit block, else these "
710 "instructions will have no parent.");
711 for (auto *DVI : DeadDebugInst)
712 DIB.insertDbgValueIntrinsic(UndefValue::get(Builder.getInt32Ty()),
713 DVI->getVariable(), DVI->getExpression(),
714 DVI->getDebugLoc(), InsertDbgValueBefore);
715 }
716
717 // Remove the block from the reference counting scheme, so that we can
718 // delete it freely later.
719 for (auto *Block : L->blocks())
720 Block->dropAllReferences();
721
722 if (MSSA && VerifyMemorySSA)
723 MSSA->verifyMemorySSA();
724
725 if (LI) {
726 // Erase the instructions and the blocks without having to worry
727 // about ordering because we already dropped the references.
728 // NOTE: This iteration is safe because erasing the block does not remove
729 // its entry from the loop's block list. We do that in the next section.
730 for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end();
731 LpI != LpE; ++LpI)
732 (*LpI)->eraseFromParent();
733
734 // Finally, the blocks from loopinfo. This has to happen late because
735 // otherwise our loop iterators won't work.
736
737 SmallPtrSet<BasicBlock *, 8> blocks;
738 blocks.insert(L->block_begin(), L->block_end());
739 for (BasicBlock *BB : blocks)
740 LI->removeBlock(BB);
741
742 // The last step is to update LoopInfo now that we've eliminated this loop.
743 // Note: LoopInfo::erase remove the given loop and relink its subloops with
744 // its parent. While removeLoop/removeChildLoop remove the given loop but
745 // not relink its subloops, which is what we want.
746 if (Loop *ParentLoop = L->getParentLoop()) {
747 Loop::iterator I = find(*ParentLoop, L);
748 assert(I != ParentLoop->end() && "Couldn't find loop");
749 ParentLoop->removeChildLoop(I);
750 } else {
751 Loop::iterator I = find(*LI, L);
752 assert(I != LI->end() && "Couldn't find loop");
753 LI->removeLoop(I);
754 }
755 LI->destroy(L);
756 }
757 }
758
759 /// Checks if \p L has single exit through latch block except possibly
760 /// "deoptimizing" exits. Returns branch instruction terminating the loop
761 /// latch if above check is successful, nullptr otherwise.
getExpectedExitLoopLatchBranch(Loop * L)762 static BranchInst *getExpectedExitLoopLatchBranch(Loop *L) {
763 BasicBlock *Latch = L->getLoopLatch();
764 if (!Latch)
765 return nullptr;
766
767 BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator());
768 if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch))
769 return nullptr;
770
771 assert((LatchBR->getSuccessor(0) == L->getHeader() ||
772 LatchBR->getSuccessor(1) == L->getHeader()) &&
773 "At least one edge out of the latch must go to the header");
774
775 SmallVector<BasicBlock *, 4> ExitBlocks;
776 L->getUniqueNonLatchExitBlocks(ExitBlocks);
777 if (any_of(ExitBlocks, [](const BasicBlock *EB) {
778 return !EB->getTerminatingDeoptimizeCall();
779 }))
780 return nullptr;
781
782 return LatchBR;
783 }
784
785 Optional<unsigned>
getLoopEstimatedTripCount(Loop * L,unsigned * EstimatedLoopInvocationWeight)786 llvm::getLoopEstimatedTripCount(Loop *L,
787 unsigned *EstimatedLoopInvocationWeight) {
788 // Support loops with an exiting latch and other existing exists only
789 // deoptimize.
790 BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L);
791 if (!LatchBranch)
792 return None;
793
794 // To estimate the number of times the loop body was executed, we want to
795 // know the number of times the backedge was taken, vs. the number of times
796 // we exited the loop.
797 uint64_t BackedgeTakenWeight, LatchExitWeight;
798 if (!LatchBranch->extractProfMetadata(BackedgeTakenWeight, LatchExitWeight))
799 return None;
800
801 if (LatchBranch->getSuccessor(0) != L->getHeader())
802 std::swap(BackedgeTakenWeight, LatchExitWeight);
803
804 if (!LatchExitWeight)
805 return None;
806
807 if (EstimatedLoopInvocationWeight)
808 *EstimatedLoopInvocationWeight = LatchExitWeight;
809
810 // Estimated backedge taken count is a ratio of the backedge taken weight by
811 // the weight of the edge exiting the loop, rounded to nearest.
812 uint64_t BackedgeTakenCount =
813 llvm::divideNearest(BackedgeTakenWeight, LatchExitWeight);
814 // Estimated trip count is one plus estimated backedge taken count.
815 return BackedgeTakenCount + 1;
816 }
817
setLoopEstimatedTripCount(Loop * L,unsigned EstimatedTripCount,unsigned EstimatedloopInvocationWeight)818 bool llvm::setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount,
819 unsigned EstimatedloopInvocationWeight) {
820 // Support loops with an exiting latch and other existing exists only
821 // deoptimize.
822 BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L);
823 if (!LatchBranch)
824 return false;
825
826 // Calculate taken and exit weights.
827 unsigned LatchExitWeight = 0;
828 unsigned BackedgeTakenWeight = 0;
829
830 if (EstimatedTripCount > 0) {
831 LatchExitWeight = EstimatedloopInvocationWeight;
832 BackedgeTakenWeight = (EstimatedTripCount - 1) * LatchExitWeight;
833 }
834
835 // Make a swap if back edge is taken when condition is "false".
836 if (LatchBranch->getSuccessor(0) != L->getHeader())
837 std::swap(BackedgeTakenWeight, LatchExitWeight);
838
839 MDBuilder MDB(LatchBranch->getContext());
840
841 // Set/Update profile metadata.
842 LatchBranch->setMetadata(
843 LLVMContext::MD_prof,
844 MDB.createBranchWeights(BackedgeTakenWeight, LatchExitWeight));
845
846 return true;
847 }
848
hasIterationCountInvariantInParent(Loop * InnerLoop,ScalarEvolution & SE)849 bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop,
850 ScalarEvolution &SE) {
851 Loop *OuterL = InnerLoop->getParentLoop();
852 if (!OuterL)
853 return true;
854
855 // Get the backedge taken count for the inner loop
856 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
857 const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch);
858 if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) ||
859 !InnerLoopBECountSC->getType()->isIntegerTy())
860 return false;
861
862 // Get whether count is invariant to the outer loop
863 ScalarEvolution::LoopDisposition LD =
864 SE.getLoopDisposition(InnerLoopBECountSC, OuterL);
865 if (LD != ScalarEvolution::LoopInvariant)
866 return false;
867
868 return true;
869 }
870
createMinMaxOp(IRBuilderBase & Builder,RecurrenceDescriptor::MinMaxRecurrenceKind RK,Value * Left,Value * Right)871 Value *llvm::createMinMaxOp(IRBuilderBase &Builder,
872 RecurrenceDescriptor::MinMaxRecurrenceKind RK,
873 Value *Left, Value *Right) {
874 CmpInst::Predicate P = CmpInst::ICMP_NE;
875 switch (RK) {
876 default:
877 llvm_unreachable("Unknown min/max recurrence kind");
878 case RecurrenceDescriptor::MRK_UIntMin:
879 P = CmpInst::ICMP_ULT;
880 break;
881 case RecurrenceDescriptor::MRK_UIntMax:
882 P = CmpInst::ICMP_UGT;
883 break;
884 case RecurrenceDescriptor::MRK_SIntMin:
885 P = CmpInst::ICMP_SLT;
886 break;
887 case RecurrenceDescriptor::MRK_SIntMax:
888 P = CmpInst::ICMP_SGT;
889 break;
890 case RecurrenceDescriptor::MRK_FloatMin:
891 P = CmpInst::FCMP_OLT;
892 break;
893 case RecurrenceDescriptor::MRK_FloatMax:
894 P = CmpInst::FCMP_OGT;
895 break;
896 }
897
898 // We only match FP sequences that are 'fast', so we can unconditionally
899 // set it on any generated instructions.
900 IRBuilderBase::FastMathFlagGuard FMFG(Builder);
901 FastMathFlags FMF;
902 FMF.setFast();
903 Builder.setFastMathFlags(FMF);
904 Value *Cmp = Builder.CreateCmp(P, Left, Right, "rdx.minmax.cmp");
905 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
906 return Select;
907 }
908
909 // Helper to generate an ordered reduction.
910 Value *
getOrderedReduction(IRBuilderBase & Builder,Value * Acc,Value * Src,unsigned Op,RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,ArrayRef<Value * > RedOps)911 llvm::getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src,
912 unsigned Op,
913 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
914 ArrayRef<Value *> RedOps) {
915 unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
916
917 // Extract and apply reduction ops in ascending order:
918 // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
919 Value *Result = Acc;
920 for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
921 Value *Ext =
922 Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));
923
924 if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
925 Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext,
926 "bin.rdx");
927 } else {
928 assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
929 "Invalid min/max");
930 Result = createMinMaxOp(Builder, MinMaxKind, Result, Ext);
931 }
932
933 if (!RedOps.empty())
934 propagateIRFlags(Result, RedOps);
935 }
936
937 return Result;
938 }
939
940 // Helper to generate a log2 shuffle reduction.
941 Value *
getShuffleReduction(IRBuilderBase & Builder,Value * Src,unsigned Op,RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,ArrayRef<Value * > RedOps)942 llvm::getShuffleReduction(IRBuilderBase &Builder, Value *Src, unsigned Op,
943 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
944 ArrayRef<Value *> RedOps) {
945 unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
946 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
947 // and vector ops, reducing the set of values being computed by half each
948 // round.
949 assert(isPowerOf2_32(VF) &&
950 "Reduction emission only supported for pow2 vectors!");
951 Value *TmpVec = Src;
952 SmallVector<int, 32> ShuffleMask(VF);
953 for (unsigned i = VF; i != 1; i >>= 1) {
954 // Move the upper half of the vector to the lower half.
955 for (unsigned j = 0; j != i / 2; ++j)
956 ShuffleMask[j] = i / 2 + j;
957
958 // Fill the rest of the mask with undef.
959 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), -1);
960
961 Value *Shuf = Builder.CreateShuffleVector(
962 TmpVec, UndefValue::get(TmpVec->getType()), ShuffleMask, "rdx.shuf");
963
964 if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
965 // The builder propagates its fast-math-flags setting.
966 TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
967 "bin.rdx");
968 } else {
969 assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
970 "Invalid min/max");
971 TmpVec = createMinMaxOp(Builder, MinMaxKind, TmpVec, Shuf);
972 }
973 if (!RedOps.empty())
974 propagateIRFlags(TmpVec, RedOps);
975
976 // We may compute the reassociated scalar ops in a way that does not
977 // preserve nsw/nuw etc. Conservatively, drop those flags.
978 if (auto *ReductionInst = dyn_cast<Instruction>(TmpVec))
979 ReductionInst->dropPoisonGeneratingFlags();
980 }
981 // The result is in the first element of the vector.
982 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
983 }
984
985 /// Create a simple vector reduction specified by an opcode and some
986 /// flags (if generating min/max reductions).
createSimpleTargetReduction(IRBuilderBase & Builder,const TargetTransformInfo * TTI,unsigned Opcode,Value * Src,TargetTransformInfo::ReductionFlags Flags,ArrayRef<Value * > RedOps)987 Value *llvm::createSimpleTargetReduction(
988 IRBuilderBase &Builder, const TargetTransformInfo *TTI, unsigned Opcode,
989 Value *Src, TargetTransformInfo::ReductionFlags Flags,
990 ArrayRef<Value *> RedOps) {
991 auto *SrcVTy = cast<VectorType>(Src->getType());
992
993 std::function<Value *()> BuildFunc;
994 using RD = RecurrenceDescriptor;
995 RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid;
996
997 switch (Opcode) {
998 case Instruction::Add:
999 BuildFunc = [&]() { return Builder.CreateAddReduce(Src); };
1000 break;
1001 case Instruction::Mul:
1002 BuildFunc = [&]() { return Builder.CreateMulReduce(Src); };
1003 break;
1004 case Instruction::And:
1005 BuildFunc = [&]() { return Builder.CreateAndReduce(Src); };
1006 break;
1007 case Instruction::Or:
1008 BuildFunc = [&]() { return Builder.CreateOrReduce(Src); };
1009 break;
1010 case Instruction::Xor:
1011 BuildFunc = [&]() { return Builder.CreateXorReduce(Src); };
1012 break;
1013 case Instruction::FAdd:
1014 BuildFunc = [&]() {
1015 auto Rdx = Builder.CreateFAddReduce(
1016 ConstantFP::getNegativeZero(SrcVTy->getElementType()), Src);
1017 return Rdx;
1018 };
1019 break;
1020 case Instruction::FMul:
1021 BuildFunc = [&]() {
1022 Type *Ty = SrcVTy->getElementType();
1023 auto Rdx = Builder.CreateFMulReduce(ConstantFP::get(Ty, 1.0), Src);
1024 return Rdx;
1025 };
1026 break;
1027 case Instruction::ICmp:
1028 if (Flags.IsMaxOp) {
1029 MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax;
1030 BuildFunc = [&]() {
1031 return Builder.CreateIntMaxReduce(Src, Flags.IsSigned);
1032 };
1033 } else {
1034 MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin;
1035 BuildFunc = [&]() {
1036 return Builder.CreateIntMinReduce(Src, Flags.IsSigned);
1037 };
1038 }
1039 break;
1040 case Instruction::FCmp:
1041 if (Flags.IsMaxOp) {
1042 MinMaxKind = RD::MRK_FloatMax;
1043 BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); };
1044 } else {
1045 MinMaxKind = RD::MRK_FloatMin;
1046 BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); };
1047 }
1048 break;
1049 default:
1050 llvm_unreachable("Unhandled opcode");
1051 break;
1052 }
1053 if (ForceReductionIntrinsic ||
1054 TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags))
1055 return BuildFunc();
1056 return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps);
1057 }
1058
1059 /// Create a vector reduction using a given recurrence descriptor.
createTargetReduction(IRBuilderBase & B,const TargetTransformInfo * TTI,RecurrenceDescriptor & Desc,Value * Src,bool NoNaN)1060 Value *llvm::createTargetReduction(IRBuilderBase &B,
1061 const TargetTransformInfo *TTI,
1062 RecurrenceDescriptor &Desc, Value *Src,
1063 bool NoNaN) {
1064 // TODO: Support in-order reductions based on the recurrence descriptor.
1065 using RD = RecurrenceDescriptor;
1066 RD::RecurrenceKind RecKind = Desc.getRecurrenceKind();
1067 TargetTransformInfo::ReductionFlags Flags;
1068 Flags.NoNaN = NoNaN;
1069
1070 // All ops in the reduction inherit fast-math-flags from the recurrence
1071 // descriptor.
1072 IRBuilderBase::FastMathFlagGuard FMFGuard(B);
1073 B.setFastMathFlags(Desc.getFastMathFlags());
1074
1075 switch (RecKind) {
1076 case RD::RK_FloatAdd:
1077 return createSimpleTargetReduction(B, TTI, Instruction::FAdd, Src, Flags);
1078 case RD::RK_FloatMult:
1079 return createSimpleTargetReduction(B, TTI, Instruction::FMul, Src, Flags);
1080 case RD::RK_IntegerAdd:
1081 return createSimpleTargetReduction(B, TTI, Instruction::Add, Src, Flags);
1082 case RD::RK_IntegerMult:
1083 return createSimpleTargetReduction(B, TTI, Instruction::Mul, Src, Flags);
1084 case RD::RK_IntegerAnd:
1085 return createSimpleTargetReduction(B, TTI, Instruction::And, Src, Flags);
1086 case RD::RK_IntegerOr:
1087 return createSimpleTargetReduction(B, TTI, Instruction::Or, Src, Flags);
1088 case RD::RK_IntegerXor:
1089 return createSimpleTargetReduction(B, TTI, Instruction::Xor, Src, Flags);
1090 case RD::RK_IntegerMinMax: {
1091 RD::MinMaxRecurrenceKind MMKind = Desc.getMinMaxRecurrenceKind();
1092 Flags.IsMaxOp = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_UIntMax);
1093 Flags.IsSigned = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_SIntMin);
1094 return createSimpleTargetReduction(B, TTI, Instruction::ICmp, Src, Flags);
1095 }
1096 case RD::RK_FloatMinMax: {
1097 Flags.IsMaxOp = Desc.getMinMaxRecurrenceKind() == RD::MRK_FloatMax;
1098 return createSimpleTargetReduction(B, TTI, Instruction::FCmp, Src, Flags);
1099 }
1100 default:
1101 llvm_unreachable("Unhandled RecKind");
1102 }
1103 }
1104
propagateIRFlags(Value * I,ArrayRef<Value * > VL,Value * OpValue)1105 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) {
1106 auto *VecOp = dyn_cast<Instruction>(I);
1107 if (!VecOp)
1108 return;
1109 auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
1110 : dyn_cast<Instruction>(OpValue);
1111 if (!Intersection)
1112 return;
1113 const unsigned Opcode = Intersection->getOpcode();
1114 VecOp->copyIRFlags(Intersection);
1115 for (auto *V : VL) {
1116 auto *Instr = dyn_cast<Instruction>(V);
1117 if (!Instr)
1118 continue;
1119 if (OpValue == nullptr || Opcode == Instr->getOpcode())
1120 VecOp->andIRFlags(V);
1121 }
1122 }
1123
isKnownNegativeInLoop(const SCEV * S,const Loop * L,ScalarEvolution & SE)1124 bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L,
1125 ScalarEvolution &SE) {
1126 const SCEV *Zero = SE.getZero(S->getType());
1127 return SE.isAvailableAtLoopEntry(S, L) &&
1128 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero);
1129 }
1130
isKnownNonNegativeInLoop(const SCEV * S,const Loop * L,ScalarEvolution & SE)1131 bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L,
1132 ScalarEvolution &SE) {
1133 const SCEV *Zero = SE.getZero(S->getType());
1134 return SE.isAvailableAtLoopEntry(S, L) &&
1135 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero);
1136 }
1137
cannotBeMinInLoop(const SCEV * S,const Loop * L,ScalarEvolution & SE,bool Signed)1138 bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
1139 bool Signed) {
1140 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1141 APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) :
1142 APInt::getMinValue(BitWidth);
1143 auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1144 return SE.isAvailableAtLoopEntry(S, L) &&
1145 SE.isLoopEntryGuardedByCond(L, Predicate, S,
1146 SE.getConstant(Min));
1147 }
1148
cannotBeMaxInLoop(const SCEV * S,const Loop * L,ScalarEvolution & SE,bool Signed)1149 bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
1150 bool Signed) {
1151 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1152 APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) :
1153 APInt::getMaxValue(BitWidth);
1154 auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1155 return SE.isAvailableAtLoopEntry(S, L) &&
1156 SE.isLoopEntryGuardedByCond(L, Predicate, S,
1157 SE.getConstant(Max));
1158 }
1159
1160 //===----------------------------------------------------------------------===//
1161 // rewriteLoopExitValues - Optimize IV users outside the loop.
1162 // As a side effect, reduces the amount of IV processing within the loop.
1163 //===----------------------------------------------------------------------===//
1164
1165 // Return true if the SCEV expansion generated by the rewriter can replace the
1166 // original value. SCEV guarantees that it produces the same value, but the way
1167 // it is produced may be illegal IR. Ideally, this function will only be
1168 // called for verification.
isValidRewrite(ScalarEvolution * SE,Value * FromVal,Value * ToVal)1169 static bool isValidRewrite(ScalarEvolution *SE, Value *FromVal, Value *ToVal) {
1170 // If an SCEV expression subsumed multiple pointers, its expansion could
1171 // reassociate the GEP changing the base pointer. This is illegal because the
1172 // final address produced by a GEP chain must be inbounds relative to its
1173 // underlying object. Otherwise basic alias analysis, among other things,
1174 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
1175 // producing an expression involving multiple pointers. Until then, we must
1176 // bail out here.
1177 //
1178 // Retrieve the pointer operand of the GEP. Don't use getUnderlyingObject
1179 // because it understands lcssa phis while SCEV does not.
1180 Value *FromPtr = FromVal;
1181 Value *ToPtr = ToVal;
1182 if (auto *GEP = dyn_cast<GEPOperator>(FromVal))
1183 FromPtr = GEP->getPointerOperand();
1184
1185 if (auto *GEP = dyn_cast<GEPOperator>(ToVal))
1186 ToPtr = GEP->getPointerOperand();
1187
1188 if (FromPtr != FromVal || ToPtr != ToVal) {
1189 // Quickly check the common case
1190 if (FromPtr == ToPtr)
1191 return true;
1192
1193 // SCEV may have rewritten an expression that produces the GEP's pointer
1194 // operand. That's ok as long as the pointer operand has the same base
1195 // pointer. Unlike getUnderlyingObject(), getPointerBase() will find the
1196 // base of a recurrence. This handles the case in which SCEV expansion
1197 // converts a pointer type recurrence into a nonrecurrent pointer base
1198 // indexed by an integer recurrence.
1199
1200 // If the GEP base pointer is a vector of pointers, abort.
1201 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
1202 return false;
1203
1204 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
1205 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
1206 if (FromBase == ToBase)
1207 return true;
1208
1209 LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: GEP rewrite bail out "
1210 << *FromBase << " != " << *ToBase << "\n");
1211
1212 return false;
1213 }
1214 return true;
1215 }
1216
hasHardUserWithinLoop(const Loop * L,const Instruction * I)1217 static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) {
1218 SmallPtrSet<const Instruction *, 8> Visited;
1219 SmallVector<const Instruction *, 8> WorkList;
1220 Visited.insert(I);
1221 WorkList.push_back(I);
1222 while (!WorkList.empty()) {
1223 const Instruction *Curr = WorkList.pop_back_val();
1224 // This use is outside the loop, nothing to do.
1225 if (!L->contains(Curr))
1226 continue;
1227 // Do we assume it is a "hard" use which will not be eliminated easily?
1228 if (Curr->mayHaveSideEffects())
1229 return true;
1230 // Otherwise, add all its users to worklist.
1231 for (auto U : Curr->users()) {
1232 auto *UI = cast<Instruction>(U);
1233 if (Visited.insert(UI).second)
1234 WorkList.push_back(UI);
1235 }
1236 }
1237 return false;
1238 }
1239
1240 // Collect information about PHI nodes which can be transformed in
1241 // rewriteLoopExitValues.
1242 struct RewritePhi {
1243 PHINode *PN; // For which PHI node is this replacement?
1244 unsigned Ith; // For which incoming value?
1245 const SCEV *ExpansionSCEV; // The SCEV of the incoming value we are rewriting.
1246 Instruction *ExpansionPoint; // Where we'd like to expand that SCEV?
1247 bool HighCost; // Is this expansion a high-cost?
1248
1249 Value *Expansion = nullptr;
1250 bool ValidRewrite = false;
1251
RewritePhiRewritePhi1252 RewritePhi(PHINode *P, unsigned I, const SCEV *Val, Instruction *ExpansionPt,
1253 bool H)
1254 : PN(P), Ith(I), ExpansionSCEV(Val), ExpansionPoint(ExpansionPt),
1255 HighCost(H) {}
1256 };
1257
1258 // Check whether it is possible to delete the loop after rewriting exit
1259 // value. If it is possible, ignore ReplaceExitValue and do rewriting
1260 // aggressively.
canLoopBeDeleted(Loop * L,SmallVector<RewritePhi,8> & RewritePhiSet)1261 static bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
1262 BasicBlock *Preheader = L->getLoopPreheader();
1263 // If there is no preheader, the loop will not be deleted.
1264 if (!Preheader)
1265 return false;
1266
1267 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
1268 // We obviate multiple ExitingBlocks case for simplicity.
1269 // TODO: If we see testcase with multiple ExitingBlocks can be deleted
1270 // after exit value rewriting, we can enhance the logic here.
1271 SmallVector<BasicBlock *, 4> ExitingBlocks;
1272 L->getExitingBlocks(ExitingBlocks);
1273 SmallVector<BasicBlock *, 8> ExitBlocks;
1274 L->getUniqueExitBlocks(ExitBlocks);
1275 if (ExitBlocks.size() != 1 || ExitingBlocks.size() != 1)
1276 return false;
1277
1278 BasicBlock *ExitBlock = ExitBlocks[0];
1279 BasicBlock::iterator BI = ExitBlock->begin();
1280 while (PHINode *P = dyn_cast<PHINode>(BI)) {
1281 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
1282
1283 // If the Incoming value of P is found in RewritePhiSet, we know it
1284 // could be rewritten to use a loop invariant value in transformation
1285 // phase later. Skip it in the loop invariant check below.
1286 bool found = false;
1287 for (const RewritePhi &Phi : RewritePhiSet) {
1288 if (!Phi.ValidRewrite)
1289 continue;
1290 unsigned i = Phi.Ith;
1291 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
1292 found = true;
1293 break;
1294 }
1295 }
1296
1297 Instruction *I;
1298 if (!found && (I = dyn_cast<Instruction>(Incoming)))
1299 if (!L->hasLoopInvariantOperands(I))
1300 return false;
1301
1302 ++BI;
1303 }
1304
1305 for (auto *BB : L->blocks())
1306 if (llvm::any_of(*BB, [](Instruction &I) {
1307 return I.mayHaveSideEffects();
1308 }))
1309 return false;
1310
1311 return true;
1312 }
1313
rewriteLoopExitValues(Loop * L,LoopInfo * LI,TargetLibraryInfo * TLI,ScalarEvolution * SE,const TargetTransformInfo * TTI,SCEVExpander & Rewriter,DominatorTree * DT,ReplaceExitVal ReplaceExitValue,SmallVector<WeakTrackingVH,16> & DeadInsts)1314 int llvm::rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI,
1315 ScalarEvolution *SE,
1316 const TargetTransformInfo *TTI,
1317 SCEVExpander &Rewriter, DominatorTree *DT,
1318 ReplaceExitVal ReplaceExitValue,
1319 SmallVector<WeakTrackingVH, 16> &DeadInsts) {
1320 // Check a pre-condition.
1321 assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
1322 "Indvars did not preserve LCSSA!");
1323
1324 SmallVector<BasicBlock*, 8> ExitBlocks;
1325 L->getUniqueExitBlocks(ExitBlocks);
1326
1327 SmallVector<RewritePhi, 8> RewritePhiSet;
1328 // Find all values that are computed inside the loop, but used outside of it.
1329 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan
1330 // the exit blocks of the loop to find them.
1331 for (BasicBlock *ExitBB : ExitBlocks) {
1332 // If there are no PHI nodes in this exit block, then no values defined
1333 // inside the loop are used on this path, skip it.
1334 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
1335 if (!PN) continue;
1336
1337 unsigned NumPreds = PN->getNumIncomingValues();
1338
1339 // Iterate over all of the PHI nodes.
1340 BasicBlock::iterator BBI = ExitBB->begin();
1341 while ((PN = dyn_cast<PHINode>(BBI++))) {
1342 if (PN->use_empty())
1343 continue; // dead use, don't replace it
1344
1345 if (!SE->isSCEVable(PN->getType()))
1346 continue;
1347
1348 // It's necessary to tell ScalarEvolution about this explicitly so that
1349 // it can walk the def-use list and forget all SCEVs, as it may not be
1350 // watching the PHI itself. Once the new exit value is in place, there
1351 // may not be a def-use connection between the loop and every instruction
1352 // which got a SCEVAddRecExpr for that loop.
1353 SE->forgetValue(PN);
1354
1355 // Iterate over all of the values in all the PHI nodes.
1356 for (unsigned i = 0; i != NumPreds; ++i) {
1357 // If the value being merged in is not integer or is not defined
1358 // in the loop, skip it.
1359 Value *InVal = PN->getIncomingValue(i);
1360 if (!isa<Instruction>(InVal))
1361 continue;
1362
1363 // If this pred is for a subloop, not L itself, skip it.
1364 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
1365 continue; // The Block is in a subloop, skip it.
1366
1367 // Check that InVal is defined in the loop.
1368 Instruction *Inst = cast<Instruction>(InVal);
1369 if (!L->contains(Inst))
1370 continue;
1371
1372 // Okay, this instruction has a user outside of the current loop
1373 // and varies predictably *inside* the loop. Evaluate the value it
1374 // contains when the loop exits, if possible. We prefer to start with
1375 // expressions which are true for all exits (so as to maximize
1376 // expression reuse by the SCEVExpander), but resort to per-exit
1377 // evaluation if that fails.
1378 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
1379 if (isa<SCEVCouldNotCompute>(ExitValue) ||
1380 !SE->isLoopInvariant(ExitValue, L) ||
1381 !isSafeToExpand(ExitValue, *SE)) {
1382 // TODO: This should probably be sunk into SCEV in some way; maybe a
1383 // getSCEVForExit(SCEV*, L, ExitingBB)? It can be generalized for
1384 // most SCEV expressions and other recurrence types (e.g. shift
1385 // recurrences). Is there existing code we can reuse?
1386 const SCEV *ExitCount = SE->getExitCount(L, PN->getIncomingBlock(i));
1387 if (isa<SCEVCouldNotCompute>(ExitCount))
1388 continue;
1389 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Inst)))
1390 if (AddRec->getLoop() == L)
1391 ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE);
1392 if (isa<SCEVCouldNotCompute>(ExitValue) ||
1393 !SE->isLoopInvariant(ExitValue, L) ||
1394 !isSafeToExpand(ExitValue, *SE))
1395 continue;
1396 }
1397
1398 // Computing the value outside of the loop brings no benefit if it is
1399 // definitely used inside the loop in a way which can not be optimized
1400 // away. Avoid doing so unless we know we have a value which computes
1401 // the ExitValue already. TODO: This should be merged into SCEV
1402 // expander to leverage its knowledge of existing expressions.
1403 if (ReplaceExitValue != AlwaysRepl && !isa<SCEVConstant>(ExitValue) &&
1404 !isa<SCEVUnknown>(ExitValue) && hasHardUserWithinLoop(L, Inst))
1405 continue;
1406
1407 // Check if expansions of this SCEV would count as being high cost.
1408 bool HighCost = Rewriter.isHighCostExpansion(
1409 ExitValue, L, SCEVCheapExpansionBudget, TTI, Inst);
1410
1411 // Note that we must not perform expansions until after
1412 // we query *all* the costs, because if we perform temporary expansion
1413 // inbetween, one that we might not intend to keep, said expansion
1414 // *may* affect cost calculation of the the next SCEV's we'll query,
1415 // and next SCEV may errneously get smaller cost.
1416
1417 // Collect all the candidate PHINodes to be rewritten.
1418 RewritePhiSet.emplace_back(PN, i, ExitValue, Inst, HighCost);
1419 }
1420 }
1421 }
1422
1423 // Now that we've done preliminary filtering and billed all the SCEV's,
1424 // we can perform the last sanity check - the expansion must be valid.
1425 for (RewritePhi &Phi : RewritePhiSet) {
1426 Phi.Expansion = Rewriter.expandCodeFor(Phi.ExpansionSCEV, Phi.PN->getType(),
1427 Phi.ExpansionPoint);
1428
1429 LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: AfterLoopVal = "
1430 << *(Phi.Expansion) << '\n'
1431 << " LoopVal = " << *(Phi.ExpansionPoint) << "\n");
1432
1433 // FIXME: isValidRewrite() is a hack. it should be an assert, eventually.
1434 Phi.ValidRewrite = isValidRewrite(SE, Phi.ExpansionPoint, Phi.Expansion);
1435 if (!Phi.ValidRewrite) {
1436 DeadInsts.push_back(Phi.Expansion);
1437 continue;
1438 }
1439
1440 #ifndef NDEBUG
1441 // If we reuse an instruction from a loop which is neither L nor one of
1442 // its containing loops, we end up breaking LCSSA form for this loop by
1443 // creating a new use of its instruction.
1444 if (auto *ExitInsn = dyn_cast<Instruction>(Phi.Expansion))
1445 if (auto *EVL = LI->getLoopFor(ExitInsn->getParent()))
1446 if (EVL != L)
1447 assert(EVL->contains(L) && "LCSSA breach detected!");
1448 #endif
1449 }
1450
1451 // TODO: after isValidRewrite() is an assertion, evaluate whether
1452 // it is beneficial to change how we calculate high-cost:
1453 // if we have SCEV 'A' which we know we will expand, should we calculate
1454 // the cost of other SCEV's after expanding SCEV 'A',
1455 // thus potentially giving cost bonus to those other SCEV's?
1456
1457 bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
1458 int NumReplaced = 0;
1459
1460 // Transformation.
1461 for (const RewritePhi &Phi : RewritePhiSet) {
1462 if (!Phi.ValidRewrite)
1463 continue;
1464
1465 PHINode *PN = Phi.PN;
1466 Value *ExitVal = Phi.Expansion;
1467
1468 // Only do the rewrite when the ExitValue can be expanded cheaply.
1469 // If LoopCanBeDel is true, rewrite exit value aggressively.
1470 if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) {
1471 DeadInsts.push_back(ExitVal);
1472 continue;
1473 }
1474
1475 NumReplaced++;
1476 Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
1477 PN->setIncomingValue(Phi.Ith, ExitVal);
1478
1479 // If this instruction is dead now, delete it. Don't do it now to avoid
1480 // invalidating iterators.
1481 if (isInstructionTriviallyDead(Inst, TLI))
1482 DeadInsts.push_back(Inst);
1483
1484 // Replace PN with ExitVal if that is legal and does not break LCSSA.
1485 if (PN->getNumIncomingValues() == 1 &&
1486 LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
1487 PN->replaceAllUsesWith(ExitVal);
1488 PN->eraseFromParent();
1489 }
1490 }
1491
1492 // The insertion point instruction may have been deleted; clear it out
1493 // so that the rewriter doesn't trip over it later.
1494 Rewriter.clearInsertPoint();
1495 return NumReplaced;
1496 }
1497
1498 /// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for
1499 /// \p OrigLoop.
setProfileInfoAfterUnrolling(Loop * OrigLoop,Loop * UnrolledLoop,Loop * RemainderLoop,uint64_t UF)1500 void llvm::setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop,
1501 Loop *RemainderLoop, uint64_t UF) {
1502 assert(UF > 0 && "Zero unrolled factor is not supported");
1503 assert(UnrolledLoop != RemainderLoop &&
1504 "Unrolled and Remainder loops are expected to distinct");
1505
1506 // Get number of iterations in the original scalar loop.
1507 unsigned OrigLoopInvocationWeight = 0;
1508 Optional<unsigned> OrigAverageTripCount =
1509 getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight);
1510 if (!OrigAverageTripCount)
1511 return;
1512
1513 // Calculate number of iterations in unrolled loop.
1514 unsigned UnrolledAverageTripCount = *OrigAverageTripCount / UF;
1515 // Calculate number of iterations for remainder loop.
1516 unsigned RemainderAverageTripCount = *OrigAverageTripCount % UF;
1517
1518 setLoopEstimatedTripCount(UnrolledLoop, UnrolledAverageTripCount,
1519 OrigLoopInvocationWeight);
1520 setLoopEstimatedTripCount(RemainderLoop, RemainderAverageTripCount,
1521 OrigLoopInvocationWeight);
1522 }
1523
1524 /// Utility that implements appending of loops onto a worklist.
1525 /// Loops are added in preorder (analogous for reverse postorder for trees),
1526 /// and the worklist is processed LIFO.
1527 template <typename RangeT>
appendReversedLoopsToWorklist(RangeT && Loops,SmallPriorityWorklist<Loop *,4> & Worklist)1528 void llvm::appendReversedLoopsToWorklist(
1529 RangeT &&Loops, SmallPriorityWorklist<Loop *, 4> &Worklist) {
1530 // We use an internal worklist to build up the preorder traversal without
1531 // recursion.
1532 SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist;
1533
1534 // We walk the initial sequence of loops in reverse because we generally want
1535 // to visit defs before uses and the worklist is LIFO.
1536 for (Loop *RootL : Loops) {
1537 assert(PreOrderLoops.empty() && "Must start with an empty preorder walk.");
1538 assert(PreOrderWorklist.empty() &&
1539 "Must start with an empty preorder walk worklist.");
1540 PreOrderWorklist.push_back(RootL);
1541 do {
1542 Loop *L = PreOrderWorklist.pop_back_val();
1543 PreOrderWorklist.append(L->begin(), L->end());
1544 PreOrderLoops.push_back(L);
1545 } while (!PreOrderWorklist.empty());
1546
1547 Worklist.insert(std::move(PreOrderLoops));
1548 PreOrderLoops.clear();
1549 }
1550 }
1551
1552 template <typename RangeT>
appendLoopsToWorklist(RangeT && Loops,SmallPriorityWorklist<Loop *,4> & Worklist)1553 void llvm::appendLoopsToWorklist(RangeT &&Loops,
1554 SmallPriorityWorklist<Loop *, 4> &Worklist) {
1555 appendReversedLoopsToWorklist(reverse(Loops), Worklist);
1556 }
1557
1558 template void llvm::appendLoopsToWorklist<ArrayRef<Loop *> &>(
1559 ArrayRef<Loop *> &Loops, SmallPriorityWorklist<Loop *, 4> &Worklist);
1560
1561 template void
1562 llvm::appendLoopsToWorklist<Loop &>(Loop &L,
1563 SmallPriorityWorklist<Loop *, 4> &Worklist);
1564
appendLoopsToWorklist(LoopInfo & LI,SmallPriorityWorklist<Loop *,4> & Worklist)1565 void llvm::appendLoopsToWorklist(LoopInfo &LI,
1566 SmallPriorityWorklist<Loop *, 4> &Worklist) {
1567 appendReversedLoopsToWorklist(LI, Worklist);
1568 }
1569
cloneLoop(Loop * L,Loop * PL,ValueToValueMapTy & VM,LoopInfo * LI,LPPassManager * LPM)1570 Loop *llvm::cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
1571 LoopInfo *LI, LPPassManager *LPM) {
1572 Loop &New = *LI->AllocateLoop();
1573 if (PL)
1574 PL->addChildLoop(&New);
1575 else
1576 LI->addTopLevelLoop(&New);
1577
1578 if (LPM)
1579 LPM->addLoop(New);
1580
1581 // Add all of the blocks in L to the new loop.
1582 for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
1583 I != E; ++I)
1584 if (LI->getLoopFor(*I) == L)
1585 New.addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);
1586
1587 // Add all of the subloops to the new loop.
1588 for (Loop *I : *L)
1589 cloneLoop(I, &New, VM, LI, LPM);
1590
1591 return &New;
1592 }
1593
1594 /// IR Values for the lower and upper bounds of a pointer evolution. We
1595 /// need to use value-handles because SCEV expansion can invalidate previously
1596 /// expanded values. Thus expansion of a pointer can invalidate the bounds for
1597 /// a previous one.
1598 struct PointerBounds {
1599 TrackingVH<Value> Start;
1600 TrackingVH<Value> End;
1601 };
1602
1603 /// Expand code for the lower and upper bound of the pointer group \p CG
1604 /// in \p TheLoop. \return the values for the bounds.
expandBounds(const RuntimeCheckingPtrGroup * CG,Loop * TheLoop,Instruction * Loc,SCEVExpander & Exp,ScalarEvolution * SE)1605 static PointerBounds expandBounds(const RuntimeCheckingPtrGroup *CG,
1606 Loop *TheLoop, Instruction *Loc,
1607 SCEVExpander &Exp, ScalarEvolution *SE) {
1608 // TODO: Add helper to retrieve pointers to CG.
1609 Value *Ptr = CG->RtCheck.Pointers[CG->Members[0]].PointerValue;
1610 const SCEV *Sc = SE->getSCEV(Ptr);
1611
1612 unsigned AS = Ptr->getType()->getPointerAddressSpace();
1613 LLVMContext &Ctx = Loc->getContext();
1614
1615 // Use this type for pointer arithmetic.
1616 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
1617
1618 if (SE->isLoopInvariant(Sc, TheLoop)) {
1619 LLVM_DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:"
1620 << *Ptr << "\n");
1621 // Ptr could be in the loop body. If so, expand a new one at the correct
1622 // location.
1623 Instruction *Inst = dyn_cast<Instruction>(Ptr);
1624 Value *NewPtr = (Inst && TheLoop->contains(Inst))
1625 ? Exp.expandCodeFor(Sc, PtrArithTy, Loc)
1626 : Ptr;
1627 // We must return a half-open range, which means incrementing Sc.
1628 const SCEV *ScPlusOne = SE->getAddExpr(Sc, SE->getOne(PtrArithTy));
1629 Value *NewPtrPlusOne = Exp.expandCodeFor(ScPlusOne, PtrArithTy, Loc);
1630 return {NewPtr, NewPtrPlusOne};
1631 } else {
1632 Value *Start = nullptr, *End = nullptr;
1633 LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
1634 Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
1635 End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
1636 LLVM_DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High
1637 << "\n");
1638 return {Start, End};
1639 }
1640 }
1641
1642 /// Turns a collection of checks into a collection of expanded upper and
1643 /// lower bounds for both pointers in the check.
1644 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4>
expandBounds(const SmallVectorImpl<RuntimePointerCheck> & PointerChecks,Loop * L,Instruction * Loc,ScalarEvolution * SE,SCEVExpander & Exp)1645 expandBounds(const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, Loop *L,
1646 Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp) {
1647 SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
1648
1649 // Here we're relying on the SCEV Expander's cache to only emit code for the
1650 // same bounds once.
1651 transform(PointerChecks, std::back_inserter(ChecksWithBounds),
1652 [&](const RuntimePointerCheck &Check) {
1653 PointerBounds First = expandBounds(Check.first, L, Loc, Exp, SE),
1654 Second =
1655 expandBounds(Check.second, L, Loc, Exp, SE);
1656 return std::make_pair(First, Second);
1657 });
1658
1659 return ChecksWithBounds;
1660 }
1661
addRuntimeChecks(Instruction * Loc,Loop * TheLoop,const SmallVectorImpl<RuntimePointerCheck> & PointerChecks,ScalarEvolution * SE)1662 std::pair<Instruction *, Instruction *> llvm::addRuntimeChecks(
1663 Instruction *Loc, Loop *TheLoop,
1664 const SmallVectorImpl<RuntimePointerCheck> &PointerChecks,
1665 ScalarEvolution *SE) {
1666 // TODO: Move noalias annotation code from LoopVersioning here and share with LV if possible.
1667 // TODO: Pass RtPtrChecking instead of PointerChecks and SE separately, if possible
1668 const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
1669 SCEVExpander Exp(*SE, DL, "induction");
1670 auto ExpandedChecks = expandBounds(PointerChecks, TheLoop, Loc, SE, Exp);
1671
1672 LLVMContext &Ctx = Loc->getContext();
1673 Instruction *FirstInst = nullptr;
1674 IRBuilder<> ChkBuilder(Loc);
1675 // Our instructions might fold to a constant.
1676 Value *MemoryRuntimeCheck = nullptr;
1677
1678 // FIXME: this helper is currently a duplicate of the one in
1679 // LoopVectorize.cpp.
1680 auto GetFirstInst = [](Instruction *FirstInst, Value *V,
1681 Instruction *Loc) -> Instruction * {
1682 if (FirstInst)
1683 return FirstInst;
1684 if (Instruction *I = dyn_cast<Instruction>(V))
1685 return I->getParent() == Loc->getParent() ? I : nullptr;
1686 return nullptr;
1687 };
1688
1689 for (const auto &Check : ExpandedChecks) {
1690 const PointerBounds &A = Check.first, &B = Check.second;
1691 // Check if two pointers (A and B) conflict where conflict is computed as:
1692 // start(A) <= end(B) && start(B) <= end(A)
1693 unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
1694 unsigned AS1 = B.Start->getType()->getPointerAddressSpace();
1695
1696 assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
1697 (AS1 == A.End->getType()->getPointerAddressSpace()) &&
1698 "Trying to bounds check pointers with different address spaces");
1699
1700 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
1701 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
1702
1703 Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
1704 Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
1705 Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc");
1706 Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc");
1707
1708 // [A|B].Start points to the first accessed byte under base [A|B].
1709 // [A|B].End points to the last accessed byte, plus one.
1710 // There is no conflict when the intervals are disjoint:
1711 // NoConflict = (B.Start >= A.End) || (A.Start >= B.End)
1712 //
1713 // bound0 = (B.Start < A.End)
1714 // bound1 = (A.Start < B.End)
1715 // IsConflict = bound0 & bound1
1716 Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0");
1717 FirstInst = GetFirstInst(FirstInst, Cmp0, Loc);
1718 Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1");
1719 FirstInst = GetFirstInst(FirstInst, Cmp1, Loc);
1720 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1721 FirstInst = GetFirstInst(FirstInst, IsConflict, Loc);
1722 if (MemoryRuntimeCheck) {
1723 IsConflict =
1724 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
1725 FirstInst = GetFirstInst(FirstInst, IsConflict, Loc);
1726 }
1727 MemoryRuntimeCheck = IsConflict;
1728 }
1729
1730 if (!MemoryRuntimeCheck)
1731 return std::make_pair(nullptr, nullptr);
1732
1733 // We have to do this trickery because the IRBuilder might fold the check to a
1734 // constant expression in which case there is no Instruction anchored in a
1735 // the block.
1736 Instruction *Check =
1737 BinaryOperator::CreateAnd(MemoryRuntimeCheck, ConstantInt::getTrue(Ctx));
1738 ChkBuilder.Insert(Check, "memcheck.conflict");
1739 FirstInst = GetFirstInst(FirstInst, Check, Loc);
1740 return std::make_pair(FirstInst, Check);
1741 }
1742